| Hybrid systems | Dimensional reduction from 3D to 1D | Static results<br>00000000000 | Time of flight | Outlook |
|----------------|-------------------------------------|-------------------------------|----------------|---------|
|                |                                     |                               |                |         |

# Analytical and Numerical Study of Localized Impurity in Bose-Einstein Condensate

### Javed Akram

Department of Physics Free University of Berlin, Germany

New year seminar, 2015

(日)

1/33

| Hybrid systems | Dimensional reduction from 3D to 1D | Static results<br>00000000000 | Time of flight | Outlook |
|----------------|-------------------------------------|-------------------------------|----------------|---------|
|                |                                     |                               |                |         |
|                |                                     |                               |                |         |



- Dimensional reduction from 3D to 1D
  - Derivation of Lagrangian from 3D to 1D
  - Gross-Pitaevskii equation
  - Dimensionless Gross-Pitaevskii equation

# Static results

- Thomas-Fermi variational ansatz
- Numerical density profile
- Impurity height/depth and width

# 4 Time of flight

# 5 Outlook

| Trybrid Systems | Hy | brid | systems |  |
|-----------------|----|------|---------|--|
|-----------------|----|------|---------|--|

Dimensional reduction from 3D to 1D 000000000

Outlook

• First Experiment: Coupling a single-electron/Rydberg atom to a Bose-Einstein condensate,



J.B. Balewski, et al., Nature **502**, 664 (2013).



| brid systems | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|--------------|-------------------------------------|----------------|----------------|---------|
|              |                                     |                |                |         |
|              |                                     |                |                |         |

• Second Experiment: Coupling a single-ion (Ytterbium-Yb<sup>+</sup>) to a Bose-Einstein condensate,





| Hybrid systems | Dimensional reduction from 3D to 1D | Static results<br>0000000000 | Time of flight | Outlook |
|----------------|-------------------------------------|------------------------------|----------------|---------|
|                |                                     |                              |                |         |

 Third experiment: Coupling a single-Cs atom to a Bose-Einstein condensate,



N. Spethmann, et al., Phys. Rev. Lett. 109, 235301 (2012).



< □ > < □ > < □ > < □ > < □ >

| Hybrid systems | Dimensional reduction from 3D to 1D | Static results<br>0000000000 | Time of flight | Outlook |
|----------------|-------------------------------------|------------------------------|----------------|---------|
|                |                                     |                              |                |         |

• This talk-outlook





| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
|                        | 000000000                           |                |                |         |
| Derivation of Lagrangi | an from 3D to 1D                    |                |                |         |

・ロン ・雪 と ・ ヨ と ・



# 2 Dimensional reduction from 3D to 1D

- Derivation of Lagrangian from 3D to 1D
- Gross-Pitaevskii equation
- Dimensionless Gross-Pitaevskii equation

# 3 Static results

- Thomas-Fermi variational ansatz
- Numerical density profile
- Impurity height/depth and width
- 4 Time of flight

# 5 Outlook

| Hybrid systems                         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------------------------------|-------------------------------------|----------------|----------------|---------|
|                                        | 00000000                            |                |                |         |
| Derivation of Lagrangian from 3D to 1D |                                     |                |                |         |

# 3D Lagrangian

$$\begin{split} \mathcal{L}_{3D} = & \frac{i\hbar}{2} \left( \psi^{\star}\left(\mathbf{r},t\right) \frac{\partial\psi\left(\mathbf{r},t\right)}{\partial t} - \psi\left(\mathbf{r},t\right) \frac{\partial\psi^{\star}\left(\mathbf{r},t\right)}{\partial t} \right) \\ &+ \frac{\hbar^{2}}{2m_{\mathrm{B}}} \psi^{\star}\left(\mathbf{r},t\right) \bigtriangleup \psi\left(\mathbf{r},t\right) - V\left(\mathbf{r}\right) \psi^{\star}\left(\mathbf{r},t\right) \psi\left(\mathbf{r},t\right) \\ &- \frac{G_{\mathrm{B}}^{\mathrm{3D}}}{2} \parallel \psi\left(\mathbf{r},t\right) \parallel^{4} - G_{\mathrm{IB}}^{\mathrm{3D}} \parallel \psi_{\mathrm{I}}\left(\mathbf{r},t\right) \parallel^{2} \parallel \psi\left(\mathbf{r},t\right) \parallel^{2} \end{split}$$

• 
$$G_{\rm B}^{\rm 3D} = \frac{N4\pi\hbar^2 a_{\rm B}}{m_{\rm B}}$$
  
•  $G_{\rm IB}^{\rm 3D} = \frac{2\pi\hbar^2 a_{\rm IB}}{m_{\rm IB}}$  and  $m_{\rm IB} = \frac{m_{\rm I}m_{\rm B}}{m_{\rm I}+m_{\rm B}}$ 



| Hybrid systems                         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------------------------------|-------------------------------------|----------------|----------------|---------|
|                                        | 00000000                            |                |                |         |
| Derivation of Lagrangian from 3D to 1D |                                     |                |                |         |

