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Abstract
We study a homogeneous system of spinless bosons in a cubic optical lattice of arbitrary di-
mension, where the s-wave scattering length is periodically modulated with some amplitude and
frequency in the vicinity of a Feshbach resonance [1]. To this end we follow Ref. [2] and perform a
similar analysis as for shaken lattices in order to map the driven system for large enough frequen-
cies to an effective time-independent one. Subsequently, we calculate the transition line between
the Mott-Insulator and Superfluid phase both with a Landau theory extended for the driven system
[2,3] and within a Mean-Field theory for the effective time-independent system [4]. Although the
respective results deviate from each other, they coincide for a large particle number per site.

Model

The periodically driven system is described by a time-dependent Hamiltonian of the form:

Ĥ(t) = −
∑

ij

Jijâ
†
i âj +

∑

i

[

fi(n̂i) +Agi(n̂i) cosωt
]

.

The local independent part reads

fi(n̂i) =
U

2

(

n̂2i − n̂i

)

− µn̂i

and the periodic modulation of the s-wave scattering length is modeled by [1]

gi(n̂i) =
1

2

(

n̂2i − n̂i

)

.

Within Floquet theory in the extended Hilbert space, in which the time t is regarded as a coordi-
nate, we can find the Floquet functions

|ni,m(t)〉 = eiωt
∏

i

e−
Agi(n̂i)

~ω
sinωt|ni〉 .

In the large frequency limit [2], transitions between states with m 6= m′ are highly suppressed, so
we can find an effective time-independent Hamiltonian [4]

Ĥ = −
∑

ij

Jijâ
+
i J0

[

A

~ω
(n̂j − n̂i)

]

âj +
∑

i

fi(n̂i) .

Strong-coupling method for low-dimensional system

For the filling number n = 1, we calculate the 3rd order of strong-coupling expansion method to
get the upper phase boundary:
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(
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and the lower one:

µ

U
= z

J

U
+
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(

A

~ω
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−
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)

.

In the undriven case A = 0, the lower and the upper line coincide with the usual ones from Ref. [5].
As the strong-coupling result is good at low dimensions in the undriven case, we use it to calculate
the 1d and 2d phase boundary for the driven system:
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In the above figure, the green, red, blue line, respectively, represent A
~ω = 0, A

~ω = 1, A
~ω = 2 for one

dimension. It represents an unreasonable result as a larger driving amplitude seems to increase
the superfluid phase.
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Correspondingly, the phase boundary in 2d is reasonable as the picture above shows the green,
red, blue line, respectively, for A

~ω = 0, A
~ω = 1, A

~ω = 2.

Effective action theory

In order to include a possible breaking of the system phase symmetry, we include source
terms to the effective Hamiltonian Ĥ [3]

Ĥ(j∗i , ji) = −
∑

ij

Jijâ
†
iJ0

[

A

~ω
(n̂j − n̂i)

]

âj +
∑

i

fi(n̂i) +
∑

i

(

j∗i âi + jiâ
†
i

)

.

In first order of J , the correlation function Gij = 〈â
†
i âj〉 is given by Gij = G(0)δij +G(1)Jij with

G(0) =
n + 1

f (n)− f (n + 1)
+

n

f (n)− f (n− 1)

and

G(1) =

[

n + 1

f (n)− f (n + 1)
+

n

f (n)− f (n− 1)

]2

+
2(n + 1)n[J0(

A
~ω

)− 1]

[f (n)− f (n + 1)][f (n)− f (n− 1)]
.

Thus we get the first-order effective hopping

Jeffij = Jij

(

1 +
2(n + 1)n[J0(

A
~ω)− 1]

[f (n)− f (n + 1)][f (n)− f (n− 1)]

[

n + 1

f (n)− f (n + 1)
+

n

f (n)− f (n− 1)

]−2
)

which reduces for a large filling number n to the mean-field effective hopping [2]

Jeffij = JijJ0

(

A

~ω

)

.

For both cases we get the phase boundary by replacing J by Jeff

Jeffz

U
=

(

n− µ
u

) (µ
U − n + 1

)

1 + µ
U

.
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The red, green, black line, respectively, represent A
~ω = 0, A

~ω = 1.6 mean-field theory, A
~ω = 1.6 ef-

fective action theory for d = 3 and n = 1. We can see from the picture that the first-order effective
action theory result differs from the mean-field theory result. But in the large filling number they
coincide.
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The red, green, black line, respectively, represent A
~ω = 0, A

~ω = 2 mean-field theory, A
~ω = 2 effec-

tive action theory for d = 2 and n = 1. From the above picture we can see that strong-coupling
method and the effective action method get roughly the same critical point, while the mean-field
theory result is too large. This suggests that the strong-coupling and the effective action method
lead to a reasonable result in 2d.

Results

1. With Floquet theory in the high frequency limit, we get a time-independent effective Hamiltonian
for the original driven system.

2. The strong-coupling expansion method seems to be wrong in 1d, but it is reasonable for 2d.

3. The mean-field theory and the first-order effective action theory get a different result, but they
coincide for large filling numbers.
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