Introduction

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Evolution of BEC in Gravito-optical surface trap

Javed Akram^{1,2}

¹Institut für Theoretische Physik, Freie Universität Berlin, Fabeckstraße 60, 14195 Berlin, Germany.

²Department of Physics, COMSATS Institute for Information Technology, Islamabad, Pakistan.

Presentation for PhD Enrollment

Introduction	

Outline

Introduction

- Introduction to BEC
- Model
- Gross-Pitaevskii (GP) Equation
- Gaussian Trial Function
- Bad News: Cumbersome Equations
 - Euler-Lagrange Equations
- 3 Good News: Simplifications Physically Possible
 - Physical Approximation
 - Simplified Euler-Lagrange Equations and Static Solutions
 - Collective Oscillations
 - Time of Flight Expansion
 - Experimental Parameters
 - Future Work
 - Acceleration of BEC in gravitational cavity

Introduction to BEC

De Broglie (1929) proposed that all matter is composed of waves. Their wavelengths are given by

$$\lambda = \frac{h}{mv}$$

- In most everyday matter, the de Broglie wavelength is much shorter than the distance separating the atoms. In this case, the wave nature of atoms cannot be noticed, and they behave as particles.
- The wave nature of atoms becomes noticeable when the de Broglie wavelength is roughly the same as the atomic distance. This happens when the temperature is low enough, so that they have low velocities.
- In this case, the wave nature of atoms will be described by quantum physics.

Introduction ooooooooooooooo	Bad News: Cumbersome Equations o	Good News: Simplifications Physically Possible	Future Work
Introduction to BEC			

 In 1924 an Indian physicist named Bose studied the quantum behavior of a collection of photons. Bose sent his work to Einstein, who realized that it was important.

Bose and Einstein

 Einstein generalized the idea to atoms, considering them as quantum particles with mass.
 Einstein found that when the temperature is high, they behave like ordinary gases. However, when the temperature is very low, they will gather together at the lowest quantum state. This is called Bose-Einstein condensation.

Introduction	Bad News: Cumbersome
000000000000000000000000000000000000000	

Future Work

Introduction to BEC

Bose and Einstein

 In 1924 an Indian physicist named Bose studied the quantum behavior of a collection of photons. Bose sent his work to Einstein, who realized that it was important.

Equations

 Einstein generalized the idea to atoms, considering them as quantum particles with mass.
 Einstein found that when the temperature is high, they behave like ordinary gases. However, when the temperature is very low, they will gather together at the lowest quantum state. This is called Bose-Einstein condensation.

Introduction ooeooooooooooooo	Bad News: Cumbersome Equations	Good News: Simplifications Physically Possible	Future Work
Introduction to BEC			

BEC against our Intuition

 Not all particles can have BEC. This is related to the spin of the particles.

Intr	odu	CTIO	n
	Juu	CliO	

- Not all particles can have BEC. This is related to the spin of the particles.
- The spin quantum number of a particle can be an integer or a half-integer. Single protons, neutrons and electrons have a spin of ¹/₂. They are called fermions.

In the state	1 · · · · · · · · · · · · · · · · · · ·	
Introio	luction	
	aotion	

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

- Not all particles can have BEC. This is related to the spin of the particles.
- The spin quantum number of a particle can be an integer or a half-integer. Single protons, neutrons and electrons have a spin of ¹/₂. They are called fermions.
- Some atoms contain an even number of fermions. They have a total spin of integer number. They are called bosons.

Introd	luction	
1111100	luction	

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Introduction to BEC

- Not all particles can have BEC. This is related to the spin of the particles.
- The spin quantum number of a particle can be an integer or a half-integer. Single protons, neutrons and electrons have a spin of ¹/₂. They are called fermions.
- Some atoms contain an even number of fermions. They have a total spin of integer number. They are called bosons.
- Bosons show strong social behavior, and can have BEC. Example: A ²³Na atom has 11 protons, 12 neutrons and 11 electrons.

