Parametric Resonance in Bose-Einstein Condensates

William Cairncross ${ }^{1,2}$ and Axel Pelster ${ }^{3,4}$
${ }^{1}$ Institut für Theoretische Physik, Freie Universität Berlin, Germany
${ }^{2}$ Faculty of Physics, Engineering Physics \& Astronomy, Queen's University, Kingston, Canada
${ }^{3}$ Hanse-Wissenschaftskolleg, Delmenhorst, Germany
${ }^{4}$ Fachbereich Physik und Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Germany

arXiv:1209.3148

Outline

(1) Parametric resonance

- Pendulum physics
- Mathieu equation
- BEC
(2) Variational approach
(3) Equations of motion
- Equilibrium position

4) Isotropic stability

- Non-homogeneous Mathieu equation
- Results
(5) Anisotropic stability
- Coupled Mathieu equations
- Results
(6) Conclusions

Parametric resonance

- Parametric oscillator: harmonic oscillator with time-dependent parameters
- Parametric resonance: resonant behaviour of a parametric oscillator

Inverted pendulum with a vertically oscillated pivot

Pendulum physics

- Driving amplitude A, frequency Ω
- Equation of motion

$$
\ddot{\varphi}(t)+\left(\frac{g}{l}+\frac{A \Omega^{2}}{l} \cos \Omega t\right) \sin \varphi(t)=0
$$

- Linearize:

$$
\sin \varphi(t) \simeq \varphi(t)
$$

- With definitions

$$
c= \pm \frac{4 g}{l \Omega^{2}} \quad q=\mp \frac{2 A}{l} \quad 2 t^{\prime}=\Omega t \quad x\left(t^{\prime}\right)=\varphi(t)
$$

- Mathieu equation

$$
\ddot{x}\left(t^{\prime}\right)+\left[c-2 q \cos 2 t^{\prime}\right] x\left(t^{\prime}\right)=0
$$

Mathieu equation

$$
\ddot{x}\left(t^{\prime}\right)+\left[c-2 q \cos 2 t^{\prime}\right] x\left(t^{\prime}\right)=0
$$

- Floquet theory: on stability borders, $x\left(t^{\prime}\right)$ is π - or 2π-periodic.
- One method: Fourier series ansatz

$$
x\left(t^{\prime}\right)=\sum_{n=0}^{\infty} A_{n} \cos \left(n t^{\prime}\right)+\sum_{n=1}^{\infty} B_{n} \sin \left(n t^{\prime}\right)
$$

- Obtain decoupled systems

$$
\begin{aligned}
& \sum_{n=0}^{\infty} A_{n}\left[\left(c-n^{2}\right) \cos \left(n t^{\prime}\right)-q \cos \left((n-1) t^{\prime}\right)-q \cos \left((n+1) t^{\prime}\right)\right]=0 \\
& \sum_{n=1}^{\infty} B_{n}\left[\left(c-n^{2}\right) \sin \left(n t^{\prime}\right)-q \sin \left((n-1) t^{\prime}\right)-q \sin \left((n+1) t^{\prime}\right)\right]=0
\end{aligned}
$$

Mathieu equation

Continued

- Infinite matrix equations - truncate for approx. solution
- Vanishing determinants for nontrivial A_{n}, B_{n}

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
c & -q & 0 \\
-2 q & c-4 & -q & \ldots \\
0 & -q & c-16 & \\
& \vdots & & \ddots
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
A_{2} \\
A_{4} \\
\vdots
\end{array}\right]=\mathbf{0}, \quad\left[\begin{array}{cccc}
c-4 & -q & 0 & \\
-q & c-16 & -q & \cdots \\
0 & -q & c-36 & \\
& \vdots & & \ddots
\end{array}\right]\left[\begin{array}{c}
B_{0} \\
B_{2} \\
B_{4} \\
\vdots
\end{array}\right]=\mathbf{o},} \\
& {\left[\begin{array}{cccc}
c & -q & 0 & \\
-2 q & c-1 & -q & \ldots \\
0 & -q & c-9 & \\
& \vdots & & \ddots
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
A_{3} \\
A_{5} \\
\vdots
\end{array}\right]=\mathbf{0}, \quad\left[\begin{array}{cccc}
c-1 & -q & 0 & \\
-q & c-9 & -q & \ldots \\
0 & -q & c-25 & \\
& \vdots & & \ddots
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{3} \\
B_{5} \\
\vdots
\end{array}\right]=\mathbf{0}}
\end{aligned}
$$

