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Experiment

87Rb-BEC of 105 particles at
T = 80 nK

Anisotropic harmonic trap
Ω|| = 2π · 170 Hz,
Ω⊥ = 2π · 13 Hz

Focussed electron beam of
Gaussian shape with width
w = FWHM√

8 ln 2 = 100 nm

H. Ott et al., Nature Phys. 4,
949 (2008)
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Complex potential

Gross-Pitaevskii-equation with complex potential

i~ ∂
∂t Ψ(r, t) =

[
− ~2

2M ∆ + VR(r) + iVI(r) + g |Ψ(r, t)|2
]

Ψ(r, t)

Real part: harmonic trapping VR(r) = 1
2M

[
Ω2
⊥(x2 + y2) + Ω2

||z
2
]

Imaginary part: Gaussian beam VI(r) = −C exp
(
− x2+y2

2w2

)
C = ~

2
σtot

e
I

2πw2 = 1, 8 · 10−30 J , σtot = 100a0 , I = 20 nA

Non-stationary probability density ρ(x , t) = exp
[

2
~EI(t − t0)

]
ρ(x , t0)
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Complex potential square well
Quantization conditions

Complex potential square well

Simplications for primordial model

One-dimensional BEC,
extension L = R⊥ = 640 µm

No interaction g = 0 (Schrödinger equation)

Square-well approximation of VR and VI

Separation into area 1, 2 and 3

VR(x) =

{ 0 , |x | < L

∞ , |x | > L
VI(x) =

{
−C , |x | < w

0 , |x | > w

Max Lewandowski, Axel Pelster Primordial Models for Dissipative Bose-Einstein Condensates



Introduction
Primordial model

Numerical solutions
Outlook

Complex potential square well
Quantization conditions

Quantization conditions
Dimensionless variables (extension L normalized to π

2 )

ε =
E

~2π2

2M(2L)2

, c =
C

~2π2

2M(2L)2

, χ =
π

2
x
L , ω =

π

2
w
L

Experiment: ω = 0.0002 , c = 80000

Quantization conditions for symmetric and antisymmetric states

0 =
√
εs cot

[(
ω − π

2

)√
εs
]

+
√
εs + ic tan

(
ω
√
εs + ic

)
0 =
√
εa cot

[(
ω − π

2

)√
εa
]
−
√
εa + ic cot

(
ω
√
εa + ic

)
lim
c→0

ε = lim
ω→0

ε = m2 ; lim
ω→π

2

ε = m2 − ic , m ∈ N

Max Lewandowski, Axel Pelster Primordial Models for Dissipative Bose-Einstein Condensates



Introduction
Primordial model

Numerical solutions
Outlook

Energies
Densities
Limit of large dissipation

General solutions of quantization conditions
εI non-positive (damping)

Correct limit ε(c = 0) = m2

lim
c→∞

εI = 0→ k-states

lim
c→∞

εI
linear
= −∞→ n-states

n-states most damped

Corresponds to ω → 0, ω → π
2

m ∈ N describes limit c = 0,
n, k ∈ N for c →∞ Figure: ω = 0.6

2 adjoining k-states (different parity) fuse to one state (same k)
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Limit of small and big waist

Figure: ω = 0.0002 ≈ 0 Figure: ω = 1.57 ≈ π
2

ω ≈ 0: only k-states; antisymmetric states εa ≈ m2 for all c;
εs tends to εa; εs

I reveals deep minimum

ω ≈ π
2 : only n-states; all states ε ≈ m2 − ic for all c
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Interchange of states

Figure: ω = 0.3 Figure: ω = 0.4

ω = 0.3 : m = 1→ n = 1; m = 3→ k = 1
ω = 0.4 : m = 1→ k = 1; m = 3→ n = 1

}
ωcrit

Continuous transfer of k- and n-states between ω = 0 and ω = π
2
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Densities

Lowest energy levels for ω = 0.6

n-states tend to inside (area 2),
k-states to outside (area 1, 3)

Corresponds to ω = 0, ω = π
2

(areas vanish: states disappear)

k-states: no central maximum
→ no symmetric states

Three independent wells develop

Area 1 and 3 equivalent
→ always 2 k-states fuse
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Limit of large dissipation

n-states: tend to center, strongly damped
k-states: tend to borders, less damped

}
plausible results

Ansatz: εk
I = 0 for k-states and εn

I = −c for n-states for c →∞

Limit for real part via quantization conditions (in original variables)

En
R =

~2π2

2M(2w)2 n2 , E k
R =

~2π2

2M(L− w)2 k2

Energies of real square well potentials with the width of each area

Two k-states have same energy (area 1 and 3 have equal width)
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Possible improvements

Possible improvements

Taking more dimensions, only two areas (|r| < w and |r| > w)

Considering interaction g 6= 0, derive Gross-Pitaevskii-Equation with
complex potential via variational ansatz

Harmonic trap VR = 1
2MΩ2

⊥x2 instead of square well

Next order Taylor approximation of VI, harmonic approximation

VI(x) = C
(

1− x2

w2

)

Actually no upper border for ω

Nearly same results for harmonic approximation
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Possible improvements

Harmonic potential

Nearly same results for
harmonic approximation

Figure: ω = 1.0
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Possible improvements

Possible assignments of numerical solutions
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Possible improvements

Non-hermitian dynamics

Non-hermitian Hamilton operator H = − ~2

2M
d2

dx2 + VR(x) + iVI(x)

Complex energy eigenvalues E = ER + iEI

Time evolution exhibits non-stationary probability density

ρ(x , t) = exp
[2
~

EI(t − t0)

]
ρ(x , t0)

Continuity equation includes drain of probability since VI(x) ≤ 0

∂

∂t ρ(x , t) +
∂

∂x j(x , t) =
2
~

VI(x)ρ(x , t)
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