Diagrammatic Green's Functions Approach to the Bose-Hubbard Model

Matthias Ohliger

Institut für Theoretische Physik Freie Universität Berlin

22nd of January 2008

MATTHIAS OHLIGER GREEN'S FUNCTIONS OF THE BHM

イロト イポト イヨト イヨト

OVERVIEW Considered system Basic idea

Content

Introduction

- Experimental realization
- Bose-Hubbard model
- Motivation

ヘロト ヘ回ト ヘヨト ヘヨト

OVERVIEW Considered system Basic idea

Content

Introduction

- Experimental realization
- Bose-Hubbard model
- Motivation

Imaginary-time Green's functions

- Hopping expansion
- Cumulant decomposition
- Diagrammatic rules

(4) (5) (4) (5) (4)

Overview Considered system Basic idea

Content

Introduction

- Experimental realization
- Bose-Hubbard model
- Motivation

Imaginary-time Green's functions

- Hopping expansion
- Cumulant decomposition
- Diagrammatic rules
- Time-of-flight

★ E > < E >

Overview Considered system Basic idea

Content

Introduction

- Experimental realization
- Bose-Hubbard model
- Motivation

Imaginary-time Green's functions

- Hopping expansion
- Cumulant decomposition
- Diagrammatic rules
- Time-of-flight
- Phase diagram
 - Resummation
 - Results and comparison with QMC

Overview Considered system Basic idea

Content

Introduction

- Experimental realization
- Bose-Hubbard model
- Motivation

Imaginary-time Green's functions

- Hopping expansion
- Cumulant decomposition
- Diagrammatic rules
- Time-of-flight
- Phase diagram
 - Resummation
 - Results and comparison with QMC
- Excitation spectrum

Overview Considered system Basic idea

Content

Introduction

- Experimental realization
- Bose-Hubbard model
- Motivation

Imaginary-time Green's functions

- Hopping expansion
- Cumulant decomposition
- Diagrammatic rules
- Time-of-flight
- Phase diagram
 - Resummation
 - Results and comparison with QMC
- Excitation spectrum
- Summary and outlook

Introduction Diagrammatic hopping expansion Applications OVERVIEW Considered system Basic idea

Experimental realization

- Optical lattice produced by counter-propagating lasers
- $V \propto \sin^2(2\pi x/\lambda)$
- Relative strength of hopping and interaction controllable
- (Quasi) one-, two-, and three-dimensional configurations possible

OVERVIEW Considered system Basic idea

Bose-Hubbard model

Bose-Hubbard Hamiltonian:

$$\begin{split} \hat{H}_{\mathsf{BHM}} = & \hat{H}_{0} + \hat{H}_{1} \\ \hat{H}_{0} = \sum_{i} \left[\frac{U}{2} \hat{n}_{i} (\hat{n}_{i} - 1) - \mu \hat{n}_{i} \right] \\ \hat{H}_{1} = & -J \sum_{\langle i,j \rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j} = -\sum_{i,j} J_{i,j} \hat{a}_{i}^{\dagger} \hat{a}_{j} \end{split}$$

ヘロン 人間 とくほ とくほ とう

$$\begin{split} \hat{n}_i = & \hat{a}_i^{\dagger} \hat{a}_i \\ J_{ij} = \left\{ \begin{array}{ll} J & \text{if } i, j \text{ nearest neighbors} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

OVERVIEW CONSIDERED SYSTEM BASIC IDEA

Bose-Hubbard model

1

Bose-Hubbard Hamiltonian:

$$\hat{H}_{\mathsf{BHM}} = \hat{H}_{0} + \hat{H}_{1}$$

$$\hat{H}_{0} = \sum_{i} \left[\frac{U}{2} \hat{n}_{i} (\hat{n}_{i} - 1) - \mu \hat{n}_{i} \right]$$

$$\hat{H}_{1} = -J \sum_{\langle i,j \rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j} = -\sum_{i,j} J_{i,j} \hat{a}_{i}^{\dagger} \hat{a}_{j}$$

$$\begin{split} \hat{n}_i = & \hat{a}_i^{\dagger} \hat{a}_i \\ J_{ij} = \left\{ \begin{array}{ll} J & \text{if } i, j \text{ nearest neighbors} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

• \hat{H}_0 site-diagonal:

$$\hat{H}_0|n\rangle = N_S E_n |n\rangle$$

 $E_n = \frac{U}{2}n(n-1) - \mu n$

(4) (5) (4) (5) (4)

• Perturbative expansion in \hat{H}_1

INTRODUCTION OVERVIEW DIAGRAMMATIC HOPPING EXPANSION CONSIDERED SYSTEM APPLICATIONS BASIC IDEA

Motivation

- Green's functions contain many important information about the system:
 - Quantum phase diagram
 - Time-of-flight pictures
 - Excitation spectra
 - Thermodynamic properties