- (q, c) for vanishing determinant gives stability borders

Mathieu equation

Stability diagram

Bose-Einstein Condensate

- Extreme Tunability of Interactions in a ${ }^{7} \mathrm{Li}$ Bose-Einstein Condensate S. E. Pollack et al., PRL 102, 090402 (2009)
- Tuning of scattering length by Feshbach resonance

$$
a(B)=a_{\mathrm{BG}}\left(1-\frac{\Delta}{B-B_{\infty}}\right)
$$

- Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length
K. M. F. Magalhães et al., PRA 81, 053627 (2010)

$$
B(t)=B_{\mathrm{av}}+\delta_{B} \cos \Omega t, \quad a=a_{\mathrm{av}}+\delta_{a} \cos \Omega t
$$

where

$$
a_{\mathrm{av}}=a\left(B_{\mathrm{av}}\right), \quad \delta_{a}=\frac{a_{\mathrm{BG}} \Delta \delta_{B}}{\left(B_{\mathrm{av}}-B_{\infty}\right)^{2}}
$$

Bose-Einstein Condensate

- Analogous stability behaviour for BEC?

- Excitation of Bose-Einstein Condensates (BECs) by harmonic modulation of the scattering length
I. Vidanović, A. Balaž, H. Al-Jibbouri, and A. Pelster, PRA 84, 013618 (2011).
- Geometric Resonances in Bose-Einstein Condensates with Two- and Three-Body Interactions
H. Al-Jibbouri, I. Vidanović, A. Balaž, and A. Pelster, arXiv:1208.0991.
- Excellent agreement with Gross-Pitaevskii Equation

Variational approach

- Lagrangian

$$
L(t)=\int \mathcal{L}(\mathbf{r}, t) d \mathbf{r}
$$

- Lagrange density

$$
\mathcal{L}(\mathbf{r}, t)=\frac{i \hbar}{2}\left(\psi \frac{\partial \psi^{*}}{\partial t}-\psi^{*} \frac{\partial \psi}{\partial t}\right)-\frac{\hbar^{2}}{2 m}|\nabla \psi|^{2}-V(\mathbf{r})|\psi|^{2}-\frac{g}{2}|\psi|^{4}
$$

- Gaussian variational ansatz

Phys. Rev. Lett. 77, 5320 (1996)
Phys. Rev. A 56, 1424 (1997)

$$
\psi^{\mathrm{G}}(\rho, z, t)=\mathcal{N}(t) \exp \left[-\frac{1}{2}\left(\frac{\rho^{2}}{\tilde{u}_{\rho}(t)^{2}}+\frac{z^{2}}{\tilde{u}_{z}(t)^{2}}\right)+i\left(\rho^{2} \phi_{\rho}(t)+z^{2} \phi_{z}(t)\right)\right]
$$

- Time-dependent normalization

$$
\mathcal{N}(t)=\frac{1}{\sqrt{\pi^{\frac{3}{2}} \tilde{u}_{\rho}^{2}(t) \tilde{u}_{z}(t)}}
$$

Variational approach

- Euler-Lagrange equations

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=0, \quad q \in\left\{\tilde{u}_{i}, \phi_{i}\right\}
$$

- Phases

$$
\phi_{\rho}(t)=\frac{m \dot{\tilde{u}}_{\rho}}{2 \hbar \tilde{u}_{\rho}}, \quad \phi_{z}(t)=\frac{m \dot{\tilde{u}}_{z}}{2 \hbar \tilde{u}_{z}}
$$

- Dimensionless parameters:

$$
\tau=\omega_{\rho} t, \quad u_{i}(\tau)=\frac{\tilde{u}_{i}(t)}{a_{\mathrm{ho}}}, \quad a_{\mathrm{ho}}=\sqrt{\frac{\hbar}{m \omega_{\rho}}}
$$

