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Prefae





Chapter 1
Introdution

In this thesis, some new aspets in dealing with path integrals are disussed, in partiular the per-turbatively de�ned quantum statistial path integral and the appliation of methods known fromquantum �eld theory suh as generating funtionals in phase spae. The expetation values appearingin perturbative expansions of path integrals are usually pitured by Feynman diagrams. We derivea graphial reursion relation to systematially onstrut topologially di�erent Feynman diagramswith their orret multipliities for the anharmoni osillator as an quantum statistial example andfor sattering proesses in quantum eletrodynamis, whih illustrates the power of this method forquantum �eld theoreti problems. Generalizations and extensions of variational perturbation theoryare used to alulate statistial properties of quantum systems and membranes.
1.1 Path IntegralsIt was in 1948 when R.P. Feynman introdued the quantum mehanial path integral to alulate thetransition amplitude for a harged partile in eletromagneti �eld [1℄. With the path integral, thereinterpretation of the lassially known notions \paths" and \orbits" beame possible. Not only thepaths whih make the ation extremal but also all other ways the partile may follow ontribute to thetransition amplitude with a phase fator whih relates the ation of a path to Plank's onstant ~. Inits Eulidean form, the statistial path integral is built up from Boltzmann fators indeed indiatingthe probability of a ertain path of the partile [2{4℄.The exat alulation of path integrals is only possible for systems whose ation is quadrati inthe anonial variables, for example position x(�) and momentum p(�). In quantum mehanis, thepath integrals for the transition amplitudes of the free partile and the harmoni osillator are exatlyalulated by time-sliing. Expliitly evaluating the path integral for a system with a more ompliatedpotential is impossible, if it annot be brought into the neessary Gaussian form. This is, however,possible for a lass of systems, where the path integral an be transformed to be of osillator type, e.g.for the hydrogen atom by applying the Duru-Kleinert transformation [4℄. In non-interating quantum�eld theories, e.g. for Klein-Gordon or Dira �elds, the Lagrangian density is usually quadrati in the�elds and their derivatives. Thus suh path integrals are of Gaussian type and an easily be alulated.If quantum �elds interat, funtional integrals annot be evaluated analytially in almost all ases.9



10 1. Introdution1.2 Perturbative and Non-Perturbative Methods for theCalulation of Path IntegralsNevertheless, the interest in funtional integrals has grown rapidly. Path integrals for a physial systemwith weakly oupled interation allow for a simple perturbation expansion, where the orrelation fun-tions an be graphially pitured by Feynman diagrams. The most famous example is the interationof harged relativisti partiles with an eletromagneti �eld, as desribed by quantum eletrodynam-is, where the oupling onstant is � � 1=137. For strong-oupling systems, path integrals are usedfor the development of nonperturbative methods. Strong-oupling theories are neessary for alu-lating ritial exponents of a system near a phase transition [5℄, for desribing on�nement betweenquarks in quantum hromodynamis [6℄, or for the investigation of interating strings [7℄. Path integralMonte Carlo methods on a lattie were developed to ombine the seletive probability piture of pathintegrals with the great numerial power of superomputers. Analyti non-perturbative methods forstrongly oupled systems are usually used to perform resummations of perturbative expansions as, forexample, by Pad�e or Borel methods. Alternatively, Feynman and Kleinert [8℄ as well as Giahettiand Tognetti [9℄ developed a variational approah to approximatively alulate path integrals for arbi-trarily oupled quantum mehanial systems. Within the last deade, the preision has been stronglyimproved by extending it to higher-order variational perturbation theory [4, Chap. 5℄. Additionally,onsiderable progress was ahieved in applying it to alulate ritial exponents from strong-ouplingseries of the Ginzburg-Landau theory of ritial phenomena [5,10,11℄.1.3 Contents of This ThesisThis thesis is divided into four parts. In Part I, a perturbative de�nition of the quantum statistialphase spae integral is introdued. Conventional time-sliing methods for alulating path integralsyield integration measures, whih are not well de�ned sine these are in�nite in the ontinuum limit.Moreover, it is diÆult to prove reparametrization invariane of the path integral under oordinatetransformations, in partiular in urved spaes. A perturbative expansion of any phase spae pathintegral, where the omplete Hamiltonian is treated as perturbation, does not possess these problems,sine the exatly solvable ontribution has a regular measure and is trivially redued to produts ofÆ funtions. It is interesting that this proedure leads diretly to a high-temperature expansion forthe partition funtion. We prove the appliability of this method by alulating the e�etive lassialpotential for the harmoni osillator.Sine it is neessary to alulate expetation values of produts of Hamiltonians, it is useful to in-trodue Feynman rules, whih an also be applied, if the Hamiltonian ontains nonpolynomial terms.This requires to generalize Wik's rule, too. Furthermore, the alulation of mixed position-momentumorrelations must be onsidered. As examples, we study harmoni expetation values whose treatmentis neessary for the harmoni variational perturbation theory. In the ase of nonpolynomial perturba-tions, so-alled smearing formulas replae the ordinary Wik deompositions of polynomial orrelationsinto produts of two-point orrelation funtions. We also disuss the role of zero-mode utuations forpaths with periodi and �xed boundary onditions.In high orders of perturbation theory, it beomes often diÆult to determine all topologially dif-ferent Feynman diagrams and their multipliities. Usually this problem is attaked with the help ofombinatorial onsiderations. A powerful alternative is presented in Part II. We derive reursion rela-tions from whih all Feynman diagrams in any order are systematially generated without introduingarti�ial urrents. These relations an be ompletely expressed in a graphial way. This means thatthe Feynman diagrams of a ertain theory in any order are generated by utting, removing, and glue-ing operations on diagrams of previous orders of perturbation. We present reursion relations for thequantum mehanial anharmoni osillator and investigate the appliability to quantum �eld theories,where we speialize to quantum eletrodynamis.The resummation of divergent perturbative series with harmoni variational perturbation theory isthe entral aspet of Part III. After a short introdution of variational perturbation theory, we �rst



1.3 Contents of This Thesis 11generalize this theory to density matries and alulate the partile densities for the double well andthe pair distribution funtion of hydrogen for di�erent temperatures. Another interesting system isthe hydrogen atom in a uniform external magneti �eld, sine it destroys the isotropy of the Coulombinteration between eletron and proton. The alulation of the e�etive lassial potential, whihgoverns the quantum statistis of this system, is followed by a detailed treatment of the ground-stateenergy. This quantity has a power expansion for weak strengths of the magneti �eld, but a ompliatedlogarithmi behavior for strong magneti �elds. We use the variational approah to �nd an expressionfor the ground-state energy as a funtion of the magneti �eld strength, whih is valid for all strengthsof the magneti �eld although the asymptoti behavior is so extremely di�erent. The results are in goodagreement with known values from numerial alulations. Considering the strong-�eld asymptotisin detail, we go analytially beyond an estimate presented by Landau.Another example, where variational perturbation theory yields very good results, is the strong-oupling alulation of the utuation pressure of a membrane between walls. This shall be disussedin Part IV. A uid membrane is tensionless, and its shape is governed by the urvature energy. Bythermal utuations, the membrane exerts a pressure upon the walls. The pressure law is ideal-gas-like and ontains a dimensionless pressure onstant, whose value is not exatly known. From ourstrong-oupling alulation we obtain a very preise value that lies well in the error bounds of formerMonte Carlo simulations. We also evaluate the pressure onstants for a stak of membranes, where ourstrong-oupling approah is appliable for any number of membranes. Compared with Monte Carlosimulations, where only onstants for low numbers of membranes were omputed, our results are invery good agreement.





Part I

The Path Integral from aPerturbative Perspetive





Chapter 2
Perturbatively De�ned Path Integral inPhase Spae
As an alternative to Feynman's time-slied de�nition, we introdue a perturbative de�nition of pathintegrals in phase spae [12℄. This will be shown to lead naturally to a high-temperature expansion forthe e�etive lassial Hamiltonian of quantum statistial systems. In this de�nition, the unperturbedsystem is trivial and the alulation of Feynman diagrams is simple. As an appliation, we shall applythis formalism to �nd the e�etive lassial Hamiltonian for the harmoni osillator.2.1 IntrodutionThe de�nition of path integrals by time-sliing [4℄ beomes ambiguous for physial systems with non-trivial metri, where operator quantum mehanis has an ordering problem and reparametrizationinvariane has been a problem for many years [13℄. It was solved reently by a perturbative de�-nition of path integrals in on�guration spae [14℄ using dimensional regularization methods, whihsuessfully guarantees gauge invariane in the quantum theory of non-Abelian gauge �elds [15℄. Ul-timately, rules were found for alulating integrals over produts of distributions, whih establish aunique proedure for a perturbative alulation of path integrals, whih fully respets reparametriza-tion invariane [16℄. The path integral of any system is expanded around that of a free partile inpowers of the oupling onstant of the potential.Here we extend the de�nition to path integrals in phase spae and derive a short-time expansionof the Hamiltonian quantum mehanial time evolution amplitude. In Eulidean spae, the densitymatrix is obtained as a high-temperature expansion. By a simple resummation, this series an beturned into an expansion in powers of the oupling onstant of the potential desribed above. In theexpansion to be derived the solution for an exatly known nontrivial path integral suh as that of a freepartile is not required. The perturbative de�nition presented here is ompletely general. The usualexpansion around the free-partile system an always be reprodued by simply hanging the order ofsummations.In a �rst step, the method is used to alulate the e�etive lassial Hamiltonian of the harmoniosillator H!;e�(p0; x0) by exatly summing up the perturbation series. In terms of H!;e�(p0; x0), thequantum statistial partition funtion is given by the lassially looking phase spae integralZ! = Z dx0dp02�~ exp f��H!;e�(p0; x0)g ; (2.1)15



16 2. Perturbatively De�ned Path Integral in Phase Spaewhere � = 1=kBT is the inverse thermal energy.2.2 Perturbative De�nition of the Path Integral for DensityMatriesSliing the interval [0; ~�℄ into N +1 piees of width " = ~�=(N +1), the unnormalized density matrixan be expressed by the ontinuum limit of a produt of integrals as [4℄~%(xb; xa) = limN!1 NYn=1 �Z 1�1 dxn�N+1Yn=1 �Z 1�1 dpn2�~ eipn(xn�xn�1)=~� exp(�"N+1Xn=1 H(pn; xn)=~) ; (2.2)where xa = x0 and xb = xN+1 are the �xed end points of the path. Upon expanding the lastexponential in powers of "=~, we reognize that the zeroth-order ontribution to the density matrix(2.2) is an in�nite produt of Æ funtions due to the identityZ 1�1 dpn2�~ eipn(xn�xn�1)=~ = Æ(xn � xn�1): (2.3)This in�nite produt simply redues tolimN!1 1Z�1 dxN � � � dx1 Æ(xN+1 � xN ) � � � Æ(x2 � x1)Æ(x1 � x0) = Æ(xb � xa); (2.4)whih is the unperturbed ontribution to the unnormalized density matrix (2.2) obtained here from atrivial path integral. Thus, the phase spae path integral for the unnormalized density matrix (2.2)an be perturbatively de�ned as~%(xb; xa) = Æ(xb � xa) + 1Xn=1 (�1)n~nn! Z ~�0 d�1 � � � Z ~�0 d�n�hH(p(�1); x(�1)) � � �H(p(�n); x(�n))ixb;xa0 ; (2.5)with expetation valuesh� � � ixb;xa0 = limN!1 NYn=1 �Z 1�1 dxn�N+1Yn=1 �Z 1�1 dpn2�~ � � � eipn(xn�xn�1)=~� : (2.6)These expetation values may be pitured by Feynman diagrams. This is possible for polynomial aswell as nonpolynomial funtions of momentum and position [17℄. We show this in detail in Setion 3.4.Note that the exponent on the right-hand side of Eq. (2.6) is the time-slied version of the eikonalS = �i R d� p(�)dx(�)=d� .2.3 Restrited Partition Funtion and Two-Point CorrelationsThe trae over the unnormalized density matrix (2.5) of our unperturbed system with vanishing Hamil-tonian H(p; x) = 0 yields the partition funtion, whih diverges with the phase spae volume. Thisdivergene is the same as in the lassial partition funtion. The regularization of these divergenesis possible by exluding from the phase spae path integral the zero-frequeny utuations x0 and p0of the Fourier deomposition of the periodi path x(�) and momentum p(�), respetively [4,18,19℄. Atthe end, we may alulate the quantum statistial partition funtion from the lassial phase spaeintegral Z = Z dx0dp02�~ Zp0x0 : (2.7)



2.3 Restrited Partition Funtion and Two-Point Correlations 17The restrited partition funtion in the integrand ontains the Boltzmann fator of the e�etive lassialHamiltonian de�ned by the path integralZp0x0 � exp f��He�(p0; x0)g = 2�~ I DxDp Æ(x0 � x)Æ(p0 � p)� exp �1~ Z ~�0 d� ��i[p(�)� p0℄ dd� [x(�) � x0℄ +H(p(�); x(�))�! ; (2.8)with the measure I DxDp = limN!1N+1Yn=1 �Z 1�1 dxndpn2�~ � : (2.9)The quantities x and p are the temporal mean values x = R ~�0 d� x(�)=~� and p = R ~�0 d� p(�)=~�.As illustrated in the preeding setion, the unperturbed system an be assumed to have a vanishingHamiltonian. The alulation of the restrited partition funtion Zp0x0 of this system, denoted byZp0x00 , is then as trivial as for its unnormalized density matrix in (2.4). A anellation of Æ funtionsyields Zp0x00 = 1.In what follows, we want to �nd the orrelation funtions of position- and momentum-dependentquantities. For this purpose it is onvenient to introdue the generating funtionalZp0x00 [j; v℄ = 2�~ I DxDp Æ(x0 � x)Æ(p0 � p)� exp(�1~ Z ~�0 d� ��i[p(�)� p0℄ dd� [x(�) � x0℄ + j(�)[x(�) � x0℄ + v(�)[p(�) � p0℄�) ;(2.10)with urrents j(�) and v(�). The ation in the exponent ontains only the trivial Eulidean eikonalS = �i R d� (p� p0)d(x � x0)=d� . The alulation yieldsZp0x00 [j; v℄ = exp( 1~2 Z ~�0 d� Z ~�0 d� 0 j(�)Gp0x0(�; � 0)v(� 0)) ; (2.11)where the periodi Green funtion has the Fourier representationGp0x0(�; � 0) = 2i� 1Xm=1 sin!m(� � � 0)!m (2.12)with Matsubara frequenies !m = 2�m~� ; (2.13)omitting the zero-mode. Evaluating the sum in Eq. (2.12) yieldsGp0x0(�; � 0) = � i2� f2(� � � 0)� ~� [�(� � � 0)��(� 0 � �)℄g : (2.14)Observe the antisymmetry Gp0x0(�; � 0) = �Gp0x0(� 0; �). As a onsequene of reparametrization invari-ane of the eikonal S = �i R d� (p� p0)d(x�x0)=d� , the Green funtion depends only on the reduedvariables � � �� (2.15)and an thus be written asGp0x0(� ; � 0) = � i2 f2(� � � 0)� ~ [�(� � � 0)��(� 0 � � )℄g : (2.16)



18 2. Perturbatively De�ned Path Integral in Phase SpaeIntroduing expetation values ash� � � ip0x00 = 2�~ I DxDp Æ(x0 � x)Æ(p0 � p) � � � exp(1~ Z ~�0 d� i[p(�)� p0℄ dd� [x(�) � x0℄) ; (2.17)the two-point funtions are obtained from the generating funtional (2.10) by performing appropriatefuntional derivatives with respet to j(�) and v(�), respetively:h~x(�)~x(� 0)ip0x00 = 0; (2.18)h~x(�)~p(� 0)ip0x00 = Gp0x0(�; � 0); (2.19)h~p(�)~p(� 0)ip0x00 = 0: (2.20)The o�-diagonal nature of the trivial ation in (2.17) entails that only mixed position-momentumorrelations do not vanish.2.4 Perturbative Expansion for the E�etive ClassialHamiltonianExpanding the restrited partition funtion (2.8) in powers of the Hamiltonian,Zp0x0 = 1 + 1Xn=1 (�1)n~nn! Z ~�0 d�1 � � � Z ~�0 d�n hH(p(�1); x(�1)) � � �H(p(�n); x(�n))ip0x00 ; (2.21)rewriting this into a umulant expansion, and utilizing the relation (2.8) between restrited partitionfuntion and e�etive lassial Hamiltonian, we obtainHe�(p0; x0) = 1� 1Xn=1 (�1)n+1~nn! Z ~�0 d�1 � � �Z ~�0 d�n hH(p(�1); x(�1)) � � �H(p(�n); x(�n))ip0x00; : (2.22)Using Wik's rule, all orrelation funtions an be expressed in terms of produts of two-point fun-tions. Sine only mixed two-point funtions (2.14) an lead to nonvanishing ontributions to thee�etive lassial Hamiltonian, we use the resaled version (2.16) of the Green funtion. The salingtransformation gives a fator � from eah of the n integral measures. Thus the expansion (2.22) is ahigh-temperature expansion of the e�etive lassial Hamiltonian:He�(p0; x0) = 1Xn=1�n�1 (�1)n+1~nn! Z ~0 d� 1 � � � Z ~0 d�n hH(p(�1); x(� 1)) � � �H(p(�n); x(�n))ip0x00; : (2.23)For the following onsiderations it is useful to assume the Hamilton funtion to be of standard formH(p(� ); x(� )) = p2(� )2M + gV (x(� )); (2.24)where we have introdued the oupling onstant g of the potential. De�ning the funtionalsa[p℄ = Z ~0 d� p2(� )2M ; b[x℄ = Z ~0 d� V (x(� )); (2.25)the high-temperature expansion (2.23) is expressed asHe�(p0; x0) = 1Xn=1�n�1 (�1)n+1n!~n nXk=0 gk � nk �
an�k[p℄bk[x℄�p0x00; : (2.26)Before pointing out how this high-temperature expansion is onneted with an expansion in powers ofthe oupling onstant g of the potential, we alulate the exat e�etive lassial Hamiltonian of theharmoni osillator.



2.5 E�etive Classial Hamiltonian of Harmoni Osillator 192.5 E�etive Classial Hamiltonian of Harmoni OsillatorIn this setion, we alulate the e�etive lassial Hamiltonian for the harmoni osillatorH!(p; x) = p22M + 12M!2x2 (2.27)by an exat resummation of the high-temperature expansion (2.26). For systematially expressing theterms of this expansion, it is useful to introdue the following Feynman rules:� 1 �2 � hp(� 1)p(� 2)ip0x00 = p20; (2.28)� 1 �2 � hx(� 1)x(� 2)ip0x00 = x20; (2.29)� 1 �2 � hx(� 1)p(� 2)ip0x00 = Gp0x0(� 1; � 2) + x0p0; (2.30)� 1 �2 � hp(� 1)x(� 2)ip0x00 = �Gp0x0(� 1; �2) + p0x0; (2.31)� � hp(� )ip0x00 = p0; (2.32)� � hx(� )ip0x00 = x0; (2.33)� Z ~0 d� ; (2.34)where the urrent-like expetations in (2.32) and (2.33) arise from h~p(� )ip0x00 = 0 and h~x(� )ip0x00 = 0,respetively. In order to simplify the alulation of the expetation values in the high-temperatureexpansion of the e�etive lassial Hamiltonian (2.26), we also de�ne operational subgraphs� 12M~ Z ~0 d� p2(� ); (2.35)� 12~M!2 Z ~0 d� x2(� ); (2.36)whih are useful for the systemati onstrution of the Feynman diagrams. These diagrams are om-posed by attahing the legs of suh subgraphs to one another or by onneting legs with suitableurrents. Note that only ombinations of di�erent types of subgraphs lead to nonvanishing ontribu-tions, sine the onnetion of subgraphs of same type,; ; (2.37)leads to a new subgraph, whih ontains a propagator (2.28) or (2.29), respetively. These propagatorsare, however, independent of � , suh that the � -integrals related to the verties in these subgraphsare trivial. Thus, there does not really exist a onnetion between these verties and the propagators(2.28) and (2.29) an be expressed by the urrents (2.32) and (2.33):� 1 �2 = � 1 �2 ; (2.38)� 1 �2 = � 1 �2 : (2.39)As a onsequene, onneted diagrams for n > 1 ontaining propagators of type (2.28) or (2.29) mustbreak up into disonneted parts. Analytially, this is seen by onsidering for examplehx(� 1)x(� 2)ip0x00 = h~x(� 1)~x(� 2)ip0x00 + hx(� 1)ip0x00 hx(� 2)ip0x00 : (2.40)The �rst term on the right-hand side vanishes due to Eq. (2.18), while the seond simply yields x20,whih proves Eq. (2.29). This means that only Feynman diagrams, whih onsist of a mixture ofsubgraphs (2.35) and (2.36) ontribute to the e�etive lassial Hamiltonian. To illustrate this, wedisuss the �rst and seond order of expansion (2.23) in more detail.The Feynman diagrams of the �rst-order ontribution to the e�etive lassial Hamiltonian aresimply onstruted from the subgraphsH(1)!;e�(p0; x0) / +



20 2. Perturbatively De�ned Path Integral in Phase Spae= 12M~ + 12~M!2 = 12M~ + 12~M!2= p202M + 12M!2x20; (2.41)where we have used the identities (2.38) and (2.39) in the seond expression of the seond line. Notethat the �rst-order term (2.41) obviously reprodues the lassial Hamiltonian. This is the onsequeneof the high-temperature expansion (2.26), sine only the �rst-order ontribution is nonzero in the limit� = 1=kBT ! 0. The seond-order ontribution readsH(2)!;e�(p0; x0) / ( + )( + )= � !28~2� �8 + 4 � : (2.42)The hain diagram is zero, while the loop diagram has the value �~4�(2)=2�2, where�(z) = 1Xn=1 1nz (2.43)is the Riemann � funtion. Thus we obtainH(2)!;e�(p0; x0) = �~2!2�(2)=4�2: (2.44)This seond-order ontribution (2.42) shows the harateristi types of Feynman diagrams appearingin eah order n > 1 of the expansion (2.23) for the harmoni osillator: hain and loop diagrams.In order to alulate the nth-order ontribution, we must evaluate these diagrams more general. Byonstruting Feynman diagrams from the produt of n sums of subgraphs,H(n)!;e�(p0; x0) / ( + )( + ) � � � ( + )| {z }n times ; (2.45)it turns out that only following hain and loop diagrams ontribute:;;; : (2.46)The evaluation of the hain diagrams is easily done and yields zero. An expliit alulation in Fourierspae shows that there our Kroneker symbols Æm 0. Sine the Matsubara sum of the Green fun-tion (2.12) does not ontain the zero mode m = 0, all hain diagrams are zero.Determining the values of loop diagrams is more involved. It is obvious that loop diagrams anonly be onstruted in even order (n = 2; 4; 6; : : :), sine for a loop diagram with mixed propagators(2.30) or (2.31) pairs of di�erent subgraphs (2.35) and (2.36) are neessary. Thus we have found theresult that odd orders of expansion (2.26) vanish, and only loop diagrams for n 2 f2; 4; 6; : : :g must bealulated. Evaluating loop diagrams of nth order in Fourier spae is straightforward and entails= 2 (�1)k � ~22��2k �(2k); (2.47)where k = n=2. The multipliity of suh a diagram with 2k verties is easily determined, yielding�k = 22k(2k)!2k : (2.48)



