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INTRODUCTION OVERVIEW
CONSIDERED SYSTEM
BASIC IDEA

Experimental realization

%o 8300, Sy,

o Optical lattice produced by
counter-propagating lasers

o V o sin?(2mz/)\)

@ Relative strength of hopping and
interaction controllable

o (Quasi) one-, two-, and three-dimensional
configurations possible
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INTRODUCTION OVERVIEW
CONSIDERED SYSTEM
BASIC IDEA

Bose-Hubbard model

o Bose-Hubbard Hamiltonian:
Hgpm =Ho + Hy I“ \
. U . A
Ho ZZ [Eni(ni -1)- /mi]
1
=-7) alaj=-Y"J; ala;
<iyj> ij
i =ala,

{ J if i, j nearest neighbors
Jij =

0 otherwise
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INTRODUCTION OVERVIEW
CONSIDERED SYSTEM
BASIC IDEA

Bose-Hubbard model

o Bose-Hubbard Hamiltonian:

Hgpm =Ho + Hy I“ \
A Uu, . R
Hy=>" [Eni(ni -1)- /mi]

(2
A=_J o, = —SN"J ata.
1= a; 5 = 0,54 4
4,J

— o H site-diagonal:
<t,7>

Ho|n) = NgE,|n)
NN I
M = E,=—=—n(n-1)—pun
{ J if i, j nearest neighbors 2

Jij = .
K 0 otherwise

o Perturbative
expansion in H
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Motivation

@ Green'’s functions contain many important information about the
system:
@ Quantum phase diagram
Time-of-flight pictures
Excitation spectra
Thermodynamic properties

¢ & ©
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INTRODUCTION OVERVIEW
CONSIDERED SYSTEM
BASIC IDEA

Motivation

@ Green'’s functions contain many important information about the
system:
@ Quantum phase diagram
@ Time-of-flight pictures
o Excitation spectra
o Thermodynamic properties

o Motivated by:

e F. Nogueira’s “Primer to the Bose-Hubbard model”
o Diagrammatic calculations for Fermions by
W. Metzner, PRB 43, 8549 (1993)
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Imaginary-time Green'’s function

o Definition:

o 1 7 7 N
Gr(r' 7| ) = ZTe{e 1T [ayu(r)al, ()] |
with Z = Tr{e P}

o Heisenberg operators in imaginary time (h = 1):
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Dirac interaction picture

o Time evolution of operators determined only by Hy:
Op(7) = eHor Oe=Hor

o Dirac time evolution operator calculated by Dyson series:

R o T Tn—1 R R
UD(T,To):Z(—].)n/ d’7’1.../ dTnHlD(Tl)-HHlD(Tn)

n=0 70 0

:Texp (—/ dTlﬁlD(T1)>
70
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Partition function

o Full partition function:

Z-Tr {e—ﬁﬁOﬁD(ﬁ, 0)}
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Partition function

o Full partition function:
Z=Tr {e—ﬁﬁOﬁD(ﬁ, 0)}

o nth order contibution:

) _ 1 20 p 8 8
Z :aZ Z Jivgr o Jinjn ; dry A dry ... i dm,

ilvjlwﬂvinvjn

X Gg?)(ﬁ,jl; e Tas Jnl T 81 Tryin)

o Unperturbed n-particle Green'’s function:

Ty

(Y (7))

GO, 55 il i T in) = (Tl (H)ai (7).
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Cumulant decomposition

o Decompose G%O)(T{,z"l; e Ty | T1, 01 - o Thy i) INTO
“simple” parts

e Iy not harmonic = Wick’s theorem not applicable
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Cumulant decomposition

0 . . . N
o Decompose G%)(T{,le; e Ty | T1, 01 - o Thy i) INTO

“simple” parts

e Iy not harmonic = Wick’s theorem not applicable
@ But: Decomposition into cumulants
o H site-diagonal = cumulants local. Example:

) 1 1. 1 . SN ©), 1 1
G (11,113 2, 62|71, 015 T2, 62) = 04,0y 674504y, C 7 (71, 2|71, T2)

