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Introduction: spacetime transformation history

► Celestial mechanics (singular Newton potential in 3D Kepler problem → 4D
harmonic oscillator, improve the numerical stability of perturbative calculations)

2
Grozdanov & Solov’ev, Phys Rev A 88, 022707 (2013)

Space-time transformations for exact solution

► Markov processes (relate different processes together)

► Quantum physics: Complex → simple dynamics in special cases. E.g.

Pelster & Kleinert, PRL 78, 565 (1997)

Kustaanheimo and Stiefel (1965)
Stiefel & Scheifele, Springer, Berlin, (1971)

o 1D harmonic oscillator → free particle

o Atom-atom or atom-light collisions (adiabatic approximation for slow collisions)

o 3D Coulomb potential → 4D harmonic oscillator
Duru and H. Kleinert (1979, 1982)
Solov’ev, Sov. J. Nucl. Phys. 35, 136 (1982) – Hydrogen

Cai, Inomata, and Wang (1982)
Pelster and Wunderlin (1992)



Introduction: our motivation

o A few results in special cases of: inter-particle interaction, trapping,
dimension, special regimes (mean-field, hydrodynamic,…)

► Experiments on trapped quantum gases can probe some challenging regimes
of quantum many-body dynamics that cannot be exactly solved.

► BUT some experiments may be harder to achieve (inappropriate technique,
low imaging resolution, high error, …)
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Space-time transformations in quantum many-body physics:

► Exactly solvable quantum many-body problems? Not that many!

Castin and R. Dum (1996); Castin (2004)
Wamba et al. (2008 - 2014)



Introduction: our motivation

Free

In a magnetic trap/
harmonic oscillator

Feshbach
Resonance

Optical lattice + 
magnetic trap

Optical lattice

Feshbach
Resonance

Q. Could we achieve a simpler experiment to mimick a more complex one?

Aim:
- Extend the use of exact space-time mappings to dissipative systems;
- Propose a way of deriving the observables of a dissipative system from another, yet
very different, even when both are not exactly solvable.

4
Wamba, Pelster & Anglin, PRA 94, 043628 (2016)



Outline 
 The quantum fields mapping (for closed systems)

 Heisenberg equation and mapping identity
 Features of the mapping
 Illustration: Mapping the two specific evolutions onto each other

 Interesting dynamics in open systems
 An experiment with controlled dissipator
 Dynamics in presence of a dark soliton

 Some results on the N-point function mapping of lossy quantum systems
 Lindblad evolution of the function
 Mapping of two evolutions

 Conclusion
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Quantum fields mapping: Heisenberg picture tools  

Werner Heisenberg

- (Anti)Commutation relations (for particles of type n and m):

�Ψ𝑚𝑚 𝑟𝑟, 𝑡𝑡 , �Ψ𝑛𝑛
† 𝑟𝑟′, 𝑡𝑡 ± = 𝜹𝜹𝑚𝑚𝑚𝑚 𝜹𝜹𝐷𝐷 𝑟𝑟 − 𝑟𝑟′

+/- Fermions/Bosons

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 = �
𝑘𝑘𝑙𝑙𝑙𝑙

�𝑑𝑑𝐷𝐷𝑟𝑟′ 𝑈𝑈𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑟𝑟, 𝑟𝑟′, 𝑡𝑡 �Ψ𝑘𝑘
† 𝑟𝑟′, 𝑡𝑡 �Ψ𝑙𝑙 𝑟𝑟′, 𝑡𝑡 �Ψ𝑚𝑚 𝑟𝑟, 𝑡𝑡

𝑖𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

�Ψ𝑛𝑛 𝑟𝑟, 𝑡𝑡 = −
ħ2

2 𝑀𝑀𝑛𝑛
𝛻𝛻2 + 𝑉𝑉𝑛𝑛 𝑟𝑟, 𝑡𝑡 �Ψ𝑛𝑛 𝑟𝑟, 𝑡𝑡 + 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

- Heisenberg equation (Evolution of the quantum gas):

