Two Intriguing Examples for Topological Effects in Ultra-Cold Atoms

Axel Pelster

1. Ground-State Properties of Anyons in a One-Dimensional Lattice

Tang, Eggert, and Pelster, NJP 17, 123016 (2015)

2. Quantum Domain Walls Induce Incommensurate Supersolid Phase on the Anisotropic Triangular Lattice

Zhang, Hu, Pelster, and Eggert, PRL 117, 193210 (2016)

3. Outlook

1.1 Identical Quantum Particles

- D = 3: Bosons and fermions
- D = 2: Anyons obeying fractional statistics
 - Exchange of two anyons: phase factor $e^{i\theta}$ with $0 \le \theta \le \pi$
 - **Example:** electrons in fractional quantum Hall effect
- Interpolation between Bose-Einstein and Fermi-Dirac statistics:
 - E.g. Gentile (1940), Haldane (1991), Polychronakos (1996), ...
 - Virial expansion: those fractional statistics disagree with anyons Khare, *Fractional Statistics and Quantum Theory* (World Scientific, 2005)
 - \implies Anyon statistics not yet known
- D = 1: Possible realizations of anyons with quantum gases
 - Photon-assisted tunneling: Keilmann et al., NC 2, 361 (2011)
 - Raman scheme: Greschner and Santos, PRL 115, 053002 (2015)
 - Lattice-shaking-induced resonant tunneling:

Sträter, Srivastava, and Eckardt, PRL 117, 205303 (2016)

1.2 Anyon Model in 1D

• Anyon-Hubbard Hamilton:

$$\hat{H}^{a} = -J \sum_{j=1}^{L} (\hat{a}_{j}^{\dagger} \hat{a}_{j+1} + \text{h.c.}) + \frac{U}{2} \sum_{j=1}^{L} \hat{n}_{j} (\hat{n}_{j} - 1)$$
$$\hat{a}_{j} \hat{a}_{k}^{\dagger} - e^{-i\theta \text{sgn}(j-k)} \hat{a}_{k}^{\dagger} \hat{a}_{j} = \delta_{jk}$$
$$\hat{a}_{j} \hat{a}_{k} - e^{i\theta \text{sgn}(j-k)} \hat{a}_{k} \hat{a}_{j} = 0$$

 $\theta = 0$: bosons, $\theta = \pi$: pseudofermions

• Jordan-Wigner transformation:

$$\hat{a}_j = \hat{b}_j \exp\left(\mathrm{i}\theta \sum_{i=1}^{j-1} \hat{n}_i\right)$$

• Occupation-dependent hopping Bose-Hubbard model:

$$\hat{H}^{b} = -J \sum_{j=1}^{L} (\hat{b}_{j}^{\dagger} \hat{b}_{j+1} e^{i\theta \hat{n}_{j}} + h.c.) + \frac{U}{2} \sum_{j=1}^{L} \hat{n}_{j} (\hat{n}_{j} - 1)$$
$$\hat{b}_{j} \hat{b}_{k}^{\dagger} - \hat{b}_{k}^{\dagger} \hat{b}_{j} = \delta_{jk}$$
$$\hat{b}_{j} \hat{b}_{k} - \hat{b}_{k} \hat{b}_{j} = 0$$

Keilmann et al., NC 2, 361 (2011)

1.3 Gutzwiller Mean-Field Approximation

• Product ansatz: |C

$$G \rangle = \prod_{j} \left(\sum_{n=0}^{n_{\max}} f_n^{(j)} | n \rangle \right)$$

• Normalization:

$$\sum_{n=0}^{n_{\max}} |f_n^{(j)}|^2 = 1$$

- Energy: $E\left(\left\{f_n^{(j)}\right\}\right) = \langle G|\hat{H}^b|G\rangle$
- Classical GW approach: $f_n^{(j)} = f_n$

Modified GW approach 1:
$$f_n^{(j)} = F_n e^{i\alpha_n^{(j)}}$$

Tang, Eggert, and Pelster, NJP **17**, 123016 (2015)

• Modified GW approach 2: $f_n^{(j)} = F_n e^{i(\alpha_n + j\beta_n)}$ Bonkhoff, diploma thesis, TU Kaiserslautern (2016)