# 3D Lagrangian

$$\begin{split} \mathcal{L}_{3D} = & \frac{i\hbar}{2} \left( \psi^{\star}\left(\mathbf{r},t\right) \frac{\partial\psi\left(\mathbf{r},t\right)}{\partial t} - \psi\left(\mathbf{r},t\right) \frac{\partial\psi^{\star}\left(\mathbf{r},t\right)}{\partial t} \right) \\ &+ \frac{\hbar^{2}}{2m_{\mathrm{B}}} \psi^{\star}\left(\mathbf{r},t\right) \bigtriangleup \psi\left(\mathbf{r},t\right) - V\left(\mathbf{r}\right) \psi^{\star}\left(\mathbf{r},t\right) \psi\left(\mathbf{r},t\right) \\ &- \frac{G_{\mathrm{B}}^{\mathrm{3D}}}{2} \parallel \psi\left(\mathbf{r},t\right) \parallel^{4} - G_{\mathrm{IB}}^{\mathrm{3D}} \parallel \psi_{\mathrm{I}}\left(\mathbf{r},t\right) \parallel^{2} \parallel \psi\left(\mathbf{r},t\right) \parallel^{2} \end{split}$$

• 
$$G_{\rm B}^{\rm 3D} = \frac{M4\pi\hbar^2 a_{\rm B}}{m_{\rm B}}$$
  
•  $G_{\rm IB}^{\rm 3D} = \frac{2\pi\hbar^2 a_{\rm IB}}{m_{\rm IB}}$  and  $m_{\rm IB} = \frac{m_{\rm I}m_{\rm B}}{m_{\rm I}+m_{\rm B}}$ 

্থি ৩৭.০ ৪/33

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

| Hybrid systems                         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------------------------------|-------------------------------------|----------------|----------------|---------|
|                                        | 00000000                            |                |                |         |
| Derivation of Lagrangian from 3D to 1D |                                     |                |                |         |

• 
$$\omega_z \ll \omega_r$$
 and  $V(\mathbf{r}) = \frac{m_B \omega_z^2 z^2}{2} + \frac{m_B \omega_r^2 (x^2 + y^2)}{2}$   
•  $\psi(\mathbf{r}, t) = \psi(z, t)\phi(r_{\perp}, t)$ 

#### Wave-functions

$$\begin{split} \phi(r_{\perp},t) &= \frac{e^{-\frac{x^2+y^2}{2l_r^2}}}{\sqrt{\pi}l_r} e^{-i\omega_r t} \\ \phi_{\rm I}(r_{\perp},t) &= \frac{e^{-\frac{x^2+y^2}{2l_r^2}}}{\sqrt{\pi}l_{\rm rI}} e^{-i\omega_{\rm rI} t} \end{split}$$

• 
$$l_{\rm r} = \sqrt{\hbar/m_{\rm B}\omega_{\rm r}}$$
 and  $l_{\rm rl} = \sqrt{\hbar/m_{\rm IB}\omega_{\rm rl}}$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

| Hybrid systems                         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------------------------------|-------------------------------------|----------------|----------------|---------|
|                                        | 00000000                            |                |                |         |
| Derivation of Lagrangian from 3D to 1D |                                     |                |                |         |

• 
$$\omega_z \ll \omega_r$$
 and  $V(\mathbf{r}) = \frac{m_B \omega_z^2 z^2}{2} + \frac{m_B \omega_r^2 (x^2 + y^2)}{2}$   
•  $\psi(\mathbf{r}, t) = \psi(z, t)\phi(r_{\perp}, t)$ 

### Wave-functions

$$\phi(r_{\perp}, t) = \frac{e^{-\frac{x^2+y^2}{2l_r^2}}}{\sqrt{\pi}l_r}e^{-i\omega_r t}$$
$$\phi_{\rm I}(r_{\perp}, t) = \frac{e^{-\frac{x^2+y^2}{2l_r^2}}}{\sqrt{\pi}l_{\rm rI}}e^{-i\omega_{\rm rI} t}$$

•  $l_{\rm r} = \sqrt{\hbar/m_{\rm B}\omega_{\rm r}}$  and  $l_{\rm rl} = \sqrt{\hbar/m_{\rm IB}\omega_{\rm rl}}$ 



イロト イヨト イヨト イヨト 三日

| Hybrid systems                         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------------------------------|-------------------------------------|----------------|----------------|---------|
|                                        | 00000000                            |                |                |         |
| Derivation of Lagrangian from 3D to 1D |                                     |                |                |         |

• 
$$\omega_z \ll \omega_r$$
 and  $V(\mathbf{r}) = \frac{m_B \omega_z^2 z^2}{2} + \frac{m_B \omega_r^2 (x^2 + y^2)}{2}$   
•  $\psi(\mathbf{r}, t) = \psi(z, t)\phi(r_{\perp}, t)$ 