2.6 High-Temperature Versus Weak-Coupling Expansion 21Thus the high-temperature expansion for the e�etive Hamiltonian of the harmoni osillator an bewritten as H!;e�(p0; x0) = p202M + 12M!2x20 + 1Xk=1 �2k�1 (�1)k+1k �~!2��2k �(2k): (2.49)Substituting the � funtion by its de�nition (2.43) and exhanging the summations, the last term inEq. (2.49) an be expressed as a logarithm1Xk=1 �2k�1 (�1)k+1k �~!2��2k �(2k) = 1� ln  1Yn=1 �1 + ~2�2!24�2n2 �! : (2.50)Applying the relation 1z sinh z = 1Yn=1�1 + z2n2�2� ; (2.51)we �nd the more familiar form of the e�etive lassial Hamiltonian for a harmoni osillatorH!;e�(p0; x0) = p202M + 12M!2x20 � 1� ln ~!�2 sinh ~!�=2 : (2.52)Performing the x0- and p0-integrations in Eq. (2.1), we obtain the well-known form of the partitionfuntion of the harmoni osillator Z! = 1=2 sinh ~!�=2.2.6 High-Temperature Versus Weak-Coupling ExpansionIn Setion 2.4 we have shown that the perturbative expansion around a vanishing Hamiltonian leadsto a perturbative series in powers of the inverse temperature in a natural manner. Now we elaborateits relation to more ustomary perturbative expansions in powers of the oupling onstant g of thepotential. Changing the order of summation in Eq. (2.26), we obtainHe�(p0; x0) = 1Xk=0 gk 1Xn=0�n+k�1 � n+ kk � (�1)n+k+1(n+ k)!~n+k 
an[p℄bk[x℄�p0x00; + 1� ; (2.53)whih is rewritten, after expliitly evaluating the (n = 0)- and (k = 0)-ontributions, asHe�(p0; x0) = p202M + gV (x0) + 1� 1Xk=1 gk 1Xn=1 (�1)n+k+1n!k!~n+k(2M)n� Z ~�0 d�1 � � �Z ~�0 d�k Z ~�0 d�k+1 � � �Z ~�0 d�k+n� 
V (x(�1)) � � �V (x(�k))p2(�k+1) � � � p2(�k+n)�p0x00; : (2.54)In this expression, we have inverted the saling transformation in Eq. (2.15), and used the expetationvalues Z ~�0 d� 
p2(�)�p0x00; = ~�p20; Z ~�0 d� hV (x(�))ip0x00; = ~�V (x0): (2.55)All higher-order expetations of funtions, whih only depend on x or p are zero, due to the vanishingof expetations of funtions of ~x or ~p in a Wik expansion into produts of two-point funtions (2.18)and (2.20). All other possible ontributions are disonneted.We now observe that the expansion (2.54) is equal to a perturbation expansion around a free-partiletheory He�(p0; x0) = p202M + gV (x0) + 1� 1Xk=1 gk (�1)k+1k!~k Z ~�0 d�1 � � � Z ~�0 d�k



22 2. Perturbatively De�ned Path Integral in Phase Spae�hV (x(�1)) � � �V (x(�k))ix0free; ; (2.56)in whih umulants are formed from position-dependent expetation valuesh� � � ix0free = 2�~e�p20=2M I DxDp Æ(x0 � x)Æ(p0 � p) � � �� exp(�1~ Z ~�0 d� ��i(p(�)� p0) ��� (x(�) � x0) + 12Mp2(�)�) : (2.57)This expression is idential withh� � � ix0free =r2�~2�M I D0x Æ(x0 � x) � � � exp(�M2~ Z ~�0 d� _x2(�)) ; (2.58)with the dot denoting the derivative with respet to � . The new measure isI D0x = limN!1N+1Yn=1 "Z 1�1 dxnp2�~"=M # : (2.59)In the following setion we will onsider how the expetation values appearing in the high-temperatureexpansion (2.54) of the e�etive lassial Hamiltonian go over into the umulants in the weak-ouplingexpansion (2.56). We thus study the relation between both expansions and we are led to the so-alled smearing formula for arbitrary expetation values of funtions depending on position or/andmomentum. Being a Gaussian onvolution of these funtions, its appliation will be in partiular usefulfor alulating expetation values of nonpolynomial expressions.2.7 Free-Partile Smearing FormulaConsider a general orrelation funtion appearing in the expansion (2.54) of the e�etive lassialHamiltonian, whih an be written asMkn = k+nYm=1"Z ~�0 d�m#* kYl=1 [V (x(�l))℄ nYs=1 �p2(�k+s)�+p0x00 : (2.60)In order to redue the expetation value to an expression, whih has already been alulated we splito� the time dependenes by Fourier transformations. This yieldsMkn = k+nYm=1"Z ~�0 d�m# kYl=1 �Z 1�1 d�l2� V (�l)ei�lx0� nYs=1 �Z 1�1 dps2�~p2s Z 1�1 d�s ei(ps�p0)�s=~��*exp(i kXl=1 �l[x(�l)� x0℄� i~ nXs=1 �s[p(�k+s)� p0℄)+p0x00 : (2.61)By introduing urrentsj(�) = �i~ kXl=1 Æ(� � �l)�l; v(�) = i nXs=1 Æ(� � �k+s)�s; (2.62)the expetation value in Eq. (2.61) an be rewritten as the generating funtional (2.10) with the result(2.11). We reinsert now the expressions (2.62) for the urrents into the funtional (2.11) and performthe � -integrations. This leads toZp0x00 [�; �℄ = exp"1~ kXl=1 nXs=1 �lGp0x0(�l; �k+s)�s# : (2.63)



2.7 Free-Partile Smearing Formula 23Using this result in Eq. (2.61), the �s-integration an be done and yields1Z�1 d�s2�~ exp( i~ "ps � p0 � i kXl=1 �lGp0x0(�l; �k+s)# �s) = Æ ps � p0 � i kXl=1 �lGp0x0(�l; �k+s)! ;(2.64)leaving us withMkn = kYl=1"Z ~�0 d�l Z 1�1 d�l2� V (�l)ei�lx0# nYs=124Z ~�0 d�k+s p0 + i kXl=1 �lGp0x0(�l; �k+s)!235 : (2.65)After expanding the squared parentheses, terms likeZ ~�0 d�P (k+1)p20 Z ~�0 d�P (k+2) � � �Z ~�0 d�P (k+s) f1(�P (k+2); : : : ; �P (k+s)) (2.66)and Z ~�0 d�P (k+1) Gp0x0(�P (k+1); �l) Z ~�0 d�P (k+2) � � � Z ~�0 d�P (k+s) f2(�P (k+2); : : : ; �P (k+s)) (2.67)our, where f1(�P (k+2); : : : ; �P (k+s)) and f2(�P (k+2); : : : ; �P (k+s)) are funtions independent of �k+1.Due to the separate time integration, expressions of the form (2.66) orrespond to disonneted dia-grams and may be omitted in the following. Sine R ~�0 d� Gp0;x0(�; � 0) vanishes, terms like (2.67) donot ontribute. The permutation operator P exhibits that this is also right for any permutation ofthe �i's (i 2 f1; : : : ; sg). Sine we shall omit disonneted ontributions (2.66), we are left with theumulant M;kn = kYl=1 "Z ~�0 d�l Z 1�1 d�l2� V (�l)ei�lx0#� nYs=124(�1) kXl1;l2=1�l1�l2 Z ~�0 d�k+sGp0x0(�l1 ; �k+s)Gp0x0(�k+s; �l2)35 : (2.68)Using the Fourier deomposition of the Green funtion (2.12) with Matsubara frequenies (2.13), thetime integration in the seond produt is easily done yieldingZ ~�0 d�k+sGp0x0(�l1 ; �k+s)Gp0x0(�k+s; �l2) = �2~� 1Xm=1 1!2m os!m(�l1 � �l2)= �M~ Gp0x0free (�l1 ; �l2); (2.69)where Gp0x0free (�; � 0) = 12M� �j� � � 0j2 � ~�j� � � 0j+ 16~2�2� (2.70)is the Green funtion for a free partile with periodi boundary onditions and the zero-frequenymode exluded. It satis�es the equation of motionM2~ �2��2 Gp0x0free (�; � 0) = Æ(� � � 0); �; � 0 2 [0; ~�℄: (2.71)with periodi boundary onditions Gp0x0free (�; � 0) � Gp0x0free (� � � 0) = Gp0x0free (� � � 0 + ~�). Thus theumulant (2.68) an be written asM;kn = kYl=1"Z ~�0 d�l Z 1�1 d�l2� V (�l)ei�lx0#24M~ kXl1;l2=1�l1Gp0x0free (�l1 ; �l2)�l235n : (2.72)



24 2. Perturbatively De�ned Path Integral in Phase SpaeThe expansion (2.54) an now be expressed asHe�(p0; x0) = p202M + gV (x0) + 1� 1Xk=1 gk (�1)k+1k!~k 1Xn=1 (�1)n2nn! M;kn: (2.73)It is useful to move the lassial potential term gV (x0) into the last sum. This is done by extendingthe seond sum in (2.73) by the n = 0-term:1Xk=1 gk (�1)k+1k!~k kYl=1"Z ~�0 d�l Z 1�1 d�l2� V (�l)ei�lx0#= 1Xk=1 gk (�1)k+1k!~k Z ~�0 d�1 : : : Z ~�0 d�k [V (x0)℄k = gV (x0): (2.74)In the seond expression we have utilized that terms with k > 1 lead to disonneted ontributions,whih do not appear in M;kn. Thus expansion (2.73) readsHe�(p0; x0) = p202M + 1� 1Xk=1 gk (�1)k+1k!~k kYl=1"Z ~�0 d�l Z 1�1 dxl V (xl) Z 1�1 d�l2� #� exp�i�(x0 � x) � 12�TGp0x0free �� ; (2.75)where we have introdued the n-dimensional vetors � = (�1; : : : ; �n) and the symmetri n�n matrixof Green funtions Gp0x0free = 0B� Gp0x0free (�1; �1) � � � Gp0x0free (�1; �n)... . . . ...Gp0x0free (�1; �n) � � � Gp0x0free (�n; �n)1CA : (2.76)After diagonalizing this matrix, the �l-integrals in Eq. (2.75) are easily alulated. The e�etivelassial Hamiltonian an then be expressed with the help of a Gaussian onvolution integral, whihsmears out produts of the potential V (x):He�(p0; x0) = p202M + 1� 1Xk=1 gk (�1)k+1k!~k kYl=1"Z ~�0 d�l Z 1�1 dxl V (xl)#� 1p2� detGp0x0free exp8<:�12 kXl1;l2=1(xl1 � x0)[Gp0x0free (�l1 ; �l2)℄�1(xl2 � x0)9=; : (2.77)The extension of this result to higher spatial dimensions is straightforward.



Chapter 3
Smearing Formulas for FlutuationE�ets

It is well known from perturbative expansions of interating quantum �elds and quantum mehanialsystems with polynomial interations that orrelation funtions appearing in a ertain perturbativeorder an be deomposed into sums of produts of two-point orrelation funtions by applying Wik'srule [4, Chap. 3℄. When the potential of a physial system is nonpolynomial, the orrelation funtionsare more ompliated, and Wik's rule fails. This ase an only be treated with a so-alled smearingformula, whih simply turns out to be a Gaussian onvolution of the original lassial potential. Thewidth of the Gaussian distribution is governed by the two-point orrelation funtions or Green funtionsof the unperturbed system. A speial example was the perturbative expansion for the e�etive lassialHamiltonian (2.77), whih will now be generalized to arbitrary Gaussian systems.3.1 Generalized Eulidean Ation in Phase SpaeThe most general Eulidean quadrati ation in at 2d-dimensional phase spae readsA0[p;x; j;v℄ = ~2 Z ~�0 d� Z ~�0 d� 0 �xT (�)Dxx(�; � 0)x(� 0) + xT (�)Dxp(�; � 0)p(� 0)+ pT (�)Dpx(�; � 0)x(� 0) + pT (�)Dpp(�; � 0)p(� 0)�+ Z ~�0 d� �jT (�)x(�) + vT (�)p(�)� ; (3.1)where j(�) and v(�) are external urrents oupled linearly to the respetive d-dimensional phase spaeoordinate x(�) or p(�). The supersript T denotes the transpose with respet to the phase spaeoordinates. The d� d matries Dxx(�; � 0), Dxp(�; � 0), Dpx(�; � 0), and Dpp(�; � 0) are arbitrary at themoment.Integrating expf�A0[p;x; j;v℄=~g over all possible on�gurations satisfying periodi boundary on-ditions in phase spae yields the partition funtion of the system with external souresZ0[j;v℄ = I DdxDdp e�A0[p;x;j;v℄=~: (3.2)This serves as the generating funtional for all orrelation funtions. The path integral measure is25



26 3. Smearing Formulas for Flutuation E�etsde�ned by sliing: I DdxDdp = limN!1N+1Yn=1 �Z ddxnddpn(2�~)d � : (3.3)The partition funtion an also be written as an integral over the unnormalized partile density~%0(x)[j;v℄, Z0[j;v℄ = Z ddx ~%0(x)[j;v℄: (3.4)The unnormalized partile density ~%0(x)[j;v℄ is the diagonal element of the unnormalized densitymatrix ~%0(xb;xa)[j;v℄ = Z D0dxDdp e�A0[p;x;j;v℄=~ (3.5)with the slied measure Z D0dxDdp = limN!1 NYn=1 �Z ddxn�N+1Yn=1 �Z ddpn(2�~)d � : (3.6)The density matrix is normalized by the partition funtion (3.2):%0(xb;xa)[j;v℄ = ~%0(xb;xa)[j;v℄Z0[j;v℄ : (3.7)For the alulation of the density matrix in the presene of external soures (3.5), it is useful tointrodue natural units with ~ = � = M = 1, where M is the partile mass. Thus, positions aremeasured in units of p~2�=M , and the Eulidean time is given as a multiple of ~�.The ation (3.1) an be written in the 2d� 2d matrix formA0[p;x; j;v℄ = 12 Z 10 d� Z 10 d� 0wT (�)S(�; � 0)w(� 0) + Z 10 d� CT (�)w(�); (3.8)with 2d phase spae vetors wT (�) = �xT (�);pT (�)� and urrents CT (�) = �jT (�);vT (�)�. The2d� 2d matrix S(�; � 0) is omposed as follows:S(�; � 0) = � Dxx(�; � 0) Dxp(�; � 0)Dpx(�; � 0) Dpp(�; � 0) � : (3.9)Utilizing the invariane of the �rst term of the ation (3.8) under transposing and interhanging � and� 0, we introdue a symmetrized matrixSs(�; � 0) = � Dsxx(�; � 0) Dsxp(�; � 0)Dspx(�; � 0) Dspp(�; � 0) � ; (3.10)where the supersript \s" denotes the symmetry Ss(�; � 0) = SsT (� 0; �). The symmetrized kernels areDsxx(�; � 0) = 12 �Dxx(�; � 0) +DTxx(� 0; �)� ; Dspp(�; � 0) = 12 �Dpp(�; � 0) +DTpp(� 0; �)� (3.11)and satisfy Dsxx(�; � 0) = DsxxT (� 0; �); Dspp(�; � 0) = DsppT (� 0; �): (3.12)For the mixed kernels, we haveDsxp(�; � 0) = 12 �Dxp(�; � 0) +DTpx(� 0; �)� ; Dspx(�; � 0) = 12 �Dpx(�; � 0) +DTxp(� 0; �)� ; (3.13)whih implies the symmetry Dspx(�; � 0) = DsxpT (� 0; �): (3.14)



3.2 Density Matrix with External Soures 27We will only use the symmetrized kernels in the following setions, where we alulate the path integralsfor the unnormalized density matrix (3.5) and the partition funtion (3.2) in the presene of externalsoures. For simpliity, we omit the supersript \s" for the symmetrized matries in the sequel.By varying the symmetrized ation without external soures,ÆA0[p;x; 0; 0℄ = 0; (3.15)we �nd the general Hamiltonian equations of motionZ 10 d� 0 [Dxx(�; � 0)xl(� 0) +Dxp(�; � 0)pl(� 0)℄ = 0; (3.16)Z 10 d� 0 [Dpp(�; � 0)pl(� 0) +Dpx(�; � 0)xl(� 0)℄ = 0 (3.17)for the lassial paths in phase spae xl(�) and pl(�).3.2 Density Matrix with External SouresWe now alulate the general path integral (3.5) by a time-sliing proedure and �nd in partiularthe generating funtional and the two-point orrelation funtions for the one-dimensional harmoniosillator.3.2.1 Calulation of the Phase Spae Path IntegralBy dividing the time interval [0; 1℄ into N + 1 piees of length ", the unnormalized density matrix inthe presene of external soures (3.5) an be written as~%0(xb;xa)[j;v℄ = limN!1 NYn=1 �Z ddxn�N+1Yn=1 �Z ddpn(2�)d � exp"� NXn=1 (xnjn + pnvn)#� exp"�12 N+1Xn;m=1 (xn[Dxx℄nmxm + 2xn[Dxp℄nmpm + pn[Dpp℄nmpm)# ; (3.18)where we have absorbed the lattie onstant " in the disrete matries and urrents, respetively. Thealulation of the momentum integrals is easily done after quadrati ompletion and rotation into thediagonal basis of Dpp. In ontinuum representation, we obtain~%0(xb;xa)[j;v℄ = 1p(2�)d detDpp exp��12 Z 10 d� Z 10 d� 0 vT (�)D�1pp(�; � 0)v(� 0)�� x(1)=xbZx(0)=xa Ddsx exp ��12 Z 10 d� Z 10 d� 0 xT (�)GDxx�1(�; � 0)x(� 0)� Z 10 d� JT (�)x(�)� ; (3.19)where the path integral measure in on�guration spae isZ Ddsx = limN!1 NYn=1�Z ddxn(2�)d=2 � : (3.20)The expression (3.19) possesses the remarkable property that the urrentJ(�) = j(�) � Z 10 d�1 Z 10 d�2Dxp(�; �1)D�1pp(�1; �2)v(�2); (3.21)



28 3. Smearing Formulas for Flutuation E�etswhih linearly ouples to the oordinate x(�), ontains a term with v(�) originally being oupled tothe momentum. It is a general property of suh funtionals that urrents oupling to momenta analways be onsidered as new urrents, whih ouple to positions [17℄.The other new quantity, whih has been introdued in Eq. (3.19), isGDxx�1(�; � 0) = Dxx(�; � 0)� Z 10 d�1 Z 10 d�2Dxp(�; �1)D�1pp(�1; �2)Dpx(�2; � 0): (3.22)Enlosed by oordinates x(�) in the on�guration spae path integral appearing in Eq. (3.19), thequantity GDxx�1(�; � 0) is interpreted as a new kernel. It maps the Green funtion GDxixj (�; � 0) to a Æfuntion: dXj=1 Z 10 d� GDxixj�1(�1; �)GDxjxk(�; �2) = Æik Æ(�1 � �2); (3.23)where the Kroneker symbol Æij is de�ned asÆij = � 1; i = j;0; i 6= j: (3.24)The Æ funtion has the propertyZ 10 d� f(�) Æ(� � � 0) = f(� 0); � 0 2 (0; 1); (3.25)for any smooth test funtion f(�). With Eqs. (3.22) and (3.23), we write the matrix of Green funtionsas GDxx(�; � 0) = �Dxx(�; � 0)� Z 10 d�1 Z 10 d�2Dxp(�; �1)D�1pp(�1; �2)Dpx(�2; � 0)��1 : (3.26)Sine the end points of the paths are �xed, x(0) = xa and x(1) = xb, utuations are vanishing atthese edges, and the Green funtion GDxixj (�; � 0) must obey Dirihlet boundary onditions:GDxixj (0; � 0) = GDxixj (1; � 0) = 0; GDxixj (�; 0) = GDxixj (�; 1) = 0: (3.27)The alulation of the on�guration spae path integral in Eq. (3.19),(xb 1jxa 0)[J℄ = x(1)=xbZx(0)=xa Ddsx e�A0s[x;J℄=~; (3.28)with the ation in on�guration spaeA0s[x;J℄ = ~2 Z 10 d� Z 10 d� 0 xT (�)GDxx�1(�; � 0)x(� 0) + Z 10 d� JT (�)x(�); (3.29)is done on usual footing. We deompose the path x(�) into a lassial part xl(�) and the utuationterm Æx(�), x(�) = xl(�) + Æx(�); (3.30)where the utuations may vanish at the boundaries, Æx(0) = Æx(1) = 0. The variation of the ation(3.29) in the absene of the external urrent J(�) vanishes for the lassial path. Performing thisvariation, we obtain a relation, whih we need for the following onsiderations:ÆA0s[xl;0℄ = 12 Z 10 d� Z 10 d� 0 hÆxT (�)GDxx�1(�; � 0)xl(� 0) + xTl(�)GDxx�1(�; � 0)Æx(� 0)i= Z 10 d� Z 10 d� 0 ÆxT (�)GDxx�1(�; � 0)xl(� 0) = 0: (3.31)



3.2 Density Matrix with External Soures 29Here we have utilized in the last line the symmetry of GDxx�1(�; � 0), whih is obvious from the de�nition(3.22) and the properties (3.12) and (3.14). From (3.31), we read o� the Euler{Lagrange equations ofmotion Z 10 d� 0GDxx�1(�; � 0)xl(� 0) = 0: (3.32)Inserting now the deomposition (3.30) into the ation (3.29), onsidering the vanishing of the ouplingof utuations and lassial path from the last line in (3.31), and aknowledging that the measure isinvariant under the translation (3.30), Ddsx = DdsÆx, the funtional (3.28) an be expressed as(xb 1jxa 0)[J℄ = exp�12 Z 10 d� Z 10 d� 0 hJT (�)GDxx(�; � 0)J(� 0)� xTl(�)GDxx�1(�; � 0)xl(� 0)i�� exp�� Z 10 d� JT (�)xl(�)� Æx(1)=0ZÆx(0)=0 DdsÆx exp�� 12 Z 10 d� Z 10 d� 0� �ÆxT (�) + Z 10 d�1 JT (�1)GDxx(�1; �)�GDxx�1(�; � 0) �Æx(� 0) + Z 10 d�2GDxx(� 0; �2)J(�2)��:(3.33)The path integral over the utuations is a onstant, sine it is independent of the end points xa andxb. For onveniene, we introdue the new variabley(�) = Æx(�) + Z 10 d� 0GDxx(�; � 0)J(� 0); (3.34)whih also vanishes at the boundary, y(0) = y(1) = 0, sine the Green funtions GDxx(�; � 0) satisfy theDirihlet boundary onditions (3.27). The measure of the path integral over the utuations remainsunhanged, Ddsy = DdsÆx, and the alulation of this path integral is simply done, e.g. in disretespae, yieldingy(1)=0Zy(0)=0 Ddsy exp ��12 Z 10 d� Z 10 d� 0 yT (�)GDxx�1(�; � 0)y(� 0)� = 1qdetGDxx�1 : (3.35)Combining the results (3.19), (3.33), and (3.35), we obtain the density matrix in the presene ofexternal soures~%0(xb;xa)[j;v℄ = � M2�~2��d=2 1qdetDpp detGDxx�1 exp(�1~ Z ~�0 d��jT (�)xl(�) + vT (�)pl(�)�)� exp"�12 Z ~�0 d� Z ~�0 d� 0 xTl(�)GDxx�1(�; � 0)xl(� 0)#� exp( 12~2 Z ~�0 d� Z ~�0 d� 0 hjT (�)GDxx(�; � 0)j(� 0) + jT (�)GDxp(�; � 0)v(� 0)+vT (�)GDpx(�; � 0)j(� 0) + vT (�)GDpp(�; � 0)v(� 0)i); (3.36)where we have reused the standard units. In order to prevent ompliations, the determinants shallbe treated as dimensionless quantities here. For this reason, we have already extrated the dimension-arrying prefator (M=~2�)d=2. As a rule, the determinants are alulated with ~ = � = M = 1. Atthe end, powers of ~, �, and M are multiplied to the determinant to make it dimensionless.