Model

Enrico Fermi

Enrico Fermi provides a mechanism through which charged particles can be accelerated by collisions with moving magnetic field structures. ¹

(a) Fermi-Ulam Accelerator (1961) (b) Fermi-Pustylnikov Accelerator (1995)

¹E. Fermi Phys. Rev. **75**, 1169 (1949).

Introduction	Bad News: Cumbersome Equations	Good News: Simplifications Physically Possible	Future Work
Model			

Experimental Model

A cloud of atoms is trapped and cooled in a magneto-optical trap (MOT) to a few micro-Kelvin. An evanescent wave created by the total internal reflection of the incident laser beam from the surface of the dielectric serves as a mirror for the atoms.

Introduction

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Model

Experimental Setup at the University of Innsbruck Austria

They used fused-silca prism (n=1.5), maximum potential height of $50\mu K$, and the decay length is $1.4\mu m$. The angle of incidence $\theta = 4.2mrad$ above the critical angle.²

²D. Rychtarik, et al., Phys. Rev. Lett. **92**, 17 (2004).

Bad News: Cumbersome Equations	Good News: Simplifications Physically Possible	Future W

Model

Gravitational Cavity

BEC starts its motion from an initial height. It moves under the influence of the linear gravitational potential towards the evanescent wave atomic mirror. Close to the surface of the mirror the effect of the evanescent light field is dominant and BEC experiences an exponential repulsive optical potential.

Future Work

Gross-Pitaevskii (GP) Equation

Gross-Pitaevskii (GP) Equation

The dynamics of a Bose-Einstein condensate at zero temperature is determined by the time dependent Gross-Pitaevskii (GP) equation ³

$$\iota\hbar\frac{\partial}{\partial t}\Psi(z,t) = \left\{-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} + V(z,t) + G\|\Psi(z,t)\|^2\right\}\Psi(z,t)$$

Potential Energy and Strength of two particles

$$V(z,t) = V_0 e^{-\kappa z} + mgz$$

The last term represents the two-particle interaction of BEC

atoms, where its strength $G = \frac{4\pi\hbar^2 a}{m}$ is related to the s-wave scattering length *a*.

³A. Griffin, et al., Bose-Einstein Condensation 1995.

Introduction	Bad News: Cumbersome Equations o	Good News: Simplifications Physically Possible	Future Work
Gaussian Trial Function			

$$\Psi(z,t) = \sqrt{\frac{2n_0}{\sqrt{\pi}A(t)\left(1 + \operatorname{Erf}\left(\frac{z_0(t)}{A(t)}\right)\right)}} \exp\left\{-\frac{(z-z_0(t))^2}{2A(t)^2} -\iota R(t)(z-z_0(t))^2 - \iota \alpha(t)(z-z_0(t))\right\}$$

Gaussian trial Function

Here $z_0(t)$ is the mean height of BEC from oscillating surface, A(t) is the width of the BEC, n_0 represents the number of atoms. R(t) and $\alpha(t)$ are the variational parameters. Here

$$\operatorname{Erf}\left(\frac{z_0(t)}{A(t)}\right) = \frac{2}{\sqrt{\pi}} \int_0^{\frac{z_0(t)}{A(t)}} e^{-x^2} dx$$

Introduction	
000000000000000000000000000000000000000)

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Gaussian Trial Function

Lagrange density

$$\mathcal{L} = \iota \hbar \Psi^*(z, t) \frac{\partial \Psi(z, t)}{\partial t} - \frac{\hbar^2}{2m} \frac{\partial \Psi^*(z, t)}{\partial z} \frac{\partial \Psi(z, t)}{\partial z} - V(z, t) \Psi^*(z, t) \Psi(z, t) - \frac{G}{2} \Psi^*(z, t)^2 \Psi(z, t)^2$$
$$L = \int_0^\infty dz \mathcal{L}$$

Dimensionless Lagrangian

$$\tilde{L} = -\frac{n_0}{4\left(1 + \text{Erf}\left(\frac{\tilde{z}_0}{\tilde{A}}\right)\right)^2} \left(\tilde{L}_{int} + \tilde{L}_{pot} + \tilde{L}_{kin} + \tilde{L}_{time}\right)$$

Introduction	Bad News: Cumbersome Equations	Good News: Simplifications Physically Possible	Future Work
Gaussian Trial Function			

Dimensionless Parameters

• I measure energies in units of the gravitational energy mg/κ . Dimensionless Lagrange $\tilde{L} = \frac{L\kappa}{am}$.

