Ginzburg-Landau Theory for the Jaynes-Cummings Hubbard Model

Christian Nietner

Institut für Theoretische Physik, Freie Universität Berlin, Germany

Seminar Talk 22.10.2010

Outline

Introduction

- Basic Idea
- Jaynes-Cummings Model

2 Jaynes-Cummings-Hubbard Model

- Grand canonical partition function
- Cluster Expansion
- Quantum phase transition

Basic Idea

Jaynes-Cummings-Hubbard Model

- model for strongly correlated quantum systems
- periodical structure built of micro cavities
- each cavity contains a two-level system
- photon hopping between next neighbours
- exhibits Mott-insulator and superfluid phase

M. J. Hartmann, F. G. S. L. Brandão, M. B. Plenio, Laser & Photon. Rev. 2, 6, 527 (2008)

Introduction

Jaynes-Cummings-Hubbard Model

Experimental Outlook

Jaynes-Cummings Model

The Jaynes-Cummings Model

• suggested in 1963; a cornerstone of quantum optics

 describes the interaction of a two level system with a monochromatic electromagnetic field in RWA

Hamiltonian:

$$\hat{\mathcal{H}}^{
m JC} = \omega \, \hat{a}^{\dagger} \hat{a} + arepsilon \, \hat{\sigma}^{+} \hat{\sigma}^{-} + g \left(\hat{a} \, \hat{\sigma}^{+} + \hat{a}^{\dagger} \hat{\sigma}^{-}
ight)$$

Jaynes-Cummings Model

The Jaynes-Cummings Hamiltonian

Hamiltonian in a more convenient form

Hamiltonian:

$$\hat{\mathcal{H}}^{
m JC} = \omega \, \hat{\pmb{N}} + \Delta \, \hat{\sigma}^+ \hat{\sigma}^- + \pmb{g} \left(\hat{\pmb{a}} \, \hat{\sigma}^+ + \hat{\pmb{a}}^\dagger \hat{\sigma}^-
ight)$$

with polariton occupation number operator

occupation number operator:

$$\hat{N} = \hat{a}^{\dagger}\hat{a} + \hat{\sigma}^{+}\hat{\sigma}^{-}$$

and the detuning parameter

detuning:

$$\Delta = \varepsilon - \omega$$

Jaynes-Cummings Model

Polariton states

- $[\hat{\mathcal{H}}^{\text{JC}}, \hat{N}] = 0$, hence the conserved quantity in this model is the polariton number
- polaritons: coupled excitations of the atom and the field cavity mode

generation of polariton state:

$$|\psi_{\mathrm{pol}}
angle = |\psi_{\mathrm{field}}
angle \otimes |\psi_{\mathrm{atom}}
angle = |\mathbf{n}
angle \otimes \left(egin{array}{c} |g
angle \ |e
angle \end{array}
ight)$$

 note: for a fixed number n of polaritons there exist two possible micro states

n-polariton state

$$|\psi_n\rangle = |n,g\rangle + |n-1,e\rangle$$

Experimental Outlook

Jaynes-Cummings Model

Jaynes-Cummings eigenstates

 solving the Jaynes-Cummings Hamiltonian in polariton basis yields

energy eigenvalues:

$$E_{n\pm}=\omega n+rac{1}{2}\left(\Delta\pm\sqrt{\Delta^2+4g^2n}
ight),\quad (n>1),\quad E_0=0$$

eigenstates:

$$\begin{array}{l} |n,+\rangle = \sin \theta_n \, |n,g\rangle + \cos \theta_n \, |n-1,e\rangle \\ |n,-\rangle = \cos \theta_n \, |n,g\rangle - \sin \theta_n \, |n-1,e\rangle \end{array}$$

• with mixing angle: $\theta_n = \frac{1}{2} \arctan\left(\frac{2g\sqrt{n}}{\Delta}\right)$

Introduction

Jaynes-Cummings-Hubbard Model

Experimental Outlook

Jaynes-Cummings Model

Polariton branches

Jaynes-Cummings Hubbard Hamiltonian

- describes lattice of coupled Jaynes-Cummings systems
- introducing hopping term due to wave-function overlap with hopping probability κ_{ij}
- furthermore we are working in the grand canonical ensemble and therefore we get an extra term $\mu \hat{N}$

