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Basic Idea

Jaynes-Cummings-Hubbard Model

@ model for strongly
correlated quantum
systems

@ periodical structure built of
micro cavities

@ each cavity contains a
two-level system

@ photon hopping between
next neighbours

@ exhibits Mott-insulator and
superfluid phase

M. J. Hartmann, F. G. S. L. Brandao, M. B. Plenio, Laser & Photon. Rev. 2, 6, 527 (2008)
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Jaynes-Cummings Model

The Jaynes-Cummings Model

@ suggested in 1963; a cornerstone of quantum optics

@ describes the interaction of a two level system with a
monochromatic electromagnetic field in RWA

Hamiltonian:
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Jaynes-Cummings Model

The Jaynes-Cummings Hamiltonian

@ Hamiltonian in a more convenient form

Hamiltonian:

AC=wN +A&+&—+g(é a++éf&—)

@ with polariton occupation number operator

occupation nhumber operator:

A
~

N=a'a+st6

@ and the detuning parameter
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Jaynes-Cummings Model

Polariton states

@ [#C,N] = 0, hence the conserved quantity in this model is
the polariton number

@ polaritons: coupled excitations of the atom and the field
cavity mode

generation of polariton state:

Wpol) = [Vheld) ® [Patom) = |1) ® ( 9) >

@ note: for a fixed number n of polaritons there exist two
possible micro states

n-polariton state

[¥n) = |n,g) +|n—1,€)
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Jaynes-Cummings Model

Jaynes-Cummings eigenstates

@ solving the Jaynes-Cummings Hamiltonian in polariton
basis yields

energy eigenvalues:

1
Eni:wn+§ (Ai\/A2+4g2n>, (n>1), Ey=0

eigenstates:

|n,+) =sinf,|n,g) +cosb,|n—1,e)
In,—) = cosb,|n,g) —sindp|n—1,e)

@ with mixing angle: ¢, = } arctan (29Tﬁ>
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Jaynes-Cummings Model

Polariton branches

11-)

-10f [n-)




Jaynes-Cummings-Hubbard Model

Jaynes-Cummings Hubbard Hamiltonian

@ describes lattice of coupled Jaynes-Cummings systems

@ introducing hopping term due to wave-function overlap with
hopping probability «;

@ furthermore we are working in the grand canoni(A:aI
ensemble and therefore we get an extra term uN

Jaynes-Cummings Hubbard Hamiltonian:

H = —ZueffN,-—l—Aéfraf+g<é,-6,*+éj6,’) _Z/‘fijé;réj
i

@ with effective chemical potential preff = 1 — w
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Eigenvalues of unperturbed Hamiltonian

@ Hamiltonian decomposes into an unperturbed and
analytically solvable part and a perturbation part

splitting of the Hamiltonian

o= S AN, A== Y4
i i

@ energy eigenvalues of unperturbed Hamiltonian

energy eigenvalues of unperturbed JCHM:

1
Eny = —pesr N+ > <A +4/A2+ 492n>

@ perturbation part corresponds to hopping
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Grand canonical partition function

Grand canonical free energy

@ phase boundary and thermodynamic response functions
from grand canonical free energy
@ calculate partition function in Dirac Interaction Picture

z=Tr{e0p(5,0)}, Ub(r,m)=Te ool

Partition function:

5 — <UD(5,0)>0, (8)g = thr{o efﬁﬁo}

0

@ expanding the exponential yields

Z = Zoi (_r;]!)” /06 dry /B d7‘n<?— [7:[11)(7'1).--7'21D(7'n)} >0
n=0

0

averages correspond to n-particle Green’s functions



Jaynes-Cummings-Hubbard Model
oe

Grand canonical partition function

How to proceed?