0 0 0 0
85001010, CO (] 171 ) OO (7 172) + 831.0,84,,5 CO (4 1) O (7 72)

MATTHIAS OHLIGER GREEN'S FUNCTIONS OF THE BHM



IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Cumulant decomposition

o Decompose G%O)(T{,i’l; e Ty | T1, 01 - o Thy i) INTO
“simple” parts

e Iy not harmonic = Wick’s theorem not applicable

@ But: Decomposition into cumulants

o H site-diagonal = cumulants local. Example:

) 1 1. 1 . SN ©), 1 1
G (11,113 2, 62|71, 015 T2, 62) = 04,0y 674504y, C 7 (71, 2|71, T2)

0 0 0 0
85001010, CO (] 171 ) OO (7 172) + 831.0,84,,5 CO (4 1) O (7 72)

%

o Denote contributions diagrammatically:
Points for cumulants, lines for hopping matrix elements

o Perturbation theory in number of lines
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculation of cumulants

o Generating functional:

B8
O, 7] = log <Tp ( /0 drj*(7)a(r) +j(T>a*(T)) >

o Cumulants calculated by functional derivatives:

(0)

C}LO)(T{,...,T;ATL...,Tn)
62n (0)

= — - - - Cy 4, 7"

S eT ) oy () 0 L]

j=j*=0
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculation of cumulants

@ One- and two-particle cumulants:

o0

~L R 1 A~ R B
OO, ) =(Tal (7))@ = g Y (nlTal (7)a(r)ln) e~
n=0
1 - — T—T,
-=® Z:O [@(T — Y(n + 1) elBn—Eni)(r=7)

+O(r' — T)ne(E“*E"*l)(TLT)} e BEn

O, mhlm, m2) =(Tat (])al (73)a(m)a(r2)) @ — OO (7, ) CLO (75, 72)
- (1, ) (75, 7)
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Diagrammatic rules forz("

@ Draw all possible combinations of vertices with total n entering and
n leaving lines

@ Connect them in all possible ways and assign time variables and
hopping matrix elements onto the lines

© Sum over all site indices and integrate all time variables from 0 to 3

R :Jij

e = I7)
’7'/ T
Té . T2
1 0
K =)
T{ T1
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculation of free energy

o Grand-canonical free energy:

1 Ng _
F=-Zlogz, FO=_""1ogz0 20 _\"¢0E
58 5 % Z
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculation of free energy

o Grand-canonical free energy:

1 Ng _
F=-Zlogz, FO=_""1ogz0 20 _\"¢0E
58 5 % Z

@ Contains only connected vacuum diagrams
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculation of free energy

o Grand-canonical free energy:

1 Ng
F=-"logZ, FO=_"S10g20 20 =\"¢FEn
58 5 % Z

@ Contains only connected vacuum diagrams
o First correction:

T 2ﬁ <> 25 ZJ,]J“/ dTl/ dTQC( 7-2|7-1) (7.1|7.2)

_ NS2DJ2 (n+ 1)k n(k+ 1) e*B(En“v’Ek)
- Uz0)2 k—n+1 n—-k+1

)
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Diagrammatic rules for Green'’s functions

W sy 291 s g
G(l )(T/,Z/|T7l):7a Z Jiljl"'Jinjn‘/o d7’1...\/0 dTtn

i17j1y~~~7in7jn

(0) . e . )
X Gy (T, 010 Ty G T8 [T 015 5 Ty i, T, 9)
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Diagrammatic rules for Green'’s functions

G(l )(T/,i/|7'7i):7a Z Jiljl"’Jinjn‘/o d7’1...\/0 dTtn
i17j1y"'7i7l7j7l

(0) . e . )
X Gy (T, 010 Ty G T8 [T 015 5 Ty i, T, 9)

o Diagrams have external lines with fixed time and site variables
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Diagrammatic rules for Green'’s functions