30 3. Smearing Formulas for Flutuation E�etsIn (3.36), we further utilized the relationpl(�) = � Z ~�0 d�1 Z ~�0 d�2D�1pp(�; �1)Dpx(�1; �2)xl(�2); (3.37)whih is a diret onsequene of the Hamiltonian equation of motion (3.17), when solved with respetto pl(�).Additionally to GDxx(�; � 0), de�ned by (3.26), we have introdued the d� d matriesGDxp(�; � 0) = � Z ~�0 d�1 Z ~�0 d�2GDxx(�; �1)Dxp(�1; �2)D�1pp(�2; � 0); (3.38)GDpx(�; � 0) = �GDxp�T (� 0; �)= � Z ~�0 d�1 Z ~�0 d�2D�1pp(�; �1)Dpx(�1; �2)GDxx(�2; � 0); (3.39)GDpp(�; � 0) = D�1pp(�; � 0) + Z ~�0 d�1 � � � Z ~�0 d�4�D�1pp(�; �1)Dpx(�1; �2)GDxp(�2; �3)Dxp(�3; �4)D�1pp(�4; � 0): (3.40)These expressions are equivalent to position- and/or momentum-dependent two-point orrelation fun-tions, as we show in Setion 3.2.3. Before embarking to this, however, we will �rst hek the densitymatrix funtional (3.36) for a simple example, the one-dimensional harmoni osillator.3.2.2 Example: Density Matrix of the One-Dimensional Harmoni Osillator with SouresThe harmoni osillator is usually a pretty good system for heking a general theory, sine its exatquantum statistial properties are well known. Due to the Gaussian type of the Boltzmann fator, thepath integrals for density matrix and partition funtion are simply solved. Additionally, this systemis nontrivial in a sense that it possesses a nonvanishing interation.In what follows, we alulate the density matrix funtional for the one-dimensional ase, sine italready ontains the interesting properties that we would like to point out, e.g. the two-point orrelationfuntions. The ation of this system in the presene of external soures j(�) and v(�) readsA![p; x; j; v℄ = Z ~�0 d� ��ip(�) dd� x(�) + 12 �p2(�)M +M!2x2(�)�+ j(�)x(�) + v(�)p(�)� : (3.41)By omparing this ation with the general one introdued in Eq. (3.1), we identifyDxx(�; � 0) = M~ !2Æ(�; � 0); Dpp(�; � 0) = 1~M Æ(�; � 0); Dxp(�; � 0) = i~ ��� Æ(�; � 0);Dpx(�; � 0) = � i~ ��� Æ(�; � 0) + i~Æ(�; � 0) [Æ(~�; �)� Æ(�; 0)℄ : (3.42)The Æ funtions with two arguments at as the usual Æ funtion with the exeption of time translationalinvariane. It is a onsequene of the Dirihlet boundary onditions the paths must satisfy due to the�xing of the end points. This will beome lear after expanding the utuations into a omplete set oforthonormal funtions and is shown later on.The symmetri splitting of the �rst term in the ation (3.41) is neessary to ensure the symmetryof the matrix S(�; � 0), de�ned in Eq. (3.9). This requires that the nondiagonal elements Dxp and Dpxof S must be transposed to one another.1 It is a nie problem to show what the transpose of theoperator i�=�� is. It is well known from quantum mehanis that the operatorĤ ! i ��� (3.43)1The seond and third terms of Dpx(�; � 0) appear sine operators with derivatives yield boundary terms:R ~�0 d� f(�) _g(�) = f(�)g(�)���=~��=0 � R ~�0 d� _g(�)f(�). If f(�) and g(�) have periodi or Dirihlet boundary onditions,these additional terms vanish, and Dpx(�; � 0) is exatly the transpose of Dxp(�; � 0).



3.2 Density Matrix with External Soures 31is Hermitian, Ĥ = Ĥ+. This means that any representation of this operator is idential to its transposewith omplex onjugated elements. With (3.43), we obtaini ��� = �i ��� �+ = ��i ��� �?�T = �i� ��� �T =) � ��� �T = � ��� : (3.44)This explains the di�erent signs of Dxp and the �rst term of Dpx in (3.42).The �rst quantity we shall alulate is GDxx;!�1(�; � 0), de�ned in Eq. (3.22). Inserting the identi�a-tions from (3.42) into (3.22) yieldsGDxx;!�1(�; � 0) = M~ [Æ(~� � �) � Æ(�)℄ ��� Æ(� � � 0)� M~ � �2��2 � !2� Æ(� � � 0): (3.45)Thus, alulating the lassial ation of the density matrix (3.36) for the one-dimensional harmoniosillator gives the known result (without external urrents):A!;l[x℄ = ~2 Z ~�0 d� Z ~�0 d� 0 xl(�)GDxx;!�1(�; � 0)xl(� 0)= M2 "xl(~�) _xl(~�) � xl(0) _xl(0)� Z ~�0 d� xl(�)� �2��2 � !2�xl(�)#= Z ~�0 d� �12M _x2l(�) + 12M!2x2l(�)� : (3.46)Sine the lassial path for the harmoni osillator is known to be [4, Chap. 2℄xl(�) = 1sinh ~�! [xb sinh!� + xa sinh!(~� � �)℄ ; (3.47)the lassial ation (3.46) beomes the usual oneA!;l(xb; xa) = M!2 sinh~�! ��x2a + x2b� osh~�! � 2xaxb� : (3.48)Now we onsider the Green funtion GDxx;!(�; � 0) given by Eq. (3.26). Due to the vanishing of theutuations Æx(�) at the �xed end points of the path, this Green funtion is required to satisfy Dirihletboundary onditions (3.27). The utuations an be expanded into a omplete set of orthonormalfuntions [4, Chap. 3℄, Æxn(�) = 1p~� sin �n�; (3.49)with �n = �n~� (3.50)being half the Matsubara frequenies de�ned in Eq. (2.13).The ompleteness relation is thenÆ(�; � 0) = 1Xn=�1 Æxn(�)Æxn(� 0) = 1~� 1Xn=�1 sin �n� sin �n� 0 = 2~� 1Xn=1 sin �n� sin �n� 0: (3.51)Here we see the neessity to introdue the Æ funtion with two arguments, sine the expression on theright-hand side is not invariant under time translations. Substituting the Æ funtions in expression(3.45) by the ompleteness relation (3.51), it turns out that the boundary terms vanish. Thus weobtain the deompositionGDxx;!�1(�; � 0) = 2~� 1Xn=1 M~ �!2 + �2n� sin �n� sin �n� 0: (3.52)



32 3. Smearing Formulas for Flutuation E�etsInverting the kernel yields the Green funtion in Fourier spaeGDxx;!(�n) = ~M 1!2 + �2n : (3.53)After performing the Fourier bak transformation, we obtain the Green funtion for the harmoniosillator with �xed end pointsGDxx;!(�; � 0) = ~2M! sinh ~�! [osh!(j� � � 0j � ~�)� osh!(� + � 0 � ~�)℄ : (3.54)The alulation of the two-point funtions (3.38){(3.40) is straightforward, sine these an be derivedfrom GDxx;!(�; � 0). Inserting (3.42) into (3.38) leads toGDxp;!(�; � 0) = � Z ~�0 d�1 Z ~�0 d�2GDxx;!(�; �1) i~ ���1 Æ(�1; �2) ~MÆ(�2; � 0)= �iM Z ~�0 d�1GDxx;!(�; �1) ���1 Æ(�1; � 0) = iM ��� 0GDxx;!(�; � 0): (3.55)In the last line we have arried out a partial integration, where the boundary term vanishes due tothe Dirihlet boundary onditions (3.27). The derivative with respet to the seond argument of theGreen funtion (3.54) is easily performed and yieldsGDxp;!(�; � 0) = � i~2 1sinh ~�! ��(� � � 0) sinh!(� � � 0 � ~�)��(� 0 � �) sinh!(� 0 � � � ~�)+ sinh!(� + � 0 � ~�)�: (3.56)As the expliit alulation of (3.39) shows, it isGDpx;!(�; � 0) = iM ��� GDxx;!(�; � 0): (3.57)The di�erene between (3.55) and (3.57) is that the derivative now ats on the �rst argument of theGreen funtion GDxx;!(�; � 0). Thus, we obtainGDpx;!(�; � 0) = i~2 1sinh ~�! ��(� � � 0) sinh!(� � � 0 � ~�)��(� 0 � �) sinh!(� 0 � � � ~�)� sinh!(� + � 0 � ~�)� = GDxp;!(� 0; �): (3.58)Calulating (3.40) exposes no new aspets and yieldsGDpp;!(�; � 0) = ~MÆ(�; � 0)�M2 �2���� 0GDxx;!(�; � 0)= M~!2 sinh~�! [osh!(j� � � 0j � ~�) + osh!(� + � 0 � ~�)℄ : (3.59)The sole task remaining to be done to speify the density matrix funtional (3.36) for the one-dimensional harmoni osillator is the alulation of the determinants. Sine we know that the prefatorpM=~2� arries the omplete physial dimension of the density matrix, it is useful, for evaluating thedeterminants, to return to dimensionless natural variables by setting M = ~ = � = 1. Determiningthe determinant of Dpp is quite simple and yields detDpp = 1. This is a simple onsequene that Dppis unity in Fourier spae and an in�nite produt of unity yields again unity. The alulation of theother determinant is muh more involved and shall be presented in detail in the following. With theFourier representation (3.52) of GDxx;!�1, the appropriate utuation fator of (3.36) an be written ashdetGDxx;!�1i�1=2 = exp��12 Tr lnGDxx;!�1� = exp"�12 Z 10 d� 2 1Xn=1 ln(!2 + �2n) sin2 �n�# : (3.60)



3.2 Density Matrix with External Soures 33The integration of the sine-squared over � is easily done, R 10 d� sin2 �m� = 1=2, and Eq. (3.60) beomeshdetGDxx;!�1i�1=2 = exp(�12 ln 1Yn=1 �!2 + (�n)2�) : (3.61)Obviously, the produt diverges, but this divergene is not physial. A lattie alulation would haveproved the �niteness of the determinant [4, Chap. 2℄. By regularizing the expression within the produtwith respet to the free-partile Green funtion, we obtain1Yn=1 �!2 + (�n)2� =) 1Yn=1 �!2 + (�n)2(�n)2 � = 1Yn=1 �1 + !2(�n)2 � = 1! sinh!: (3.62)Inserting this result into (3.61), we eventually �ndhdetGDxx;!�1i�1=2 =s ~�!sinh ~�! ; (3.63)with physial units.Thus we have alulated the density matrix of the one-dimensional harmoni osillator in thepresene of external soures, with the result [17℄~%!(xb; xa)[j; v℄ =s M!2�~ sinh~�! exp�� M!2~ sinh~�! ��x2a + x2b� osh ~�! � 2xaxb��� exp(� 1~ sinh~�! Z ~�0 d� �j(�) + iMv(�) ��� � [xb sinh!� + xa sinh!(~� � �)℄)� exp( 12~2 Z ~�0 d� Z ~�0 d� 0�j(�)GDxx;!(�; � 0)j(� 0) + j(�)GDxp;!(�; � 0)v(� 0)+v(�)GDpx;!(�; � 0)j(� 0) + v(�)GDpp;!(�; � 0)v(� 0)�); (3.64)where the two-point funtions are given by (3.54), (3.56), (3.58), and (3.59). For j(�) = v(�) = 0,Eq. (3.64) redues to the well-known expression for the density matrix of the one-dimensional harmoniosillator.3.2.3 Expetation Values and Correlation FuntionsWe usually de�ne expetation values ash� � �ixb;xa = ~%�10 (xb;xa) Z D0dxDdp � � � e�A0[p;x℄=~; (3.65)with the ation (3.1) but vanishing urrents,A0[p;x℄ � A0[p;x; 0; 0℄: (3.66)The expetation values are normalized with respet to the density matrix (3.36) with vanishing ur-rents, ~%0(xb;xa) � ~%0(xb;xa)[0; 0℄; (3.67)whih ensures h1ixb;xa = 1. For the following onsideration, however, it is useful to reintrodue theurrents as arti�ial quantities. If the expetation value of a polynomial funtion onsisting of powers



34 3. Smearing Formulas for Flutuation E�etsof x and p shall be evaluated, one an apply funtional derivatives with respet to these urrents. Suhderivatives at as follows:ÆÆz(�) Z d� 0 f(z(� 0); u(� 0)) = Z d� 0 �f(z(� 0); u(� 0))�z(� 0) Æ(� � � 0) = �f(z(�); u(�))�z(�) : (3.68)Applying, for example, to the ation (3.1) a funtional derivative with respet to j(�) yields:ÆÆjT (�)A0[p;x; j;v℄ = x(�): (3.69)Analogously, one obtains when di�erentiating with respet to v(�):ÆÆvT (�)A0[p;x; j;v℄ = p(�): (3.70)We an use this reovery of x and p to formulate a rede�nition of expetation values for polynomialquantities, e.g.hxnk (�)pml (� 0)ixb;xa = ~%�10 (xb;xa)(�~)n+m nYi=1 � ÆÆjk(�)� mYi=1 � ÆÆvl(� 0)� ~%0(xb;xa)[j;v℄ ����j=v=0: (3.71)In the following, we speify some values for (n;m), where n denotes the overall power of x and m thatof p, to obtain the lowest-order orrelations. For (1; 0), we obtain the expetation value of x(�) byapplying to the density matrix funtional (3.36) a single funtional derivative with respet to j(�) andsetting the urrents to zero thereafter:hx(�)ixb;xa = �~~%�10 (xb;xa) ÆÆjT (�) ~%0(xb;xa)[j;v℄ ����j=v=0 = xl(�): (3.72)Thus, the expetation value of x(�) is simply idential with the lassial path. Evaluating the ase(0; 1), we obtain the expetation value of the momentum p(�):hp(�)ixb;xa = �~~%�10 (xb;xa) ÆÆvT (�) ~%0(xb;xa)[j;v℄ ����j=v=0 = pl(�): (3.73)Calulating (2; 0), (0; 2), and (1; 1) yields the two-point orrelation funtionshxk(�)xl(� 0)ixb;xa = ~2~%�10 (xb;xa) Æ2Æjk(�)Æjl(� 0) ~%0(xb;xa)[j;v℄ ����j=v=0= GDxkxl(�; � 0) + xl;k(�)xl;l(� 0); (3.74)hpk(�)pl(� 0)ixb;xa = ~2~%�10 (xb;xa) Æ2Ævk(�)Ævl(� 0) ~%0(xb;xa)[j;v℄ ����j=v=0= GDpkpl(�; � 0) + pl;k(�)pl;l(� 0);hxk(�)pl(� 0)ixb;xa = ~2~%�10 (xb;xa) Æ2Æjk(�)Ævl(� 0) ~%0(xb;xa)[j;v℄ ����j=v=0= GDxkpl(�; � 0) + xl;k(�)pl;l(� 0): (3.75)From Eq. (3.39) follows that the latter expetation value an be used to identifyhpk(�)xl(� 0)ixb;xa = ~2~%�10 (xb;xa) Æ2Ævk(�)Æjl(� 0) ~%0(xb;xa)[j;v℄ ����j=v=0= GDpkxl(�; � 0) + pl;k(�)xl;l(� 0): (3.76)



3.3 Smearing Formula for Density Matries 35Re-expressing the two-point funtions with the help of Eqs. (3.72) and (3.73), we obtainGDxkxl(�; � 0) = h~xk(�)~xl(� 0)ixb;xa ; GDpkpl(�; � 0) = h~pk(�)~pl(� 0)ixb;xa ;GDxkpl(�; � 0) = h~xk(�)~pl(� 0)ixb;xa ; GDpkxl(�; � 0) = h~pk(�)~xl(� 0)ixb;xa ; (3.77)with abbreviations ~x(�) = x(�) � xl(�); ~p(�) = p(�)� pl(�): (3.78)Thus, we have identi�ed the elements of the d � d matries GDxx(�; � 0), GDxp(�; � 0), GDpx(�; � 0), andGDpp(�; � 0), introdued in Eq. (3.36), with appropriate two-point orrelation funtions.3.3 Smearing Formula for Density MatriesIn the previous setions we have investigated the exatly solvable density matrix for systems governedby a Gaussian ation (3.1) with external soures. We will now use the results to set up a perturbativetreatment of density matries for systems with nontrivial interation. In order to alulate the expe-tation values, whih appear in the perturbation expansion, we derive the smearing formula, whih isuseful, in partiular, for nonpolynomial potentials.3.3.1 Perturbative Expansion for the Density Matrix of a System with InterationThe exat alulation of the density matrix~%(xb;xa) = x(~�)=xbZx(0)=xa D0dxDdp e�A[p;x℄=~ (3.79)with an ation whih ontains a potential,A[p;x℄ = A0[p;x℄ + Z ~�0 d� V (p(�);x(�)); (3.80)is impossible for most systems. The potential V (p(�);x(�)) shall be as general as possible, and thus itmay depend on momentum and position. The potential is onsidered as a perturbation of the exatlyalulable system with the ation (3.66). A Taylor expansion of the exponential in (3.79) with respetto V yields a perturbation expansion around the density matrix ~%0(xb; xa) of the unperturbed system,de�ned in (3.67):~%(xb;xa) = x(~�)=xbZx(0)=xa D0dxDdp e�A0[p;x℄=~�1� 1~ Z ~�0 d� V (p(�);x(�))+ 12!~2 Z ~�0 d�1 Z ~�0 d�2V (p(�1);x(�1))V (p(�2);x(�2))� : : : �: (3.81)Using the de�nition (3.65) of the expetation values, the perturbation expansion an be written as~%(xb;xa) = ~%0(xb;xa)"1 + 1Xn=1 (�1)nn!~n Z ~�0 d�1 � � � Z ~�0 d�n hV (p(�1);x(�1)) � � �V (p(�n);x(�n))ixb;xa# :(3.82)The introdution of umulants, where the �rst two are given byhV (p(�1);x(�1))ixb;xa = hV (p(�1);x(�1))ixb;xa ;hV (p(�1);x(�1))V (p(�2);x(�2))ixb;xa = hV (p(�1);x(�1))V (p(�2);x(�2))ixb;xa



36 3. Smearing Formulas for Flutuation E�ets�hV (p(�1);x(�1))ixb;xa hV (p(�2);x(�2))ixb;xa ;enables us to re-express the right-hand side of Eq. (3.82) by~%(xb;xa) = � M2�~2��d=2 exp [��Ve�;l(xb;xa)℄ : (3.83)Here, we have used that, written in the form of a lassial partile density~%l(x) = � M2�~2��d=2 exp [��V (x)℄ ; (3.84)the quantum statistial density matrix is governed by the e�etive lassial potentialVe�;l(xb;xa) = � 1� ln h�d=2th ~%0(xb;xa)i� 1� 1Xn=1 (�1)nn!~n Z ~�0 d�1 � � � Z ~�0 d�n�hV (p(�1);x(�1)) � � �V (p(�n);x(�n))ixb;xa ; (3.85)with the thermal wavelength �th =r2�~2�M : (3.86)The alulation of the density matrix for any system redues to the alulation of the e�etive lassialpotential (3.85) and thus to an evaluation of the respetive umulants.3.3.2 Smearing Formula for Gaussian FlutuationsAs a �rst appliation of the generating funtional (3.36) we derive a general rule for alulating or-relation funtions of polynomial or nonpolynomial funtions of x(�) and p(�) [17℄. The result willbe expressed in the form of a smearing formula. This formula will represent an essential tool foralulating perturbation expansions with nonpolynomial interations.Consider the orrelation funtions of a produt of loal funtionshF1(x(�1))F2(x(�2)) : : : FN (x(�N ))FN+1(p(�N+1))FN+2(p(�N+2)) : : : FN+M (x(�N+M ))ixb;xa= ~%�10 (xb;xa) x(~�)=xbZx(0)=xa D0dxDpd NYn=1 [Fn(x(�n))℄ MYm=1 [FN+m(p(�N+m))℄ e�A0[p;x℄=~: (3.87)By Fourier transforming the funtions Fn(x(�n)) and FN+m(p(�N+m)) aording toFn(x(�n)) = Z ddxn Fn(xn)Æ(xn � x(�n)) = Z ddxn F (xn) Z dd�n(2�)d exp fi�n(xn � x(�n))g (3.88)and FN+m(p(�N+m)) = Z ddpm(2�~)dFN+m(pm)Æ(pm � p(�N+m))= Z ddpm(2�~)dFN+m(pm) Z dd�m exp�� i~�m(pm � p(�N+m))� ; (3.89)the orrelation funtions (3.87) may be re-expressed ashF1(x(�1)) : : : FN+M (p(�N+M ))ixb;xa = ~%�10 (xb;xa) NYn=1 �Z ddxn Fn(xn) Z dd�n(2�)d exp (i�nxn)�



3.3 Smearing Formula for Density Matries 37� MYm=1�Z ddpm(2�~)d FN+m(pm) Z dd�m exp�� i~�mpm�� ~%0(xb;xa)[j;v℄; (3.90)where the generating funtional is given by (3.36). The urrents j(�) and v(�) are speialized toj(�) = i~ NXn=1 �nÆ(� � �n); v(�) = �i MXm=1 �mÆ(� � �N+m): (3.91)Inserting these equations into the ation of the funtional (3.36) and the Green funtions (3.26) and(3.38){(3.40), we �nd the Fourier deomposition of the generating funtional (3.36), so that the orre-lation funtions (3.90) beomehF1(x(�1)) : : : FN+M (p(�N+M ))ixb;xa = NYn=1 �Z ddxn Fn(xn) Z dd�n(2�)d exp fi�n[xn � xl(�n)℄g�� MYm=1�Z ddpm(2�~)d FN+m(pm) Z dd�m exp�� i~�m[pm � pl(�N+m)℄��� exp8<:�12 NXn;n0=1 �nGnn0xx �n0 + 1~ NXn=1 MXm=1 �nGnmxp �m � 12~2 MXm;m0=1 �mGmm0pp �m09=; ; (3.92)where we used the abbreviationsGnn0xx = GDxx(�n; �n0); Gnmxp = GDxp(�n; �N+m); Gmm0pp = GDpp(�N+m; �N+m0): (3.93)To proeed, it is more onvenient to write expression (3.92) as a onvolution integralhF1(x(�1)) : : : FN+M (p(�N+M ))ixb;xa = NYn=1 �Z ddxn Fn(xn)� MYm=1 � ddpm(2�~)d FN+m(pm)��~Md P (x1; : : : ;xN ;p1; : : : ;pM ) (3.94)involving the Gaussian distributionP (x1; : : : ;pM ) � 1(2�)N Z dN+Mw1 exp�iwT1w2 � 12wT1 Gw1� : (3.95)The vetors w1 and w2 have (N +M)d omponents and are de�ned aswT1 = ��1; : : : ; �N ; 1~�1; : : : ; 1~�M� (3.96)and wT2 = (x1 � xl(�1); : : : ;xN � xl(�N );�p1 + pl(�N+1); : : : ;�pM + pl(�N+M )) : (3.97)The (N +M)d� (N +M)d-matrix of Green funtionsG = � A BBT C � (3.98)an be deomposed into blok matries A, B, and C. The Nd�Nd-matrix A and theMd�Md-matrixC are de�ned by A = 0BBB� G11xx G12xx � � � G1NxxG12xx G11xx � � � G2Nxx... ... . . . ...G1Nxx G2Nxx � � � G11xx 1CCCA ; C = 0BBB� G11pp G12pp � � � G1MppG12pp G11pp � � � G2Mpp... ... . . . ...G1Mpp G2Mpp � � � G11pp 1CCCA (3.99)



38 3. Smearing Formulas for Flutuation E�etsand yield quadrati forms of the position and momentum variables, respetively. The Nd�Md-matrixB = 0BBB� �G11xp �G12xp � � � �G1Mxp�G21xp �G11xp � � � �G2Mxp... ... ... ...�GN1xp �GN2xp � � � �GNMxp 1CCCA (3.100)gives rise to quadrati terms, whih are linear in both position and momentum variables. The multidi-mensional integral in (3.95) is of Gaussian type and an easily be done, yielding an expliit expressionfor the Gaussian distribution (3.95)P (x1; : : : xN ;p1; : : : ;pM ) = 1p(2�)(N�M)ddetG exp��12wT2 G�1w2� ; (3.101)where G�1 represents the matrix inverse of (3.98) whose blok form is [see Appendix 3A for a diretderivation℄ G�1 = � X�1 �X�1BC�1�C�1BTX�1 C�1 + C�1BTX�1BC�1 � (3.102)with the abbreviation X = A�BC�1BT : (3.103)The alulation of the determinant is presented in Appendix 3A and yieldsdetG = detC detX; (3.104)when the matrix C is regular. For singular matrix C but A regular, we obtaindetG = det ~X detA; (3.105)with ~X = C �BTA�1B.With the Gaussian distribution (3.101), our result (3.94) onstitutes a smearing formula, whih de-sribes the e�et of harmoni utuations upon arbitrary produts of funtions of spae and momentumvariables at di�erent times.3.4 Generalized Wik Rules and Feynman DiagramsIn appliations, there often our orrelation funtions for mixtures of nonpolynomial funtions F (~xk)or F (~pk) and powers aording tohF (~xk(�1)) ~xnl (�2)ixb;xa ; hF (~xk(�1)) ~pnl (�2)ixb;xa ;hF (~pk(�1)) ~xnl (�2)ixb;xa ; hF (~pk(�1)) ~pnl (�2)ixb;xa ; (3.106)where we onsider funtions of the shifted phase spae oordinates (3.78). In order to evaluate suhorrelation funtions, we derive in this setion generalized Wik rules and Feynman diagrams on thebasis of the smearing formula (3.94). For simpliity, we restrit ourselves to the alulation in onedimension, sine it already involves the interesting features, whih we want to disuss in the following.3.4.1 Ordinary Wik RulesIt is well known that if one has to alulate expetation values of polynomials with even power, Wik'srule an be written as the sum over all possible permutations of produts of two-point funtions. Weshortly reall to this expansion by onsidering the ase of a position-dependent n-point orrelationfuntion in one dimension, n even, de�ned asG(n)(�1; : : : ; �n) = h~x(�1) � � � ~x(�n)ixb;xa : (3.107)