B 1 4 B 1

Motivation

- Green's functions contain many important information about the system:
 - Quantum phase diagram
 - Time-of-flight pictures
 - Excitation spectra
 - Thermodynamic properties
- Motivated by:
 - F. Nogueira's "Primer to the Bose-Hubbard model"
 - Diagrammatic calculations for Fermions by W. Metzner, PRB 43, 8549 (1993)

IMAGINARY-TIME GREEN'S FUNCTION CUMULANT DECOMPOSITION DIAGRAMMATIC RULES AND EXAMPLES

Imaginary-time Green's function

Definition:

$$G_{1}(\tau',j'|\tau,j) = \frac{1}{\mathcal{Z}} \operatorname{Tr} \left\{ e^{-\beta \hat{H}} \hat{T} \left[\hat{a}_{j,\mathsf{H}}(\tau) \hat{a}_{j',\mathsf{H}}^{\dagger}(\tau') \right] \right\}$$

with $\mathcal{Z} = \operatorname{Tr} \{ e^{-\beta \hat{H}} \}$

• Heisenberg operators in imaginary time ($\hbar = 1$):

$$\hat{O}_{\mathsf{H}}(\tau) = e^{\hat{H}\tau} \hat{O} e^{-\hat{H}\tau}$$

(4) (5) (4) (5) (4)

Dirac interaction picture

• Time evolution of operators determined only by \hat{H}_0 :

$$\hat{O}_{\mathsf{D}}(\tau) = e^{\hat{H}_0 \tau} \hat{O} e^{-\hat{H}_0 \tau}$$

• Dirac time evolution operator calculated by Dyson series:

$$\begin{split} \hat{U}_{\mathsf{D}}(\tau,\tau_{0}) &= \sum_{n=0}^{\infty} (-1)^{n} \int_{\tau_{0}}^{\tau} d\tau_{1} \dots \int_{\tau_{0}}^{\tau_{n-1}} d\tau_{n} \hat{H}_{1\mathsf{D}}(\tau_{1}) \dots \hat{H}_{1\mathsf{D}}(\tau_{n}) \\ &= \hat{T} \exp\left(-\int_{\tau_{0}}^{\tau} d\tau_{1} \hat{H}_{1\mathsf{D}}(\tau_{1})\right) \end{split}$$

(3)

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLES

Partition function

Full partition function:

$$\mathcal{Z} = \mathsf{Tr}\left\{e^{-eta \hat{H}_{\mathsf{0}}}\hat{U}_{\mathsf{D}}(eta,\mathsf{0})
ight\}$$

イロト イポト イヨト イヨト

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLES

Partition function

Full partition function:

$$\mathcal{Z} = \mathsf{Tr}\left\{e^{-\beta\hat{H}_0}\hat{U}_{\mathsf{D}}(\beta, \mathbf{0})\right\}$$

• *n*th order contibution:

$$\mathcal{Z}^{(n)} = \frac{1}{n!} \mathcal{Z}^{(0)} \sum_{i_1, j_1, \dots, i_n, j_n} J_{i_1 j_1} \dots J_{i_n j_n} \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \dots \int_0^\beta d\tau_n \\ \times G_n^{(0)}(\tau_1, j_1; \dots; \tau_n, j_n | \tau_1, i_1; \dots; \tau_n, i_n)$$

• Unperturbed *n*-particle Green's function:

$$G_n^{(0)}(\tau_1', i_1'; \dots; \tau_n', i_n' | \tau_1, i_1; \dots; \tau_n, i_n) = \left\langle \hat{T} \hat{a}_{i_1'}^{\dagger}(\tau_1') \hat{a}_{i_1}(\tau_1) \dots \hat{a}_{i_n'}^{\dagger}(\tau_n') \hat{a}_{i_n}(\tau_n) \right\rangle^{(0)}$$

Cumulant decomposition

- Decompose $G_n^{(0)}(\tau'_1, i'_1; ...; \tau'_n, i'_n | \tau_1, i_1; ...; \tau_n, i_n)$ into "simple" parts
- \hat{H}_0 not harmonic \Rightarrow Wick's theorem not applicable

Cumulant decomposition

(

- Decompose $G_n^{(0)}(\tau'_1, i'_1; ...; \tau'_n, i'_n | \tau_1, i_1; ...; \tau_n, i_n)$ into "simple" parts
- \hat{H}_0 not harmonic \Rightarrow Wick's theorem not applicable
- But: Decomposition into cumulants
- \hat{H}_0 site-diagonal \Rightarrow cumulants local. Example:

$$G_{2}^{(0)}(\tau_{1}',i_{1}';\tau_{2}',i_{2}'|\tau_{1},i_{1};\tau_{2},i_{2}) = \delta_{i_{1},i_{2}}\delta_{i_{1}',i_{2}'}\delta_{i_{1},i_{1}'}C_{2}^{(0)}(\tau_{1}',\tau_{2}'|\tau_{1},\tau_{2}) + \delta_{i_{1},i_{1}'}\delta_{i_{2},i_{2}'}C_{1}^{(0)}(\tau_{1}'|\tau_{1})C_{1}^{(0)}(\tau_{2}'|\tau_{2}) + \delta_{i_{1},i_{2}'}\delta_{i_{2},i_{1}'}C_{1}^{(0)}(\tau_{2}'|\tau_{1})C_{1}^{(0)}(\tau_{1}'|\tau_{2})$$

