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Parametric resonance

Parametric oscillator: harmonic oscillator with time-dependent
parameters

Parametric resonance: resonant behaviour of a parametric
oscillator

Destabilization of Stabilization of
stable equilibrium unstable equilibrium

Swing Paul trap (Nobel Prize 1989)

Kapitza pendulum



Parametric resonance Variational approach Equations of motion Isotropic stability Anisotropic stability Conclusions

Inverted pendulum with a vertically oscillated pivot

(Loading...)


Inverted-pendulum-with-a-vertically-oscillated-pivot.mp4
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Pendulum physics

Driving amplitude A, frequency Ω

Equation of motion

ϕ̈(t) +

„
g

l
+
AΩ2

l
cos Ωt

«
sinϕ(t) = 0

Linearize:
sinϕ(t) ' ϕ(t)

With definitions

c = ± 4g
lΩ2 q = ∓ 2A

l
2t′ = Ωt x(t′) = ϕ(t)

Mathieu equation

ẍ(t′) +
ˆ
c− 2q cos 2t′

˜
x(t′) = 0
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Mathieu equation

ẍ(t′) +
[
c− 2q cos 2t′

]
x(t′) = 0

Floquet theory: on stability borders, x(t′) is π- or 2π-periodic.

One method: Fourier series ansatz

x(t′) =
∞∑
n=0

An cos(n t′) +
∞∑
n=1

Bn sin(n t′)

Obtain decoupled systems

∞∑
n=0

An

[
(c−n2) cos(n t′)−q cos

(
(n−1) t′

)
−q cos

(
(n+1) t′

)]
= 0

∞∑
n=1

Bn

[
(c−n2) sin(n t′)− q sin

(
(n−1) t′

)
− q sin

(
(n+ 1) t′

)]
= 0
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Mathieu equation
Continued

Infinite matrix equations – truncate for approx. solution

Vanishing determinants for nontrivial An, Bn
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Mathieu equation
Stability diagram
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Bose-Einstein Condensate

Extreme Tunability of Interactions in a 7Li Bose-Einstein Condensate
S. E. Pollack et al., PRL 102, 090402 (2009)

Tuning of scattering length by Feshbach resonance

a(B) = aBG

(
1− ∆

B −B∞

)
Collective excitation of a Bose-Einstein condensate by modulation of
the atomic scattering length
K. M. F. Magalhães et al., PRA 81, 053627 (2010)

B(t) = Bav + δB cos Ωt, a = aav + δa cos Ωt

where

aav = a(Bav), δa =
aBG∆δB

(Bav −B∞)2
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Bose-Einstein Condensate

Analogous stability behaviour for BEC?NONLINEAR BOSE-EINSTEIN-CONDENSATE DYNAMICS . . . PHYSICAL REVIEW A 84, 013618 (2011)
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FIG. 1. (Color online) Time-dependent axial and radial conden-
sate widths calculated as root-mean-square averages. Comparison
of the numerical solution of time-dependent GP equation with a
solution obtained using the Gaussian approximation for the actual
experimental parameters in Eq. (8) and ! = 0.05.

In Fig. 1, we plot the resulting time-dependent axial and radial
condensate widths ρrms(t) and zrms(t) calculated as root-mean-
square values

ρrms(t) =

√

2π

∫ ∞

−∞
dz

∫ ∞

0
ρ dρ |ψ(ρ,z,t)|2 ρ2 , (9)

zrms(t) =

√

2π

∫ ∞

−∞
dz

∫ ∞

0
ρ dρ |ψ(ρ,z,t)|2 z2 , (10)

and compare them with numerical solutions of Eqs. (5) and (6).
We assume that initially the condensate is in the ground state. In
the variational description, this translates into initial conditions
uρ(0) = uρ0, u̇ρ(0) = 0, uz(0) = uz0, and u̇z(0) = 0, where
uρ0 and uz0 are time-independent solutions of Eqs. (5) and
(6), while in GP simulations we reach the ground state by
performing an imaginary-time propagation [36]. For solving
the GP equation (2), we use the split-step Crank-Nicolson
method [36]. It is evident that we have a good qualitative
agreement between the two approaches.