This is NOT mean field!
It gives the exact evolution of any observables in any quantum
state. 6



Quantum fields mapping: Heisenberg picture tools  

Any experimental measurement
can be expressed in terms of an N-point function:

𝐹𝐹𝐧𝐧,𝐦𝐦(𝑅𝑅,𝑅𝑅′, 𝑡𝑡, 𝑡𝑡𝑡) = �
𝑗𝑗=1

𝑁𝑁
�Ψ𝑛𝑛𝑗𝑗′
† 𝑟𝑟𝑗𝑗′′, 𝑡𝑡 �

𝑗𝑗=1

𝑁𝑁
�Ψ𝑚𝑚𝑗𝑗 𝑟𝑟𝑗𝑗 , 𝑡𝑡′

j’=N+1-j, 𝐧𝐧 = 𝑛𝑛1, … ,𝑛𝑛𝑁𝑁 ,𝐑𝐑 = 𝑟𝑟1, … , 𝑟𝑟𝑁𝑁 ;𝑁𝑁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.
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Quantum fields mapping: Identity 

Then �Φ𝑛𝑛 𝑟𝑟, 𝑡𝑡 ,𝑈𝑈 𝑟𝑟, 𝑡𝑡 ,𝑉𝑉 𝑟𝑟, 𝑡𝑡 ↔ �Ψ𝑛𝑛 𝑟𝑟, 𝑡𝑡 , �𝑈𝑈 𝑟𝑟, 𝑡𝑡 , �𝑉𝑉 𝑟𝑟, 𝑡𝑡 where:

𝜆𝜆 is free parameter (chosen depending on the expt to perform/mimic). 𝑠𝑠 depends
on the type of particle interaction: 𝑠𝑠 = 𝐷𝐷 for contact int; 𝑠𝑠 = 3 for dipole-diplole.

Suppose the two-body interaction potential satisfies the homogeneity condition.

�Ψ𝑛𝑛 𝑟𝑟, 𝑡𝑡 = 𝜆𝜆𝐷𝐷/2 𝑒𝑒−𝑖𝑖
1
2ħ𝑀𝑀𝑛𝑛𝑟𝑟2𝜆𝜆 �𝒪𝒪𝜆𝜆 �Φ𝑛𝑛 𝜆𝜆𝑟𝑟,�

0

𝑡𝑡
λ 𝑡𝑡′ 2 𝑑𝑑𝑡𝑡′

�𝑈𝑈 𝑟𝑟, 𝑟𝑟′, 𝑡𝑡 = 𝜆𝜆2−𝑠𝑠 𝑈𝑈(𝑟𝑟, 𝑟𝑟′, 𝜏𝜏)

�𝑉𝑉𝑛𝑛 𝑟𝑟, 𝑡𝑡 = 𝜆𝜆2 𝑉𝑉𝑛𝑛 𝜆𝜆𝑟𝑟,�
0

𝑡𝑡
λ 𝑡𝑡′ 2 𝑑𝑑𝑡𝑡′ +

1
2
𝑀𝑀𝑛𝑛𝑟𝑟2𝜆𝜆 �𝒪𝒪2𝜆𝜆 ; �𝒪𝒪 =

1
𝜆𝜆2

𝑑𝑑
𝑑𝑑𝑑𝑑
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Quantum fields mapping: Key features 
Our (spacetime) mapping consists of:

Space dilatation
(nonstationary scaling of length)

+ Non-trivial time transformation

𝒕𝒕 → �
𝟎𝟎

𝒕𝒕
𝝀𝝀 𝒕𝒕′ 𝟐𝟐 𝒅𝒅𝒅𝒅′𝒓𝒓 → 𝝀𝝀 𝒕𝒕 𝒓𝒓

9



Exact !

No approximation made, it is not about Gross-Pitaevskii equation
but Heisenberg equation.

Quantum fields mapping: Key features 
Like the Heisenberg equation, our spacetime mapping is:

General !