W sy 291 s g
G(l )(T/,Z/|T7l):7a Z Jiljl"’Jinjn‘/o d7’1...\/0 dTtn

ilvjlwﬂvinvjn

o Diagrams have external lines with fixed time and site variables
o Disconnected diagrams cancelled by 2(0)/z
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION

DIAGRAMMATIC RULES AND EXAMPLES

Diagrammatic rules for Green'’s functions

B B
G(ln)(7—77;/|7—’i):7a Z Jiljl"’Jinjn‘/o dTl.../o dTtn

ilvjlwﬂvinvjn

o Diagrams have external lines with fixed time and site variables

o Disconnected diagrams cancelled by 2(0)/z
@ Zeroth and first order:

G il j) === = 6,07 (|)

i j B
G il ) =t = g /0 dr O17(7'|) 17 (m| )

T1
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculations in Matsubara space

e Translational invariance in time suggests Matsubara transform:

) 1 (n+1) B n —BE, _2r
“ (w”"”)zm)Z[EnH—En—wm En—FEn1—iom|¢ 9™ 5™
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IMAGINARY-TIME GREEN’S FUNCTION
DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION
DIAGRAMMATIC RULES AND EXAMPLES

Calculations in Matsubara space

e Translational invariance in time suggests Matsubara transform:

1 1 2
O (wnm) Z[E - - }ﬁE W=

n+1_En_iwm En_En—l_iwm

o Inrule 3 integration over T replaced by summation over w,,, under
consideration of frequency conservation on vertices:

= J(Sd(i,j),lC:EO)(w)z

k

GO (wii, j) =

w w w

. . w w1
GCPWiij) = —r oo+
w w w w w 1 w

0
:J2(5d(i,j),2 + 25d(¢,j),\/§ + 2D5i,j)0{ )(W)3
+ J22D5i,j Z C§O)(w1)0£0) (w, w1|w, wl)

w1
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Equal-time correlations

o Momentum space density:
=1 (k)P (k) = |w(k)? Ze“‘“‘”) a;), (alaj) = lim Gi(7[0, )

S(k)
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Equal-time correlations

o Momentum space density:

(! () k)P Ze“‘ T alag). (ala) = Jim Gi(ri[0.])
S(k)
o Quasi-momentum distribution:
J(k) | TA(K) °
k)= Ko+ K K. k) =2
S(k) o+ K3 U + K> 02 + , J(k) J;cos(kla)
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Equal-time correlations

o Momentum space density:

(! () k)P Ze“‘ T alag). (ala) = Jim Gi(ri[0.])
S(k)
o Quasi-momentum distribution:
J(k) | TA(K) °
k)= Ko+ K K. k) =2
S(k) o+ K3 U + K> 02 + , J(k) J;cos(kla)

o Lowest orders:

O 0 i1 0y -V
Gl (071|J70) _Z(O)

J2640; 4 (n+1)
W 515 0) — d(i,g),1 n —B(En+Ey)
Gl (077/|]70) UZ(O)2 ;(n—k-}-l)(k-n-'—l)e
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Time-of-flight pictures

. first-order
¢ calculation (T" = 0)
Y second-order

calculation (T" = 0)

experimental
absorption pictures

(@) Vo = 8ER, (b) Vo = 14ER, (c) Vo = 18ER, and (d) Vo = 30ER
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Phase transition

o Phase transition requires diverging Green’s function. Not possible
in perturbation theory
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Phase transition

o Phase transition requires diverging Green’s function. Not possible
in perturbation theory
@ Solved by resummation:

Grwiij)= bbb e bbbl

w w w w w w w w w w w w w W
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Phase transition

o Phase transition requires diverging Green’s function. Not possible
in perturbation theory
@ Solved by resummation:

Gi(wii,j) = b b e e bt bd e b

w w w w w w w w w w w w w w

@ Summed most easily in Fourier space:

o (w) ~(1)

A0 (0 k) — —
Gl ( 7k) l—J(k) C{O)(w), Gl (070)
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Phase transition

o Phase transition requires diverging Green’s function. Not possible
in perturbation theory

