

Numerical Studies of Dye-Mediated Photon-Photon Interaction in Condensates of Light [arXiv:1801.00155]

Milan Radonjić^{1,3}, <u>Wassilij Kopylov²</u>, Antun Balaž¹ and Axel Pelster³

¹ Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Serbia ² Institute for Theoretical Physics, Technische Universität Berlin, Germany ³ Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany

We numerically investigate the properties of the photon condensate with a dye-mediated photon-photon interaction. To this end we extend the model of a Lindblad master equation by an additional interaction between the dye molecules and the cavity modes. Our focus lies on the resulting dimensionless photon interaction strength \tilde{g} , which we determine using the occupation of the thermal cloud in the steady state and compare the determined value for \tilde{g} with the literature. On top we investigate how the \tilde{g} depends on the system parameters such as the effective temperature of the dye, and the number of the dye molecules.

Master Eq. for Photon Condensation [1-4]

Symbol	Description
L	Lindblad-dissipator
$a_m^{(\dagger)}/\sigma_i^{(\pm)}$	Operators of
	photons/dye molecules
g_eta	Bath dressed cavity-dye
	coupling
κ , γ_{\uparrow} , γ_{\downarrow}	Rates, environment
γ_m^{\pm}	Rates, dye property
δ_m	Cavity mode detuning
d_ℓ	Level degeneracy
Δ	Dye transition frequency
η, ω_c, g	Dye model parameters
N	# of dye molecules
М	# of cavity modes

Mean-Field with 2. order

U(1) Symmetry: take only

Eq-Set.: $\langle a_m^{\dagger} a_m \rangle = n_m, \langle \sigma_1^z \rangle,$

Level Degeneracy d_{ℓ} :

 $d_{\ell} = 2 \cdot \ell$

Master Eq.

Cumulant Expansion [8] gauge invariant quantities

 $\langle a_m \sigma_1^+ \rangle$, $\langle a_k^{\dagger} a_m \rangle$, $\langle \sigma_1^{\dagger} \sigma_2 \rangle$ $g_{\rm GP}$: Interaction in GP Eq.

 $\widetilde{g} = \frac{m}{\hbar^2} g_{\rm GP}$ [9]

Procedure to determine \tilde{g}

- Level degeneracy d_{ℓ} :
- $\sum_{m=1}^{M} a_m^{\dagger} a_m = \sum_{\ell=1}^{L} d_{\ell} \cdot a_{\ell}^{\dagger} a_{\ell}$
- Steady state of the 2. order eq.-set
 - > Mode occupation n_{ℓ}
 - \succ Thermalized state [1,2, 10]
 - \succ Extract μ by BEC Fit
 - \succ Use different parameters
- Perturbative solution of the GP-Equation
 - $\succ \mu \approx \hbar \Omega + \frac{\tilde{g}\hbar \Omega}{2\pi} \cdot n_{\text{tot}}$ \succ Slope $\frac{\widetilde{g}\hbar\Omega}{2\pi}$ encodes \widetilde{g}
- Combination: Dimensionless photon-photon interaction strength \tilde{g}

Chemical Potential μ

References

\tilde{g} Dependency

Discussion

• We find

- Strong \tilde{g} dependency on the number of dye molecules N and effective dyetemperature T
- In exp. case: $\tilde{g} \sim 10^{-7}$ [blue point]
- Note, we have dye mediated contribution
- In a real experiment:
 - thermo-optical effect dominates, $\widetilde{g}_{\text{Exp}}^{\text{Therm}} \approx 10^{-4} - 10^{-2} [2, 5, 10, 11]$
 - Kerr contribution: $\tilde{g}_{Exp}^{Kerr} \sim 10^{-7} .. 10^{-8} [5]$
- Agrees with theoretical prediction for dyemediated interaction from [12]
- Outlook
 - \tilde{g} polarization dependency [13] • Extension with spatial dimension

[1] P. Kirton et al., PRL **111**, 100404 (2013). [2] J. Klärs et al., Nature **468**, 545 (2010). [3] A. Chiocchetta et al., PRA **90**, 023633 (2014). [4] A.-W. De Leeuw et al., PRA 88, 033829 (2013). [5] J. Klärs et al., Appl. Phys. B **105**, 17 (2011). [6] M. Radonjić et al., Poster, 569. WE-H. Sem. [7] E. H. Kennard, Phys. Rev. 11, 29 (1918). [8] R. Kubo, J. Phys. Soc. Jpn. **17**, 1100 (1962). [9] I. Block et al., Rev. Mod. Phys **80**, 885 (2008). [10] S. Greveling et al., arXiv: 1712.07922 (2017).

[11] J. Marelic et al., PRA **94**, 063812 (2016). [12] E. C. I. van der Wurff et al., PRL **113**, 135301 (2014).

[13] R. I. Moodie et al., PRA **96**, 043844 (2017). [14] J. Schmitt, Private communication (2017)