# Bose-Einstein condensation in compact astrophysical objects

#### Christine Gruber

Institut für Theoretische Physik, Freie Universität Berlin, Germany
In collaboration with PD Dr. Axel Pelster

Supported by the Erasmus Mundus Joint Doctorate Program by Grant Number 2010-1816 from the EACEA of the European Commission.

January 8th, 2013 New Year's seminar, FU Berlin, Germany

#### **Outline**

- Motivation
  - BECs and astrophysics
- Choice of treatment
  - What is the exact setting?
- Hartree-Fock theory of interacting Bosons
  - Governing equations
  - Desired results
- Summary & Outlook

## Motivation: why BEC in stars?

Choice of treatment

#### Existence of a BEC:

$$T_{\rm crit} = \left(\frac{n}{\zeta(3/2)}\right)^{2/3} \frac{2\pi\hbar^2}{mk_B}$$

#### Laboratory experiments ↔ Astrophysics: very different densities!

| scenario                    | $n  [{\rm m}^{-3}]$ | $T_{\rm crit}$ [K] | $T_{\rm typ} [{\rm K}]$ |
|-----------------------------|---------------------|--------------------|-------------------------|
| neutron star (core)         | 1044                | $10^{11}$          | $10^{10} 	o 10^6$       |
| neutron star (crust)        | $10^{36}$           | $10^{6}$           | $10^{6}$                |
| <sup>4</sup> He white dwarf | $10^{35}$           | $10^{5}$           | $10^4 - 10^7$           |

## Choice of treatment: 2 questions

• Energy of particles?

Choice of treatment

$$v = \sqrt{\frac{2k_BT}{m}} \lesssim c$$
?

Size scales of system?

$$r_S = \frac{2GM}{c^2} \lesssim r_{\rm typ}$$
?

Choice:

Newtonian gravity ⇔ General relativity

#### Choice of treatment

Choice of treatment

#### Conditions in astrophysical objects:

| scenario                    | v/c       | $r_{\rm typ}/r_S$ |
|-----------------------------|-----------|-------------------|
| neutron star (core)         | $10^{-1}$ | 2.7               |
| neutron star (crust)        | $10^{-3}$ | 2.7               |
| <sup>4</sup> He white dwarf | $10^{-3}$ | $10^{3}$          |

#### Description of non-relativistic particles in Newtonian gravity:

Hartree-Fock theory of bosons with contact and gravitational interaction



describes white dwarfs and cool neutron stars.

## Hartree-Fock theory I

Hamilton operator of bosons with interactions:

$$\hat{\mathcal{H}} = \int d^3x \, \hat{\Psi}^+(\mathbf{x}) \left\{ -\frac{\hbar^2}{2m} \Delta - \mu + \int d^3x' \, \left[ g \delta(\mathbf{x} - \mathbf{x}') - \frac{Gm}{|\mathbf{x} - \mathbf{x}'|} \right] \, |\hat{\Psi}(\mathbf{x}')|^2 \right\} \hat{\Psi}(\mathbf{x})$$

 $(g = 4\pi \hbar^2 a/m...$  contact interaction strength, G... gravitational constant, m... particle mass)

• Expand field operator into unknown one-particle basis  $\Psi_{\mathbf{n}}(\mathbf{x})$ :

$$\hat{\Psi}(\mathbf{x}) = \sum_{\mathbf{n}} \hat{a}_{\mathbf{n}} \, \Psi_{\mathbf{n}}(\mathbf{x})$$

Creation and annihilation operators obey commutation relations:

$$[\hat{a}_{\mathbf{n}}, \hat{a}_{\mathbf{m}}] = [\hat{a}_{\mathbf{n}}^{+}, \hat{a}_{\mathbf{m}}^{+}] = 0, \quad [\hat{a}_{\mathbf{n}}^{+}, \hat{a}_{\mathbf{m}}] = \delta_{\mathbf{n}, \mathbf{m}}$$

