Interacting Anyons in a One-Dimensional Optical Lattice Martin Bonkhoff

01.02.2017 Group Seminar Eggert

- **1. Identical particles**
- 2. Anyon-Hubbard model
- 3. Experimental proposals
- 4. Gutzwiller mean-field approach
- 5. Mean-field decoupling

1.1 Identical Particles

- **Permutation:** $\hat{P}|\Psi(x_1,x_2)\rangle = \exp(i\theta)|\Psi(x_2,x_1)\rangle$
- Dimensionality:

$$\begin{array}{lll} D\geq 3 & \longrightarrow \theta=0 & {\rm bosons}, & \theta=\pi & {\rm fermions} \\ D=2 & \longrightarrow {\rm bosons} & 0\leq \theta\leq \pi & {\rm fermions} \end{array}$$

$$D = 1 \longrightarrow$$
 intermediate statistics ?

• Implementation: $\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right]_{q_{i,j}^{\mp}} = \delta_{i,j}\hat{I} = \hat{a}_{i}\hat{a}_{j}^{\dagger} - \exp\left[\pm i\theta \operatorname{sgn}(i-j)\right]\hat{a}_{j}^{\dagger}\hat{a}_{i}$

1.2 Particle Exchange

- Implementation: $\left[\hat{a}_i, \hat{a}_j^{\dagger}\right]_{q_{i,j}^{\mp}} = \delta_{i,j}\hat{I} = \hat{a}_i\hat{a}_j^{\dagger} \exp\left[\pm i\theta \operatorname{sgn}(i-j)\right]\hat{a}_j^{\dagger}\hat{a}_i$
- Consequences:

First possibility:

$$\begin{split} |\Psi\rangle &= \hat{a}_{j}^{\dagger}\hat{a}_{i}^{\dagger}|0\rangle \stackrel{\text{exchange}}{\longrightarrow} |\Psi\rangle = \hat{a}_{k}^{\dagger}\hat{a}_{i}\hat{a}_{j}^{\dagger}\hat{a}_{i}^{\dagger}|0\rangle = \exp\left(i\theta\right)\hat{a}_{k}^{\dagger}\hat{a}_{j}^{\dagger}\hat{a}_{i}\hat{a}_{i}^{\dagger}|0\rangle = \\ \exp\left(i\theta\right)\hat{a}_{k}^{\dagger}\hat{a}_{j}^{\dagger}|0\rangle \stackrel{\text{translate}}{\longrightarrow} \exp\left(i\theta\right)\hat{a}_{j}^{\dagger}\hat{a}_{i}^{\dagger}|0\rangle = \exp\left(i\theta\right)|\Psi\rangle \end{split}$$

Second possibility:

$$\begin{split} |\Psi\rangle &= \hat{a}_{j}^{\dagger}\hat{a}_{i}^{\dagger}|0\rangle \stackrel{\text{exchange}}{\longrightarrow} |\Psi\rangle = \hat{a}_{k}^{\dagger}\hat{a}_{j}\hat{a}_{j}^{\dagger}\hat{a}_{i}^{\dagger}|0\rangle = \hat{a}_{k}^{\dagger}\hat{a}_{i}^{\dagger}\hat{a}_{j}\hat{a}_{j}^{\dagger}|0\rangle = \\ \exp\left(-i\theta\right)\hat{a}_{i}^{\dagger}\hat{a}_{k}^{\dagger}|0\rangle \stackrel{\text{translate}}{\longrightarrow} \exp\left(-i\theta\right)\hat{a}_{j}^{\dagger}\hat{a}_{i}^{\dagger}|0\rangle = \exp\left(-i\theta\right)|\Psi\rangle \end{split}$$

