Bose-Einstein Condensation in Random Potentials

Robert Graham and Axel Pelster

- **1. Introduction: Ultracold Quantum Gases**
- **2. Experimental Realizations of Dirty Bosons**
- **3. Theoretical Description of Dirty Bosons**
- 4. Huang-Meng Theory (T=0)
- **5. Shift of Condensation Temperature**
- 6. Hartree-Fock Mean-Field Theory
- 7. Summary and Outlook

SFB/TR 12: Symmetries and Universality in Mesoscopic Systems

1.1 Experimental Realization

JILA (1995): $^{87}_{37}$ Rb, N=20000, $\omega_1 = \omega_2 = \omega_3/\sqrt{8} = 2\pi \times$ 120 Hz

1.2 Stuttgart Chrom Condensate 2005

$$V^{(\text{int})}(\mathbf{x} - \mathbf{x}') = \frac{4\pi\hbar^2 a}{M} \delta(\mathbf{x} - \mathbf{x}') - \frac{\mu_0}{4\pi} \left\{ \frac{3\left[\mathbf{m}\left(\mathbf{x} - \mathbf{x}'\right)\right]^2}{|\mathbf{x} - \mathbf{x}'|^5} - \frac{\mathbf{m}^2}{|\mathbf{x} - \mathbf{x}'|^3} \right\}$$
$$m = m e_z$$
$$m = m e_z$$

 $\omega_x^{(\mathrm{I})} = \omega_y^{(\mathrm{I})} \equiv \omega_{\perp} \,, \quad \omega_z^{(\mathrm{I})} \equiv \omega_{\parallel} \qquad \qquad \omega_y^{(\mathrm{II})} = \omega_z^{(\mathrm{II})} \equiv \omega_{\perp} \,, \quad \omega_x^{(\mathrm{II})} \equiv \omega_{\parallel}$

Goal: difference of critical temperatures $T_c^{(I)} - T_c^{(II)} \sim \frac{\mu_0 m^2}{4\pi}$

Glaum, Pelster, Kleinert, and Pfau, PRL 98, 080407 (2007)

Glaum and Pelster, PRA 76, 063604 (2007)

1.3 Bosons in Optical Lattices

1.4 Quantum Phase Diagram

Bose-Hubbard Hamiltonian:

$$\hat{H}_{\rm BH} = -t \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \left[\frac{U}{2} \hat{n}_i \left(\hat{n}_i - 1 \right) - \mu \hat{n}_i \right] ; \quad \hat{n}_i = \hat{a}_i^{\dagger} \hat{a}_i$$

Analytical Improvement of Mean-Field Result:

Santos and Pelster, arXiv:0806.2812

2.1 Magneto-Optical Trap

Laser Speckles:

Lye et al., PRL 95, 070401 (2005)

global condensate vanishes

2.2 Wire Trap

Distance: $d = 10 \ \mu \text{m}$

Wire Width: $100 \ \mu m$

Magnetic Field: 10 G, 20 G, 30 G

Deviation: $\Delta B/B \approx 10^{-4}$

Krüger *et al.*, PRA **76**, 063621 (2007) Fortàgh and Zimmermann, RMP **79**, 235 (2007)

3.1 Model System

Action of a Bose Gas:

$$\mathcal{A} = \int_0^{\hbar\beta} d\tau \int d^3x \, \left\{ \psi^* \left[\hbar \frac{\partial}{\partial \tau} - \frac{\hbar^2}{2M} \mathbf{\Delta} + \mathbf{U}(\mathbf{x}) + \mathbf{V}(\mathbf{x}) - \mathbf{\mu} \right] \psi + \frac{\mathbf{g}}{2} \, \psi^{*2} \psi^2 \right\}$$

Properties:

- harmonic trap potential: $\mathbf{U}(\mathbf{x}) = \frac{M}{2}\omega^2 \mathbf{x}^2$
- disorder potential: $V(\mathbf{x})$; bounded from below, i.e. $V(\mathbf{x}) \ge V_0$

$$\overline{V(\mathbf{x}_1)} = 0, \quad \overline{V(\mathbf{x}_1)V(\mathbf{x}_2)} = R(\mathbf{x}_1 - \mathbf{x}_2), \quad \dots$$

- chemical potential: μ
- repulsive interaction:

$$\mathbf{g} = \frac{4\pi\hbar^2 a}{M}$$

• periodic Bose fields: $\psi(\mathbf{x}, \tau + \hbar\beta) = \psi(\mathbf{x}, \tau)$

3.2 Grand-Canonical Potential

Aim:

$$\Omega = -\frac{1}{\beta} \overline{\ln \mathcal{Z}}$$
$$\mathcal{Z} = \oint D\psi D\psi^* e^{-\mathcal{A}[\psi^*,\psi]/\hbar}$$

Problem:

$$\overline{\ln \mathcal{Z}} \neq \ln \overline{\mathcal{Z}}$$

Solution: Replica Trick

$$\Omega = -\frac{1}{\beta} \lim_{N \to 0} \frac{\overline{\mathcal{Z}^N} - 1}{N}$$

