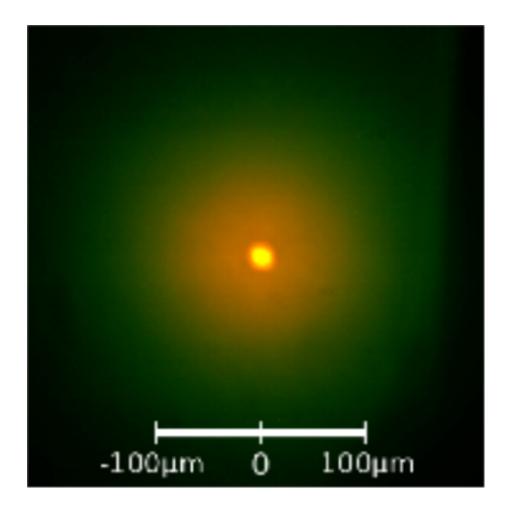


COLLECTIVE FREQUENCIES OF PHOTON BOSE-EINSTEIN CONDENSATES

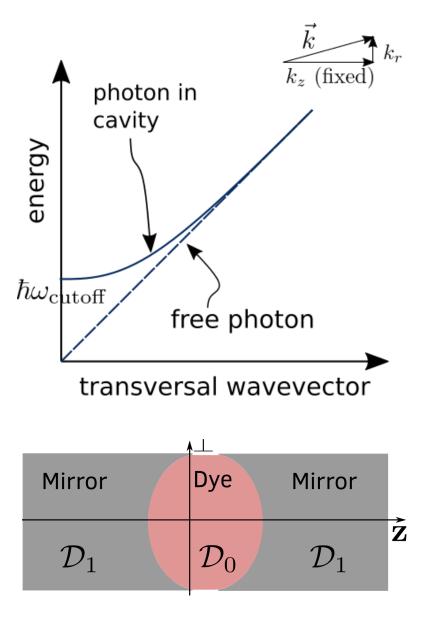
Enrico Stein, Axel Pelster

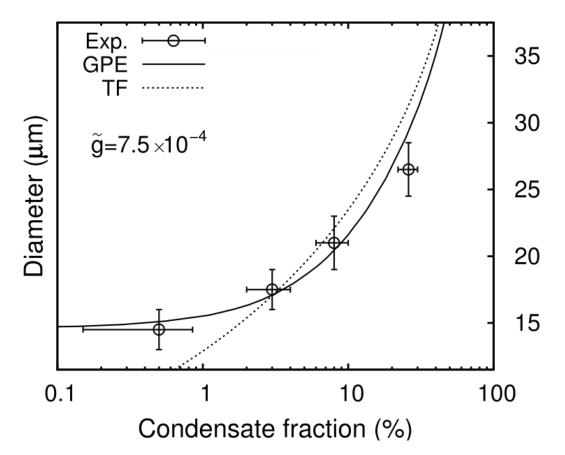


Klaers, Schmitt, Vewinger and Weitz, Nature 468, 545 (2010)

PHOTONS IN DYE-FILLED CAVITY

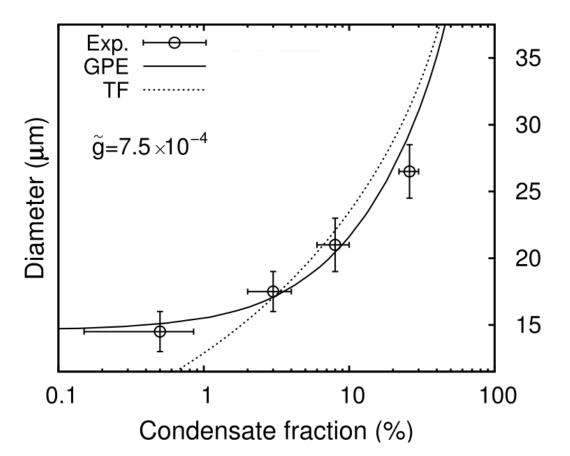
- Effective photon mass: $m\sim 10^{-9}m_{
 m p}$
- Trapping frequency: $\Omega \sim 10^{11} \ {\rm Hz}$
- Thermalisation and condensation of photon gas at room temperature





