Ultra-Cold Gases I – Theory of Cold Atoms

Axel Pelster

- **1. Introduction**
- 2. Dipolar Quantum Gases
- 3. Gross-Pitaevskii Theory
- 4. Quantum Droplets
- **5. Bosons in Optical Lattices**
- 6. Conclusions

1.1 Identical Quantum Particles

Bosons:

- integer spin
- symmetric wave function

Fermions:

- half-integer spin
- anti-symmetric wave function

1.2 What is Bose-Einstein Condensation?

1.3 Cooling Techniques

evaporative cooling

laser cooling

1.4 Experimental Apparatus

Costs about 1.000.000 EUR

1.5 Time-of-Flight Absorption Pictures

JILA (1995): ${}^{87}_{37}$ Rb, N=20000, $\omega_1 = \omega_2 = \omega_3/\sqrt{8} = 2\pi \times$ 120 Hz

1.6 Periodic Table of Chemical Elements

P	eriode 🗆 = Hauptgruppen				= Nebengruppen								□ = Edelgase Schale							
	I	п	Ша		IVa	Va	VIa	VIIa		VIIIa		Ia	Ib	Ш	IV	V	VI	VII	VIII	
1	1.00.8 H 1 Wasserstof	4			0					-						1			4.00.3 14 2 Helium	ĸ
2	6,941 Li 3 Linum	9,012 Beryllium												10,811 B 5 Bor	12,011 C 6 Kohiens tof	14,007	15,999 0 8 Saue istoff	18,998 9 Fluor	20,180 N@ 10 Neon	L
3	22,990 Nation	24,305 Mg 12 Magnesium												26,982 Aluminium	28,086 Si 14 Silicium	30,974 P 15 Phosphor	32,066 S 16 Schwefel	35,453 C 17 Chlor	39,948 7 18 Argon	М
4	39,098 K 19 Kaliam	40,078 Ca 20 Calcaum	44,956 SC 21 Scandium		47,88 Ti 22 Titan	50,942 V 23 Vanadin	51,996 Cr 24 Chrom	54,938 Mn 25 Mangan	55,847 Fe 26 Eisen	58,933 CO 27 Kobalt	58,69 Ni 28 Nickel	63,546 Cu 29 Kupter	20 Znk 20 Znk	69,723 Gallium	72,61 Germanium	74,922 AS 33 Arsen	78,96 Se 34 Selen	79,904 35 Brom	83,8 36 Krypton	N
5	85,468 Rb 37 Rubidian	87,62 Sr 38 Strontum	88,906 Y 39 Yttrium		91,224 Zr 40 Zirc onium	92,906 Nb 41 Nicob	95,94 Mo 42 Molybdan	98,906 TC 43 * Technetium	101,07 Ru 44 Ruthenium	102,906 Rh 45 Rhodium	106,42 Pd 46 Palladium	107,868 Ag 47 Silber	112,411 Cd 48 Ga dmium	114,82 In 49 Indium	118,71 Sn 50 Zinn	121,75 Sb 51 Antimon	127,6 Te 52 Te llur	126,904 53 lod	131,29 54 Xenon	0
6	132,905 CS 55 Cássam	137,327 Ba 56 Barium	138,906 Lathan		178,49 Hf 72 Hafnium	180,948 Ta 73 Tantal	183,85 W 74 Wolfram	186,207 Re 75 Rhenium	190,2 05 76 Osmium	192,22 17 77 Iridium	195,08 Pt 78 Platin	196,967 Au 79 Gold	200,59 Hg 80 Que eksilber	204,383 TI 81 Thailium	Pb 82 Biei	208,98 Bi 83 Bismut	208,982 PO 84* Polonium	209,987 Astat	222,018 Ration 222,018 86 * Radon	Ρ
7	223,02 Francium	226,025 Ra 88* Radium	227,028 AC 89 * Actinium	7	261,109 Rf 104 * Ruthenfordium	262,114 Ha 105* Habrium	263,118 Sg 106 Seaborgium	262,123 NS 107 * Nelsbohrium	ca. 265 HS 108 * Hassium	ca. 268 Mt 109* Meitnerium	ca. 269 DS 110* Damista dium	ca. 272 Rg 111+G Roengenium	ca. 277 ? 112		ca. 289		ca. 289		ca. 293	Q
Aggregatzustand unter Normalbedingungen: Lanthanide Fe fest Bg füssig He gasförmig * = radioaktives Element 232,04 91* 92* * maticular Uran 92* Protectiniar Uran 92* Protectiniar Uran 92* Protectiniar Uran 92* Protectiniar Uran 92* Pase odym 93* Pase odym 93* Pase odym 93* Pase odym 94* Pase odym 95* Cadadinium 247 Cadadinium 251 S5* 254 S5* 254 S5* 254 S5* 254 S5* 254 S5* 254 S																				

