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Casimir effect in Minkowski spacetime

Casimir
plates Vacuum

fluctuations

Figure 1: Illustration of the Casimir force on two
parallel plates. [8]
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Casimir force for A = 5.1cm2, d = 1µm:
660nN [3]
Electrostatic force exerted by the nucleus on
the electron in a hydrogen atom:
92nN
Force measurable with an AFM:
0.1pN [4]
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Rotational symmetry

Setup I :
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Rotational symmetry in Minkowski spacetime:
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C .
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Casimir setups

Figure 2: Three different Casimir setups on a circular orbit in the equatorial plane (ϑ = 0, z = 0) next to a
non-rotating, uncharged source of weak gravity.
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Maxwell theory

Homogeneous Maxwell’s equations are unaffected by gravity [2]:

∂tB
i = −εijk∂jEk ,

∂jB
j = 0 .

Inhomogeneous Maxwell’s equations read [2]

∂µF
µν +

1√
−g

∂µ
(√
−g
)
Fµν = µ0j

ν = 0 .

=⇒ Gauss’ law is given by ν = 0, Ampère’s law via ν = i = 1, 2, 3.
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Perturbation theory

Expansion of the metric via

gµν = ηµν + hµν , gµν = ηµν + hµν ,

hµν , hµν ∝ λ = rs/r � 1 with rs = 2GM
/
c2 .

leads to the first-order correction terms∑
j

∂jE
(1)
j =

1
ε0
ρ
(1)
eff (E (0),B(0)) ,

1
c
∂0E

(1)
p +

∑
m

εkmp∂mB
k(1) = −µ0jp,eff(1)(E (0),B(0)) .
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Perturbation theory

If ∂αhβγ = 0, the metric is constant in space and time, the continuity equation

∂µj
µ(1)
eff = 0

is satisfied.
The wave equations for the first-order electromagnetic fields read

�~E (1) = −µ0∂t ~jeff
(1)
− 1
ε0
~∇ρ(1)eff ,

�~B(1) = µ0 ~∇× ~jeff
(1)
.
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Metric & Restrictions
Schwarzschild metric

ds2SSM = c2
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2
[
dϑ2 + sin2(ϑ) dϕ2] .

First-order correction term of the Schwarzschild metric with respect to the Minkowski metric

gµν = ηµν + hµν =⇒ hµν = λ


1 0 0 0
0 x2

r2
xy
r2

xz
r2

0 xy
r2

y2

r2
yz
r2

0 xz
r2

yz
r2

z2

r2

 , where λ =
rs
r

=
2GM
rc2

.

Fixed location for all three setups:

~r =

R
0
0

 for const = R � rs .

Generalized metric:

hµν =


λ 0 0 0
0 λ 0 0
0 0 0 0
0 0 0 0

 .
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Secular terms & Renormalization
Solution of first-order wave equations

~E (1) ∝ σ sin(σ), σ cos(σ) diverges in σ ≡ ~k⊥ · ~r⊥ − ωt .

This is called a secular term, since it violates energy conservation law.
=⇒ Renormalization necessary:

~E curved = ~E (0) + ~E (1) ∝ sin
[
σ
(
1− λ̃

)]
, cos

[
σ
(
1− λ̃

)]
,

where

λ̃ ≡ λ ·
ω2

c2 + k2x
2k2‖

,

~|k |
2
≡ k2‖ + k2⊥ .
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Secular terms & Renormalization

Renormalized vector elements:

k ′‖ = k‖ , k ′⊥ = k⊥ + ∆k⊥ = k⊥(1− λ̃) , ω′ = ω + ∆ω = ω(1− λ̃) .

Dispersion relation:

ω(~k) = c ~|k | = c
√
k2‖ + k2⊥ =

ω′

1− λ̃
= c

√√√√√k ′‖
2 +

k ′⊥
2(

1− λ̃
)2 ,

ω′(~k ′) = c

√
k ′‖

2
(
1− λ̃

)2
+ k ′⊥

2 .
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Spaghettification

Figure 3: Spaghettification in Schwarzschild spacetime [5]. Reciprocal for ω′ = c

√
k ′
‖
2
(
1− λ̃

)2
+ k ′

⊥
2.