(過) (ヨ) (ヨ)

Cumulant decomposition

(

- Decompose $G_n^{(0)}(\tau'_1, i'_1; ...; \tau'_n, i'_n | \tau_1, i_1; ...; \tau_n, i_n)$ into "simple" parts
- \hat{H}_0 not harmonic \Rightarrow Wick's theorem not applicable
- But: Decomposition into cumulants
- \hat{H}_0 site-diagonal \Rightarrow cumulants local. Example:

$$\begin{aligned} G_{2}^{(0)}(\tau_{1}',i_{1}';\tau_{2}',i_{2}'|\tau_{1},i_{1};\tau_{2},i_{2}) &= \delta_{i_{1},i_{2}}\delta_{i_{1}',i_{2}'}\delta_{i_{1},i_{1}'}C_{2}^{(0)}(\tau_{1}',\tau_{2}'|\tau_{1},\tau_{2}) \\ &+ \delta_{i_{1},i_{1}'}\delta_{i_{2},i_{2}'}C_{1}^{(0)}(\tau_{1}'|\tau_{1})C_{1}^{(0)}(\tau_{2}'|\tau_{2}) + \delta_{i_{1},i_{2}'}\delta_{i_{2},i_{1}'}C_{1}^{(0)}(\tau_{2}'|\tau_{1})C_{1}^{(0)}(\tau_{1}'|\tau_{2}) \end{aligned}$$

- Denote contributions diagrammatically: Points for cumulants, lines for hopping matrix elements
- Perturbation theory in number of lines

マロト イラト イラト

Calculation of cumulants

• Generating functional:

$$C_0^{(0)}[j,j^*] = \log \left\langle \hat{T} \exp\left(\int_0^\beta d\tau j^*(\tau) \hat{a}(\tau) + j(\tau) \hat{a}^{\dagger}(\tau)\right) \right\rangle^{(0)}$$

• Cumulants calculated by functional derivatives:

$$C_n^{(0)}(\tau_1', \dots, \tau_n' | \tau_1, \dots, \tau_n) = \frac{\delta^{2n}}{\delta j(\tau_1') \dots \delta j(\tau_n') \delta j^*(\tau_1) \dots \delta j^*(\tau_n)} C_0^{(0)}[j, j^*] \Big|_{j=j^*=0}$$

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLE

Calculation of cumulants

One- and two-particle cumulants:

$$C_{1}^{(0)}(\tau',|\tau) = \langle \hat{T}\hat{a}^{\dagger}(\tau')\hat{a}(\tau)\rangle^{(0)} = \frac{1}{\mathcal{Z}^{(0)}} \sum_{n=0}^{\infty} \langle n|\hat{T}\hat{a}^{\dagger}(\tau')\hat{a}(\tau)|n\rangle e^{-\beta E_{n}}$$
$$= \frac{1}{\mathcal{Z}^{(0)}} \sum_{n=0}^{\infty} \left[\Theta(\tau-\tau')(n+1) e^{(E_{n}-E_{n+1})(\tau-\tau')} +\Theta(\tau'-\tau) n e^{(E_{n}-E_{n-1})(\tau'-\tau)}\right] e^{-\beta E_{n}}$$

$$C_{2}^{(0)}(\tau_{1}',\tau_{2}'|\tau_{1},\tau_{2}) = \langle \hat{T}\hat{a}^{\dagger}(\tau_{1}')\hat{a}^{\dagger}(\tau_{2}')\hat{a}(\tau_{1})\hat{a}(\tau_{2})\rangle^{(0)} - C_{1}^{(0)}(\tau_{1}',\tau_{1})C_{1}^{(0)}(\tau_{2}',\tau_{2}) - C_{1}^{(0)}(\tau_{1}',\tau_{2})C_{1}^{(0)}(\tau_{2}',\tau_{1})$$

INTRODUCTION IMAGINAR DIAGRAMMATIC HOPPING EXPANSION CUMULAN APPLICATIONS DIAGRAM

IMAGINARY-TIME GREEN'S FUNCTION CUMULANT DECOMPOSITION DIAGRAMMATIC RULES AND EXAMPLES

Diagrammatic rules for $\mathcal{Z}^{(n)}$

- Draw all possible combinations of vertices with total n entering and n leaving lines
- Connect them in all possible ways and assign time variables and hopping matrix elements onto the lines
- Sum over all site indices and integrate all time variables from 0 to β

・ 同 ト ・ ヨ ト ・ ヨ ト

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLES.