# Wave-functions

$$\phi(r_{\perp}, t) = \frac{e^{-\frac{x^2 + y^2}{2l_r^2}}}{\sqrt{\pi}l_r} e^{-i\omega_r t}$$
$$\phi_{\rm I}(r_{\perp}, t) = \frac{e^{-\frac{x^2 + y^2}{2l_{\rm rl}^2}}}{\sqrt{\pi}l_{\rm rl}} e^{-i\omega_{\rm rl} t}$$

• 
$$I_{\rm r} = \sqrt{\hbar/m_{\rm B}\omega_{\rm r}}$$
 and  $I_{\rm rl} = \sqrt{\hbar/m_{\rm IB}\omega_{\rm rl}}$ 

|                      |                                                                                                                                                                                  | 00000000000                                         | Time of hight                                | Outiool |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------|
| Derivation of Lagrar | ngian from 3D to 1D                                                                                                                                                              |                                                     |                                              |         |
| 1D Lag               | rangian                                                                                                                                                                          |                                                     |                                              |         |
|                      | $\mathcal{L}_{1D} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$                                                                                                             | $\int_{\infty}^{\infty} \mathcal{L}_{3D} dx dy.$    |                                              |         |
| $\mathcal{L}_{1L}$   | $D = \frac{i\hbar}{2} \left( \psi^{\star}(z,t) \frac{\partial \psi(z,t)}{\partial t} + \frac{\hbar^2}{2m_0} \psi^{\star}(z,t) \frac{\partial^2 \psi(z,t)}{\partial z^2} \right)$ | $-\psi(z,t)\frac{\partial\psi^{\star}}{\partial t}$ | $\frac{(z,t)}{\partial t}$ $(z,t) \psi(z,t)$ |         |
|                      | $-\frac{G_{\rm B}}{2} \parallel \psi(z,t) \parallel^4 -G_{\rm B}$                                                                                                                | $_{B}\parallel\psi_{I}\left(z,t ight)\parallel^{2}$ | $\left\ \psi\left(z,t ight) ight\ ^{2}$      |         |
| • G <sub>B</sub>     | $s = 2N_{\rm B}a_{\rm B}\hbar\omega_{\rm r}$                                                                                                                                     |                                                     |                                              |         |
| • G <sub>IE</sub>    | $a_{\rm B} = \frac{2\pi^2 a_{\rm B}}{m_{\rm B}(l_r^2 + l_{\rm rl}^2)}$ , how we can                                                                                              | increase or dec                                     | crease G <sub>IB</sub> (nex                  | xt      |

୬ ବ (~ 10 / 33

÷

20 ++ 10

| пурп  | a systems          | 000000000                                                                                                    | 00000000000                                        | Time of hight                     | Outlook |
|-------|--------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|---------|
| Deriv | ation of Lagrangia | an from 3D to 1D                                                                                             |                                                    |                                   |         |
|       | 1D Lagra           | angian                                                                                                       |                                                    |                                   |         |
|       |                    | $\mathcal{L}_{1D} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$                                         | $\int_{\infty}^{\infty} \mathcal{L}_{3D} dx dy.$   |                                   |         |
|       | $\mathcal{L}_{1D}$ | $=\frac{i\hbar}{2}\left(\psi^{\star}\left(z,t\right)\frac{\partial\psi\left(z,t\right)}{\partial t}-\right.$ | $-\psi(z,t)\frac{\partial\psi^{*}(z)}{\partial t}$ | $\left(\frac{z,t}{t}\right)$      | L       |
|       |                    | $+\frac{\hbar^2}{2m_{\rm B}}\psi^{\star}(z,t)\frac{\partial^2\psi(z,t)}{\partial z^2}$                       | $\left( t ight) -V\left( z ight) \psi ^{\star }$   | $(z,t)\psi(z,t)$                  | L       |
|       |                    | $-\frac{G_{B}}{2} \parallel \psi(z,t) \parallel^{4} - G_{I}$                                                 | $\mathbf{B} \parallel \psi_{I}(z,t) \parallel^2$   | $\parallel \psi(z,t) \parallel^2$ |         |
|       | • G <sub>B</sub> = | $= 2N_{\rm B}a_{\rm B}\hbar\omega_{\rm r}$                                                                   |                                                    |                                   | 1       |
|       | • G <sub>IB</sub>  | $= \frac{2\hbar^2 a_{\text{IB}}}{m_{\text{IB}}(l_r^2 + l_{\text{rl}}^2)}, \text{ how we can}$                | increase or dec                                    | rease G <sub>IB</sub> (next       |         |
|       | Shae               | ;)                                                                                                           |                                                    |                                   |         |

3D to 1D

Dimensional reduction from





• In our calculation we are using  $\omega_{
m lr}/\omega_{
m r}=1$ 







• In our calculation we are using  $\omega_{\rm lr}/\omega_{\rm r}=1$ 



| Hybrid systems           | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|--------------------------|-------------------------------------|----------------|----------------|---------|
|                          | 000000000                           |                |                |         |
| Gross-Pitaevskii equatic | n                                   |                |                |         |

