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Abstract

We apply the process-chain method [1,2] in order to calculate the quantum phase boundary bet-
ween the Mott insulator and the superfluid phase for bosons in a hypercubic optical lattice within
the strong-coupling method [3]. The respective results in 1d, 2d, and 3d, which are obtained up to
12th order and then extrapolated to infinite order, turn out to coincide almost with high-precision
Quantum-Monte Carlo results. Finally, we show that these high-order strong-coupling results also
follow from a high-order effective potential calculation [2,4,5].

High-order strong-coupling expansion

Bose-Hubbard model:

H = H ′ +H0 , H ′ = −t
∑

〈i,j〉

(b̂
†
i b̂j + b̂

†
j b̂i) , H0 =

∑

i

[

U

2
n̂i(n̂i − 1)− µn̂i

]

,

where 〈i, j〉 represents nearest-neighbor sites, t denotes the hopping matrix element, b̂
†
i (b̂i)

creates (destroys) a bosonic particle on site i, U stand for the on-site repulsion, and µ is the
chemical potential.

(I). Another form of Rayleigh-Schrödinger perturbation theory: Kato representation for the nth or-
der perturbative contribution for the mth energy eigenvalue

E
(n)
m = Tr

∑

αl

Sα1H ′Sα2H ′...H ′Sαn+1,

where

n+1
∑

l=1

αl = n− 1, αl ≥ 0, Sαl =







−|m〉〈m| if αl = 0
|e〉〈e|

(E0
m−E0

e)
αl if αl 6= 0.

Cyclic interchangeability of operators under the trace:

SαiSαj =











−S0 αi = αj = 0

0 αi = 0, αj 6= 0 or αi 6= 0, αj = 0

Sαi+αj αi 6= 0, αj 6= 0

=⇒ 〈g|H ′Sα′
1H ′...Sα′

n−1H ′|g〉.

We obtain a number list called Katolist : 〈α1α2...αn−1〉 =⇒
(

α′1α
′
2...α

′
n−1

)

, e.g. 〈00120〉 = (012)

(II). Generate the simplest arrow diagrams and their respective weights for each perturbative or-
der. The problem of calculating the higher order strong-coupling results is that the ground state
becomes degenerate when either a particle or a hole is added. As a consequence, we have to
take into account all open diagrams:

cba

k k k

The black processes (disconnected to site k)
cancel with each other only red processes
(connected to site k) need to be considered.

(III). Calculate perturbative energy contribution for each order, and obtain the coefficient β(i)
u(d)

of
the critical line by putting open diagram (b) plus close diagram (a) of additional particle (hole)
state equal to close diagram (c) of the Mott insulator.

particle :
µu

U
= 1−

∑

i

β
(i)
u

(

t

U

)i

, hole :
µd
U

=
∑

i

β
(i)
d

(

t

U

)i

.

Three-dimensional result

For 3d systems we obtain the upper and lower phase boundaries for the occupation number n = 1
as follows:

i 1 2 3 4 5 6

β
(i)
d

6 36 720 10932 260400 4.92578E6

β
(i)
u 12 45 666 11904.75 244519 5.27784E6
i 7 8 9 10 11 12

β
(i)
d

1.27965E8 2.66526E9 7.30515E10 1.7065E12 4.53956E13 9.73239E14

β
(i)
u 1.21888E8 2.75967E9 7.22332E10 1.79457E12 3.92428E13 9.85176E14

Thus, the higher the order the closer is the strong-coupling phase boundary to the real phase
boundary [6]. Extrapolating both for the critical point and for fixed µ we find that the extrapolation
is well described with a linear fit as predicted in Ref. [3].
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After extrapolation our strong-coupling result is quite close to the QMC result (red dots) [6], it has
an error of only about one percent.

Two-dimensional result

For 2d systems higher order coefficients turn out to be negative

i 1 2 3 4 5 6

β
(i)
d

4 8 144 616 14832 101314

β
(i)
u 8 14 120 949.9 11447.4 150807
i 7 8 9 10 11 12

β
(i)
d

2.2195E6 1.37905E7 4.14857E8 6.51985E9 1.10675E11 -1.56698E12

β
(i)
u 1.77591E6 1.63398E7 4.8973E8 1.00904E10 -5.74011E10 -1.73184E12

so the higher-order results deviate slightly from the real phase boundary [7], which is unusual.
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From the above figures we read off that, although the extrapolation for fixed hopping matrix
element t = 0.06U is rather quadratic than linear, the critical points for each order fit quite well with
a linear extrapolation. Furthermore, due to the extrapolation we obtain a precise phase boundary
result in comparison with QMC simulations (red dots) [7].

One-dimensional result

For 1d systems we yield
i 1 2 3 4 5 6

β
(i)
d

2 -4 0 -20 -21.3333 549.333

β
(i)
u 4 -1 -6 5.65 -95.0867 1772.91
i 7 8 9 10 11 12

β
(i)
d

-851.111 -51173.2 340065 7.65362E6 -8.63819E7 -9.30652E8

β
(i)
u -2803.65 -124020 1.00836E6 1.41931E7 -2.51857E8 -5.02314E8

Thus, higher order perturbative results are even more weird than for 2d systems. This is illustrated
by the 1d quantum phase diagram for n = 1 where the strong-coupling results for 3rd (red), 5th
(black), 6th (green), and 12th (blue) order are compared with DMRG results (red dots) [8,9]:
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Although some higher order results do
even not form a lobe, all results almost
coincide for µ < 0.12, so we can only con-
sider these values as trustworthy. Note that
the third-order result is quite close to the
real phase boundary.
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