3.3 Replica Trick

Disorder Averaged Partition Function:

$$\overline{\mathcal{Z}^{N}} = \oint \left\{ \prod_{\alpha=1}^{N} D\psi_{\alpha} D\psi_{\alpha}^{*} \right\} e^{-\sum_{\alpha=1}^{N} \mathcal{A}([\psi_{\alpha}^{*},\psi_{\alpha}])/\hbar} = \oint \left\{ \prod_{\alpha=1}^{N} D\psi_{\alpha} D\psi_{\alpha}^{*} \right\} e^{-\mathcal{A}^{(N)}/\hbar}$$

Replicated Action:

$$\begin{aligned} \mathcal{A}^{(N)} &= \int_{0}^{\hbar\beta} d\tau \int d^{3}x \sum_{\alpha=1}^{N} \left\{ \psi_{\alpha}^{*}(\mathbf{x},\tau) \left[\hbar \frac{\partial}{\partial \tau} - \frac{\hbar^{2}}{2M} \mathbf{\Delta} + U(\mathbf{x}) - \mu \right] \psi_{\alpha}(\mathbf{x},\tau) \right. \\ &+ \frac{g}{2} \psi_{\alpha}^{*}(\mathbf{x},\tau)^{2} \psi_{\alpha}(\mathbf{x},\tau)^{2} \right\} \\ &- \frac{1}{2\hbar} \int_{0}^{\hbar\beta} d\tau \int_{0}^{\hbar\beta} d\tau' \int d^{3}x \int d^{3}x' \sum_{\alpha=1}^{N} \sum_{\alpha'=1}^{N} \\ &\times \psi_{\alpha}^{*}(\mathbf{x},\tau) \psi_{\alpha}(\mathbf{x},\tau) R(\mathbf{x}-\mathbf{x}') \psi_{\alpha'}^{*}(\mathbf{x}',\tau') \psi_{\alpha'}(\mathbf{x}',\tau') + \dots \end{aligned}$$

Similar: disorder averaged correlation functions

4.1 Condensate Density

Assumptions:

homogeneous Bose gas:

$$U(\mathbf{x}) = 0$$

 δ -correlated disorder:

 $R(\mathbf{x}) = R\,\delta(\mathbf{x})$

Bogoliubov Theory:

background method:

$$\psi_{\alpha}(\mathbf{x},\tau) = \Psi_{\alpha} + \delta\psi_{\alpha}(\mathbf{x},\tau)$$

replica symmetry:

 $\Psi_{\alpha} = \sqrt{n_0}$

Result:

$$n_0 = n - \frac{8}{3\sqrt{\pi}}\sqrt{a n_0}^3 - \frac{M^2 R}{8\pi^{3/2}\hbar^4}\sqrt{\frac{n_0}{a}}$$

Huang and Meng, PRL **69**, 644 (1992) Falco, Pelster, and Graham, PRA **75**, 063619 (2007)

4.2 Superfluid Density

Galilei Boost:

$$\Delta \mathcal{A} = \int_{0}^{\hbar\beta} d\tau \int d^{3}x \,\psi^{*}(\mathbf{x},\tau) \,\mathbf{u} \,\frac{\hbar}{i} \,\nabla \,\psi(\mathbf{x},\tau)$$
$$d\Omega = -S \,dT - p \,dV - N \,d\mu - \mathbf{p} \,d\mathbf{u}$$
$$\mathbf{p} = -\frac{\partial \Omega(T,V,\mu,\mathbf{u})}{\partial \mathbf{u}}\Big|_{T,V,\mu} = MV \,n_{n} \,\mathbf{u} + \dots$$

Result:
$$n_s = n - n_n = n - \frac{4}{3} \frac{M^2 R}{8\pi^{3/2}\hbar^4} \sqrt{\frac{n_0}{a}}$$

Huang and Meng, PRL **69**, 644 (1992) Falco, Pelster, and Graham, PRA **75**, 063619 (2007) ٠

4.3 Collective Excitations

Hydrodynamic Equation in Trap With Disorder:

$$m \frac{\partial^2}{\partial t^2} \delta n(\mathbf{x}, t) - \boldsymbol{\nabla} \Big[g n_{\mathrm{TF}}(\mathbf{x}) \boldsymbol{\nabla} \delta n(\mathbf{x}, t) \Big]$$
$$= -\boldsymbol{\nabla}^2 \Big[3g n_R(\mathbf{x}) \delta n(\mathbf{x}, t) \Big] - \boldsymbol{\nabla} \left[\frac{4g}{3} n_R(\mathbf{x}) \boldsymbol{\nabla} \delta n(\mathbf{x}, t) \right]$$

 $n_R(\mathbf{x})$: Huang-Meng depletion in trap $n_{\mathrm{TF}}(\mathbf{x}) = \left[\mu - V(\mathbf{x})\right]/g$: Thomas-Fermi density

Violation of Kohn Theorem:

Surface dipole mode

$$(n = 0, l = 1)$$
:
$$\frac{\delta\omega_{dip}(\xi = 0)}{\omega_{dip}} = -\frac{5\pi}{16} \frac{M^2 R}{8\pi^{3/2} \hbar^4 \sqrt{n_{TF}(\mathbf{0})a}}$$