The main result obtained previously by using the Gaussian
approximation is an analytical estimate for the frequencies of
the low-lying collective modes [5,6]. In this paper, we consider
excitations induced by a modulation of the interaction strength
and focus on the properties of the quadrupole and breathing
mode. We assume that the external trap is stationary, thus pre-
venting excitations of the dipole (Kohn) mode, corresponding
to the center-of-mass motion. By linearizing Eqs. (5) and (6)
around the equilibrium widths uρ0 and uz0, frequencies of

both the quadrupole ωQ0 and the breathing mode ωB0 were
obtained:

ωB0,Q0 =
√

2
[(

1 + λ2 − p

4u2
ρ0u

3
z0

)

±

√√√√
(

1 − λ2 + p

4u2
ρ0u

3
z0

)2

+ 8
(

p

4u3
ρ0u

2
z0

)2] 1
2

.

(11)

For the repulsive interaction, the quadrupole mode has a lower
frequency and is characterized by out-of-phase radial and
axial oscillations, while in-phase oscillations correspond to the
breathing mode. In the case of the experiment [19], Eq. (11)
yields

ωQ0 = 0.035375, ωB0 = 2.00002. (12)

We emphasize that, although based on the Gaussian ansatz, the
variational approximation reproduces exactly the frequencies
of collective modes not only for the weakly interacting BEC
but also for the strongly interacting BEC in the Thomas-
Fermi regime [4,5]. Therefore, it represents a solid analytical
description of BEC dynamics.

However, due to the nonlinear form of the underlying
GP equation, we expect nonlinearity-induced shifts in the
frequencies of low-lying modes with respect to the values
in Eq. (11) calculated using the linear stability analysis. In
particular, our goal is to describe collective modes induced by
the harmonic modulation of the interaction strength in Eq. (7).
In the case of a close matching of the driving frequency ! and
one of the BEC eigenmodes, we expect resonances (i.e., large
amplitude oscillations). Here, the role of the nonlinear terms
becomes crucial and nonlinear phenomena become visible, as
we discuss in the next section.

III. SPHERICALLY SYMMETRIC BEC

Using a simple symmetry-based reasoning, we conclude
that a harmonic modulation of interaction strength in the case
of a spherically symmetric BEC (i.e., λ = 1) leads to the
excitation of the breathing mode only, so that uρ(t) = uz(t) ≡
u(t). This fact simplifies numerical and analytical calculations,
and this is why we first consider this case before we embark
to the study of a more complex axially symmetric BEC.

Thus, the system of ordinary differential Eqs. (5) and (6)
reduces to a single equation:

ü(t) + u(t) − 1
u(t)3

− p(t)
u(t)4

= 0 . (13)

The equilibrium condensate width u0 satisfies

u0 − 1
u3

0

− p

u4
0

= 0 , (14)

and a linear stability analysis yields the breathing mode
frequency

ω0 =
√

1 + 3
u4

0

+ 4p

u5
0

. (15)

013618-3

NONLINEAR BOSE-EINSTEIN-CONDENSATE DYNAMICS . . . PHYSICAL REVIEW A 84, 013618 (2011)
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FIG. 1. (Color online) Time-dependent axial and radial conden-
sate widths calculated as root-mean-square averages. Comparison
of the numerical solution of time-dependent GP equation with a
solution obtained using the Gaussian approximation for the actual
experimental parameters in Eq. (8) and ! = 0.05.