- Dimensionless interaction strength $ilde{g}=mg/\hbar^2$ in 2D
- Up to $ilde{g}=7(3) imes 10^{-4}$

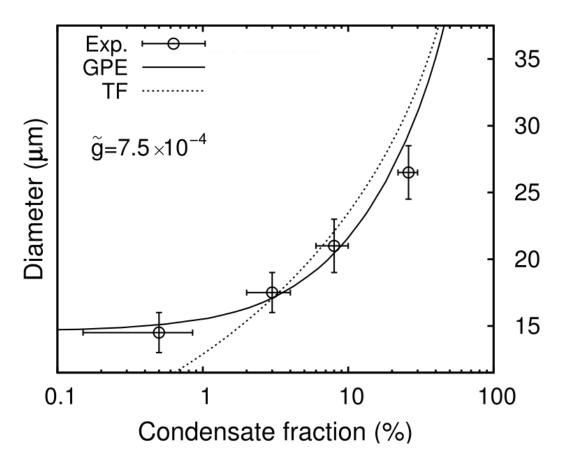
Klaers, Schmitt, Vewinger, Weitz, Nature 468, 545 (2010)



- Dimensionless interaction strength $ilde{g}=mg/\hbar^2$ in 2D
- Up to $ilde{g}=7(3) imes 10^{-4}$

Klaers, Schmitt, Vewinger, Weitz, Nature 468, 545 (2010)

How can this happen?



- Dimensionless interaction strength $ilde{g}=mg/\hbar^2$ in 2D
- Up to $ilde{g}=7(3) imes 10^{-4}$

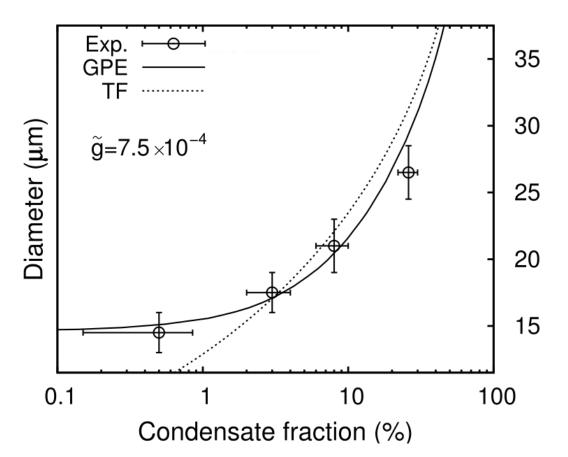
Klaers, Schmitt, Vewinger, Weitz, Nature 468, 545 (2010)

How can this happen?

• Heating of dye solution due to absorption of light

$$\Rightarrow n(\mathbf{r},t) = n_0 + \beta \Delta T(\mathbf{r},t)$$

 $\partial_t \Delta T(\mathbf{r}, t) = \nabla \cdot [\mathcal{D} \nabla \Delta T(\mathbf{r}, t)] + \text{Source}$



- Dimensionless interaction strength $ilde{g}=mg/\hbar^2$ in 2D
- Up to $ilde{g}=7(3) imes 10^{-4}$

Klaers, Schmitt, Vewinger, Weitz, Nature 468, 545 (2010)

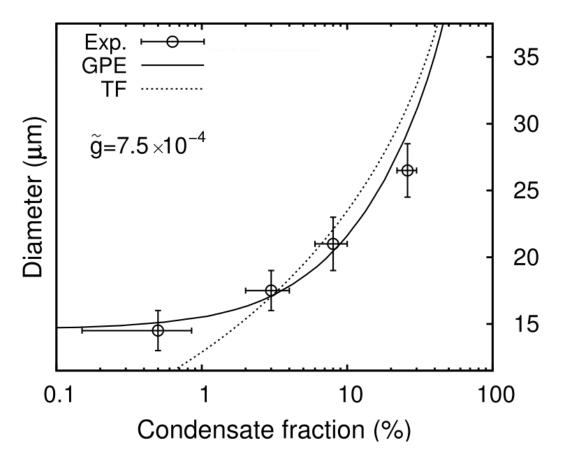
How can this happen?

