Scattering theory and equation of state of a spherical 2D Bose gas

Andrea Tononi

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Workshop on Prospects of Quantum Bubbles Physics

07/04/2022

based on [A. Tononi, PRA 105, 023324 (2022)]

Outline

- Introduction and motivation
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- ▷ Conclusions

Low-dimensional quantum gases

Low-dimensional quantum gases

(1D)

Quantum gases have been studied **consistently** only in *"flat"* low-dimensional configurations

What about *curved* geometries?

Shell-shaped quantum gases (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL **86**, 1195 (2001)]: confine the atoms with $B_0(\vec{r})$, and $B_{rf}(\vec{r}, t)$, yielding

$$U(\vec{r}) = M_F \sqrt{\left[\sum_{i} \frac{m}{2} \omega_i^2 x_i^2 - \hbar \Delta\right]^2 + (\hbar \Omega)^2}$$

- ω_i : frequencies of the bare harmonic trap
- $\Delta:$ detuning from the resonant frequency
- Ω : Rabi frequency between coupled levels

Shell-shaped quantum gases (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL **86**, 1195 (2001)]: confine the atoms with $B_0(\vec{r})$, and $B_{rf}(\vec{r}, t)$, yielding

$$U(\vec{r}) = M_F \sqrt{\left[\sum_{i} \frac{m}{2} \omega_i^2 x_i^2 - \hbar \Delta\right]^2 + (\hbar \Omega)^2}$$

 ω_i : frequencies of the bare harmonic trap

- $\Delta:$ detuning from the resonant frequency
- Ω : Rabi frequency between coupled levels

Minimum of $U(\vec{r})$ for $\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 = \frac{2\hbar\Delta}{m}.$

Shell-shaped quantum gases

On Earth...

Shell-shaped quantum gases

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

Shell-shaped quantum gases, in microgravity

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

... in microgravity:

[Carollo et al., arXiv:2108.05880]

Outline

- Introduction and motivation
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- ▷ Conclusions

Implementing the Bogoliubov theory, we calculated T_{BEC} , n_0/n , Ω . [AT, Salasnich, PRL **123**, 160403 (2019)]

> *: [AT, PRA **105**, 023324 (2022)], [AT, Pelster, Salasnich, PRR **4**, 013122 (2022)]

Implementing the Bogoliubov theory, we calculated T_{BEC} , n_0/n , Ω . [AT, Salasnich, PRL **123**, 160403 (2019)]

Recently, through the analysis of scattering theory*...

equation of state:

$$n = \frac{m\mu}{4\pi\hbar^2} \ln\left\{\frac{4\hbar^2[1-\alpha(\mu)]}{m\mu \,a_s^2 \,e^{2\gamma+1+\alpha(\mu)}}\right\},\,$$

with
$$\alpha(\mu) = 1 - \frac{\mu}{\mu + E_1^B + \epsilon_1}$$
,
 $E_l^B = \sqrt{\epsilon_l(\epsilon_l + 2\mu)}$,
 $\epsilon_l = \hbar^2 l(l+1)/(2mR^2)$

*: [AT, PRA **105**, 023324 (2022)], [AT, Pelster, Salasnich, PRR **4**, 013122 (2022)]

Implementing the Bogoliubov theory, we calculated T_{BEC} , n_0/n , Ω . [AT, Salasnich, PRL **123**, 160403 (2019)]

Recently, through the analysis of scattering theory*...

 $(n_{\infty} \text{ means } R = \infty \leftrightarrow \alpha = 0)$ *: [AT, PRA 105, 023324 (2022)], [AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Comments:

▶ "Less atoms on sphere than on plane": at fixed μ , a_s : $n \rightarrow n_\infty$ when $R \rightarrow \infty$, but $N < N_\infty$ when $R \rightarrow \infty$,

Comments:

- ▶ "Less atoms on sphere than on plane": at fixed μ , a_s : $n \to n_\infty$ when $R \to \infty$, but $N < N_\infty$ when $R \to \infty$,
- "the container changes the thermodynamics"
 - \rightarrow the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections

Comments:

- ▶ "Less atoms on sphere than on plane": at fixed μ , a_s : $n \to n_\infty$ when $R \to \infty$, but $N < N_\infty$ when $R \to \infty$,
- "the container changes the thermodynamics"
 - $\rightarrow\,$ the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections
- extandable (in principle) to other geometries

Outline

- Introduction and motivation
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- Conclusions

Let us see how the equation of state is derived

Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

$$\mathcal{Z} = \int \mathcal{D}[ar{\psi},\psi] \; e^{-rac{S[ar{\psi},\psi]}{\hbar}}, \qquad \Omega = -rac{1}{eta} \ln(\mathcal{Z})$$

where

$$S[ar{\psi},\psi] = \int_0^{eta\hbar} d au \, \int_0^{2\pi} darphi \, \int_0^{\pi} d heta \, R^2 \sin heta \, \mathcal{L}(ar{\psi},\psi)$$

is the Euclidean action, and

$$\mathcal{L} = ar{\psi}(heta,arphi, au) \Big(\hbar \partial_ au + rac{\hat{\mathcal{L}}^2}{2mR^2} - \mu \Big) \psi(heta,arphi, au) + rac{g_0}{2} |\psi(heta,arphi, au)|^4$$

is the Euclidean Lagrangian.

Bogoliubov theory of a spherical gas

Bogoliubov theory: $\psi(\theta, \varphi, \tau) = \psi_0 + \eta(\theta, \varphi, \tau)$

$$\Omega = -(4\pi R^2) \frac{\mu^2}{2g_0} + \frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_l=-l}^{l} (E_l^{\mathsf{B}} - \epsilon_l - \mu),$$

with $E_l^{\mathsf{B}} = \sqrt{\epsilon_l(\epsilon_l + 2\mu)}$, and $\epsilon_l = \hbar^2 l(l+1)/(2mR^2)$.

[AT, Salasnich, PRL 123, 160403 (2019)]

 ψ_0

 $\eta(\theta, \varphi, \tau)$

Bogoliubov theory of a spherical gas

$$\Omega = -(4\pi R^2) \frac{\mu^2}{2g_0} + \frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_l=-l}^{l} (E_l^{\mathsf{B}} - \epsilon_l - \mu)$$

Problem: the zero-point energy diverges logarithmically at large /:

$$\frac{1}{2}\int_{1}^{l_{c}}\mathrm{d}l\left(2l+1\right)\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right)\sim\ln(l_{c})$$

Solution: g_0 scales with l_c !

To see this, we need to discuss scattering theory

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B **51**, 115301 (2018)]

$$\hat{H}_{0}\Psi^{\mu}_{\nu}(\theta,\varphi) = \mathcal{E}_{\nu}\Psi^{\mu}_{\nu}(\theta,\varphi), \quad \text{when} \quad \theta > r_{0}/R$$

with
$$\hat{H}_0 = \frac{\hat{L}^2}{mR^2}$$
. For *s*-wave scattering, we can write
 $\Psi^0_{\nu}(\theta, \varphi) \propto P^0_{\nu}(\cos \theta) + \frac{f_0(\mathcal{E}_{\nu})}{4i} \bigg[P^0_{\nu}(\cos \theta) + \frac{2i}{\pi} Q^0_{\nu}(\cos \theta) \bigg],$

and imposing $\Psi^0_{\nu}(a_s/R,\varphi) = 0$:

$$f_0(\mathcal{E}_{\nu}) = -\frac{4}{\cot \delta_0(\mathcal{E}_{\nu}) - i}, \qquad \cot \delta_0(\mathcal{E}_{\nu}) = \frac{2}{\pi} \ln \left(\frac{\nu \, a_s \, e^{\gamma_{\mathsf{E}}}}{2R} \right)$$

We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)

$$g_0 pprox f_0(\mathcal{E}_{l_c}) pprox - rac{2\pi\hbar^2}{m} rac{1}{\ln\left[l_c a_s e^{\gamma_{\rm E}}/(2R)
ight]}$$