2. Anyon-Hubbard Model in 1D

• Hamiltonian:

$$\hat{H}^{a} = -J \sum_{j=1}^{L} (\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + \text{h.c.}) + \frac{U}{2} \sum_{j=1}^{L} \hat{n}_{j} (\hat{n}_{j} - 1)$$
$$\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right]_{q_{i,j}^{\mp}} = \delta_{i,j} \hat{I}, \quad \left[\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right]_{q_{i,j}^{\mp}} = 0, \quad [\hat{a}_{i}, \hat{a}_{j}]_{q_{i,j}^{\pm}} = 0$$

Deformed commutators:

$$[A,B]_q = AB - qBA$$

Properties:

$$q_{i,j} = \exp\left[\pm i\theta \operatorname{sgn}(i-j)\right]$$
$$q_{i,j} = q_{j,i}^{-1} = q_{j,i}^*, \quad q_{i,i} = 1 \quad \forall \quad i \in [1, L]$$

2.2 Jordan-Wigner Transformation

• Define Jordan-Wigner anyons via:

$$\hat{a}_{-,i} = \hat{d}_i \hat{K}_{-,i}$$
$$\hat{a}_{+,i} = \hat{d}_i \hat{K}_{+,i}$$

• Disorder operators:

$$\hat{K}_{-,i} = \exp\left(i\theta \sum_{k < i} \hat{n}_k\right)$$
$$\hat{K}_{+,i} = \exp\left(i\theta \sum_{l > i} \hat{n}_l\right)$$

Properties:

$$\begin{split} \hat{K}_{j,i}^{\dagger} &= \hat{K}_{j,i}^{-1} \quad \forall \quad j = -, + \quad \left[\hat{K}_{j,i}, \hat{K}_{n,m} \right] = 0 \\ \forall \quad j, n = -, + \quad \text{and} \quad \forall \quad i, m \in [1, L] \end{split}$$

2.3 Exclusion Principle

$$\begin{bmatrix} \hat{d}_i, \hat{d}_j^{\dagger} \end{bmatrix}_k = \delta_{i,j} \hat{I}$$
$$\begin{bmatrix} \hat{d}_i, \hat{d}_j \end{bmatrix}_k = 0 = \begin{bmatrix} \hat{d}_i^{\dagger}, \hat{d}_j^{\dagger} \end{bmatrix}_k$$
$$\hat{n}_i = \hat{d}_i^{\dagger} \hat{d}_i = \hat{a}_{\pm,i}^{\dagger} \hat{a}_{\pm,i}$$

	Boson	Fermion
k	1	-1
Exclusion behavior	$\left(\hat{d}_{i}^{\dagger}\right)^{f} \neq 0, f \in \mathbb{N}$	$\left(\hat{d}_i^{\dagger}\right)^f = 0, f \ge 2$
Anyonic exclusion	$\left(\hat{a}_{\pm,i}^{\dagger}\right)^{f} \neq 0, f \in \mathbb{N}$	$\left(\hat{a}_{\pm,i}^{\dagger}\right)^{f} = 0, f \ge 2$

- \longrightarrow Exclusion principle dictated by underlying local CCR, CAR
- \longrightarrow Exchange statistics is transmuted

2.4 Algebraic Relations

Phase shift property:

$$\hat{K}_{j,i}^{\dagger} \hat{d}_q \hat{K}_{j,i} = \hat{d}_q \exp(i\theta)$$
$$\forall j = -, + \quad \forall q \in k, l$$

Anti-symmetry:

$$[A_i, B_j]_{q_{i,j}^{\pm}} = -q_{i,j}^{\pm} [B_j, A_i]_{q_{j,i}^{\mp}}$$

Algebraic structure:

$$\hat{a}_{l,i}\hat{a}_{l,j} - kq_{i,j}^{\pm}\hat{a}_{l,j}\hat{a}_{l,i} = 0,$$

$$\hat{a}_{l,i}^{\dagger}\hat{a}_{l,j}^{\dagger} - kq_{i,j}^{\mp}\hat{a}_{l,j}^{\dagger}\hat{a}_{l,i}^{\dagger} = 0,$$

$$\hat{a}_{l,i}\hat{a}_{l,j}^{\dagger} - kq_{j,i}^{\mp}\hat{a}_{l,j}^{\dagger}\hat{a}_{l,i} = \delta_{ij}\hat{I}$$

