Bose-Einstein Condensates of Atoms and Photons – A Comprehensive Overview

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

- 1. BEC of Atoms
- 2. BEC of Photons
- 3. Two-Mode Laser Model
- 4. Atoms in Optical Lattice
- **5. Photons in Cavity Lattice**
- 6. Conclusion

1.1 Identical Quantum Particles

Bosons:

- integer spin
- symmetric wave function

Fermions:

- half-integer spin
- anti-symmetric wave function

1.2 What is Bose-Einstein Condensation?

1.3 Cooling Techniques

laser cooling

evaporative cooling

1.4 Experimental Apparatus

Costs about 1.000.000 EUR

1.5 Time-of-Flight Absorption Pictures

JILA (1995): ${}^{87}_{37}$ Rb, N=20000, $\omega_1 = \omega_2 = \omega_3/\sqrt{8} = 2\pi \times$ 120 Hz

1.6 Periodic Table of Chemical Elements

P	eriode 🗆 = Hauptgruppen						= Nebengruppen								□ = Edelgase Schale						
	I	п	Ша		IVa	Va	VIa	VIIa		VIIIa		Ia	Ib	Ш	IV	V	VI	VII	VIII		
1	1.00.8 H 1 Wasserstof	1			0											1			4.00.3 14 2 Helium	ĸ	
2	6,941 Li 3 Linum	9,012 Beryllium												10,811 B 5 Bor	12,011 C 6 Kohiens tof	14,007	15,999 0 8 Saue istoff	18,998 9 Fluor	20,180 N@ 10 Neon	L	
3	22,990 Nation	24,305 Mg 12 Magnesium												26,982 Aluminium	28,086 Si 14 Silicium	30,974 P 15 Phosphor	32,066 S 16 Schwefel	35,453 C 17 Chlor	39,948 7 18 Argon	М	
4	39,098 K 19 Kaliam	40,078 Ca 20 Calcaum	44,956 SC 21 Scandium		47,88 Ti 22 Titan	50,942 V 23 Vanadin	51,996 Cr 24 Chrom	54,938 Mn 25 Mangan	55,847 Fe 26 Eisen	58,933 CO 27 Kobalt	58,69 Ni 28 Nickel	63,546 Cu 29 Kupter	20 Znk 20 Znk	69,723 Gallium	72,61 Germanium	74,922 As 33 Arsen	78,96 Se 34 Selen	79,904 35 Brom	83,8 36 Krypton	N	
5	85,468 Rb 37 Rubidian	87,62 Sr 38 Strontum	88,906 Y 39 Yttrium		91,224 Zr 40 Zirc onium	92,906 Nb 41 Nico	95,94 Mo 42 Molybdan	98,906 TC 43 * Technetium	101,07 Ru 44 Ruthenium	102,906 Rh 45 Rhodium	106,42 Pd 46 Palladium	107,868 Ag 47 Silber	112,411 Cd 48 Ga dmium	114,82 In 49 Indium	118,71 Sn 50 Zinn	121,75 Sb 51 Antimon	127,6 Te 52 Te llur	126,904 53 lod	131,29 54 Xenon	0	
6	132,905 CS 55 Cássam	137,327 Ba 56 Barium	138,906 Lathan		178,49 Hf 72 Hafnium	180,948 Ta 73 Tantal	183,85 W 74 Wolfram	186,207 Re 75 Rhenium	190,2 05 76 Osmium	192,22 17 77 Iridium	195,08 Pt 78 Platin	196,967 Au 79 Gold	200,59 Hg 80 Que eksilber	204,383 TI 81 Thailium	Pb 82 Biei	208,98 Bi 83 Bismut	208,982 PO 84* Polonium	209,987 Astat	222,018 Ration 222,018 86 * Radon	Ρ	
7	223,02 Francium	226,025 Ra 88* Radium	227,028 AC 89 * Actinium	7	261,109 Rf 104 * Ruthenfordium	262,114 Ha 105* Habrium	263,118 Sg 106 Seaborgium	262,123 NS 107 * Nelsbohrium	ca. 265 HS 108 * Hassium	ca. 268 Mt 109* Meitnerium	ca. 269 DS 110 ⁺ Damista dium	ca. 272 Rg 111+G Roengenium	ca. 277 ? 112		ca. 289		ca. 289		ca. 293	Q	
AN [[*	g <i>gregal</i> ormalb Fe fest Hg flüs He gast = radioa	lz <i>ustanu</i> edingui ssig förmig iktives E	d unter ngen: lement	Lanthanide 6 140,12 144,24 145 150,35 151,96 157,25 158,92 162,50 164,93 167,26 168,93 173,04 174,97 6 Cer Pr Nd Americian 62 Gadelinium 157,25 158,92 162,50 164,93 167,26 168,93 173,04 174,97 5 Cer Promettinium Samarium 63 64 65 Dysprassium 160,76 164,93 167,26 168,93 173,04 174,97 Lu 0 Promettinium Samarium 63 Europium 64 65 Dysprassium 164,93 167,26 168,93 173,04 174,97 Lu V Promettinium Samarium 63 Europium 64 65 Dysprassium 166 174,97 Lu 174,97 Lu 174,97 Lu 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 174 1																	