Regularized equation of state

Putting
$$g_0 = -\frac{2\pi\hbar^2}{m} \frac{1}{\ln \left[l_c a_s e^{\gamma E}/(2R) \right]}$$
 into

$$\Omega = -\left(4\pi R^2\right) \frac{\mu^2}{2g_0} + \frac{1}{2} \int_1^{l_c} dl (2l+1) (E_l^{B} - \epsilon_l - \mu),$$

the $ln(l_c)$ divergence disappears, and we obtain the equation of state:

$$n = -\frac{1}{4\pi R^2} \frac{\partial \Omega}{\partial \mu} = \frac{m\mu}{4\pi \hbar^2} \ln \left\{ \frac{4\hbar^2 [1 - \alpha(\mu)]}{m\mu \, a_s^2 \, e^{2\gamma + 1 + \alpha(\mu)}} \right\}$$

Outline

- Introduction and motivation
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- Conclusions

Application: hydrodynamic modes

Knowing the equation of state **and** the superfluid density, we extend the Landau two-fluid model to the spherical case.

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Application: hydrodynamic modes

Knowing the equation of state **and** the superfluid density, we extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

$$\omega_{1,2}^{2} = \left[\frac{l(l+1)}{R^{2}}\right] \left[\frac{v_{A}^{2} + v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2} + v_{L}^{2}}{2}\right)^{2} - v_{L}^{2}v_{T}^{2}}\right]$$

 ω_1, ω_2 are the main quantitative probe of superfluid BKT transition

$$v_{\{A,T\}} = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\{\tilde{s},T\}}}, \quad v_L = \sqrt{\frac{\rho_s T \tilde{s}^2}{\rho_n \tilde{c}_V}}$$

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Superfluid BKT transition in a spherical superfluid

$$\frac{dK^{-1}(\theta)}{d\ell(\theta)} = -4\pi^3 y^2(\theta)$$
$$\frac{dy(\theta)}{d\ell(\theta)} = [2 - \pi K(\theta)] y(\theta)$$

RG scale: $\ell(\theta) = \ln[2R\sin(\theta/2)/\xi]$

Renormalization group equations describing how the superfluid density ($\propto K$) is renormalized by the thermally excited vortices with chemical potential $\sim -\ln(y)$

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Superfluid BKT transition in a spherical superfluid

$$\frac{dK^{-1}(\theta)}{d\ell(\theta)} = -4\pi^3 y^2(\theta)$$
$$\frac{dy(\theta)}{d\ell(\theta)} = [2 - \pi K(\theta)] y(\theta)$$

RG scale: $\ell(\theta) = \ln[2R\sin(\theta/2)/\xi]$

Renormalization group equations describing how the superfluid density ($\propto K$) is renormalized by the thermally excited vortices with chemical potential $\sim -\ln(y)$

Finite system size \Rightarrow **smooth** vanishing of n_s

35

Outline

- Introduction and motivation
- Equation of state of a 2D spherical Bose gas
- Derivation of the equation through scattering theory
- Application: hydrodynamic modes
- ▷ Conclusions

Conclusions

 Curvature in quantum gases (and in cond. mat.): a new research direction.
 The scientific community has just started exploring shell-shaped BECs

Conclusions

 Curvature in quantum gases (and in cond. mat.): a new research direction.

The scientific community has just started exploring shell-shaped BECs

- in spherical condensates: curvature \approx finite-size for BEC, but consequences on superfluidity
- interesting perspectives with ellipsoidal shells

Conclusions

 Curvature in quantum gases (and in cond. mat.): a new research direction.

The scientific community has just started exploring shell-shaped BECs

- in spherical condensates: curvature \approx finite-size for BEC, but consequences on superfluidity
- interesting perspectives with ellipsoidal shells

Thank you for your attention!

References:

- AT, Salasnich, PRL 123, 160403 (2019)
- AT, Cinti, Salasnich, PRL 125, 010402 (2020)
- AT, Pelster, Salasnich, PRR 4, 013122 (2022)
- AT, PRA 105, 023324 (2022)