This talk:

$$k=1$$
 and $\hat{K}_{-,i}$

2.5 Bosonic Representation

Conditional hopping BH model:

$$\hat{H}_{-}^{\text{OBC}} = \frac{U}{2} \sum_{i=1}^{L} \hat{n}_{i} \left(\hat{n}_{i} - 1 \right) - J \sum_{i=1}^{L-1} \left[\hat{b}_{i}^{\dagger} \hat{b}_{i+1} \exp(i\theta \hat{n}_{i}) + \text{h.c.} \right]$$
$$\hat{H}_{-}^{\text{PBC}} = \hat{H}_{-}^{\text{OBC}} - J \left[\exp(i\theta (\hat{N} - 1)) \hat{b}_{L}^{\dagger} \hat{b}_{1} \exp(i\theta \hat{n}_{L}) + \text{h.c.} \right]$$

 \longrightarrow Density dependent Peierls phase

- \longrightarrow Even-odd effect as a signum of fermionic behavior $\theta = \pi$
- \longrightarrow Bose-Hubbard model for $\theta = 0$

2.6 Symmetries

Particle number conservation: $\begin{bmatrix} \hat{H}, \hat{N} \end{bmatrix}_{-} = 0 \longrightarrow SU(L)$ Translational (PBC): $\begin{bmatrix} \hat{H}^{PBC}, \hat{U} \end{bmatrix}_{-} \neq 0 \longrightarrow \text{if } \theta \neq 0, \frac{2\pi}{N-1}, \pi$ Parity: $\begin{bmatrix} \hat{H}, \hat{P} \end{bmatrix}_{-} \neq 0 \longrightarrow \text{if } \theta \neq 0, \pi$ Time inversion: $\begin{bmatrix} \hat{H}, \hat{T} \end{bmatrix}_{-} \neq 0 \longrightarrow \text{if } \theta \neq 0, \pi$ Local gauge: $\begin{bmatrix} \hat{H}, \hat{S} \end{bmatrix}_{-} \neq 0, \quad \hat{S}^{\dagger} \hat{b}_{i} \hat{S} = (-1)^{i} \hat{b}_{i}, \text{ if OBC or PBC L=even}$

⇒ JW-anyons break discrete symmetries as well as translational invariance except for some parameter values

2.7 Combined Discrete Symmetries

$$\implies$$
 statistically induced phase transitions

This talk:

PBC are considered + neglection of boundary term
$$O\left(rac{1}{L}
ight)$$

3. Experimental Proposals

• D = 1 : Possible realizations of anyons:

 \longrightarrow Photon-assisted tunneling

T. Keilmann, S. Lanzmich, I. McCulloch, and M. Roncaglia, NC 2 361, 2011

 $\longrightarrow \text{Raman scheme}$

S. Greschner and L. Santos, PRL 115 053002, 2015

→ Lattice-shaking-induced resonant tunneling C. Sträter, S. C. L. Srivastava, and A. Eckardt, PRL **117** ,205303, 2016

3.1 Photon-assisted tunneling

T. Keilmann, S. Lanzmich, I. McCulloch, and M. Roncaglia, NC 2 361, 2011

- Parity violation induced by off-set Δ between adjacent sites
- Raman-coupling of excited states induces Peierls phase
- Restriction to two particles per site via Feshbach resonance

3.2 Raman scheme

S. Greschner and L. Santos, PRL 115 053002, 2015

- Again assisted Raman-coupling to induce Peierls phase
- Effective, controllable on-site interaction via detuning
- Possible attractive interaction leads to restriction of particle number

3.3 Lattice-shaking-induced resonant tunneling

C. Sträter, S.C.L. Srivastava, and A. Eckardt, PRL 117(2016)

- Conditional hopping via lattice tilting and periodic driving
- Effective Floquet Hamiltonian in high frequency approximation
- Adjusting statistical parameter by appropriate form of driving force

