Scattering theory and equation of state of a spherical 2D Bose gas

Andrea Tononi

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Workshop on Prospects of
Quantum Bubbles Physics
07/04/2022

> based on
> [A. Tononi, PRA 105, 023324 (2022)]

Outline

\triangleright Introduction and motivation
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Low-dimensional quantum gases

(2D)
(1D)

Low-dimensional quantum gases

(2D)

Quantum gases have been studied consistently only in "flat" low-dimensional configurations What about curved geometries?

Shell-shaped quantum gases (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with $B_{0}(\vec{r})$, and $B_{r f}(\vec{r}, t)$, yielding

$$
U(\vec{r})=M_{F} \sqrt{\left[\sum_{i} \frac{m}{2} \omega_{i}^{2} x_{i}^{2}-\hbar \Delta\right]^{2}+(\hbar \Omega)^{2}}
$$

ω_{i} : frequencies of the bare harmonic trap
Δ : detuning from the resonant frequency
Ω : Rabi frequency between coupled levels

Shell-shaped quantum gases (rf-induced adiabatic potentials)

Theoretical proposal of [Zobay, Garraway, PRL 86, 1195 (2001)]:
confine the atoms with $B_{0}(\vec{r})$, and $B_{r f}(\vec{r}, t)$, yielding

$$
U(\vec{r})=M_{F} \sqrt{\left[\sum_{i} \frac{m}{2} \omega_{i}^{2} x_{i}^{2}-\hbar \Delta\right]^{2}+(\hbar \Omega)^{2}}
$$

ω_{i} : frequencies of the bare harmonic trap
Δ : detuning from the resonant frequency
Ω : Rabi frequency between coupled levels

Minimum of $U(\vec{r})$ for

$$
\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}=\frac{2 \hbar \Delta}{m} .
$$

Shell-shaped quantum gases

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

Shell-shaped quantum gases

On Earth...
[Colombe et al., EPL 67, 593 (2004)]

Shell-shaped quantum gases, in microgravity

On Earth...

[Colombe et al., EPL 67, 593 (2004)]

PHYSICAL REVIEW LETTERS

Highilights
Recent
Accepted
Collections
Authors

Quantum Bubbles in Microgravity
A. Tononi, F. Cinti, and L. Salasnich

Phys. Rev. Lett. 125, 010402 - Published 29 June 2020

...in microgravity:

[Carollo et al., arXiv:2108.05880]

Outline

\triangleright Introduction and motivation
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated $T_{\text {BEC }}, n_{0} / n, \Omega$. [AT, Salasnich, PRL 123, 160403 (2019)]

[^0]
Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated $T_{\mathrm{BEC}}, n_{0} / n, \Omega$. [AT, Salasnich, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...
equation of state:

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

$$
\text { with } \alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}} \text {, }
$$

$$
E_{l}^{\mathrm{B}}=\sqrt{\epsilon_{l}\left(\epsilon_{l}+2 \mu\right)},
$$

$$
\epsilon_{I}=\hbar^{2} I(I+1) /\left(2 m R^{2}\right)
$$

*: [AT, PRA 105, 023324 (2022)],
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Equation of state of a spherical Bose gas

Implementing the Bogoliubov theory, we calculated $T_{\mathrm{BEC}}, n_{0} / n, \Omega$. [AT, Salasnich, PRL 123, 160403 (2019)]

Recently, through the analysis of scattering theory*...
equation of state:

$$
\begin{aligned}
& n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}, \\
& \text { with } \alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}} \text {, } \\
& E_{l}^{B}=\sqrt{\epsilon_{l}\left(\epsilon_{l}+2 \mu\right)}, \\
& \epsilon_{I}=\hbar^{2} I(I+1) /\left(2 m R^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(n_{\infty} \text { means } R=\infty \leftrightarrow \alpha=0\right) \\
& \quad *:[A T, \text { PRA } 105,023324(2022)],
\end{aligned}
$$

[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Equation of state of a spherical Bose gas

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$.

Comments:

- "Less atoms on sphere than on plane": at fixed μ, a_{s} : $n \rightarrow n_{\infty}$ when $R \rightarrow \infty$, but $N<N_{\infty}$ when $R \rightarrow \infty$,

Equation of state of a spherical Bose gas

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$.

Comments:

- "Less atoms on sphere than on plane": at fixed μ, a_{s} : $n \rightarrow n_{\infty}$ when $R \rightarrow \infty$, but $N<N_{\infty}$ when $R \rightarrow \infty$,
- "the container changes the thermodynamics"
\rightarrow the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections

Equation of state of a spherical Bose gas

$$
n=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

with $\alpha(\mu)=1-\frac{\mu}{\mu+E_{1}^{B}+\epsilon_{1}}$.

