

1

Mapping between a Floquet problem and a slow evolution of a Bose gas in the mean-field regime

Etienne Wamba Technische Universität kaiserslautern

DPG-Frühjahrstagung, Rostock, March 11, 2019

Outline

Motivation

□ Mapping scheme and driving setup

□ Heating estimation and avoidance

Motivation

Exactly solvable problems are rare in quantum many-body theory, especially in

nonequilibrium scenarios in which the system Hamiltonian is explicitly time-dependent. Approximate methods are mostly used, **a few exact results have been obtained by means of space-time mappings**.

An exact mapping for periodically driven system

The mapping relates a periodically time-dependent many-body Hamiltonian that can be treated with **Floquet theory**, onto a time-independent Hamiltonian which can be analysed with standard mean-field and perturbative methods.

Phys. Rev. A 87, 040701(R) (2016); Rev. Mod. Phys. 82, 2731(2010); Rev. Mod. Phys. 88, 039904 (2016) Nature Commun. 8, 15085 (2017); Scientific Reports 8, 11435 (2018)

Why Floquet engineering is great

- Local manipulation of magnetization in condensed matter systems
- Explore the parameter regimes inaccessible in solid-state experiments and non-equilibrium many-body physics, etc.
- Periodic modulation induces novel effects and structures in quantum systems

Motivation

Heating problem: Breakdown of the effective Hamiltonian picture

- Periodic modulation limits the implementation of interesting many-body states because of integrability breaking terms such as interactions lead to heating the system to infinite temperature for long timescales
- Altering the effective Hamiltonian results in a change of the measured observable within different timescales of the system.

One-dimensional lattice of "pancakes" formed with two laser beams. The lattice is shaken by periodically modulating the frequency of one of the laser beams.

PRL 119, 200402 (2017)

Blue: full time evolution of the observable; **Red**: time evolution under \hat{H}_{eff} .

□ Using exact space-time mappings to learn how periodically driven quantum 4 many-body systems can avoid being heated.

Mapping identities

- The fields operators map as:

$$\widehat{\Psi}_{A}(\vec{r},t) \mapsto \widehat{\Psi}_{B}(\vec{r},t) = \lambda^{D/2} e^{-i\frac{M}{2\hbar}\frac{\dot{\lambda}}{\lambda}r^{2}} \widehat{\Psi}_{A}\left(\lambda \vec{r}, \int_{0}^{t} \lambda(t')^{2} dt'\right)$$
(1a)

- > The interaction potentials map as $U_A(\vec{r},\vec{r}',t) \mapsto U_B(\vec{r},\vec{r}',t) = \lambda^{2-D} U_A(\vec{r},\vec{r}',t)$ (1b)
- $\begin{array}{l} & \text{For the trapping potentials:} \\ & V_A(\vec{r},t) \mapsto V_B(\vec{r},t) = \lambda^2 \left[V_A\left(\lambda \, \vec{r}, \int_0^t \lambda(t')^2 \, dt'\right) + \frac{1}{2} M f(t) \, r^2 \right] \, \text{(1c)} \\ & \text{where} \quad f(t) = \lambda (\lambda^{-2} \, \partial_t)^2 \lambda. \end{array}$

E. Wamba, A. Pelster, and J. R. Anglin, Phys. Rev. A **94**, 043628 (2016) 5

Key features of the mapping

Space modulation $\vec{r} \rightarrow \lambda(t) \vec{r}$

+ Non-trivial time transformation $t \rightarrow \int_0^t \lambda(t')^2 dt'$

Exact !

 $\langle \hat{O} \rangle$ A spacetime mapping between two different experiments for all observables in any state Experiment A phase $e^{i\theta}$ $factor e^{i\theta}$ spatialdilatation time

No approximation made, it is **not** about **Gross-Pitaevskii** equation but **Heisenberg** equation.

General !

- use quantum fields not c-number fields
- valid for bosons, fermions, any mixture (species, hyperfine structures, spins)
- most real interactions and arbitrary traps
- arbitrary initial state and space dimensions,
- all possible measurements, ...

Driving protocol and mean-field model equation

Based on our mapping we construct a model many-body system with rapid driving but no heating.

Choose
$$\lambda(t) = \frac{1}{\sqrt{a}\cos(2\omega_B t) + b} \text{ and } U(\vec{r}, \vec{r}', t) = g(t) \,\delta(\vec{r} - \vec{r}')$$
(2)

$$a = \frac{1 - \gamma^2}{2}$$

$$b = \frac{1 + \gamma^2}{2}$$

$$b = \frac{1 + \gamma^2}{2}$$

$$\gamma = \omega_A / \omega_B$$

$$\gamma = \omega_A / \omega_B$$

$$\gamma = \omega_A / \omega_B$$

Driving protocol and mean-field model equation

> With the setting above, we get:

Suppose the Bose gas is a cigar-shaped BEC. We numerically solve the mean-field Gross-Pitaevskii equation with the above parameters.

Result of direct numerical experiments (with GPE)

With $\gamma = 1.5, \omega_B = 1, g_A = 1$, we get: \succ

space (trap units)

density in experiment A

density evolution in experiment A (mapped from B)

Mapping of the results and comparison

> With $\gamma = 1.5, \omega_B = 1, g_A = 1$, we get:

density evolution in experiment B (mapped from A)

> map B = B, and map A = A; so the mapping exactly reproduces the computed data.

- > Static evolution A has no heating \Rightarrow no heating in A (periodically driven system)
- Validity of the result guaranteed even if mean-field breaks down.

Estimation of the heating

Run the numerics and compute the energy difference

Heating rate versus driving frequency and interaction

Run the experiment for many driving frequencies and compute the heating rate

A heating trough appears in the frequency spectrum!

Summary

Learning about heating avoidance in a Floquet system using a mapping!

Using our mapping, we have revealed that among experiments with periodically driven

systems, it exists a special class with rapid periodic driving which nevertheless do not

suffer from heating, because its time evolution has a kind of hidden adiabaticity, inasmuch

as it can be mapped exactly onto that of a slowly driven or undriven system.

Beyond mean-field effects ... ?

0.2

0.15

0.1

0.05

50

People involved in this project:

Etienne Wamba,

Axel Pelster

&

James R. Anglin