Calculation of free energy

• Grand-canonical free energy:

$$\mathcal{F} = -rac{1}{eta}\log\mathcal{Z}\,,\quad \mathcal{F}^{(0)} = -rac{N_S}{eta}\log\mathcal{Z}^{(0)}\,,\quad \mathcal{Z}^{(0)} = \sum_n e^{-eta E_n}$$

(3)

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLES

Calculation of free energy

• Grand-canonical free energy:

$$\mathcal{F} = -rac{1}{eta}\log\mathcal{Z}\,,\quad \mathcal{F}^{(0)} = -rac{N_S}{eta}\log\mathcal{Z}^{(0)}\,,\quad \mathcal{Z}^{(0)} = \sum_n e^{-eta E_n}$$

Contains only connected vacuum diagrams

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLES.

Calculation of free energy

Grand-canonical free energy:

$$\mathcal{F} = -rac{1}{eta}\log\mathcal{Z}\,,\quad \mathcal{F}^{(0)} = -rac{N_S}{eta}\log\mathcal{Z}^{(0)}\,,\quad \mathcal{Z}^{(0)} = \sum_n e^{-eta E_n}$$

- Contains only connected vacuum diagrams
- First correction:

$$\mathcal{F}^{(2)} = \frac{-1}{2\beta} i \underbrace{\tau_2}_{\tau_2} j = \frac{-1}{2\beta} \sum_{i,j} J_{i,j} J_{j,i} \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 C_1^{(0)}(\tau_2 | \tau_1) C_1^{(0)}(\tau_1 | \tau_2)$$
$$= -\frac{N_S 2DJ^2}{U\mathcal{Z}^{(0)2}} \sum_{n,k} \left[\frac{(n+1)k}{k-n+1} + \frac{n(k+1)}{n-k+1} \right] e^{-\beta(E_n + E_k)}$$

INTRODUCTION IMAGINARY-TIME GREEN'S FUNCTION DIAGRAMMATIC HOPPING EXPANSION CUMULANT DECOMPOSITION APPLICATIONS DIAGRAMMATIC RULES AND EXAMPLES.

Diagrammatic rules for Green's functions

$$G_{1}(\tau',i'|\tau,i) = \frac{1}{\mathcal{Z}} \operatorname{Tr} \left\{ e^{-\beta \hat{H}_{0}} \hat{T} \hat{a}_{i'}^{\dagger}(\tau') \hat{a}_{i}(\tau) \hat{U}_{\mathsf{D}}(\beta,0) \right\}$$

$$G_{1}^{(n)}(\tau',i'|\tau,i) = \frac{\mathcal{Z}^{(0)}}{\mathcal{Z}} \frac{1}{n!} \sum_{i_{1},j_{1},\dots,i_{n},j_{n}} J_{i_{1}j_{1}}\dots J_{i_{n}j_{n}} \int_{0}^{\beta} d\tau_{1}\dots \int_{0}^{\beta} d\tau_{n}$$

$$\times G_{n+1}^{(0)}(\tau_{1},j_{1};\dots;\tau_{n},j_{n};\tau',i'|\tau_{1},i_{1};\dots;\tau_{n},i_{n},\tau,i)$$

Diagrammatic rules for Green's functions

$$G_{1}(\tau',i'|\tau,i) = \frac{1}{Z} \operatorname{Tr} \left\{ e^{-\beta \hat{H}_{0}} \hat{T} \hat{a}_{i'}^{\dagger}(\tau') \hat{a}_{i}(\tau) \hat{U}_{\mathsf{D}}(\beta,0) \right\}$$

$$G_{1}^{(n)}(\tau',i'|\tau,i) = \frac{\mathcal{Z}^{(0)}}{\mathcal{Z}} \frac{1}{n!} \sum_{i_{1},j_{1},\dots,i_{n},j_{n}} J_{i_{1}j_{1}}\dots J_{i_{n}j_{n}} \int_{0}^{\beta} d\tau_{1}\dots \int_{0}^{\beta} d\tau_{n}$$

$$\times G_{n+1}^{(0)}(\tau_{1},j_{1};\dots;\tau_{n},j_{n};\tau',i'|\tau_{1},i_{1};\dots;\tau_{n},i_{n},\tau,i)$$