- use quantum fields not c-number fields
- valid for bosons, fermions, any mixture (species, hyperfine structures,

spins)
- most real interactions
- arbitrary initial state
- all space dimensions,
- arbitrary traps
- all possible measurements, … 10



An Example of the mapping: free expans. to ramped int. 

We apply the mapping to two achievable experiments to support our predictions.

A
Free expansion of a cigar-shaped

quantum gas:

𝑔𝑔 = 𝑔𝑔0

𝑉𝑉 𝑥𝑥 = 0

λ 𝑡𝑡 =
1

cos(𝜔𝜔 𝑡𝑡)

B
Ramped interactions of a trapped

cigar-shaped quantum gas:

𝑔𝑔 𝑡𝑡 = 𝑔𝑔0 λ 𝑡𝑡

𝑉𝑉 𝑥𝑥 =
𝑀𝑀
2
𝜔𝜔2𝑥𝑥2

𝑡𝑡𝐴𝐴 =
tan 𝜔𝜔 𝑡𝑡𝐵𝐵

𝜔𝜔
; 𝑥𝑥𝐴𝐴= 𝜆𝜆(𝑡𝑡𝐵𝐵) 𝑥𝑥𝐵𝐵

We cannot plot quantum fields. But the mapping also works for mean fields

�Ψ𝐵𝐵 𝑥𝑥𝐵𝐵, 𝑡𝑡𝐵𝐵 = 𝜆𝜆(𝑡𝑡𝐵𝐵)1/2 𝑒𝑒−𝑖𝑖
𝑀𝑀𝜔𝜔
2ħ 𝑥𝑥𝐵𝐵

2 tan 𝜔𝜔 𝑡𝑡𝐵𝐵 �Ψ𝐴𝐴 𝑥𝑥𝐴𝐴, 𝑡𝑡𝐴𝐴
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Mean-field density evolution in the two experiments (illustration of mapping).

BA

An Example of the mapping: free expans. to ramped int. 

12

MAP



We applied the mapping to two achievable experiments to support our predictions.

For longer times, mean field breaks down in both cases, but our mapping does not.

An Example of the mapping: free expans. to ramped int. 

This is just an example!

Infinitely many pairs of experiments

can be exactly mapped with closed quantum gases .

13
More information in E. Wamba et al., Phys. Rev. A 94, 043628 (2016)



Overview 
 The quantum fields mapping (for closed systems)

 Heisenberg equation and mapping identity
 Features of the mapping
 Illustration : Mapping the two specific evolutions onto each other

 Interesting dynamics in open systems
 An experiment with controlled dissipator
 Dynamics in presence of a dark soliton

 Some results on the N-point function mapping of lossy quantum systems
 Lindblad evolution of the function
 Mapping of two evolutions

 Conclusion
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Working principle of scanning electron microscopy applied to ultracold quantum 

gases.

Controlled dissipation: Scanning electron microscopy 

15
Tatjana Gericke, PhD thesis (2010)

A focused electron beam is scanned over the atom cloud and ionizes single
atoms, which are subsequently detected by an ion detector



Controlled dissipation: Electron beam on an optical lattice 

16
T. Gericke, PhD thesis (2010); R. Labouvie, PhD Thesis (2015), R. Labouvie, et al PRL 115, 050601 (2015)

(a) single empty site, (b) isolated occupied site, (c) any well-controlled distribution of sites.

High controllability of every parameter => system is a promising candidate for
engineering fully governable open quantum systems.

(c)

 Prepare a quantum transport
device for neutral atoms

 Prepare any arbitrary lattice



The action of a localized dissipative potential on a macroscopic matter wave probes 
- The backflow paradox (when the strength of the dissipation exceeds a critical limit)
- The generalized Zeno effect (a system cannot change while being observed).

