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Abstract

Some time ago it was predicted that the momentum distribution of Fermi gas is deformed from spherical to cylindrical, provided a dipole-dipole interaction is present [1]. A recent time-of-flight
expansion experiment has now unambiguously detected such a Fermi surface deformation in a dipolar quantum gas of fermionic erbium atoms in the collisionless regime [2]. Here we follow Ref. [3]
and perform a systematic study of time-of-flight expansions for trapped dipolar Fermi gases ranging from the collisionless to the hydrodynamic regime at zero temperature. To this end we solve
analytically the underlying Boltzmann-Vlasov equation in the vicinity of equilibrium by using a suitable rescaling of the equilibrium distribution [4], where the collision integral is simplified within a
relaxation-time approximation. The resulting ordinary differential equations for the scaling parameters are then solved numerically for experimentally realistic parameters for increasing relaxation
times. Our analysis is, thus, useful for future time-of-flight experiments in order to determine the value of the underlying relaxation time from expansion data.

Motivation

⋆Dipole-dipole interaction potential:

Vint(r) =
Cdd

4π |r|3
(

1− 3 cos2 ϑ
)

,

where ϑ is the angle between the polarization direction and relative position of the dipoles and Cdd = µ0m
2

for magnetic dipole moments m or Cdd = d2/ε0 for electric dipole moments d

⋆ The sample in experiment [2] contains N = 7 · 104 fermionic erbium atoms confined into harmonic trap with
frequencies (ωx, ωy, ωz) = 2π(579, 91, 611) s−1

⋆Relative interaction strength:

ϵdd =
Cdd

4π

√

M3ω

�5
N1/6,

where ω = (ωxωyωz)
1/3 is the geometric averaged trap frequency

⋆Dipolar Fermi gases in current cold-atom experiments are:

gas 53Cr 167Er 161Dy 40K87Rb
dipole moment 6µB 7µB 10µB 0.2 D

ϵdd 0.02 0.15 0.30 0.97

Boltzmann-Vlasov Equation for Fermi Gases

⋆Dynamics of the Fermi gas can be described by Boltzmann-Vlasov equation:

∂f (r,p, t)

∂t
+
p

m
∇rf +∇pU(r,p, t)∇rf (r,p, t)−∇rU(r,p, t)∇pf (r,p, t) = Icoll[f ](r,p, t),

where f is the Wigner function and U =
∫

dr′n(r′, t)Vint(r−r′)−
∫ dp′

(2π�)3
f (r,p′, t)Ṽint(p−p′)+Uext(r)

includes self-consistent Hartree-Fock (HF) dynamic mean field and trap potential

⋆Description of the collision integral Icoll in terms of a relaxation time approximation [4]:

Icoll[f ] = −f − f le

τ
,

with relaxation into the local equilibrium defined by Icoll[f
le] = 0

Global Equilibrium and Scaling Ansatz

⋆Ansatz for the global equilibrium distribution function f0:

f0(r,k) = Θ



1−
∑

i

r2i
R2

i

−
∑

i

k2i
K2

i



 ,

where the variational parameters Ri and Ki represent the Thomas-Fermi radii and momenta, which are
determined by minimizing the total energy of the system
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Figure 1. Aspect ratios in momentum and real space in equilibrium.

⋆ Performing the scaling ansatz using the global equilibrium distribution function f0 [4]:

f (x,q, t) → Γ(t)f0(r(t),k(t)),

with rescaled variables ri(t) =
xi

bi(t)
and ki(t) =

1√
θi(t)

[

qi − mḃi(t)
�bi(t)

]

⋆Normalization factor: Γ(t)−1 =
∏

i bi(t)
√

θi(t)

⋆ Equations of motion for scaling parameters with assumption that collisions do not change spatial distribution:

b̈i + ω2
i bi −

�
2K2

i θi

m2biR
2
i

+
48Nc0

mbiR
2
i

∏

j bjRj

[

F

(

bxRx

bzRz
,
byRy

bzRz

)

− biRi
∂

∂biRi
F

(

bxRx

bzRz
,
byRy

bzRz

)]

− 48Nc0

mbiR
2
i

∏

j bjRj

[

F

(√
θzKz√
θxKx

,

√
θzKz

√

θyKy

)

+
√

θiKi
∂

∂
√

θiKi
F

(√
θzKz√
θxKx

,

√
θzKz

√

θyKy

)]

= 0,

θ̇i + 2
ḃi
bi
θi =

1

τ
(θi − θlei ),

where F denotes the anisotropy function [3]

⋆ Coupling constant c0 measures the strength of the dipolar interaction

c0 =
210Cdd

34 · 5 · 7 · π3

⋆ Collective oscillations all the way from the collisionless to the hydrodynamic regime are discussed in Ref. [3]

Local Equilibrium

⋆Minimization of the energy in local equilubrium leads to:

θlex = θley ,
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⋆Normalization factor:
∏

i b
le
i

√

θlei = 1

Time-of-flight Expansion

⋆ The atomic cloud in the experiment [2] is imaged with an angle of 28◦ with
respect to the y-axis.

⋆ The magnetic field forms angle β with z-axis and it is in x′ − z′ plane
rotated for an angle of 14◦ with respect to the x− z plane.

⋆We consider a system of dipolar fermions with the point dipoles aligned
along the z-direction.

⋆ The cloud aspect ratio A is defined as the ratio of the vertical and horizontal
radius of the cloud in the imaging plane:

Figure 2. Experimental
setup in Ref. [2].

A(t) =
Rz(t)

√

R2
x(t) cos

2 28◦ + R2
y(t) sin

2 28◦

⋆ The equations of motion are solved while setting the harmonic restoring force to zero.
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Figure 3. Time dependence of aspect ratio in a) collisionless and b) hydrodynamic regime for ballistic (blue
line) and non-ballistic (red line) expansion. Dashed line represents non-interacting Fermi gas.
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Figure 4. a) Time dependence of aspect ratio for non-ballistic expansion in collisonless regime (blue line),
hydrodynamic regime (red line), and in the collisional regime for the relaxation time τ = 1/ω (black line).
b) Aspect ratio after infinitely long time as a function of relaxation time τ for 53Cr (blue), 167Er (red), 161Dy
(gray), and 40K87Rb (purple).

Conclusions and Outlook

⋆Analysis of time-of-flight expansion all the way from the collisionless to the hydrodynamic regime

⋆Determination of the time scale for approaching long-time limit from expansion data

⋆ Estimate the relaxation time τ from experimental data

⋆Determine the dependence of A as a function on the angle β for different relaxation times and compare with
experimental findings in Ref. [2]

⋆Microscopic determination of the relaxation time from collisional integral

⋆Applying equations of motion for a scaling parameters for other non-equilibrium cases, for instance, a
parametric modulation of trap frequencies or strength of dipolar interaction
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