・ロト ・回ト ・ヨト ・ヨト



2 Dimensional reduction from 3D to 1D

- Derivation of Lagrangian from 3D to 1D
- Gross-Pitaevskii equation
- Dimensionless Gross-Pitaevskii equation
- 3 Static results
  - Thomas-Fermi variational ansatz
  - Numerical density profile
  - Impurity height/depth and width
- 4 Time of flight

# 5 Outlook

| Hybrid systems            | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|---------------------------|-------------------------------------|----------------|----------------|---------|
|                           | 00000 <b>0</b> 0000                 |                |                |         |
| Gross-Pitaevskii equation |                                     |                |                |         |

### Euler-Lagrangian equation

$$\frac{\delta \mathcal{A}\left[\psi^{\star},\psi\right]}{\delta \psi^{\star}\left(z,t\right)} = \frac{\partial \mathcal{L}_{1D}}{\partial \psi^{\star}\left(z,t\right)} - \frac{\partial}{\partial z} \frac{\partial \mathcal{L}_{1D}}{\partial \frac{\partial \psi^{\star}\left(z,t\right)}{\partial z}} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}_{1D}}{\partial \frac{\partial \psi^{\star}\left(z,t\right)}{\partial t}} = 0$$

### 1D Gross-Pitaevskii equation (1DGPE)

$$i\hbar\frac{\partial}{\partial t}\psi(z,t) = \left\{-\frac{\hbar^2}{2m_B}\frac{\partial^2}{\partial z^2} + \frac{m_B\omega_z^2 z^2}{2} + G_{\rm IB} \parallel \psi_{\rm I}(z,t) \parallel^2 + G_{\rm B}|\psi(z,t)|^2\right\}\psi(z,t)$$



| Hybrid systems            | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|---------------------------|-------------------------------------|----------------|----------------|---------|
|                           | 00000 <b>0</b> 0000                 |                |                |         |
| Gross-Pitaevskii equation |                                     |                |                |         |

### Euler-Lagrangian equation

$$\frac{\delta \mathcal{A}\left[\psi^{\star},\psi\right]}{\delta \psi^{\star}\left(z,t\right)} = \frac{\partial \mathcal{L}_{1D}}{\partial \psi^{\star}\left(z,t\right)} - \frac{\partial}{\partial z} \frac{\partial \mathcal{L}_{1D}}{\partial \frac{\partial \psi^{\star}\left(z,t\right)}{\partial z}} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}_{1D}}{\partial \frac{\partial \psi^{\star}\left(z,t\right)}{\partial t}} = 0$$

# 1D Gross-Pitaevskii equation (1DGPE)

$$\begin{split} i\hbar\frac{\partial}{\partial t}\psi(z,t) = \\ \left\{-\frac{\hbar^2}{2m_B}\frac{\partial^2}{\partial z^2} + \frac{m_B\omega_z^2 z^2}{2} + G_{\text{IB}} \parallel \psi_{\text{I}}(z,t) \parallel^2 + G_{\text{B}}|\psi(z,t)|^2\right\}\psi(z,t) \end{split}$$



| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
|                        | 0000000000                          |                |                |         |
| Dimensionless Gross-Pi | taevskii equation                   |                |                |         |

・ロト ・回ト ・ヨト ・ヨト

14/33



2

### Dimensional reduction from 3D to 1D

- Derivation of Lagrangian from 3D to 1D
- Gross-Pitaevskii equation
- Dimensionless Gross-Pitaevskii equation

# 3 Static results

- Thomas-Fermi variational ansatz
- Numerical density profile
- Impurity height/depth and width
- 4 Time of flight

# 5 Outlook

| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
|                        | 0000000000                          |                |                |         |
| Dimensionless Gross-Pi | taevskii equation                   |                |                |         |

### 1D Dimensionless Gross-Pitaevskii equation

$$i\frac{\partial}{\partial\tau}\tilde{\psi}\left(\tilde{z}\right) = \left\{-\frac{1}{2}\frac{\partial^{2}}{\partial\tilde{z}^{2}} + \frac{\tilde{z}^{2}}{2} + \tilde{G}_{\mathsf{IB}}|\tilde{\psi}_{\mathsf{I}}\left(\tilde{z}\right)|^{2} + \tilde{G}_{\mathsf{B}}|\tilde{\psi}\left(\tilde{z}\right)|^{2}\right\}\tilde{\psi}\left(\tilde{z}\right)$$

#### Dimensionless parameters

• 
$$\tau = \omega_z t$$
,  $\tilde{z} = z/I_z$  and  $\tilde{\psi} = \psi/\sqrt{I_z}$ 

• 
$$\tilde{G}_{\rm B} = 2N\omega_{\rm r}a_{\rm B}/\omega_{\rm z}l_{\rm z}$$

• 
$$\tilde{G}_{\rm IB} = 2a_{\rm IB}\omega_{\rm r}f\left(\omega_{\rm Ir}/\omega_{\rm r}\right)/\omega_{\rm z}l_{\rm z}$$

- where  $I_z = \sqrt{\hbar/m_B\omega_z}$  is the oscillator length
- From here on, we will drop the tildes for simplicity.