4. Gutzwiller Mean-Field Approximation

Product ansatz:

$$G\rangle = \prod_{j} \left(\sum_{n=0}^{n_{\max}} f_n^{(j)} |n\rangle \right)$$

• Normalization:

$$\sum_{n=0}^{n_{\max}} |f_n^{(j)}|^2 = 1$$

- Energy: $E\left(\left\{f_n^{(j)}\right\}\right) = \langle G|\hat{H}^b|G\rangle$
- Classical GW approach: $f_n^{(j)} = f_n$
- Modified GW approach 1: $f_n^{(j)} = |A_n| \exp(i\gamma_n^j)$

G. Tang, S. Eggert, and A. Pelster, NJP 17, 123016 (2015).

• Modified GW approach 2: $f_n^{(j)} = |A_n| \exp(ij\beta_n + i\gamma_n)$

4.1 Inconsistency of Modified GW Approach 1

• **Definitions:** $\beta_n^j = \gamma_n^j - \gamma_{n+1}^j$, $\beta_n^j - \beta_n^{j+1} = \Delta \beta_n$, $\beta_n^j + \beta_n^{j+1} = 2\beta_n$ \implies Formally incorrect

• Ground-state energy turns out to be independent of θ : \implies Contradicts Kevin's DMRG data $n_0 = 0.1, \quad L = 100 \quad \frac{U}{J} = 10,$

- Certain features of quasi-momentum distributions contradict to DMRG results:
 - \implies Monotonically decreasing peak with increasing θ
 - \implies Condensation at $k \approx 0$ for small densities

G. Tang, S. Eggert, and A. Pelster, NJP 17, 123016 (2015)

4.2 Quasi-Momentum Distributions

• Bosonic version:

$$\langle \hat{n}_{k}^{(\mathrm{b})} \rangle = \frac{1}{L} \sum_{ij} e^{ik(x_{i}-x_{j})} \langle \hat{b}_{i}^{\dagger} \hat{b}_{j} \rangle ,$$

$$\langle \hat{b}_{i}^{\dagger} \hat{b}_{j} \rangle = \delta_{ij} \langle \hat{n}_{i} \rangle + (1-\delta_{ij}) \langle \hat{b}_{i}^{\dagger} \rangle \langle \hat{b}_{j} \rangle$$

• Anyonic version:

$$\begin{split} \langle \hat{n}_{k}^{(\mathrm{a})} \rangle &= \frac{1}{L} \sum_{ij} e^{\mathrm{i}k(x_{i}-x_{j})} \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle \,, \\ \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle & \xrightarrow{i < j} \quad \langle \hat{b}_{i}^{\dagger} e^{\mathrm{i}\theta \hat{n}_{i}} \rangle \Big(\prod_{i < l < j} \langle e^{\mathrm{i}\theta \hat{n}_{l}} \rangle \Big) \langle \hat{b}_{j} \rangle \,, \\ \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle & \xrightarrow{i = j} \quad \langle \hat{b}_{i}^{\dagger} \hat{b}_{i} \rangle \,, \\ \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle & \xrightarrow{i > j} \quad \langle e^{-\mathrm{i}\theta \hat{n}_{j}} \hat{b}_{j} \rangle \Big(\prod_{j < l < i} \langle e^{-\mathrm{i}\theta \hat{n}_{l}} \rangle \Big) \langle \hat{b}_{i}^{\dagger} \rangle \end{split}$$

- **Goal:** Dependence on anyon statistical parameter θ
- This talk: Soft-core particles $n_{\rm max} = 2$