Introduction	Bad News: Cumbersome Equations	Good News: Simplifications Physically Possible	Future Work
Gaussian Trial Function			

- I measure energies in units of the gravitational energy mg/κ. Dimensionless Lagrange μ
 [˜]L = μ
 [˜]L
 [˜]m.
- Dimensionless time $\tau = \omega t$.

Inte	adu	ot	on	
mu	uuu	ωu		

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Gaussian Trial Function

- I measure energies in units of the gravitational energy mg/κ . Dimensionless Lagrange $\tilde{L} = \frac{L\kappa}{am}$.
- Dimensionless time $\tau = \omega t$.
- $\tilde{A}(\tau) = \kappa A(t)$, and $\tilde{z}_0 = \kappa z_0(t)$ as a dimensionless width and mean height of the BEC from the optical mirror.

Inte	0	4			0	2
нu	υ	u	uu	ш	υ	

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Gaussian Trial Function

- I measure energies in units of the gravitational energy mg/κ . Dimensionless Lagrange $\tilde{L} = \frac{L\kappa}{am}$.
- Dimensionless time $\tau = \omega t$.
- $\tilde{A}(\tau) = \kappa A(t)$, and $\tilde{z}_0 = \kappa z_0(t)$ as a dimensionless width and mean height of the BEC from the optical mirror.
- $\tilde{a} = a\kappa$ is a dimensionless s-wave scattering length.

Inte	0	4			0	2
нu	υ	u	uu	ш	υ	

- I measure energies in units of the gravitational energy mg/κ. Dimensionless Lagrange μ̃ = μκ/am.
- Dimensionless time $\tau = \omega t$.
- $\tilde{A}(\tau) = \kappa A(t)$, and $\tilde{z}_0 = \kappa z_0(t)$ as a dimensionless width and mean height of the BEC from the optical mirror.
- $\tilde{a} = a\kappa$ is a dimensionless s-wave scattering length.
- $\tilde{R} = \frac{R(t)}{\kappa^2}$ and $\tilde{\alpha} = \frac{\alpha(t)}{\kappa}$ as dimensionless variational parameters.

Inte	~		oti	00	
шu	U	JU	ωu		

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Gaussian Trial Function

- I measure energies in units of the gravitational energy mg/κ . Dimensionless Lagrange $\tilde{L} = \frac{L\kappa}{am}$.
- Dimensionless time $\tau = \omega t$.
- $\tilde{A}(\tau) = \kappa A(t)$, and $\tilde{z}_0 = \kappa z_0(t)$ as a dimensionless width and mean height of the BEC from the optical mirror.
- $\tilde{a} = a\kappa$ is a dimensionless s-wave scattering length.
- $\tilde{R} = \frac{R(t)}{\kappa^2}$ and $\tilde{\alpha} = \frac{\alpha(t)}{\kappa}$ as dimensionless variational parameters.
- $\tilde{\omega} = \frac{\hbar\kappa}{gm}\omega$ as a dimensionless frequency.

Intr	nd		ion	
	uu	uc	101	

Gaussian Trial Function

- I measure energies in units of the gravitational energy mg/κ . Dimensionless Lagrange $\tilde{L} = \frac{L\kappa}{am}$.
- Dimensionless time $\tau = \omega t$.
- $\tilde{A}(\tau) = \kappa A(t)$, and $\tilde{z}_0 = \kappa z_0(t)$ as a dimensionless width and mean height of the BEC from the optical mirror.
- $\tilde{a} = a\kappa$ is a dimensionless s-wave scattering length.
- $\tilde{R} = \frac{R(t)}{\kappa^2}$ and $\tilde{\alpha} = \frac{\alpha(t)}{\kappa}$ as dimensionless variational parameters.
- $\tilde{\omega} = \frac{\hbar\kappa}{am}\omega$ as a dimensionless frequency.
- $\tilde{V}_0 = \frac{\kappa V_0}{gm}$ as a dimensionless strength of the evanescent field, and $\tilde{k} = \frac{\hbar^2 \kappa^3}{gm^2}$ as a dimensionless kinetic energy.