Ultra-Cold Gases I – Theory of Cold Atoms

Axel Pelster

- **1. Introduction**
- 2. Dipolar Quantum Gases
- 3. Gross-Pitaevskii Theory
- 4. Quantum Droplets
- **5. Bosons in Optical Lattices**
- 6. Conclusions

2.1 Magnetic versus Electric Dipolar Systems

- Magnetic systems: $C_{dd}^{\mathcal{B}} = \mu_0 m^2$, with $m \sim 1$ to $10 \ \mu_B$
 - Realized samples
 Boson: ⁵²Cr Griesmaier *et al.*, PRL **94**, 160401 (2005)
 Boson: ⁸⁷Rb Vengalattore *et al.*, PRL **100**, 170403 (2008)
 Fermion: ⁵³Cr Chicireanu *et al.*, PRA **73**, 053406 (2006)
 Both: Dy Lu *et al.*, PRL **104**, 063001 (2010); PRL **107**, 190401 (2011)
 Boson: ¹⁶⁸Er Aikawa *et al.*, PRL **108**, 210401 (2012)
 Fermion: ¹⁶⁷Er Aikawa *et al.*, Science **345**, 1484 (2014)
 - Effects: Bose-nova explosion (Cr), Fermi surface deformation (Er)
- Electric systems: $C_{dd}^{\mathcal{E}} = d^2/\epsilon_0$, with $d \sim 1$ Debye
 - Realized samples (STIRAP: STImulated Raman Adiabatic Passage)
 Fermion: ⁴⁰K⁸⁷Rb Ospelkaus *et al.*, Science 32, 231 (2008)
 Boson: ⁴¹K⁸⁷Rb Aikawa *et al.*, NJP 11, 055035 (2009)
 - Effects: thermalization (⁴⁰K⁸⁷Rb)
- Ratio: $C_{\rm dd}^{\mathcal{B}}/C_{\rm dd}^{\mathcal{E}} \approx \alpha^2 \approx 10^{-4}$, $\alpha = e^2/(4\pi\epsilon_0\hbar c) \approx 1/137$

2.2 Trapping and Interaction Potentials

• Harmonic trap:

$$U_{\rm trap}(\mathbf{x}) = \frac{M}{2} \left[\omega_{\perp}^2 \left(x^2 + y^2 \right) + \omega_z^2 z^2 \right]$$

• Interaction potential:

$$V_{\text{int}}(\mathbf{x} - \mathbf{x}') = g \left[\delta(\mathbf{x} - \mathbf{x}') + \frac{3\epsilon_{\text{dd}}}{4\pi |\mathbf{x} - \mathbf{x}'|^3} \left(1 - 3\cos^2 \theta \right) \right], \quad \epsilon_{\text{dd}} = \frac{C_{\text{dd}}}{3g}$$

$$\overset{\bullet}{\underset{\text{Repulsion}}}$$
Attraction

2.3 Fermi Surface Deformation (T=0)

• Theoretical analysis of Erbium TOF data:

• Schematic Fermi surface deformation:

Veljić et al., NJP 20, 093016 (2018)

2.4 BEC Mean-Field Results (T=0)

• Aspect ratio:

O'Dell *et al.*, PRL **92**, 205401 (2004)

Stuhler *et al.*, PRL **95**, 150406 (2005)