(日) (四) (日) (日) (日)

| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
|                        | 0000000000                          |                |                |         |
| Dimensionless Gross-Pi | taevskii equation                   |                |                |         |

### 1D Dimensionless Gross-Pitaevskii equation

$$i\frac{\partial}{\partial\tau}\tilde{\psi}\left(\tilde{z}\right) = \left\{-\frac{1}{2}\frac{\partial^{2}}{\partial\tilde{z}^{2}} + \frac{\tilde{z}^{2}}{2} + \tilde{G}_{\mathsf{IB}}|\tilde{\psi}_{\mathsf{I}}\left(\tilde{z}\right)|^{2} + \tilde{G}_{\mathsf{B}}|\tilde{\psi}\left(\tilde{z}\right)|^{2}\right\}\tilde{\psi}\left(\tilde{z}\right)$$

### **Dimensionless parameters**

• 
$$au=\omega_{\sf z} t$$
,  $ilde{z}=z/\mathit{I}_{\sf z}$  and  $ilde{\psi}=\psi/\sqrt{\mathit{I}_{\sf z}}$ 

• 
$$\tilde{G}_{\rm B} = 2N\omega_{\rm r}a_{\rm B}/\omega_{\rm z}l_{\rm z}$$

• 
$$\tilde{G}_{IB} = 2a_{IB}\omega_{r}f(\omega_{Ir}/\omega_{r})/\omega_{z}l_{z}$$

- where  $l_z = \sqrt{\hbar/m_B\omega_z}$  is the oscillator length
- From here on, we will drop the tildes for simplicity.



Hybrid systems

Dimensional reduction from 3D to 1D  $\circ\circ\circ\circ\circ\circ\circ\circ\circ$ 

Static results

Time of flight

Outlook

Dimensionless Gross-Pitaevskii equation

### Impurity wave function in experimental realization



# N. Spethmann, et al., Phys. Rev. Lett. 109, 235301 (2012).

### Impurity wave function in dimensionless form

$$\psi_{\mathsf{I}}(z) = \frac{1}{\sqrt{\sqrt{\pi}\alpha}} e^{-\frac{z^2}{2\alpha^2}}$$

Here 
$$\alpha = I_{zl} / I_z$$



Hybrid systems

Dimensional reduction from 3D to 1D  $\circ\circ\circ\circ\circ\circ\circ\circ\circ$ 

Static results

Time of flight

Outlook

Dimensionless Gross-Pitaevskii equation

### Impurity wave function in experimental realization



N. Spethmann, et al., Phys. Rev. Lett. 109, 235301 (2012).

### Impurity wave function in dimensionless form

$$\psi_{\mathsf{I}}(z) = rac{1}{\sqrt{\sqrt{\pi}lpha}} e^{-rac{z^2}{2lpha^2}}$$

Here  $\alpha = I_{zl}/I_{z}$ 



| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
| Thomas-Fermi variation | nal ansatz                          |                |                |         |

・ロン ・雪 と ・ ヨ と ・



Dimensional reduction from 3D to 1D

- Derivation of Lagrangian from 3D to 1D
- Gross-Pitaevskii equation
- Dimensionless Gross-Pitaevskii equation

# Static results

## • Thomas-Fermi variational ansatz

- Numerical density profile
- Impurity height/depth and width

# 4 Time of flight

# 5 Outlook

| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
|                        |                                     | 0000000000     |                |         |
| Thomas-Fermi variation | nal ansatz                          |                |                |         |

• 
$$\psi(z) = \sqrt{\frac{\mu}{G_{\rm B}} \left(1 - \frac{z^2}{2\mu} - \frac{Ge^{-\frac{z^2}{\alpha^2}}}{\mu\sqrt{\pi\alpha}}\right)} \Theta\left(1 - \frac{z^2}{2\mu} - \frac{Ge^{-\frac{z^2}{\alpha^2}}}{\mu\sqrt{\pi\alpha}}\right)$$
  
• Here  $\mu$  and  $G$  are variational parameters

# Extremizing energy with respect to $\mu$ and G yields: • $\mu = \frac{1}{2} \left(\frac{3}{2}\right)^{2/3} (G_{\rm B} + G)^{2/3}$ $G = G_{\rm IB}$ $\Rightarrow$ Thomas-Fermi solution

| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
|                        |                                     | 0000000000     |                |         |
| Thomas-Fermi variation | nal ansatz                          |                |                |         |