@ Solved by resummation:

Cr(wii ) =t b d e et b o

w w w w w w w w w w w w w w

@ Summed most easily in Fourier space:

()
1—2DJc%(0)

. (©) .
G(ll)(w7k) = Cl—% , G(ll)(()’ 0) =
1-J(k)C;(w)

o Neglected contributions like w1{ }wl vanish at least as 1/D for

w 7 w

D — >
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Phase boundary

o Phase boundary given by:

7/8En
> e T—0 1
l ) i n —
2 JC _BE nt1 n n+1 _ n
» n _
n© Epii—En  Bp—En1 Enn=En  En—Ena
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Phase boundary

o Phase boundary given by:

>, e -0 1

2DJ. = T T T n

—BE. n+1 _ n —
Zn ¢ " Ent1—En E,—FEn_1 Ent1—En En—En—1

@ Same result as obtained by mean-field theory (z = 2D):

‘Lv
0.2" —kpT/U =0

— kT /U = 0.02

0.175
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Beyond mean field

o Replace

~ ) = G, ()

by sum over all one-particle irreducable diagrams:
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Beyond mean field

o Replace

~ ) = G, ()

o Full Green's function obtained by Dyson series:

by sum over all one-particle irreducable diagrams:

Gi(w.k) =Y ()" JK)

=0
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Beyond mean field

o Replace

~ ) = G, ()

o Full Green's function obtained by Dyson series:

by sum over all one-particle irreducable diagrams:

Gi(w.k) =Y (=) J(K)

=0

o Approximated by considering only the first two terms in —2—
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Calculation of one-loop diagram

w w1

24(2B); \ _ _2Dé (1 —B(En+E
2Dy J°GTT (W) = T = e (ﬁze i)
n,k

y {(k+ 1)(n —1)n [k +2(n — 1)? — pi® + 2k(2 — 2n — p)]

(k—n+1)2(k—2n+ p)(1 —n+ p)?

+ 7 more terms} - C’%O)(w)3

+ﬂ{§};{k—n+l+n—k+l n—p—iw n—l—p—iw c

_ (0 (n+Dk  nk+1)] _sE,+8)
“ (w)nzl;{k—n—kl—’—n—k—i—l ‘

)
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

One-loop corrected phase boundary

o 2nd order resummed Green's function:

()
1 - J2DCO(w) + J22DGPP) (W) /O (w)

GP(w.k=0) =
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

One-loop corrected phase boundary

o 2nd order resummed Green's function:

cO(w)

GP(w,k =0) =
' 1 - 72DCO(w) + J22DGEP) (w) /O (w)

o Phase boundary

J.=1/ {c(" \/2DG B 0)/c(0) + D2C{°)2(°)}

o In T'=0 limit same result as E. Santos
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Comparison with simulations faf = 0

JjU J/u
o ‘*.."o
0.030 -
0.025
0.020 -
r WU

0.015

Capogrosso-Sansone et. al.
ootop arXiv:0710.2703v3 (2007)
0.005 ] TV

D=3
1 1 1 1 H/U
0.2 0.4 0.6 0.8 10

Capogrosso-Sansone et. al.
PRB 75, 134302 (2007)

n = 1. Black: First order (Mean field)

Niyaz, et. al.
Red: Second order PRB 44, 7143 (1991)
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Finite-temperature phase diagram

J/U J/U
0.035 0.035
0.030F
0.025 0.025
0.020 0.020 |

0015} |

0.015F

0.010F 0.010F,

0.005F 0.005

0.000 n n n n n s U 0.000 n n n n n s U
0.0 05 10 15 20 25 30 l"/ 0.0 05 10 15 20 25 30 lu’/

D = 3. Black: 1st order. Red: 2nd Order. Left: T'= 0.1 U. Right: T" = 0.02 U

o Temperature effects small at tip of lobe
@ Second-order correction largest at zero temperature
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Real-time Green’s function

