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Abstract

We study a homogeneous system of spinless bosons in a cubic optical lattice of arbitrary di-
mension, where the s-wave scattering length is periodically modulated with some amplitude and
frequency In the vicinity of a Feshbach resonance [1]. To this end we follow Ref. [2] and perform a

similar analysis as for shaken lattices in order to map the driven system for large enough frequen-
cies to an effective time-independent one. Subsequently, we calculate the transition line between
the Mott-Insulator and Superfluid phase both with a Landau theory extended for the driven system
[2,3] and within a Mean-Field theory for the effective time-independent system [4]. Although the
respective results deviate from each other, they coincide for a large particle number per site.

The periodically driven system is described by a time-dependent Hamiltonian of the form:
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The local independent part reads
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and the periodic modulation of the s-wave scattering length is modeled by [1]
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Within Floquet theory in the extended Hilbert space, in which the time ¢ is regarded as a coordi-
nate, we can find the Floguet functions
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In the large frequency limit [2], transitions between states with m # m’ are highly suppressed, so
we can find an effective time-independent Hamiltonian [4]
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Strong-coupling method for low-dimensional system

For the filling number n = 1, we calculate the 3rd order of strong-coupling expansion method to
get the upper phase boundary:
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and the lower one:
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In the undriven case A = 0, the lower and the upper line coincide with the usual ones from Ref. [5].
As the strong-coupling result is good at low dimensions in the undriven case, we use it to calculate
the 1d and 2d phase boundary for the driven system:
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In the above figure, the green, red, blue line, respectively, represent % = 0, % =1, % = 2 for one
dimension. It represents an unreasonable result as a larger driving amplitude seems to increase
the superfluid phase.
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Correspondingly, the phase boundary in 2d is reasonable as the picture above shows the green,

red, blue line, respectively, for /= =0, A =1, A = 2.
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In order to include a possible breaking of the system phase symmetry, we include source
terms to the effective Hamiltonian A [3]
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In first order of .J, the correlation function G;; = <&;.f&j> is given by G;; = G5, + G J;; with
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Thus we get the first-order effective hopping
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which reduces for a large filling number »n to the mean-field effective hopping [2]
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For both cases we get the phase boundary by replacing J by J¢
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The red, green, black line, respectively, represent % = 0, h% = 1.6 mean-field theory, % = 1.6 ef-
fective action theory for d = 3 and n = 1. We can see from the picture that the first-order effective

action theory result differs from the mean-field theory result. But in the large filling number they
coincide.
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The red, green, black line, respectively, represent % = 0, % = 2 mean-field theory, % = 2 effec-
tive action theory for d = 2 and n = 1. From the above picture we can see that strong-coupling
method and the effective action method get roughly the same critical point, while the mean-field
theory result is too large. This suggests that the strong-coupling and the effective action method
lead to a reasonable result in 2d.

1. With Floquet theory in the high frequency limit, we get a time-independent effective Hamiltonian
for the original driven system.

2. The strong-coupling expansion method seems to be wrong in 1d, but it is reasonable for 2d.

3. The mean-field theory and the first-order effective action theory get a different result, but they
coincide for large filling numbers.
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