Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

3 to a manufacture of the second seco	$ \begin{array}{c} 5 & \underset{n=1}{\overset{\text{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\overset{min}}{\underset{2}{\underset{2}{\overset{min}}{\underset{2}{\underset{2}{\overset{min}}{\underset{2}{\underset{2}{\underset{2}{\underset{2}{\underset{2}{\underset{2}{\underset{2}{\underset$
11 w 12 w 12 w 13 w 14	$\begin{array}{c} 13 & \underset{m=1}{\overset{m}{\underset{max}}} 14 & \underset{m=1}{\overset{m}{\underset{max}}} 15 & \underset{m=1}{\overset{m}{\underset{max}}} 16 & \underset{m=1}{\overset{m}{\underset{max}}} 17 & \underset{m=1}{\overset{m}{\underset{max}}} 18 & \underset{m=1}{\overset{m}{\underset{max}}} \\ \begin{array}{c} A\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$ \begin{array}{c} 19 \\ \hline \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 37 & \underset{(1,2)}{\text{min}} \\ \begin{array}{c} 38 \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} 39 \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} 39 \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} 39 \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	$\begin{array}{c} 49 & \underset{\text{marging}}{\text{marging}} 50 & \underset{\text{marging}}{\text{marging}} 51 & \underset{\text{marging}}{\text{marging}} 52 & \underset{\text{marging}}{\text{marging}} 53 & \underset{\text{marging}}{\text{marging}} 54 & \underset{\text{marging}}{\text{marging}} \\ \underset{\text{marging}}{\text{marging}} & \underset{marging}{\text{marging}} &$
$ \begin{array}{c} 55 \\ \underbrace{\mathbf{x}}_{1} \\ \mathbf$	81 m [82 m [83 m [84] m [85] m [86] m
$\begin{bmatrix} 104 \\ J \end{bmatrix}_{1 \le 1}^{\infty} \begin{bmatrix} 104 \\ J \end{bmatrix}_{1 \le 1}^{\infty} \end{bmatrix}_{1$	U113 [114] [115] [116] [117] [118] Unit Dummting mathematica Unit mathematica U111111111111111111111111111111111111

57 1 6.17	7 308.31 909 3479 2.0 La anthan 81479543652 3	58 1813 350 L Cer (xe)#1 ⁵ 5 ¹ 55 ² 6.77 3.4	59 141.91 2300 1.1 Praseodym (34)4 ⁵ 56 ⁶ 6 ² 6.48 3.4	60 1453 128 128 128 128 128 128 128 128 128 128	61 146.50 3000 13 Promethium [549]4755676652 7.2 3	62 146.52 1002 100 12 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 63 & {}^{106,32} \\ & {\overset{537}{12}} \\ & {\overset{Europium}{\sum}} \\ {}^{[36]47^2 54^9 65^2} \\ {}^{5,25} & {}^{2,3} \end{array}$	$\overset{64 \overset{_{15725}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{\overset{_{1522}}{$	65 1356 3350 Terbium (x4)4 ⁰⁵ 5 ⁶ 5 ² 8.25 3.4	66 Contraction of the second s	67 1441 1441 2453 1.2 Holmium (26)41 ⁴¹⁵ 54 ⁸ 65 ² 8.78 3	68 17.36 Erbium Erbium (26)st ¹² 55765 ² 8,78 3	69 1650 1350 1350 1350 1350 1350 1350 1350 13	70 17 46 Y Y U Y U Y U U Y U U U U U U U U	$\underset{[Re]et^{14,57}}{12} 51 \\ \underbrace{Lu}_{[Me]et^{14}5e^{165^2}}_{9.84} 3}$
[8	(9) 127,83 1009	[90] 232.44 1755 13 13 Thorium 18456 ²⁶ 64 ² 75 ² 11.72 2.3.4	[91] 231.04 1568 Protoactinium pa459 ² 64 ¹ 75 ² 15.37 5	$\bigcup_{\substack{\text{Uran}\\ Baj56^{3}66^{1}7y^{2}\\ 19.16}}^{28.00}$	[93] 217.00 530 3300 14 Neptumum (Rej97460 ³ 192 20.45 3.4.5.6.7	[94] 34.06 533 2230 133 Plutonium 19.856 ⁴ 64 ⁶ 55 ² 19.82 3.4.5.6.7	[95] 241.06 11.5 1.3 Americium (Proft ⁷ 66 ⁹ 75 ² 13.67 2,3,4,5,6	[96] ²¹³⁷ 300 300 300 300 300 300 300 30	[97] 24547 360 371 371 371 371 372 374 375 374 375 374	[98] 25.08 Californium [P0:354 ²⁶ 64 ⁹ 55 ² 15.1 (2,)3(.4)	[99] 22.08 Einsteinium (Pac)54 ¹¹⁶ 4 ⁶ 75 ² 8.84 (2,)3(.4)	[100] ^{257,18} Em Fermium (Rest ¹² 64 ⁹ 55 ² 2,3	[101] ^{253,20} Mendelevium [Redst ¹³ 66 ⁷ 32 ² 2,3	[102] ²⁰⁰⁰ Nobelium (Balgel ¹⁴ 66 ⁰ 75 ² 2.3	[103] ³⁵²³¹ Lr Dayse ¹⁴ 66 ¹ 79 ² 3