In Fig. 1, we plot the resulting time-dependent axial and radial
condensate widths ρrms(t) and zrms(t) calculated as root-mean-
square values

ρrms(t) =

√

2π

∫ ∞

−∞
dz

∫ ∞

0
ρ dρ |ψ(ρ,z,t)|2 ρ2 , (9)

zrms(t) =

√

2π

∫ ∞

−∞
dz

∫ ∞

0
ρ dρ |ψ(ρ,z,t)|2 z2 , (10)

and compare them with numerical solutions of Eqs. (5) and (6).
We assume that initially the condensate is in the ground state. In
the variational description, this translates into initial conditions
uρ(0) = uρ0, u̇ρ(0) = 0, uz(0) = uz0, and u̇z(0) = 0, where
uρ0 and uz0 are time-independent solutions of Eqs. (5) and
(6), while in GP simulations we reach the ground state by
performing an imaginary-time propagation [36]. For solving
the GP equation (2), we use the split-step Crank-Nicolson
method [36]. It is evident that we have a good qualitative
agreement between the two approaches.

The main result obtained previously by using the Gaussian
approximation is an analytical estimate for the frequencies of
the low-lying collective modes [5,6]. In this paper, we consider
excitations induced by a modulation of the interaction strength
and focus on the properties of the quadrupole and breathing
mode. We assume that the external trap is stationary, thus pre-
venting excitations of the dipole (Kohn) mode, corresponding
to the center-of-mass motion. By linearizing Eqs. (5) and (6)
around the equilibrium widths uρ0 and uz0, frequencies of

both the quadrupole ωQ0 and the breathing mode ωB0 were
obtained:

ωB0,Q0 =
√

2
[(

1 + λ2 − p

4u2
ρ0u

3
z0

)

±

√√√√
(

1 − λ2 + p

4u2
ρ0u

3
z0

)2

+ 8
(

p

4u3
ρ0u

2
z0

)2] 1
2

.

(11)

For the repulsive interaction, the quadrupole mode has a lower
frequency and is characterized by out-of-phase radial and
axial oscillations, while in-phase oscillations correspond to the
breathing mode. In the case of the experiment [19], Eq. (11)
yields

ωQ0 = 0.035375, ωB0 = 2.00002. (12)

We emphasize that, although based on the Gaussian ansatz, the
variational approximation reproduces exactly the frequencies
of collective modes not only for the weakly interacting BEC
but also for the strongly interacting BEC in the Thomas-
Fermi regime [4,5]. Therefore, it represents a solid analytical
description of BEC dynamics.

However, due to the nonlinear form of the underlying
GP equation, we expect nonlinearity-induced shifts in the
frequencies of low-lying modes with respect to the values
in Eq. (11) calculated using the linear stability analysis. In
particular, our goal is to describe collective modes induced by
the harmonic modulation of the interaction strength in Eq. (7).
In the case of a close matching of the driving frequency ! and
one of the BEC eigenmodes, we expect resonances (i.e., large
amplitude oscillations). Here, the role of the nonlinear terms
becomes crucial and nonlinear phenomena become visible, as
we discuss in the next section.

III. SPHERICALLY SYMMETRIC BEC

Using a simple symmetry-based reasoning, we conclude
that a harmonic modulation of interaction strength in the case
of a spherically symmetric BEC (i.e., λ = 1) leads to the
excitation of the breathing mode only, so that uρ(t) = uz(t) ≡
u(t). This fact simplifies numerical and analytical calculations,
and this is why we first consider this case before we embark
to the study of a more complex axially symmetric BEC.

Thus, the system of ordinary differential Eqs. (5) and (6)
reduces to a single equation:

ü(t) + u(t) − 1
u(t)3

− p(t)
u(t)4

= 0 . (13)

The equilibrium condensate width u0 satisfies

u0 − 1
u3

0

− p

u4
0

= 0 , (14)

and a linear stability analysis yields the breathing mode
frequency

ω0 =
√

1 + 3
u4

0

+ 4p

u5
0

. (15)

013618-3

Excitation of Bose-Einstein Condensates (BECs) by harmonic
modulation of the scattering length
I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster, PRA
84, 013618 (2011).

Geometric Resonances in Bose-Einstein Condensates with Two- and
Three-Body Interactions
H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster,
arXiv:1208.0991.