## Hartree-Fock theory II

Use grand-canonical description for the system:

$$Z = e^{-\beta F} = Tr\left(e^{-\beta \hat{\mathcal{H}}}\right)$$

- Introduce effective Hamiltonian with effective one-particle energies:  $\hat{\mathcal{H}}_{eff} = \sum_{\mathbf{n}} (\epsilon_{\mathbf{n}} \mu) \, \hat{a}_{\mathbf{n}}^{+} \hat{a}_{\mathbf{n}}$
- Approach inspired from Variational Perturbation Theory<sup>[1]</sup>:  $\hat{\mathcal{H}} = \hat{\mathcal{H}}_{eff} + \eta \left( \hat{\mathcal{H}} \hat{\mathcal{H}}_{eff} \right)$
- Expansion wrt.  $\eta$  of free energy:  $F = F\{\eta, \Psi_{\mathbf{n}}^*(\mathbf{x}), \Psi_{\mathbf{n}}(\mathbf{x}), \epsilon_{\mathbf{n}}\}$

<sup>[1]</sup> Kleinert, Path Integrals, 2009.

## Hartree-Fock theory III

Cut the series at first order and let  $\eta = 1$ :

$$F(1) = F \big|_{\eta=1} = F_{\it eff} + \langle \hat{\mathcal{H}} - \hat{\mathcal{H}}_{\it eff} \rangle_{\it eff}$$

How do we obtain equations?

#### Principle of minimal sensitivity:

$$\frac{\delta F(1)}{\delta \Psi_{\mathbf{n}}^{*}(\mathbf{x})} = \frac{\delta F(1)}{\delta \Psi_{\mathbf{n}}(\mathbf{x})} = \frac{\partial F(1)}{\partial \epsilon_{\mathbf{n}}} = 0$$

... to minimize dependence of F on  $\{\Psi_{\mathbf{n}}^*, \Psi_{\mathbf{n}}, \epsilon_{\mathbf{n}}\}$  for finite order in  $\eta$ .

## Hartree-Fock theory IV

• Macroscopic occupation of ground state:

$$\hat{a}_{\mathbf{0}}^{+},\,\hat{a}_{\mathbf{0}}\,\approx\sqrt{n_{\mathbf{0}}}\,\Rightarrow\,\Psi(\mathbf{x})=\sqrt{n_{\mathbf{0}}}\,\Psi_{\mathbf{0}}(\mathbf{x})$$

Define

$$n_0(\mathbf{x}) = |\Psi(\mathbf{x})|^2, \quad n_{\text{th}}(\mathbf{x}, \mathbf{x}') = \sum_{\mathbf{n} \neq \mathbf{0}} \frac{\Psi_{\mathbf{n}}^*(\mathbf{x}) \, \Psi_{\mathbf{n}}(\mathbf{x}')}{e^{\beta(\epsilon_{\mathbf{n}} - \mu)} - 1}$$

 Split all sums into condensate and thermal terms, use two equations:

$$\frac{\delta F(1)}{\delta \Psi_{\mathbf{n}}^*(\mathbf{x})} = 0 \,, \quad \frac{\delta F(1)}{\delta \Psi_{\mathbf{n}}^*(\mathbf{x})} = 0$$

## Condensate and thermal equation

$$0 = \left[ -\frac{\hbar^2}{2m} \Delta - \epsilon_0 \right] \Psi(\mathbf{x}) + g \left[ n_0(\mathbf{x}) + 2n_{th}(\mathbf{x}, \mathbf{x}) \right] \Psi(\mathbf{x})$$

$$- \int d^3 \mathbf{x}' \frac{Gm}{|\mathbf{x} - \mathbf{x}'|} \left\{ \left[ n_0(\mathbf{x}') + n_{th}(\mathbf{x}', \mathbf{x}') \right] \Psi(\mathbf{x}) + n_{th}(\mathbf{x}', \mathbf{x}) \Psi(\mathbf{x}') \right\}$$

$$0 = \left[ -\frac{\hbar^2}{2m} \Delta - \epsilon_{\mathbf{n}} \right] \Psi_{\mathbf{n}}(\mathbf{x}) + g \left[ 2n_0(\mathbf{x}) + 2n_{th}(\mathbf{x}, \mathbf{x}) \right] \Psi_{\mathbf{n}}(\mathbf{x})$$

$$- \int d^3 \mathbf{x}' \frac{Gm}{|\mathbf{x} - \mathbf{x}'|} \left\{ \left[ n_0(\mathbf{x}') + n_{th}(\mathbf{x}', \mathbf{x}') \right] \Psi_{\mathbf{n}}(\mathbf{x}) + \left[ \Psi^*(\mathbf{x}') \Psi(\mathbf{x}) + n_{th}(\mathbf{x}', \mathbf{x}) \right] \Psi_{\mathbf{n}}(\mathbf{x}') \right\}$$

with Hartree- and Fock-terms of the gravitational interaction.

