

William Cairncross^{1,2} and Axel Pelster^{3,4}

¹Institut für Theoretische Physik, Freie Universität Berlin, Germany
²Faculty of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Canada
³Hanse-Wissenschaftskolleg, Delmenhorst, Germany
⁴Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

arXiv:1209.3148

Parametric resonance 000000	Variational approach	Equations of motion	lsotropic stability 00	Anisotropic stability 0000	Conclusions
Outline					

- Parametric resonance
 - Pendulum physics
 - Mathieu equation
 - BEC
- 2 Variational approach
- 3 Equations of motion
 - Equilibrium position

Isotropic stability

- Non-homogeneous Mathieu equation
- Results
- 5 Anisotropic stability
 - Coupled Mathieu equations
 - Results

Parametric	resonance				
Parametric resonance	Variational approach	Equations of motion	lsotropic stability 00	Anisotropic stability 0000	Conclusions

- **Parametric oscillator:** harmonic oscillator with time-dependent parameters
- Parametric resonance: resonant behaviour of a parametric oscillator

Inverted pe	endulum wi [.]	th a vertica	lly oscillat	ed pivot	
Parametric resonance	Variational approach	Equations of motion	Isotropic stability 00	Anisotropic stability 0000	Conclusions

(Loading...)

- Driving amplitude A, frequency Ω
- Equation of motion

$$\ddot{\varphi}(t) + \left(\frac{g}{l} + \frac{A\Omega^2}{l}\cos\Omega t\right)\sin\varphi(t) = 0$$

• Linearize:

$$\sin\varphi(t)\simeq\varphi(t)$$

With definitions

$$c = \pm \frac{4g}{l\Omega^2}$$
 $q = \mp \frac{2A}{l}$ $2t' = \Omega t$ $x(t') = \varphi(t)$

Mathieu equation

$$\ddot{x}(t') + [c - 2q\cos 2t']x(t') = 0$$

Parametric resonance ○●00○○	Variational approach	Equations of motion	lsotropic stability 00	Anisotropic stability 0000	Conclusions
Mathieu e	quation				

$$\ddot{x}(t') + \left[c - 2q\cos 2t'\right]x(t') = 0$$

- Floquet theory: on stability borders, x(t') is π or 2π -periodic.
- One method: Fourier series ansatz

$$x(t') = \sum_{n=0}^{\infty} A_n \cos(n t') + \sum_{n=1}^{\infty} B_n \sin(n t')$$

Obtain decoupled systems

$$\sum_{n=0}^{\infty} A_n \Big[(c-n^2) \, \cos(n \, t') - q \, \cos\left((n-1) \, t'\right) - q \, \cos\left((n+1) \, t'\right) \Big] = 0$$

$$\sum_{n=1}^{\infty} B_n \Big[(c-n^2) \, \sin(n\,t') - q \, \sin\left((n-1)\,t'\right) - q \, \sin\left((n+1)\,t'\right) \Big] = 0$$

Parametric resonance	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
00000					
Mathieu e	quation				

- Infinite matrix equations truncate for approx. solution
- Vanishing determinants for nontrivial A_n , B_n

Γ	c	-q	0	1	$\begin{bmatrix} A_0 \end{bmatrix}$		[c - 4	-q	0	1	$\begin{bmatrix} B_{0} \end{bmatrix}$	1
	-2 q	c - 4	-q		A_2			-q	c - 16	-q		B2	:
	0	-q	c - 16		A_4	= 0,		0	-q	c - 36		B4	= 0,
L		:		·.]			l		:		·.]	L :]
	Г ^с	-q	0	1	$\begin{bmatrix} A_1 \end{bmatrix}$	1		c - 1	-q	0	1	$\begin{bmatrix} B_1 \end{bmatrix}$	1
	-2 q	c - 1	-q		A_3			-q	c - 9	-q		B3	
	0	-q	c - 9		A_5	= 0,		0	-q	c - 25		B5	= 0
		:		÷.	:				1		·.	1 :	
	L						_	_				L .	-