1.7 Ground-State of Bosons

photons vanishing mass

Bose-Einstein condensate

Bose-Einstein Condensates of Atoms and Photons – A Comprehensive Overview

SFB/Transregio 49 Frankfurt – Kaiserslautem - Mainz Condensed matter systems with variable many-body interactions

- **1. BEC of Atoms**
- 2. BEC of Photons
- 3. Two-Mode Laser Model
- 4. Atoms in Optical Lattice
- **5. Photons in Cavity Lattice**
- 6. Conclusion

2.1 Set-Up of Bonn Experiment

Klärs, Vewinger, and Weitz, Nature Phys. **6**, 512 (2010) Klärs, Schmitt, Vewinger, and Weitz, Nature **468**, 545 (2010)

2.2 Thermalization of Photons

photons are multiply absorbed and emitted by dye molecules in resonator

Perylene-diimide (PDI)

2.3 Quadratic Photon Dispersion

2.4 Photon Trapping

• Harmonic potential from mirror curvature:

resonator

• 2D gas of massive photons:

$$E = m_{eff}c^{2} + \frac{\hbar^{2}k_{r}^{2}}{2m_{eff}} + \frac{1}{2}m_{eff}\Omega^{2}r^{2}, \qquad m_{eff} = \frac{\hbar\omega_{cutoff}}{c^{2}}$$

• BEC transition:

$$N > N_{\rm c} = \frac{\pi^2}{3} \left(\frac{k_{\rm B}T}{\hbar\Omega} \right)^2 \approx 77\,000\,, \qquad N_{\rm c}^{\rm exp} = (6.3 \pm 2.4) \cdot 10^4$$
$$T = 300 \text{ K}, \quad \Omega = 2\pi \cdot 4 \cdot 10^{10} \text{ Hz}, \quad m_{eff} = 6.7 \cdot 10^{-36} \text{ kg} \approx 10^{-10} \, m_{\rm Rb}$$

2.5 Experiment

Bonn: Klärs, Schmitt, Vewinger, and Weitz, Nature **468**, 545 (2010) [see also London: Marelic and Nyman, PRA **91**, 033813 (2015)]

2.6 Spectrum of Thermal Photon Gas in Cavity

Klärs, Vewinger, and Weitz, Nature Phys. 6, 512 (2010)

2.7 Photon Gas at Criticality

 $N < N_{\rm c}$ $N > N_{\rm c}$

Klärs, Schmitt, Vewinger, and Weitz, Nature 468, 545 (2010)

2.8 Spectrum of Photon Gas Around Threshold

Klärs, Schmitt, Vewinger, and Weitz, Nature 468, 545 (2010)

2.9 Canonical Versus Grand-Canonical Ensemble

Klaers, Schmitt, Damm, Vewinger, and Weitz, PRL **108**, 160403 (2012) Schmitt, Damm, Dung, Vewinger, Klaers, and Weitz, PRL **112**, 030401 (2014)

2.10 Comparison

Photon BEC

- $N > N_{\rm c}$
- thermal equilibrium

Laser

- gain > loss
- non-equilibrium

Arecchi, PRL 15, 912 (1965)

Bose-Einstein Condensates of Atoms and Photons – A Comprehensive Overview

SFB/Transregio 49 Frankfurt – Kaiserslautem - Mainz Condensed matter systems with variable many-body interactions

- **1. BEC of Atoms**
- 2. BEC of Photons
- 3. Two-Mode Laser Model
- 4. Atoms in Optical Lattice
- **5. Photons in Cavity Lattice**
- 6. Conclusion