• Energy extremization yields Gutzwiller amplitudes and phases

1.4 Quasi-Momentum Distributions

• Bosonic version:

$$\langle \hat{n}_{k}^{(\mathrm{b})} \rangle = \frac{1}{L} \sum_{ij} e^{\mathrm{i}k(x_{i}-x_{j})} \langle \hat{b}_{i}^{\dagger} \hat{b}_{j} \rangle ,$$

$$\langle \hat{b}_{i}^{\dagger} \hat{b}_{j} \rangle = \delta_{ij} \langle \hat{n}_{i} \rangle + (1-\delta_{ij}) \langle \hat{b}_{i}^{\dagger} \rangle \langle \hat{b}_{j} \rangle$$

• Anyonic version:

$$\begin{split} \langle \hat{n}_{k}^{(\mathrm{a})} \rangle &= \frac{1}{L} \sum_{ij} e^{\mathrm{i}k(x_{i}-x_{j})} \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle \,, \\ \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle &\xrightarrow{i < j} \quad \langle \hat{b}_{i}^{\dagger} e^{\mathrm{i}\theta \hat{n}_{i}} \rangle \Big(\prod_{i < l < j} \langle e^{\mathrm{i}\theta \hat{n}_{l}} \rangle \Big) \langle \hat{b}_{j} \rangle \,, \\ \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle &\xrightarrow{i = j} \quad \langle \hat{b}_{i}^{\dagger} \hat{b}_{i} \rangle \,, \\ \langle \hat{a}_{i}^{\dagger} \hat{a}_{j} \rangle &\xrightarrow{i > j} \quad \langle e^{-\mathrm{i}\theta \hat{n}_{j}} \hat{b}_{j} \rangle \Big(\prod_{j < l < i} \langle e^{-\mathrm{i}\theta \hat{n}_{l}} \rangle \Big) \langle \hat{b}_{i}^{\dagger} \rangle \end{split}$$

• Goal: dependence on anyon statistical parameter $\boldsymbol{\theta}$

1.5 Hard-Core Anyons: Quasi-Momentum Distributions

$$n_0 = N/L = 0.5$$
, $L = 120$

• (a) Classical GW approach: $n_{\rm max} = 1$

$$\langle \hat{n}_k^{(a)} \rangle = n_0 + \frac{n_0(1 - n_0)}{L} \left[\frac{(L - 1) - L(ze^{-ik}) + (ze^{-ik})^L}{e^{ik}(1 - ze^{-ik})^2} + c.c. \right]$$

$$z = r e^{i\varphi}, \quad r = |1 - n_0 + n_0 e^{i\theta}|, \quad \varphi = \arg(1 - n_0 + n_0 e^{i\theta})$$

• (b) DMRG: matrix product states, open boundary conditions

1.6 Hard-Core Anyons: Maxima of Distributions

- Classical GW ($L \rightarrow \infty$) smaller shift than DMRG (L = 120)
- Larger peak shift for bigger n_0

1.7 Soft-Core Anyons: Boson Distributions

• Modified Gutzwiller:

$$n_{\max} = 2$$

$$\langle \hat{n}_k^{(b)} \rangle \xrightarrow{L \to \infty} n_0 - C$$

$$+A\delta(k) + B\delta(k + \theta)$$

- A, B, C determined via energy extremization
- Dependence on n_0 :
 - low density $n_0 \ll 1$: peak at k = 0
 - high density $n_0 \gg 1$: peak at k = - heta

1.8 Soft-Core Anyons: Anyon Distributions

- Low density $n_0 \ll 1$: soft-core reproduces hard-core
- Yellow region $\langle \hat{n}_{k}^{(a)} \rangle > 1$ \implies pseudofermions
- Distribution Maxima shift: depends on ⊖ and n₀

1.9 Outlook

- Density instead of quasi-momentum distribution: Friedel oscillations (open boundary conditions)
 Sträter, Srivastava, and Eckardt, PRL 117, 205303 (2016)
- Quantum phase diagram: Two types of superfluids possible
 Zhang, Fan, Scott, and Zhang, arXiv:1511.01712
- Nearest neighbor interactions: Induce nontrivial topological phases

Lange, Ejima, and Fehske, arXiv:1612.00605

- Jordan-Wigner Mapping of Anyon-Hubbard to Hubbard model: Independence of exclusion principle and exchange statistics Hao, Zhang, and Chen, PRA **79**, 043633 (2009)
- Finite temperature:

Interpolation between Bose-Einstein and Fermi-Dirac statistics

Two Intriguing Examples for Topological Effects in Ultra-Cold Atoms

Axel Pelster

1. Ground-State Properties of Anyons in a One-Dimensional Lattice Tang, Eggert, and Pelster, NJP **17**, 123016 (2015)

2. Quantum Domain Walls Induce Incommensurate Supersolid Phase on the Anisotropic Triangular Lattice

Zhang, Hu, Pelster, and Eggert, PRL 117, 193210 (2016)

3. Outlook

2.1 Anisotropic Triangular Lattice

• Hard-core bosons with anisotropic hopping t, t' > 0 and nearest neighbor interactions V, V' > 0:

$$\begin{split} \hat{H} &= \sum_{\langle i,j \rangle_x} \left[-t \left(\hat{b}_i^{\dagger} \hat{b}_j + \text{h.c.} \right) + V \left(\hat{n}_i - 1/2 \right) \left(\hat{n}_j - 1/2 \right) \right] \\ &+ \sum_{\langle i,j \rangle_{\wedge}} \left[-t' \left(\hat{b}_i^{\dagger} \hat{b}_j + \text{h.c.} \right) + V' \left(\hat{n}_i - 1/2 \right) \left(\hat{n}_j - 1/2 \right) \right] \end{split}$$

- No chemical potential $\hat{=}$ half-filling
- Number of lattice sites: $L = L_x = L_y$
- Anisotropy parameter: $\eta = t/t' = V/V'$

2.2 Overview

2D solid phase

decoupled 1D chains

- $\eta = t/t' = V/V' \neq 1$: Incommensurate supersolid, e.g. incommensurate density order + anisotropic superfluid density Isakov, Chien, Wu, Chen, Chung, Sengupta, and Kim, EPL 87, 36002 (2009)
- Results from proliferation of topological defects in form of quantum bosonic domain walls

Zhang, Hu, Pelster, and Eggert, PRL 117, 193210 (2016)

2.3 Topological Defect Model for $\eta < 1$

• Domain wall energy:

$$E(N_D) = N_D L_y \left[\frac{V' - V}{2} - \frac{2}{\pi} \mathbf{t}' + f\left(\frac{N_D}{L_x}\right) V' \right]$$

Zhang and Eggert, PRL 111, 147201 (2013)

- Periodic boundary conditions: N_D even
- **Transition:** $E(N_D = 2M 2) = E(N_D = 2M)$
- Appearance of first domain wall pairs (M = 1): $\eta_{c1} = 1 \frac{4t'}{\pi V'}$
- Jump points between plateaus:

$$\eta_M = \eta_{c1} + 2Mf\left(\frac{2M}{L_x}\right) - 2(M-1)f\left(\frac{2(M-1)}{L_x}\right); \quad M = 1, 2, \dots$$

• Interaction energy:
$$f\left(\frac{2M}{L_x}\right) = \sum_{i=1}^{M} \frac{\eta_i}{2M} - \frac{\eta_{c1}}{2}$$

2.4 Quantum Monte Carlo

- Stochastic series expansion Sandvik, PRB 59, R14157 (1999)
- Thermalization steps: 5×10^5
- Measuring steps: 10^6
- Length: $L_x = L_y = 24$
- Periodic boundary conditions
- Number of domain walls:
 - Topological, difficult to change with ordinary QMC updates
 - Extension of parallel tempering method

Sengupta, Sandvik, and Campbell, PRB 65, 155113 (2002)

• Domain wall density:

$$\rho_D = \sum_{i_y=1}^{L_y} \sum_{i_x=1}^{L_x} \frac{n_{(i_x,i_y)}\bar{n}_{(i_x+1,i_y)} + n_{(i_x+1,i_y)}\bar{n}_{(i_x,i_y)}}{L_x L_y}; \quad \bar{n} = 1 - n$$

