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Motivation

U Exactly solvable problems are rare in quantum many-body theory, especially in
nonequilibrium scenarios in which the system Hamiltonian is explicitly time-dependent.
Approximate methods are mostly used, a few exact results have been obtained by

means of space-time mappings.

0 An exact mapping for periodically driven system
The mapping relates a periodically time-dependent many-body Hamiltonian that can be
treated with Floquet theory, onto a time-independent Hamiltonian which can be

analysed with standard mean-field and perturbative methods.
h \ Phys. Rev. A 87, 040701(R) (2016);
Rev. Mod. Phys. 82, 2731(2010);

<:> Rev. Mod. Phys. 88, 039904 (2016)
Nature Commun. 8, 15085 (2017);

Scientific Reports 8, 11435 (2018)

0 Why Floquet engineering is great
» Local manipulation of magnetization in condensed matter systems
» Explore the parameter regimes inaccessible in solid-state experiments and
non-equilibrium many-body physics, etc.

3
» Periodic modulation induces novel effects and structures in quantum systems



Motivation

O Heating problem: Breakdown of the effective Hamiltonian picture

» Periodic modulation limits the implementation of interesting many-body states because of
integrability breaking terms such as interactions lead to heating the system to infinite

temperature for long timescales

» Altering the effective Hamiltonian results in a change of the

measured observable within different timescales of the system.
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Blue: full time evolution of the observable; Red: time evolution under Hyg .

0 Using exact space-time mappings to learn how periodically driven quantum 4
many-body systems can avoid being heated.



Mapping scheme and driving setup

Mapping identities

> (P70, U (7,7, 0), Va7, 0)}  and {Pg(7,0),Ug (7,7, 1), Vg(#,t)} are two

evolutions of the Heisenberg equations.

» The fields operators map as:
P, (7 (7 b2 —ibhhi2 o N AN
P, (7 t) > PP 6) =AP/2 e 0RT @, (A7 | A()?ad | (1)
0

» The interaction potentials map as

Uy(7,7',8) » Ug (7,7, 8) = M2 PU,(F 7, t) (1b)

» For the trapping potentials:

Vi(#t) & Vg (7 t) = A2 [VA (?\r f A(t)H?2 dt’ ) + 1Mf(t)r ] (1c)
where  f(t) = A(A™2 0,)%A.

E. Wamba, A. Pelster, and J. R. Anglin, Phys. Rev. A 94, 043628 (2016) S



Mapping scheme and driving setup

Key features of the mapping

(®) A spacetime mapping between
two different experiments

for all observables
in any state

Space modulation

F o AD) F

+ Non-trivial tirtne transformation
t — j A(t)?% dt’
0

phase
factor

spatial
dilatation

Experiment B

Exact ! 0 ts f - time
No approximation made, it is not about Gross-Pitaevskii equation but Heisenberg
equation.

General !

- use quantum fields not c-number fields

- valid for bosons, fermions, any mixture (species, hyperfine structures, spins)
- most real interactions and arbitrary traps

- arbitrary initial state and space dimensions,

- all possible measurements, ...



Mapping scheme and driving setup

Driving protocol and mean-field model equation

» Based on our mapping we construct a model many-body system with rapid driving but no

heating.

1
Choose [ A(t) = Ta cos(ZwBt)+b] and U(7, 7', t) = g(t) §(7 —71') (2)
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Mapping scheme and driving setup

Driving protocol and mean-field model equation
» With the setting above, we get:

(" (g, = const. (nggA)\Z—D )
<V—lsz{uz‘rz = <V—lM Z 2
AT 2 B P T2 @ T 3)

(

Harmonic trap = Harmonic trap
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» Suppose the Bose gas is a cigar-shaped BEC. We numerically solve the mean-field Gross-

Pitaevskii equation with the above parameters. 8



Heating estimation and avoidance

space (trap units)

Result of direct numerical experiments (with GPE)
> With y = 15,wp=1, g4=1, we get:

density in experiment A density in experiment B

Static evolution Flogquet problem|
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Heating estimation and avoidance

Mapping of the results and comparison
» With y =15 wp=1, g4=1, we get:

density evolution in experiment B (mapped from A) density evolution in experiment A (mapped from B)
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» map B = B,and map A = A ; so the mapping exactly reproduces the computed data.
» Static evolution A has no heating = no heating in A (periodically driven system)

> Validity of the result guaranteed even if mean-field breaks down. 10



Heating estimation and avoidance

energy
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Estimation of the heating

» Run the numerics and compute the energy difference

AE(t) = E'GP(t) — EGP(O),
with
g(t)

h2
Bor(t) = [ a¥r | Zowul 4 Vool + 20
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Heating estimation and avoidance

Heating rate versus driving frequency and interaction

» Run the experiment for many driving frequencies and compute the heating rate
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» A heating trough appears in the frequency spectrum! 1



Summary

Learning about heating avoidance in a Floquet system using a
mapping!

Using our mapping, we have revealed that among experiments with periodically driven
systems, it exists a special class with rapid periodic driving which nevertheless do not
suffer from heating, because its time evolution has a kind of hidden adiabaticity, inasmuch

as it can be mapped exactly onto that of a slowly driven or undriven system.
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Beyond mean-field effects ... ? 13
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