Introduction

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Gaussian Trial Function

Interaction Lagrange Function

$$\tilde{L}_{int} = 8\sqrt{2\pi} \frac{\left(1 + \operatorname{Erf}\left(\frac{\sqrt{2}\tilde{z}_{0}}{\tilde{A}}\right)\right)n_{0}}{\tilde{A}} \tilde{k}\tilde{a}$$

Potential Energy Lagrange Function

$$\begin{split} \tilde{L}_{pot} &= 4\left(1 + \mathrm{Erf}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right)\right) \left\{\tilde{V}_{0}e^{\frac{\tilde{A}^{2}}{4} - \tilde{z}_{0}}\mathrm{Erfc}\left(\frac{\tilde{A}}{2} - \frac{\tilde{z}_{0}}{\tilde{A}}\right) \right. \\ &+ \left(1 + \mathrm{Erf}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right)\right)\tilde{z}_{0} + \frac{\tilde{A}e^{-\frac{\tilde{z}_{0}^{2}}{\tilde{A}^{2}}}}{\sqrt{\pi}}\right\} \end{split}$$

$$\end{split}$$
here
$$\begin{split} & \mathrm{Erfc}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right) = 1 - \mathrm{Erf}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right) \end{split}$$

Gaussian Trial Function

Kinetic Energy Lagrange Function

$$\begin{split} \tilde{L}_{kin} &= \frac{\tilde{k} \left(1 + \mathsf{Erf}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right) \right)}{\sqrt{\pi} \tilde{A}^{3}} \left\{ \sqrt{\pi} \tilde{A} + 4 \sqrt{\pi} \tilde{A}^{5} \tilde{R}^{2} + 2 \sqrt{\pi} \tilde{A}^{3} \tilde{\alpha}^{2} \right. \\ &\left. - 2 e^{-\frac{\tilde{z}_{0}^{2}}{\tilde{A}^{2}}} \left(\tilde{z}_{0} + 4 \tilde{A}^{4} \tilde{R}^{2} \tilde{z}_{0} - 4 \tilde{A}^{4} \tilde{R} \tilde{\alpha} \right) \right. \\ &\left. + \sqrt{\pi} \tilde{A} \mathsf{Erf}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right) \left(1 + 4 \tilde{A}^{4} \tilde{R}^{2} + 2 \tilde{A}^{2} \tilde{\alpha}^{2} \right) \right\} \end{split}$$

Time Lagrange Function

$$\begin{split} \tilde{L}_{time} &= 2\tilde{\omega}\left(1 + \mathrm{Erf}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right)\right) \left\{ \left(-2 + \mathrm{Erfc}\left(\frac{\tilde{z}_{0}}{\tilde{A}}\right)\right) \\ &\times \left(\tilde{A}^{2}\tilde{R}' - 2\tilde{\alpha}\tilde{z}'_{0}\right) + \frac{2\mathrm{e}^{-\frac{\tilde{z}_{0}^{2}}{\tilde{A}^{2}}}\tilde{A}\left(\tilde{z}_{0}\tilde{R}' + 2\tilde{R}\tilde{z}'_{0} - \tilde{\alpha}'\right)}{\sqrt{\pi}} \right\} \end{split}$$

Introduction

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Gaussian Trial Function

Time Independent Lagrange

Dependence of the dimensionless Lagrange function on the dimensionless width of the BEC wave packet \tilde{A} and the dimensionless mean height of the BEC \tilde{z}_0 for the static case $\tilde{R}(\tau) = \tilde{\alpha}(\tau) = 0$.