@ modify Jaynes-Cummings-Hubbard Hamiltonian to:
H — H+AH

@ introduce symmetry breaking currents j(7), j* (7) coupling
to g, al making F, Z functionals of the currents:

AR =3 (i) &'+ (7) &)

@ physical results are consistent if calculations are evaluated
at ji(r) = j7(r) = 0 in the end
@ advantage: allows for diagrammatic linked cluster

expansion of the grand canonical free energy
see B.Bradlyn, F.E.A. dos Santos, A.Pelster; Phys. Rev. A 79, 013615 (2009)
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Cluster Expansion

Cluster expansion

@ expansion of Z yields sum of n-particle Green’s functions
@ linked cluster expansion: Green’s functions decompose
into a sum of products of cumulants

@ get higher cumulants as functional derivatives

generating cumulant

Z

higher cumulants

_ 62ncé0) 7. j*]
&y (74) -8y, (75) Ofi (74) -0 (Tn)

see W. Metzner; Phys. Rev. B 43, 8549 (1991)

Cﬁ,o) (i4,T1/...‘I.1,7'1...)

J:i*=0
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Cluster Expansion

Diagrammatic expansion

Diagrammatic rules

@ 2n-th order cumulant corresponds to a vertex with n lines
entering and n lines leaving

@ Draw all topologically inequivalent connected diagrams

@ Label each vertex with a site index, and each line with an
imaginary-time variable

@ internal lines represent a factor of «;;

@ external entering (leaving) lines correspond to a factor
Ji (7) (Jj; (7))

@ multiply by the multiplicity and divide by the symmetry
factor

@ integrate over all internal time variables
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Cluster Expansion

Diagrammatic expansion of the free energy

@ using the diagrammatic rules we find up to 4th order int
currents and 1st order in hopping

Flj,3"] (k) = Fo — 3] %>< %'?>< ,:}(\"

@ corresponding to the analytic expansion

F=F--= {/d/]/d'f’) {u) (2,72, 72)7i (1) 77 ( T7)+Z(l) (i, 71| j, 7 U/(I])JJ(TZJ:|

/(hl/d /d‘&/dnal i, 715 8, Tolt, Tay 4, 7y) 7 (71 ) i (T2) 5 () 5 ()
o Jo o
/du/dH/du/dit ﬂ (l 7114, To| J, T334, Ta) Js(7 1)]:(7)]](/'.;)],'(71)

a6 4,7l 7o, ) i) () )i ()|
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Quantum phase transition

Ginzburg-Landau effective action

@ performing Matsubara transformation: wp, = Z’TT’"
@ introduce Ginzburg-Landau order parameter

_OF
51','* (wm)

@ perform Legendre transformation to the effective action I'

Vi (wm) = (&j(wm)) =8

Effective action

FWi(wm), Vi (wm)] = F — % D Vi (wm) Ji (@m) + 7 (wm) ji(wm)]

iywm

@ conjugate fields: ji(wm) = —ﬁ%
@ physical situation j = 0 becomes: m =0

B. Bradlyn, F. E. A. dos Santos, A. Pelster, Phys. Rev. A 79, 013615 (2009)
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Quantum phase transition

I Expansion

@ cluster expansion to 2. order in j and 1. order in s

[ Wi (wm) , ¥} (wm)] = Fo + ng [Z D(om)

HZ] i (Wm) pr (wm) J
(1)

@ physical situation for static field v; (wm) = VB¢ dmo gets

0= ({ago) (O)} o mz) 1P

0 fni)a’ o i oo 2
0% 3 (et - Soro [fepel nta o]}

na
a,al =+ (n+1) e

_ _ 1 2 > an+ bn+ _ sin 0 cos O
Epa = (w ,u,)n+2(A+a\/A +4g n), ( a bo >_( cosBy  — sinfy
tht— =vNapny by 14 + /N —Tbpy by 1 Onzlarctan(zgﬁ)
thtt+ = VNant @14 +VN—1bprap_1_ ~’ 2 A
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Quantum phase transition

Phase boundary

zx/g

20 15 10 05 00

(n-w)/g

J. Koch, K. L. Hur, Phys. Rev. A, 80, 023811 (2009)
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Quantum phase transition

Excitation Spectra in Mott Phase

@ stem from divergence of correlation function

010, !
3 —
— qu
w,
P
0.05) 2|
< af
< 3
< <
< 0w 3
0|
~0051 wpy b
oy
-2
o010l . . . . . . n : ; h n e
00 05 10 15 20 25 30 00 05 10 15 20 25 30
ka ka

above graphics for: A =0, T = 0, n = 2 (tip of lobe)
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Quantum phase transition