3.4 Generalized Wik Rules and Feynman Diagrams 39Note that it will be suÆient to study only the orrelation funtions involving the deviations fromthe lassial path, respetively. This expetation value an be deomposed with the help of Wik'sexpansion G(n)(�1; : : : ; �n) = Xpairs G(2)(�P (1); �P (2)) � � �G(2)(�P (n�1); �P (n)); (3.108)where P denotes the operation of pairwise index permutation. Note that Eq. (3.108) may be onsideredas a onsequene of a simple derivative rulehF (~x(�1)) ~x(�2)ixb;xa = h~x(�1) ~x(�2)ixb;xa hF 0(~x(�1))ixb;xa (3.109)with F 0(~x) = �F (~x)=�x. By applying this reursively, one eventually obtains (3.108). And onversely,the derivative rule (3.109) an be proved for polynomial funtions F (~x(�)), following diretly fromWik's theorem (3.108).The two-point Green funtion G(2)(�1; �2), ourring in (3.108), an be onsidered as a Wik on-tration, whih we introdue as follows:~x(�1) ~x(�2) = h~x(�1) ~x(�2)ixb;xa = GDxx(�1; �2); (3.110)~x(�1) ~p(�2) = h~x(�1) ~p(�2)ixb;xa = GDxp(�1; �2); (3.111)~p(�1) ~x(�2) = h~p(�1) ~x(�2)ixb;xa = GDpx(�1; �2) = GDxp(�2; �1); (3.112)~p(�1) ~p(�2) = h~p(�1) ~p(�2)ixb;xa = GDpp(�1; �2): (3.113)Deomposing polynomial orrelations of ~x(�) and ~p(�) with the help of these ontrations orrespondingto Eq. (3.108) or suessively applying the derivative rule (3.109) leads to following resultsh~xn(�1) ~xm(�2)ixb;xa = min(n;m)Xl=�;�+2;�+4;::: l �GDxx(�1; �1)�(n�l)=2 �GDxx(�1; �2)�l �GDxx(�2; �2)�(m�l)=2 ; (3.114)h~xn(�1) ~pm(�2)ixb;xa = min(n;m)Xl=�;�+2;�+4;::: l �GDxx(�1; �1)�(n�l)=2 [GDxp(�1; �2)℄l �GDpp(�2; �2)�(m�l)=2 ; (3.115)h~pn(�1) ~xm(�2)ixb;xa = min(n;m)Xl=�;�+2;�+4;::: l �GDpp(�1; �1)�(n�l)=2 [GDxp(�2; �1)℄l �GDxx(�2; �2)�(m�l)=2 ; (3.116)h~pn(�1) ~pm(�2)ixb;xa = min(n;m)Xl=�;�+2;�+4;::: l �GDpp(�1; �1)�(n�l)=2 �GDpp(�1; �2)�l �GDpp(�2; �2)�(m�l)=2 ; (3.117)with the multipliity fator l = (n� l � 1)!! (m� l � 1)!!n!m!l! (n� l)! (m� l)! : (3.118)Note, that (�k)!! � 1 for any positive integer k. For nonvanishing orrelation, the sum n+m must beeven so that the regulation parameter � is de�ned as follows:� = � 0; n;m even;1; n;m odd: (3.119)The ontrations de�ned in (3.110){(3.113) an be used to treat Taylor-expandable funtions F (~x(�))and F (~p(�)) only. The desired derivative rules for suh orrelations readhF (~x(�1)) ~xn(�2)ixb;xa =



40 3. Smearing Formulas for Flutuation E�etsnXl=�;�+2;�+4;::: n!(n� l)!! l! �GDxx(�2; �2)�(n�l)=2 �GDxx(�1; �2)�l DF (l)(~x(�1))Exb;xa ; (3.120)hF (~x(�1)) ~pn(�2)ixb;xa =nXl=�;�+2;�+4;::: n!(n� l)!! l! [GDpp(�2; �2)℄(n�l)=2 [GDxp(�1; �2)℄l DF (l)(~x(�1))Exb;xa ; (3.121)hF (~p(�1)) ~pn(�2)ixb;xa =nXl=�;�+2;�+4;::: n!(n� l)!! l! [GDpp(�2; �2)℄(n�l)=2 [GDpp(�1; �2)℄l DF (l)(~p(�1))Exb;xa ; (3.122)hF (~p(�1)) ~xn(�2)ixb;xa =nXl=�;�+2;�+4;::: n!(n� l)!! l! �GDxx(�2; �2)�(n�l)=2 [GDxp(�2; �1)℄l DF (l)(~p(�1))Exb;xa : (3.123)The parameter � distinguishes between even and odd power n:� = � 0; n even;1; n odd, (3.124)sine even (odd) powers of n lead to even (odd) derivatives of the funtion F (~x(�1)). The lth derivativeF (l)(~x(�1)) is formed with respet to x(�1), and F (l)(~p(�1)) is the lth derivative with respet to p(�1).Note, that in (3.123) the Green funtion GDxp appears with exhanged time arguments, whih in thisase happens to be inessential due to the symmetry GDxp(�2; �1) = GDpx(�1; �2).3.4.2 Generalized Wik RuleAording to their derivation, the ontrations (3.120){(3.123) are only appliable to funtions F (~x(�))and F (~p(�)) whih an be Taylor-expanded. In the following, we will show with the help of the smearingformula (3.94) that these derivative rules remain valid for funtions F (~x(�)) and F (~p(�)) with Laurentexpansions. Expetations of this type appear in variational perturbation theory (see Ref. [20℄ forposition-position oupling). Sine the proeeding is similar in all the ases (3.120){(3.123), we shallonly disuss the expetation value hF (~x(�1)) ~pn(�2)ixb;xa (3.125)in detail. For this we onsider the generating funtional of all suh expetation values following from(3.94)DF (~x(�1)) ej~p(�2)Exb;xa = ~pdetG +1Z�1 dxF (x) +1Z�1 dp2�~ ejp� exp�� 12 detG �GDpp(�2; �2)x2 � 2GDxp(�1; �2)xp+GDxx(�1; �1) p2�� : (3.126)The p-integration an easily be done, leading toDF (~x(�1)) ej~pn(�2)Exb;xa = eGDpp(t2;t2)j2=2 +1Z�1 dxp2�GDxx(t1; t1) F (x+ j GDxp(t1; t2)) e�x2=2GDxx(t1;t1)= eGDpp(t2;t2)j2=2 1Xl=0 1l! [j GDxp(t1; t2)℄l DF (l)(~x(t1))Exb;xa : (3.127)The orrelation of two funtions at di�erent times has been redued to a single-time expetation valueof the lth derivative of the funtion F (~x(�1)) with respet to x(�1), denoted by F (l)(~x(�1)), with Green



3.4 Generalized Wik Rules and Feynman Diagrams 41funtions desribing the dependene on the seond time. Expanding both sides in powers of j, were-obtain (3.121).Now we demonstrate that the derivative rules (3.120){(3.123) for Laurent-expandable funtionsF (~x(�)) and F (~p(�)) also follow from generalized Wik rules. Without restrition of universality, weonly onsider the expetation value hF (~x(�1)) ~xn(�2)ixb;xa : (3.128)The proeeding to redue the power of the polynomial at the expense of the funtion F (~x(�1)) is asfollows:1a. If possible (n � 2), ontrat ~x(�2) ~x(�2) with multipliity (n� 1), giving(n� 1) ~x(�2) ~x(�2) 
F (~x(�1)) ~xn�2(�2)�xb;xa ; (3.129)else jump to 1b. diretly.1b. Contrat F (~x(�1)) ~x(�2) and let the remaining polynomial invariant. We de�ne this ontrationby the symbol F (~x(�1)) ~x(�2) ~xn�1(�2) = ~x(�1) ~x(�2) 
F 0(~x(�1)) ~xn�1(�2)�xb;xa : (3.130)1. Add the terms 1a. and 1b.2. Repeat steps 1a.-1. until only expetation values of F (~x) or expetations of its derivatives remain.Summarizing, we an express the �rst power redution by the generalized Wik rule (n � 2)hF (~x(�1)) ~xn(�2)ixb;xa = (n� 1) ~x(�2) ~x(�2) 
F (~x(�1)) ~xn�2(�2)�xb;xa+F (~x(�1)) ~x(�2) ~xn�1(�2) (3.131)with the ontration rules de�ned in (3.110) and (3.130). For n = 1, we obtainhF (~x(�1)) ~x(�2)ixb;xa = ~x(�1) ~x(�2) hF 0(x(�1))ixb;xa , (3.132)whih is valid for any funtion F (~x(�)) generalizing the rule (3.109) that was proved for polynomialfuntions only. Reursively applying this power redution, we �nally end up with the derivative rule(3.120). Note that the generalization of Wik's rule for mixed position-momentum or pure momentumouplings is done along similar lines, leading to the derivative rules (3.121){(3.123).3.4.3 New Feynman-Like Rules for Nonpolynomial InterationsHigher-order perturbation expressions beome usually ompliated. For simple polynomial intera-tions, Feynman diagrams are a useful tool to lassify perturbative ontributions with the help ofgraphial rules. Here, we are going to set up analogous diagrammati rules for perturbation expansionsfor nonpolynomial interations V (x(�); p(�)), whose ontributions may be expressed as expetationsvalues Z ~�0 d�1 � � � Z ~�0 d�n hV (x(�1); p(�1)) � � �V (x(�n); p(�n))ixb;xa : (3.133)From (3.110){(3.113) follows that we have four basi propagators whose graphial representation maybe de�ned as (setting ~ =M = � = 1 from now on)�1 �2 � h~x(�1) ~x(�2)ixb;xa = GDxx(�1; �2);�1 �2 � h~p(�1) ~p(�2)ixb;xa = GDpp(�1; �2);�1 �2 � h~x(�1) ~p(�2)ixb;xa = GDxp(�1; �2);



42 3. Smearing Formulas for Flutuation E�ets�1 �2 � h~p(�1) ~x(�2)ixb;xa = GDpx(�1; �2) = GDxp(�2; �1):A vertex is represented as usual by a small dot. The time variable is integrated over at a vertex in aperturbation expansion, � Z 10 d�:We now introdue the diagrammati representations of the expetation value of arbitrary funtionsF (~x(�)) or F (~p(�)) and their derivatives as� Z 10 d� hF (~x(�))ixb;xa , � Z 10 d� hF (~p(�))ixb;xa ,� Z 10 d� hF 0(~x(�))ixb;xa , � Z 10 d� hF 0(~p(�))ixb;xa ,� Z 10 d� hF 00(~x(�))ixb;xa , � Z 10 d� hF 00(~p(�))ixb;xa ,... ... .With these elements, we an ompose Feynman graphs for two-point orrelation funtions of the type(3.106) for arbitrary n by suessively applying the generalized Wik rule (3.131) or diretly usingthe derivative relations (3.120){(3.123). The general results beome obvious by giving expliitly agraphial representation of the following four orrelation funtionsZ 10 d�1 Z 10 d�2 hF (~x(�1)) ~x(�2)ixb;xa = Z 10 d�1 Z 10 d�2GDxx(�1; �2) hF 0(~x(�1))ixb;xa (3.134)� ;Z 10 d�1 Z 10 d�2 
F (~x(�1)) ~x2(�2)�xb;xa = Z 10 d�1 Z 10 d�2 �GDxx(�2; �2) hF (~x(�1))ixb;xa+ �GDxx(�1; �2)�2 hF 00(~x(�1))ixb;xa � (3.135)� + ;Z 10 d�1 Z 10 d�2 
F (~x(�1)) ~x3(�2)�xb;xa = Z 10 d�1 Z 10 d�2�3GDxx(�1; �2)GDxx(�2; �2) hF 0(~x(�1))ixb;xa+ �GDxx(�1; �2)�3 hF 000(~x(�1))ixb;xa � (3.136)� 3 + ;Z 10 d�1 Z 10 d�2 
F (~x(�1)) ~x4(�2)�xb;xa = Z 10 d�1 Z 10 d�2 ��GDxx(�2; �2)�2 hF (~x(�1))ixb;xa+6 �GDxx(�1; �2)�2 GDxx(�2; �2) hF 00(~x(�1))ixb;xa+ �GDxx(�1; �2)�4 DF (4)(~x(�1))Exb;xa � (3.137)� + 6 + :



3.5 Partile Density in the Presene of External Soures 43Mixed position-momentum and momentum-momentum orrelations and their graphial representationsare given in Appendix 3B.The onsideration of higher-order orrelations with more than one funtion F (~x(�)) or F (~p(�)) anbe redued to the results (3.114){(3.117) or (3.120){(3.123) by expanding them with respet to thelassial path or momentum, respetively. By expanding both funtions in the expetation value, oneobtains for examplehF1(~x(�1))F2(~x(�2))ixb;xa = 1Xm=0 1Xn=0 1m!n! f1;mf2;n h~xm(�1) ~xn(�2)ixb;xa (3.138)with fi;m = F (m)i (0); i = 1; 2: (3.139)But onstruting graphial rules for suh general orrelations is more involved due to the varioussummations over produts of powers of propagators GDxx(�i; �j) with i; j = 1; 2.Finally, we apply the diagrammati rules to the anharmoni osillator with ~x4-interation, whih isa powerful system being disussed in detail by the help of a perturbation expansion [4, Chap. 3℄. Withthe Green funtions given by (3.26) and (3.38){(3.40), the two-point-orrelation for the anharmonisystem an then be expressed graphially, yielding the known deomposition for the seond-orderperturbative ontributionZ 10 d�1 Z 10 d�2 
~x4(�1) ~x4(�2)�xb;xa � 72 + 24 ; (3.140)with subsript  indiating that we restrit ourselves to onneted graphs only. Beyond this, ourtheory allows to desribe nonstandard systems with polynomial interations (3.133) depending on both,position and momentum, to higher order. Finally, we want to give the graphs for a four-interation~x2 ~p2 to seond order to see the variations of possible graphs in omparison with (3.140):Z 10 d�1 Z 10 d�2 
~x2(�1) ~p2(�1) ~x2(�2) ~p2(�2)�xb;xa � 2 + 16+16 + 2 + 4 + 16+16 + 4 + 16 + 4 : (3.141)We see, that we have the same lass of graphs already ourring in (3.140), however, with di�erentpropagators onneting the verties. Thus, both lasses deay into sublasses with di�erent multipli-ities, but the total numbers remain 72 and 24 for eah type of lass, respetively. Furthermore, allgraphs are vauum-like graphs. Eventually, it is easy to onstrut the Feynman graphs for polyno-mial orrelations higher than seond order by applying Wik's rule or the Feynman rules given in thissetion.Due to its universality, the theory should serve as a basis for investigating physial systems withnonstandard Hamiltonian via perturbation theory and its variational extension.3.5 Partile Density in the Presene of External SouresThe partile density for a quantum statistial system is given by the diagonal elements of the densitymatrix. This means, for an expliitly given system, that the knowledge of the density matrix implies



44 3. Smearing Formulas for Flutuation E�etsthe partile density and is obtained by%(x)[j;v℄ � ~%(x;x)[j;v℄Tr ~%(xb;xa)[j;v℄ : (3.142)The normalization ensures Z ddx%(x)[j;v℄ = Tr ~%(x;x)[j;v℄Tr ~%(xb;xa)[j;v℄ = 1: (3.143)In order to alulate the partile density for the general ation (3.1), we follow, however, a di�erentway, sine extrating the diagonal elements of expression (3.36) requires the knowledge of the lassialpath with periodi boundary onditions x(0) = xa = x(~�) = xb � x, whih is determined by thesolution (we assume that there is only one) of the general Hamiltonian equations (3.16) and (3.17).Rather, we utilize that the unnormalized partile density ~%(x) an also be obtained from a path integralover all periodi paths with an inserted Æ funtion Æ(x(� 0) � x), whih restrits the end points of theperiodi paths to x. This position is any point of the loop-like path x(�) at the time � 0, but it is thesame position in spae for all loops we integrate over. Thus all periodi paths touh eah other in thispoint. The unnormalized partile density for a system with an ation (3.1) reads~%0(x)[j;v℄ = I DdxDdp Æ(x(� 0)� x) e�A0[p;x;j;v℄=~; (3.144)where the path integral measure is given by (3.3). Without any restrition of universality and as aonsequene of the time-translation invariane of ations of periodi paths, one ould also have hosen,for example, the points x(0) = xa or x(~�) = xb.Similarly to (3.91), we rewrite the Æ funtion in Eq. (3.144) asÆ(x(� 0)� x) = Z ddk(2�)d exp"ikTx� 1~ Z ~�0 d� jT0 (�)x(�)# ; (3.145)with the arti�ial urrent j0(�) = i~k Æ(� � � 0): (3.146)After adding the seond term in the brakets of the expression (3.145) to the ation in the path integralof Eq. (3.144), the Gaussian phase spae path integral is easily solved. Introduing 2d-dimensionalphase spae oordinates and urrentswT (�) = �xT (�);pT (�)� ; �T = �jT (�) + j0(�);vT (�)� ; (3.147)and using the symmetri 2d� 2d-matrix (3.10), expression (3.144) an be written as~%0(x)[j;v℄ = Z ddk(2�)d eikTx I D2dw� exp"�12 Z ~�0 d�1 Z ~�0 d�2wT (�1)S(�1; �2)w(�2)� 1~ Z ~�0 d� �T (�)w(�)# : (3.148)The alulation is straightforward. After a quadrati ompletion and a rotation of the phase spaevetors whih makes S diagonal, the 2d-dimensional path integral redues to a 2d-fold produt of asingle one. This yields~%0(x)[j;v℄ = 1pdetS Z ddk(2�)d eikTx exp" 12~2 Z ~�0 d�1 Z ~�0 d�2 �T (�1)S�1(�1; �2)�(�2)# : (3.149)For further proeeding, it is pratial to rewrite this expression with the help of the submatries of Sas de�ned in (3.10), (3.11), and (3.13). The alulation of the inverse of S and its determinant is donein Appendix 3A. We insert into Eq. (3.149) the omponents ofS�1(�; � 0) = � Gpxx(�; � 0) Gpxp(�; � 0)Gppx(�; � 0) Gppp(�; � 0) � ; (3.150)



3.6 Partition Funtion with Currents 45whih are two-point funtions satisfying periodi boundary onditions,Gprs(�; 0) = Gprs(�; ~�); Gprs(0; � 0) = Gprs(~�; � 0); r; s 2 (x;p): (3.151)These two-point funtions have the same shape as those for Dirihlet boundary onditions de�ned inEqs. (3.26) and (3.38){(3.40). We will disuss the properties of Green funtions with periodi boundaryonditions later on. To proeed, we substitute j0(�) by the right-hand side of Eq. (3.146), whih enablesus to perform the Fourier integral over k. This �nally yields the general expression for the partiledensity:~%0(x)[j;v℄ = � M2�~2��d=2 1qdetDpp detGpxx�1 detsGpxx(� 0; � 0) exp��12xTGpxx�1(� 0; � 0)x�� exp�� 1~ Z ~�0 d� JT (�)Gpxx�1(� 0; � 0)x+ 12~2 Z ~�0 d�1 Z ~�0 d�2 hjT (�1)Gpxx(�1; �2)j(�2)+2jT (�1)Gpxp(�1; �2)v(�2) + vT (�1)Gppp(�1; �2)v(�2)i�; (3.152)where we have used the abbreviationJT (�) = jT (�)Gpxx(�; � 0)� vT (�) Z ~�0 d�1 Z ~�0 d�2Gppp(�; �1)Dpx(�1; �2)Gpxx(�2; � 0): (3.153)It is neessary to remark that, after disretizing the Eulidean time interval [0; ~�℄ into N + 1 piees,the dimension of the matrix Gpxx(� 0; � 0) remains d � d, sine � 0 is a �xed point of time within thisinterval. Thus, its determinant is alulated only over the spae omponents. The determinant ofthe (N + 1)d � (N + 1)d matries Gpxx�1 and Dpp must be alulated, however, over all spae-timeomponents. We have marked the di�erene by attahing the subsript \s" to the determinant in the�rst ase. For the evaluation of the determinants, it is useful to take into aount, one more, the rulesregarding the physial dimension given after Eq. (3.36).3.6 Partition Funtion with CurrentsThe partition funtion is, beside the density matrix, another fundamental quantity of statistis. In theanonial ensemble of a losed thermodynami system, it is related to the free energy F viaZ = e��F : (3.154)It is the free energy that we will devote onsiderable attention throughout this thesis. In a subsequentpart, we are going to disuss its properties at �nite and zero temperature, and in a di�erent form, therole as e�etive lassial potential.Additionally, the partition funtion in the presene of external soures an also be used as agenerating funtional of the orrelation funtions, similar to the proeeding in Setion 3.2.3.3.6.1 Partition Funtion in the Presene of External SouresThe quantum statistial partition funtion is de�ned as the trae over the unnormalized density matrix.For a system governed by the ation (3.1), this is the spae integral of (3.152):Z0[j;v℄ = Tr ~%0(x)[j;v℄ = Z ddx~%0(x)[j;v℄= 1pdetS exp" 12~2 Z ~�0 d� Z ~�0 d� 0CT (�)S�1(�; � 0)C(� 0)# ; (3.155)



46 3. Smearing Formulas for Flutuation E�etswith CT (�) = �jT (�);vT (�)�. Written in omponents of the matrix S�1(�; � 0), the funtional (3.155)readsZ0[j;v℄ = 1qdetDpp detGpxx�1 exp� 12~2 Z ~�0 d�1 Z ~�0 d�2 hjT (�1)Gpxx(�1; �2)j(�2)+ jT (�1)Gpxp(�1; �2)v(�2) + vT (�1)Gppx(�1; �2)j(�2) + vT (�1)Gppp(�1; �2)v(�2)i�: (3.156)The Green funtions are obtained as the elements of the inverse matrix S�1, whih we investigate indetail in Appendix 3A. They look similar to those obeying Dirihlet boundary onditions de�ned inEqs. (3.26) and (3.38){(3.40), but they must satisfy periodi boundary onditions (3.151) now:Gpxx(�; � 0) = "Dxx(�; � 0)� Z ~�0 d�1 Z ~�0 d�2Dxp(�; �1)D�1pp(�1; �2)Dpx(�2; � 0)#�1 ; (3.157)Gpxp(�; � 0) = � Z ~�0 d�1 Z ~�0 d�2Gpxx(�; �1)Dxp(�1; �2)D�1pp(�2; � 0); (3.158)Gppx(�; � 0) = �Gpxp�T (� 0; �) = � Z ~�0 d�1 Z ~�0 d�2D�1pp(�; �1)Dpx(�1; �2)Gpxx(�2; � 0); (3.159)Gppp(�; � 0) = D�1pp(�; � 0) + Z ~�0 d�1 � � �Z ~�0 d�4�D�1pp(�; �1)Dpx(�1; �2)Gpxp(�2; �3)Dxp(�3; �4)D�1pp(�4; � 0): (3.160)In the following, we speify these Green funtions in the example of the one-dimensional harmoniosillator.3.6.2 The Harmoni Osillator RevisitedAs an illustration, we alulate the partition funtion and the periodi Green funtions of the one-dimensional harmoni osillator in the presene of external soures j and v (3.41). With the de�nitions(3.42), where we now omit the boundary terms for Dpx(�; � 0) due to the periodiity of the paths to beonsidered, the matrix S reads S(�; � 0) = 1~ �M!2 i���i�� M�1 � Æ(� � � 0); (3.161)where �� � �=�� . Sine only periodi paths must be onsidered, it is useful to transform the systemto Fourier spae. The ompleteness relation for the periodi eigenfuntions isÆ(� � � 0) = 1~� 1Xm=�1 e�i!m(��� 0); (3.162)with Matsubara frequenies !m = 2�m=~�. Inserting this into (3.161), the Fourier representation ofthe matrix S(�; � 0) beomes S(�; � 0) = 1~� 1Xm=�1S(!m)e�i!m(��� 0); (3.163)where S(!m) = � Dxx Dxp(!m)Dpx(!m) Dpp � : (3.164)Thus, the elements of this matrix areDxx = M!2~ ; Dxp(!m) = !m~ = �Dpx(!m); Dpp = 1M~ : (3.165)