2.5 Topological Defect Model for $\eta < 1$ **: Continued**

- Jump points from QMC simulations: $\eta_{c1}, \eta_1, \eta_2, \dots$
- Interaction energy: 10^{0} $f\left(\frac{2M}{L_x}\right) = \sum_{i=1}^{M} \frac{\eta_i}{2M} - \frac{\eta_{c1}}{2}$ 10^{-1} (⁰0) 10^{-3} • Fit result: 10^{-1} $f(\rho_D) \sim \rho_D^{\alpha}, \quad \alpha = 4 \pm 0.1$ 2 1 3 5 4 6 $1/\rho_{D}$ $\rho_D(\eta=1) = \frac{2}{2}$ • Proportionality coefficient fixed:
- Thermodynamic limit $L \Longrightarrow \infty$:

$$\rho_D(\eta) = \frac{2}{3} \left(\frac{\eta - \eta_{c1}}{1 - \eta_{c1}} \right)^{1/4}, \quad \eta_{c1} \le \eta < 1$$

• Appearance of first domain wall pairs:

$$\eta_{c1} = 1 - \frac{4t'}{\pi V'} \approx 0.89, \qquad \frac{t'}{V'} = 0.08$$

2.6 Topological Defect Model for $\eta>1$

• Decoupled chain region: density pair excitations

$$E(N_D) = (L_x - N_D)L_y V' \left[\frac{\eta - 1}{2} - 2\frac{t}{V'} + g\left(\frac{L_x - N_D}{L_x}\right)\right]$$

• Thermodynamic limit $L \Longrightarrow \infty$:

$$\rho_D(\eta) = 1 + \frac{1}{3} \left\{ 1 + W_{-1} \left[-\frac{2(\eta_{c2} - \eta)}{e^2(\eta_{c2} - 1)} \right] \right\}^{-1}, \quad 1 \le \eta < \eta_{c2}$$

 W_{-1} : branch -1 of Lambert W function, $z = W(z)e^{W(z)}$

• Appearance of first density pair excitation:

$$\eta_{c2} = \frac{1}{1 - 4t'/V'} \approx 1.47, \qquad \frac{t'}{V'} = 0.08$$

2.7 Structure Factor

- Each additional domain wall removes half of density oscillation, thus shifts structure factor peaks by $\pm \pi/L_x$
- Microscopic origin of observed incommensurable order:

$$\mathbf{Q} = \pi(\pm 2 - \rho_D, 0)$$
 and $\pi(\pm \rho_D, \pm 2/\sqrt{3})$

2.8 Anisotropic Superfluid Density

- Transport of bosons along domain walls
- Superfluidity determined via winding numbers

Pollock, Ceperley, PRB 36, 8343 (1987)

$$\rho_{s}^{x(y)} = W_{x(y)}^{2} / [4\beta t(t')]$$

$$\rho_{s} = \rho_{s}^{x} + \rho_{s}^{y}$$

$$\eta < 1: \rho_{s}^{y} \text{ dominates}$$

$$\eta = 1: \rho_{s} \text{ maximal}$$

$$\eta > 1: \rho_{s}^{x} \text{ dominates}$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.16$$

$$0.17$$

$$0.15$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

$$0.17$$

• Superfluid density behaves opposite to structure factor

Two Intriguing Examples for Topological Effects in Ultra-Cold Atoms

Axel Pelster

1. Ground-State Properties of Anyons in a One-Dimensional Lattice Tang, Eggert, and Pelster, NJP **17**, 123016 (2015)

2. Quantum Domain Walls Induce Incommensurate Supersolid Phase on the Anisotropic Triangular Lattice

Zhang, Hu, Pelster, and Eggert, PRL 117, 193210 (2016)

3. Outlook I: Anisotropic Superfluidity

3.1 Superfluid Density as Tensor

• Linear response theory: $p_i = VM (n_{nij}v_{nj} + n_{sij}v_{sj}) + \dots$

M. Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation (2010)

- Dipolar interaction at zero temperature:
 - \implies no anisotropic superfluidity

Lima and Pelster, PRA 84, 041604(R) (2011); PRA 86, 063609 (2012)

• Dipolar interaction at finite temperature:

 \implies Directional dependence of first and second sound velocity Ghabour and Pelster, PRA 90, 063636 (2014)

• Dipolar interaction and isotropic disorder at zero temperature:

Krumnow and Pelster, PRA **84**, 021608(R) (2011) Nikolić, Balaž, and Pelster, PRA **88**, 013624 (2013)

• Spin-orbit coupling:

 \implies Elliptic vortices

Devreese, Tempere, and Sá de Melo, PRL **113**, 165304 (2014)

3.2 Proposed Kagome Superlattice

3.3 Tunable Anisotropic Superfluidity

• Superfluid density via winding number

 $ho_s^{x/y} = \langle W_{x/y}^2 / 4\beta t \rangle$ Pollock and Ceperley, PRB **36**, 8343 (1987)