@ Dynamic properties determined by retarded Green'’s function in
real-time:

. . i B0 [A R
Go(, 51,49 = O = ) Tr {e ™ [a;n(0).a] u(t)] }

@ Can be obtained by analytic continuation of imaginary-time result.
Easily done by replacing

Wy — W+ 17

o Zeroth order:

+1) n _
G(o (n _ BEn
(wid,7) Z(O Zn: [ E.x1—-FEp,—w—in E,—FEp,_1—w—1in €
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Excitation spectrum

o Excitation spectrum given by poles of real-time Green'’s function
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Excitation spectrum

o Excitation spectrum given by poles of real-time Green'’s function
o ForT =0

(2n—1) —p—J(k)+ %\/m —UJ(k)(4n +2) + J (k)2

o Different signs correspond to particle and hole excitations
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TIME-OF-FLIGHT
PHASE TRANSITION
APPLICATIONS EXCITATION SPECTRUM

Excitation spectrum

o

Excitation spectrum given by poles of real-time Green'’s function
ForT =0:

©

[GPw,x) =0

%(277, —1) —p—Jk)+ %\/m —UJ(k)(4n +2) + J (k)2

— w172 =

©

Different signs correspond to particle and hole excitations

©

Dispersion relation of pairs:

won(k) = wi(k) — wa(k) = /U2 — UJ()(dn +2) + J (k)2
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Excitation spectrum

wph /U 1Egap/U
o8| / 0.8
o6l 0.6/
: /7/,,
04r 0.4
02} 0.2
0 o K 5,92 0,03 0,04 0,05 0.05 0.07 0,08 /U
n=1,T=0.Black: J=0 n = 1. Black: J =0
Red: 2DJ =0.13U Red: 2DJ =0.13U
Blue: 2DJ =2DJ. =0.172U Blue: 2DJ =0.17U
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Excitation spectrum

wph/U

10

08l 0.8

o6} B 0.6 /
L

oal 0.4

02} 0.2

%% oz o4 06 o8 10 12 14 k/a 0.02 0.03 0.04 0.05 0.06 0.07 O.OBT/U
n=1,T=0.Black: J=0 n=1.Black: J =0
Red: 2DJ =0.13U Red: 2DJ =0.13U
Blue: 2D.J = 2D.J, = 0.172U Blue: 2D.J = 0.17U

@ Gap vanishes when hopping reaches critical value.
J.: Hopping at tip of lobe
o Gap experimentally measurable. Could serve as thermometer.
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Summary

o Green'’s function contain necessary information about
finite-temperature properties of Bose-Hubbard model

@ Hopping expansion provides perturbative access to Green’s
function in Mott regime

o Time-of-flight pictures for deep lattices agree with experiment
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Summary

o Green'’s function contain necessary information about
finite-temperature properties of Bose-Hubbard model

@ Hopping expansion provides perturbative access to Green’s
function in Mott regime

o Time-of-flight pictures for deep lattices agree with experiment
o Diagrammatic representation facilitates resummation

@ One-loop corrected phase diagram in good agreement with
Quantum Monte-Carlo data
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Summary

o Green'’s function contain necessary information about
finite-temperature properties of Bose-Hubbard model

@ Hopping expansion provides perturbative access to Green’s
function in Mott regime

o Time-of-flight pictures for deep lattices agree with experiment
o Diagrammatic representation facilitates resummation

@ One-loop corrected phase diagram in good agreement with
Quantum Monte-Carlo data

o Excitation spectrum shows characteristic vanishing of gap at critical
hopping
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Outlook

o Transition between Mott insulator and normal gas
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Outlook

o Transition between Mott insulator and normal gas
o Excitation spectrum in 2nd order

o Excitation spectrum as thermometer
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Outlook

o Transition between Mott insulator and normal gas
o Excitation spectrum in 2nd order
o Excitation spectrum as thermometer

@ Green'’s function within superfluid phase: near phase boundary
with Landau expansion, far away with Bogoliubov theory
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