• Finite system:

$$\langle \hat{n}_{k}^{b} \rangle = n_{0} - |A_{1}|^{2} \left[|A_{0}|^{2} + 2\sqrt{2}|A_{0}||A_{2}|\cos\left(\frac{\theta}{2}\right) + 2|A_{2}|^{2} \right] \\ + \frac{1}{L} |A_{1}|^{2} \left[|A_{0}|^{2} + 2\sqrt{2}|A_{0}||A_{2}|\cos\left(\frac{\theta}{2}\right) + 2|A_{2}|^{2} \right] \frac{1 - \cos\left[(k + \Delta\beta_{0})L\right]}{1 - \cos\left[k + \Delta\beta_{0}\right]}$$

• Thermodynamic limit:

$$\langle \hat{n}_k^b \rangle_{L \to \infty} = n_0 - |A_1|^2 \left[|A_0|^2 + 2\sqrt{2}|A_0| |A_2| \cos\left(\frac{\theta}{2}\right) + 2|A_2|^2 \right]$$
$$+ |A_1|^2 \left[|A_0|^2 + 2\sqrt{2}|A_0| |A_2| \cos\left(\frac{\theta}{2}\right) + 2|A_2|^2 \right] \delta(k + \Delta\beta_0)$$

Gutzwiller MF

DMRG

Gutzwiller MF

DMRG

 $n_0=1.25, \quad L=100, \quad rac{U}{J}=10$, DMRG data from Kevin

4.3 Anyonic Quasi-Momentum Distributions

• Thermodynamic limit:

$$\begin{aligned} \langle \hat{n}_{k}^{a} \rangle_{L \to \infty} &= n_{0} - 2|C| \left\{ \frac{|z|\cos\left[\operatorname{Arg}(C) - \operatorname{Arg}(z)\right] - \cos\left[k + \Delta\beta_{0} - \operatorname{Arg}(C)\right]\right]}{|z|^{2} - 2|z|\cos\left[k + \Delta\beta_{0} - \operatorname{Arg}(C)\right] + 1} \right\} \\ C &= |A_{1}|^{2} \left(|A_{0}|^{2} + \sqrt{2}|A_{0}||A_{2}| \left\{ \exp\left[i\Delta\gamma\right] + \exp\left[-i(\Delta\gamma - \theta)\right] \right\} + 2|A_{2}|^{2}\exp\left[i\theta\right] \right) \\ z &= |A_{0}|^{2} + |A_{1}|^{2}\exp\left[i\theta\right] + |A_{2}|^{2}\exp\left[2i\theta\right] \end{aligned}$$

 \implies Deformation to smoothened Fermi edge is observable for $\lim_{\theta \to \pi} \langle \hat{n}_k^a \rangle$

4.3 Anyonic Quasi-Momentum Distributions

 $n_0 = 0.25, 0.75, 1.25; \quad L = 100, \quad \frac{U}{J} = 10$

- Decomposition of ladder operators: $\hat{a}_i \longrightarrow \langle \hat{a}_j \rangle + \delta \hat{a}_j$
- Neglection of fluctuations: $\delta \hat{a}_j^2 \approx 0$

• Locality:
$$\hat{H}_{MF} = \sum_{j=1}^{L} \hat{H}_j$$

- Self-consistency relations: $\langle \hat{a}_j \rangle = \alpha_j \longrightarrow \min_{\alpha_j} [E_{MF}(\alpha_j)]$
- Classical Decoupling: $\alpha_j \longrightarrow \alpha$ i.e. homogeneity is assumed

• Modified Decoupling: $\alpha_j \longrightarrow Abs(\alpha)exp[ijArg(\alpha)]$

 \longrightarrow Use bi-partite structure of underlying lattice

$$\hat{H} = \frac{U}{2} \sum_{j=1}^{L} \hat{n}_j \left(\hat{n}_j - 1 \right) - J \sum_{j=1}^{\frac{L}{2}} \left[\hat{c}_{2j-1}^{\dagger} \hat{b}_{2j} + \hat{c}_{2j}^{\dagger} \hat{b}_{2j+1} + \text{h.c.} \right] - \mu \sum_{j=1}^{L} \hat{n}_j$$
$$\hat{c}_j^{\dagger} = \hat{b}_j^{\dagger} \exp(i\theta \hat{n}_j)$$

