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Abstract

We apply the process-chain method [1,2] in order to calculate the quantum phase boundary bet-
ween the Mott insulator and the superfluid phase for bosons in a hypercubic optical lattice within
the strong-coupling method [3]. The respective results in 1d, 2d, and 3d, which are obtained up to
12th order and then extrapolated to infinite order, turn out to coincide almost with high-precision

Quantum-Monte Carlo results. Finally, we show that these high-order strong-coupling results also
follow from a high-order effective potential calculation [2,4,5].

High-order strong-coupling expansion

Bose-Hubbard model:
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where (i, j) represents nearest-neighbor sites, ¢ denotes the hopping matrix element, 15;.[(15@-)
creates (destroys) a bosonic particle on site 7, U stand for the on-site repulsion, and y is the
chemical potential.

(I). Another form of Rayleigh-Schrodinger perturbation theory: Kato representation for the nth or-
der perturbative contribution for the mth energy eigenvalue
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Cyclic interchangeabillity of operators under the trace:
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We obtain a number list called Katolist: (ajao...cp—1) = (jdd...al 1), e.g. (00120) = (012)

(I). Generate the simplest arrow diagrams and their respective weights for each perturbative or-
der. The problem of calculating the higher order strong-coupling results is that the ground state
becomes degenerate when either a particle or a hole is added. As a consequence, we have to
take into account all open diagrams:
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(111). Calculate perturbative energy contribution for each order, and obtain the coefficient Bg() 0 of

the critical line by putting open diagram (b) plus close diagram (a) of additional particle (hole)
state equal to close diagram (c) of the Mott insulator.

particle : 'u—(}b =1- Z 61(3) (5) : hole : % = Z 65;) <%) .

For 3d systems we obtain the upper and lower phase boundaries for the occupation number n =1
as follows:

7 1 2 3 4 5 6
g 6 36 720 10932 260400 | 4.92578E6
EANEY 45 666 11904.75 | 244519 | 5.27784E6
i 7 8 9 10 11 12

ﬁfp 1.27965E8|2.66526E9 | 7.30515E10| 1.7065E12 |4.53956E13|9.73239E14

&(f) 1.21888E8|2.75967E9 | 7.22332E10|1.7945/7/E12|3.92428E13 |9.851/6E14

Thus, the higher the order the closer is the strong-coupling phase boundary to the real phase
boundary [6]. Extrapolating both for the critical point and for fixed 1 we find that the extrapolation
IS well described with a linear fit as predicted in Ref. [3].
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After extrapolation our strong-coupling result is quite close to the QMC result (red dots) [6], it has
an error of only about one percent.
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Two-dimensional result

For 2d systems higher order coefficients turn out to be negative

i 1 2 3 4 5 6
s 4 8 144 616 14832 101314
A 14 120 949.9 114474 | 150807
i 7 8 9 10 11 12
Bff) 2.2195E6 |1.37905E7 4.14857E8 6.51985E9 | 1.10675E11 -1.56698E12
é@') 1.77591E6|1.63398E7 | 4.8973E8 |1.00904E10|-5.74011E10|-1.73184E12
so the higher-order results deviate slightly from the real phase boundary [7], which is unusual.
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From the above figures we read off that, although the extrapolation for fixed hopping matrix
element ¢ = 0.06U Is rather quadratic than linear, the critical points for each order fit quite well with

a linear extrapolation. Furthermore, due to the extrapolation we obtain a precise phase boundary
result in comparison with QMC simulations (red dots) [7].

i 1 2 3 4 5 6

gl 2 4 0 20 21.3333 | 549.333
O 1 6 565 | -95.0867 @ 1772.91
i 7 3 9 10 11 12

8\)-851.111 -51173.2| 340065 |7.65362E6 -8.63819E7 -9.30652E8

5@(;) -2803.65| -124020 |1.00836E6 |1.41931E7 |-2.51857E8|-5.02314ES8

Thus, higher order perturbative results are even more weird than for 2d systems. This is illustrated
by the 1d quantum phase diagram for n = 1 where the strong-coupling results for 3rd (red), 5th
(black), 6th (green), and 12th (blue) order are compared with DMRG results (red dots) [8,9]:
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