Future Work

Euler-Lagrange Equations

Euler-Lagrange Equations

$$\frac{\partial \tilde{L}}{\partial \tilde{A}} - \frac{d}{d\tau} \frac{\partial \tilde{L}}{\partial \tilde{A}'} = 0$$
$$\frac{\partial \tilde{L}}{\partial \tilde{R}} - \frac{d}{d\tau} \frac{\partial \tilde{L}}{\partial \tilde{R}'} = 0$$
$$\frac{\partial \tilde{L}}{\partial \tilde{\alpha}} - \frac{d}{d\tau} \frac{\partial \tilde{L}}{\partial \tilde{\alpha}'} = 0$$
$$\frac{\partial \tilde{L}}{\partial \tilde{z}_{0}} - \frac{d}{d\tau} \frac{\partial \tilde{L}}{\partial \tilde{z}_{0}'} = 0$$

Euler Lagrange Equations Results

Click Here

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Physical Approximation

We conclude from our experimental setup that

then we can furthermore use

$$\text{Erf}\left(\frac{\tilde{z}_0}{\tilde{A}}\right)\simeq 1$$

$$rac{ ilde{z}_0}{ ilde{A}}\gg 1$$

$$e^{-1}(\tilde{A}) = 1$$

Approximated Lagrange Function

$$\begin{split} \tilde{L} &\simeq -\frac{n_0}{16} \left\{ 16\sqrt{2\pi}\frac{n_0}{\tilde{A}} \, \tilde{k}\tilde{a} + 8 \left(2e^{\frac{1}{4}\tilde{A}^2 - \tilde{z}_0} \tilde{V}_0 + 2\tilde{z}_0 \right) \right. \\ &+ 8\tilde{\omega} \left(\tilde{A}^2 \tilde{R}' - 2\tilde{\alpha}\tilde{z}'_0 \right) \\ &+ \frac{4\tilde{k}}{\sqrt{\pi}\tilde{A}^3} \left(\sqrt{\pi}\tilde{A} + 4\sqrt{\pi}\tilde{A}^5 \tilde{R}^2 + 2\sqrt{\pi}\tilde{A}^3 \tilde{\alpha}^2 \right) \right\} \end{split}$$

Good News: Simplifications Physically Possible

Future Work

Simplified Euler-Lagrange Equations and Static Solutions

Euler-Lagrange equation for width and height of BEC

Note that above equations have been simplified by choosing $\tilde{\omega} = \sqrt{\tilde{k}}$, i.e. we have $\omega = \sqrt{g\kappa}$ for the frequency for the time scale. The frequency ω coincides with the classical frequency when the gravitational potential is harmonically approximated around its minimum.

Good News: Simplifications Physically Possible

Future Work

Simplified Euler-Lagrange Equations and Static Solutions

~

Euler-Lagrange equation for width and height of BEC

$$2\frac{k}{\tilde{A}_{eq}} + 4\sqrt{2\pi}\tilde{k}\tilde{a}n_{0} - 2\tilde{A}_{eq}^{3}\tilde{V}_{0}e^{\frac{1}{4}\tilde{A}_{eq}^{2}-\tilde{z}_{0eq}} = 0$$
$$-1 + \tilde{V}_{0}e^{\frac{1}{4}\tilde{A}_{eq}^{2}-\tilde{z}_{0eq}} = 0$$

Dimensionless width and height of BEC

$$\begin{split} \tilde{A}_{-eq} &= \sqrt{\tilde{a}\tilde{k}\sqrt{2\pi}n_0 - \sqrt{\tilde{k} + 2\pi\tilde{a}^2\tilde{k}^2n_0^2}} \quad \text{Unphysica} \\ \tilde{A}_{+eq} &= \sqrt{\tilde{a}\tilde{k}\sqrt{2\pi}n_0 + \sqrt{\tilde{k} + 2\pi\tilde{a}^2\tilde{k}^2n_0^2}} \end{split}$$

and

$$\tilde{z}_{0\mathrm{eq}} = \frac{1}{4}\tilde{A}_{+\mathrm{eq}} + \ln\,\tilde{V}_0$$

