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Abstract

We study harmonically trapped three-dimensional ultracold Bose and Fermi gases in the presence of the short-range isotropic contact and the long-range anisotropic dipole-dipole interaction (DDI).
The Hartree-Fock mean-field dynamics of such quantum systems can be described within the framework of the Zaremba-Nikuni-Griffin (ZNG) theory. Usually, the underlying Boltzmann-Vlasov
(BV) equation is solved by the relaxation-time approximation for the collision integral, where the relaxation time is treated as a phenomenological parameter. We develop a formalism to determine
the relaxation time microscopically for ultracold quantum gases at finite temperature, which allows us to include collision effects self-consistently in the BV formalism.

Motivation

⋆DDI potential:

Vint(r) =
Cdd

4π |r|3
(
1− 3 cos2 ϑ

)
,

with ϑ being the angle between the polarization direction and r relative position of the dipoles

⋆ For magnetic dipole moments m DDI is characterized by Cdd = µ0m
2, e.g. 52Cr, 53Cr, 164Dy, 167Er

⋆ For electric dipole moments d DDI is characterized by Cdd = d2/ε0, e.g.
40K87Rb, 41K87Rb

⋆ Second quantized Hamiltonian of quantum gases:

Ĥ =

∫
drΨ̂†(r, t)

[
−~2∆

2m
+ Uext(r)

]
Ψ̂(r, t) +

1

2

∫
drdr′Vint(r− r′)Ψ̂†(r, t)Ψ̂†(r′, t)Ψ̂(r′, t)Ψ̂(r, t)

ZNG equations for Bose Gases

⋆ In case of Bose gas we apply Bogoliubov decomposition [1]:

Ψ̂(r, t) = Φ(r, t) + ψ̂(r, t), where ⟨ψ̂(r, t)⟩ = 0

• Condensate described by:
Φ(r, t) = ⟨Ψ̂(r, t)⟩ =

√
nc(r, t)

•Non-condensate described by Wigner function:

f (r,p, t) =

∫
ds e

i
~p·s

⟨
ψ̂†

(
r +

s

2
, t
)
ψ̂
(
r− s

2
, t
)⟩

with spatial density given by:

nnc(r, t) =

∫
dp

(2π~)3
f (r,p, t)

⋆ Schematic overview of self-consistent description of condensate wave function and Wigner function:

⋆Dynamics of condensate wave function:

i~
∂Φ(r, t)

∂t
=

{
−~2∆

2m
+ Uext(r) +

∫
dr′Vint(r− r′)

[
nc(r

′, t) + nnc(r
′, t)

]}
Φ(r, t)

+

∫
dr′Vint(r− r′)⟨ψ̂†(r′, t)ψ̂(r, t)⟩Φ(r′, t)− i~

Φ∗(r, t)

∫
dp

(2π~)3
C12[f ]

⋆ Time evolution of f (r,p, t) described by applying time dependent perturbation theory with respect to
interaction up to second order [1, 3], yielding BV equation:

∂f

∂t
+

p

m
∇rf +∇pU∇rf −∇rU∇pf = C12[f ] + C22[f ] = Icoll[f ],

where U(r, t) = Uext(r) +
∫
dr′Vint(r − r′)

[
nc(r

′, t) + nnc(r
′, t) + ⟨ψ̂†(r′, t)ψ̂(r, t)⟩ + Φ∗(r′, t)Φ(r, t)

]
includes self-consistent Hartree-Fock (HF) dynamic mean field.

⋆RHS of BV Eq. represents effect of collisions between atoms:

• Collisions between excited atoms:

C22[f ] =
1

2(2π)5~7

∫
dp2dp3dp4

[
Ṽint(p− p3) + Ṽint(p− p4)

]2
δ(p + p2 − p3 − p4)

×δ(εp + εp2 − εp3 − εp4) [(1 + f )(1 + f2)f3f4 − ff2(1 + f3)(1 + f4)]

• Collisions between condensate and non-condensate atoms:

C12[f ] =
nc

2(2π)2~4

∫
dp1dp2dp3

[
Ṽint(p1 − p2) + Ṽint(p1 − p3)

]2
δ(mvc + p1 − p2 − p3)

×δ(εc + εp1 − εp2 − εp3) [δ(p− p1)− δ(p− p2)− δ(p− p3)] [(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]

where f ≡ f (r,p, t), fi ≡ f (r,pi, t) and variables vc, nc, εc and εp = p2/2m + U(r, t) are functions
of r and t.

BV equation for Fermi Gases

⋆ BV approach can be used for Fermi gases

⋆ There is no condensate, so only C22 collision integral remains

⋆ The form of BV Eq. is the same as for Bose gas with:

•HF mean field [4, 5]:

U(r,p, t) = Uext(r) +

∫
dr′n(r′, t)Vint(r− r′)−

∫
dp′

(2π~)3
f (r,p′, t)Ṽint(p− p′)

• Collisions between atoms:

C22[f ] =
1

2(2π)5~7

∫
dp2dp3dp4

[
Ṽint(p− p3)− Ṽint(p− p4)

]2
δ(p + p2 − p3 − p4)

×δ(εp + εp2 − εp3 − εp4)[(1− f )(1− f2)f3f4 − ff2(1− f3)(1− f4)]

Relaxation time

⋆Description of collision integral in terms of relaxation time approximation [3]:

Icoll[f ] = −f − f le

τ

with relaxation into local equilibrium Icoll[f
le] = 0.

⋆ In [6, 7] relaxation time is defined as:

1

τl
=

∫
dplPl(cos θ1)δI∫
dplPl(cos θ1)δf

⋆Assuming isotropic scattering with cross section σ and case l = 1 relaxation time for fermions is:

τ1 =
9~2

16mσgk2BT
2

Conclusions and Outlook

⋆We generalized ZNG result for Bose gas including dipolar interaction instead of contact interaction

⋆ In a case of Bose gas with contact interaction V (r− r′) = gδ(r− r′) all results are in agreement with
ZNG theory [1–3].

⋆ Collision integral difference for excited bosons and fermions are in agreement with Born approximation

⋆We plan to apply scaling approach:

– to study dynamics of anisotropic trapped BEC

– to show that momentum distribution is stretched along the orientation of dipoles, arising dominantly
from Fermi surface anisotropy

⋆ Time-of-flight expansion all the way from collisionless to hydrodynamic regime

⋆Relaxation time including anisotropic scattering due to dipolar interaction
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