From Maxwell equations to Bose-Einstein CONDENSATION OF PHOTONS

T. Rexin ${ }^{1}$, C. Henkel 1 and A. Pelster ${ }^{2}$

1 Institut für Physik und Astronomie, Universität Potsdam, Germany
2 Hanse-Wissenschaftskolleg, Delmenhorst, Germany

About photons in mircrocavities

Light confined in a microcavity [3] is described by Maxwell's equations with appropriate boundary conditions. A careful analysis of the corresponding boundary value problem in oblate spheroidal coordinates provides a systematic approach to determine the underlying mode functions. In the paraxial approximation, this threedimensional microcavity problem can be reduced to an effective two-dimensional trapped massive Bose gas This result supports the heuristic derivation of Ref. [2], where even the Bose-Einstein condensation of these massive photons was observed.

Experimental setup in Weitz group

Figure 1: a. Schematic spectrum of cavity modes with absorption coefficient $\alpha(\nu)$ and fluorescence strength $f(\nu)$ b. Dispersion relation of photons in the cavity (solid line) with fixed longitudinal mode $(q=7)$ and the free photon dispersion (dashed line) c. Schematic experimental setup with trapping potential imposed by the curved mirrors.

- photons cannot be cooled without loosing photons (Stefan-Boltzmann law, no chemical potential)
- How to thermalize photons? \rightarrow modified resonator environment
- dye-filled curved micro resonator with mirror distance $L=1.46 \mu \mathrm{~m}$, see Fig.1.c
- axial cut-off $k_{\text {cut }} \propto \frac{2 \pi}{L} \widehat{=} 550 \mathrm{THz}$
\rightarrow thermal excitation suppressed by $\exp \left[-\frac{\hbar c k_{\text {cut }}}{k_{B} T}\right]=\exp (-80)$
- k_{z} fixed, transversal modes thermalize with dye solution as heat bath (rovibronic levels)
- system effective 2D, k_{z} yields effective mass term

A careful look at photon modes

- treating this microcavity system involves 3 main problems \diamond coordinate system matching to the boundary
\diamond while scalar Helmholtz operator should remain separable
\diamond construction of solenoidal vector field
- boundary geometry parametrized $(\rho \ll R)$
$z \left\lvert\,{ }^{\rho_{ \pm}+}(\rho)= \pm\left(\frac{L}{2}-\left(R-\sqrt{R^{2}-\rho^{2}}\right) \approx \pm\left(\frac{L}{2}-\frac{\rho^{2}}{2 R}\right)\right.\right.$
- mirrors ideal conductors

$$
\begin{aligned}
\mathbf{n} \times\left.\mathbf{E}\right|_{\partial \Omega_{ \pm}} & =-\mathbf{n} \times\left.\dot{\mathbf{A}}\right|_{\partial \Omega_{ \pm}}
\end{aligned}=\mathbf{0}, \mathbf{n}^{\left.\mathbf{n} \cdot \mathbf{B}\right|_{\partial \Omega_{ \pm}}}=\mathbf{n} \cdot \nabla \times\left.\mathbf{A}\right|_{\partial \Omega_{ \pm}}=\mathbf{0}
$$

$$
\begin{aligned}
& (1) \\
& (2)
\end{aligned}
$$

- rewrite Maxwell equations with \mathbf{A} given in radiation gauge $\phi=0$ and
- due to rotational symmetry choose oblate spheroidal coordinates

$$
\begin{aligned}
& x=a \cosh \mu \sin \theta \cos \phi \\
& y=a \cosh \mu \sin \theta \sin \phi \\
& z=a \sinh \mu \cos \theta
\end{aligned}
$$

Figure 2: Schematic of geometric situation.

- $\mu=$ constant $\widehat{=}$ ellipsoid and for $\mu \ll 1$
- scale factor $a=\sqrt{\frac{R L}{2}}$ contains geometry
- boundary parameter is simply $\mu_{ \pm}= \pm \sqrt{\frac{L}{2 R}}$

Scalar Helmholtz equation

-3D scalar Helmholtz equation separable [4] with ansatz $u=R(\theta) P(\mu) e^{i m \phi}$

- rescaled eigenvalue decomposition $\gamma^{2}+\left(a k_{\perp}\right)^{2}=(a k)^{2}$ with γ separation constant
- large trapping potential $(a k)^{2} \sin ^{2} \theta \propto 1 / L$

$$
-\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta} \sin \theta \frac{\mathrm{~d} R}{\mathrm{~d} \theta}+\frac{m^{2} R}{\sin ^{2} \theta}+(a k)^{2} \sin ^{2} \theta R=\left(a k_{\perp}\right)^{2} R
$$