Future Work

Simplified Euler-Lagrange Equations and Static Solutions

Aspect ratio of the equilibrium

In order to make our proposed model experimentally realizable

 $\tilde{V}_0 \gg 3$

i.e. for
$$\tilde{Z}_{0eq} \gg \tilde{A}_{eq}$$
 , we need

Future Work

Simplified Euler-Lagrange Equations and Static Solutions

Equilibrium Values

Equilibrium values for (a) mean height \tilde{z}_0 and (b) width \tilde{A} of the BEC. Exact values (solid lines) compared with the approximations (dashed lines).

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Collective Oscillations

Dynamics for small deflections around equilibrium positions

Let us assume for the width of the BEC

and for the mean position of the BEC

$$ilde{A} = ilde{A}_{
m eq} + \delta ilde{A}$$

$$\tilde{z}_0 = \tilde{z}_{0eq} + \delta \tilde{z}_0$$

Dynamic equations for width and height of BEC

$$\begin{split} \delta \tilde{A}'' &= -3 \frac{\tilde{k} \delta \tilde{A}}{\tilde{A}_{eq}^4} - 4 \sqrt{2\pi} \frac{\tilde{k} \tilde{a} n_0 \delta \tilde{A}}{\tilde{A}_{eq}^3} - e^{\frac{\tilde{A}_{eq}^2}{4} - \tilde{z}_{0eq}} \tilde{V}_0 \\ &\times \left(\frac{1}{2} \tilde{A}_{eq}^2 \delta \tilde{A} - \delta \tilde{z}_0 \tilde{A}_{eq} \right) - e^{\frac{1}{4} \tilde{A}_{eq}^2 - \tilde{z}_{0eq}} \tilde{V}_0 \delta \tilde{A} \end{split}$$

and

$$\delta \tilde{z}_0'' - \frac{1}{2} \tilde{A}_{eq} \delta \tilde{A} + \delta \tilde{z}_0 \simeq 0$$

Introduction	

Collective Oscillations

Deflections around equilibrium points describe dynamics

$$egin{pmatrix} \delta ilde{m{z}}_0'' \ \delta ilde{m{A}}'' \end{pmatrix} + m{M}egin{pmatrix} \delta ilde{m{z}}_0 \ \delta ilde{m{A}} \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

where M is

$$M=\left(egin{array}{ccc} 1&-rac{1}{2} ilde{\mathcal{A}}_{
m eq}\ - ilde{\mathcal{A}}_{
m eq}&\left(1+3rac{ ilde{k}}{ ilde{\mathcal{A}}_{
m eq}^4}+4\sqrt{2\pi}rac{ ilde{k} ilde{a}n_0}{ ilde{\mathcal{A}}_{
m eq}^3}+rac{ ilde{\mathcal{A}}_{
m eq}^2}{2}
ight) \end{array}
ight)$$

Collective Oscillations

Characteristic equation

To determine the eigenvalues of the matrix, we find the solution

of the characteristic equation $det(M - \zeta I) = 0$ which is

$$\zeta^2 - S\zeta + T = 0$$

$$\zeta_{\pm} = \frac{S \pm \sqrt{S^2 - 4T}}{2}$$

where we introduce the abbreviations

$$S = 2 + 3rac{ ilde{k}}{ ilde{A}_{ ext{eq}}^4} + 4\sqrt{2\pi}rac{ ilde{k} ilde{a}n_0}{ ilde{A}_{ ext{eq}}^3} + rac{ ilde{A}_{ ext{eq}}^2}{2}$$
 $T = 1 + 3rac{ ilde{k}}{ ilde{A}_{ ext{eq}}^4} + 4\sqrt{2\pi}rac{ ilde{k} ilde{a}n_0}{ ilde{A}_{ ext{eq}}^3}$

Collective excitation frequencies

The eigenvalues ζ_{\pm} correspond to oscillation frequencies $\tilde{\Omega}_{\pm}$ of the condensate according to $\tilde{\Omega}_{\pm} = \sqrt{\zeta_{\pm}}$. Thus, the collective excitation frequencies of the Bose-Einstein condensate amount to $\Omega_{\pm} = \omega \tilde{\Omega}_{\pm}$ and, due to $\omega = \sqrt{g\kappa} = 3.1305 \times 10^3 \text{s}^{-1}$, they are of the order of kHz.