Diagrams have external lines with fixed time and site variables

Diagrammatic rules for Green's functions

$$G_{1}(\tau',i'|\tau,i) = \frac{1}{\mathcal{Z}} \operatorname{Tr} \left\{ e^{-\beta \hat{H}_{0}} \hat{T} \hat{a}_{i'}^{\dagger}(\tau') \hat{a}_{i}(\tau) \hat{U}_{\mathsf{D}}(\beta,0) \right\}$$

$$G_{1}^{(n)}(\tau',i'|\tau,i) = \frac{\mathcal{Z}^{(0)}}{\mathcal{Z}} \frac{1}{n!} \sum_{i_{1},j_{1},\dots,i_{n},j_{n}} J_{i_{1}j_{1}}\dots J_{i_{n}j_{n}} \int_{0}^{\beta} d\tau_{1}\dots \int_{0}^{\beta} d\tau_{n}$$

$$\times G_{n+1}^{(0)}(\tau_{1},j_{1};\dots;\tau_{n},j_{n};\tau',i'|\tau_{1},i_{1};\dots;\tau_{n},i_{n},\tau,i)$$

- Diagrams have external lines with fixed time and site variables
- Disconnected diagrams cancelled by $\mathcal{Z}^{(0)}/\mathcal{Z}$

A 3 5 4 3 5 4

Diagrammatic rules for Green's functions

$$G_{1}(\tau',i'|\tau,i) = \frac{1}{\mathcal{Z}} \operatorname{Tr} \left\{ e^{-\beta \hat{H}_{0}} \hat{T} \hat{a}_{i'}^{\dagger}(\tau') \hat{a}_{i}(\tau) \hat{U}_{\mathsf{D}}(\beta,0) \right\}$$

$$G_{1}^{(n)}(\tau',i'|\tau,i) = \frac{\mathcal{Z}^{(0)}}{\mathcal{Z}} \frac{1}{n!} \sum_{i_{1},j_{1},\dots,i_{n},j_{n}} J_{i_{1}j_{1}}\dots J_{i_{n}j_{n}} \int_{0}^{\beta} d\tau_{1}\dots \int_{0}^{\beta} d\tau_{n}$$

$$\times G_{n+1}^{(0)}(\tau_{1},j_{1};\dots;\tau_{n},j_{n};\tau',i'|\tau_{1},i_{1};\dots;\tau_{n},i_{n},\tau,i)$$

- Diagrams have external lines with fixed time and site variables
- Disconnected diagrams cancelled by $\mathcal{Z}^{(0)}/\mathcal{Z}$
- Zeroth and first order:

$$G_{1}^{(0)}(\tau',i|\tau,j) = \underbrace{\stackrel{i}{\tau'}}_{\tau'} \underbrace{\tau}_{\tau} = \delta_{i,j}C_{1}^{(0)}(\tau'|\tau)$$

$$G_{1}^{(1)}(\tau',i|\tau,j) = \underbrace{\stackrel{i}{\tau'}}_{\tau'} \underbrace{\stackrel{j}{\tau_{1}}}_{\tau_{1}} \underbrace{\tau}_{\tau} = J\delta_{d(i,j),1}\int_{0}^{\beta} d\tau_{1}C_{1}^{(0)}(\tau'|\tau_{1})C_{1}^{(0)}(\tau_{1}|\tau)$$

Calculations in Matsubara space

• Translational invariance in time suggests Matsubara transform:

$$C_1^{(0)}(\omega_m) = \frac{1}{\mathcal{Z}^{(0)}} \sum_n \left[\frac{(n+1)}{E_{n+1} - E_n - i\omega_m} - \frac{n}{E_n - E_{n-1} - i\omega_m} \right] e^{-\beta E_n}, \ \omega_m = \frac{2\pi}{\beta} m$$

Calculations in Matsubara space

• Translational invariance in time suggests Matsubara transform:

$$C_1^{(0)}(\omega_m) = \frac{1}{\mathcal{Z}^{(0)}} \sum_n \left[\frac{(n+1)}{E_{n+1} - E_n - i\omega_m} - \frac{n}{E_n - E_{n-1} - i\omega_m} \right] e^{-\beta E_n}, \ \omega_m = \frac{2\pi}{\beta} m$$

 In rule 3 integration over τ replaced by summation over ω_m under consideration of frequency conservation on vertices:

$$G_{1}^{(1)}(\omega; i, j) = \underbrace{\stackrel{i}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} = J\delta_{d(i,j),1}C_{1}^{(0)}(\omega)^{2}}_{G_{1}^{(2)}(\omega; i, j)} = \underbrace{\stackrel{i}{\underset{\omega}{\longrightarrow}} \stackrel{k}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{k}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{k}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{k}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} + \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} \stackrel{j}{\underset{\omega}{\longrightarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longleftarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longrightarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longleftarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longleftarrow} - \underbrace{\underset{\omega}{\underset{\omega}{\longleftarrow}} - \underbrace{\stackrel{j}{\underset{\omega}{\longleftarrow} - \underbrace{\underset{\omega}{\underset{\omega}{\longleftarrow} - \underbrace{\underset{\omega}{\underset{\omega}{\longleftarrow} - \underbrace{\underset{\omega}{\underset{\omega}{\longleftarrow} - \underbrace{\underset{\omega}{\underset{\omega}{\underset{\omega}{\longleftarrow} - \underbrace{\underset{\omega}{\underset{\omega}{\underset{\omega}{\underset{\omega}{\underset{\omega}{\underset$$