quantum degenerate **bosons** and **fermions**

Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

1. Dipolar Bose-Einstein Condensates

- 2. On the Dirty Boson Problem
- 3. Anisotropic Superfluidity
- 4. Bosons in Optical Lattices
- **5.** Conclusion

1.1 Magnetic versus Electric Dipolar Systems

- Magnetic systems: $C_{dd}^{\mathcal{B}} = \mu_0 m^2$, with $m \sim 1$ to $10 \ \mu_B$
 - Realized samples
 Boson: ⁵²Cr Griesmaier *et al.*, PRL **94**, 160401 (2005)
 Boson: ⁸⁷Rb Vengalattore *et al.*, PRL **100**, 170403 (2008)
 Fermion: ⁵³Cr Chicireanu *et al.*, PRA **73**, 053406 (2006)
 Both: Dy Lu *et al.*, PRL **104**, 063001 (2010); PRL **107**, 190401 (2011)
 Boson: ¹⁶⁸Er Aikawa *et al.*, PRL **108**, 210401 (2012)
 Fermion: ¹⁶⁷Er Aikawa *et al.*, Science **345**, 1484 (2014)
 - Effects: Bose-nova explosion (Cr), Fermi surface deformation (Er)
- Electric systems: $C_{dd}^{\mathcal{E}} = d^2/\epsilon_0$, with $d \sim 1$ Debye
 - Realized samples (STIRAP: STImulated Raman Adiabatic Passage)
 Fermion: ⁴⁰K⁸⁷Rb Ospelkaus *et al.*, Science 32, 231 (2008)
 Boson: ⁴¹K⁸⁷Rb Aikawa *et al.*, NJP 11, 055035 (2009)
 - Effects: thermalization (⁴⁰K⁸⁷Rb)
- Ratio: $C_{dd}^{\mathcal{B}}/C_{dd}^{\mathcal{E}} \approx \alpha^2 \approx 10^{-4}$ (α : Sommerfeld fine-structure constant)

1.2 Trapping and Interaction Potentials

• Harmonic trap:

$$U_{\rm trap}(\mathbf{x}) = \frac{M}{2} \omega^2 \left(x^2 + y^2 + \lambda^2 z^2 \right)$$

• Interaction potential:

1.3 Mean-Field Results (T=0)

see also: Glaum, Pelster, Kleinert, and Pfau, PRL 98,080407 (2007)

1.4 Beyond Mean-Field Results (T=0)

Lima and Pelster, PRA 84, 041604(R) (2011); PRA 86, 063609 (2012)

Rosensweig instability in Dy BEC, Pfau group: arXiv:1508.05007

Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

- **1. Dipolar Bose-Einstein Condensates**
- 2. On the Dirty Boson Problem
- 3. Anisotropic Superfluidity
- 4. Bosons in Optical Lattices
- **5.** Conclusion

2.1 Laser Speckles: Controlled Randomness

Experimental Set-Up:

Fragmentation:

Lye et al., PRL 95, 070401 (2005)