Collective Oscillations

Oscillation frequencies $\tilde{\Omega}_{\pm}$ of the condensate

Black (Red) line represents the eigenvalue $\tilde{\Omega}_+$ ($\tilde{\Omega}_-$) versus κ , because frequencies are not depending upon \tilde{V}_0 .

Collective Oscillations

$$\boldsymbol{X}_{\pm} = \left\{ \frac{1}{4\tilde{A}_{eq}^{5}} \left(\begin{array}{c} \tilde{A}_{eq}^{6} + 6\tilde{k} + 8\tilde{a}\tilde{A}_{eq}\tilde{k}n_{0} \\ 8\tilde{A}_{eq}^{10} + \tilde{A}_{eq}^{12} + 12\tilde{A}_{eq}^{6}\tilde{k} + 36\tilde{k}^{2} \\ \pm \sqrt{ \begin{array}{c} 8\tilde{A}_{eq}^{10} + \tilde{A}_{eq}^{12} + 12\tilde{A}_{eq}^{6}\tilde{k} + 36\tilde{k}^{2} \\ + 16\tilde{a}\tilde{A}_{eq}\tilde{k}n_{0} \left(\tilde{A}_{eq}^{6} + 6\tilde{k} + 4\tilde{a}\tilde{A}_{eq}\tilde{k}n_{0} \right) \end{array} \right), 1 \right\}$$

Eigenvectors

The two eigenvectors represent the two modes. The first mode $\mathbf{X}_{+}(\mathbf{X}_{-})$ has a positive (negative) sign which means that height and width are in(out) phase.

Future Work

Time of Flight Expansion

Time of Flight Expansion

Here dashed black line represents the width of the condensate and blue solid line represents the mean height of the BEC for a decay length $\frac{1}{\kappa} = 10^{-6}$ m.

$$\begin{array}{lll} \tilde{A}^{\prime\prime} & = & \frac{\tilde{k}}{\tilde{A}^3} + 2\sqrt{2\pi}\frac{\tilde{k}\tilde{a}}{\tilde{A}^2}n_0 \\ \tilde{z}^{\prime\prime}_0 & = & -1 \end{array}$$

Future Work

Time of Flight Expansion

Aspect ratio of mean height and mean width of the BEC

ntroduction	Bad News: Cumbersome E

Exact solution of dynamic equation for width of BEC

quations

$$\int_{0}^{ au} dt^{'} = \int_{ ilde{\mathcal{A}}_{
m eq}}^{ ilde{\mathcal{A}}} rac{ ilde{\mathcal{A}}_{
m eq} ilde{\mathcal{A}}(t^{'}) d ilde{\mathcal{A}}(t^{\prime})}{\sqrt{b ilde{\mathcal{A}}(t^{\prime})^{2} + c ilde{\mathcal{A}}(t^{\prime}) + d ilde{\mathcal{K}} ilde{\mathcal{A}}_{
m eq}^{2}}}$$

here

$$\begin{array}{rcl} \mathsf{Y}(t') &=& b\tilde{A}(t')^2 + c\tilde{A}(t') + d \\ b &=& \tilde{k}(1 + 4\sqrt{2\pi}n_0\tilde{a}\tilde{A}_{\mathrm{eq}}) \\ c &=& -4\sqrt{2\pi}n_0\tilde{k}\tilde{a}\tilde{A}_{\mathrm{eq}}^2 \quad \mathrm{and} \quad d = -\tilde{k}\tilde{A}_{\mathrm{eq}}^2 \end{array}$$