Comments:

- "Less atoms on sphere than on plane": at fixed μ, a_{s} : $n \rightarrow n_{\infty}$ when $R \rightarrow \infty$, but $N<N_{\infty}$ when $R \rightarrow \infty$,
- "the container changes the thermodynamics"
\rightarrow the geometry influences the thermodynamics by inducing finite-size geometry-dependent corrections
- extandable (in principle) to other geometries

Outline

\triangleright Introduction and motivation
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Let us see how the equation of state is derived

Bogoliubov theory of a spherical gas

Uniform bosons on the surface of the sphere

$$
\mathcal{Z}=\int \mathcal{D}[\bar{\psi}, \psi] e^{-\frac{S[\bar{\psi}, \psi]}{\hbar}}, \quad \Omega=-\frac{1}{\beta} \ln (\mathcal{Z})
$$

where

$$
S[\bar{\psi}, \psi]=\int_{0}^{\beta \hbar} d \tau \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta R^{2} \sin \theta \mathcal{L}(\bar{\psi}, \psi)
$$

is the Euclidean action, and

$$
\mathcal{L}=\bar{\psi}(\theta, \varphi, \tau)\left(\hbar \partial_{\tau}+\frac{\hat{L}^{2}}{2 m R^{2}}-\mu\right) \psi(\theta, \varphi, \tau)+\frac{g_{0}}{2}|\psi(\theta, \varphi, \tau)|^{4}
$$

is the Euclidean Lagrangian.

Bogoliubov theory of a spherical gas

Bogoliubov theory:

$$
\psi(\theta, \varphi, \tau)=\psi_{0}+\eta(\theta, \varphi, \tau)
$$

$$
\eta(\theta, \varphi, \tau)
$$

Performing the Gaussian integral on $\sim \eta^{2}$ terms, we get

$$
\Omega=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_{l}=-l}^{l}\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right)
$$

with $E_{I}^{\mathrm{B}}=\sqrt{\epsilon_{I}\left(\epsilon_{I}+2 \mu\right)}$, and $\epsilon_{I}=\hbar^{2} I(I+1) /\left(2 m R^{2}\right)$.
[AT, Salasnich, PRL 123, 160403 (2019)]

Bogoliubov theory of a spherical gas

$$
\Omega=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \sum_{l=1}^{\infty} \sum_{m_{l}=-I}^{I}\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right)
$$

Problem: the zero-point energy diverges logarithmically at large I :

$$
\frac{1}{2} \int_{1}^{I_{c}} \mathrm{~d} I(2 I+1)\left(E_{l}^{B}-\epsilon_{l}-\mu\right) \sim \ln \left(I_{c}\right)
$$

Solution: g_{0} scales with I_{c} !
To see this, we need to discuss scattering theory

Scattering theory on the sphere

For a particle with reduced mass on the sphere, the interacting scattering problem reads [Zhang, Ho, J. Phys. B 51, 115301 (2018)]

$$
\hat{H}_{0} \Psi_{\nu}^{\mu}(\theta, \varphi)=\mathcal{E}_{\nu} \Psi_{\nu}^{\mu}(\theta, \varphi), \quad \text { when } \quad \theta>r_{0} / R
$$

with $\hat{H}_{0}=\frac{\hat{L}^{2}}{m R^{2}}$. For s-wave scattering, we can write

$$
\Psi_{\nu}^{0}(\theta, \varphi) \propto P_{\nu}^{0}(\cos \theta)+\frac{f_{0}\left(\mathcal{E}_{\nu}\right)}{4 i}\left[P_{\nu}^{0}(\cos \theta)+\frac{2 i}{\pi} Q_{\nu}^{0}(\cos \theta)\right],
$$

and imposing $\Psi_{\nu}^{0}\left(a_{s} / R, \varphi\right)=0$:

$$
f_{0}\left(\mathcal{E}_{\nu}\right)=-\frac{4}{\cot \delta_{0}\left(\mathcal{E}_{\nu}\right)-i}, \quad \cot \delta_{0}\left(\mathcal{E}_{\nu}\right)=\frac{2}{\pi} \ln \left(\frac{\nu a_{s} e^{\gamma_{\mathrm{E}}}}{2 R}\right)
$$

We identify (it is a shortcut, see [AT, PRA 105, 023324 (2022)] for all steps)

$$
g_{0} \approx f_{0}\left(\mathcal{E}_{I_{c}}\right) \approx-\frac{2 \pi \hbar^{2}}{m} \frac{1}{\ln \left[I_{c} a_{s} e^{\gamma_{\mathrm{E}}} /(2 R)\right]}
$$

