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About photons in mircrocavities Scalar Helmholtz equation

Light confined in a microcavity [3| is described by Maxwell’s equations with appropriate boundary conditions.
A careful analysis of the corresponding boundary value problem in oblate spheroidal coordinates provides a
systematic approach to determine the underlying mode functions. In the paraxial approximation, this three- e rescaled eigenvalue decomposition 72 + (ak L)Q — (ak)2 with v separation constant
dimensional microcavity problem can be reduced to an effective two-dimensional trapped massive Bose gas.

This result supports the heuristic derivation of Ref. [2], where even the Bose-Einstein condensation of these e large trapping potential (ak)Q sin®f o 1 /L
massive photons was observed.
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e 3D scalar Helmholtz equation separable 4] with ansatz u = R(0)P(u)e
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e paraxial approximation yields § = p/a in
leading order 2D harmonic oscillator
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e normalizability of solution R(6) gives
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equation also depends on k£, and m
e Schrodinger like form with ¢ = sinh u

FIGURE 1: a. Schematic spectrum of cavity modes with absorption coefficient a(v) and fluorescence
strength f(v) b. Dispersion relation of photons in the cavity (solid line) with fixed longitudinal mode
(g = 7) and the free photon dispersion (dashed line) c¢. Schematic experimental setup with trapping
potential imposed by the curved mirrors.
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e photons cannot be cooled without loosing photons (Stefan-Boltzmann law, no chemical sentially constant

potential)

e oscillating solutions for

e How to thermalize photons? — modified resonator environment (ka)? — (kra)> +m?> —1=~"+m?> —1>0
FIGURE 4: Intensity in zy-plane from vector so-

e dye-filled curved micro resonator with mirror distance L = 1.46 um, see Fig.1.c lution (n = 2,1 =2,m = 1) and n = ey,

e axial cut-off k. o 2% = 550 THz e full scalar solution with L;" generalised Laguerre polynomials is
1 : hekewt |
— thermal excitation suppressed by exp {—ISB—T} = exp (—80) Unim (P, 1y @) = exp [_kif] R (ki;ﬂ) [O -, {Z JE T mE =1 u] L+ Dexp [_Z-\/Vz T 1 #H

e [, fixed, transversal modes thermalize with dye solution as heat bath (rovibronic levels)

onstruction of vector solution
A careful look at photon modes

e if u solution to scalar Helmholtz equation and n constant unit vector (theorem [1])

f =V x (nu) g:ﬁfo

e treating this microcavity system involves 3 main problems | .
then A = f 4 g is a vector solution of (3)

of and g are TE- and TM-modes
e imposing (1) and (2) to find u Dirichlet type for n even and von Neumann type for n odd

¢ coordinate system matching to the boundary
¢while scalar Helmholtz operator should remain separable
¢ construction of solenoidal vector field

. —1m?2 . .
o "axial’ v = a\/ - =9 mixed with angular momentum quantum number m

Characteristic numbers extracted

e cxpanding linear dispersion relation

e boundary geometry parametrized (p < R)
2
zloas(p) =+ <§_<R_\/RQ——p2> o (g_Qp_R)

e mirrors 1deal conductors
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e rewrite Maxwell equations with A given in
radiation gauge ¢ = 0 and

divA=0 [A+k]’JA=0 (3)

e free spectral range CQAWV = 77 THz and Céﬁ“ = 42 GHz

e due to rotational symmetry choose oblate e tranverse modes "sitting” on top of axial modes

spheroidal coordinates

e fixed quantum number leads to quadratic dispersion

x = a cosh psin 6 cos — massive Boson gas FIGURE 5: Degeneracy of modes may
p ¢ <
oy codh s fs . i on.,
y = a coshpsin®sing | L e obtained frequency c¢/a corresponds to Ref. |2] be modified by vector construction
z = a sinhicost FIGURE 2: Schematic of geometric situation.
e 1, = constant = ellipsoid and for 1 :
H p M e scale factor a = % contains geometry
2~ ap (1 - QP—Z) e boundary parameter is simply u4 = = %

e non constant normal vector n
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