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Introduction

Onsager-Feynman Vortex



Onsager-Feynman Vortex

The Feynman [2]–Onsager [3] proposed quantized vortex. Experimental observation
realized in 1956 by Hall and Vinen [4].

v = s h̄
mr
θ̂ (1)

Γ =

∮
λ
v · dλ = s h

m
, s = ±1, 2, 3 . . . (2)

C. Barenghi and N. G. Parker, A primer on quantum fluids, (Springer International
Publishing, 2016).

3



Introduction

Energy Contribution of the Vortex



Energy Contribution of the Vortex

The energy per unit length contribution of a vortex can be estimated by considering a
cylinder of length L and radius R with the vortex at the center:

E =
m
2

∫ R

r0
n(v · v)r dr dθ = s2 πh̄

2n
m

log R
r0

(3)

That indicates that the energy contribution of a vortex with strength s > 1 is always
larger then the contribution of s vortices of strength 1 since:

s2 − s > 0 ⇒ s(s− 1) > 0 =

{
s > 1, if s > 0

s < −1, if s < 0
(4)

Y. Shin et al., “Dynamical instability of a doubly quantized vortex in a bose-einstein
condensate,” en, Physical Review Letters 93, 10.1103/physrevlett.93.160406 (2004). 4

https://doi.org/10.1103/physrevlett.93.160406
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Frequency of vortex line vibrations

A vortex line can vibrate, the classical problem was originally investigated by Thomson
(Lord Kelvin) in the 1890s [7]. The quantized vortex matches quite well with the
classical case of an “Irrotational Vortex” then, when the wavelength λ≫ r0 , the
dispersion relationship follows the same law obtained by Thomson:

ω(k) = h̄k2

2m
log 1

kr0
(5)

k =
2π

λ
(6)

5



The Vortex Line in an Imperfect
Bose Gas

Weakly Interacting Bose Gas



Weakly Interacting Bose Gas

The second quantized Hamiltonian for a weakly interacting Bose gas was explored in
detail by Bogoliubov [8] and can be written as:

Ĥ =

∫
d3r

{
−
h̄2

2m
ψ̂†(r)∇2ψ̂(r) + 1

2

∫
d3r′ ψ̂†(r)ψ̂†(r′)U(|r− r′|)ψ̂(r)ψ̂(r′)

}
(7)

The field operator ψ̂ satisfy the commutation relations:[
ψ̂(r), ψ̂†(r′)

]
= δ(r− r′) (8)[

ψ̂(r), ψ̂(r′)
]
= 0 (9)

Furthermore for a dilute gas we can approximate the inter atomic potential to a
contact interaction of strength g:

U(|r− r′|) ≈ gδ(r− r′) (10)
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Equation of Motion

The equation of motion for the field operator ψ̂(r) is given by the Heisenberg equation:

ih̄∂ψ̂
∂t

= [ψ̂, Ĥ] =
[
−
h̄2

2m
∇2 + gψ̂ψ̂†]ψ̂ (11)

We follow with Bogoliubov approach and separate the mean field from the quantum
fluctuations:

ψ̂ = ψÎ+ δψ̂ (12)

By introducing such a substitution and keeping only terms of zeroth order in the
fluctuation we obtain:

ih̄∂ψ
∂t

= −
h̄2

2m
∇2ψ + g|ψ|2ψ (13)

This is the now called Gross–Pitaevskii equation (GPE). The same equation was derived
independently by Gross [9] in the same year.
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Time independent equation and the homogeneous solution

ih̄∂ψ
∂t

= −
h̄2

2m
∇2ψ + g|ψ|2ψ

We assume that the GPE allows for a steady state solution of the form:

ψ(t, r) = e−iE0t/h̄ψ(r) (14)

This leads immediately to a time independent equation for ψ(r):

−
h̄2

2m
∇2ψ − E0ψ + g|ψ|2ψ = 0 (15)
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Homogeneous solution

−
h̄2

2m
∇2ψ − E0ψ + g|ψ|2ψ = 0

We now look for homogeneous solutions of the time independent GPE. For that we
introduce a normalization for the macroscopic wave function:

N =

∫
|ψ|2 d3r (16)

with N being the total number of particles. Then for a homogeneous system of volume
V we have a constant density of particles given by:

n =
N
V

(17)

Taking a trial solution of the form ψ =
√
n reduces the GPE to:

−E0
√
n+ gn

√
n = 0 ⇒ E0 = gn (18)
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Vortex Solution

In the presence of a vortex line located at the origin we look for solutions that are
cylindrically symmetric and additionally vanishes as r → 0 and are constant far away
from the vortex line.

