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Quantum gases have been studied consistently only in “flat”
low-dimensional configurations

What about curved geometries?



Shell—shaped quantum gases (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with By(r), and B¢ (1, t), yielding

U(F) = MF\/[Zi g wi2x? — hA} 2 + (hQ)?

wj: frequencies of the bare harmonic trap
A: detuning from the resonant frequency

Q: Rabi frequency between coupled levels
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Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with By(r), and B¢ (1, t), yielding

U(F) = MF\/[Zi g wi2x? — hA] 2 + (hQ)?

wj: frequencies of the bare harmonic trap
A: detuning from the resonant frequency

Q: Rabi frequency between coupled levels

Minimum of U(r) for

Wi2x? 4+ w 2y + w,? 2:—2%.
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Shell-shaped quantum gases, in microgravity

..in microgravity:

On Earth...

«—————— initial temperature

[Colombe et al., EPL 67, 593 (2004)]
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Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated Tggc, no/n, .
[AT, Salasnich, PRL 123, 160403 (2019)]

*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]



Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated Tggc, no/n, .
[AT, Salasnich, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...

equation of state:

o |n{ 42[1 — a(y)] }

 Amh? my a2 e2v+1+a(p)

EP =/ei(er+2p),

e = RI(1 +1)/(2mR?)

*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]



Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated Tggc, no/n, .
[AT, Salasnich, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...
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(oo means R = oo <> a = 0)

*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]



Equation of state of a spherical Bose gas
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finite-size geometry-dependent corrections
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P> “the container changes the thermodynamics”

— the geometry influences the thermodynamics by inducing
finite-size geometry-dependent corrections

» extandable (in principle) to other geometries
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Let us see how the equation of state is derived
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Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

_ Syl

Z:/D[&,w]e P Q:—;m(Z)

where

B Bh 27 g _
5[¢,¢]:/0 dT/O d(p/o df R?sin 0 L (1, )

is the Euclidean action, and

- [2 80 4
E - 1/}(0, ®, T) <ha‘r + m - M>¢(9a 2 T) + ?W}(a P, T)‘

is the Euclidean Lagrangian.
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Bogoliubov theory of a spherical gas

o

Bogoliubov theory:
(0, 0,7) = o +n(0,¢,7)
(0, ¢,7)

Performing the Gaussian integral on ~ 12 terms, we get

Q= (4R2%+ ZZ B_ e — ),

=1 m,——l

with EB =\/e/(e/ +2p), and ¢ = R2I(I + 1) /(2mR?).

[AT, Salasnich, PRL 123, 160403 (2019)]
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Bogoliubov theory of a spherical gas

00 /

Q=—(4n R2—+;ZZ (EF —e1— 1)

2
&0 I=1 m=—1

Problem: the zero-point energy diverges logarithmically at large /:

1 ("
2/ dl (21 +1) (EP — ) — 1) ~ In(lc)
1

Solution: gy scales with /!

To see this, we need to discuss scattering theory
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Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting
scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

HoWE(0, ) = E,VH(0,¢),  when 6> rg/R
with HO = —=5. For s-wave scattering, we can write
fo 2i
W0(6, o) o PY(cosb) + Ef ) [PO( 0) + IQS(COSH)},
i s

and imposing W(as/R, ) = 0:

4 2 vag et
fc V) T T e e N v) — — 1
o(&) cotdp(&Ey) — i cotdo(&) . ( 2R )

We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)
2mh? 1

~hR(E)~—
go ~ fl&r) m In [l ase”/(2R)]
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Regularized equation of state

2rh? 1

M in |l ase7E /(2R)| into

Putting go = —

1

2 I
— (4m R2) + 2/ d/(2l—|—1)(E,B—e,—u),
280 1

the In(/.) divergence disappears, and we obtain the equation of
state:

L1 o mp In{ 42[1 — a(p)] }

C4nR2 Op  Arh? mpy a2 e2v+1ta(n)
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Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we
extend the Landau two-fluid model to the spherical case.

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we
extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

I+ D)7 [v2+ v V2 4 v2)\ 2
wi2:[(R2):||:A2Li A2L _Vsz%

w1, wy are the main quantitative
probe of superfluid BKT
transition

wia/ (17 + 1) wp)

00 02 04 06 08 10 12 14
. T/Tin

oP ps T§2 .
V{A T} = (a*p){”}’ =1z  IAT, Pelster, Salasnich, PRR 4, 013122 (2022)]
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Superfluid BKT transition in a spherical superfluid

dK-1(0) Renormalization group

- 7/ —47r3y2(9) equations describing how
dé(9) the superfluid density (x K)
dy(0) is renormalized by the
L — 2 —7K(0)] y(0 4
de(0) [2 =K (®)] () thermally excited vortices

with chemical potential

RG scale: £(0) = In[2Rsin(0/2) /€] ~ —In(y)

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)] 18



Superfluid BKT transition in a

dK~1(0) _ 3.2
dy(0) _
KO [2—7K(0)]y(0)

RG scale: £(0) = In[2Rsin(0/2)/€]

spherical superfluid

Renormalization group
equations describing how
the superfluid density (o K)
is renormalized by the
thermally excited vortices
with chemical potential

~ —In(y)

Finite system size =
smooth vanishing of n,
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Conclusions

— Curvature in quantum gases (and in cond.
mat.): a new research direction.

The scientific community has just started
exploring shell-shaped BECs
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Thank you for your attention!
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