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Disorder: Realizations and characterization

Natural disorder due to impurities
Superfluid helium in porous media: persistence of
superfluidity
Crooker et al., PRL 51, 666 (1983)

Laser speckles: controlled randomness
Lye et al., PRL 95, 070401 (2005); Clément et al., PRL 95, 170409 (2005);
Billy et al., Nature 453, 891 (2008)

Wire traps: undesired randomness
Krüger et al., PRA 76, 063621 (2007)
Fortágh and Zimmermann, RMP 79, 235 (2007)

Incommensurate lattices: quasi-randomness
Damski et al., PRL 91, 080403 (2003); Schulte et al., PRL 95, 170411 (2005)
Roati et al., Nature 453, 895 (2008)

Disorder potential U(x) characterized by the correlators

〈U(x)〉 = 0, 〈U(x)U(x′)〉 = R(x− x′), . . .
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Laser speckles

Lye et al., PRL 95, 070401 (2005)

Condensate depletion due to disorder
Global condensate vanishes for sufficiently strong disorder:
Bose-glass phase transition
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Non-perturbative approach

Cumulants of the wave function and the disorder potential

〈Ψ(x)Ψ(x′)〉c = 〈Ψ(x)Ψ(x′)〉 − 〈Ψ(x)〉〈Ψ(x′)〉 ≡ GΨΨ(x,x′)

〈U(x)Ψ(x′)〉c = 〈U(x)Ψ(x′)〉 ≡ GUΨ(x,x′)

Particle density: n(x) = 〈Ψ(x)Ψ(x)〉

Condensate density: n0(x) = 〈Ψ(x)〉2

Condensate depletion: q(x) = n(x)− n0(x)

Homogeneous case: off-diagonal long-range order

lim
|x−x′|→∞

˙
Ψ(x)Ψ(x′)

¸
= n0

lim
|x−x′|→∞

˙
|Ψ(x)Ψ(x′)|2

¸
= (n0 + q)2

Graham and Pelster, Int. J. Bifurc. Chaos 19, 2745 (2009)
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Self-consistency equations (1)

Averaging the Gross-Pitaevskii equation and using the
Gaussian approximation, we get


−

~2

2M
∆ + V (x)− µ+ 3gn(x)− 2gn0(x)

ff
ψ(x) = −GUΨ(x,x)


−

~2

2M
∆ + V (x)− µ+ 3gn(x)

ff
GUΨ(x′,x) = −R(x− x′)ψ(x)


−

~2

2M
∆ + V (x)− µ+ 3gn(x)

ff
GΨΨ(x,x′) = −GUΨ(x,x′)ψ(x)

Condensate and particle density

n0(x) = ψ(x)2

n(x) = n0(x) +GΨΨ(x,x)
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Self-consistency equations (2)

Using Fourier transformation and semiclassical
approximation, we get


−

~2

2M
∆ + V (x)− µ+ 3gn(x)− 2gn0(x)

ff
ψ(x) = ψ(x)

Z
dDk

(2π)D
R(k)

~2k2

2M
+ V (x)− µ+ 3gn(x)

n(x) = n0(x) + n0(x)

Z
dDk

(2π)D
R(k)“

~2k2

2M
+ V (x)− µ+ 3gn(x)

”2

n0(x) = ψ(x)2

Fixing the chemical potential: N =
R
dDxn(x)

Number of atoms in global condensate: N0 =
R
dDxn0(x)

Weak disorder: reproduces Huang-Meng theory
Nikolić, Balaž, Pelster, PRA 88, 013624 (2013)
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Lorentzian-correlated disorder in D = 3

Disorder correlation function

R(k) =
R

1 + ξ2k2

Equations in D = 3

−

~2

2M
∆ + V (x)− µ+ 3gn(x)− 2gn0(x)

ff
ψ(x) =

MR

2π~2ξ

ψ(x)

1 +
p
V (x)− µ+ 3gn(x)

‹q ~2

2Mξ2

n(x) = n0(x)+
M2R

2π~2
p
V (x)− µ+ 3gn(x)

‹q ~2

2M

n0(x)“
1 +

p
V (x)− µ+ 3gn(x)

‹q ~2

2Mξ2

”2
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Spatially homogeneous case

V (x) = 0, n(x) = n, n0(x) = n0

Limit of the strong disorder

In D = 3, n0/n→ 2/3, µ̃→ −
(

2R̃
ξ̃2

)2/3

In D = 2, n0/n→ 1/2, µ̃→ µ̃∞, (−µ̃∞)2 = R̃
ξ̃2

ln[(−µ̃∞)ξ̃2]

In D = 1, n0/n =→ 1/2, µ̃→ −
√

2R̃
ξ̃

No Bose-glass phase
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Trapped case: Thomas-Fermi approximation

Particle density (blue), condensate density (red), and condensate depletion
(green) as a function of the radial coordinate in D = 3 for R̃ = 1000, ξ̃ = 7.

Similar behavior in D = 1, 2
Again, elusive Bose-glass phase is nowhere to be found
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Search for a Bose-glass phase

Using the TF radius as a length scale, in D = 3 we get the
following dimensionless equations:

−
1

θ
∆ + V − µ+ 3gn− 2gn0

ff
ψ =

2Rψ

ξ + ξ2
√
V − µ+ 3gn

n = n0 +
R

√
V − µ+ 3gn

n0`
1 + ξ

√
V − µ+ 3gn

´2
n0 = ψ2 , 1 =

Z
4πr2ndr , N0/N =

Z
4πr2n0 dr , V = r2

For 87Rb, with N = 2 · 105, as = 100.4 a0, Ω = 100 · 2π Hz:
Lho = 1.08µm, RTF = 7.35µm
θ = (RTF/Lho)4 ∼ 2100

Strongly suppressed kinetic term hides the Bose-glass phase
Its extent depends not only on θ, but also on disorder
strength R and correlation length ξ
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Trapped case: preliminary numerical results

Particle density (red), condensate density (green), and condensate depletion

(blue) in D = 1 for a Gaussian-correlated disorder R(k) = Re−ξ
2k2/2,

R = 100, ξ = 1.

Numerical data suggest that the Bose-glass phase appears
at the boundary of the condensate
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Conclusions and outlook

We have studied the emergence of a Bose-glass phase in trapped BECs

Non-perturbative approach for strong disroder, Gaussian
approximation

Lorentzian-correlated disorder in D = 1, 2, 3

No Bose-glass phase in the homogeneous case
In the trapped case, TF approximation is not sufficient to study
the effect
Numerical data suggest that the full approach captures the
emergence of a Bose-glass phase at the boundary

Outlook:

Variational and numerical solution of the full system of equations
D = 2 relevant for photonic BEC experiments with disorder -
Weitz group
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