• (q,c) for vanishing determinant gives stability borders

Parametric resonance	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
000000					
Mathieu e	equation				

Parametric resonance	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
000000					
Bose-Einst	ein Conder	isate			

- Extreme Tunability of Interactions in a ⁷Li Bose-Einstein Condensate
 S. E. Pollack et al., PRL 102, 090402 (2009)
- Tuning of scattering length by Feshbach resonance

$$a(B) = a_{\rm BG} \left(1 - \frac{\Delta}{B - B_{\infty}} \right)$$

 Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length
 K. M. F. Magalhães et al., PRA 81, 053627 (2010)

$$B(t) = B_{av} + \delta_B \cos \Omega t, \qquad a = a_{av} + \delta_a \cos \Omega t$$

where

$$a_{\rm av} = a(B_{\rm av}), \qquad \delta_a = \frac{a_{\rm BG}\Delta\delta_B}{(B_{\rm av} - B_{\infty})^2}$$

Parametric resonance		Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
000000		00	00	0000	
	· C I				

Bose-Einstein Condensate

• Analogous stability behaviour for BEC?

- Excitation of Bose-Einstein Condensates (BECs) by harmonic modulation of the scattering length
 - I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster, PRA 84, 013618 (2011).
- Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions

H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster, arXiv:1208.0991.

• Excellent agreement with Gross-Pitaevskii Equation

Variationa	Lapproach				
000000	variational approach	OO	00	0000	Conclusions
Development and a second second	V/	Equations of motion	In a sum of a set of a little of	A minimum in the bility of	Constructions

• Lagrangian

$$L(t) = \int \mathcal{L}(\mathbf{r}, t) \, d\mathbf{r}$$

Lagrange density

$$\mathcal{L}(\mathbf{r},t) = \frac{i\hbar}{2} \left(\psi \frac{\partial \psi^*}{\partial t} - \psi^* \frac{\partial \psi}{\partial t} \right) - \frac{\hbar^2}{2m} |\nabla \psi|^2 - V(\mathbf{r})|\psi|^2 - \frac{g}{2} |\psi|^4$$

Gaussian variational ansatz
 Phys. Rev. Lett. 77, 5320 (1996)
 Phys. Rev. A 56, 1424 (1997)

$$\psi^{\rm G}(\rho, z, t) = \mathcal{N}(t) \exp\left[-\frac{1}{2}\left(\frac{\rho^2}{\tilde{u}_{\rho}(t)^2} + \frac{z^2}{\tilde{u}_z(t)^2}\right) + i\left(\rho^2 \phi_{\rho}(t) + z^2 \phi_z(t)\right)\right]$$

• Time-dependent normalization

$$\mathcal{N}(t) = \frac{1}{\sqrt{\pi^{\frac{3}{2}}\tilde{u}_{\rho}^2(t)\tilde{u}_z(t)}}$$

Parametric resonance 000000	Variational approach	Equations of motion	lsotropic stability OO	Anisotropic stability 0000	Conclusions
Variational	approach				

• Euler-Lagrange equations

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0, \qquad q \in \left\{\tilde{u}_i, \phi_i\right\}$$

Phases

$$\phi_{\rho}(t) = \frac{m\tilde{\check{u}}_{\rho}}{2\hbar\tilde{u}_{\rho}}, \qquad \phi_{z}(t) = \frac{m\tilde{\check{u}}_{z}}{2\hbar\tilde{u}_{z}}$$

• Dimensionless parameters:

$$au = \omega_{
ho} t, \quad u_i(au) = rac{ ilde{u}_i(t)}{a_{
m ho}}, \quad a_{
m ho} = \sqrt{rac{\hbar}{m\omega_{
ho}}}$$

• Dimensionless driving

$$p(\tau) = p_0 + p_1 \cos\left(\frac{\Omega\tau}{\omega_{\rho}}\right), \quad p_0 = \sqrt{\frac{2}{\pi}} \frac{Na_{\rm av}}{a_{\rm ho}}, \quad p_1 = \sqrt{\frac{2}{\pi}} \frac{N\delta_a}{a_{\rm ho}}$$