Jaynes-Cummings Hubbard Hamiltonian:

$$\hat{\mathcal{H}} = -\sum_{i} \mu_{\text{eff}} \,\hat{N}_{i} + \Delta \,\hat{\sigma}_{i}^{+} \hat{\sigma}_{i}^{-} + g\left(\hat{a}_{i} \,\hat{\sigma}_{i}^{+} + \hat{a}_{i}^{\dagger} \hat{\sigma}_{i}^{-}\right) - \sum_{ij} \kappa_{ij} \,\hat{a}_{i}^{\dagger} \hat{a}_{j}$$

• with effective chemical potential $\mu_{\rm eff} = \mu - \omega$

Eigenvalues of unperturbed Hamiltonian

• Hamiltonian decomposes into an unperturbed and analytically solvable part and a perturbation part

splitting of the Hamiltonian

$$\hat{\mathcal{H}}_0 = \sum_i \hat{\mathcal{H}}_i^{\mathrm{JC}} - \mu \hat{N}, \qquad \hat{\mathcal{H}}_1 = -\sum_{ij} \kappa_{ij} \hat{a}_i^{\dagger} \hat{a}_j$$

• energy eigenvalues of unperturbed Hamiltonian

energy eigenvalues of unperturbed JCHM:

$$E_{n\pm} = -\mu_{\mathrm{eff}} n + rac{1}{2} \left(\Delta \pm \sqrt{\Delta^2 + 4g^2 n} \right)$$

perturbation part corresponds to hopping

Grand canonical partition function

Grand canonical free energy

- phase boundary and thermodynamic response functions from grand canonical free energy
- calculate partition function in Dirac Interaction Picture

$$\mathcal{Z} = \mathrm{Tr}\left\{\boldsymbol{e}^{-\beta\hat{\mathcal{H}}_{0}}\hat{\boldsymbol{U}}_{\mathrm{D}}(\beta, \mathbf{0})\right\}, \quad \hat{\boldsymbol{U}}_{\mathrm{D}}(\tau, \tau_{0}) = \hat{\boldsymbol{T}}\boldsymbol{e}^{-\int_{\tau_{0}}^{\tau} d\tau \hat{\mathcal{H}}_{\mathrm{1D}}(\tau)}$$

Partition function:

$$\mathcal{Z} = \mathcal{Z}_0 \left\langle \hat{U}_{\mathrm{D}}(\beta, \mathbf{0}) \right\rangle_{\mathbf{0}}, \quad \left\langle \bullet \right\rangle_{\mathbf{0}} = \frac{1}{\mathcal{Z}_0} \mathrm{tr} \left\{ \bullet \ \boldsymbol{e}^{-\beta \hat{\mathcal{H}}_0} \right\}$$

expanding the exponential yields

$$\mathcal{Z} = \mathcal{Z}_0 \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^{\beta} d\tau_1 \dots \int_0^{\beta} d\tau_n \left\langle \hat{T} \left[\hat{\mathcal{H}}_{1D}(\tau_1) \dots \hat{\mathcal{H}}_{1D}(\tau_n) \right] \right\rangle_0$$

averages correspond to n-particle Green's functions

Grand canonical partition function

How to proceed?

• modify Jaynes-Cummings-Hubbard Hamiltonian to:

$$\hat{\mathcal{H}}' \rightarrow \hat{\mathcal{H}} + \Delta \hat{\mathcal{H}}$$

introduce symmetry breaking currents *j*(τ), *j**(τ) coupling to â, â[†] making F, Z functionals of the currents:

$$\Delta \hat{\mathcal{H}} = \sum_{i} \left(j_{i}(au) \, \hat{a}_{i}^{\dagger} + j_{i}^{*}(au) \, \hat{a}_{i}
ight)$$

- physical results are consistent if calculations are evaluated at j_i(τ) = j_i^{*}(τ) = 0 in the end
- advantage: allows for diagrammatic linked cluster expansion of the grand canonical free energy see B.Bradlyn, E.E.A. dos Santos, A.Pelster: Phys. Rev. A 79, 013615 (2009)

Cluster Expansion

Cluster expansion

- $\bullet\,$ expansion of ${\mathcal Z}$ yields sum of n-particle Green's functions
- linked cluster expansion: Green's functions decompose into a sum of products of cumulants

generating cumulant

$$C_{0}^{\left(0
ight)}\left[j,j^{*}
ight]=\ln\left(rac{\mathcal{Z}\left[j,j^{*}
ight]}{\mathcal{Z}_{0}}
ight)$$