Regularized equation of state

$$
\begin{aligned}
& \text { Putting } g_{0}=-\frac{2 \pi \hbar^{2}}{m} \frac{1}{\ln \left[I_{c} a_{s} e^{\gamma} /(2 R)\right]} \text { into } \\
& \qquad \Omega=-\left(4 \pi R^{2}\right) \frac{\mu^{2}}{2 g_{0}}+\frac{1}{2} \int_{1}^{I_{c}} \mathrm{~d} /(2 l+1)\left(E_{l}^{\mathrm{B}}-\epsilon_{l}-\mu\right),
\end{aligned}
$$

the $\ln \left(I_{c}\right)$ divergence disappears, and we obtain the equation of state:

$$
n=-\frac{1}{4 \pi R^{2}} \frac{\partial \Omega}{\partial \mu}=\frac{m \mu}{4 \pi \hbar^{2}} \ln \left\{\frac{4 \hbar^{2}[1-\alpha(\mu)]}{m \mu a_{s}^{2} e^{2 \gamma+1+\alpha(\mu)}}\right\}
$$

Outline

\triangleright Introduction and motivation
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we extend the Landau two-fluid model to the spherical case.
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

Application: hydrodynamic modes

Knowing the equation of state and the superfluid density, we extend the Landau two-fluid model to the spherical case.

Frequencies of the hydrodynamic modes:

$$
\omega_{1,2}^{2}=\left[\frac{I(I+1)}{R^{2}}\right]\left[\frac{v_{A}^{2}+v_{L}^{2}}{2} \pm \sqrt{\left(\frac{v_{A}^{2}+v_{L}^{2}}{2}\right)^{2}-v_{L}^{2} v_{T}^{2}}\right]
$$

ω_{1}, ω_{2} are the main quantitative probe of superfluid BKT transition

$$
v_{\{A, T\}}=\sqrt{\left(\frac{\partial P}{\partial \rho}\right)_{\{\tilde{s}, T\}}}, \quad v_{L}=\sqrt{\frac{\rho_{s} T \tilde{s}^{2}}{\rho_{n} \tilde{c}_{V}}}
$$

Superfluid BKT transition in a spherical superfluid

$$
\begin{aligned}
\frac{d K^{-1}(\theta)}{d \ell(\theta)} & =-4 \pi^{3} y^{2}(\theta) \\
\frac{d y(\theta)}{d \ell(\theta)} & =[2-\pi K(\theta)] y(\theta)
\end{aligned}
$$

RG scale: $\ell(\theta)=\ln [2 R \sin (\theta / 2) / \xi]$
Renormalization group equations describing how the superfluid density ($\propto K$) is renormalized by the thermally excited vortices with chemical potential

$$
\sim-\ln (y)
$$

Superfluid BKT transition in a spherical superfluid

$$
\begin{aligned}
\frac{d K^{-1}(\theta)}{d \ell(\theta)} & =-4 \pi^{3} y^{2}(\theta) \\
\frac{d y(\theta)}{d \ell(\theta)} & =[2-\pi K(\theta)] y(\theta)
\end{aligned}
$$

RG scale: $\ell(\theta)=\ln [2 R \sin (\theta / 2) / \xi]$
Finite system size \Rightarrow
smooth vanishing of n_{s}
Finite system size \Rightarrow
smooth vanishing of n_{s}

$T[\mathrm{nK}]$

Renormalization group equations describing how the superfluid density $(\propto K)$ is renormalized by the thermally excited vortices with chemical potential $\sim-\ln (y)$
[AT, Pelster, Salasnich, PRR 4, 013122 (2022)]
$\Delta T / T_{\text {in }} \propto \ln ^{-2}(R / \xi)$

Outline

\triangleright Introduction and motivation
\triangleright Equation of state of a 2D spherical Bose gas
\triangleright Derivation of the equation through scattering theory
\triangleright Application: hydrodynamic modes
\triangleright Conclusions

Conclusions

- Curvature in quantum gases (and in cond. mat.): a new research direction.
The scientific community has just started exploring shell-shaped BECs

Conclusions

- Curvature in quantum gases (and in cond. mat.): a new research direction.
The scientific community has just started exploring shell-shaped BECs

- in spherical condensates: curvature \approx finite-size for BEC, but consequences on superfluidity
- interesting perspectives with ellipsoidal shells

Conclusions

- Curvature in quantum gases (and in cond. mat.): a new research direction.
The scientific community has just started exploring shell-shaped BECs

- in spherical condensates: curvature \approx finite-size for BEC, but consequences on superfluidity
- interesting perspectives with ellipsoidal shells

Thank you for your attention!

References:

- AT, Salasnich, PRL 123, 160403 (2019)
- AT, Cinti, Salasnich, PRL 125, 010402 (2020)
- AT, Pelster, Salasnich, PRR 4, 013122 (2022)
- AT, PRA 105, 023324 (2022)

[^0]: *: [AT, PRA 105, 023324 (2022)],
 [AT, Pelster, Salasnich, PRR 4, 013122 (2022)]