Ultra-Cold Gases I – Theory of Cold Atoms

Axel Pelster

- **1. Introduction**
- 2. Dipolar Quantum Gases
- 3. Gross-Pitaevskii Theory
- 4. Quantum Droplets
- **5. Bosons in Optical Lattices**
- 6. Conclusions

3.1 Many-Body Theory

- Hamiltonian: $\hat{H} = \hat{H}_0 + \hat{H}_{int}$
- Free Hamiltonian:

$$\hat{H}_0 = \int d^3x \,\hat{\Psi}^{\dagger}(\mathbf{x},t) \left[-\frac{\hbar^2}{2m} \Delta + U_{\text{trap}}(\mathbf{r}) \right] \hat{\Psi}(\mathbf{x},t)$$

• Interaction Hamiltonian:

$$\hat{H}_{\text{int}} = \frac{1}{2} \int d^3x \int d^3x' \,\hat{\Psi}^{\dagger}(\mathbf{x},t) \hat{\Psi}^{\dagger}(\mathbf{x}',t) V_{\text{int}}(\mathbf{x}-\mathbf{x}') \hat{\Psi}(\mathbf{x}',t) \hat{\Psi}(\mathbf{x},t)$$

• Bosonic commutation relations:

$$\left[\hat{\Psi}(\mathbf{x},t),\hat{\Psi}^{\dagger}(\mathbf{x}',t)\right] = \delta(\mathbf{x}-\mathbf{x}'), \left[\hat{\Psi}(\mathbf{x},t),\hat{\Psi}(\mathbf{x}',t)\right] = \left[\hat{\Psi}^{\dagger}(\mathbf{x},t),\hat{\Psi}^{\dagger}(\mathbf{x}',t)\right] = 0$$

3.2 Mean-Field Theory

- Nearly all bosons occupy at T = 0 the ground state.
- Bogoliubov prescription:

$$\hat{\Psi}(\mathbf{x},t) = \psi(\mathbf{x},t) + \delta \hat{\Psi}(\mathbf{x},t), \qquad \hat{\Psi}^{\dagger}(\mathbf{x},t) = \psi^{*}(\mathbf{x},t) + \delta \hat{\Psi}^{\dagger}(\mathbf{x},t)$$

- Heisenberg equation: $i\hbar \frac{\partial}{\partial t} \hat{\Psi}(\mathbf{x}, t) = \left[\hat{\Psi}(\mathbf{x}, t), \hat{H}\right]$
- Zeroth order = Gross-Pitaevskii mean-field theory:

$$\hat{\Psi}(\mathbf{x},t) \approx \psi(\mathbf{x},t), \quad \hat{\Psi}^{\dagger}(\mathbf{x},t) \approx \psi^{*}(\mathbf{x},t)$$

• Time-dependent Gross-Pitaevskii equation:

$$i\hbar \frac{\partial \psi(\mathbf{x},t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \triangle + U_{\text{trap}}(\mathbf{x}) + \int d^3 x' \, V_{\text{int}}(\mathbf{x}-\mathbf{x}') |\psi(\mathbf{x}',t)|^2 \right] \psi(\mathbf{x},t)$$

3.3 Time-Independent Gross-Pitaevskii Equation

- Separation ansatz: $\psi(\mathbf{x},t) = \psi(\mathbf{x})e^{-i\mu t/\hbar}$
- Nonlinear Schrödinger equation:

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \triangle + U_{\text{trap}}(\mathbf{x}) + \int d^3 x' V_{\text{int}}(\mathbf{x} - \mathbf{x}') |\psi(\mathbf{x}')|^2 \end{bmatrix} \psi(\mathbf{x}) = \mu \psi(\mathbf{x})$$

• Harmonic trap: $U_{\text{trap}}(\mathbf{x}) = \frac{M}{2} \left[\omega_{\perp}^2 \left(x^2 + y^2 \right) + \omega_z^2 z^2 \right]$

• Interaction potential: $V_{\text{int}}(\mathbf{x} - \mathbf{x}') = g\delta(\mathbf{x} - \mathbf{x}') + V_{\text{dd}}(\mathbf{x} - \mathbf{x}')$

