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About photons in mircrocavities

Light confined in a microcavity [3] is described by Maxwell’s equations with appropriate boundary conditions.
A careful analysis of the corresponding boundary value problem in oblate spheroidal coordinates provides a
systematic approach to determine the underlying mode functions. In the paraxial approximation, this three-
dimensional microcavity problem can be reduced to an effective two-dimensional trapped massive Bose gas.
This result supports the heuristic derivation of Ref. [2], where even the Bose-Einstein condensation of these
massive photons was observed.

Experimental setup in Weitz group

Figure 1: a. Schematic spectrum of cavity modes with absorption coefficient α(ν) and fluorescence
strength f (ν) b. Dispersion relation of photons in the cavity (solid line) with fixed longitudinal mode
(q = 7) and the free photon dispersion (dashed line) c. Schematic experimental setup with trapping
potential imposed by the curved mirrors.

• photons cannot be cooled without loosing photons (Stefan-Boltzmann law, no chemical
potential)

•How to thermalize photons? → modified resonator environment

• dye-filled curved micro resonator with mirror distance L = 1.46µm, see Fig.1.c

• axial cut-off kcut ∝
2π
L =̂ 550 THz

→ thermal excitation suppressed by exp
[
−h̄ckcut

kBT

]
= exp (−80)

• kz fixed, transversal modes thermalize with dye solution as heat bath (rovibronic levels)

• system effective 2D, kz yields effective mass term

A careful look at photon modes

• treating this microcavity system involves 3 main problems

⋄ coordinate system matching to the boundary

⋄while scalar Helmholtz operator should remain separable

⋄ construction of solenoidal vector field

• boundary geometry parametrized (ρ ≪ R)
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•mirrors ideal conductors

n× E|∂Ω± = −n× Ȧ|∂Ω± = 0 (1)

n ·B|∂Ω± = n · ∇ ×A|∂Ω± = 0 (2)

• rewrite Maxwell equations with A given in
radiation gauge φ = 0 and

divA = 0
[
△ + |k|2

]
A = 0 (3)

• due to rotational symmetry choose oblate
spheroidal coordinates

x = a coshµ sin θ cosφ

y = a coshµ sin θ sinφ

z = a sinhµ cos θ Figure 2: Schematic of geometric situation.

•µ = constant =̂ ellipsoid and for µ ≪ 1

z ≈ aµ
(
1− ρ2

2a2

)

• scale factor a =
√

RL
2 contains geometry

• boundary parameter is simply µ± = ±
√

L
2R
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Scalar Helmholtz equation

• 3D scalar Helmholtz equation separable [4] with ansatz u = R(θ)P (µ)eimφ

• rescaled eigenvalue decomposition γ2 + (ak⊥)
2 = (ak)2 with γ separation constant

• large trapping potential (ak)2 sin2 θ ∝ 1/L

−
1

sin θ

d

dθ
sin θ

dR

dθ
+

m2R

sin2 θ
+ (ak)2 sin2 θR = (ak⊥)

2R

• small θ-expansion =̂ modes strongly

confined to optical axis

• paraxial approximation yields θ = ρ/a in
leading order 2D harmonic oscillator

• normalizability of solution R(θ) gives

k2⊥ = 2k
(
2l+m+1

a

)

Figure 3: Intensity in xy-plane for unlm with
(n = 2, l = 2,m = 1).

Figure 4: Intensity in xy-plane from vector so-
lution (n = 2, l = 2,m = 1) and n = ez.

• simultaneously separated axial differential
equation also depends on k⊥ and m

• Schrödinger like form with ζ = sinhµ

−
d2P

dζ2
−

(m2 − 1)P

(1 + ζ2)2
+

(k⊥a)
2P

(1 + ζ2)
= (ka)2P

• since µ ≪ 1 ⇔ ζ ≪ 1 potential terms es-
sentially constant

• oscillating solutions for

(ka)2 − (k⊥a)
2 +m2 − 1 = γ2 +m2 − 1 > 0

• full scalar solution with Lm
l generalised Laguerre polynomials is

unlm(ρ, µ, φ) = exp
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+D exp
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√
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]]

Construction of vector solution

• if u solution to scalar Helmholtz equation and n constant unit vector (theorem [1])

f = ∇× (nu) g = 1

|k|∇× f

then A = f + g is a vector solution of (3)

• f and g are TE- and TM-modes

• imposing (1) and (2) to find u Dirichlet type for n even and von Neumann type for n odd

• ”axial” γ = a
√

n2π2

L2 + 1−m2

a2 mixed with angular momentum quantum number m

Characteristic numbers extracted

• expanding linear dispersion relation

ω = c|k| ≈ γa +
c(ak⊥)

2

γ
≈

cnπ

L
+ c

(2l +m + 1)

a

• free spectral range c△γ
2π = 77 THz and c△k⊥

2π = 42 GHz

• tranverse modes ”sitting” on top of axial modes

• fixed quantum number leads to quadratic dispersion
→ massive Boson gas

• obtained frequency c/a corresponds to Ref. [2]

Figure 5: Degeneracy of modes may
be modified by vector construction.

Outlook

• non constant normal vector n

• curl-construction implements extra contributions to ground state un00

• vector ground state A with Jz = Lz + Sz = ±1 (Doughnut vs Gauss)

• spatial correlation function