Parametric resonance 000000		Equations of motion	lsotropic stability OO	Anisotropic stability 0000	Conclusions
Equations	of motion				

Equations of motion

$$\ddot{u}_{\rho} + u_{\rho} = \frac{1}{u_{\rho}^3} + \frac{p(\tau)}{u_{\rho}^3 u_z}, \qquad \ddot{u}_z + \lambda^2 u_z = \frac{1}{u_z^3} + \frac{p(\tau)}{u_{\rho}^2 u_z^2}$$

• Isotropic condensate: $u_{\rho} = u_z = u$ and $\lambda = 1$

• Reduction to one ODE:

$$\ddot{u} + u = \frac{1}{u^3} + \frac{p(\tau)}{u^4}$$

• Stationary solutions:

$$u_{\rho 0} = \frac{1}{u_{\rho 0}^3} + \frac{p_0}{u_{\rho 0}^3 u_{z 0}}, \qquad \lambda^2 u_{z 0} = \frac{1}{u_{z 0}^3} + \frac{p_0}{u_{\rho 0}^2 u_{z 0}^2}$$

Isotropic case:

$$u_0 = \frac{1}{u_0^3} + \frac{p_0}{u_0^4}$$

Parametric resonance		Equations of motion ●O	lsotropic stability 00	Anisotropic stability 0000	Conclusions
Equations	of motion				

• Equilibrium condition: $u_0^5 - u_0 = p_0$ (isotropic condensate)

Figure: Equilibrium widths $u_{0\pm}$ of a Bose-Einstein Condensate subject to attractive interactions.

Parametric resonance	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
Equations Mathieu equation	of motion				

• Linearize about equilibrium position u_0

$$u(\tau) = u_0 + \delta u(\tau)$$

 $\bullet\,$ Taylor expand nonlinear terms to first order in δu

$$\frac{1}{(u_0+\delta u)^3} = \frac{1}{u_0^3} - 3\frac{\delta u}{u_0^4} + \dots, \qquad \frac{1}{(u_0+\delta u)^4} = \frac{1}{u_0^4} - 4\frac{\delta u}{u_0^5} + \dots$$

With definitions

$$q = -\frac{8 p_1}{u_0^5} \left(\frac{\omega}{\Omega}\right)^2 \qquad \qquad 2t' = \frac{\Omega \tau}{\omega_{\rho}}$$
$$c = 4 \left(\frac{\omega}{\Omega}\right)^2 \left(5 - \frac{1}{u_0^4}\right) \qquad \qquad x(t') = \delta u(\tau)$$

• Obtain an inhomogeneous Mathieu equation

$$\ddot{x}(t') + \left[c - 2q\cos(2t')\right]x(t') = -\frac{u_0}{2}q\cos(2t')$$

Parametric resonance	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
000000		00		0000	
Isotropic s	tability				

• Stability unaffected by non-homogeneous term

$$\ddot{x}(t') + \left[c - 2q\cos 2t'\right]x(t') = -\frac{u_0}{2}q\cos 2t'$$

• Infinite determinant method:

- Coefficients: $A_n \sim (\det M)^{-1}$
- Stability borders \iff coefficients diverge
- Transform diagram for relevant parameters

Parametric resonance 000000	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability 0000	Conclusions
Isotropic s	stability				

Parametric resonance	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
Anisotropic	stability				

Equations of motion

$$\ddot{u}_{\rho} + u_{\rho} = \frac{1}{u_{\rho}^3} + \frac{p(\tau)}{u_{\rho}^3 u_z}, \quad \ddot{u}_z + \lambda^2 u_z = \frac{1}{u_z^3} + \frac{p(\tau)}{u_{\rho}^2 u_z^2}$$