- small θ-expansion $\widehat{=}$ modes strongly confined to optical axis
- paraxial approximation yields $\theta=\rho / a$ in leading order 2D harmonic oscillator
- normalizability of solution $R(\theta)$ gives

$k_{\perp}^{2}=2 k\left(\frac{2 l+m+1}{a}\right)$

Figure 3: Intensity in $x y$-plane for $u_{n l m}$ with $n=2, l=2, m=1$)

- simultaneously separated axial differential equation also depends on k_{\perp} and m
- Schrödinger like form with $\zeta=\sinh \mu$

$$
-\frac{\mathrm{d}^{2} P}{\mathrm{~d} \zeta^{2}}-\frac{\left(m^{2}-1\right) P}{\left(1+\zeta^{2}\right)^{2}}+\frac{\left(k_{\perp} a\right)^{2} P}{\left(1+\zeta^{2}\right)}=(k a)^{2} P
$$

- since $\mu \ll 1 \Leftrightarrow \zeta \ll 1$ potential terms essentially constant
- oscillating solutions for

Figure 4: Intensity in $x y$-plane from vector so-
lution ($n=2, l=2, m=1$) and $\mathbf{n}=\mathbf{e}_{\mathbf{z}}$.

- full scalar solution with L_{l}^{m} generalised Laguerre polynomials is

$$
u_{n l m}(\rho, \mu, \phi)=\exp \left[-\frac{k_{\perp}^{2} \rho^{2}}{4}\right] \rho^{m} L_{l}^{m}\left(\frac{k_{\perp}^{2} \rho^{2}}{2}\right)\left[C \exp \left[i \sqrt{\gamma^{2}+m^{2}-1} \mu\right]+D \exp \left[-i \sqrt{\gamma^{2}+m^{2}-1} \mu\right]\right]
$$

Construction of vector solution

- if u solution to scalar Helmholtz equation and \mathbf{n} constant unit vector (theorem [1])

$$
\mathbf{f}=\nabla \times(\mathbf{n} u) \quad \mathbf{g}=\frac{1}{|\mathbf{k}|} \nabla \times \mathbf{f}
$$

then $\mathbf{A}=\mathbf{f}+\mathbf{g}$ is a vector solution of (3)

- \mathbf{f} and \mathbf{g} are TE- and TM-modes
- imposing (1) and (2) to find u Dirichlet type for n even and von Neumann type for n odd
- "axial" $\gamma=a \sqrt{\frac{n^{2} \pi^{2}}{L^{2}}+\frac{1-m^{2}}{a^{2}}}$ mixed with angular momentum quantum number m

Characteristic numbers extracted

- expanding linear dispersion relation
$\omega=c|\mathbf{k}| \approx \gamma a+\frac{c\left(a k_{\perp}\right)^{2}}{\gamma} \approx \frac{c n \pi}{L}+c \frac{(2 l+m+1)}{a}$
- free spectral range $\frac{c \Delta \gamma}{2 \pi}=77 \mathrm{THz}$ and $\frac{c \Delta k_{\perp}}{2 \pi}=42 \mathrm{GHz}$
- tranverse modes "sitting" on top of axial modes
- fixed quantum number leads to quadratic dispersion \rightarrow massive Boson gas

Figure 5: Degeneracy of modes may

- obtained frequency c / a corresponds to Ref. [2] be modified by vector construction

References

II I S. Gradshteyn and I M Ryzhik. Table of integrals, series and products. Academic Press, 1981
[2] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468(7323):545-548, 2010 , [3] J. Klaers, F. Vewinger, and M. Weitz. Thermalization of a two-dimensional photonic gas in a/white wall/'photon box. Nature Physics, 6 (7):512-515, 2010. [4] T. Pollock. Separabilität von Helmholtz- und Maxwellgleichungen über heterogenen unbeschränkten Gebieten. Diploma thesis FU Berlin, 2007.

Outlook

- non constant normal vector \mathbf{n}
- curl-construction implements extra contributions to ground state $u_{n 00}$
- vector ground state \mathbf{A} with $J_{z}=L_{z}+S_{z}= \pm 1$ (Doughnut vs Gauss)
- spatial correlation function