2.2 Wire Trap: Undesired Randomness

Distance: $d = 10 \ \mu \text{m}$

Wire Width: $100 \ \mu m$

Magnetic Field: 10 G, 20 G, 30 G

Deviation: $\Delta B/B \approx 10^{-4}$

Krüger *et al.*, PRA **76**, 063621 (2007) Fortàgh and Zimmermann, RMP **79**, 235 (2007)

2.3 Bogoliubov Theory of Dirty Bosons

Assumptions:

homogeneous Bose gas: $U(\mathbf{x}) = 0$

 δ -correlated disorder:

 $R(\mathbf{x}) = R\,\delta(\mathbf{x})$

Condensate Depletion:

$$n_0 = n - \frac{8}{3\sqrt{\pi}}\sqrt{a n_0}^3 - \frac{M^2 R}{8\pi^{3/2}\hbar^4}\sqrt{\frac{n_0}{a}}$$

Superfluid Depletion:

$$n_s = n - n_n = n - \frac{4}{3} \frac{M^2 R}{8\pi^{3/2}\hbar^4} \sqrt{\frac{n_0}{a}}$$

Huang and Meng, PRL **69**, 644 (1992)

Falco, Pelster, and Graham, PRA 75, 063619 (2007)

2.4 Collective Excitations

Typical Values:

→ Disorder effect vanishes in laser speckle experiment

Improvement:

laser speckle setup with correlation length $\sigma = 1 \ \mu m$

Aspect et al., NJP 8, 165 (2006)

\implies Disorder effect should be measurable

Falco, Pelster, and Graham, PRA 76, 013624 (2007)

2.5 Hartree-Fock Mean-Field Theory: Replica Symmetry

Phase Classification: $n = n_0 + q + n_{\text{th}}$

$$\lim_{\|\mathbf{x}-\mathbf{x}'\|\to\infty} \overline{\langle \psi(\mathbf{x},\tau)\psi^*(\mathbf{x}',\tau)\rangle} = n_0$$
$$\lim_{\|\mathbf{x}-\mathbf{x}'\|\to\infty} \overline{|\langle \psi(\mathbf{x},\tau)\psi^*(\mathbf{x}',\tau)\rangle|^2} = (n_0+q)^2$$

thermal gas	Bose-glass	superfluid
$q = n_0 = 0$	$q > 0, n_0 = 0$	$q > 0, n_0 > 0$

Khellil, Balaž, and Pelster, arXiv:1510.04985

Khellil and Pelster, in preparation

Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

- **1. Dipolar Bose-Einstein Condensates**
- 2. On the Dirty Boson Problem
- 3. Anisotropic Superfluidity
- 4. Bosons in Optical Lattices
- **5.** Conclusion

3.1 Superfluid Density as Tensor

• Linear response theory:

 $p_i = VM \left(n_{\mathrm{n}ij} v_{\mathrm{n}j} + n_{\mathrm{s}ij} v_{\mathrm{s}j} \right) + \dots$

M. Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation (2010)

Spin-orbit coupling: ⇒ Elliptic vortices

Devreese, Tempere, and Sá de Melo, PRL 113, 165304 (2014)

• Dipolar interaction at finite temperature:

 \implies Directional dependence of first and second sound velocity Ghabour and Pelster, PRA 90, 063636 (2014) Ghabour and Pelster, in preparation

• Dipolar interaction and isotropic disorder at zero temperature: Krumnow and Pelster, PRA 84, 021608(R) (2011)

Nikolić, Balaž, and Pelster, PRA 88, 013624 (2013)

3.2 Condensate Depletion

Krumnow and Pelster, PRA 84, 021608(R) (2011)

3.3 Superfluid Depletion

Krumnow and Pelster, PRA 84, 021608(R) (2011)

⇒ Directional speed of sound: Bragg spectroscopy

Graham and Pelster, IJBC 19, 2745 (2009)

 \implies Finite localization time

Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

- **1. Dipolar Bose-Einstein Condensates**
- 2. On the Dirty Boson Problem
- 3. Anisotropic Superfluidity
- 4. Bosons in Optical Lattices
- **5.** Conclusion

4.1 Time-of-Flight Absorption Pictures

• Superfluid phase:

delocalization in space, localization in Fourier space

• Mott phase:

localization in space, delocalization in Fourier space

Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39 (2002)