• 
$$\psi(z) = \sqrt{\frac{\mu}{G_{\rm B}} \left(1 - \frac{z^2}{2\mu} - \frac{Ge^{-\frac{z^2}{\alpha^2}}}{\mu\sqrt{\pi\alpha}}\right)} \Theta\left(1 - \frac{z^2}{2\mu} - \frac{Ge^{-\frac{z^2}{\alpha^2}}}{\mu\sqrt{\pi\alpha}}\right)$$
  
• Here  $\mu$  and  $G$  are variational parameters

# Extremizing energy with respect to $\mu$ and G yields: • $\mu = \frac{1}{2} \left(\frac{3}{2}\right)^{2/3} (G_{\rm B} + G)^{2/3}$ $G = G_{\rm IB}$ $\Rightarrow$ Thomas-Fermi solution



| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|------------------------|-------------------------------------|----------------|----------------|---------|
| Thomas-Fermi variation | al ansatz                           |                |                |         |

### Numerical Method

• Our numerical calculation based on the split operator method

• 
$$H = T + V$$
, here  $T = K.E$  and  $V = P.E + I.E$ 

• 
$$\psi(z, \tau + \Delta \tau) = e^{-\frac{T\Delta \tau}{2}} e^{-V\Delta \tau} e^{-\frac{T\Delta \tau}{2}} \psi(z, \tau) + \mathcal{O}(\Delta \tau^3)$$

• 
$$\psi(z,\tau) = e^{-\tau H} \psi(z,0) = \sum_j e^{-\tau E_j} c_j \phi_j$$

J. Javanainen, et al., J. Phys. A: Math. Gen. 39, L179 (2006).
R. Barnett, et al., New Journal of Physics 12, 043004 (2010).
D. Vudragovic, et al., Comput. Phys. Commun. 183, 2021 (2012).

19/33

| Hybrid systems         | Dimensional reduction from 3D to 1D | Static results<br>0000000000 | Time of flight | Outlook |
|------------------------|-------------------------------------|------------------------------|----------------|---------|
| Thomas-Fermi variation | nal ansatz                          |                              |                |         |

### Imaginary time evolution

Movie



| Hybrid systems          | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|-------------------------|-------------------------------------|----------------|----------------|---------|
|                         |                                     | 0000000000     |                |         |
| Numerical density profi | le                                  |                |                |         |

<ロト < 四ト < 回ト < 回ト



Dimensional reduction from 3D to 1D

- Derivation of Lagrangian from 3D to 1D
- Gross-Pitaevskii equation
- Dimensionless Gross-Pitaevskii equation

# Static results

- Thomas-Fermi variational ansatz
- Numerical density profile
- Impurity height/depth and width

# 4 Time of flight

# 5 Outlook

| Hybrid systems            | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |  |
|---------------------------|-------------------------------------|----------------|----------------|---------|--|
| Numerical density profile |                                     |                |                |         |  |

### Density profile of BEC



Here we plotted numerically the density profile of the system for different values of the  $G_{\text{IB}}$ .



э

| Hybrid systems        | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|-----------------------|-------------------------------------|----------------|----------------|---------|
| Impurity height/depth | and width                           |                |                |         |

・ロン ・雪 と ・ ヨ と ・



2 Dimensional reduction from 3D to 1D

- Derivation of Lagrangian from 3D to 1D
- Gross-Pitaevskii equation
- Dimensionless Gross-Pitaevskii equation

# Static results

- Thomas-Fermi variational ansatz
- Numerical density profile
- Impurity height/depth and width

# 4 Time of flight

# 5 Outlook

| Hybrid systems                  | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |  |
|---------------------------------|-------------------------------------|----------------|----------------|---------|--|
|                                 |                                     | 000000000000   |                |         |  |
| Impurity height/depth and width |                                     |                |                |         |  |

### Impurity height/depth (IHD)

• IHD = 
$$\begin{cases} |\Psi(0)|_{G_{\mathsf{IB}}}^2 - |\Psi(0)|_{G_{\mathsf{IB}}=0}^2 & G_{\mathsf{IB}} \le 0\\ \mathsf{Max}\left(|\Psi(z)|_{G_{\mathsf{IB}}}^2\right) - |\Psi(0)|_{G_{\mathsf{IB}}}^2 & G_{\mathsf{IB}} > 0 \end{cases}$$

### Impurity full width half maximum width (IW) defined as

• 
$$|\Psi(IW)|^2_{G_{IB}} = \begin{cases} \left(|\Psi(0)|^2_{G_{IB}} + |\Psi(0)|^2_{G_{IB}=0}\right)/2 & G_{IB} \le 0 \\ \left(Max\left(|\Psi(z)|^2_{G_{IB}}\right) + |\Psi(0)|^2_{G_{IB}}\right)/2 & G_{IB} > 0 \end{cases}$$

| Hybrid systems                  | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |  |
|---------------------------------|-------------------------------------|----------------|----------------|---------|--|
|                                 |                                     | 000000000000   |                |         |  |
| Impurity height/depth and width |                                     |                |                |         |  |