• get higher cumulants as functional derivatives

higher cumulants

$$C_{n}^{(0)}\left(i_{1}',\tau_{1}'...|i_{1},\tau_{1}...\right) = \left.\frac{\delta^{2n}C_{0}^{(0)}\left[j,j^{*}\right]}{\delta j_{i_{1}'}\left(\tau_{1}'\right)...\delta j_{i_{n}'}\left(\tau_{n}'\right)\delta j_{i_{1}}^{*}\left(\tau_{1}\right)...\delta j_{i_{n}}^{*}\left(\tau_{n}\right)}\right|_{j,j^{*}=0}$$

see W. Metzner; Phys. Rev. B 43, 8549 (1991)

Cluster Expansion

Diagrammatic expansion

Diagrammatic rules

- 2n-th order cumulant corresponds to a vertex with n lines entering and n lines leaving
- Draw all topologically inequivalent connected diagrams
- Label each vertex with a site index, and each line with an imaginary-time variable
- internal lines represent a factor of κ_{ij}
- external entering (leaving) lines correspond to a factor $j_i(\tau) (j_i^*(\tau))$
- multiply by the multiplicity and divide by the symmetry factor
- integrate over all internal time variables

Cluster Expansion

Diagrammatic expansion of the free energy

 using the diagrammatic rules we find up to 4th order int currents and 1st order in hopping

$$\mathcal{F}[j,j^*]\left(\kappa\right) = \mathcal{F}_0 - \frac{1}{\beta} \begin{bmatrix} \bullet \bullet \bullet \bullet \\ \bullet \\$$

• corresponding to the analytic expansion

$$\begin{split} \mathcal{F} = & F_0 - \frac{1}{\beta} \sum_i \left\{ \int_0^\beta \mathrm{d}\tau_1 \int_0^\beta \mathrm{d}\tau_2 \left[a_2^{(0)}(i,\tau_1|i,\tau_2)j_i(\tau_1)j_i^*(\tau_2) + \sum_j a_2^{(1)}(i,\tau_1|j,\tau_2)t_{ij}j_i(\tau_1)j_j^*(\tau_2) \right] \right. \\ & + \frac{1}{4} \int_0^\beta \mathrm{d}\tau_1 \int_0^\beta \mathrm{d}\tau_2 \int_0^\beta \mathrm{d}\tau_3 \int_0^\beta \mathrm{d}\tau_4 \, a_4^{(0)}(i,\tau_1;i,\tau_2|i,\tau_3;i,\tau_4)j_i(\tau_1)j_i(\tau_2)j_i^*(\tau_3)j_i^*(\tau_4) \\ & + \frac{1}{2} \int_0^\beta \mathrm{d}\tau_1 \int_0^\beta \mathrm{d}\tau_2 \int_0^\beta \mathrm{d}\tau_3 \int_0^\beta \mathrm{d}\tau_4 \sum_j t_{ij} \left[a_4^{(1)}(i,\tau_1;i,\tau_2|j,\tau_3;i,\tau_4)j_i(\tau_1)j_i(\tau_2)j_j^*(\tau_3)j_i^*(\tau_4) \right. \\ & + \left. a_4^{(1)}(i,\tau_1;j,\tau_2|i,\tau_3;i,\tau_4)j_i(\tau_1)j_j(\tau_2)j_i^*(\tau_3)j_i^*(\tau_4) \right] \right\}. \end{split}$$

Quantum phase transition

Ginzburg-Landau effective action

- performing Matsubara transformation: $\omega_m = \frac{2\pi m}{\beta}$
- introduce Ginzburg-Landau order parameter

$$\Psi_{i}(\omega_{m}) = \langle \hat{a}_{i}(\omega_{m}) \rangle = \beta \frac{\delta \mathcal{F}}{\delta j_{i}^{*}(\omega_{m})}$$

perform Legendre transformation to the effective action Γ

Effective action

$$\Gamma\left[\Psi_{i}\left(\omega_{m}\right),\Psi_{i}^{*}\left(\omega_{m}\right)\right]=\mathcal{F}-\frac{1}{\beta}\sum_{i,\,\omega_{m}}\left[\Psi_{i}\left(\omega_{m}\right)j_{i}^{*}\left(\omega_{m}\right)+\Psi_{i}^{*}\left(\omega_{m}\right)j_{i}\left(\omega_{m}\right)\right]$$