Energy Gap and Effective Mass in Mott Phase

@ quantum phase transition determined by lower polariton branch
(A=0,T=0)

Energy Gap . Effective Mas‘

red graphs for: n = 1 (tip of lobe) blue graphs for: n = 2 (tip of lobe)

S. Schmidt, G. Blatter, Phys. Rev. Lett. 103, 086403 (2009)
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Experimental realizations

@ implementation of Jaynes-Cummings system since
decades

@ started with relatively huge Fabry-Perot cavities

@ today already routine production of arrays of cavities on
nano scale

@ promising candidates for an experimental realization

possible candidates

@ photonic band gap cavities

@ micro-discs and micro-toroids
o fibre based cavities

@ on-chip Fabry-Perot cavities

e superconducting stripe-line resonators
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Photonic band gap cavities

Defects in photonic crystal

structures doped with
atoms or c-dots (M. Atature Photonic crystal composed of a periodic array of holes

Cambricige) etched in silicon slab. False-colored SEM image.

fig. left from Hartmann, Brandao, Plenio; Laser and Photon. Rev. 2, No. 6, 527-556 (2008); fig. right from IBM

@ structures with periodic dielectric properties and band
gaps in frequency space
@ pro
o large arrays; small volume = efficient tunable coupling
@ contra
e hard to produce large arrays with highly periodic defects
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Micro-discs and micro-toroids

8525 6527 G519 [5X]
Wavelength inm)

@ pro
@ routinely produced in large arrays
o small volume = efficient tunable coupling

@ contra

@ need to trap atom close to surface for a long time
@ cavities need to be tuned in resonance with each other
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@ Thanks for your attention!
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Superconducting stripe-line resonators

Supeconducting Cooper pair
boxes(A, Wallraff, ETH)

fig. right from Hartmann, Brandao, Plenio; Laser and Photon. Rev. 2, No. 6, 527-556 (2008)

@ pro
@ strong coupling; operates in microwave regime
@ contra

@ just very small arrays possible up to now
@ quasi one dimensional
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On-chip Fabry-Perot and fibre based cavities
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left/middle: on-chip Fabry-Perot cavities; right: FFP chip [Hartmann et al.; Laser and Photon, Rev.2, No.6, (2008)]

@ pro
o very small volume = strong coupling
o tunable hopping strength over distance of fibres

@ contra
@ hopping modification due to photons localised in fibre

e trapping atoms for sufficient long periods of time
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action of 4, &' on the polariton state

@ problem: action of &, 4" on n-polariton state unknown
@ basic idea:

()= (o ) (o)

@ using the definition of |n, +), |n, —) and the action of &, at
on the Fock states we find

transition amplitudes

e = ﬁani bn_1+ +vn—1bpt byp_q_
thtt = VNant an—1+ +vn—1bpran_1-

. — sinf,, + boe — costp, +
== cosbp, — == —sing,, —
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Polariton mapping

@ its more convenient to use operator representation
@ define projection operators for polariton states

Polariton projection operator

Pl =1na) (0=, Ppa =10-);(nal;

jna

@ rewriting &, 4" in terms of these projection operators yields

4, a' in polariton picture

g = Zzo— Zaa’ tnaa'PT(n 1)a/ P/na
Zn 0 Zaa’ tn-H)Oé OéF,j(n-H)a 'D/na

see J.Koch, K.Le Hur, Phys. Rev. A 80, 023811 (2009)
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site polariton humber

temperature
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Jaynes-Cummings eigenvalues

@ Hamiltonian separates into 2-dimensional subspaces
N
HJC — Zhn
n=1

with h, given in the Fock-space representation as

po_( wn gvn
"\ gvyn wn+A

@ eigenvalues for upper and lower polariton branch

energy eigenvalues:

1
E,,i:wnJré <Ai\/A2+4g2n>, (n>1), Ey=0
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perturbation part becomes

Fip(r Z“U in(T)ajp(7 "‘Z [I: aip(r) +ji(r)a ;[D(T)}

@ inserting the above expression into the partition function
and expanding yields

functional partition function

Z=Z Z / dry . /05 dTn<7\- {H1D(T1)...H1D(Tn):| >0

@ where the averages correspond to n-particle Green’s
functions
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