#### Status so far

#### Difficulties:

- Integrals in gravitational terms remain
- Fock-terms of gravitational parts bilocal

#### How to proceed further?

- Discard Fock-terms of gravitational interaction for the time being:  $n_{\rm th}(\mathbf{x}, \mathbf{x}) \to n_{\rm th}(\mathbf{x})$ .
- Take into account spherical symmetry for the condensate, and introduce spherical coordinates.
- Carry out multipole expansion.

## Final form: condensate equation

Condensate equation:  $\frac{\partial^2}{\partial r^2}(r \cdot ...)$ 

$$\frac{\partial^2}{\partial r^2} \left\{ r \left[ n_0(r) + 2n_{\rm th}(r) \right] \right\} = -\frac{4\pi \, Gm}{g} \, r \left[ n_0(r) + n_{\rm th}(r) \right]$$

#### Solution: still dependent on $n_{\rm th}(r)$

$$n_0(r) = C \frac{\sin(\sigma r)}{\sigma r} - 2n_{\rm th}(r) + \frac{\sigma}{r} \int_0^r dr' \, \sin\left[\sigma(r - r')\right] r' \, n_{\rm th}(r')$$

with  $\sigma^2 = 4\pi Gm/g$ .

### Final form: thermal equation

Semi-classical approximation:  $\Psi_{\mathbf{n}}(\mathbf{x}) = e^{i \mathbf{k} \cdot \mathbf{x}}$  with

$$\epsilon_{\mathbf{k}}(\mathbf{x}) := \frac{\hbar^2 \mathbf{k}^2}{2m} + 2g \left[ n_0(\mathbf{x}) + n_{\text{th}}(\mathbf{x}) \right] - \Phi(\mathbf{x})$$

 $\Phi(\mathbf{x})$ ... gravitational potential.

#### Solution: integral over Bose-Einstein distribution

$$n_{\rm th}(r) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{e^{\beta[\epsilon_{\bf k}(r) - \mu]} - 1} = \frac{1}{\lambda^3} \, \zeta_{3/2} \left( e^{-\beta\{\mu - 2g \, [n_0(r) + n_{\rm th}(r)] + 4\pi \Phi(r)\}} \right)$$

with  $C_{\nu}(z)$ ... Polylog-function,  $\Phi(r)$ ... gravitational potential in spherical coordinates.

## Final form: ground state energy

#### Ground state energy: from condensate equation

$$\begin{array}{lll} \epsilon_0 & = & g \, n_0(r) + 2g \, n_{th}(r,r) \\ \\ & - 4\pi \, Gm \left\{ \frac{1}{r} \, \int_0^r dr' \, r'^2 \left[ n_0(r') + n_{th}(r') \right] + \int_r^\infty dr' \, r' \left[ n_0(r') + n_{th}(r') \right] \right\} \end{array}$$

– with  $n_0(r)$  as a function of  $n_{\rm th}(r)$ ,  $\epsilon_0$  must be independent of r.

#### Constant ground state energy:

$$\epsilon_0 = Cg \cos(\sigma R_0) + 4\pi Gm \int_0^\infty dr' \cos\left[\sigma(R_0 - r')\right] r' n_{th}(r')$$

## Solution in two regimes:

$$0 < r < R_0$$

both condensate and thermal fluctuations.

Condition:  $n_0(R_0) = 0$ .