- conjugate fields: $j_i(\omega_m) = -\beta \frac{\delta \Gamma}{\delta \psi_i^*(\omega_m)}$
- physical situation j = 0 becomes: $\frac{\delta\Gamma}{\delta\psi_i^*(\omega_m)} = 0$

B. Bradlyn, F. E. A. dos Santos, A. Pelster, Phys. Rev. A 79, 013615 (2009)

Introduction

Jaynes-Cummings-Hubbard Model

Experimental Outlook

Quantum phase transition

Γ Expansion

• cluster expansion to 2. order in j and 1. order in κ

$$\Gamma\left[\psi_{i}\left(\omega_{m}\right),\psi_{i}^{*}\left(\omega_{m}\right)\right]\approx\mathcal{F}_{0}+\frac{1}{\beta}\sum_{\omega_{m}}\left[\sum_{i,j}\frac{\delta_{ij}}{a_{2}^{\left(0\right)}\left(\omega_{m}\right)}-\kappa\sum_{\left\langle i,j\right\rangle}\right]\psi_{i}\left(\omega_{m}\right)\psi_{j}^{*}\left(\omega_{m}\right)\right]$$

• physical situation for static field $\psi_i(\omega_m) = \sqrt{\beta} \, \psi \, \delta_{m,0}$ gets $0 \stackrel{!}{=} \left(\left[a_2^{(0)}(0) \right]^{-1} - \kappa \, z \right) \psi$

$$a_{2}^{(0)}(0) = \frac{1}{\mathbb{Z}_{0}} \sum_{\alpha,\alpha'=\pm} \left\{ \frac{(t_{1\alpha'\alpha})^{2}}{E_{1\alpha'}} - \sum_{n=1}^{\infty} e^{-\beta E_{n\alpha}} \left[\frac{(t_{(n+1)\alpha'\alpha})^{2}}{E_{n\alpha} - E_{(n+1)\alpha'}} + \frac{(t_{n\alpha\alpha'})^{2}}{E_{n\alpha} - E_{(n-1)\alpha'}} \right] \right\}$$

Introduction

Jaynes-Cummings-Hubbard Model

Experimental Outlook

Quantum phase transition

Phase boundary

J. Koch, K. L. Hur, Phys. Rev. A, 80, 023811 (2009)

Quantum phase transition

Excitation Spectra in Mott Phase

• stem from divergence of correlation function

above graphics for: $\Delta = 0$, T = 0, n = 2 (tip of lobe)

Introduction

Jaynes-Cummings-Hubbard Model

Experimental Outlook

Quantum phase transition

Energy Gap and Effective Mass in Mott Phase

• quantum phase transition determined by lower polariton branch

$$(\Delta = 0, T = 0)$$

red graphs for: n = 1 (tip of lobe) blue graphs for: n = 2 (tip of lobe)

S. Schmidt, G. Blatter, Phys. Rev. Lett. 103, 086403 (2009)

Experimental realizations

- implementation of Jaynes-Cummings system since decades
- started with relatively huge Fabry-Perot cavities
- today already routine production of arrays of cavities on nano scale
- promising candidates for an experimental realization

possible candidates

- photonic band gap cavities
- micro-discs and micro-toroids
- fibre based cavities
- on-chip Fabry-Perot cavities
- superconducting stripe-line resonators

Photonic band gap cavities

fig. left from Hartmann, Brandao, Plenio; Laser and Photon. Rev. 2, No. 6, 527-556 (2008); fig. right from IBM

- structures with periodic dielectric properties and band gaps in frequency space
- pro

● large arrays; small volume ⇒ efficient tunable coupling

- contra
 - hard to produce large arrays with highly periodic defects

Experimental Outlook

Micro-discs and micro-toroids

pro

- routinely produced in large arrays
- small volume \Longrightarrow efficient tunable coupling
- contra
 - need to trap atom close to surface for a long time
 - cavities need to be tuned in resonance with each other

• Thanks for your attention!