Equal-time correlations

Momentum space density:

$$\hat{n}_{\mathbf{k}} = \langle \hat{\psi}^{\dagger}(\mathbf{k}) \hat{\psi}(\mathbf{k}) \rangle = |w(\mathbf{k})|^{2} \underbrace{\sum_{i,j} e^{i\mathbf{k}(\mathbf{r}_{i} - \mathbf{r}_{j})} \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle}_{S(\mathbf{k})}, \quad \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle = \lim_{\tau' \nearrow 0} G_{1}(\tau', i|0, j)$$

イロト イポト イヨト イヨト

INTRODUCTION TIME-OF-FLIGHT Diagrammatic hopping expansion Phase transition Applications Excitation spectre

Equal-time correlations

Momentum space density:

$$\hat{n}_{\mathbf{k}} = \langle \hat{\psi}^{\dagger}(\mathbf{k}) \hat{\psi}(\mathbf{k}) \rangle = |w(\mathbf{k})|^{2} \underbrace{\sum_{i,j} e^{i\mathbf{k}(\mathbf{r}_{i} - \mathbf{r}_{j})} \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle}_{S(\mathbf{k})}, \quad \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle = \lim_{\tau' \nearrow 0} G_{1}(\tau', i|0, j)$$

Quasi-momentum distribution:

$$S(\mathbf{k}) = K_0 + K_1 \frac{J(\mathbf{k})}{U} + K_2 \frac{J^2(\mathbf{k})}{U^2} + \dots, \qquad J(\mathbf{k}) = 2J \sum_{l=1}^3 \cos(k_l a)$$

(4) (5) (4) (5) (4)

Equal-time correlations

Momentum space density:

$$\hat{n}_{\mathbf{k}} = \langle \hat{\psi}^{\dagger}(\mathbf{k}) \hat{\psi}(\mathbf{k}) \rangle = |w(\mathbf{k})|^{2} \underbrace{\sum_{i,j} e^{i\mathbf{k}(\mathbf{r}_{i} - \mathbf{r}_{j})} \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle}_{S(\mathbf{k})}, \quad \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle = \lim_{\tau' \nearrow 0} G_{1}(\tau', i|0, j)$$

Quasi-momentum distribution:

$$S(\mathbf{k}) = K_0 + K_1 \frac{J(\mathbf{k})}{U} + K_2 \frac{J^2(\mathbf{k})}{U^2} + \dots, \qquad J(\mathbf{k}) = 2J \sum_{l=1}^3 \cos(k_l a)$$

Lowest orders:

$$G_1^{(0)}(0,i|j,0) = \frac{\delta_{ij}}{\mathcal{Z}^{(0)}} \sum_n n e^{-\beta E_n}$$

$$G_1^{(1)}(0,i|j,0) = \frac{J2\delta_{d(i,j),1}}{U\mathcal{Z}^{(0)2}} \sum_{n,k} \frac{n(n+1)}{(n-k+1)(k-n+1)} e^{-\beta(E_n+E_k)}$$

(4) (5) (4) (5) (4)

TIME-OF-FLIGHT Phase transition Excitation spectrum

Time-of-flight pictures

(a) $V_0 = 8E_R$, (b) $V_0 = 14E_R$, (c) $V_0 = 18E_R$, and (d) $V_0 = 30E_R$

Phase transition

 Phase transition requires diverging Green's function. Not possible in perturbation theory

Phase transition

- Phase transition requires diverging Green's function. Not possible in perturbation theory
- Solved by resummation:

(3)

Phase transition

- Phase transition requires diverging Green's function. Not possible in perturbation theory
- Solved by resummation:

• Summed most easily in Fourier space:

$$\tilde{G}_1^{(1)}(\omega, \mathbf{k}) = \frac{C_1^{(0)}(\omega)}{1 - J(\mathbf{k}) C_1^{(0)}(\omega)}, \quad \tilde{G}_1^{(1)}(0, \mathbf{0}) = \frac{C_1^{(0)}(\mathbf{0})}{1 - 2DJC_1^{(0)}(\mathbf{0})}$$

イヨンイヨン

INTRODUCTION TIME-0F-FLIGHT
DIAGRAMMATIC HOPPING EXPANSION
APPLICATIONS
EXCITATION SPECTRUM

Phase transition

- Phase transition requires diverging Green's function. Not possible in perturbation theory
- Solved by resummation:

• Summed most easily in Fourier space:

$$\tilde{G}_1^{(1)}(\omega, \mathbf{k}) = \frac{C_1^{(0)}(\omega)}{1 - J(\mathbf{k}) C_1^{(0)}(\omega)}, \quad \tilde{G}_1^{(1)}(0, \mathbf{0}) = \frac{C_1^{(0)}(\mathbf{0})}{1 - 2DJC_1^{(0)}(\mathbf{0})}$$

• Neglected contributions like $\omega_1 \bigoplus_{\omega=1}^{k} \omega_1$ vanish at least as 1/D for $D \to \infty$

(4月) トイヨト イヨト

Phase boundary

Phase boundary given by:

$$2DJ_c = \frac{\sum_n e^{-\beta E_n}}{\sum_n e^{-\beta E_n} \left(\frac{n+1}{E_{n+1} - E_n} - \frac{n}{E_n - E_{n-1}}\right)} \xrightarrow{T \to 0} = \frac{1}{\frac{n+1}{E_{n+1} - E_n} - \frac{n}{E_n - E_{n-1}}}$$

ヘロン 人間 とくほ とくほう

INTRODUCTION TIME-OF-FLIGHT
DIAGRAMMATIC HOPPING EXPANSION
APPLICATIONS
EXECUTATION SPECTRUM

Phase boundary

Phase boundary given by:

$$2DJ_c = \frac{\sum_n e^{-\beta E_n}}{\sum_n e^{-\beta E_n} \left(\frac{n+1}{E_{n+1} - E_n} - \frac{n}{E_n - E_{n-1}}\right)} \xrightarrow{T \to 0} = \frac{1}{\frac{n+1}{E_{n+1} - E_n} - \frac{n}{E_n - E_{n-1}}}$$

• Same result as obtained by mean-field theory (z = 2D):

INTRODUCTION TIME-OF-FLIGHT
DIAGRAMMATIC HOPPING EXPANSION
APPLICATIONS
Excitation spectrum

Beyond mean field

(ロ) (同) (ヨ) (ヨ) (ヨ)

Beyond mean field

Full Green's function obtained by Dyson series:

$$G_1(\omega, \mathbf{k}) = \sum_{l=0}^{\infty} \left(- \mathcal{O} \right)^{l+1} J(\mathbf{k})^l$$

Beyond mean field

Full Green's function obtained by Dyson series:

$$G_1(\omega, \mathbf{k}) = \sum_{l=0}^{\infty} \left(- \mathcal{O}_{\mathbf{k}} \right)^{l+1} J(\mathbf{k})^l$$

Approximated by considering only the first two terms in +

イロト 不得 トイヨト イヨト

Calculation of one-loop diagram

$$2D\delta_{i,j}J^2G_1^{(2B)}(\omega) = \underbrace{\frac{\omega_1}{\omega}}_{i} \underbrace{\frac{\omega_1}{\omega}}_{i} = \frac{2D\delta_{i,j}}{\mathcal{Z}^{(0)2}} \left(\frac{1}{U^2} \sum_{n,k} e^{-\beta(E_n + E_k)}\right)$$

$$\times \left\{ \frac{(k+1)(n-1)n\left[k^2 + 2(n-1)^2 - \mu^2 + 2k(2-2n-\mu)\right]}{(k-n+1)^2(k-2n+\mu)(1-n+\mu)^2} + 7 \text{ more terms} \right\} - C_1^{(0)}(\omega)^3$$

$$+ \beta \left\{ \sum_{n,k} \left[\frac{(n+1)k}{k-n+1} + \frac{n(k+1)}{n-k+1} \right] \left[\frac{n+1}{n-\mu-i\omega} - \frac{n}{n-1-\mu-i\omega} \right] e^{-\beta(E_n + E_k)}$$

$$- C_1^{(0)}(\omega) \sum_{n,k} \left[\frac{(n+1)k}{k-n+1} + \frac{n(k+1)}{n-k+1} \right] e^{-\beta(E_n + E_k)} \right\} \right)$$

イロト イポト イヨト イヨト

One-loop corrected phase boundary

• 2nd order resummed Green's function:

$$\tilde{G}_{1}^{(2)}(\omega, \mathbf{k} = \mathbf{0}) = \frac{C_{1}^{(0)}(\omega)}{1 - J2DC_{1}^{(0)}(\omega) + J^{2}2DG_{1}^{(2B)}(\omega)/C_{1}^{(0)}(\omega)}$$

A B K A B K

One-loop corrected phase boundary

• 2nd order resummed Green's function:

$$\tilde{G}_{1}^{(2)}(\omega, \mathbf{k} = \mathbf{0}) = \frac{C_{1}^{(0)}(\omega)}{1 - J2DC_{1}^{(0)}(\omega) + J^{2}2DG_{1}^{(2B)}(\omega)/C_{1}^{(0)}(\omega)}$$