• No interaction:
$$\psi(\mathbf{x}) = C \exp\left[-\frac{1}{2}\left(\frac{x^2 + y^2}{l_\perp^2} + \frac{z^2}{l_z^2}\right)\right]$$

• Oscillator lengths:
$$l_{\perp} = \sqrt{\frac{\hbar}{M\omega_{\perp}}}$$
,

 $\omega_{\perp} = \omega_z = 2\pi \, 100 \, \text{Hz}, \quad M\left(^{87}_{37}\text{Rb}\right) = 87 \, u \implies l_{\perp} = l_z = 1\mu\text{m}$

 $l_z = \sqrt{\frac{\hbar}{M\omega_z}}$

3.4 Thomas-Fermi Approximation: Contact Potential

Strong contact interaction: neglect kinetic energy

3.5 Exercise Sheet

- Solution of time-independent Gross-Pitaevskii equation with contact and dipolar interaction in Thomas-Fermi approximation
- Integral equation:

$$U_{\text{trap}}(\mathbf{x}) + g \underbrace{|\psi(\mathbf{x})|^2}_{\text{harmonic ansatz}} + \underbrace{\int d^3 x' V_{\text{dd}}(\mathbf{x} - \mathbf{x}') |\psi(\mathbf{x}')|^2}_{\text{convolution turns out to be harmonic}} = \mu$$

• Comparison:

$$\frac{\kappa^2}{\lambda^2} \left[\frac{3\epsilon_{\rm dd} f(\kappa)}{1 - \kappa^2} \left(\frac{\kappa^2}{\lambda^2} + 1 \right) - 1 - 2\epsilon_{\rm dd} \right] = \epsilon_{\rm dd} - 1$$

trap aspect ratio: $\lambda = \frac{\omega_z}{\omega_\perp}$, cloud aspect ratio: $\kappa = \frac{R_\perp}{R_z}$ relative strength: $\epsilon_{dd} = \frac{\mu_0 m^2}{3g}$, anisotropy function: $f(\kappa) =$?

• Note:
$$\kappa(\epsilon_{dd} = 0) = \lambda$$

Ultra-Cold Gases I – Theory of Cold Atoms

Axel Pelster

- **1. Introduction**
- 2. Dipolar Quantum Gases
- 3. Gross-Pitaevskii Theory
- 4. Quantum Droplets
- **5. Bosons in Optical Lattices**
- 6. Conclusions

www.for2247.uni-hannover.de

4.1 BEC Beyond Mean-Field Results (T=0)

• Aspect ratio:

• Time-of-flight:

 $\epsilon_{\rm dd} = 0.9$

expected for Dy

$$\frac{R_x}{R_z} = \kappa_{\rm MF} \left(1 + \delta \kappa\right)$$

10

15

Lima and Pelster, PRA 84, 041604(R) (2011); PRA 86, 063609 (2012)

0.2

0.0

0

5

20

 ωt

4.2 Quantum Droplets - A New State of Matter

• Spontaneous transition from BEC to quantum droplets:

Kadau *et al.*, Nature **530**, 194 (2016)

• Three-body interaction?

Xi and Saito, PRA **93**, 011604(R) (2016) Bisset and Blakie, PRA **92**, 061603(R) (2015); Blakie, PRA **93**, 033644 (2016)

• Quantum fluctuations!

Wächtler and Santos, PRA 93, 061603(R) (2016)

4.3 Theory for Quantum Droplets

• Extended Gross-Pitaevskii Equation:

$$i\hbar\frac{\partial\psi(\mathbf{x},t)}{\partial t} = \left[-\frac{\hbar^2}{2m}\Delta + U_{\text{trap}}(\mathbf{x}) + \int d^3x' V_{\text{int}}(\mathbf{x}-\mathbf{x}')|\psi(\mathbf{x}',t)|^2 + V_{\text{QF}}(\mathbf{x},t)\right]\psi(\mathbf{x},t)$$

Wächtler and Santos, PRA 93, 061603(R) (2016)

• Quantum fluctuations with Local Density Approximation (LDA):

$$V_{\rm QF}(\mathbf{x},t) = \frac{32}{3}g\sqrt{\frac{a^3}{\pi}}\mathcal{Q}_5(\epsilon_{\rm dd})|\psi(\mathbf{x},t)|^3$$

Lima and Pelster, PRA 84, 041604(R) (2011); PRA 86, 063609 (2012)

- Open Questions:
 - Imaginary part of quantum fluctuation correction?
 - Beyond LDA corrections?