Kopylov, Radonjić, Brandes, Balaž, and Pelster, arXiv:1507.01811

3.1 Tavis-Cummings Model With Two Modes

• Hamilton operator:

$$\hat{H} = \sum_{i=1}^{2} \hbar \omega_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} + \Delta \hat{J}_{z} + \frac{g}{\sqrt{N}} \sum_{i=1}^{2} (\hat{a}_{i} \hat{J}^{+} + \hat{a}_{i}^{\dagger} \hat{J}^{-})$$

• Population inversion:

Dipole moment:

$$\hat{J}^{\pm} = \sum_{k=1}^{N} \sigma_k^{\pm}$$

3.2 Lindblad-Master Equation

- Exchange with environment:
 - decay of cavity modes: κ
 - spontaneous emission: γ_1
 - pumping: γ_2

- Theoretical description:
 - thermodynamic limit $N \to \infty$
 - semiclassical equations for light and matter

3.3 Steady States

 $\hbar\omega_1 = 2\Delta, \ \hbar\omega_2 = 4\Delta, \ \gamma_1 = 0.1\Delta, \ \gamma_2 = 0.2\Delta$

3.4 Bifurcation Scenario

 $g > 1.5\Delta$: two stable fixed points with their respective attraction regions

3.5 Time-Delayed Feedback Control

- Fixed point / Limit cycle not changed
- Stability changed
- Application: chaos control

Pyragas, Phys. Lett. A **170**, 421 (1992) Just, Pelster, Schanz, and Schöll, Phil. Trans. Roy. Soc. A **368**, 303 (2009) SFB 910: Control of Self-Organizing Nonlinear Systems (TU Berlin)

3.6 Lorenz Attractor

- Rayleigh-Bénard convection: Lorenz, J. Atmos. Sci. 20, 130 (1963)
- Laser model: Haken, Phys. Lett. A 53 (1975)
- Time-delayed feedback control: Pyragas, Phys. Lett. A 170, 421 (1992)

3.7 Stabilization of Fixed Points

 $\dot{J}_z \to \dot{J}_z - \lambda \left[J_z(t-\tau) - J_z(t) \right]$

 $\kappa = 0.5\Delta, \ g = 5\Delta, \ \hbar\omega_1 = 2\Delta, \ \hbar\omega_2 = 4\Delta, \ \gamma_1 = 0.1\Delta, \ \gamma_2 = 0.2\Delta$

3.8 Selection of Fixed Points

measurement-based feedback: mean photon flux

$$\omega_1 \to \omega_1 + \lambda \left[n_2(t-\tau) - n_2(t) \right]$$

coherent feedback: back coupling with mirror

$$\dot{a}_1 \rightarrow \dot{a}_1 - \lambda \left[a_1(t-\tau) - a_1(t) \right]$$

 $\kappa = 0.005\Delta, \ g = 2\Delta, \ \hbar\omega_1 = \Delta, \ \hbar\omega_2 = 4\Delta, \ \gamma_1 = 0.1\Delta, \ \gamma_2 = 0.2\Delta$

3.9 Summary

• Two-mode laser model:

- semiclassical equation in thermodynamic limit
- complex phase diagram due to multiple stable fixed points
- Time-delayed feedback control:
 - steady-state selection and stabilization
 - affects stability of all fixed points

• Farther away from fixed point:

- appearance of limit cycles or chaotic solutions
- typical for nonlinear dynamical systems with time delay

Wischert, Wunderlin, Pelster, Olivier, and Groslambert, PRE **49**, 203 (1994) Grigorieva, Haken, Kashchenko, and Pelster, Physica D **125**, 123 (1999) Simmendinger, Wunderlin, and Pelster, PRE **59**, 5344 (1999) Schanz and Pelster, SIAM J. Appl. Dyn. Syst. **2**, 277 (2003) Schanz and Pelster, PRE **67**, 056205 (2003)

3.10 Outlook

• Semiclassical approximation:

should be justified in thermodynamic limit $N \to \infty$

• Quantum fluctuations for two-mode laser model:

Haken, *Laser Theory*, Springer (1970) Sargent, Scully, and Lamb, *Laser Physics*, Addison-Wesley (1976)

• Quantum version of Pyragas control:

- unsolved yet
- entanglement control and light bunching by structured environment
 Hein, Schulze, Carmele, and Knorr, PRA 91, 052321 (2015)

• Thermal fluctuations for two-mode laser model:

Kirton and Keeling, PRL **111**,100404 (2013) Kirton and Keeling, PRA **91**, 033826 (2015)

Bose-Einstein Condensates of Atoms and Photons – A Comprehensive Overview

SFB/Transregio 49 Frankfurt – Kaiserslautem - Mainz Condensed matter systems with variable many-body interactions