### Impurity height/depth (IHD)

• IHD = 
$$\begin{cases} |\Psi(0)|_{G_{\mathsf{IB}}}^2 - |\Psi(0)|_{G_{\mathsf{IB}}=0}^2 & G_{\mathsf{IB}} \le 0\\ \mathsf{Max}\left(|\Psi(z)|_{G_{\mathsf{IB}}}^2\right) - |\Psi(0)|_{G_{\mathsf{IB}}}^2 & G_{\mathsf{IB}} > 0 \end{cases}$$

# Impurity full width half maximum width (IW) defined as

• 
$$|\Psi(IW)|^{2}_{G_{IB}} = \begin{cases} \left(|\Psi(0)|^{2}_{G_{IB}} + |\Psi(0)|^{2}_{G_{IB}=0}\right)/2 & G_{IB} \leq 0\\ \left(Max\left(|\Psi(z)|^{2}_{G_{IB}}\right) + |\Psi(0)|^{2}_{G_{IB}}\right)/2 & G_{IB} > 0 \end{cases}$$



| Hybrid systems | Dimensional reduction from 3D to 1D | Static results |
|----------------|-------------------------------------|----------------|
|                |                                     | 000000000000   |

Time of flight

Outlook

Impurity height/depth and width

# Impurity height/depth (IHD)



Height/depth of impurity bump/dip versus impurity-BEC coupling constant  $G_{IB}$  for the BEC coupling constant  $G_{B} = 4718.15$ .



| Hv | bri | d : | sv | st | em | าร |
|----|-----|-----|----|----|----|----|
|    |     |     |    |    |    |    |

Dimensional reduction from 3D to 1D 000000000

Static results

Time of flight

Outlook

Impurity height/depth and width

### Impurity full width half maximum width (IW)



Width of impurity bump/dip versus impurity-BEC coupling constant  $G_{\text{IB}}$  for the BEC coupling constant  $G_{\text{B}} = 4718.15$ .



| H | lv | br | id | S٧ | st | m |  |
|---|----|----|----|----|----|---|--|
|   |    |    |    |    |    |   |  |

Dimensional reduction from 3D to 1D  $_{\rm OOOOOOOOO}$ 

Static results

Time of flight

Outlook

Impurity height/depth and width

### Critical impurity-BEC coupling constant

For a specific value of  $G_{\rm IB}$  when no more <sup>87</sup>Rb atoms left at the center of the trap, the Impurity dip reaches its maximum value, we called this value critical impurity-BEC coupling constant  $G_{\rm IBc}$ .

$$G_{\rm IBc} = \sqrt{\pi} \alpha / 2 (3/2)^{2/3} (G_{\rm B} + G_{\rm IBc})^{2/3}$$

$$G_{\rm IBc} \stackrel{\rm Variational}{=} 275 \stackrel{\rm Numerical}{\simeq} 286$$

 $\mathsf{IHD}_{\mathsf{c}} = G_{\mathsf{IBc}} / \sqrt{\pi} \alpha G_{\mathsf{B}} \stackrel{\text{Variational}}{=} 0.0401 \stackrel{\text{Numerical}}{\simeq} 0.0393$ 

$$IW_{c} \stackrel{\text{Variational}}{=} 1.3444 \stackrel{\text{Numerical}}{\simeq} 1.400$$

| Hybrid systems | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------|-------------------------------------|----------------|----------------|---------|
|                |                                     |                |                |         |
|                |                                     |                |                |         |

### Real time evolution

Movie



Hybrid systems

Dimensional reduction from 3D to 1D 000000000

Static results

Time of flight

Outlook

# Impurity height/depth (IHD)



We plotted the IHD vs time for different values of impurity-BEC coupling constant  $G_{\text{IB}}$ .



Dimensional reduction from 3D to 1D 000000000

Static results

Time of flight

Outlook

# Impurity height/depth (IHD)



We plotted the IHD vs time for different values of impurity-BEC coupling constant  $G_{\text{IB}}$ .



| Hybrid systems | Dimensional reduction from 3D to 1D | Static results<br>00000000000 | Time of flight | Outloo |
|----------------|-------------------------------------|-------------------------------|----------------|--------|
|                |                                     |                               |                |        |
| We will        | work out more realistic mo          | dels by explorir              | ng in more de  | tail   |
| the pro        | perties of a 2D and 3D syst         | em.                           |                |        |
|                |                                     |                               |                |        |
|                |                                     |                               |                |        |

Emergence of Phonons by moving Impurity

Move vortex with using Impurity



| Hybrid systems | Dimensional reduction from 3D to 1D | Static results<br>00000000000 | Time of flight | Outlo |
|----------------|-------------------------------------|-------------------------------|----------------|-------|
|                |                                     |                               |                |       |

We will work out more realistic models by exploring in more detail the properties of a 2D and 3D system.