Phase boundary

$$J_c = 1 / \left\{ C_1^{(0)}(\mathbf{0}) D - \sqrt{2DG_1^{(2B)}(\mathbf{0}) / C_1^{(0)}(\mathbf{0}) + D^2 C_1^{(0)2(\mathbf{0})}} \right\}$$

• In T=0 limit same result as E. Santos

Comparison with simulations for T = 0

Finite-temperature phase diagram

D = 3. Black: 1st order. Red: 2nd Order. Left: T = 0.1 U. Right: T = 0.02 U

- Temperature effects small at tip of lobe
- Second-order correction largest at zero temperature

Real-time Green's function

Dynamic properties determined by retarded Green's function in real-time:

$$G_{1}(t',j'|,t,j) = \Theta(t-t')\frac{i}{\mathcal{Z}}\mathsf{Tr}\left\{e^{-\beta\hat{H}}\left[\hat{a}_{j,\mathsf{H}}(t),\hat{a}_{j',\mathsf{H}}^{\dagger}(t')\right]\right\}$$

 Can be obtained by analytic continuation of imaginary-time result. Easily done by replacing

$$i\omega_m \longrightarrow \omega + i\eta$$

Zeroth order:

$$G_{1}^{(0)}(\omega; i, j) = \frac{\delta_{i,j}}{\mathcal{Z}^{(0)}} \sum_{n} \left[\frac{(n+1)}{E_{n+1} - E_n - \omega - i\eta} - \frac{n}{E_n - E_{n-1} - \omega - i\eta} \right] e^{-\beta E_n}$$

Excitation spectrum

Excitation spectrum given by poles of real-time Green's function

Excitation spectrum

- Excitation spectrum given by poles of real-time Green's function
- For *T* = 0:

$$\begin{split} [\tilde{G}_1^{(1)}(\omega, \mathbf{k})]^{-1} &\stackrel{!}{=} 0\\ \implies \omega_{1,2} = \frac{U}{2}(2n-1) - \mu - J(\mathbf{k}) \pm \frac{1}{2}\sqrt{U^2 - UJ(\mathbf{k})(4n+2) + J(\mathbf{k})^2} \end{split}$$

Different signs correspond to particle and hole excitations

(3)

Excitation spectrum

- Excitation spectrum given by poles of real-time Green's function
- For *T* = 0:

$$\begin{split} [\tilde{G}_1^{(1)}(\omega, \mathbf{k})]^{-1} &\stackrel{!}{=} 0\\ \implies \omega_{1,2} = \frac{U}{2}(2n-1) - \mu - J(\mathbf{k}) \pm \frac{1}{2}\sqrt{U^2 - UJ(\mathbf{k})(4n+2) + J(\mathbf{k})^2} \end{split}$$

- Different signs correspond to particle and hole excitations
- Dispersion relation of pairs:

$$\omega_{\mathsf{ph}}(\mathbf{k}) = \omega_1(\mathbf{k}) - \omega_2(\mathbf{k}) = \sqrt{U^2 - UJ(\mathbf{k})(4n+2) + J(\mathbf{k})^2}$$

(3)

Excitation spectrum

Excitation spectrum

- Gap vanishes when hopping reaches critical value. *J_c*: Hopping at tip of lobe
- Gap experimentally measurable. Could serve as thermometer.

マロト イヨト イヨト

Summary

- Green's function contain necessary information about finite-temperature properties of Bose-Hubbard model
- Hopping expansion provides perturbative access to Green's function in Mott regime
- Time-of-flight pictures for deep lattices agree with experiment

イヨンイヨン

Summary

- Green's function contain necessary information about finite-temperature properties of Bose-Hubbard model
- Hopping expansion provides perturbative access to Green's function in Mott regime
- Time-of-flight pictures for deep lattices agree with experiment
- Diagrammatic representation facilitates resummation
- One-loop corrected phase diagram in good agreement with Quantum Monte-Carlo data

(3)

Summary

- Green's function contain necessary information about finite-temperature properties of Bose-Hubbard model
- Hopping expansion provides perturbative access to Green's function in Mott regime
- Time-of-flight pictures for deep lattices agree with experiment
- Diagrammatic representation facilitates resummation
- One-loop corrected phase diagram in good agreement with Quantum Monte-Carlo data
- Excitation spectrum shows characteristic vanishing of gap at critical hopping

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Transition between Mott insulator and normal gas

ヘロン 人間 とくほ とくほ とう

- Transition between Mott insulator and normal gas
- Excitation spectrum in 2nd order
- Excitation spectrum as thermometer

- Transition between Mott insulator and normal gas
- Excitation spectrum in 2nd order
- Excitation spectrum as thermometer
- Green's function within superfluid phase: near phase boundary with Landau expansion, far away with Bogoliubov theory