Böttcher et al., arXiv:1904.10349 (2019)

- Coherence between quantum droplets:

Böttcher *et al.*, PRX **9**, 011051 (2019) Chomaz *et al.*, PRX **9**, 021012 (2019)

Ultra-Cold Gases I – Theory of Cold Atoms

Axel Pelster

- **1. Introduction**
- 2. Dipolar Quantum Gases
- 3. Gross-Pitaevskii Theory
- 4. Quantum Droplets
- **5. Bosons in Optical Lattices**
- 6. Conclusions

5.1 Optical Lattice

- Counter-propagating laser beams create periodic potential
- Different possible topologies at 1D, 2D, and 3D
- Hopping and interactions are highly controllable

5.2 Time-of-Flight Absorption Pictures

• Superfluid phase:

delocalization in space, localization in Fourier space

• Mott phase:

localization in space, delocalization in Fourier space

Greiner, Mandel, Esslinger, Hänsch, and Bloch, Nature 415, 39 (2002)

5.3 Theoretical Description

Bose-Hubbard Hamiltonian:

$$\hat{H}_{\rm BH} = -t \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \left[\frac{U}{2} \hat{n}_i (\hat{n}_i - 1) - \mu \hat{n}_i \right], \qquad \hat{n}_i = \hat{a}_i^{\dagger} \hat{a}_i$$

System parameters:

Fisher *et al.*, PRB **40**, 546 (1989)

5.4 Landau Theory

Quantum phase diagram (T=0):

Santos and Pelster, PRA 79, 013614 (2009)

Extension to higher orders:

Teichmann, Hinrichs, Holthaus, and Eckardt, PRB 79, 100503(R) (2009)

Ultra-Cold Gases I – Theory of Cold Atoms

Axel Pelster

- **1. Introduction**
- 2. Dipolar Quantum Gases
- 3. Gross-Pitaevskii Theory
- 4. Quantum Droplets
- **5. Bosons in Optical Lattices**
- 6. Conclusions

6.1 Summary and Outlook

quantum simulation

anisotropic superfluidity

disorder

driven optical lattices

6.2 Bose-Einstein Condensation of Light

Klaers, Schmitt, Vewinger, and Weitz, Nature **468**, 545 (2010) Pelster, Physik-Journal **10**, Nr. 1, 20 (2011); Physik-Journal **13**, Nr. 3, 20 (2014) Radonjić, Kopylov, Balaž, and A. Pelster, NJP **20**, 055014 (2018)

6.3 Bad Honnef Physics School on Methods of Path Integration in Modern Physics organized by Stefan Kirchner and Axel Pelster Bad Honnef (Germany); August 25 – 31, 2019

Speakers and Topics:

Lawrence Schulman (Potsdam, USA): *Quantum Mechanics* Andreas Wipf (Jena, Germany): *Statistical Field Theory* Carlos Sa de Melo (Atlanta, USA): *Many-body Theory, BEC-BCS Crossover* Jean Zinn-Justin (Paris, France): *Quantum Field Theory, Large-N Technique* Victor Dotsenko (Paris, France): *Random Matrix Theory, Replica Trick* Steve Simon (Oxford, UK): *Wilson Loops Spin, Topology, Holonomy Group* Wolfhard Janke (Leipzig, Germany): *Quantum Monte Carlo* Hagen Kleinert (Berlin, Germany): *Vortices and GIMPs*

https://www.dpg-physik.de/veranstaltungen/2019

6.4 Master of Science in Advanced Quantum Physics

• Module topics:

- Quantum technologies
- Many-body quantum systems
- Laboratory courses
- Research and master thesis

• Application deadlines:

	Winter Term	Summer Term
if visa required	April 30	October 31
if no visa required	July 15	Januar 15

• Further information:

www.physik.uni-kl.de/quantum-master