• Heating of dye solution due to absorption of light

$$ightarrow n({f r},t)=n_0+eta\Delta T({f r},t)$$

 $\partial_t \Delta T(\mathbf{r}, t) = \nabla \cdot [\mathcal{D} \nabla \Delta T(\mathbf{r}, t)] + \text{Source}$

• Non-local in space



- Dimensionless interaction strength $ilde{g}=mg/\hbar^2$ in 2D
- Up to $ilde{g}=7(3) imes 10^{-4}$

Klaers, Schmitt, Vewinger, Weitz, Nature 468, 545 (2010)

How can this happen?

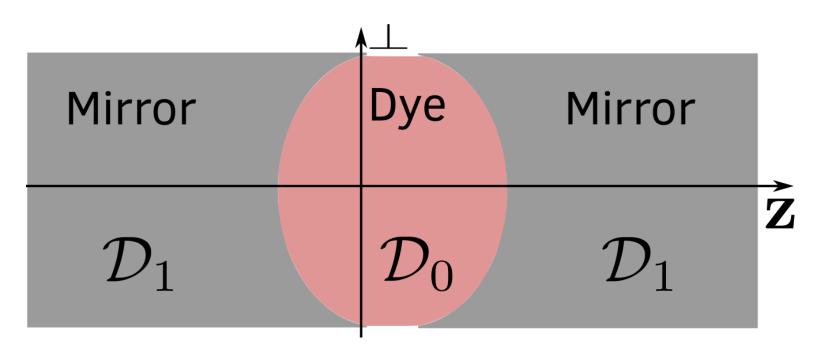
• Heating of dye solution due to absorption of light

$$\Rightarrow n(\mathbf{r},t) = n_0 + eta \Delta T(\mathbf{r},t)$$

 $\partial_t \Delta T(\mathbf{r}, t) = \nabla \cdot [\mathcal{D} \nabla \Delta T(\mathbf{r}, t)] + \text{Source}$