Superconducting stripe-line resonators

fig. right from Hartmann, Brandao, Plenio; Laser and Photon. Rev. 2, No. 6, 527-556 (2008)

pro

• strong coupling; operates in microwave regime

- contra
 - just very small arrays possible up to now
 - quasi one dimensional

Experimental Outlook

On-chip Fabry-Perot and fibre based cavities

left/middle: on-chip Fabry-Perot cavities; right: FFP chip [Hartmann et al.; Laser and Photon, Rev.2, No.6, (2008)]

- pro
 - very small volume \implies strong coupling
 - tunable hopping strength over distance of fibres
- contra
 - hopping modification due to photons localised in fibre
 - trapping atoms for sufficient long periods of time

action of \hat{a} , \hat{a}^{\dagger} on the polariton state

- problem: action of $\hat{a}, \, \hat{a}^{\dagger}$ on n-polariton state unknown
- basic idea:

$$\hat{a}_{j}\left(egin{array}{c} |n+
angle \ |n-
angle \end{array}
ight) \stackrel{!}{=} \left(egin{array}{c} t_{n++} & t_{n+-} \ t_{n-+} \end{array}
ight) \left(egin{array}{c} |n-1,+
angle \ |n-1,-
angle \end{array}
ight)$$

• using the definition of $|n, +\rangle$, $|n, -\rangle$ and the action of \hat{a} , \hat{a}^{\dagger} on the Fock states we find

transition amplitudes

$$t_{n\pm -} = \sqrt{n} a_{n\pm} b_{n-1+} + \sqrt{n-1} b_{n\pm} b_{n-1-}$$

$$t_{n\pm +} = \sqrt{n} a_{n\pm} a_{n-1+} + \sqrt{n-1} b_{n\pm} a_{n-1-}$$

$$a_{n\pm} = \begin{cases} \sin \theta_n \, , \, + \\ \cos \theta_n \, , \, - \end{cases} \quad b_{n\pm} = \begin{cases} \cos \theta_n \, , \, + \\ -\sin \theta_n \, , \, - \end{cases}$$

Polariton mapping

- its more convenient to use operator representation
- define projection operators for polariton states

Polariton projection operator

$$\hat{P}_{jnlpha}^{\dagger} = |nlpha
angle_{j}\langle 0-|_{j} , \quad \hat{P}_{jnlpha} = |0-
angle_{j}\langle nlpha|_{j}$$

• rewriting $\hat{a}, \hat{a}^{\dagger}$ in terms of these projection operators yields

$\hat{a}, \hat{a}^{\dagger}$ in polariton picture

$$\hat{a}_{j} = \sum_{n=1}^{\infty} \sum_{\alpha \alpha'} t_{n \alpha \alpha'} \hat{P}_{j(n-1)\alpha'}^{\dagger} \hat{P}_{jn\alpha}$$
$$\hat{a}_{j}^{\dagger} = \sum_{n=0}^{\infty} \sum_{\alpha \alpha'} t_{(n+1)\alpha'\alpha} \hat{P}_{j(n+1)\alpha'}^{\dagger} \hat{P}_{jn\alpha}$$

see J.Koch, K.Le Hur, Phys. Rev. A 80, 023811 (2009)

Jaynes-Cummings eigenvalues

Hamiltonian separates into 2-dimensional subspaces

$$\hat{\mathcal{H}}^{\rm JC} = \sum_{n=1}^{N} \hat{h}_n$$

with \hat{h}_n given in the Fock-space representation as

$$\hat{h}_n = \left(egin{array}{cc} \omega n & g \sqrt{n} \\ g \sqrt{n} & \omega n + \Delta \end{array}
ight)$$

eigenvalues for upper and lower polariton branch

energy eigenvalues:

$$E_{n\pm}=\omega n+rac{1}{2}\left(\Delta\pm\sqrt{\Delta^2+4g^2n}
ight),\quad (n>1),\quad E_0=0$$

perturbation part becomes

$$\hat{H}_{1\mathrm{D}}(\tau) = -\sum_{ij} \kappa_{ij} \hat{a}^{\dagger}_{i\mathrm{D}}(\tau) \hat{a}_{j\mathrm{D}}(\tau) + \sum_{i} \left[j^*_i(\tau) \hat{a}_{i\mathrm{D}}(\tau) + j_i(\tau) \hat{a}^{\dagger}_{i\mathrm{D}}(\tau) \right]$$

 inserting the above expression into the partition function and expanding yields

functional partition function

$$\mathcal{Z} = \mathcal{Z}_0 \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^{\beta} d\tau_1 \dots \int_0^{\beta} d\tau_n \left\langle \hat{T} \left[\hat{H}_{1D}(\tau_1) \dots \hat{H}_{1D}(\tau_n) \right] \right\rangle_0$$

 where the averages correspond to n-particle Green's functions