3.6 Partition Funtion with Currents 47Combining these omponents aording to the expressions (3.157){(3.160), we obtain the periodi two-point orrelation funtions of the one-dimensional harmoni osillator in Fourier spae. Then, the baktransformation in time spae yieldsGpxx;!(�; � 0) = 1~� 1Xm=�1 ~M 1!2m + !2 e�i!m(��� 0) = ~2M! osh!(j� � � 0j � ~�=2)sinh ~�!=2 ; (3.166)Gpxp;!(�; � 0) = � 1~� 1Xm=�1 ~!m!2m + !2 e�i!m(��� 0) = �iM ��� Gpxx;!(�; � 0)= � i~2 ��(� � � 0) sinh!(� � � 0 � ~�=2)sinh ~�!=2 ��(� 0 � �) sinh!(� 0 � � � ~�=2)sinh~�!=2 �(3.167)= �Gppx;!(�; � 0) = Gppx;!(� 0; �); (3.168)Gppp;!(�; � 0) = 1~� 1Xm=�1 ~M!2!2m + !2 e�i!m(��� 0) =M2!2Gxx;!(�; � 0)= 12 ~!M osh!(j� � � 0j � ~�=2)sinh ~�!=2 : (3.169)For the alulation of the prefator in (3.155), we use the eigenvalue representation of the determinantof S [detS℄�1=2 = 24 1Ym=�1 Yk=+;��k(!m)35�1=2 = exp��12Tr lnS�= exp(�12 1Xm=�1 [ln�+(!m) + ln��(!m)℄) : (3.170)The eigenvalues of S(!m) are determined from Eqs. (3.164) and (3.165). Aording to our rule toalulate determinants in units with ~ = � =M = 1, this leads to��(!m) = 12 �!2 + 1��r14 (!2 + 1)� (!2 + !2m): (3.171)In (3.170), we have also utilized the de�nition of the logarithm of matries via the diagonal represen-tation of S(!m), lnSdiag(!m) = � ln�+(!m) 00 ln��(!m) � : (3.172)The use of the diagonal representation is possible, sine the trae appearing in (3.170) is independentof the representation of S.Inserting the eigenvalues (3.171) in (3.170), we �nd[detS℄�1=2 = exp(�12 ln 1Ym=�1 �!2 + !2m�) = exp(� ln! � ln 1Ym=1 �!2 + !2m�) : (3.173)The produt in the latter expression diverges, and we regularize it, similar to (3.62), with respet tothe free partile. Thus, we obtain [detS℄�1=2 = 1! !=2sinh!=2 : (3.174)For vanishing urrents, j = v = 0, this is just the partition funtion of the one-dimensional osillator,Z! = Z![0; 0℄ = [detS℄�1=2 = 12 sinh~�!=2 ; (3.175)



48 3. Smearing Formulas for Flutuation E�etswhere we have hosen again physial units by demanding that the argument of sinh and the partitionfuntion itself must be dimensionless. Combining this result with the exponential ontaining theurrents in Eq. (3.156), we obtainZ![j; v℄ = 12 sinh~�!=2 exp� 12~2 Z ~�0 d� Z ~�0 d� 0hj(�)Gpxx;!(�; � 0)j(� 0) + j(�)Gpxp;!(�; � 0)v(� 0)+ v(�)Gppx;!(�; � 0)j(� 0) + v(�)Gppp;!(�; � 0)v(� 0)i�; (3.176)where the periodi Green funtions of the harmoni osillator are given in Eqs. (3.166){(3.169).3.7 Perturbative Expansion for the Free EnergyThe free energy of a quantum statistial system is obtained as the logarithm of the partition funtionF = � 1� lnZ: (3.177)If we assume that the ation of the system has the form (3.80), the partition funtion is given by thephase spae path integral Z = I DdpDdx e�A[p;x℄=~; (3.178)and annot exatly be solved in general. Considering the deomposition of the ation ratio (3.80) intoan unperturbed term and the interation, and expanding the Boltzmann fator with respet to thepotential V (p(�);x(�)) into a Taylor series, we obtain the perturbative expansionZ = Z0 + 1Xn=1 (�1)nn!~n Z ~�0 d�1 � � �Z ~�0 d�n hV (p(�1);x(�1)) � � �V (p(�n);x(�n))i0 : (3.179)The expetation values are de�ned with the help of the unperturbed path integralh� � �i0 = Z�10 I DdpDdx � � � e�A0[p;x℄=~; (3.180)where Z0 = Z0[0; 0℄ = I DdpDdx e�A0[p;x℄=~ (3.181)is the partition funtion of the unperturbed system and its solution for vanishing urrents is givenby (3.156) with j = v = 0. With the de�nition of the expetation values (3.180), the periodi Greenfuntions (3.157){(3.160) an be expressed by the two-point orrelation funtionsGpxk;xl(�; � 0) = hxk(�)xl(� 0)i0 ; (3.182)Gpxk;pl(�; � 0) = hxk(�)pl(� 0)i0 ; (3.183)Gppk ;xl(�; � 0) = hpk(�)xl(� 0)i0 ; (3.184)Gppk;pl(�; � 0) = hpk(�)pl(� 0)i0 : (3.185)We introdue umulants, where the �rst two arehV (p(�1);x(�1))i0; = hV (p(�1);x(�1))i0 ; (3.186)hV (p(�1);x(�1))V (p(�2);x(�2))i0; = hV (p(�1);x(�1))V (p(�2);x(�2))i0�hV (p(�1);x(�1))i0 hV (p(�2);x(�2))i0 ; (3.187)whih enable us to �nd a suitable expression for the free energy from (3.179) by using (3.177). Thus,the perturbative expansion for the free energy readsF = F0 � 1� 1Xn=1 (�1)nn!~n Z ~�0 d�1 � � � Z ~�0 d�n hV (p(�1)x(�1)) � � �V (p(�n)x(�n))i0; ; (3.188)



3.7 Perturbative Expansion for the Free Energy 49with the free energy of the unperturbed systemF0 = � 1� lnZ0: (3.189)The free energy is the energy, whih is available for a anonial thermodynami system in a heatbath with volume V at temperature T to perform mehanial work. Thus, it is the portion of energy,whih remains when the inner system energy U is redued by the entropi energy TS. Assuming thesystem to be losed (T = onst:, V = onst:), the entropy S ensures that the number of possibleon�gurations of the system, expressed by the partition funtion Z, is maximal at equilibrium for aertain temperature T . Sine Z is at maximum for an equilibrated system, the free energy is minimum.This is what Eq. (3.177) states. Thus, it is plausible that thermodynamis requires the relationF = U � TS: (3.190)Sine the inner energy U is idential with the entire system energy E, and the system goes over into itsground state for zero temperature, the quantum mehanial limit T ! 0 (� ! 1) of the free energyis equal to the ground-state energy E(0) of the system:lim�!1F = E(0): (3.191)This is easily seen for the example of the harmoni osillator, whose free energy is F! =(1=�) ln 2 sinh~�!=2. For � ! 1, sinh~�!=2 has the asymptotis exp(~�!=2)=2. Inserting this intothe free energy yields lim�!1 F! = ~!=2 � E(0)! , whih is the ground-state energy of the harmoniosillator with one degree of freedom.



50 3. Smearing Formulas for Flutuation E�ets3A Algebrai Properties of Blok MatriesConsider a symmetri matrix onsisting of blok matries A, B, and C,S = � A BBT C � = ST ; (3A.1)where A and C are also symmetri matries. In what follows we alulate the inverse of S. In a �rststep, we deompose the matrix into a produt of triangular matries. For regular matrix C, this meansthat C�1 exists, we hooseS = S1 S2; S1 = � IA B0 C � ; S2 = � X 0C�1BT IC � ; (3A.2)with the abbreviation X = A�BC�1BT : (3A.3)In (3A.2), we have also introdued the identity matries IA and IC , whih at in the same spae as Aand C, respetively. The inverse of S is determined byS�1 = (S1 S2)�1 = S�12 S�11 : (3A.4)Sine SiS�1i = IS , i = 1; 2, we have to alulateS1 � a1 b11 d1 � = IS ; S2 � a2 b22 d2 � = IS : (3A.5)The identity matrix IS = � IA 00 IC � (3A.6)is omposed of the identity matries IA and IC . Thus, the determination of the elements of the inversematries S�11 and S�12 beomes simple and we obtainS�11 = � a1 b11 d1 � = � X�1 0�C�1BTX�1 IC � ; S�12 = � a2 b22 d2 � = � IA �BC�10 C�1 � : (3A.7)Multiplying both in the order given in Eq. (3A.4) yields the desired inverse of SS�1 = � X�1 �X�1BC�1�C�1BTX�1 C�1 + C�1BTX�1BC�1 � : (3A.8)For the alulation of the determinant of S, we use again the deomposition (3A.2). Then, thedeterminant of S is given by the produt rule for matriesdetS = detS1 detS2 = detC detX: (3A.9)If C is singular but A regular, we an make use of another deomposition than (3A.2):S = � IA 0BTA�1 ~X �� A B0 IC � ; (3A.10)with ~X = C �BTA�1B: (3A.11)Then, the inverse of S turns out to beS�1 = � A�1 +A�1BX�1BTA�1 �A�1B ~X�1� ~X�1BTA�1 � ~X�1 � (3A.12)and the determinant is detS = det ~X detA: (3A.13)



3B Generalized Correlation Funtions 513B Generalized Correlation FuntionsIn this appendix we give the expetations for the orrelation between a general position or momentumdependent funtion and a polynomial up to order n = 4:Position-Momentum-Coupling:Z 10 d�1 Z 10 d�2 hF (~x(�1)) ~p(�2)ixb;xa = Z 10 d�1 Z 10 d�2GDxp(�1; �2) hF 0(~x(�1))ixb;xa (3B.1)� ;Z 10 d�1 Z 10 d�2 
F (~x(�1)) ~p2(�2)�xb;xa = Z 10 d�1 Z 10 d�2�GDpp(�2; �2) hF (~x(�1))ixb;xa+ �GDxp(�1; �2)�2 hF 00(~x(�1))ixb;xa � (3B.2)� + ;Z 10 d�1 Z 10 d�2 
F (~x(�1)) ~p3(�2)�xb;xa = Z 10 d�1 Z 10 d�2�3GDxp(�1; �2)GDpp(�2; �2) hF 0(~x(�1))ixb;xa+ �GDxp(�1; �2)�3 hF 000(~x(�1))ixb;xa � (3B.3)� 3 + ;Z 10 d�1 Z 10 d�2 
F (~x(�1)) ~p4(�2)�xb;xa = Z 10 d�1 Z 10 d�2��GDpp(�2; �2)�2 hF (~x(�1))ixb;xa+6 �GDxp(�1; �2)�2 GDpp(�2; �2) hF 00(~x(�1))ixb;xa+ �GDxp(�1; �2)�4 DF (4)(~x(�1))Exb;xa � (3B.4)� + 6 + ;Momentum-Position-Coupling:Z 10 d�1 Z 10 d�2 hF (~p(�1)) ~x(�2)ixb;xa = Z 10 d�1 Z 10 d�2GDpx(�1; �2) hF 0(~p(�1))ixb;xa (3B.5)� ;Z 10 d�1 Z 10 d�2 
F (~p(�1)) ~x2(�2)�xb;xa = Z 10 d�1 Z 10 d�2�GDxx(�2; �2) hF (~p(�1))ixb;xa+ �GDpx(�1; �2)�2 hF 00(~p(�1))ixb;xa � (3B.6)� + ;



52 3. Smearing Formulas for Flutuation E�etsZ 10 d�1 Z 10 d�2 
F (~p(�1)) ~x3(�2)�xb;xa = Z 10 d�1 Z 10 d�2�3GDpx(�1; �2)GDxx(�2; �2) hF 0(~p(�1))ixb;xa+ �GDpx(�1; �2)�3 hF 000(~p(�1))ixb;xa � (3B.7)� 3 + ;Z 10 d�1 Z 10 d�2 
F (~p(�1)) ~x4(�2)�xb;xa = Z 10 d�1 Z 10 d�2��GDxx(�2; �2)�2 hF (~p(�1))ixb;xa+6 �GDpx(�1; �2)�2 GDxx(�2; �2) hF 00(~p(�1))ixb;xa+ �GDpx(�1; �2)�4 DF (4)(~p(�1))Exb;xa � (3B.8)� + 6 + ;Momentum-Momentum-Coupling:Z 10 d�1 Z 10 d�2 hF (~p(�1)) ~p(�2)ixb;xa = Z 10 d�1 Z 10 d�2GDpp(�1; �2) hF 0(~p(�1))ixb;xa (3B.9)� ;Z 10 d�1 Z 10 d�2 
F (~p(�1)) ~p2(�2)�xb;xa = Z 10 d�1 Z 10 d�2 �GDpp(�2; �2) hF (~p(�1))ixb;xa+ �GDpp(�1; �2)�2 hF 00(~p(�1))ixb;xa � (3B.10)� + ;Z 10 d�1 Z 10 d�2 
F (~p(�1)) ~p3(�2)�xb;xa = Z 10 d�1 Z 10 d�2�3GDpp(�1; �2)GDpp(�2; �2) hF 0(~p(�1))ixb;xa+ �GDpp(�1; �2)�3 hF 000(~p(�1))ixb;xa � (3B.11)� 3 + ;Z 10 d�1 Z 10 d�2 
F (~p(�1)) ~p4(�2)�xb;xa = Z 10 d�1 Z 10 d�2 ��GDpp(�2; �2)�2 hF (~p(�1))ixb;xa+6 �GDpp(�1; �2)�2 GDpp(�2; �2) hF 00(~p(�1))ixb;xa+ �GDpp(�1; �2)�4 DF (4)(~p(�1))Exb;xa � (3B.12)� + 6 + :The ase of position-position-oupling has already been alulated in Setion 3.4.3.



Chapter 4
E�etive Classial Theory forQuantum Systems

We have shown in Setion 3.3.1 that the quantum statistial density matrix an be expressed with thehelp of a biloal potential Ve�;l(xb;xa), whih makes the density matrix lassially looking (3.83). Inthe following we will develop a similar formalism for the quantum statistial partition funtion and thefree energy. Sine the path integral ounts all paths in phase spae, whih satisfy periodi boundaryonditions x(0) = x(~�), we �rst investigate the Fourier deomposition of suh paths, and the inueneof the zero modes on the Green funtions (3.157){(3.160) [4,20℄. Then, we onsider the utuations ofpaths with �xed end points.After having separated the zero-frequeny Fourier modes, whih lead to diverging orrelations inthe lassial limit of high temperatures � � 1=kBT ! 0, we �nally turn to the derivation of thesmearing formula for restrited partition funtions.4.1 The Zero-Mode ProblemIn order to illustrate the relation between zero-mode utuations and lassial statistial propertiesmore obviously, we onsider, one more, the example of the harmoni osillator with the ationA! [x℄ = Z ~�0 d� �M2 _x2(�) + 12M!2x2(�)� ; (4.1)where the dot means di�erentiation with respet to � .4.1.1 Harmoni Flutuation Width for Periodi PathsAording to Eq. (3.175), the partition funtion of the harmoni osillator with the ation (4.1) isgiven by Z! = I Dx e�A! [x℄=~ = 12 sinh~�!=2 : (4.2)Correlation funtions of loal quantities O1(x(�1))O2(x(�2)) � � � are then de�ned ashO1(x(�1))O2(x(�2)) � � �i! = Z�1! I DxO1(x(�1))O2(x(�2)) � � � e�A![x℄=~: (4.3)53



54 4. E�etive Classial Theory for Quantum SystemsThe path x(�) shall be periodi: x(0) = x(~�). Thus, it an be expanded into the Fourier seriesx(�) = x0 + 1Xm=1 �xm e�i!m� + x?m ei!m�� : (4.4)Here, we have separated the zero frequeny omponent x0 from the sum. Sine the quantities x(�),x0, and the utuations must be real, there is the onstraint x?m = x�m. The Matsubara frequeniesare as usual !m = 2�m=~�.Now, we integrate (4.4) over � and divide the result by ~�. This entailsx(�) � 1~� Z ~�0 d� x(�) = x0; (4.5)where the ontribution of the utuations around x0 vanishes as a onsequene of the orthogonalityrelation Ænm = 1~� Z ~�0 d� ei(!n�!m)� : (4.6)From Eq. (4.5), we onlude that the temporal mean value of the path is idential with the zero-frequeny omponent x0. In the following, we investigate the violene of these zero-mode utuations.First we alulate the partile distribution of the harmoni osillator at a ertain position x = x(�).This yields P (x) = hÆ(x� x(�))i! = 1p2�a2 exp�� x22a2� ; (4.7)where a is the Gaussian utuation width and is related to the Green funtion (3.166) for equal times:a2 = Gpxx(�; �) = ~2M! oth ~�!2 : (4.8)At zero temperature, this is equal to the square of the ground-state wave funtion of the harmoniosillator, whose width is a20 = ~2M!: (4.9)In the limit ~! 0, from Eqs. (4.7) and (4.8) we obtain the lassial distributionPl(x) = 1p2�a2l exp�� x22a2l� ; (4.10)with a2l = 1�M!2 : (4.11)The linear growth of this lassial width is the origin of the famous Dulong-Petit law for the spei�heat of a harmoni system. The lassial utuations are governed by the integral over the Boltzmannfator e��M!2x2=2 (4.12)in the lassial partition funtionZl = Z 1�1 dxp2�~2�=M e��M!2x2=2: (4.13)From this we obtain the lassial distribution (4.10) as the expetation valuePl(x) = hÆ(x� x)i!;l = Z�1l Z 1�1 dxp2�~2�=M Æ(x� x) e��M!2x2=2: (4.14)



4.1 The Zero-Mode Problem 55Whih utuations ause the divergene of the Gaussian width (4.8) for high temperatures? In orderto answer this question we exlude from the path integral (4.2) the zero-frequeny ontributions, whihwe have identi�ed in (4.5) to be equal to the temporal mean value x(�) of the path. Thus, we de�nefor eah x0 new loal expetation valueshO1(x(�1))O2(x(�2)) � � �ix0! = DÆ(x0 � x(�))O1(x(�1))O2(x(�2)) � � �E!DÆ(x0 � x(�))E! : (4.15)The original quantum statistial distribution of the harmoni osillator (4.7) ollets utuations ofx0 = x(�) and those around x0, and an therefore be written as the onvolution integralP (x) = Z 1�1 dx0 Px0(x� x0)Pl(x0) (4.16)over the lassial distribution (4.10) and the loal onePx0(x) = hÆ(x� x(�))ix0! = 1p2�a2x0 exp �� (x� x0)22a2x0 � : (4.17)Suh a onvolution of Gaussian distributions as in Eq. (4.16) leads to another Gaussian distributionwith added widths, so that the width of the loal distribution is given by the di�erenea2x0 = a2 � a2l = ~2M! �oth ~�!2 � 2~�!� ; (4.18)whih starts out at the �nite value (4.9) for T = 1=kB� = 0, and goes to zero for T ! 1 withthe asymptoti behavior ~�!=12 (see Fig. 4.1). The latter property suppresses all utuations aroundx(�). Thus it turns out that the zero-frequeny utuations x0 lead to the divergene of the utuationwidth for T ! 1. Suh violent utuations annot be treated by perturbation theory. They mustbe separated from the path integral (4.2) and integrated at the end of the alulation. Thus we shallrevise the perturbative treatment for the free energy in Setion 3.7.4.1.2 Flutuation Width for Fixed EndsNow we dwell on the question how the utuation width behaves for a system with �xed ends. Weonsider the unnormalized density matrix ~%(xb; xa), whih is expressed by the path integral~%(xb; xa) = x(~�)=xbZx(0)=xa Dx e�A[x℄=~ (4.19)over all paths with the �xed end points x(0) = xa and x(~�) = xb. For a harmoni osillator (4.1),the path integral (4.19) an easily be done, with the result~%!(xb; xa) =s M!2�~ sinh ~�! exp�� M!2~ sinh~�! �(x2b + x2a) osh ~�! � 2xbxa�� : (4.20)At �xed end points xb; xa, the quantum mehanial orrelation funtions arehO1(x(�1))O2(x(�2)) � � �ixb;xa! = 1~%!(xb; xa) x(~�)=xbZx(0)=xa Dx O1(x(�1))O2(x(�2)) � � � e�A![x℄=~ (4.21)and the distribution funtion is found to bep(x; �) � hÆ(x� x(�))ixb;xa! = 1p2�b2(�) exp �� (x� xl(�))22b2(�) � : (4.22)
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Figure 4.1: Temperature dependene of utuation widths of any point x(� ) on the path in a harmoniosillator (l2 is a square length in units of ~=M!). The quantity a2 (dashed) is the quantum mehanial width,whereas a2x0 (dash-dotted) is the width after separating out the utuations around the path average x0. Thequantity a2l (long-dashed) is the width of the lassial distribution, and b2 (solid urve) is the utuation widthat �xed ends.The lassial path of a partile in a harmoni potential is given by Eq. (3.47), and the time-dependentwidth b2(�) is found to beb2(�) = GDxx(�; �) = ~2M! �oth~�! � osh[!(2� � ~�)℄sinh ~�! � ; (4.23)and is thus idential with the harmoni equal-time Green funtion (3.54) for Dirihlet boundary on-ditions. Sine the Eulidean time � lies in the interval 0 � � � ~�, the width (4.23) is boundedby b2(�) � ~2M! tanh ~�!2 ; (4.24)thus remaining �nite at all temperatures. The temporal average of (4.23) isb2 = 1~� Z ~�0 d� b2(�) = ~2M! �oth~�! � 1~�!� : (4.25)Just as a2x0 , this goes to zero for T ! 1 with an asymptoti behavior ~�!=6, whih is twie as bigas that of a2x0 (see Fig. 4.1). Beause of the �niteness of the utuation width b2 at all temperatures,whih is similar to that of a2x0 , the speial treatment of x = x0 beomes superuous for paths with�xed end points xb; xa. While the separation of x0 was neessary to deal with the diverging utuationwidth of the path average x, paths with �xed ends have utuations of the path average, whih aregoverned by the distributionpx0(xb; xa) � hÆ(x0 � x)ixb;xa! = 1p2�b2x0 exp(� 12b2x0 �x0 � 12(xb + xa) 2~�! tanh ~�!2 �2) (4.26)
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Figure 4.2: Temperature dependene of the width of utuations around the path average x0 = x at �xedends. For omparison we also show the width a2x0 of Fig. 4.1. The vertial axis gives these square lengths l2 inunits of ~=M! again.with the width b2x0 = 1M�!2 �1� 2~�! tanh ~�!2 � ; (4.27)whih goes to zero for both limits � ! 1 and � ! 0 (see Fig. 4.2). At eah Eulidean time, x(�)utuates narrowly around the lassial path xl(�) onneting xb and xa. This is the reason why wemay treat the utuations of x = x0 by perturbation theory, just as the other utuations.Thus there is no need for partiularly treating ertain utuations for quantities with �xed bounds.4.2 Restrited Partition Funtion and E�etive ClassialHamiltonianAs was shown in the previous setion, a separate treatment of the zero-frequeny utuations forperiodi paths is neessary. We illustrate how this separation leads to a reformulation of quantumstatistis, whih is then governed by an e�etive lassial Hamiltonian.We rewrite the partition funtion Z = I DdxDdp e�A[p;x℄=~ (4.28)for an arbitrary system asZ = Z ddx0ddp0(2�~)d e��Heff (p0;x0) = Z ddx0ddp0(2�~)d Zp0x0 ; (4.29)where we have introdued the restrited partition funtionZp0x0 = (2�~)d I DdxDdp Æ(p0 � p(�))Æ(x0 � x(�)) e�A[p;x℄=~: (4.30)