Falco, Pelster, and Graham, PRA 76, 013624 (2007)

4.4 Comparison With Experiment

Typical Values:

 \implies Disorder effect vanishes in laser speckle experiment

Improvement:

laser speckle setup with correlation length $\xi = 1 \ \mu m$

Aspect et al., NJP 8, 165 (2006)

\implies Disorder effect should be measurable

Falco, Pelster, and Graham, PRA 76, 013624 (2007)

5.1 Earlier Results

trapped Bose gas	homogeneous Bose gas
$T_c^{(0)} = \frac{\hbar\omega_{\rm g}}{k_B} \left[\frac{N}{\zeta(3)}\right]^{1/3}$	$T_c^{(0)} = \frac{2\pi\hbar^2}{k_B M} \left[\frac{n}{\zeta(3/2)}\right]^{2/3}$
$\frac{\Delta T_c}{T_c^{(0)}} = -3.426 \frac{a}{\lambda_c^{(0)}}$ Giorgini et al., PRA 54 , R4633 (1996) Gerbier et al., PRL 92 , 030405 (2004)	$\frac{\Delta T_c}{T_c^{(0)}} = 1.3 an^{1/3}$ Kleinert, MPLB 17 , 1011 (2003) Kastening, PRA 69 , 043613 (2004)
$R(\mathbf{x}) = ?$ $\frac{\Delta T_c}{T_c^{(0)}} = ?$	$R(\mathbf{x}) = R \delta(\mathbf{x})$ $\frac{\Delta T_c}{T_c^{(0)}} = -\frac{M^2 R}{3\pi [\zeta(3/2)]^{2/3} \hbar^2 n^{1/3}}$ Lopatin and Vinokur, PRL 88 , 235503 (2002)

Procedure: $n = n(\mu), \quad \mu \nearrow \mu_c \quad \Rightarrow \quad T_c$

5.2 Our Results

Timmer, Pelster, and Graham, EPL **76**, 760 (2006) Klünder, Pelster, and Graham, to be published

6.1 Order Parameters

Definition:

$$\lim_{|\mathbf{x}-\mathbf{x}'|\to\infty} \overline{\langle \psi(\mathbf{x},\tau)\psi^*(\mathbf{x}',\tau)\rangle} = n_0$$
$$\lim_{|\mathbf{x}-\mathbf{x}'|\to\infty} \overline{|\langle \psi(\mathbf{x},\tau)\psi^*(\mathbf{x}',\tau)\rangle|^2} = (n_0+q)^2$$

Note:

q is similar to Edwards-Anderson order parameter of spin-glass theory

Hartree-Fock Mean-Field Theory:

Self-consistent determination of n_0 and q for $R(\mathbf{x} - \mathbf{x}') = R \,\delta(\mathbf{x} - \mathbf{x}')$

Phase Classification:

gas	Bose glass	superfluid
$q = n_0 = 0$	$q > 0, n_0 = 0$	$q > 0, n_0 > 0$

6.2 Hartree-Fock Results

Isotherm: T = const.

Phase Diagram: $\mu = \text{const.}$

disorder strength R = const.

Graham and Pelster, submitted to IJBC

7 Summary and Outlook

• Frozen Disorder Potential:

arises both artificially (laser speckles) or naturally (wire trap)

• Bosons:

local condensates in minima + global condensate + thermally excited

• Localization Versus Transport:

disorder reduces superfluidity

• Phase Diagram:

yet unknown for strong disorder

Navez, Pelster, and Graham, APB 86, 395 (2007)

• Disordered Bosons in Lattice:

Bose Glass versus Mott phase

Krutitsky, Pelster, and Graham, NJP 8, 187 (2006)

8 Acknowledgements

University Duisburg-Essen AG Robert Graham	Free University of Berlin AG Hagen Kleinert
Giovanni Falco (Köln)	Konstantin Glaum (Ulm)
Ben Klünder (LMU)	Alexander Hoffmann (LMU)
Konstantin Krutitsky	Sebastian Kling (Bonn)
Patrick Navez (Leuven)	Aristeu Lima (DAAD)
Wieland Ronalter	Pascal Mattern
Matthias Timmer	Matthias Ohliger
	Steffen Röthel (Münster)
	Ednilson Santos (DAAD)
	Sebastian Schmidt (Yale)
	Moritz Schütte (Golm)
	Parvis Soltan-Panahi (Hamburg)
SFB/TR 12: Symmetries and Uni- versality in Mesoscopic Systems	SPP 1116: Interactions in Ultra- Cold Atomic and Molecular Gases

422nd Wilhelm and Else Heraeus Seminar Quo Vadis BEC?

Bad Honnef, October 29 - 31, 2008

Scientific Coordinators: Martin Holthaus (Oldenburg) and Axel Pelster (Duisburg-Essen)

Research Topics: BEC/BCS Crossover, Dipolar Gases, **Disorder**, Dynamics, Quantum Information, Spinor Bose and Fermi Gases, Strong Correlations, Tunneling

http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir/Heraeus/index.html