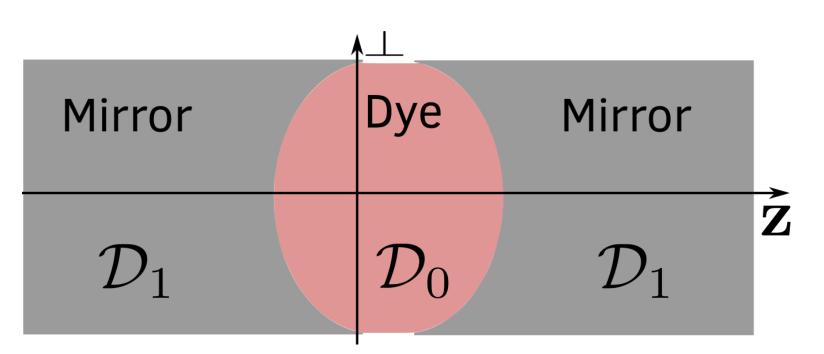
- Non-local in space
- Retarded in time

TEMPERATURE DIFFUSION



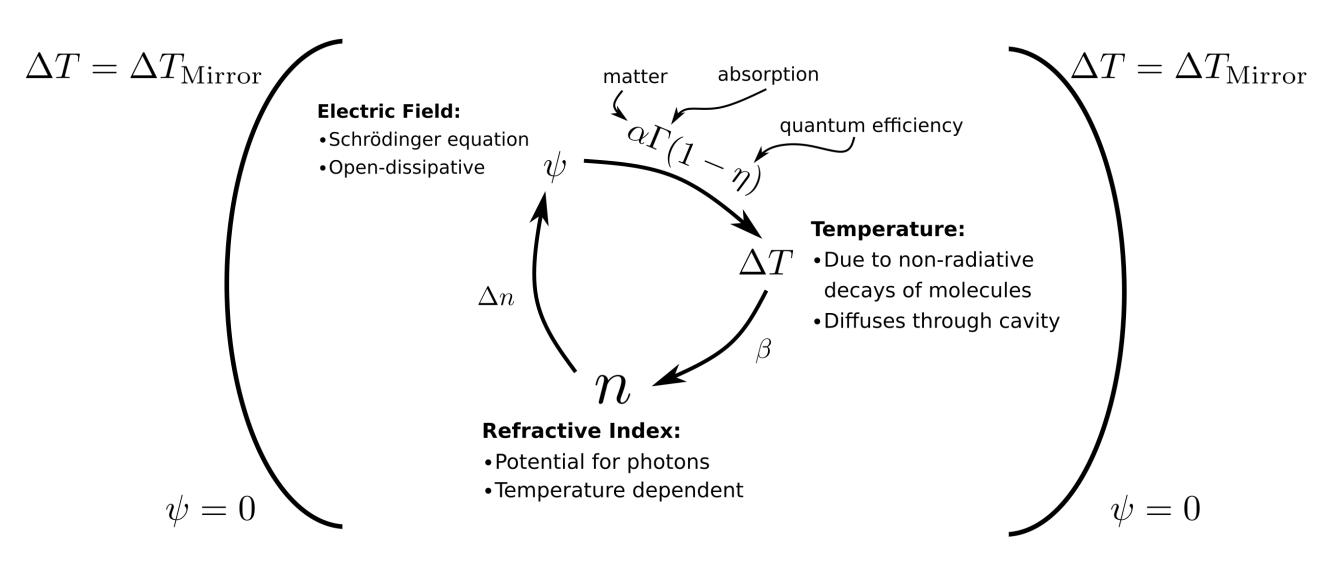
• Temperature diffusion in mirrors not negligible: $\partial_t \Delta T = \left[\partial_z \left(\mathcal{D}(z) \ \partial_z\right) + \mathcal{D}(z) \nabla_{\perp}^2\right] \Delta T + \text{Source}$

TEMPERATURE DIFFUSION

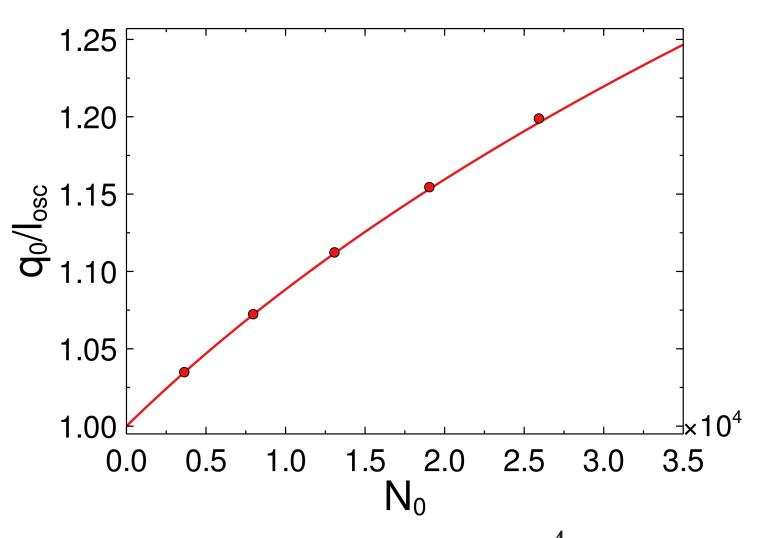


- Resulting 2D diffusion equation inside cavity: $\partial_t \Delta T_\perp = \left[\mathcal{D}_0 \nabla_\perp^2 - \frac{1}{\tau} \right] \Delta T_\perp + \mathrm{Source}_\perp$
- Relaxation constant due to mirror geometry: $au \sim 0.1~{
 m s} \gg 1/\Omega$