Excellent agreement with Gross-Pitaevskii Equation
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Variational approach

Lagrangian

L(t) =
∫
L(r, t) dr ,

Lagrange density

L(r, t) =
i~
2

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
− ~2

2m
|∇ψ|2 − V (r)|ψ|2 − g

2
|ψ|4

Gaussian variational ansatz
Phys. Rev. Lett. 77, 5320 (1996)
Phys. Rev. A 56, 1424 (1997)

ψG(ρ, z, t) = N (t) exp

»
−1

2

„
ρ2

ũρ(t)2
+

z2

ũz(t)2

«
+ i

`
ρ2φρ(t) + z2φz(t)

´–
Time-dependent normalization

N (t) =
1√

π
3
2 ũ2

ρ(t)ũz(t)
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Variational approach
continued

Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, q ∈

{
ũi, φi

}
Phases

φρ(t) =
m ˙̃uρ
2~ũρ

, φz(t) =
m ˙̃uz
2~ũz

Dimensionless parameters:

τ = ωρt, ui(τ) =
ũi(t)
aho

, aho =

√
~

mωρ

Dimensionless driving

p(τ) = p0 + p1 cos
(

Ωτ
ωρ

)
, p0 =

√
2
π

Naav

aho
, p1 =

√
2
π

Nδa
aho
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Equations of motion

Equations of motion

üρ + uρ =
1
u3
ρ

+
p(τ)
u3
ρ uz

, üz + λ2uz =
1
u3
z

+
p(τ)
u2
ρ u

2
z

Isotropic condensate: uρ = uz = u and λ = 1
Reduction to one ODE:

ü+ u =
1
u3

+
p(τ)
u4

Stationary solutions:

uρ0 =
1
u3
ρ0

+
p0

u3
ρ0 uz0

, λ2uz0 =
1
u3
z0

+
p0

u2
ρ0 u

2
z0

Isotropic case:

u0 =
1
u3

0

+
p0

u4
0
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Equations of motion
Equilibrium position continued

Equilibrium condition: u5
0 − u0 = p0 (isotropic condensate)

      

    

    

u5
0 − u0

-1

0

1

1.50.5

p
0

u0

u0− u0+

p0

pcrit

Figure: Equilibrium widths u0± of a Bose-Einstein Condensate subject to
attractive interactions.
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Equations of motion
Mathieu equation

Linearize about equilibrium position u0

u(τ) = u0 + δu(τ)

Taylor expand nonlinear terms to first order in δu

1
(u0 + δu)3

=
1
u3

0

− 3
δu

u4
0

+ . . . ,
1

(u0 + δu)4
=

1
u4

0

− 4
δu

u5
0

+ . . .

With definitions

q = −8 p1

u5
0

(ω
Ω

)2

2t′ =
Ω τ

ωρ

c = 4
(ω

Ω

)2(
5− 1

u4
0

)
x(t′) = δu(τ)

Obtain an inhomogeneous Mathieu equation

ẍ(t′) +
[
c− 2 q cos(2 t′)

]
x(t′) = −u0

2
q cos(2 t′)
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Isotropic stability
Non-homogeneous term

Stability unaffected by non-homogeneous term

ẍ(t′) +
[
c− 2q cos 2t′

]
x(t′) = −u0

2
q cos 2t′

Infinite determinant method:
c −q 0

−2 q c− 4 −q · · ·
0 −q c− 16

...
. . .


︸ ︷︷ ︸

M


A0

A2

A4

...

 =


0

−u0
2 q

0

...