 \longrightarrow Decompose ladder operators $\langle \hat{b}_j \rangle + \delta \hat{b}_j, \quad \langle \hat{c}_j \rangle + \delta \hat{c}_j$

 \longrightarrow Consistency w.r.t. product state $\langle \hat{c}_{j}^{\dagger} \rangle \neq \langle \hat{b}_{j}^{\dagger} \rangle \langle \exp(i\theta \hat{n}_{j}) \rangle$

$$\longrightarrow \hat{H}_{\rm MF} = \hat{H}_0 - J \sum_{j=1}^{\frac{L}{2}} \left[B_o^* \left(\eta_o, \nu_e, \hat{n}_{2j} \right) \hat{b}_{2j} + A_e^* \left(\eta_e, \nu_o, \hat{n}_{2j+1} \right) \hat{b}_{2j+1} + \text{h.c.} \right]$$

 \rightarrow Self-consistency equations, $b_l, c_l \sim$ variational parameters

$$\begin{aligned} \langle \hat{b}_{2j} \rangle = b_{2j} &= \operatorname{Abs}(b) \exp(i2j\nu_e), \\ \langle \hat{c}_{2j} \rangle = c_{2j} &= \operatorname{Abs}(c) \exp(i2j\eta_e), \\ \langle \hat{b}_{2j+1} \rangle = b_{2j+1} &= \operatorname{Abs}(b) \exp\left[i(2j+1)\nu_o\right], \\ \langle \hat{c}_{2j+1} \rangle = c_{2j+1} &= \operatorname{Abs}(c) \exp\left[i(2j+1)\eta_o\right], \end{aligned}$$

 \implies Linearize self-consistency map around trivial solution $b_l, c_l \approx 0$

- \longrightarrow Perturbation theory $|\Psi\rangle \approx \prod_{i=1}^{L} |n\rangle_i + |\Psi_1\rangle$
- \longrightarrow Assume equality of variational parameter amplitudes on both partitions
- \longrightarrow Consistency relations for variational parameter phases
- \longrightarrow Two types of superfluid depending on $n_1, n_2 \in \mathbb{Z}$

W. Zhang, E. Fan, T. C. Scott, and Y. Zhang, arXiv:1511.01712

$$\langle \hat{b}_{2j} \rangle = \operatorname{Abs}(b),$$

 $\langle \hat{c}_{2j} \rangle = \operatorname{Abs}(c)$
 $\langle \hat{b}_{2j+1} \rangle = \operatorname{Abs}(b)(-1)^{n_2 - n_1}, \quad \langle \hat{c}_{2j+1} \rangle = \operatorname{Abs}(c)(-1)^{n_2 + n_1}$

 \rightarrow J_{crit} from instabillity of self-consistency equations $\alpha = A\alpha$ with $\alpha = (Abs(b), Abs(c))^T$, i.e. $\max[\operatorname{Re}(\lambda_{\pm})] = 1$

5.1 Phase Diagramm

S. Lanzmich, et al., NC 2, 2011

Conclusion

- \longrightarrow Independence of exclusion principle and exchange statistics
- \longrightarrow Smooth transmutation between bosonic and fermionic exchange statistics
- \longrightarrow Consistent modified Gutzwiller approach
- \longrightarrow Superfluid condensation at finite momentum
- \longrightarrow Non-trivial deformation of Mott lobes
- \longrightarrow Emergence of new superfluid phases

Outlook

\longrightarrow Strong coupling expansion to check phase boundary

J.K. Freericks and H. Monien, PRB 53, 2691 (1996)

 \longrightarrow Friedel oscillation (for open boundary conditions)

C. Sträter, S.C.L. Srivastava, and A. Eckardt, PRL 117, 205303 (2016)

F. Lange, S. Ejima, and H. Fehske, arXiv:1612.00605

- \longrightarrow Investigation of fermionic anyons