Collective Excitations in a Trapped Bose-Einstein Condensate with Weak Disorder

Berlin, February 26, 2008
Gianmaria Falco
(Universität zu Köln)

Prof. Robert Graham
Axel Pelster

Weak disorder: Bogoliubov theory for uniform gas.

K. Huang and H. F. Meng, PRL 69, 644 (1992)

The action of the theory:

$$
\begin{aligned}
S\left[\psi^{*}, \psi ; U\right] & =\int_{0}^{\hbar \beta} d \tau\left(\int d \mathbf{r} \psi^{*}(\mathbf{r}, \tau)\left[\hbar \frac{\partial}{\partial \tau}-\frac{\hbar^{2} \nabla^{2}}{2 m}-\mu+U(\mathbf{r})\right] \psi(\mathbf{r}, \tau)\right. \\
& \left.+\frac{1}{2} g \int d \mathbf{r} \psi^{*}(\mathbf{r}, \tau) \psi^{*}(\mathbf{r}, \tau) \psi(\mathbf{r}, \tau) \psi(\mathbf{r}, \tau)\right) \quad g=4 \pi \hbar^{2} a / m
\end{aligned}
$$

Ensemble averages assumed:

$$
\begin{aligned}
\langle U(\mathbf{r})\rangle & =0, \\
\left\langle U(\mathbf{r}) U\left(\mathbf{r}^{\prime}\right)\right\rangle & =R\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=R_{0} \frac{\exp \left\{-\frac{\left(\mathbf{r}-\mathbf{r}^{\prime}\right)^{2}}{2 \xi^{2}}\right\}}{\left(2 \pi \xi^{2}\right)^{3 / 2}}
\end{aligned}
$$

Delta correlated disorder: $\xi \rightarrow 0$

Perturbative approach: uniform gas at $T=0$

Total density: $\quad n=n_{0}+n_{g}+n_{\mathrm{R}}$

$$
\text { interaction: } \quad n_{g}=\frac{8}{3 \sqrt{\pi}} \sqrt{a n}^{3}
$$

disorder:

$$
n_{\mathrm{R}}=R_{0} \frac{m^{2}}{8 \pi^{3 / 2} \hbar^{4}} \sqrt{\frac{n}{a}} f\left(4 \pi n a \xi^{2}\right)
$$

Galilei boost \longrightarrow Superfluid density:

Normal component due to the disorder:

$$
n_{n}=n-n_{s}=\frac{4}{3} n_{\mathrm{R}} \quad \rightarrow \quad n_{0}>n_{s}
$$

Perturbative approach: conditions of validity

Thermodynamics
Dilute gas: $\quad n^{1 / 3} a \ll 1$

Weak disorder approximation:

$$
n_{\mathrm{R}} \ll n \Leftrightarrow R_{0}^{\prime} \equiv c_{0} \frac{\xi_{\text {heal }}}{\mathcal{L}} \ll 1
$$

T. Nattermann \& V. Pokrovskii PRL 100, 060402 (2008)

Larkin length $\mathcal{L} \equiv \frac{\hbar^{4}}{m^{2} R_{0}} \quad$ healing length $\xi_{\text {heal }} \equiv 1 / \sqrt{8 \pi n a}$
Dynamics
Self-averaging condition for the low-energy modes:

$$
\xi \ll \xi_{\text {heal }}
$$

Hydrodynamic equations

$\xi \ll \xi_{\text {heal }} \rightarrow$ "Two-fluids" collisionless hydrodynamic equations at $T=0$:

$$
\begin{aligned}
& \frac{\partial}{\partial t} n+\nabla\left(\mathbf{v}_{s} n_{s}+\mathbf{v}_{n} n_{n}\right)=0 \\
& m \frac{\partial}{\partial t} \mathbf{v}_{s}+\nabla\left(\mu+\frac{1}{2} m \mathbf{v}_{s}^{2}\right)=0
\end{aligned}
$$

Pinning of normal component in linear regime, $\underline{\mathbf{v}}_{n}=0$
\longrightarrow "Fourth sound" linearized hydrodynamic equation:

$$
\begin{gathered}
m \frac{\partial^{2}}{\partial t^{2}} \delta n-\nabla\left[n_{s} \nabla\left(\frac{\partial \mu}{\partial n} \delta n\right)\right]=0 \\
\text { Disorder : }
\end{gathered}
$$

$(\partial \mu / \partial n)^{-1} \rightarrow$ change of the macroscopic compressibility
$n_{s} \neq n \rightarrow$ disorder-induced superfluid depletion

Huang-Meng theory in the trap: local density approximation

Harmonic isotropic trap: $V(\mathbf{r})=m \omega_{\mathrm{HO}}^{2} r^{2} / 2$
Large N Thomas-Fermi limit: $\quad N a / a_{\mathrm{HO}} \gg 1 \quad a_{\mathrm{HO}}=\sqrt{\hbar / m \omega_{\mathrm{HO}}}$
Thomas-Fermi approximation $R_{\mathrm{TF}}: \quad R_{\mathrm{TF}} \gg a_{\mathrm{HO}} \quad \frac{1}{2} \omega_{\mathrm{HO}}^{2} R_{\mathrm{TF}}^{2}=\mu$

$$
\text { local density approximation } \quad \xi_{\text {heal }} \ll R_{\mathrm{TF}}
$$