Coefficients: An ∼ (detM)−1

Stability borders ⇐⇒ coefficients diverge

Transform diagram for relevant parameters
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Isotropic stability
Results

case 2: u0+

p1/p0

(b)

case 1: u0−

Ω
/ω

p1/p0

(a)
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0

2

4

0

5

10

15

p1/p0

Ω
/ω

p1/p0

0 0.5 10 5
0

5

10

0

20

40

60



Parametric resonance Variational approach Equations of motion Isotropic stability Anisotropic stability Conclusions

Anisotropic stability
Coupled Mathieu equations

Equations of motion

üρ + uρ =
1
u3
ρ

+
p(τ)
u3
ρ uz

, üz + λ2uz =
1
u3
z

+
p(τ)
u2
ρ u

2
z

Linearize: ui = ui0 + δui

Definitions:
2t′ = Ωτ

ωρ
, q = p1,

x(t′) =
(

δuρ(τ)

δuz(τ)

)
, A = 4

(ωρ
Ω

)2( 4
p0

u3
ρ0u

2
z0

2p0
u3
ρ0u

2
z0

3λ2 + 1
u4
z0

)
,

f = 4
(ωρ

Ω

)2 p1
u3
ρ0uz0

p1
u2
ρ0u

2
z0

 , Q = −2
(ωρ

Ω

)2( 3
u4
ρ0uz0

1
u3
ρ0u

2
z0

2
u3
ρ0u

2
z0

2
u2
ρ0u

3
z0

)

Coupled, inhomogeneous Mathieu equations:

ẍ(t′) + [A− 2qQ cos(2t′)] x(t′) = f cos(2t′)
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Anisotropic stability
Coupled Mathieu equations continued

Non-homogeneity does not affect stability – J. Slane et al., J.
Nonlinear Dynamics and Systems Theory, 11 (2) (2011).

Floquet ansatz:

x(t′) =
∞∑

n=−∞
u2ne

(β+2in)t′

Recursion relation[
A + (β + 2in)2 I

]
u2n − qQ (u2n+2 + u2n−2) = 0

Ladder operators

S±2n =
{
A + [β + 2i (n+ 1)]2 I− qQS±2n±2

}−1

qQ

Continued matrix inversion„
A+β

2
I−q2Q

h
A + (β + 2i)

2 − . . .
i−1

+
h
A + (β − 2i)

2 − . . .
i−1

ff
Q

«
u0 = 0

Vanishing determinant for stability borders
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Anisotropic stability
Results, case 1: u0−
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Anisotropic stability
Results, case 2: u0+
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Conclusions and Outlook

Analogous physics: BEC and pendulum

Stabilize unstable equilibrium

Experimental possibilities

Dipolar BEC Dipolar Fermi Gas4.4. Low-Lying Excitations

0 5 10 15 20 25 30
0

1

2

3

4

5

6
R̃ρλ

R̃z

εb
dd

a)

0 1 2 3 4 5 6
0

2

4

6

8

10

εb
dd

Unstable

Metastable

Stable

λ

b)

Figure 4.3.: a) Aspect ratio κ = R̃ρλ/R̃z as a function of the dipolar interaction strength εb
dd for

different values of λ = κ(εb
dd = 0). For εb

dd < 1, the transcendental equation (4.15)
gives a single condensate aspect ratio κ, which corresponds to a stable configuration and
is depicted in solid curves. For εb

dd > 1, a second, unstable branch, depicted in broken
curves, shows up for the aspect ratio, which meets the stable one at εb

dd = εb,crit
dd . For

εb
dd > εb,crit

dd , no solution is available. b) Stability diagram of a cylinder-symmetric Bose-
Einstein condensate. The blue line depicts the critical value of the interaction strength
εb,crit
dd , above which no solution is available for Eqs. (4.42) and (4.43). The colored area

represents stable configurations, in which an additional unstable solution is present (light
green) or not (gray).

constant. Indeed, the symmetry of the problem allows to understand by analogy the properties of
the system in the inverse case, i.e., when λy is hold fixed and λx changes. We show in Fig. 4.4a) the
aspect ratio κx as a function of the dipolar interaction strength εb

dd for λx = 4 and λy = 2, 3, 4, 5, 6.
The solid lines represent the stable solutions of the stationary versions of Eqs. (4.41) while the broken
ones mark the unstable solutions. The orange curve depicts the cylinder-symmetric case for λx =
λy = 4. As λy increases to λy = 5 (purple) and λy = 6 (gray), the maximum value of the interaction
strength supporting a stable solution increases, the contrary being true for decreasing λy. This can be
understood as a consequence of the fact that a larger trap aspect ratio implies a more pancake-shaped
cloud, which favors the repulsive part of the dipolar interaction.