58 4. E�etive Classial Theory for Quantum SystemsFrom (4.29) follows that the e�etive lassial Hamiltonian He�(p0;x0) and the restrited partitionfuntion Zp0x0 are related by He�(p0;x0) = � 1� lnZp0x0 : (4.31)This expression for the e�etive lassial Hamiltonian has a similar form like a free energy, whih ishere loal in phase spae. Thus, we an also writeFp0x0 � He�(p0;x0): (4.32)Now we turn to the general Gaussian ation (3.1), whih we will use in the form (3.8), and alulatethe restrited funtionalZw00 [C℄ = (2�~)d I D2dw Æ(w0 �w(�))� exp"�12 Z ~�0 d� Z ~�0 d� 0wT (�)S(�; � 0)w(� 0)� 1~ Z ~�0 d� CT (�)w(�)# ; (4.33)with wT (�) = �xT (�);pT (�)� and CT (�) = �jT (�);vT (�)�. The temporal mean value of w(�) isde�ned as before, w(�) = R ~�0 d� w(�)=~�. The symmetri matrix S is given by (3.10). There is nodiÆulty to alulate Zw00 . Along similar lines as in Setion 3.5, we express the Æ funtion by itsFourier transform Æ(w0 �w(�)) = Z d2dk(2�)2d exp"iwT0 k� 1~ Z ~�0 d� CT0w(�)# ; (4.34)where C0 is a onstant urrent vetor, C0 = i�k: (4.35)The funtional (4.33) beomesZw00 [ ~C℄ = (2�~)d Z d2dk(2�)2d eiwT0 k I D2dw� exp"�12 Z ~�0 d� Z ~�0 d� 0wT (�)S(�; � 0)w(� 0)� 1~ Z ~�0 d� ~CT (�)w(�)# ; (4.36)where we have introdued the urrent ~C(�) = C(�) +C0: (4.37)The path integral is alulated on equal footing as for the partile density (3.144) and yields anexpression similar to the partition funtion (3.155). We obtainZw00 [C℄ = (2�~)dpdetS Z d2dk(2�)2d eiwT0 k exp( 12~2 Z ~�0 d� Z ~�0 d� 0 ~CT (�)S�1(�; � 0) ~C(� 0)) ; (4.38)with the 2d-fold k integral still to be done. Re-expressing the urrent ~C by (4.37) and inserting(4.35), the integrations over k turn out to be simple Gaussian ones. Exeuting the usual proedureof ompleting the square, rotation in phase spae to �nd a diagonal representation to deouple thek-omponents, and translation of the omponents of k enables us to solve the k integrals, yieldingZw00 [C℄ = 1pdetpsB0 detS exp(�~2�22 wT0 B0�1w0 � � Z ~�0 d� Z ~�0 d� 0CT (�)S�1(�; � 0)B0�1w0)



4.2 Restrited Partition Funtion and E�etive Classial Hamiltonian 59� exp( 12~2 Z ~�0 d� Z ~�0 d� 0CT (�)�S�1(�; � 0)� Z ~�0 d�1 Z ~�0 d�2 S�1(�; �1)B0�1S�1(�2; � 0)�C(� 0)) :(4.39)We have introdued the 2d� 2d matrixB0 = Z ~�0 d� Z ~�0 d� 0 S�1(�; � 0); (4.40)whih is onstant in time and therefore its determinant is alulated in phase spae only. This di�ersfrom the alulation of the determinant of S, whih is done in phase and time spae. A similar asehas been onsidered below Eq. (3.153).It is revealing to ontinue the disussion of the expressions (4.39) and (4.40) in frequeny spae.We write the matrix S(�; � 0) and its inverse in Fourier spae asS(�; � 0) = 1~�S0 + 1~� 1Xm=1 hS(!m)e�i!m(��� 0) + S(�!m)ei!m(��� 0)i ; (4.41)S�1(�; � 0) = 1~�S�10 + 1~� 1Xm=1 hS�1(!m)e�i!m(��� 0) + S�1(�!m)ei!m(��� 0)i ; (4.42)where we have abbreviated the zero-frequeny omponents by S0 � S(!m = 0) and S�10 � S�1(!m =0), respetively. In partiular, we are interested in time integrations of S�1(�; � 0). Inserting the Fourierdeomposition the integration over one time argument yields the resultZ ~�0 d� S�1(�; � 0) = S�10 ; (4.43)whih is independent of time. This is obvious, sine S�1(�; � 0) = S�1(� � � 0) is invariant undertranslations of time. Thus, an additional integration of (4.43) over � 0 only ontributes a \volumefator" ~�: Z ~�0 d� 0 Z ~�0 d� S�1(�; � 0) = ~�S�10 � B0: (4.44)An alternative representation is to use temporal mean values:S�1(�; � 0) = 1~2�2 Z ~�0 d� Z ~�0 d� 0 S�1(�; � 0) = 1~�S�10 : (4.45)These results are very useful to simplify the expression (4.39). We obtainZw00 [C℄ = 1qdetps S0�1 detS exp(�12 Z ~�0 d� Z ~�0 d� 0wT0 S(�; � 0)w0 � 1~ Z ~�0 d� CT (�)w0)� exp( 12~2 Z ~�0 d� Z ~�0 d� 0CT (�)Gw0 (�; � 0)C(� 0)) ; (4.46)where the 2d� 2d matrix Gw0(�; � 0) of Green funtions is de�ned asGw0(�; � 0) = S�1(�; � 0)� S�1(�; � 0) � � Gp0x0xx (�; � 0) Gp0x0xp (�; � 0)Gp0x0px (�; � 0) Gp0x0pp (�; � 0) � : (4.47)The elements are d � d blok matries and identi�ed with the Green funtions (3.157){(3.160) withexluded zero-frequeny mode:Gp0x0xx (�; � 0) = Gpxx(�; � 0)�Gpxx(�; � 0) = Gpxx(�; � 0)�Gpxx;l; (4.48)



60 4. E�etive Classial Theory for Quantum SystemsGp0x0xp (�; � 0) = Gpxp(�; � 0)�Gpxp(�; � 0) = Gpxp(�; � 0)�Gpxp;l; (4.49)Gp0x0px (�; � 0) = Gppx(�; � 0)�Gppx(�; � 0) = Gppx(�; � 0)�Gppx;l = Gp0x0xp (� 0; �); (4.50)Gp0x0pp (�; � 0) = Gppp(�; � 0)�Gppp(�; � 0) = Gppp(�; � 0)�Gppp;l; (4.51)where we have used the identity of the zero-frequeny omponent of the quantum statistial Greenfuntions and the lassial utuation width. As a onsequene of the relations (4.31) and (4.32), andthe zero-temperature limit (3.191), the restrited partition funtion (4.46) is the fundamental quantity,whih enables us to alulate the free energy and the e�etive lassial Hamiltonian of any system withGaussian ation. For later use, we introdue expetation values in phase spae with the zero-frequenymodes exluded in a similar manner as in Eq. (4.15). De�ning the restrited partition funtion as thefuntional (4.46) with vanishing urrents,Zw00 � Zw00 [0℄ = 1qdetps S0�1 detS exp(�12 Z ~�0 d� Z ~�0 d� 0wT0 S(�; � 0)w0) ; (4.52)the restrited expetation value for any quantity, whih depends on position and/or momentum isexpressed ash� � �ip0x0 = (2�~)d [Zw00 ℄�1 I D2dw Æ(w0 �w(�)) � � � exp"�12 Z ~�0 d� Z ~�0 d� 0wT (�)S(�; � 0)w(� 0)# :(4.53)Similar to the method of alulating expetation values and the results obtained in Setion 3.2.3, we�nd that the one-point funtion is hw(�)ip0x0 = w0; (4.54)and the two-point funtions are evaluated ashwm(�)wn(� 0)ip0x0 = Gp0x0wmwn + w0;mw0;n; m; n = 1; : : : ; 2d : (4.55)This makes it possible to rewrite the Green funtions (4.48){(4.51) as two-point orrelation funtionsGp0x0xkxl (�; � 0) = h~xk(�)~xl(� 0)ip0x0 ; Gp0x0pkpl (�; � 0) = h~pk(�)~pl(� 0)ip0x0 ;Gp0x0xkpl (�; � 0) = h~xk(�)~pl(� 0)ip0x0 ; Gp0x0pkxl (�; � 0) = h~pk(�)~xl(� 0)ip0x0 ; k; l = 1; : : : ; d ; (4.56)with abbreviations ~x(�) = x(�) � x0; ~p(�) = p(�)� p0: (4.57)For the alulation of an expetation value of a quantity, whih is a nonpolynomial funtion F of xor p, we need the smearing formula. The derivation of this multiple onvolution integral follows alonga similar proedure as presented in Setion 3.3.2 for the density matrix. We do not repeat it hereand give only the result for the general ase of a produt of N +M funtions, where N of whih maydepend on x and M on p:hF1(x(�1))F2(x(�2)) : : : FN (x(�N ))FN+1(p(�N+1))FN+2(p(�N+2)) : : : FN+M (x(�N+M ))ip0x0= 1pGp0x0 NYn=1 �Z ddxn Fn(xn)� MYm=1� ddpm(2�~)d FN+m(pm)� exp��12yT [Gp0x0 ℄�1y� ; (4.58)where y is the (N +M)d-dimensional vetoryT = (x1(�1)� x0; : : : ;xN (�N )� x0;p1(�N+1)� p0; : : :pM (�N+M )� p0) : (4.59)The (N +M)d� (N +M)d-matrix Gp0x0 = � A BBT C � (4.60)



4.2 Restrited Partition Funtion and E�etive Classial Hamiltonian 61is omposed of the Nd�Nd-matrix A and the Md�Md-matrix C,A = 0BBB� Gp0x0xx (�1; �1) Gp0x0xx (�1; �2) � � � Gp0x0xx (�1; �N )Gp0x0xx (�1; �2) Gp0x0xx (�1; �1) � � � Gp0x0xx (�2; �N )... ... . . . ...Gp0x0xx (�1; �N ) Gp0x0xx (�2; �N ) � � � Gp0x0xx (�1; �1) 1CCCA ; (4.61)C = 0BBB� Gp0x0pp (�1; �1) Gp0x0pp (�1; �2) � � � Gp0x0pp (�1; �M )Gp0x0pp (�1; �2) Gp0x0pp (�1; �1) � � � Gp0x0pp (�2; �M )... ... . . . ...Gp0x0pp (�1; �M ) Gp0x0pp (�2; �M ) � � � Gp0x0pp (�1; �1) 1CCCA ; (4.62)as well as the Nd�Md-matrixB = 0BBB� �Gp0x0xp (�1; �1) �Gp0x0xp (�1; �2) � � � �Gp0x0xp (�1; �M )�Gp0x0xp (�2; �1) �Gp0x0xp (�1; �1) � � � �Gp0x0xp (�2; �M )... ... ... ...�Gp0x0xp (�N ; �1) �Gp0x0xp (�N ; �2) � � � �Gp0x0xp (�N ; �M )1CCCA : (4.63)The inverse and the determinant of the blok matrix Gp0x0 are alulated as desribed in Appendix 3A.We alulate now the appropriate Green funtions and the partition funtion (4.46) for the harmoniosillator. The alulation of the Green funtions with the zero-frequeny omponents exluded issimply done, sine we know the omplete Green funtions for the harmoni osillator from Eqs. (3.166){(3.169). Subtrating the twie-averaged terms, we obtainGp0x0xx;!(�; � 0) = Gpxx;!(�; � 0)� 1M�!2 ; (4.64)Gp0x0xp;!(�; � 0) = Gpxp;!(�; � 0); (4.65)Gp0x0px;!(�; � 0) = Gppx;!(�; � 0); (4.66)Gp0x0pp;! (�; � 0) = Gppp;!(�; � 0)� M� : (4.67)The zero-frequeny modes of the mixed two-point funtions vanish. Thus, the matrix of the zeroomponents simply reads S0 = �M~�1!2 00 (~M)�1 � : (4.68)The determinant is easily alulated and yields detps S0 = !2 in units, where ~ = � =M = 1. Togetherwith the result (3.175) for the partition funtion of the harmoni osillator, this gives the restritedpartition funtion Zp0x0! = ~�!2 sinh~�!=2 exp���� p202M + 12M!2x20�� ; (4.69)where the exponential ontains the e�etive lassial Hamiltonian of the harmoni osillator, He�;! =p20=2M +M!2x20=2. Performing the integral over the zero-frequeny omponents x0 and p0 leads tothe known partition funtion (3.175) of the harmoni osillator.
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Chapter 5
Quantum Statistis

The free energy of a quantum statistial system with polynomial interation an be onsidered as afuntional of the free orrelation funtion (3.182). As suh it obeys a nonlinear funtional di�erentialequation whih an be turned into a reursion relation [21{23℄. This is solved order by order inthe oupling onstant of the interation to �nd all onneted vauum diagrams with their propermultipliities. The proedure is applied here to a system with quarti interation as it ours for theanharmoni osillator or the double well. The results obtained with this method are, of ourse, thesame as for a salar �eld theory with a �4 self interation.All Feynman diagrams with external lines are obtained from funtional derivatives of the onnetedvauum diagrams with respet to the free orrelation funtion. The reursive graphial onstrutionan eÆiently be automatized by omputer algebra with the help of a unique matrix notation for theFeynman diagrams [23℄.5.1 IntrodutionWithin the path integral (3.178) for the partition funtion Z we have expanded the Boltzmann fatorof the ation into a Taylor series with respet to the potential and obtained the general perturbativeexpansion (3.188) for the free energy F of a quantum statistial system. The perturbative oeÆientsare mainly determined by the time integrals over the onneted orrelation funtions of the poten-tial. As known from the \ordinary" Wik rule, presented for the density matrix in Setion 3.4.1,these orrelation funtions an easily be deomposed into produts of two-point funtions, if the po-tential is of polynomial type. For the expansion of the free energy (3.188), the two-point orrelationfuntions (3.182){(3.185) must be used.Sine the number of ontributions to the perturbative oeÆients rapidly inreases from order toorder, it is troublesome to write them down for high orders. Moreover, many ontributions are iden-tial. The number of suh repetitions is alled the multipliity of this ontribution. It was a mainsimpli�ation, when Feynman introdued his pitorial representation. The two-point orrelation fun-tions were displayed by lines with ends representing the time arguments of these two-point funtions.Lines with joint end points are onneted. The joint point is integrated over and is alled vertex. Indiagrams for interating quantum �elds, partiles hit eah other in these interation points. Examplesfor the deomposition of a seond-order perturbation ontribution for a quarti potential into Feynmandiagrams are given in Eqs. (3.140) and (3.141).In order to irumvent the use of the lengthy analyti desription of perturbative ontributionsfor the onstrution of Feynman diagrams, one an approah from a topologial point of view. In65



66 5. Quantum Statistisany order, whih is in our ase haraterized by the number of verties, all topologially di�erentdiagrams having the appropriate number of verties and obeying the ondition that the number oflegs onneted by a vertex is idential with the polynomial degree of the potential ontribute to theperturbative oeÆient of this order. The multipliity of eah Feynman diagram follows ombinatoriallyfrom its symmetry interhanging its lines and verties. Although the topologial point of view is a mainprogress in omparison with the naive analyti desription of perturbative oeÆients, it remains atedious task to determine all possible topologially di�erent diagrams and their orret multipliities ofa high-order perturbative oeÆient. There exist various onvenient omputer programs, for instaneFeynArts [24,25℄ or QGRAF [26℄, for onstruting and ounting Feynman graphs in di�erent �eldtheories. These programs are based on a ombinatorial enumeration of all possible ways of onnetingverties by lines aording to Feynman's rules.We develop an alternative systemati approah to onstrut all topologially di�erent Feynmandiagrams with their multipliities. It relies on onsidering a Feynman diagram as a funtional of itsgraphial elements, i.e. its lines and verties. Funtional derivatives with respet to these elements arerepresented by graphial operations whih remove lines or verties of a Feynman diagram in all possibleways. With these operations, our approah proeeds in two steps. First the onneted vauum dia-grams are onstruted as solutions of a graphial reursion relation derived from a nonlinear funtionaldi�erential equation. In a seond step, all onneted diagrams with external lines are obtained fromfuntional derivatives of the onneted vauum diagrams with respet to the free orrelation funtion.The reursion relation enables one to automatize the proess of onstruting Feynman diagrams andto ount the multipliity with the help of an eÆient omputer algorithm whih is based on a pratialmatrix notation for these diagrams [23℄.In the following, the graphial reursion relation for the free energy of a system with x4 potentialis derived and graphially solved.5.2 Systemati Constrution of Feynman Diagrams for theQuarti Osillator Free EnergyIn order to illustrate the power of the reursive graphial onstrution for Feynman diagrams forquantum statistial systems with polynomial interation, we onsider the quarti osillator in onedimension, whose thermal utuations are ontrolled by a path integralZ = I Dx e�A[x℄ (5.1)over the Boltzmann fator ontaining the ationA[x℄ = 12 Z12 x1G�112 x2 + g4! Z1234 V1234 x1x2x3x4 (5.2)with some oupling onstant g. In this short-hand notation, where we have also used natural units(~ = kB = M = 1), the argument of the oordinate x, the biloal kernel G�1, and the quartiinteration V are indiated by simple number indies, i.e.xi � x(�i); Zi � Z 10 d�i; G�112 � G�1(�1; �2); V1234 � V (�1; �2; �3; �4): (5.3)The kernel is a funtional matrix G�1, while V is a funtional tensor, both being symmetri in theirindies.In the following we shall leave G�1 and V ompletely general, exept for the symmetry with respetto their indies, and insert the physial valuesG�1(�1; �2) = �� �2��21 + !2� Æ(�1 � �2); V (�1; �2; �3; �4) = Æ(�1 � �2)Æ(�1 � �3)Æ(�1 � �4) (5.4)



5.2 Systemati Constrution of Feynman Diagrams for the Quarti Osillator Free Energy 67at the end.We may evaluate the partition funtion (5.1) perturbatively as a power series in the ouplingonstant g. From this we obtain the funtional W = lnZ, whih is related to the free energy F of thesystem by W = ��F , as an expansionW = 1Xp=0 1p! ��g4! �pW (p) : (5.5)The oeÆients W (p) may be displayed as onneted vauum diagrams onstruted from lines andverties. Eah line represents a free orrelation funtion1 2 � G12 ; (5.6)whih is the funtional inverse of the kernel G�1 in the energy funtional (5.2), de�ned byZ2G12G�123 = Æ13 : (5.7)The verties represent an integral over the interation� Z1234 V1234 : (5.8)To onstrut all onneted vauum diagrams ontributing to W (p) to eah order p in perturbationtheory, one onnets p verties with 4p legs in all possible ways aording to Feynman's rules whihfollow from Wik's expansion of orrelation funtions into a sum of all pair ontrations. This yieldsan inreasing number of Feynman diagrams, eah with a ertain multipliity whih follows from ombi-natoris. In total there are 4!pp! ways of ordering the 4p legs of the p verties. This number is reduedby permutations of the legs and the verties whih leave a vauum diagram invariant. Denoting thenumber of self, double, triple and fourfold onnetions with S;D; T; F , there are 2!S ; 2!D; 3!T ; 4!F legpermutations. An additional redution arises from the number N of idential vertex permutations,where the verties remain attahed to the lines emerging from them in the same way as before. Theresulting multipliity of a onneted vauum diagram in the �4 theory is therefore given by the for-mula [5,27℄ ME=0 = 4!p p!2!S+D 3!T 4!F N ; (5.9)where E = 0 reords that the number of external legs of vauum diagrams is zero. The diagram-mati representation of the oeÆients W (p) in the expansion (5.5) of the quantity W is displayed inTable 5.1 up to �ve loops [28{30℄. For higher orders, the fatorially inreasing number of diagramsmakes it more and more diÆult to onstrut all topologially di�erent diagrams and to ount theirmultipliities. In partiular, it beomes quite hard to identify by inspetion the number N of identialvertex permutations. This identi�ation problem is solved by introduing a unique matrix notationfor the graphs [23℄.In the following, we shall generate iteratively all onneted vauum diagrams. We start by identi-fying graphial operations assoiated with funtional derivatives with respet to the kernel G�1, or thepropagator G. Then we show that these operations an be applied to the one-loop ontribution of thefree partition funtion to generate all perturbative ontributions to the partition funtion (5.1). Afterderiving a nonlinear funtional di�erential equation for W , its graphial solution yields all onnetedvauum diagrams order by order in the oupling strength.5.2.1 Basi Graphial OperationsEah Feynman diagram is omposed of integrals over produts of free orrelation funtions G andmay thus be onsidered as a funtional of the kernel G�1. The onneted vauum diagrams satisfy a



68 5. Quantum StatistisTable 5.1: Conneted vauum diagrams and their multipliities of the x4 theory up to �ve loops. Eah diagramis haraterized by the vetor (S;D; T; F ;N) whose omponents speify the number of self, double, tripleand fourfold onnetions, and of the idential vertex permutations leaving the vauum diagram unhanged,respetively.p W (p)1 #13(2,1,0,0;1)2 #224(0,0,0,1;2) #372(2,1,0,0;2)3 #41728(0,3,0,0;6) #53456(1,0,1,0;2) #61728(3,0,0,0;6) #72592(2,2,0,0;2)4 #862208(0,4,0,0;8) #9248832(0,2,0,0;8) #1055296(0,0,2,0;4) #11497664(1,2,0,0;2) #12165888(2,0,1,0;2)#13248832(2,1,0,0;4) #14165888(1,1,1,0;2) #15248832(3,1,0,0;2) #1662208(4,0,0,0;8) #17124416(2,3,0,0;2)
ertain funtional di�erential equation, from whih they will be onstruted reursively. This will bedone by a graphial proedure, for whih we set up the neessary graphial rules now. First we observethat funtional derivatives with respet to the kernel G�1 or to the free propagator G orrespond tothe graphial presriptions of utting or of removing a single line of a diagram in all possible ways,respetively.Cutting LinesSine x is a real salar oordinate, the kernel G�1 is a symmetri funtional matrix. This propertyhas to be taken into aount when performing funtional derivatives with respet to the kernel G�1,whose basi rule is ÆG�112ÆG�134 = 12 fÆ13Æ42 + Æ14Æ32g : (5.10)From the identity (5.7) and the funtional hain rule, we �nd the e�et of this derivative on the freeorrelation funtion �2 ÆG12ÆG�134 = G13G42 +G14G32 (5.11)