Study the Impurity and vortex interaction

Emergence of Phonons by moving Impurity

Move vortex with using Impurity



ok

| Hybrid systems | Dimensional reduction from 3D to 1D<br>0000000000 | Static results<br>0000000000 | Time of flight | Outlo |
|----------------|---------------------------------------------------|------------------------------|----------------|-------|
|                |                                                   |                              |                |       |

We will work out more realistic models by exploring in more detail the properties of a 2D and 3D system.

Study the Impurity and vortex interaction

Emergence of Phonons by moving Impurity

Move vortex with using Impurity



ok

| Hybrid systems | Dimensional reduction from 3D to 1D<br>000000000 | Static results<br>00000000000 | Time of flight | Outlook |
|----------------|--------------------------------------------------|-------------------------------|----------------|---------|
|                |                                                  |                               |                |         |
|                |                                                  |                               |                |         |

We will work out more realistic models by exploring in more detail the properties of a 2D and 3D system.

Study the Impurity and vortex interaction

Emergence of Phonons by moving Impurity

Move vortex with using Impurity



| Hv | brid | systems |  |
|----|------|---------|--|
|    |      |         |  |

Dimensional reduction from 3D to 1D  $_{\rm OOOOOOOOO}$ 

Static results

Time of flight

イロト イポト イヨト イヨト

Outlook

### Impurity and the three-body recombination

$$i\hbar\frac{\partial}{\partial t}\psi(z,t) = \left\{-\frac{\hbar^2}{2m_B}\frac{\partial^2}{\partial z^2} + \frac{m_B\omega_z^2 z^2}{2}\right\}$$

 $+G_{\rm IB} \| \psi_{\rm I}(z,t) \|^{2} + G_{\rm B} |\psi(z,t)|^{2} - i\hbar \frac{K_{3}}{2} |\psi(z,t)|^{4} \Big\} \psi(z,t)$ 

Bloch Group, Phys. Rev. Lett. **102**, 030408 (2009). Widera Group, Phys. Rev. Lett. **109**, 235301 (2012).

### mpurity and far field vortex-vortex interaction

R. Navarro, et al., Phys. Rev. Lett. **110**, 225301 (2013).

Solve two coupled GPEs for 100 <sup>137</sup>Cs atoms as an Impurity and 10<sup>6 87</sup>Rb atoms as a BEC



32 / 33

| Hvl | orid | SVS | tem | าร |
|-----|------|-----|-----|----|
|     |      |     |     |    |

Dimensional reduction from 3D to 1D  $_{\rm OOOOOOOOO}$ 

Static results

Time of flight

A D > A B > A B > A B >

Outlook

### Impurity and the three-body recombination

$$i\hbar \frac{\partial}{\partial t}\psi(z,t) = \left\{-\frac{\hbar^2}{2m_B}\frac{\partial^2}{\partial z^2} + \frac{m_B\omega_z^2 z^2}{2}\right\}$$

 $+G_{\rm IB} \| \psi_{\rm I}(z,t) \|^{2} + G_{\rm B} |\psi(z,t)|^{2} - i\hbar \frac{K_{3}}{2} |\psi(z,t)|^{4} \Big\} \psi(z,t)$ 

Bloch Group, Phys. Rev. Lett. **102**, 030408 (2009). Widera Group, Phys. Rev. Lett. **109**, 235301 (2012).

### Impurity and far field vortex-vortex interaction

R. Navarro, et al., Phys. Rev. Lett. 110, 225301 (2013).

Solve two coupled GPEs for 100 <sup>137</sup>Cs atoms as an Impurity and 10<sup>6 87</sup>Rb atoms as a BEC



| Hv | brid | systems |  |
|----|------|---------|--|
|    |      |         |  |

Dimensional reduction from 3D to 1D 000000000

Static results

Time of flight

Outlook

### Impurity and the three-body recombination

$$i\hbar \frac{\partial}{\partial t}\psi(z,t) = \left\{-\frac{\hbar^2}{2m_B}\frac{\partial^2}{\partial z^2} + \frac{m_B\omega_z^2 z^2}{2}\right\}$$

 $+G_{\rm IB} \| \psi_{\rm I}(z,t) \|^{2} + G_{\rm B} |\psi(z,t)|^{2} - i \hbar \frac{K_{3}}{2} |\psi(z,t)|^{4} \Big\} \psi(z,t)$ 

Bloch Group, Phys. Rev. Lett. **102**, 030408 (2009). Widera Group, Phys. Rev. Lett. **109**, 235301 (2012).

### Impurity and far field vortex-vortex interaction

R. Navarro, et al., Phys. Rev. Lett. 110, 225301 (2013).

Solve two coupled GPEs for 100  $^{137}\mathrm{Cs}$  atoms as an Impurity and 10^6  $^{87}\mathrm{Rb}$  atoms as a BEC



| Hybrid systems | Dimensional reduction from 3D to 1D | Static results | Time of flight | Outlook |
|----------------|-------------------------------------|----------------|----------------|---------|
|                |                                     |                |                |         |
|                |                                     |                |                |         |

# Thanks