The absence of the cylinder symmetry can be displayed in a more dramatic way by considering the
stability diagram of a dipolar condensate. Fig. 4.4b) shows the value of the critical interaction strength
as a function of the trap aspect ratio λx. In addition to the cylinder-symmetric curve λy = λx (black),
the stability diagram is also calculated and shown for λy = 2λx (red) and λy = λx/2 (blue). We omit
the classification of the corresponding regions in order to highlight the importance of the asymmetry
for the stability diagram.

4.4. Low-Lying Excitations

The study of the low-lying excitations is a very important diagnostic tool for the physics of cold
atoms. In this section, we will discuss these excitations in a dipolar condensate by giving a general
description of the eigenvectors as well as semi-analytic expressions for the frequencies of oscillation in
the cylinder-symmetric dipolar condensate.
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Figure 7.1.: Aspect ratio in real space Rxλx/Rz for a cylinder-symmetric trap with λx = λy =
1, 2, 3, 4, 5, 6, 7 (bottom to top). The upper branch (continuous) corresponds to a local
minimum of the total energy, while the lower branch (dotted) represents an extremum but
not a minimum.

of the energy (7.31) shows that the system cannot have a global minimum for any non-vanishing εf
dd.

This can be seen by noticing that the stabilization comes from the factor K2 ∼ R−2 whereas the
dipolar interaction goes with R−3, rendering the energy unbounded from below. Nonetheless, for weak
enough dipolar interactions a local minimum might exist, to which the system would return after a
small perturbation. The regions satisfying this property will be called stable, while inflection points
and local maxima will be denoted unstable equilibrium points. The mathematical criterion behind
this classification scheme is given by the eigenvalues of the Hessian matrix associated with the four
effectively independent variables of the problem.

One of the consequences of the unboundedness of the internal energy is that, for each value of the
interaction strength εf

dd, where the system has a stable configuration, there is also another unstable
one. This can be seen by considering the aspect ratio of the cloud, which is depicted in Fig. 7.1 for
different values of the trap aspect ratio λx = λy, as a function of εf

dd. Here, we recognize that the
stable branch (continuous) of the real space aspect ratio starts at εf

dd = 0 with Rx = Rz = 1 and
extends itself until the value εf,crit

dd , where it meets the unstable branch (dotted). For εf
dd > εf,crit

dd , no
stationary solution for the equations (7.34) exists. The unstable branch, on the other hand, possesses
a vanishing aspect ratio for εf

dd = 0. This is due to the fact that the dipole-dipole interaction tends
to stretch the sample along the polarization direction. For a small value of εf

dd, the unbounded energy
solution is obtained with Rx → 0 and, consequently, Rx/Rz → 0, although the Thomas-Fermi radius
in the axial direction Rz remains finite. We remark that the upper branch corresponds to a local
minimum of the energy such that the Hessian matrix has only positive eigenvalues, while the lower
one is an extremum but not a minimum, corresponding to a Hessian matrix with at least one negative
eigenvalue. The corresponding graph for a dipolar Bose-Einstein condensate shown in Fig 4.3 in the
Thomas-Fermi regime bears a crucial difference: unstable solutions only become available for εb

dd > 1
[97]. The physical reason for this effect is that in dipolar condensates the stabilization comes from the
contact interaction Eq. (4.30), which scales with R−3, just like the dipole-dipole interaction.

In order to study the effect of a triaxial trap on the static properties of a dipolar Fermi gas, we explore
further the symmetry f(x, y) = f(y, x) of the anisotropy function as defined by Eq. (4.34). Due to
this symmetry, we only need to discuss the aspect ratio Rxλx/Rz since the properties of Ryλy/Rz can
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Cdd
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, εfdd =

Cdd

4π
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