Lukas Buß Thesis Defense 12/ 23



PHYSIK Introduction Weak gravity Results Measurement Slow rotations Conclusion

Secular terms & Renormalization

Dispersion relation:

ω′(~k ′) = c
√

k ′x
2 + k ′y

2 + k ′z
2 − ck ′x

2
λ̃√

k ′x
2 + k ′y

2 + k ′z
2

+O
(
λ̃2
)
,

ω′(~k ′) = c ~|k ′|

(
1− k ′x

2
λ̃

~|k ′|
2

)
+O

(
λ̃2
)
.

Notation: Drop the ′ signs. Inserting λ̃ yields

ω(~k) = c ~|k |

[
1− λ

2

(
1 +

k2x
~|k|

2

)]
.
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Proper Casimir lengths

Figure 4: dp =
√
g11d =

√
η11 + h11d
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Table 1: Casimir forces for setups I–III in the presence of weak gravity.

Quantities

F flat
C −π

2~cA
240d4 −π

2~cA
240d4 −π

2~cA
240d4

F curved
C F flat

C (1− 2λ) = F flat
C (dp,Ap) F flat

C

(
1 + λ

2

)
= F flat

C (dp,Ap) F flat
C

(
1 + λ

2

)
= F flat

C (dp,Ap)
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Casimir force of setup I–III
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Figure 5: Ratio of the perturbed Casimir force in the presence of weak gravity to the Casimir force in a
Minkowskian spacetime for setup I (red) and setups II and III (blue).

Lukas Buß Thesis Defense 16/ 23



PHYSIK Introduction Weak gravity Results Measurement Slow rotations Conclusion

Energy splitting

Minkowski spacetime

Flat case without gravitation and rotation

Schwarzschild spacetime

Case with weak gravitation but no rotation

Figure 6: Energy splitting of the three Casimir setups in the presence of weak gravity.
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Solar system
Table 2: The first-order gravitational perturbation parameter λ = rs/r with respect to the Minkowski
metric for several objects in our solar system. Values were calculated using [6, 7].

Object rs/Rsurface rs Sun/Rmean Sun

Sun 4.25 · 10−6 not defined

Mercury 2.01 · 10−10 5.10 · 10−5

Venus 1.19 · 10−9 2.73 · 10−5

Earth 1.39 · 10−9 1.97 · 10−5

PSP 8.48 · 10−25 4.80 · 10−4
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Comparing different setups
Assumptions:

Schwarzschild spacetime
λ = rs/r ≈ 10−5 � 1 =⇒ weak gravity
First-order corrections are sufficient
No Rotations
Casimir setups do not move
Setup located in vacuum
Perfect metal plates
T = 0

Setup II and III

F II
C

F III
C

− 1 = 0 .

Test measurement.

Setup I and III

F I
C

F III
C

− 1 = −5
2
λ .

=⇒ Use experiments on Earth and control the
orientation towards the sun precisely.
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Measurability

Metrological framework:
AFM precision approximately 0.1pN
Gravity correction ∝ λ ≈ 10−5

Casimir force for Lamoureux experiment (1997) [3] approximately 660nN with distances about
1µm
∆F gravity

C ≈ 6.6pN > 0.1pN =⇒ measurable today

Problems:
Classical effects like roughness, finite conductivity, finite temperature
=⇒ Use the same plates on a pivoted stand at constant temperature
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Slow rotation approximation

First extension =⇒ Slow rotation =⇒ Approximate the Kerr metric in first-order via

ds2SRA = c2
(
1− rs

r

)
dt2 + 2

rs
r
a sin2(ϑ)c dt dϕ− 1

1− rs
r

dr2 − r2
[
dϑ2 + sin2(ϑ) dϕ2] .

Ending up with a metric tensor gµν = ηµν + hµν and

hµν = λ


1 a y

r2−z2 −a x
r2−z2 0

a y
r2−z2

x2

r2
xy
r2

xz
r2

−a x
r2−z2

xy
r2

y2

r2
yz
r2

0 xz
r2

yz
r2

z2

r2

 , with a =
J

Mc

similar to Schwarzschild metric with h10 = h01 and h20 = h02 as new entries.
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Results for SRA

Minkowski spacetime

Flat case without gravitation and rotation

Schwarzschild spacetime

Case with weak gravitation but no rotation

Slow-Rotation Approximation

Case with weak gravitation and slow rotation

Figure 7: Energy splitting in SRA. Setup I in accordance with [1].
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Conclusion

Compare different setups at the same location
→ The effects of gravity are measurable today

The orientation of the plates with respect to
the source of gravity leads to fundamental 
differences!
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