5.2 Systemati Constrution of Feynman Diagrams for the Quarti Osillator Free Energy 69whih has the graphial representation�2 ÆÆG�134 1 2 = 1 3 4 2 + 1 4 3 2 : (5.12)Thus di�erentiating a propagator with respet to the kernel G�1 amounts to utting the assoiatedline into two piees. The di�erentiation rule (5.10) ensures that the spatial indies of the kernel aresymmetrially attahed to the newly reated line ends in the two possible ways. When di�erentiatinga general Feynman integral with respet to G�1, the produt rule of funtional di�erentiation leads toa sum of diagrams in whih eah line is ut one.With this graphial operation, the produt of two �elds an be rewritten as a derivative of theation with respet to the kernel x1x2 = 2 ÆA[x℄ÆG�112 ; (5.13)as follows diretly from (5.2) and (5.10). Applying the substitution rule (5.13) to the funtional integralfor the fully interating two-point funtionG12 = 1Z Z Dxx1x2 e�A[x℄ ; (5.14)we obtain the fundamental identity G12 = �2 ÆWÆG�112 : (5.15)Thus, by utting a line of the onneted vauum diagrams in all possible ways, we obtain all diagramsof the fully interating two-point funtion. Analytially this has a Taylor series expansion in powersof the oupling onstant g similar to (5.5)G12 = 1Xp=0 1p! ��g4! �pG(p)12 (5.16)with oeÆients G(p)12 = �2 ÆW (p)ÆG�112 : (5.17)The utting presription (5.17) onverts the vauum diagrams of pth order in the oeÆients W (p) inTable 5.1 to the orresponding ones in the oeÆients G(p)12 of the two-point funtion. The results areshown in Table 5.2 up to four loops. The numbering of diagrams used in Table 5.2 reveals from whihonneted vauum diagrams they are obtained by utting a line.For instane, the diagrams #15.1{#15.5 and their multipliities in Table 5.2 follow from the on-neted vauum diagram #15 in Table 5.1. We observe that the multipliity of a diagram of a two-pointfuntion obeys a formula similar to (5.9):ME=2 = 4!p p! 2!2!S+D 3!T N : (5.18)In the numerator, the 4!p p! permutations of the 4p legs of the p verties are multiplied by a fator 2! forthe permutations of the two end points of the two-point funtion. The number N in the denominatorounts the idential permutations of both the p verties and the two end points.Performing a di�erentiation of the two-point funtion (5.14) with respet to the kernel G�1 yields�2 ÆG12ÆG�134 = G1234 �G12G34 ; (5.19)where G1234 denotes the fully interating four-point funtionG1234 = 1Z Z Dxx1x2x3x4 e�A[x℄ : (5.20)



70 5. Quantum StatistisTable 5.2: Conneted diagrams of the two-point funtion and their multipliities of the x4 theory up to fourloops. Eah diagram is haraterized by the vetor (S;D; T ;N) whose omponents speify the number of self,double, triple onnetions, and of the ombined permutations of verties and external lines leaving the diagramunhanged, respetively.p G(p)121 #1.112(1,0,0;2)2 #2.1192(0,0,1;2) #3.1288(1,1,0;2) #3.2288(2,0,0;2)3 #4.120736(0,2,0;2) #5.16912(0,0,1;4) #5.220736(1,1,0;2) #5.313824(1,0,1;1)#6.110368(2,0,0;4) #6.210368(3,0,0;2) #7.110368(1,2,0;2) #7.220736(2,1,0;1)4 #8.1995328(0,3,0;2) #9.11990656(0,1,0;4) #9.21990656(0,2,0;2) #10.1221184(0,0,2;2) #10.2663552(0,1,1;2)#11.1995328(0,2,0;4) #11.21990656(1,2,0;1) #11.3995328(1,2,0;2) #11.43981312(1,1,0;1) #12.1995328(2,1,0;2)#12.2331776(2,0,1;2) #12.3663552(2,0,1;1) #12.4663552(1,0,1;2) #13.1995328(2,0,0;4) #13.2995328(1,1,0;4)#13.31990656(2,1,0;1) #14.1995328(1,2,0;2) #14.2663552(1,1,1;1) #14.3663552(1,0,1;2) #14.4331776(0,1,1;4)#15.1995328(3,1,0;1) #15.2497664(3,1,0;2) #15.3497664(2,1,0;4) #15.4995328(2,1,0;2) #15.5995328(3,0,0;2)#16.1497664(3,0,0;4) #16.2497664(4,0,0;2) #17.1497664(1,3,0;2) #17.2995328(2,2,0;1) #17.3497664(2,2,0;2)



5.2 Systemati Constrution of Feynman Diagrams for the Quarti Osillator Free Energy 71The termG12G34 in (5.19) subtrats a ertain set of disonneted diagrams fromG1234. By subtratingall disonneted diagrams from G1234, we obtain the onneted four-point funtionG1234 � G1234 �G12G34 �G13G24 �G14G23 (5.21)in the form G1234 = �2 ÆG12ÆG�134 �G13G24 �G14G23 : (5.22)The �rst term ontains all diagrams obtained by utting a line in the diagrams of the two-point-funtionG12. The seond and third terms remove from these the disonneted diagrams. In this way we obtainthe perturbative expansion G1234 = 1Xp=1 1p! ��g4! �pG;(p)1234 (5.23)with oeÆients G;(p)1234 = �2 ÆG(p)12ÆG�134 � pXq=0� pq ��G(p�q)13 G(q)24 +G(p�q)14 G(q)23 � : (5.24)They are listed diagrammatially in Table 5.3 up to three loops. As before in Table 5.2, the multiplenumbering in Table 5.3 indiates the origin of eah diagram of the onneted four-point funtion.For instane, the diagram #11.2.2, #11.4.3, #14.1.2, #14.3.3 in Table 5.3 stems together with itsmultipliity from the diagrams #11.2, #11.4, #14.1, #14.3 in Table 5.2.The multipliity of eah diagram of a onneted four-point funtion obeys a formula similar to(5.18): ME=4 = 4!p p! 4!2!S+D 3!T N : (5.25)This multipliity deomposes into equal parts if the spatial indies 1; 2; 3; 4 are assigned to the fourend points of the onneted four-point funtion, for instane:62208 � 20736 21 43 + 20736 31 42 + 20736 41 32 :(5.26)Generalizing the multipliities (5.9), (5.18), and (5.25) for onneted vauum diagrams, two- and four-point funtions to an arbitrary onneted orrelation funtion with an even number E of end points,we see that ME = 4!p p!E!2!S+D 3!T 4!F N ; (5.27)where N ounts the number of permutations of verties and external lines whih leave the diagramunhanged.Removing LinesWe now study the graphial e�et of funtional derivatives with respet to the free propagator G,where the basi di�erentiation rule (5.10) beomesÆG12ÆG34 = 12 fÆ13Æ42 + Æ14Æ32g : (5.28)We represent this graphially by extending the elements of Feynman diagrams by an open dot withtwo labeled line ends representing the Æ funtion:1 2 = Æ12 : (5.29)



72 5. Quantum Statistis
Table 5.3: Conneted diagrams of the four-point funtion and their multipliities of the x4 theory up to fourloops. Eah diagram is haraterized by the vetor (S;D; T ;N) whose omponents speify the number of self,double, triple onnetions, and of the ombined permutations of verties and external lines leaving the diagramunhanged, respetively.p G;(p)12341 #1.1.124(0,0,0;24)2 #2.1.1, #3.1.11152,5761728(0,1,0;8) #3.1.2, #3.2.11152,11522304(1,0,0;6)3 #4.1.1, #7.1.141472,2073662208(0,2,0;8) #4.1.2, #5.1.1, #5.2.1165888,41472,41472248832(0,1,0;4) #5.1.2, #5.3.227648,2764855296(0,0,1;6)#5.2.2, #6.1.182944,41472124416(1,0,0;8) #5.2.3, #5.3.1, #7.1.2, #7.2.182944,82944,41472,41472248832(1,1,0;2) #6.1.2, #6.2.2, #7.2.220736,20736,82944124416(2,0,0;4)#6.1.3, #6.2.141472,4147282944(2,0,0;6) #7.1.3, #7.2.341472,4147282944(1,1,0;6)4 #8.1.1, #17.1.11990656,9953282985984(0,3,0;8) #8.1.2, #9.2.1, #10.2.13981312,3981312,398131211943936(0,2,0;4) #8.1.3, #11.1.2, #11.3.17962624,1990656,199065611943936(0,2,0;4)#9.1.1, #13.2.13981312,19906565971968(0,1,0;16) #9.1.27962624(0,0,0;24) #9.1.3, #9.2.3, #11.1.1, #11.4.115925248,15925248,7962624,796262447775744(0,1,0;2)#9.2.2, #14.1.1, #14.4.37962624,1990656,199065611943936(0,2,0;4) #10.1.1, #10.2.3, # 14.2.1, #14.4.22654208,2654208,1327104,13271047962624(0,1,1;2) #10.2.2, #12.4.12654208,13271043981312(0,0,1;8)#11.1.3, #11.2.13981312,39813127962624(0,2,0;6) #11.2.2, #11.4.3, #14.1.2, #14.3.37962624,7962624,3981312,398131223887872(1,1,0;2) #11.2.3, #11.4.2, #13.2.2, #13.3.17962624,7962624,3981312,398131223887872(1,1,0;2)#11.2.4, #11.3.2, #17.1.2, #17.2.13981312,3981312,1990656,199065611943936(1,2,0;2) #11.3.3, #11.4.4, #12.1.1, #12.4.57962624,7962624,3981312,398131223887872(1,1,0;2) #11.4.5, #15.3.1, #15.4.17962624,1990656,199065611943936(1,1,0;4)



5.2 Systemati Constrution of Feynman Diagrams for the Quarti Osillator Free Energy 73Table 5.3 (Continued)4 #11.4.6, #13.1.1, #13.2.315925248,3981312,398131223887872(1,0,0;4) #12.1.2, #12.2.2, #13.3.3, #17.2.21990656,1990656,3981312,398131211943936(2,1,0;2) #12.1.3, #16.1.23981312,19906565971968(2,0,0;8)#12.1.4, #12.3.3, #15.1.1, #15.3.23981312,3981312,1990656,199065611943936(2,1,0;2) #12.2.1, #12.4.21327104,13271042654208(1,0,1;6) #12.3.2, #12.4.3, #14.2.2, #14.3.21327104,1327104,2654208,26542087962624(1,0,1;2)#12.3.1, #12.4.41327104,13271042654208(1,0,1;6) #13.1.2, #13.3.4, #15.4.2, #15.5.17962624,7962624,3981312,398131223887872(2,0,0;2) #13.1.3, #16.1.11990656,9953282985984(2,0,0;16)#13.2.4, #13.3.53981312,39813127962624(1,1,0;6) #13.3.2, #15.2.1, #15.3.33981312,995328,9953285971968(2,1,0;4) #14.1.3, #14.2.3, #17.1.3, #17.3.13981312,3981312,1990656,199065611943936(1,2,0;2)#14.1.4, #15.4.43981312,19906565971968(1,1,0;8) #14.3.1, #14.4.11327104,13271042654208(0,0,1;12) #15.1.2, #15.5.3, #16.1.3, #16.2.23981312,3981312,1990656,199065611943936(3,0,0;2)#15.1.3, #15.4.3, #17.2.3, #17.3.21990656,1990656,3981312,398131211943936(2,1,0;2) #15.1.4, #15.4.51990656,19906563981312(2,1,0;6) #15.2.2, #15.5.21990656,19906563981312(3,0,0;6)#15.2.3, #15.4.61990656,19906563981312(2,1,0;6) #15.3.4, #15.5.41990656,19906563981312(2,0,0;12) #16.1.4, #16.2.11990656,19906563981312(3,0,0;6)#17.1.4, #17.2.41990656,19906563981312(1,2,0;6)Thus we an write the di�erentiation (5.28) graphially as follows:ÆÆ 3 4 1 2 = 12 ( 1 3 4 2 + 1 4 3 2) : (5.30)Di�erentiating a line with respet to the free orrelation funtion removes the line, leaving in a sym-metrized way the spatial indies of the free orrelation funtion on the verties to whih the line wasonneted.The e�et of this derivative is illustrated by studying the diagrammati e�et of the operatorL̂ = Z12G12 ÆÆG12 : (5.31)Applying L̂ to a onneted vauum diagram in W (p), the funtional derivative Æ=ÆG12 generates dia-grams in eah of whih one of the 2p lines of the original vauum diagram is removed. Subsequently,the removed lines are again reinserted, so that the onneted vauum diagramsW (p) are eigenfuntions



74 5. Quantum Statistisof L̂, whose eigenvalues 2p ount the lines of the diagrams:L̂W (p) = 2pW (p) : (5.32)As an example, take the expliit �rst-order expression for the vauum diagrams, i.e.W (1) = 3 Z1234 V1234G12G34 ; (5.33)and apply the basi rule (5.28), leading to the desired eigenvalue 2.5.2.2 Perturbation TheoryWe introdue an external urrent J into the funtional (5.2) whih is linearly oupled to the oordinatex. Thus the partition funtion (5.1) beomes the generating funtional Z[J ℄ whih allows us to �ndall free n-point funtions from funtional derivatives with respet to this external urrent J . Due tothe shape of the funtional (5.2) the expetation value of the oordinate x is zero and only orrelationfuntions of an even number of oordinates are nonzero. To alulate all of these, it is possibleto substitute two funtional derivatives with respet to the urrent J by one funtional derivativewith respet to the kernel G�1. This redues the number of funtional derivatives in eah order ofperturbation theory by one half and has the additional advantage that the introdution of the urrentJ beomes superuous.Current ApproahReall briey the standard perturbative treatment, in whih the energy funtional (5.2) is arti�iallyextended by a soure term A[x; J ℄ = A[x℄� Z1 J1x1 : (5.34)The funtional integral for the generating funtionalZ[J ℄ = Z Dx e�A[x;J℄ (5.35)is �rst expliitly alulated for a vanishing oupling onstant g, yieldingZ(0)[J ℄ = exp��12 Tr lnG�1 + 12 Z12 J1G12 J2� ; (5.36)where the trae of the logarithm of the kernel is de�ned by the series [31℄Tr lnG�1 = 1Xn=1 (�1)n+1n Z1:::n �G�112 � Æ12	 � � ��G�1n1 � Æn1	 : (5.37)If the oupling onstant g does not vanish, one expands the generating funtional Z[J ℄ in powers ofthe quarti interation V , and re-expresses the resulting powers of the oordinate within the funtionalintegral (5.35) as funtional derivatives with respet to the urrent J . The original partition funtion(5.1) an thus be obtained from the free generating funtional (5.36) by the formulaZ = exp�� g4! Z1234 V1234 Æ4ÆJ1ÆJ2ÆJ3ÆJ4�Z(0)[J ℄����J=0 : (5.38)Expanding the exponential in a power series, we arrive at the perturbation expansionZ = �1� g4! Z1234 V1234 Æ4ÆJ1ÆJ2ÆJ3ÆJ4+12 g2(4!)2 Z12345678 V1234V5678 Æ8ÆJ1ÆJ2ÆJ3ÆJ4ÆJ5ÆJ6ÆJ7ÆJ8 + : : :�Z(0)[J ℄����J=0 ; (5.39)in whih the pth order ontribution for the partition funtion requires the evaluation of 4p funtionalderivatives with respet to the urrent J .



5.2 Systemati Constrution of Feynman Diagrams for the Quarti Osillator Free Energy 75Kernel ApproahThe derivation of the perturbation expansion simpli�es, if we use funtional derivatives with respetto the kernel G�1 in the ation (5.2) rather than with respet to the urrent J . This allows us tosubstitute the previous expression (5.38) for the partition funtion byZ = exp��g6 Z1234 V1234 Æ2ÆG�112 ÆG�134 � eW (0) ; (5.40)where the zeroth order of the negative free energy has the diagrammati representationW (0) = �12 Tr lnG�1 � 12 : (5.41)Expanding again the exponential into a power series, we obtainZ = �1� g6 Z1234 V1234 Æ2ÆG�112 ÆG�134 + 12 g236 Z12345678 V1234V5678 Æ4ÆG�112 ÆG�134 ÆG�156 ÆG�178 + : : :� eW (0) :(5.42)Thus we need only half as many funtional derivatives than in (5.39). Taking into aount (5.10),(5.11), and (5.37), we obtainÆW (0)ÆG�112 = � 12 G12 ; Æ2W (0)ÆG�112 ÆG�134 = 14 fG13G24 +G14G23g ; (5.43)suh that the partition funtion Z beomesZ = �1� 3 g4! Z1234 V1234G12G34 + 12 g2(4!)2 Z12345678 V1234V5678� "9G12G34G56G78 + 24G15G26G37G48 + 72G12G35G46G78# + : : :) eW (0) : (5.44)This has the diagrammati representationZ =8<:1� g4! 3 + 12 g2(4!)2 249 + 24 + 72 35 + : : :9=; eW (0) :(5.45)All diagrams in this expansion follow diretly by suessively utting lines of the basi one-loop vauumdiagram (5.41) aording to (5.42). By going to the logarithm of the partition funtion Z, we �nd adiagrammati expansion for WW = 12 � g4! 3 + 12 g2(4!)2 8<: 24 + 72 9=; + : : : ; (5.46)whih turns out to ontain preisely all onneted diagrams in (5.45) with the same multipliities. Inthe next setion we show that this diagrammati expansion for W an be derived more eÆiently bysolving a di�erential equation.5.2.3 Funtional Di�erential Equation for W = lnZRegarding the partition funtion Z as a funtional of the kernel G�1, we derive a funtional di�erentialequation for Z. We start with the trivial identityZ Dx ÆÆx1 nx2 e�A[x℄o = 0 : (5.47)



76 5. Quantum StatistisTaking into aount the expliit form of the ation (5.2), we perform the funtional derivative withrespet to the oordinate and obtainZ Dx�Æ12 � Z3G�113 x2x3 � g6 Z345 V1345 x2x3x4x5� e�A[x℄ = 0 : (5.48)Applying the substitution rule (5.13), this equation an be expressed in terms of the partition funtion(5.1) and its derivatives with respet to the kernel G�1:Æ12 Z + 2 Z3G�113 ÆZÆG�123 = 23 g Z345 V1345 Æ2ZÆG�123 ÆG�145 : (5.49)Note that this linear funtional di�erential equation for the partition funtion Z is, indeed, solved by(5.40) due to the ommutation relationexp��g6 Z1234 V1234 Æ2ÆG�112 ÆG�134 � G�156 �G�156 exp��g6 Z1234 V1234 Æ2ÆG�112 ÆG�134 �= �g3 Z78 V5678 ÆÆG�178 exp��g6 Z1234 V1234 Æ2ÆG�112 ÆG�134 � (5.50)whih follows from the anonial oneÆÆG�112 G�134 �G�134 ÆÆG�112 = 12 fÆ13Æ24 + Æ14Æ23g : (5.51)Going over from Z toW = lnZ, the linear funtional di�erential equation (5.49) turns into a nonlinearone: Æ12 + 2 Z3G�113 ÆWÆG�123 = 23 g Z345 V1345 � Æ2WÆG�123 ÆG�145 + ÆWÆG�123 ÆWÆG�145 � : (5.52)If the oupling onstant g vanishes, this is immediately solved by (5.41). For a nonvanishing ouplingonstant g, the right-hand side in (5.52) produes orretions to (5.41) whih we shall denote withW (int). Thus the quantity W deomposes aording toW =W (0) +W (int) : (5.53)Inserting this into (5.52) and taking into aount (5.43), we obtain the following funtional di�erentialequation for W (int):Z12G�112 ÆW (int)ÆG�112 = g4 Z1234 V1234G12G34 � g3 Z1234 V1234G12 ÆW (int)ÆG�134+g3 Z1234 V1234 � Æ2W (int)ÆG�112 ÆG�134 + ÆW (int)ÆG�112 ÆW (int)ÆG�134 � : (5.54)With the help of the funtional hain rule, the �rst and seond derivatives with respet to the kernelG�1 are rewritten as ÆÆG�112 = � Z34G13G24 ÆÆG34 (5.55)and Æ2ÆG�112 ÆG�134 = Z5678G15G26G37G48 Æ2ÆG56ÆG78+12 Z56 fG13G25G46 +G14G25G36 +G23G15G46 +G24G15G36g ÆÆG56 ; (5.56)respetively, so that the funtional di�erential equation (5.54) for W (int) takes the formZ12G12 ÆW (int)ÆG12 = �g4 Z1234 V1234G12G34 � g Z123456 V1234G12G35G46 ÆW (int)ÆG56�g3 Z12345678 V1234G15G26G37G48� Æ2W (int)ÆG56ÆG78 + ÆW (int)ÆG56 ÆW (int)ÆG78 � : (5.57)



5.2 Systemati Constrution of Feynman Diagrams for the Quarti Osillator Free Energy 775.2.4 Reursion Relation and Graphial SolutionWe now onvert the funtional di�erential equation (5.57) into a reursion relation by expandingW (int)into a power series in g: W (int) = 1Xp=1 1p! ��g4! �pW (p) : (5.58)Using the property (5.32) that the oeÆientW (p) satis�es the eigenvalue problem of the line numberingoperator (5.31), we obtain the reursion relationW (p+1) = 12 Z123456 V1234G12G35G46 ÆW (p)ÆG56 + 4 Z12345678 V1234G15G26G37G48 Æ2W (p)ÆG56ÆG78+4 p�1Xq=1� pq �Z12345678 V1234G15G26G37G48 ÆW (p�q)ÆG56 ÆW (q)ÆG78 (5.59)and the initial ondition (5.33). With the help of the graphial rules of Setion 5.2.1, the reursionrelation (5.59) an be written diagrammatially as followsW (p+1) = 4 Æ2W (p)Æ 1 2 Æ 3 4 4321 + 12 ÆW (p)Æ 1 2 21+ 4 p�1Xq=1� pq � ÆW (p�q)Æ 1 2 21 43 ÆW (q)Æ 3 4 ; p � 1 : (5.60)This is iterated starting from W (1) = 3 : (5.61)The right-hand side of (5.60) ontains three di�erent graphial operations. The �rst two are linearand involve one or two line amputations of the previous perturbative order. The third operation isnonlinear and mixes two di�erent one-line amputations of lower orders.To demonstrate the working of (5.60), we alulate the onneted vauum diagrams up to �ve loops.Applying the linear operations to (5.59), we obtain immediatelyÆW (1)Æ 1 2 = 6 21 ; Æ2W (1)Æ 1 2 Æ 3 4 = 6 21 43 : (5.62)Inserted into (5.60), these lead to the three-loop vauum diagramsW (2) = 24 + 72 : (5.63)Proeeding to the next order, we have to perform one- and two-line amputations on the vauum graphsin (5.63), leading toÆW (2)Æ 1 2 = 96 1 2 + 144 1 2 + 144 1 2 ; (5.64)



78 5. Quantum Statistisand subsequently toÆ2W (2)Æ 1 2 Æ 3 4 = 288 31 42 + 144 21 43 + 288 2 31 4+144 3 41 2 + 144 1 32 4 + 144 2 41 3 : (5.65)Inserting (5.64) and (5.65) into (5.60) and taking into aount (5.62), we �nd the onneted vauumdiagrams of order p = 3 with their multipliities as shown in Table 5.1. We observe that the nonlinearoperation in (5.60) does not lead to topologially new diagrams. It only orrets the multipliities ofthe diagrams generated from the �rst two operations. This is true also in higher orders. The onnetedvauum diagrams of the subsequent order p = 4 and their multipliities are listed in Table 5.1.As a ross-hek we an also determine the total multipliities M (p) of all onneted vauumdiagrams ontributing to W (p). To this end we reall that eah of the M (p) diagrams in W (p) onsistsof 2p lines. The amputation of one or two lines therefore leads to 2pM (p) and 2p(2p�1)M (p) diagramswith 2p � 1 and 2p � 2 lines, respetively. Considering only the total multipliities, the graphialreursion relations (5.60) redue to the form derived before in Ref. [22℄M (p+1) = 16p(p+ 1)M (p) + 16 p�1Xq=1 p!(p� q � 1)!(q � 1)!M (q)M (p�q); p � 1 : (5.66)These are solved starting with the initial valueM (1) = 3 ; (5.67)leading to the total multipliitiesM (2) = 96 ; M (3) = 9504 ; M (4) = 1880064 ; (5.68)whih agree with the results listed in Table 5.1. In addition we note that the next orders would ontainM (5) = 616108032 ; M (6) = 301093355520 ; M (7) = 205062331760640 (5.69)onneted vauum diagrams.