Controlled dissipation: Electron beam on a BEC 

17
G. Barontini et al. , Phys Rev Lett 110, (2013)

Fully controllable, environmentally induced imaginary potential
acting on a quantum system

𝛾𝛾 𝑟𝑟 = 𝛾𝛾(0) 𝑒𝑒−
𝑟𝑟2

2𝑤𝑤2, 𝛾𝛾(0) ∝ 𝐼𝐼
𝑤𝑤2



BEC + electron beam + dark soliton => Enriched dynamics

Dark soliton in a dissipative BEC: 

18

Mean-field dynamics described by Gross-Pitaevskii + imaginary potential

𝛾𝛾 𝑥𝑥 = 𝛾𝛾(0) 𝑒𝑒−
𝑥𝑥2

2𝑤𝑤2 , 𝛾𝛾(0) ∝ 𝐼𝐼
𝑤𝑤2



BEC + electron beam + dark soliton => decays

Dark soliton in a dissipative BEC: Decays

19

 Condensate radius, density, atom number, and soliton motion all decay.
 Dark soliton drastically changes the decay rates

Preliminary results!



BEC + electron beam + dark soliton => capture/ release

Dark soliton in a dissipative BEC: Capture and release

20

 Capture and release of dark soliton (by the dissipator) can happen

Preliminary results! Busch-Anglin dynamics
Newtonian-like dynamics

Hint from V.N. Serkin, Optik - International Journal for Light and Electron Optics 173, 1-12 (2018)



Overview 
 The quantum fields mapping (for closed systems)

 Heisenberg equation and mapping identity
 Features of the mapping
 Illustration : Mapping the two specific evolutions onto each other

 Interesting dynamics in open systems
 An experiment with controlled dissipator
 Dynamics in presence of a dark soliton

 Some results on the N-point function mapping of lossy quantum systems
 Schrödinger evolution of the function
 Mapping of two different evolutions

 Conclusion
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Realistic evolution of the gas (in the Schrödinger picture):

Schrödinger evolution: The Lindblad equation

22

𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 =
1
2
�𝑑𝑑𝐷𝐷𝑟𝑟′ �Ψ† 𝑟𝑟 �Ψ† 𝑟𝑟′ 𝑈𝑈 𝑟𝑟, 𝑟𝑟′, 𝑡𝑡 �Ψ 𝑟𝑟′ �Ψ 𝑟𝑟

𝑖𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌 = �𝐻𝐻, �𝜌𝜌 + 𝑖𝑖𝑖ℒ �𝜌𝜌

�𝐻𝐻 = �𝑑𝑑𝐷𝐷𝑟𝑟 �Ψ† 𝑟𝑟 −
ħ2

2𝑀𝑀
𝛻𝛻2 + 𝑉𝑉 𝑟𝑟, 𝑡𝑡 �Ψ 𝑟𝑟 + 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖

Hamiltonian:

ℒ �𝜌𝜌 = −�𝑑𝑑𝐷𝐷𝑟𝑟 �𝑄𝑄† �𝑄𝑄 �𝜌𝜌 + �𝜌𝜌 �𝑄𝑄† �𝑄𝑄− 2 �𝑄𝑄† �𝜌𝜌 �𝑄𝑄
Lindbladian:

Lindblad generators (loss/gain channel):

�𝑄𝑄 = �Ψ 𝑟𝑟
𝛾𝛾(𝑟𝑟)

2
arXiv:2009.04270v2 (PRA in press)



Lindblad equation in the Heisenberg picture?

Replace the density operator by the evolving field operator (Naive solution):
- The density matrix is a sort of hybrid operator
- The equation fails to evolve the product of 2 operators properly

Schrödinger evolution: The Lindblad equation

23

• Adding a Langevin force may solve the problem

• Consider only expectation values (easier, experiment directed)



Schrödinger evolution: Evolution of Schro. N-point function  

The N-point function in terms of Schrödinger’s operators:

𝐹𝐹𝑺𝑺 = �
𝑗𝑗=1

𝑁𝑁
�Ψ† 𝑟𝑟𝑗𝑗′′ �

𝑗𝑗=1

𝑁𝑁
�Ψ 𝑟𝑟𝑗𝑗

24

Use the following evolution rule and apply the Tr properties:

𝜕𝜕𝑡𝑡 𝐴̂𝐴 𝑟𝑟 = Tr 𝐴̂𝐴 𝑟𝑟 𝜕𝜕𝑡𝑡 �𝜌𝜌
The N-point function satisfies:

𝑖𝑖𝑖 𝜕𝜕𝑡𝑡𝐹𝐹𝑺𝑺 = �
𝑗𝑗=0

𝑁𝑁−1

�
𝑖𝑖=1

𝑁𝑁
�Ψ𝑖𝑖′
′† �

𝑖𝑖=1

𝑗𝑗
�Ψ𝑖𝑖 ℎ𝑗𝑗+1 �

𝑖𝑖=𝑗𝑗+1

𝑁𝑁
�Ψ𝑖𝑖

−�
𝑗𝑗=0

𝑁𝑁−1

�
𝑖𝑖=𝑗𝑗+1

𝑁𝑁
�Ψ𝑖𝑖′
′† ℎ′𝑗𝑗+1 �

𝑖𝑖=1

𝑗𝑗
�Ψ𝑖𝑖
′† �

𝑖𝑖=1

𝑁𝑁
�Ψ𝑖𝑖

−𝑖𝑖𝑖 𝐹𝐹𝑺𝑺�
𝑖𝑖=1

𝑁𝑁
𝛾𝛾 𝑟𝑟𝑖𝑖 + 𝛾𝛾(𝑟𝑟𝑖𝑖′)

2

ℎ𝑖𝑖 = −
ħ2

2𝑀𝑀
𝛻𝛻𝑟𝑟𝑖𝑖
2 + 𝑉𝑉 𝑟𝑟𝑖𝑖 + �𝑑𝑑𝐷𝐷𝑟𝑟𝑖𝑖′ �Ψ† 𝑟𝑟𝑖𝑖′ 𝑈𝑈 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑖𝑖′ �Ψ 𝑟𝑟𝑖𝑖′

i’=N+1-i

j’=N+1-j



‘Heisenberg’ evolution: Evol. of Heis. N-point function  

Invoke picture independence of expectation values:

𝐹𝐹 = �
𝑗𝑗=1

𝑁𝑁
�𝜓𝜓† 𝑟𝑟𝑗𝑗′′ , 𝑡𝑡 �

𝑗𝑗=1

𝑁𝑁
�𝜓𝜓 𝑟𝑟𝑗𝑗 , 𝑡𝑡 ≡ 𝐹𝐹𝑺𝑺

25

Introduce a unitary operation:
�Ψ 𝑟𝑟𝑗𝑗 → �𝜓𝜓 𝑟𝑟𝑗𝑗 , 𝑡𝑡 = �𝑈𝑈† �Ψ 𝑟𝑟𝑗𝑗 �𝑈𝑈

The ‘Heisenberg’ N-point function satisfies:

𝑖𝑖𝑖 𝜕𝜕𝑡𝑡𝐹𝐹 = �
𝑗𝑗=0

𝑁𝑁−1

�
𝑖𝑖=1

𝑁𝑁
�𝜓𝜓𝑖𝑖′
′† �

𝑖𝑖=1

𝑗𝑗
�𝜓𝜓𝑖𝑖 𝐡𝐡𝑗𝑗+1 �

𝑖𝑖=𝑗𝑗+1

𝑁𝑁
�𝜓𝜓𝑖𝑖

−�
𝑗𝑗=0

𝑁𝑁−1

�
𝑖𝑖=𝑗𝑗+1

𝑁𝑁
�𝜓𝜓𝑖𝑖′
′† 𝐡𝐡𝐡𝑗𝑗+1 �

𝑖𝑖=1

𝑗𝑗
�𝜓𝜓𝑖𝑖
′† �

𝑖𝑖=1

𝑁𝑁
�𝜓𝜓𝑖𝑖

−𝑖𝑖𝑖 𝐹𝐹�
𝑖𝑖=1

𝑁𝑁
𝛾𝛾 𝑟𝑟𝑖𝑖 + 𝛾𝛾(𝑟𝑟𝑖𝑖′)