Bad News: Cumbersome Equations

Good News: Simplifications Physically Possible

Future Work

Time of Flight Expansion

Exact value of Time of Flight expansion

Here numerical value (black line) compared with the exact value (dashed red line)

$$\tau = \frac{\tilde{A}_{eq}}{b} \left(\sqrt{Y} - \sqrt{b\tilde{A}_{eq}^2 + c\tilde{A}_{eq} + d} \right) - \frac{c\tilde{A}_{eq}}{2b^2} \left\{ \ln \left[2\sqrt{bY} + 2b\tilde{A} + c \right] - \ln \left[2\sqrt{b\tilde{A}_{eq}^2 + c\tilde{A}_{eq} + d} + 2b\tilde{A}_{eq} + c \right] \right\}$$

Introduction	Bad News: Cumbersome Equations	Good News: Simplifications Physically Possible
		0000000000000

Experimental Parameters

Experimental Values

• We consider the number $n_0 = 10^6$ of ⁸⁷Rb atoms,

Introduction	Bad News:	Cumbersome	Equations

- We consider the number $n_0 = 10^6$ of ⁸⁷Rb atoms,
- One ⁸⁷Rb atom has the mass $m = 87 \times 1.67 \times 10^{-27}$ kg,

Introduction	Bad News:	Cumbersome	Equation

- We consider the number $n_0 = 10^6$ of ⁸⁷Rb atoms,
- One ⁸⁷Rb atom has the mass $m = 87 \times 1.67 \times 10^{-27}$ kg,
- The s-wave scattering length of ⁸⁷Rb atoms amounts to $a = 90 \times 0.0529 \times 10^{-9}$ m,

Experimental Parameters

- We consider the number $n_0 = 10^6$ of ⁸⁷Rb atoms,
- One ⁸⁷Rb atom has the mass $m = 87 \times 1.67 \times 10^{-27}$ kg,
- The s-wave scattering length of ⁸⁷Rb atoms amounts to $a = 90 \times 0.0529 \times 10^{-9}$ m,
- Planck's constant reads $\hbar = 1.054 \times 10^{-34}$ J/s, and the gravitational acceleration is g = 9.8 ms⁻².

Experimental Parameters

- We consider the number $n_0 = 10^6$ of ⁸⁷Rb atoms,
- One ⁸⁷Rb atom has the mass $m = 87 \times 1.67 \times 10^{-27}$ kg,
- The s-wave scattering length of ⁸⁷Rb atoms amounts to $a = 90 \times 0.0529 \times 10^{-9}$ m,
- Planck's constant reads $\hbar = 1.054 \times 10^{-34}$ J/s, and the gravitational acceleration is g = 9.8 ms⁻².
- The evanescent field is assumed to be determined by the inverse decay length $\kappa = 10^6 \text{ m}^{-1}$ and the strength $V_0 = 3.132 \times 10^{-29} \text{ J}.$

Good News: Simplifications Physically Possible

Future Work ●00

Acceleration of BEC in gravitational cavity

Future work

 I will extend my problem to see the acceleration of BEC in the gravitational cavity. To study the acceleration of the BEC, I will model exponential decaying potential with

$$V(z,t) = V_0 e^{\lambda \sin(\mu t) - \kappa z}$$

Good News: Simplifications Physically Possible

Future Work

Acceleration of BEC in gravitational cavity

Future work

• I will do research work on the topic "How does the stability

diagram change with
$$P(t) = k\tilde{a}(t)$$
 in dynamic

equation
$$ilde{A}'' = rac{ ilde{k}}{ ilde{A}^3} + 2\sqrt{2\pi} rac{ ilde{P}(t)}{ ilde{A}^2} n_0$$
 ".

Good News: Simplifications Physically Possible

Future Work

Acceleration of BEC in gravitational cavity

Question and answer session

Question and answer session

Good News: Simplifications Physically Possible

Future Work oo●

Acceleration of BEC in gravitational cavity