- Linearize: $u_i = u_{i0} + \delta u_i$
- Definitions:

$$2t' = \frac{\Omega\tau}{\omega_{\rho}}, \qquad q = p_1,$$
$$\mathbf{x}(t') = \begin{pmatrix} \delta u_{\rho}(\tau) \\ \delta u_{z}(\tau) \end{pmatrix}, \qquad \mathbf{A} = 4\left(\frac{\omega_{\rho}}{\Omega}\right)^2 \begin{pmatrix} 4 & \frac{v_0}{u_{\rho}^3 u_{z0}^2} \\ \frac{2p_0}{u_{\rho}^3 u_{z0}^2} & 3\lambda^2 + \frac{1}{u_{z0}^4} \end{pmatrix},$$

$$\mathbf{f} = 4 \left(\frac{\omega_{\rho}}{\Omega}\right)^2 \begin{pmatrix} \frac{p_1}{u_{\rho 0}^3 u_{z 0}} \\ \frac{p_1}{u_{\rho 0}^2 u_{z 0}^2} \end{pmatrix}, \quad \mathbf{Q} = -2 \left(\frac{\omega_{\rho}}{\Omega}\right)^2 \begin{pmatrix} \frac{3}{u_{\rho 0}^4 u_{z 0}} & \frac{1}{u_{\rho 0}^3 u_{z 0}^2} \\ \frac{2}{u_{\rho 0}^3 u_{z 0}^2} & \frac{2}{u_{\rho 0}^3 u_{z 0}^3} \end{pmatrix}$$

• Coupled, inhomogeneous Mathieu equations:

$$\ddot{\mathbf{x}}(t') + \left[\mathbf{A} - 2q\,\mathbf{Q}\cos(2t')\right]\mathbf{x}(t') = \mathbf{f}\cos(2t')$$

Parametric resonance		Equations of motion	lsotropic stability OO	Anisotropic stability O●○○	Conclusions
Anisotropic Coupled Mathieu	stability	d			

- Non-homogeneity does not affect stability J. Slane et al., J. Nonlinear Dynamics and Systems Theory, 11 (2) (2011).
- Floquet ansatz:

$$\mathbf{x}(t') = \sum_{n=-\infty}^{\infty} \mathbf{u}_{2n} e^{(\beta+2in)t'}$$

Recursion relation

$$\left[\mathbf{A} + \left(\beta + 2in\right)^{2}\mathbf{I}\right]\mathbf{u}_{2n} - q\mathbf{Q}\left(\mathbf{u}_{2n+2} + \mathbf{u}_{2n-2}\right) = \mathbf{0}$$

Ladder operators

$$\mathbf{S}_{2n}^{\pm} = \left\{ \mathbf{A} + \left[\beta + 2i\left(n+1\right)\right]^2 \mathbf{I} - q\mathbf{Q}\mathbf{S}_{2n\pm2}^{\pm} \right\}^{-1} q\mathbf{Q}$$

• Continued matrix inversion

$$\left(\mathbf{A} + \beta^{2}\mathbf{I} - q^{2}\mathbf{Q}\left\{\left[\mathbf{A} + \left(\beta + 2i\right)^{2} - \dots\right]^{-1} + \left[\mathbf{A} + \left(\beta - 2i\right)^{2} - \dots\right]^{-1}\right\}\mathbf{Q}\right)\mathbf{u}_{0} = \mathbf{0}$$

• Vanishing determinant for stability borders

	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
				0000	
Anisotrop	ic stability				

	Variational approach	Equations of motion	Isotropic stability	Anisotropic stability	Conclusions
				0000	
Anisotropio	c stability				

Results, case 2: \mathbf{u}_{0+}

Parametric resonance		Equations of motion	lsotropic stability 00	Anisotropic stability 0000	Conclusions
Conclusion	s and Outlo	ook			

- Analogous physics: BEC and pendulum
- Stabilize unstable equilibrium
- Experimental possibilities

 A.R.P. Lima and A. Pelster, PRA 81, 021606(R)/1-4 (2010) and PRA 84, 041604(R)/1-4 (2011)

Parametric resonance 000000	Variational approach	Equations of motion	lsotropic stability OO	Anisotropic stability 0000	Conclusions

Thank you for your attention

Generously sponsored by the DAAD RISE program