ψ =
√
nf(r)eiφ (19)

leading to

−
h̄2

2m
∇2ψ − E0ψ + g|ψ|2ψ = 0 ⇒ −

h̄2

2mgn

(
∂2f
∂r2

+
1

r
∂f
∂r

−
1

r2
f
)

− f+ f3 = 0 (20)

The function f(r) goes to 0 at the center of the vortex line and goes to 1 as we get far
from the center, the distance at which this happens gives us the size of the vortex core:

r = r0r′ ⇒ −
h̄2

2mgnr20

(
∂2f
∂r′2

+
1

r′
∂f
∂r′

−
1

r′2
f
)

− f+ f3 = 0 (21)

which leads to

−
h̄2

2mgnr20

(
∂2f
∂r′2

+
1

r′
∂f
∂r′

−
1

r′2
f
)

− f+ f3 = 0 (22)

by setting

r0 =
h̄

√
2mgn

(23)

which defines the length scale at which deformations in the density become relevant.
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Vortex Solution

The equation reads now:

−
(
∂2f
∂r′2

+
1

r′
∂f
∂r′

)
+

(
1

r′2
− 1

)
f+ f3 = 0 (24)

With the conditions:
f(0) = 0

f(∞) = 1
(25)

Pitaevskii and Ginzburg analysed this equation in a previous work where they
obtained the asymptotic behaviour and the numerical solution:{

f(r′) ∼ r, c1r → 0

f(r′) ∼ 1− 1
2r′2 , r → ∞

(26)

V. L. Ginzburg and L. P. Pitaevskiı,̆ “On the theory of superfluidity,” Soviet Physics JETP
34/7, 858–861 (1240–1245 Ž. Eksper. Teoret. Fiz.) (1958). 11



Approximate Solutions

An interesting topic is how to construct approximate solutions for the density profile
of the vortex. The first such solution was proposed by Alexander Fetter [11] and it has
a very simple form:

f(r) = r
√
r2 + α

(27)

The value of α has to be determined, Fetter did this in a variational manner and got
α = 2. Since the asymptotic series are known on both limits one can, through Padé
approximation, construct higher order solutions. One such example is given by
Berloff [12]:

f(r) =

√
r2(a1 + a2r2)

1 + b1r2 + b2r4
(28)
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Energy of a vortex

As a final remark, with the numerical solution of the vortex density profile we can
calculate a more accurate value for the vortex energy by solving the integral
numerically

E =
m
2
n
∫ R/r0

0
f(r)(v · v)r dr dθ =

πh̄2n
m

log 1.46
R
r0

(29)
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Vibrations in a homogeneous condensate

We now consider the following approximation

ψ̂ = (ψ0 + δψ)̂I (30)

and keep terms up to first order in the fluctuation δψ. We also assume that ψ0 is some
constant function and all space dependencies are concentrated on the fluctuations.

ih̄∂δψ
∂t

= −
h̄2

2m
∇2δψ + 2g|ψ0|2δψ + gψ2

0δψ
∗ (31)

−ih̄∂δψ
∗

∂t
= −

h̄2

2m
∇2δψ∗ + 2g|ψ0|2δψ∗ + gψ∗2

0 δψ (32)

This was explored originally by Bogoliubov and can be solved by taking

δψ = e−ignt/h̄
[
ukei

(
k·r−ωt

)
− v∗ke

i
(
k·r−ωt

)]
(33)
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Vibrations in a homogeneous condensate

This transforms the system of differential equations into a linear system of algebraic
equations

δψ = e−ignt/h̄
[
ukei

(
k·r−ωt

)
− v∗ke

i
(
k·r−ωt

)]
(34)

( h̄2k2
2m

+ gn
)
uk − gnvk = 0 (35)( h̄2k2

2m
+ gn+ h̄ω

)
vk − gnuk = 0 (36)

solving this system gives the well known Boguliobov dispersion relationship:

h̄ω = ±

√(
h̄2k2
2m

)2

+ 2gn h̄
2k2
2m

(37)
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Vibrations of a vortex line

As a final remark let us remember the vibration of a vortex line:

We have now a much more complicated system since our density is no longer
constant:

n(r) =
√
n0f(r) (38)

Also the proposed solution has to include both an azimutal and a longitudinal mode:

δψ = ei(φ−gnt/h̄)
∑
l

[
ulei

(
kz+lφ−ωt

)]
, l = ±(0, 1, 2, . . .) (39)

Which leads to a much more complicated system which has been analysed in detail by
Fetter [13] and Rowland [14], but at long wavelength produces:

h̄ω =
h̄2k2

2m
log

√
2mgn0
kh̄

=
h̄2k2

2m
log 1

kr0
(40)
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