2

𝐡𝐡𝐢𝐢 = −
ħ2

2𝑀𝑀
𝛻𝛻𝑟𝑟𝑖𝑖
2 + 𝑉𝑉 𝑟𝑟𝑖𝑖 , 𝑡𝑡 + �𝑑𝑑𝐷𝐷𝑟𝑟𝑖𝑖′ �𝜓𝜓† 𝑟𝑟𝑖𝑖′, 𝑡𝑡 𝑈𝑈 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑖𝑖′, 𝑡𝑡 �𝜓𝜓 𝑟𝑟𝑖𝑖′, 𝑡𝑡



Define the rescaled N-point function as

�𝐹𝐹 = �
𝑗𝑗=1

𝑁𝑁
�𝜱𝜱† 𝑥⃗𝑥𝑗𝑗′′ , 𝜏𝜏 �

𝑗𝑗=1

𝑁𝑁
�𝜱𝜱 𝑥⃗𝑥𝑗𝑗 , 𝜏𝜏

26

Using our quantum-field mapping, the evolution of the mapped N-point
function is

𝑖𝑖𝑖 𝜕𝜕𝑡𝑡 �𝐹𝐹 = �
𝑗𝑗=0

𝑁𝑁−1

�
𝑖𝑖=1

𝑁𝑁
�𝜱𝜱𝑖𝑖′
′† �

𝑖𝑖=1

𝑗𝑗
�𝜱𝜱𝑖𝑖 𝐡𝐡𝑗𝑗+1 �

𝑖𝑖=𝑗𝑗+1

𝑁𝑁
�𝜱𝜱𝑖𝑖

−�
𝑗𝑗=0

𝑁𝑁−1

�
𝑖𝑖=𝑗𝑗+1

𝑁𝑁
�𝜱𝜱𝑖𝑖′
′† 𝐡𝐡′𝑗𝑗+1 �

𝑖𝑖=1

𝑗𝑗
�𝜱𝜱𝑖𝑖
′† �

𝑖𝑖=1

𝑁𝑁
�𝜱𝜱𝑖𝑖

−𝑖𝑖𝑖 �𝐹𝐹�
𝑖𝑖=1

𝑁𝑁
�𝛾𝛾 𝑥⃗𝑥𝑖𝑖 , 𝜏𝜏 + �𝛾𝛾(𝑥⃗𝑥𝑖𝑖′, 𝜏𝜏)

2

𝐡𝐡𝐢𝐢 = −
ħ2

2𝑀𝑀
𝛻𝛻𝑥𝑥𝑖𝑖
2 + 𝑉𝑉 𝑥⃗𝑥𝑖𝑖 , 𝜏𝜏 + �𝑑𝑑𝐷𝐷𝑥⃗𝑥𝑖𝑖′ �𝜱𝜱† 𝑥⃗𝑥𝑖𝑖′, 𝜏𝜏 𝑈𝑈 𝑥⃗𝑥𝑖𝑖 , 𝑥⃗𝑥𝑖𝑖′, 𝜏𝜏 �𝜱𝜱 𝑥⃗𝑥𝑖𝑖′, 𝜏𝜏

Mapping of two evolutions: The mapped evolution



Mapping of two evolutions: The new identity

Then �Φ𝑛𝑛 𝑟𝑟, 𝑡𝑡 ,𝑈𝑈 𝑟𝑟, 𝑡𝑡 ,𝑉𝑉𝑛𝑛 𝑟𝑟, 𝑡𝑡 , 𝛾𝛾 𝑟𝑟, 𝑡𝑡 ↔ �Ψ𝑛𝑛 𝑟𝑟, 𝑡𝑡 , �𝑈𝑈 𝑟𝑟, 𝑡𝑡 , �𝑉𝑉𝑛𝑛 𝑟𝑟, 𝑡𝑡 , �𝛾𝛾 𝑟𝑟, 𝑡𝑡

where:

If the two-body interaction potential satisfies the homogeneity condition:

�Ψ𝑛𝑛 𝑟𝑟, 𝑡𝑡 = 𝜆𝜆𝐷𝐷/2 𝑒𝑒−𝑖𝑖
1
2ħ𝑀𝑀𝑛𝑛𝑟𝑟2𝜆𝜆 �𝒪𝒪𝜆𝜆 �Φ𝑛𝑛 𝜆𝜆𝑟𝑟,�

0

𝑡𝑡
λ 𝑡𝑡′ 2 𝑑𝑑𝑡𝑡′

�𝑈𝑈 𝑟𝑟, 𝑟𝑟′, 𝑡𝑡 = 𝜆𝜆2−𝑠𝑠 𝑈𝑈(𝑟𝑟, 𝑟𝑟′, 𝜏𝜏)

�𝑉𝑉𝑛𝑛 𝑟𝑟, 𝑡𝑡 = 𝜆𝜆2 𝑉𝑉𝑛𝑛 𝜆𝜆𝑟𝑟,�
0

𝑡𝑡
λ 𝑡𝑡′ 2 𝑑𝑑𝑡𝑡′ +

1
2
𝑀𝑀𝑛𝑛𝑟𝑟2𝜆𝜆 �𝒪𝒪2𝜆𝜆 ; �𝒪𝒪 =

1
𝜆𝜆2

𝑑𝑑
𝑑𝑑𝑑𝑑
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𝐹𝐹 → �𝐹𝐹; �𝛾𝛾 𝑟𝑟, 𝑡𝑡 = 𝜆𝜆−2 𝛾𝛾 𝜆𝜆𝑟𝑟,�
0

𝑡𝑡
λ 𝑡𝑡′ 2 𝑑𝑑𝑡𝑡′



Example with a dissipated cigar-shaped BEC
A

Modulation of electron beam current:

𝑔𝑔 = 𝑔𝑔0

𝑉𝑉 𝑥𝑥 =
𝑀𝑀
2
𝜔𝜔𝐴𝐴2𝑥𝑥2

𝛾𝛾 𝑥𝑥, 𝑡𝑡 =
𝜎𝜎0
λ 𝑡𝑡 2 exp −

𝑥𝑥2

2𝑊𝑊0
2

28

B
Ramping of interactions and modulation 

of electron beam waist:

𝑔𝑔 𝑡𝑡 = 𝑔𝑔0 λ 𝑡𝑡

𝑉𝑉 𝑥𝑥 =
𝑀𝑀
2
𝜔𝜔𝐵𝐵

2𝑥𝑥2

𝛾𝛾 𝑥𝑥, 𝑡𝑡 = 𝜎𝜎0 exp −
𝑥𝑥2

2 𝑊𝑊0/λ 𝑡𝑡 2

λ 𝑡𝑡 =
𝜔𝜔𝐵𝐵

𝑎𝑎− cos 𝜔𝜔𝐵𝐵𝑡𝑡 + 𝑎𝑎+
, 𝑎𝑎± =

𝜔𝜔𝐵𝐵2 ± 𝜔𝜔𝐴𝐴2

2

Define the n –body correlation function:



Mean-field density evolution in the two experiments (illustration of mapping).

Example with a dissipated cigar-shaped BEC



Mean-field density evolution in the two experiments (illustration of mapping).

Example with a dissipated cigar-shaped BEC

A
B

MAP



Conclusion
Given an experiment A with a quantum system, it exists a corresponding
experiment B, such that the N-point functions of both A & B are related
together, whether the system is closed or open!

31

o Realistic and general (bosons, fermions, all real interactions, arb. initial state, mixtures, 

arb. dimensions, arb. traps, all possible measurements, …) 

o Suitable for testing for experimental errors

o A tool to expand experimental techniques, e.g. by allowing time-dependent
traps to mimic time-dependent interactions, or vice-versa

o A tool to provide long-run outcome of experiments in a shorter time

o A possible microscope (tool to solve imaging resolution issues)

The mapping is



Outlook

 Probe heating suppression in
periodically driven many-body
quantum systems
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 Explore quench-like changes
in many-body quantum
systems in search for hidden
adiabaticity

Floquet ↔ static evolutions

Fast ↔ slow evolution of a 
«quenched» system



Thank 
you!
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