Disorder in the equation of state:
beyond mean-field corrections

$$
\mu_{l o c a l}(n)=g n(\mathbf{r})\left(1+\frac{32}{3} \sqrt{\frac{n(\mathbf{r}) a^{3}}{\pi}}\right)+6 g n_{\mathrm{R}}(\mathbf{r})
$$

Beliaev corrections
L. Pitaevskii \& S. Stringari PRL 81, 4541 (1998)
A. Altmayer et al. PRL 98, 040401 (2007)

Hydrodynamic equation in the trap

Ex : delta-correlated disorder $\xi=0$,

$$
\begin{aligned}
m \frac{\partial^{2}}{\partial t^{2}} \delta n(\mathbf{r})- & \nabla\left[g n_{\mathrm{TF}}(\mathbf{r}) \nabla \delta n(\mathbf{r})\right]= \\
& -\nabla^{2}\left[3 g n_{\mathrm{R}}(\mathbf{r}) \delta n(\mathbf{r})\right]-\nabla\left[\frac{4 n_{\mathrm{R}}(\mathbf{r})}{3} \nabla[g \delta n(\mathbf{r})]\right]
\end{aligned}
$$

$R_{0}=0 \rightarrow$ Stringari's hydrodynamics: $\omega_{0}\left(n_{r}, l\right)=\omega_{\mathrm{HO}}\left(2 n_{r}^{2}+2 n_{r} l+3 n_{r}+l\right)^{1 / 2}$

Surface modes: $\quad n_{r}=0, \omega_{l}=\sqrt{l} \omega_{\mathrm{HO}}, \quad \delta n(\mathbf{r})=r^{l} Y_{l m}, \quad \nabla^{2} \delta n(\mathbf{r})=0$
\rightarrow No shift due to the beyond-mean-field effects in the atomic interaction

Results for delta-correlated disorder $(\xi=0)$

Falco, Pelster, and Graham, Phys. Rev. A 76, 013624 (2007)

Monopole mode, $n_{r}=1, l=0$

$$
\frac{\delta \omega_{M}}{\omega_{M}}=-\frac{469 \pi}{768} R_{0}^{\prime}(\mathbf{0})
$$

Dipole mode, $n_{r}=0, l=1 \quad$ (generalized Kohn's theorem $\rightarrow \omega_{\mathrm{D}}=\omega_{\mathrm{HO}}$)

$$
\frac{\delta \omega_{\mathrm{D}}}{\omega_{\mathrm{D}}}=-\frac{5 \pi}{16} R_{0}^{\prime}(\mathbf{0})
$$

Quadrupole mode $n_{r}=0, l=2, m=2$

$$
\frac{\delta \omega_{\mathrm{Q}}}{\omega_{\mathrm{Q}}}=-\frac{35 \pi}{96} R_{0}^{\prime}(\mathbf{0})
$$

Effects of finite disorder correlation length $(\xi \neq 0)$

Relative shift

Typical Values:

Inguscio et al., PRL 95, 070401 (2005)
$\xi=10 \mu \mathrm{~m}$
$R_{\mathrm{TF}}=100 \mu \mathrm{~m}$
$\} \tilde{\xi}=\frac{\xi R_{\mathrm{TF}}}{a_{\mathrm{HO}}^{2} \sqrt{2}} \approx 7$
$a_{\mathrm{HO}}=10 \mu \mathrm{~m}$

Improvement
Scaling variable $\quad \tilde{\xi}=\xi R_{\mathrm{TF}} / a_{\mathrm{HO}}^{2} \sqrt{2}$
laser speckle setup with

$$
\xi=1 \mu \mathbf{m}
$$

Self-averaging $\quad \tilde{\xi} \ll 1 \Leftrightarrow \xi \ll \xi_{\text {heal }}$

Anisotropy effects ($\xi=0$)

Anisotropic trap: $\quad V(\mathbf{x})=m\left(\omega_{\perp}^{2} r_{\perp}^{2}+\omega_{z}^{2} z^{2}\right) / 2$
Anisotropy factor: $\lambda=\omega_{z} / \omega_{\perp}$
quadrupole mode with $m=0$ couples to monopole mode

$$
\begin{gathered}
{\left[\omega_{0}^{ \pm}(m=0)\right]^{2}=\omega_{\perp}^{2}\left(2+\frac{3}{2} \lambda^{2} \pm \frac{1}{2} \sqrt{9 \lambda^{4}-16 \lambda^{2}+16}\right)} \\
\lambda=1 \Rightarrow \quad \omega_{0}^{+}=\omega_{\mathrm{M}}, \omega_{0}^{-}=\omega_{\mathrm{Q}}
\end{gathered}
$$

Disorder corrections:

Hydrodynamic theory can be extended to the " $1 D$ mean-field" regime

Conclusions and Perspectives

- Collective frequencies can be measured with great accuracy in trapped BECs. Beyond-mean-field effects can be measured.
A. Altmeyer et al., PRL 98, 040401 (2007).
- Due to the Kohn's theorem the effects of the disorder should be clearly distinguishible from the beyond mean-field corrections due to the normal interactions.
- Realistic test for the predictions of the Huang and Meng theory.
J. Fortagh \& C. Zimmermann, Magnetic Microtraps for Ultracold Atoms, Rev. Mod. Phys. 79, 235 (2007).