- Total superfluid density: $\rho_s^+ = (\rho_s^x + \rho_s^y)/2$
- Superfluid density difference:

$$\rho_s^- = \rho_s^x - \rho_s^y$$

- A preferred
- Effective square lattice
- A full, B/C preferrred
- No supersolid due to artificial symmetry-breaking

Zhang, Wang, Eggert, and Pelster, PRB 92, 014512 (2015)

3.4 Josephson Sum Rule

- Superfluid density: tensor \iff condensate density: scalar
- Linear response theory, isotropic case:

$$n_s = \frac{m^2 n_0}{\lim_{\mathbf{k} \to \mathbf{0}} \, \hbar \mathbf{k}^2 \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} A(\mathbf{k}, \omega)}$$

 $A(\mathbf{k},\omega)$: spectral function, i.e. Fourier transformed Green's function B.D. Josephson, PL **21**, 608 (1966)

M. Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation (2010)

- Consequence for critical exponents: $\beta_s = \beta_0 \eta \nu$ Hinrichs, Pelster, and Holthaus, APB **113**, 57 (2013)
- Experimental verfication?
- Anisotropic case?

Two Intriguing Examples for Topological Effects in Ultra-Cold Atoms

Axel Pelster

1. Ground-State Properties of Anyons in a One-Dimensional Lattice Tang, Eggert, and Pelster, NJP **17**, 123016 (2015)

2. Quantum Domain Walls Induce Incommensurate Supersolid Phase on the Anisotropic Triangular Lattice

Zhang, Hu, Pelster, and Eggert, PRL 117, 193210 (2016)

3 Outlook II: Exact Quantum Field Mappings

3.5 Mapping Between Quantum Gas Experiments

• Quantum mechanics: harmonic oscillator \iff free particle

Jackiw, Ann. Phys. **129**, 183 (1980) Cai, Inomata, and Wang, PLA **91**, 331 (1982) Pelster and Wunderlin, ZPB **89**, 373 (1992)

$$\frac{d\tau(t)}{dt} = \lambda^2(t)$$

• Heisenberg equations of many-body theory:

$$\hat{\tilde{\psi}}(\mathbf{r},t) = e^{-\frac{iM_n\dot{\lambda}}{2\hbar}r^2}\lambda^{D/2}\hat{\psi}(\lambda\mathbf{r},\tau(t))$$
$$\tilde{V}(\mathbf{r},t) = \lambda^2 V(\lambda\mathbf{r},\tau(t)) + \frac{Mr^2}{2}\lambda^3 \left(\frac{1}{\lambda^2}\frac{d}{dt}\right)^2 Z$$
$$\tilde{U}(\mathbf{r},\mathbf{r}',t) = [\lambda(t)]^2 U(\lambda(t)\mathbf{r},\lambda(t)\mathbf{r}',\tau(t))$$

Wamba, Pelster, and Anglin, PRA 94, 043628 (2016)

3.6 Example: Mappings of 1D GP Equations

• Experiment A: Time-of-flight $U(x, x', \tau) = g \, \delta(x - x')$ V(x) = 0

$$\tau(t) = \frac{\tan \omega t}{\omega}$$

• Experiment B: Ramped interaction

$$\tilde{U}(x, x', t) = \frac{g}{\cos \omega t} \delta(x - x')$$
$$\tilde{V}(x) = \frac{M}{2} \omega^2 x^2$$

• Common initial state: dark soliton

Announcements

Intensive Week: Bonn, March 13-17, 2017 Introduction to Topological Insulators and Their Implementations in Artificial Matter Setups

Andrea Alberti, Alexander Altland, Janos Asbóth, Michael Fleischhauer, Fabian Hassler, Netanel Lindner, Reinhard Werner http://quantum-technologies.iap.uni-bonn.de/topo2017.html

International School: Tutzing, March 27-30, 2017 Real and Synthetic Magnetism

SFB/Transregio 49 Frankfurt – Kaiserslautem - Mainz Condensed matter systems with variable many-body interactions

Sergej Demokritov, Rembert Duine, Selim Jochim, Carlos Sa de Melo, Stefan Süllow, Christof Wunderlich

http://www-user.rhrk.uni-kl.de/~apelster/Seminar8/index.html