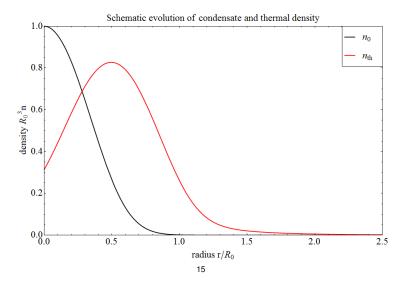
$$R_0 < r$$

outside of Thomas-Fermi radius  $R_0$ .

Conditions:  $n_0(r) = 0$ ,  $\mu(R_0) = \epsilon_0$ .

 $\mu$  fixed by total particle number N.

## Expected results for condensate and thermal densities



#### Possible solutions

- Analytically: only by approximations
  - Robinson formula: expansion for small temperatures

$$\zeta_{\nu}\left(e^{\beta\mu_{eff}}\right) = \Gamma(1-\nu)\left(-\beta\mu_{eff}\right)^{\nu-1/2} + \sum_{k=0}^{\infty} \frac{1}{k!}\zeta(\nu-k)(\beta\mu_{eff})^{k}$$

with 
$$\mu_{\it eff} = \mu - 2g (n_0 + n_{\it th}) + 4\pi \Phi(r)$$
.

- Expansion around the critical temperature?
- Numerically: solve integro-differential equations
  - Iterative solution:

$$n_{\rm th}^{(0)}(r) = \left\{ \begin{array}{ll} A + B \frac{r^2}{R_0^2} & \quad 0 < r < R_0 \\ \frac{(A+B) \, R_0^3}{r^3} & \quad r > R_0 \end{array} \right.$$

• Exact solution??

#### Outline of iterative solution

From the ansatz for  $n_{\rm th}^{(0)}$ :

- Calculate other k = 0-quantities  $n_0^{(0)}(r)$ ,  $\epsilon_0^{(0)}$ .
- Use conditions e.g. for chemical potential at  $r = R_0$  and total particle number N to fix  $A, B, C, R_0$ .

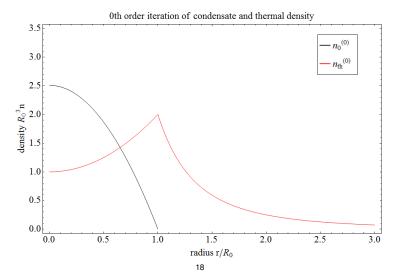
Then move on to order k=1 and calculate

$$n_{\rm th}^{(1)}(r) = \frac{1}{\lambda^3} \zeta_{3/2} \left( e^{-\beta \left\{ \mu - 2g \left[ n_0^{(0)}(r) + n_{\rm th}^{(0)}(r) \right] + 4\pi \Phi^{(0)}(r) \right\}} \right)$$

and other quantities  $n_0^{(1)}(r)$ ,  $\epsilon_0^{(1)}$  in order k=1.

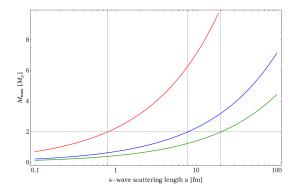
Continue and hope for convergence.

#### Oth iteration for condensate and thermal densities



## Maximum masses of compact objects

Maximum mass<sup>[2]</sup> of a neutron star for three different treatments: non-relativistic particles with Newton (blue), non-relativistic particles in GR (red), relativistic particles in GR (green), at T=0.



[2] Chavanis & Harko 2011; Bilic & Nicolic 2000; Colpi, Shapiro & Wassermann 1986.

## Summarizing...

Choice of treatment

- Conditions in compact objects admit formation of BEC.
- Hartree-Fock theory of interacting bosons
- ⇒ governing equations for condensate and thermal fluctuations

#### To be done:

(Numerical) solution of equations. Approximations to obtain qualitative confirmation? Approximation of the bilocal Fock terms by local expressions?

### That's it!

## Thanks for your attention!

Any questions?

- [1] H. Kleinert, *Path Integrals*, 5th ed., World Scientific, Singapore (2009).
- P. Chavanis, T. Harko, Phys. Rev. D 86, 064011 (2012);
   N. Bilic, H. Nicolic, Nucl. Phys. B 590, 575 (2000);
   M. Colpi et al., Phys. Rev. Lett. 57, 2485 (1986).