- **1. BEC of Atoms**
- 2. BEC of Photons
- 3. Two-Mode Laser Model
- 4. Atoms in Optical Lattice
- **5. Photons in Cavity Lattice**
- 6. Conclusion

4.1 Optical Lattice

- Counter-propagating laser beams create periodic potential
- Different possible topologies at 1D, 2D, and 3D
- Hopping and interactions are highly controllable

4.2 Time-of-Flight Absorption Pictures

• Superfluid phase:

delocalization in space, localization in Fourier space

• Mott phase:

localization in space, delocalization in Fourier space

Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39 (2002)

4.3 Theoretical Description

Bose-Hubbard Hamiltonian:

$$\hat{H}_{\rm BH} = -t \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \left[\frac{U}{2} \hat{n}_i (\hat{n}_i - 1) - \mu \hat{n}_i \right], \qquad \hat{n}_i = \hat{a}_i^{\dagger} \hat{a}_i$$

System Parameters:

Fisher *et al.*, PRB **40**, 546 (1989)

4.4 Landau Theory

Quantum Phase Diagram (T=0):

Santos and Pelster, PRA 79, 013614 (2009)

Extension to Higher Orders:

Teichmann, Hinrichs, Holthaus, and Eckardt, PRB **79**, 100503(R) (2009) Hinrichs, Pelster, and Holthaus, APB **113**, 57 (2013)

4.5 Excitation Spectra

Graß, Santos, and Pelster, PRA 84, 013613 (2011)

4.6 Single-Site Adressability

Bakr, Gillen, Pengh, Fölling, and Greiner, Nature 462, 74 (2009)

Bose-Einstein Condensates of Atoms and Photons – A Comprehensive Overview

Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautem - Mainz Condensed matter systems with variable many-body interactions

- **1. BEC of Atoms**
- 2. BEC of Photons
- 3. Two-Mode Laser Model
- 4. Atoms in Optical Lattice
- **5. Photons in Cavity Lattice**
- 6. Conclusion

Hartmann, Brandão, and Plenio Laser & Photon. Rev. 2, 527 (2008)

5.1 Experimental Set-Ups

• Photonic crystal (IBM, New York):

periodic array of holes etched in silicon slab

• Micro-disk array (CMM-FBK, Povo, Italy):

integrated resonators with embedded light emitting Si quantum dots

5.2 Highlights

- Huge distance between cavities: local in-situ control and accessability
- Atoms isolated in cavities: room temperature

• Strongly coupled light and matter:

- reduced spontaneous emission
- polaritons as quasi-particles
- Superfluidity of light:

Sound velocity tunable via detuning Nietner and Pelster, PRA **85**, 043831 (2012)

Bose-Einstein Condensates of Atoms and Photons – A Comprehensive Overview

SFB/Transregio 49 Frankfurt – Kaiserslautem - Mainz Condensed matter systems with variable many-body interactions

- **1. BEC of Atoms**
- 2. BEC of Photons
- 3. Two-Mode Laser Model
- 4. Atoms in Optical Lattice
- **5. Photons in Cavity Lattice**
- 6. Conclusion

6.1 Summary and Outlook

quantum simulation

equilibrium/nonequilibrium

driven optical lattices

superfluidity of light

6.2 Acknowledgement

Former PhD students:

- Hamid Al-Jibbouri (DAAD)
- Aristeu Lima (CAPES)
- Mohamed Mobarek (Egyp. Gov.)
 Falk Wächtler (Potsdam)
- Ednilson Santos (FAPESP)

PhD students:

- Javed Akram (DAAD)
- Victor Bezerra
- Mahmoud Ghabour
- Tama Khellil (DAAD)
- Tao Wang (CSC)

Former Diploma students:

- Max Lewandowski (Potsdam)
- Tobias Rexin (Potsdam)

Former Bachelor students:

- Tomasz Checinski (Bielefeld)
- Christian Krumnow (FU Berlin)
- Johannes Lohmann (FU Berlin)
- Moritz von Hase (FU Berlin)
- Carolin Wille (FU Berlin)
- Nikolas Zöller (FU Berlin)

Volkswagen: Bakhodir Abdullaev et al. (Tashkent) **DAAD:** Antun Balaž, Vladimir Luković, Milan Radonjić (Belgrade) Vanderlei Bagnato et al. (Sao Carlos)

Mentors: Robert Graham (Duisburg-Essen), Hagen Kleinert (FU Berlin)