- Dimensionless driving

$$
p(\tau)=p_{0}+p_{1} \cos \left(\frac{\Omega \tau}{\omega_{\rho}}\right), \quad p_{0}=\sqrt{\frac{2}{\pi}} \frac{N a_{\mathrm{av}}}{a_{\mathrm{ho}}}, \quad p_{1}=\sqrt{\frac{2}{\pi}} \frac{N \delta_{a}}{a_{\mathrm{ho}}}
$$

Equations of motion

- Equations of motion

$$
\ddot{u}_{\rho}+u_{\rho}=\frac{1}{u_{\rho}^{3}}+\frac{p(\tau)}{u_{\rho}^{3} u_{z}}, \quad \ddot{u}_{z}+\lambda^{2} u_{z}=\frac{1}{u_{z}^{3}}+\frac{p(\tau)}{u_{\rho}^{2} u_{z}^{2}}
$$

- Isotropic condensate: $u_{\rho}=u_{z}=u$ and $\lambda=1$
- Reduction to one ODE:

$$
\ddot{u}+u=\frac{1}{u^{3}}+\frac{p(\tau)}{u^{4}}
$$

- Stationary solutions:

$$
u_{\rho 0}=\frac{1}{u_{\rho 0}^{3}}+\frac{p_{0}}{u_{\rho 0}^{3} u_{z 0}}, \quad \lambda^{2} u_{z 0}=\frac{1}{u_{z 0}^{3}}+\frac{p_{0}}{u_{\rho 0}^{2} u_{z 0}^{2}}
$$

- Isotropic case:

$$
u_{0}=\frac{1}{u_{0}^{3}}+\frac{p_{0}}{u_{0}^{4}}
$$

Equations of motion

Equilibrium position continued

- Equilibrium condition: $u_{0}^{5}-u_{0}=p_{0}$ (isotropic condensate)

Figure: Equilibrium widths $u_{0 \pm}$ of a Bose-Einstein Condensate subject to attractive interactions.

Equations of motion

Mathieu equation

- Linearize about equilibrium position u_{0}

$$
u(\tau)=u_{0}+\delta u(\tau)
$$

- Taylor expand nonlinear terms to first order in δu

$$
\frac{1}{\left(u_{0}+\delta u\right)^{3}}=\frac{1}{u_{0}^{3}}-3 \frac{\delta u}{u_{0}^{4}}+\ldots, \quad \frac{1}{\left(u_{0}+\delta u\right)^{4}}=\frac{1}{u_{0}^{4}}-4 \frac{\delta u}{u_{0}^{5}}+\ldots
$$

- With definitions

$$
\begin{array}{rlrl}
q & =-\frac{8 p_{1}}{u_{0}^{5}}\left(\frac{\omega}{\Omega}\right)^{2} & 2 t^{\prime} & =\frac{\Omega \tau}{\omega_{\rho}} \\
c & =4\left(\frac{\omega}{\Omega}\right)^{2}\left(5-\frac{1}{u_{0}^{4}}\right) & x\left(t^{\prime}\right) & =\delta u(\tau)
\end{array}
$$

- Obtain an inhomogeneous Mathieu equation

$$
\ddot{x}\left(t^{\prime}\right)+\left[c-2 q \cos \left(2 t^{\prime}\right)\right] x\left(t^{\prime}\right)=-\frac{u_{0}}{2} q \cos \left(2 t^{\prime}\right)
$$

Isotropic stability

Non-homogeneous term

- Stability unaffected by non-homogeneous term

$$
\ddot{x}\left(t^{\prime}\right)+\left[c-2 q \cos 2 t^{\prime}\right] x\left(t^{\prime}\right)=-\frac{u_{0}}{2} q \cos 2 t^{\prime}
$$

- Infinite determinant method:

- Coefficients: $A_{n} \sim(\operatorname{det} M)^{-1}$
- Stability borders \Longleftrightarrow coefficients diverge
- Transform diagram for relevant parameters