4.2 Theoretical Description

Bose-Hubbard Hamiltonian:

$$\hat{H}_{\rm BH} = -t \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \left[\frac{U}{2} \hat{n}_i (\hat{n}_i - 1) - \mu \hat{n}_i \right], \qquad \hat{n}_i = \hat{a}_i^{\dagger} \hat{a}_i$$

4.3 Landau Theory

Bose-Hubbard Hamiltonian with Current:

$$\hat{H}_{\rm BH}(J^*,J) = \hat{H}_{\rm BH} + \sum_i \left(J^* \hat{a}_i + J \hat{a}_i^\dagger \right)$$

Grand-Canonical Free Energy:

$$F = -\frac{1}{\beta} \ln \operatorname{Tr} \left[e^{-\beta \hat{H}_{\mathrm{BF}}(J^*, J)} \right]$$

$$\psi = \langle \hat{a}_i \rangle = \frac{1}{N_{\rm s}} \frac{\partial F(J^*, J)}{\partial J^*} \quad ; \quad \psi^* = \langle \hat{a}_i^\dagger \rangle = \frac{1}{N_{\rm s}} \frac{\partial F(J^*, J)}{\partial J}$$

Legendre Transformation: $\Gamma(\psi^*, \psi) = \psi^* J + \psi J^* - F/N_s$

$$\frac{\partial \Gamma}{\partial \psi^*} = J \quad ; \quad \frac{\partial \Gamma}{\partial \psi} = J^*$$

 $\implies \text{Physical limit of vanishing current}$ Landau expansion: $\Gamma = a_0 + a_2 |\psi|^2 + a_4 |\psi|^4 + \cdots$ $\implies \text{Landau coefficients in tunneling expansion}$

dos Santos and Pelster, PRA 79, 013614 (2009)

4.4 Quantum Phase Diagram

Zero temperature:

Error bar: Extrapolated strong-coupling series Black line: Mean-field Blue line: 3rd strong-coupling order Red line: Landau theory Blue dots: Monte-Carlo data

dos Santos and Pelster, PRA 79, 013614 (2009)

Extension to higher orders:

Teichmann, Hinrichs, Holthaus, and Eckardt, PRB **79**, 100503(R) (2009) Hinrichs, Pelster, and Holthaus, APB **113**, 57 (2013)

Extension to superlattices:

Wang, Zhang, Eggert, and Pelster, PRA 87, 063615 (2013)

4.5 Ginzburg-Landau Theory: Excitation Spectra

Graß, Santos, and Pelster, PRA 84, 013613 (2011)

4.6 Proposed Kagome Superlattice

4.7 Tunable Anisotropic Superfluidity

• Superfluid density via winding number

 $ho_s^{x/y} = \langle W_{x/y}^2/4\beta t \rangle$ Pollock and Ceperley, PRB **36**, 8343 (1987)

- Total superfluid density: $\rho_s^+ = (\rho_s^x + \rho_s^y)/2$
- Superfluid density difference:

$$\rho_s^- = \rho_s^x - \rho_s^y$$

- A preferred
- Effective square lattice
- A full, B/C preferrred
- No supersolid due to artificial symmetry-breaking

Zhang, Wang, Eggert, and Pelster, PRB 92, 014512 (2015)

Axel Pelster

SFB/Transregio 49 Frankfurt – Kaiserslautern - Mainz Condensed matter systems with variable many-body interactions

- **1. Dipolar Bose-Einstein Condensates**
- 2. On the Dirty Boson Problem
- 3. Anisotropic Superfluidity
- 4. Bosons in Optical Lattices
- **5.** Conclusion

5.1 Summary and Outlook

• Dipolar Bose-Einstein condensates:

quantum fluctuations relevant for larger dipole-dipole interaction

 \implies extension for finite temperatures

• On the dirty boson problem:

local condensates in minima + global condensate + thermally excited

 \implies phase diagram yet unknown for strong disorder

Navez, Pelster, and Graham, APB 86, 395 (2007)

• Anisotropic superfluidity:

interplay between anisotropic disorder and dipolar interaction:

- \implies necessitates anisotropic 3-fluid model
- Tunability of quantum phase transition:
 - Spin 1 bosons:

Mobarak and Pelster, LPL 10, 115501 (2013)

- Periodic modulation of s-wave scattering:

Wang, Zhang, dos Santos, Eggert, and Pelster, PRA 90, 013633 (2014)

5.2 Research Projects Related to TU Kaiserslautern

- Optical lattice+trap: Mitra, Williams, and Sá de Melo, PRA 77, 033607 (2008) ⇒ Kübler
- Process-chain approach: Eckardt, PRB 79, 195131 (2009) \implies Wang, Zhang, Eggert
- Anyons: Tang, Eggert, and Pelster, NJP (in press) \implies Bonkhoff, Eggert
- Dimensional phase transition: Vogler et al., PRL 113, 215301 (2014) \implies Morath, Straßel, Eggert
- Near-field interferometric coherence mapping \implies Santra, Ott
- Periodically driven impurity: Thuberg, Reyes, and Eggert, arXiv:1509.00035 \implies Dauer, Eggert
- Cs impurity in Rb BEC: Akram and Pelster, arXiv:1510.07138 \implies Widera
- Photon BEC: Kopylov, Radonjić, Brandes, Balaž, and Pelster, arXiv:1507.01811 \implies Stein, Fleischhauer
- Bose stars: Gruber and Pelster, EPJD 68, 341 (2014) \implies Anglin

- Mapping of quantum field theories via space-time transformations:
 - \implies Wamba, Anglin

5.3 Acknowledgement

Former PhD students:

- Hamid Al-Jibbouri (DAAD)
- Aristeu Lima (DAAD)
- Mohamed Mobarek (Egyp. Gov.)
- Ednilson Santos (DAAD)

PhD students:

- Javed Akram (DAAD)
- Victor Bezerra
- Mahmoud Ghabour
- Tama Khellil (DAAD)

Master student:

• Bernhard Irsigler (FU Berlin)

Former Diploma students:

- Max Lewandowski (Potsdam)
- Matthias May (FU Berlin)
- Tobias Rexin (Potsdam)
- Marek Schiffer (FU Berlin)
- Falk Wächtler (Potsdam)

Former Bachelor students:

- Tomasz Checinski (Bielefeld)
- Christian Krumnow (FU Berlin)
- Johannes Lohmann (FU Berlin)
- Moritz von Hase (FU Berlin)
- Carolin Wille (FU Berlin)

 Volkswagen: Bakhodir Abdullaev *et al.* (Tashkent, Uzbekistan)
 DAAD: Antun Balaž, Milan Radonjić, Vladimir Veljić (Belgrade, Serbia) Vanderlei Bagnato *et al.* (Sao Carlos, Brazil)
 TU Kaiserslautern: Sebastian Eggert, Denis Morath, Domonik Straßel, Tao Wang, Xue-Feng Zhang

Mentors: Robert Graham (Duisburg-Essen), Hagen Kleinert (FU Berlin)

5.4 Announcement 616th Wilhelm and Else Heraeus Seminar Ultracold Quantum Gases -Current Trends and Future Perspectives organized by Carlos Sá de Melo and Axel Pelster

Bad Honnef (Germany); May 9 – 13, 2016

Invited Speakers: Nigel Cooper (UK), Eugene Demler (USA), Rembert Duine (Netherthelands), Tilman Esslinger (Switzerland), Michael Fleischhauer (Germany), Thierry Giamarchi (Switzerland), Rudi Grimm (Austria), Johannes Hecker-Denschlag (Germany), Andreas Hemmerich (Germany), Jason Ho (USA), Walter Hofstetter (Germany), Randy Hulet (USA), Massimo Inguscio (Italy), Corinna Kollath (Germany), Stefan Kuhr (UK), Kazimierz Rzazewski (Poland), Anna Sanpera (Spain), Luis Santos (Germany), Jörg Schmiedmayer (Austria), Dan Stamper-Kurn (USA), Sandro Stringari (Italy), Leticia Tarruell (Spain), Jacques Tempere (Belgium), Matthias Weidemüller (Germany), Eugene Zaremba (Canada), Peter Zoller (Austria)

http://www-user.rhrk.uni-kl.de/~apelster/Heraeus4/index.html