MEAN-FIELD MODEL

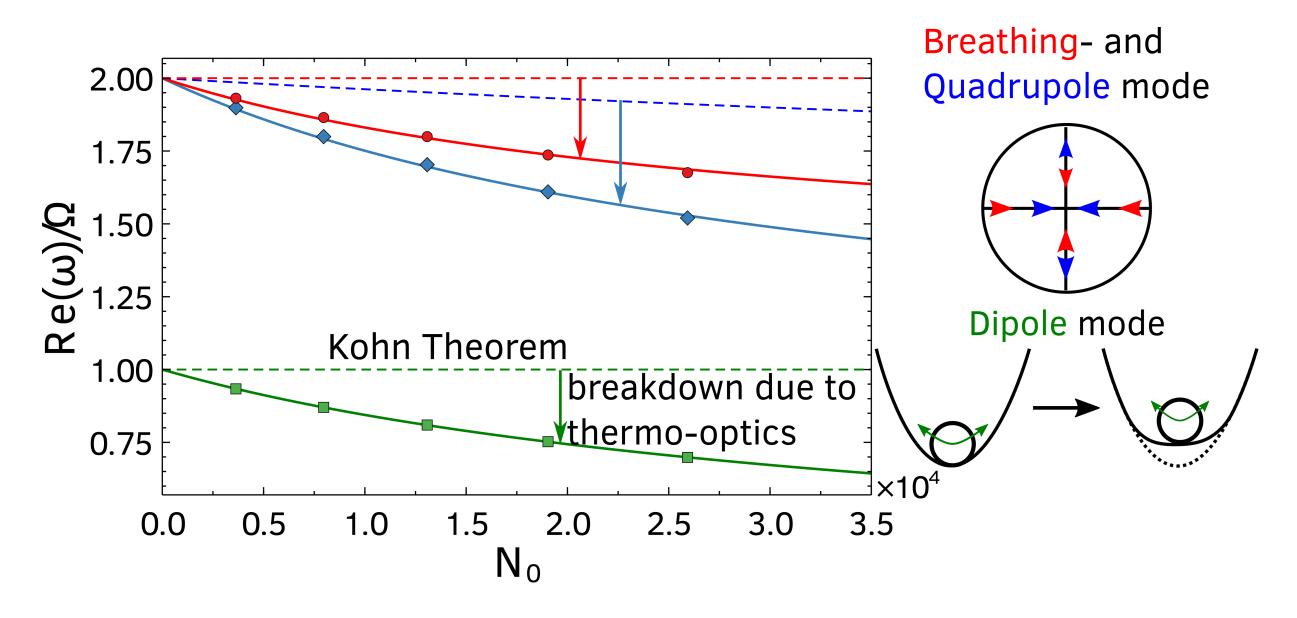


STEADY STATE



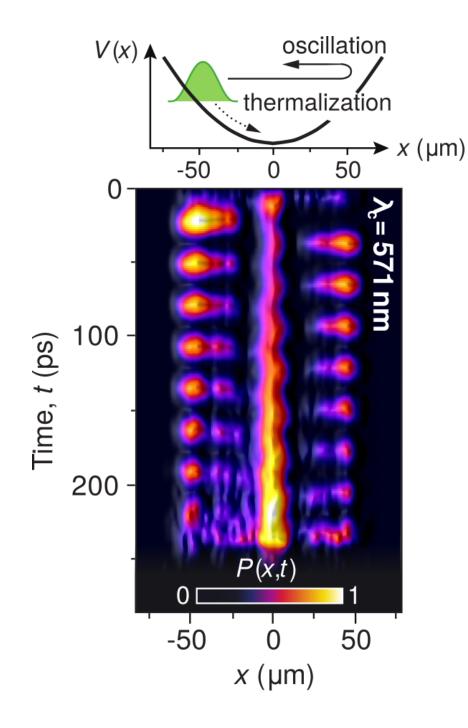
- Interaction strength $ilde{g}$ from $\left(rac{q_0}{l_{
 m osc}}
 ight)^4 = \left(1+rac{ ilde{g}N_0}{2\pi}
 ight)$ $\Rightarrow ilde{g} \sim 10^{-4}$
- Experiment: up to $ilde{g}=7(3) imes 10^{-4}$

COLLECTIVE FREQUENCIES



Dashed curves: solution of plain Gross-Pitaevskii equation

WHAT ABOUT THE EXPERIMENT?



- So far no measurement of collective modes
- Direct observation:
 - Streak camera
 - Proof of principle:
 Schmitt et al., PRA 92, 011602(R)
 (2015)
- Indirect measurement:
 - Second order correlation functions
 - Currently built up in London: Nyman et al.

THANK YOU!