Isotropic stability

Results

Anisotropic stability

Coupled Mathieu equations

- Equations of motion

$$
\ddot{u}_{\rho}+u_{\rho}=\frac{1}{u_{\rho}^{3}}+\frac{p(\tau)}{u_{\rho}^{3} u_{z}}, \quad \ddot{u}_{z}+\lambda^{2} u_{z}=\frac{1}{u_{z}^{3}}+\frac{p(\tau)}{u_{\rho}^{2} u_{z}^{2}}
$$

- Linearize: $u_{i}=u_{i 0}+\delta u_{i}$
- Definitions:

$$
\begin{gathered}
2 t^{\prime}=\frac{\Omega \tau}{\omega_{\rho}}, \\
\mathbf{x}\left(t^{\prime}\right)=\binom{\delta u_{\rho}(\tau)}{\delta u_{z}(\tau)}, \\
\mathbf{f}=4\left(\frac{\omega_{\rho}}{\Omega}\right)^{2}\binom{\frac{p_{1}}{u_{\rho 0}^{3} u_{z 0}}}{\frac{p_{1}}{u_{\rho 0}^{2} u_{z 0}^{2}}}, \quad \mathbf{Q}=4\left(\frac{\omega_{\rho}}{\Omega}\right)^{2}\left(\begin{array}{cc}
4 & \frac{p_{0}}{u_{\rho 0}^{3} u_{z 0}^{2}} \\
\frac{2 p_{0}}{u_{\rho 0}^{3} u_{z 0}^{2}} & 3 \lambda^{2}+\frac{1}{u_{z 0}^{4}}
\end{array}\right),
\end{gathered}
$$

- Coupled, inhomogeneous Mathieu equations:

$$
\ddot{\mathbf{x}}\left(t^{\prime}\right)+\left[\mathbf{A}-2 q \mathbf{Q} \cos \left(2 t^{\prime}\right)\right] \mathbf{x}\left(t^{\prime}\right)=\mathbf{f} \cos \left(2 t^{\prime}\right)
$$

Anisotropic stability

Coupled Mathieu equations continued

- Non-homogeneity does not affect stability - J. Slane et al., J. Nonlinear Dynamics and Systems Theory, 11 (2) (2011).
- Floquet ansatz:

$$
\mathbf{x}\left(t^{\prime}\right)=\sum_{n=-\infty}^{\infty} \mathbf{u}_{2 n} e^{(\beta+2 i n) t^{\prime}}
$$

- Recursion relation

$$
\left[\mathbf{A}+(\beta+2 i n)^{2} \mathbf{I}\right] \mathbf{u}_{2 n}-q \mathbf{Q}\left(\mathbf{u}_{2 n+2}+\mathbf{u}_{2 n-2}\right)=\mathbf{0}
$$

- Ladder operators

$$
\mathbf{S}_{2 n}^{ \pm}=\left\{\mathbf{A}+[\beta+2 i(n+1)]^{2} \mathbf{I}-q \mathbf{Q} \mathbf{S}_{2 n \pm 2}^{ \pm}\right\}^{-1} q \mathbf{Q}
$$

- Continued matrix inversion

$$
\left(\mathbf{A}+\beta^{2} \mathbf{I}-q^{2} \mathbf{Q}\left\{\left[\mathbf{A}+(\beta+2 i)^{2}-\ldots\right]^{-1}+\left[\mathbf{A}+(\beta-2 i)^{2}-\ldots\right]^{-1}\right\} \mathbf{Q}\right) \mathbf{u}_{0}=\mathbf{0}
$$

- Vanishing determinant for stability borders

Anisotropic stability

Results, case 1: \mathbf{u}_{0-}

Anisotropic stability

Results, case $2: \mathbf{u}_{0+}$

Conclusions and Outlook

- Analogous physics: BEC and pendulum
- Stabilize unstable equilibrium
- Experimental possibilities

Dipolar BEC

Dipolar Fermi Gas

$$
\epsilon_{\mathrm{dd}}^{\mathrm{b}}=\frac{C_{\mathrm{dd}}}{3 g}
$$

- A.R.P. Lima and A. Pelster, PRA 81, 021606(R)/1-4 (2010) and PRA 84, 041604(R)/1-4 (2011)

Thank you for your attention

Generously sponsored by the DAAD RISE program