Chapter 6
Quantum Field Theory

We present a method for a reursive graphial onstrution of Feynman diagrams with their orretmultipliities in quantum eletrodynamis (QED) [32℄. The method is �rst applied to �nd all dia-grams ontributing to the vauum energy from whih all n-point funtions are derived by funtionaldi�erentiation with respet to eletron and photon propagators, and to the interation. Basis for ouronstrution is a funtional di�erential equation obeyed by the vauum energy when onsidered as afuntional of the free propagators and the interation. Our method does not employ external souresin ontrast to traditional approahes.6.1 IntrodutionIn quantum �eld theory, it is well known [33,34℄ that the omplete knowledge of all vauum diagramsimplies the knowledge of the entire theory (\the vauum is the world"). Indeed, it is possible toderive all orrelation funtions and sattering amplitudes from the vauum diagrams. This has beenelaborated expliitly for �4 theory in the disordered phase in Refs. [5,23℄ and for the ordered phase inRef. [35,36℄, following a general theoretial framework laid out some time ago [21,22℄. This knowledgeis now applied for onstruting an eÆient algebrai method along these lines for �eld theories offundamental partiles [32℄.The purpose of the present hapter is to do this for quantum eletrodynamis (QED). We show howto derive systematially all Feynman diagrams of the theory together with their orret multipliitiesin a two step proess: First we �nd the vauum energy from a sum over all vauum diagrams by areursive graphial proedure. This is developed by solving a funtional di�erential equation whihinvolves funtional derivatives with respet to the free eletron and photon propagators. In a seondstep, we �nd all orrelation funtions by a diagrammati appliation of funtional derivatives uponthe vauum energy. In ontrast to onventional proedures [6,37{41℄, no external urrents oupled tosingle �elds are used, suh that there is no need for Grassmann soures for the eletron �elds. Anadditional advantage of our proedure is that the number of derivatives to be performed for a ertainorrelation funtion is half as big as with external soures.In Setion 6.2 we establish the partition funtion of Eulidean QED as a funtional with respet tothe inverse eletron and photon propagators as well as a generalized interation. By setting up graphialrepresentations for funtional derivatives with respet to these biloal and triloal funtions, we show inSetion 6.3 that the partition funtion onstitutes a generating funtional for all orrelation funtions.This forms the basis for a perturbative expansion of the vauum energy in terms of onneted vauumdiagrams. In Setion 6.4 we then derive a reursion relation whih allows to graphially onstrut79



80 6. Quantum Field Theorythe onneted vauum diagrams order by order. From these we obtain in Setion 6.5 all diagrams forself interations and sattering proesses by utting eletron as well as photon lines or by removingverties. Along similar lines we apply in Setion 6.6 our method for sattering proesses in the preseneof an external eletromagneti �eld.6.2 Generating Funtional without Partile SouresWe begin by setting up a generating funtional for all Feynman diagrams of quantum eletrodynamiswhih does not employ external partile soures oupled linearly to the �elds.6.2.1 Partition Funtion of QEDOur notation for the ation of QED in Eulidean spaetime with a gauge �xing of Feynman type isAQED[ � ;  ;A℄ = Z d4x � � �(i����� +m) � + 12A�(��2)A� � e � ����A� �� (6.1)with Dira spinor �elds  �; � � =  y�0�� (�; � = 1; : : : ; 4) and Maxwell's vetor �eld A� (� = 0; : : : ; 3).The properties of the vauum are ompletely desribed by the partition funtionZQED = I D � D DA e�AQED[ � ; ;A℄; (6.2)where the eletron �elds � and  are Grassmannian. Let us split the ation into the three termsAQED[ � ;  ;A℄ = A [ � ;  ℄ +AA[A℄ +Aint[ � ;  ;A℄; (6.3)orresponding to the Dira, Maxwell, and interation terms in (6.1). For the upoming developmentit will be useful to onsider the free parts of the ation as biloal funtionals. The free ation for theDira �elds is A [ � ;  ℄ = Z Z d4xd4x0 � �(x)S�1F��(x; x0) �(x0); (6.4)with a kernel S�1F��(x; x0) = (i����� +mÆ��)Æ(x� x0); (6.5)while the free ation for the Maxwell �eld readsAA[A℄ = 12 Z Z d4xd4x0A�(x)D�1F��(x; x0)A�(x0) (6.6)with a kernel D�1F��(x; x0) = ��2Æ(x� x0)Æ�� : (6.7)In the following, we shall omit all vetor and spinor indies, for brevity.6.2.2 Generalized AtionOur generating funtional will arise from a generalization of the free ationA(0)[ � ;  ;A℄ = A [ � ;  ℄ +AA[A℄ (6.8)to biloal funtionals of arbitrary kernels S�1(x1; x2) and D�1(x1; x2) = D�1(x2; x1) aording toA [ � ;  ℄ ! A [ � ;  ;S�1℄ = Z Z d4x1d4x2 � (x1)S�1(x1; x2) (x2); (6.9)AA[A℄ ! AA[A;D�1℄ = 12 Z Z d4x1d4x2 A(x1)D�1(x1; x2)A(x2): (6.10)



6.2 Generating Funtional without Partile Soures 81The kernels S�1(x1; x2) and D�1(x1; x2) are only required to possess a funtional inverse S(x1; x2)and D(x1; x2). Similarly, we shall generalize the interation toAint[ � ;  ;A℄ ! Aint[ � ;  ;A;V ℄ = �e Z Z Z d4x1d4x2d4x3 V (x1; x2;x3) � (x1) (x2)A(x3); (6.11)where V (x1; x2;x3) is an arbitrary triloal funtion. At the end we shall return to QED by substitutingS ! SF; D ! DF and eV (x1; x2;x3)! e�Æ(x1 � x2)Æ(x1 � x3).The generalized partition funtionZ = I D � D DA e�A[ � ; ;A;S�1;D�1;V ℄ (6.12)with the ationA[ � ;  ;A;S�1; D�1; V ℄ = A [ � ;  ;S�1℄ +AA[ � ;  ;D�1℄ +Aint[ � ;  ;A;V ℄ (6.13)then represents a funtional of the biloal quantities S�1(x1; x2); D�1(x1; x2), and of the triloal fun-tion V (x1; x2;x3). All n-point orrelation funtions of the theory are obtained from expetation valuesde�ned byh Ô1(x1) Ô2(x2) � � � i = Z�1 I D � D DA O1(x1)O2(x2) � � � e�A[ � ; ;A;S�1;D�1;V ℄; (6.14)where the loal operators Ôi(x) are produts of �eld operators  ̂(x), �̂ (x), and Â(x) at the samespaetime point. Important examples for expetation values of this kind are the photon and theeletron propagators of the interating theoryG2(x1; x2) � h Â(x1) Â(x2) i = Z�1 I D � D DA A(x1)A(x2) e�A[ � ; ;A;S�1;D�1;V ℄; (6.15)eG2(x1; x2) � h  ̂(x1) �̂ (x2) i = Z�1 I D � D DA  (x1) � (x2) e�A[ � ; ;A;S�1;D�1;V ℄: (6.16)For a perturbative alulation of the partition funtion Z we de�ne the free vauum funtionalZ(0) � I D � D DA e�A(0) [ � ; ;A;S�1;D�1℄; (6.17)whose ation is quadrati in the �elds. The path integral is Gaussian and yieldsZ(0) = exp �Tr lnS�1� exp ��12Tr lnD�1� : (6.18)The free orrelation funtions of arbitrary loal eletron and photon operators Ô(x) are de�ned by thefree part of the expetation values (6.14)h Ô1(x1) Ô2(x2) � � � i(0) = [Z(0)℄�1 I D � D DA O1(x1)O2(x2) � � � e�A(0)[ � ; ;A;S�1;D�1℄; (6.19)and the free-�eld propagators are the expetation valuesG2(0) (x1; x2) = D(x1; x2) � h Â(x1) Â(x2) i(0) � D(x2; x1); (6.20)eG2(0) (x1; x2) = S(x1; x2) � h  ̂(x1) �̂ (x2) i(0): (6.21)To avoid a pile up of in�nite volume fators in a perturbation expansion, it is favorable to go over fromZ(0) to the vauum energy W (0) de�ned byW (0) � lnZ(0) =W (0) +W (0)A ; (6.22)



82 6. Quantum Field Theorywhere the free eletron and photon parts areW (0) = Tr lnS�1 (6.23)and W (0)A = �12Tr lnD�1: (6.24)The total vauum energy W = lnZ (6.25)is obtained perturbatively by expanding the funtional integral (6.12) in powers of the oupling onstante: W = 1Xp=0 e2pW (p); (6.26)where the quantities W (p) with p � 1 are free-�eld expetation values of the type (6.19):W (p) = Z1���6p V123 � � �V6p�2 6p�1 6ph  ̂6p�1 � � �  ̂5  ̂2 �̂ 1 �̂ 4 � � � �̂ 6p�2 Â3 Â6 � � � Â6p i(0); p � 1: (6.27)In the sequel we shall use from now on the short-hand notation 1 = x1; 2 = x2; : : : and R1��� = R d4x1 � � � .The expetation values in (6.27) are evaluated with the help of Wik's rule as a sum of Feynmanintegrals, whih are pitured as onneted vauum diagrams onstruted from lines and verties. Astraight line with an arrow represents an eletron propagator1 2 � S12; (6.28)whereas a wiggly line stands for a photon propagator1 2 � D12: (6.29)The vertex represents an integral over the interation potential:� e Z123 V123: (6.30)The vauum energies (6.23) and (6.24) will be represented by single-loop diagramsW (0) = � (6.31)and W (0)A = 12 : (6.32)This leaves us with the important problem of �nding all onneted vauum diagrams. For this weshall exploit that the partition funtion (6.12) is a funtional of the biloal funtions S�1(x1; x2),D�1(x1; x2), and of the triloal funtion V (x1; x2;x3).6.3 Perturbation TheoryAs a preparation for our generation proedure for vauum diagrams, we set up a graphial represen-tation of funtional derivatives with respet to the kernels S�1, D�1, the propagators S, D, and theinteration funtion V . After this we express the vauum funtionalW in terms of a series of funtionalderivatives of the free partition funtion Z(0) with respet to the kernels.



6.3 Perturbation Theory 836.3.1 Funtional Derivatives with Respet to S�1(x1; x2), D�1(x1; x2), and V (x1; x2; x3)Eah Feynman diagram is omposed of integrals over produts of the propagators S, D and may thusbe onsidered as a funtional of the kernels S�1, D�1. In the following we set up the graphial rulesfor performing funtional derivatives with respet to these funtional matries. With these rules wean generate all 2n-point orrelation funtions with n = 1; 2; : : : from vauum diagrams. To produealso (2n+ 1)-point orrelation funtions with n = 1; 2; : : : suh as the fundamental three-point vertexfuntion from vauum diagrams, it is useful to introdue additionally a funtional derivative withrespet to the interation funtion V123.Funtional Derivative with Respet to the Photon KernelThe kernel D�112 of the photon is symmetri D�112 = D�121 , so that the basi funtional derivatives arealso symmetri [23℄, ÆD�112ÆD�134 � 12 fÆ13Æ42 + Æ14Æ32g ; (6.33)as is disussed in detail in Ref. [35℄. By the hain rule of di�erentiation, this de�nes the funtionalderivative with respet to D�1 for all funtionals of D�1. As an example, we alulate the free photonpropagator (6.20) by applying the operator Æ=ÆD�112 to Eq. (6.17). Taking into aount Eq. (6.22) andEq. (6.33), we �nd D12 = �2 ÆW (0)AÆD�112 : (6.34)Inserting the expliit form (6.24), we obtainD12 = ÆÆD�112 Tr lnD�1: (6.35)With the notation (6.29) and (6.32), we an write relation (6.34) graphially as1 2 = � ÆÆD�112 : (6.36)This diagrammati equation may be viewed as a speial ase of a general graphial rule derived asfollows: Let us apply the funtional derivative (6.33) to a photon propagator D12. Beause of theidentity Z�1 D1�1D�1�12 = Æ12 (6.37)we �nd � ÆD12ÆD�134 = 12 fD13D42 +D14D32g : (6.38)Diagrammatially, this equation implies that the operation �Æ=ÆD�134 applied to a photon line (6.29)amounts to utting the line:� ÆÆD�134 1 2 = 12 ( 1 3 4 2 + 1 4 3 2 ): (6.39)Note that the indies of the kernel D�134 are symmetrially attahed to the newly reated line ends inthe two possible ways due to the di�erentiation rule (6.33). This rule implies diretly the diagrammatiequation (6.36).



84 6. Quantum Field TheoryConsider now higher-order orrelation funtions whih follow from higher funtional derivatives ofW (0)A . From the de�nition (6.19) and Eq. (6.10), we obtain the free four-point funtion as the seondfuntional derivative G4(0)1234 � h Â1 Â2 Â3 Â4 i(0) = 4 e�W (0)A Æ2ÆD�112 ÆD�134 eW (0)A : (6.40)Beause of the symmetry of D12, the order in whih the spaetime arguments appear in the inversepropagators is of no importane. Inserting for W (0)A the expliit form (6.24), the �rst derivative yieldsvia Eq. (6.35) just �D34 expfW (0)A g, the seond derivative applied to this gives with the rule (6.38)and, one more (6.35), G4(0)1234 = D13D24 +D32D14 +D12D34: (6.41)The right-hand side has the graphial representationG4(0)1234 = 12 43 + 12 43 + 12 43 : (6.42)The same diagrams are obtained by applying the utting rule (6.39) twie to the single-loop diagram(6.32).While derivatives with respet to the kernel D�1 amount to utting photon lines, we show now thatderivatives with respet to the photon propagator D lead to line amputations. The transformationrule between the two operations follows from relation (6.38):ÆÆD�112 = � Z34 D13D24 ÆÆD34 ; (6.43)whih is equivalent to ÆÆD12 = � Z34 D�113 D�124 ÆÆD�134 : (6.44)The funtional derivative with respet to D12 satis�es of ourse the fundamental relation (6.33):ÆD12ÆD34 = 12 fÆ13Æ42 + Æ14Æ32g : (6.45)We shall represent the right-hand side graphially by extending the Feynman diagrams by the symbol:1 2 � Æ12: (6.46)If we write the funtional derivative with respet to the propagator D12 graphially asÆÆD12 � ÆÆ 1 2 ; (6.47)we may express Eq. (6.45) asÆÆ 1 2 3 4 = 12 ( 1 2 4 2 + 1 4 3 2 ): (6.48)Thus, di�erentiating a photon line with respet to the orresponding propagator amputates this line,leaving only the symmetrized indies at the end points.



6.3 Perturbation Theory 85Funtional Derivative with Respet to the Eletron KernelSetting up graphial representations for funtional derivatives for eletrons is di�erent from that inthe photon ase sine the kernel S�1 is no longer symmetri. The funtional derivative is therefore theusual one ÆS�112ÆS�134 = Æ13Æ42; (6.49)from whih all others are derived via the hain rule of di�erentiation. The free eletron propagator S12is found in analogy to (6.34) by di�erentiating the free eletron vauum funtional (6.23) with respetto the inverse eletron propagator S�1: S12 = ÆW (0) ÆS�121 : (6.50)This implies S12 = ÆÆS�121 Tr lnS�1; (6.51)whih follows also from Eq. (6.49) and the hain rule of di�erentiation. The graphial interpretationof the funtional derivative Æ=ÆS�121 is quite analogous to the photon ase. In analogy to Eq. (6.36), wewrite expression (6.51) diagrammatially as1 2 = � ÆÆS�121 : (6.52)This, in turn, an be understood as being a onsequene of the general utting rule for eletron lines:ÆÆS�143 1 2 = � 31 42 ; (6.53)whih graphially expresses the derivative relationÆS12ÆS�143 = �S14S32: (6.54)The free eletron 4-point funtion is obtained from two funtional derivatives aording toeG4(0)1234 � h  ̂1  ̂2 �̂ 3 �̂ 4 i(0) = e�W (0) Æ2ÆS�132 ÆS�141 eW (0) : (6.55)Here, the eletron �elds must be properly rearranged to  ̂2 �̂ 3 ̂1 �̂ 4 for applying the funtional deriva-tives with respet to S�1. Using Eqs. (6.50) and (6.54) we obtain from Eq. (6.55)eG4(0)1234 = S23S14 � S24S13; (6.56)or graphially eG4(0)1234 = 12 43 � 12 43 : (6.57)Derivatives with respet to the propagators S satisfy the relationÆS12ÆS34 = Æ13Æ42; (6.58)whih in analogy to (6.45) is represented graphially as an amputation of an eletron lineÆÆ 3 4 1 2 = 1 3 4 2 : (6.59)



86 6. Quantum Field TheoryHere we have introdued the additional diagrammati symbols1 2 � Æ12; (6.60)ÆÆS12 � ÆÆ 1 2 : (6.61)Di�erentiating an eletron line with respet to the orresponding propagator removes this line, leavingonly the indies at the end points of the remaining lines.The analyti relations between utting and amputating lines are now, just as in Eqs. (6.43) and(6.44): ÆÆS�112 = � Z34 S31S24 ÆÆS34 ; (6.62)ÆÆS12 = � Z34 S�131 S�124 ÆÆS�134 : (6.63)With the above graphial representations of the funtional derivatives, it will be possible to derivesystematially all vauum diagrams of the interating theory order by order in the oupling strengthe, and from these all diagrams with an even number of legs.Funtional Derivative with Respet to the InterationIf we want to �nd amplitudes involving an odd number of photons suh as the three-point funtionfrom vauum diagrams, the derivatives with respet to the kernels S�1, D�1 are not enough. Herethe general triloal interation funtion V123 of Eq. (6.11) is needed. Thus, we de�ne an assoiatedfuntional derivative with respet to this interation to satisfyÆV123ÆV456 = Æ14Æ52Æ36: (6.64)By introduing the graphial rule ÆÆ 21 3 � ÆÆV123 ; (6.65)the de�nition of the funtional derivative (6.64) an be expressed asÆÆ 54 6 21 3 = 251 436 ; (6.66)where the right-hand side represents a produt of Æ funtions as de�ned in Eqs. (6.46) and (6.60).6.3.2 Vauum Energy as Generating FuntionalWith the above-introdued diagrammati operations, the vauum energyW [S�1; D�1; V ℄ onstitutes agenerating funtional for all orrelation funtions. Its evaluation proeeds by expanding the exponentialin the partition funtion (6.12) in powers of the oupling onstant e, leading to the Taylor seriesZ = 1Xp=0 e2p(2p)! I D � D DA �Z1���6 V123V456 � 1 2A3 � 4 5A6�p e�A(0)[ � ; ;A;S�1;D�1℄: (6.67)The produts of pairs of �elds � 1 2 and A3A6 an be substituted by a funtional derivative withrespet to S�1 and D�1, leading to the perturbation expansionZ � 1Xp=0 e2pZ(p) = 1Xp=0 (�2e2)p(2p)! �Z1���6 V123V456 Æ3ÆS�112 ÆS�145 ÆD�136 �p Z(0): (6.68)



6.4 Graphial Reursion Relation for Conneted Vauum Diagrams 87Note the two advantages of this expansion over the onventional one in terms of urrents oupledlinearly to the �elds. First, it ontains only half as many funtional derivatives. Seond, it does notontain derivatives with respet to Grassmann variables.Inserting for Z(0) the free vauum funtional (6.22), we obtain for the �rst-order term Z(1)Z(1) = 12! Z1���6 V123V456(�2) Æ3ÆD�136 ÆS�112 ÆS�145 Z(0): (6.69)Sine Z = Z(0) + e2Z(1) + : : : = expnW (0) + e2W (1) + : : :o ; (6.70)this orresponds to a �rst-order orretion W (1) to the vauum energy W (0):W (1) = 12! Z1:::6 V123V456(�2)ÆW (0)AÆD�136  Æ2W (0) ÆS�112 ÆS�145 + ÆW (0) ÆS�112 ÆW (0) ÆS�145 ! : (6.71)Expressing the derivatives with respet to the kernels by the orresponding propagators via Eqs. (6.34),(6.50), and taking into aount (6.54), W (1) beomesW (1) = 12 Z1:::6 V123V456D36 (S21S54 � S24S51) : (6.72)Aording to the Feynman rules (6.28){(6.30), this is represented by the diagramsW (1) = 12 � 12 : (6.73)Note that eah losed eletron loop auses a fator �1.6.4 Graphial Reursion Relation for Conneted VauumDiagramsIn this setion, we derive a funtional di�erential equation for the vauum funtional W [S�1; D�1; V ℄whose solution leads to a graphial reursion relation for all onneted vauum diagrams.6.4.1 Funtional Di�erential Equation for W = lnZThe funtional di�erential equation for the vauum funtional W [S�1; D�1; V ℄ is derived from thefollowing funtional integral identityI D � D DA ÆÆ � 1 n � 2 e�A[ � ; ;A;S�1;D�1;V ℄o = 0 (6.74)with the ation (6.13). This identity is the funtional generalization of the trivial integral identityR +1�1 dx f 0(x) = 0 for funtions f(x) whih vanish at in�nity. Nontrivial onsequenes of Eq. (6.74)are obtained by performing the funtional derivative in the integrand whih yieldsI D � D DA �Æ12 + Z3 � 2S�113  3 � e Z34 V134 � 2 3A4� e�A[ � ; ;A;S�1;D�1;V ℄ = 0: (6.75)Substituting the �eld produt � 2 3 by funtional derivatives with respet to the eletron kernel S�123 ,this equation an be expressed in terms of the partition funtion (6.12):ZÆ12 � Z3 S�113 ÆZÆS�123 + e Z34 V134 ÆÆS�123 [hÂ4iZ℄ = 0: (6.76)



88 6. Quantum Field TheoryTo bring this funtional di�erential equation into a more onvenient form, we alulate expliitly theterm ontaining the expetation of the �eld A. This is done starting from the integral identityI D � D DA ÆÆA1 e�A[ � ; ;A;S�1;D�1;V ℄ = 0: (6.77)Note this identity is not endangered by the gauge freedom in the eletromagneti vetor potentialA� due to the presene of a gauge �xing term in the ation (6.1). This ensures that the exponentialvanishes at the boundary of all A �eld diretions.After di�erentiating the ation in the exponential of Eq. (6.77), we �nd the expetation of thephoton �eld Z1h Â1 iD�112 = �e Z34 V342h 4 � 3 i: (6.78)Multiplying this with R2D25, we yieldh Â5 i = �e Z234 V342D25 ÆWÆS�134 ; (6.79)where we have used Z = eW . Inserting this into Eq. (6.76), we obtainÆ12 � Z3 S�113 ÆWÆS�123 = e2 Z3���7 V134V567D47� Æ2WÆS�123 ÆS�156 + ÆWÆS�123 ÆWÆS�156 � : (6.80)Setting x1 = x2 and performing the integration over x1, this leads to the nonlinear funtional di�er-ential equation for the vauum funtional WZ1 Æ11 � Z12 S�112 ÆWÆS�112 = e2 Z1���6 V123V456D36� Æ2WÆS�112 ÆS�145 + ÆWÆS�112 ÆWÆS�145 � ; (6.81)whih will form the basis for deriving the desired reursion relation for the vauum diagrams. The�rst term on the left-hand side of Eq. (6.81) is in�nite, but in the next setion we will show that thisanels against an in�nity in the seond term.6.4.2 Reursion RelationEquation (6.81) ontains funtional derivatives with respet to the eletron kernel S�1 whih areequivalent to utting lines in the vauum diagrams. For pratial purposes it will be more onvenientto work with derivatives with respet to the propagators S whih remove eletron lines. The seondterm on the left-hand side of Eq. (6.81) ontains the operation � R12 S�112 Æ=ÆS�112 , whih we onvertinto the di�erential operator N̂F = Z12 S12 ÆÆS12 (6.82)with the help of (6.62). This operator has a simple graphial interpretation. The derivative Æ=ÆS12removes an eletron line from a Feynman diagram, and the fator S12 restores it. This operation isfamiliar from the number operator in seond quantization. The operator N̂F ounts the number ofeletron lines in a Feynman diagram G: N̂FG = NFG: (6.83)When applied to the vauum diagrams W (p) of order p � 1, this operator givesN̂FW (p) = 2pW (p); p � 1; (6.84)sine the number of eletron lines in a vauum diagram without external soures in quantum eletro-dynamis is equal to the number of verties. The restrition in Eq. (6.84) to p � 1 is neessary due



6.4 Graphial Reursion Relation for Conneted Vauum Diagrams 89to a speial role of the vauum diagram. Take, for example, the eletron vauum diagram of the freetheory (6.23). By applying the operator N̂F, we obtain with (6.50)N̂FW (0) = � Z12 S�112 S21 = � Z1 Æ11; (6.85)whih is a divergent trae integral preisely aneling the in�nite �rst term in Eq. (6.81).Separating out W (0) in the expansion (6.26) of the vauum funtional, the left-hand side of thefuntional di�erential equation (6.81) has the expansionZ1 Æ11 + N̂FW = 1Xp=1 2p e2pW (p) = 1Xp=0 2(p+ 1) e2(p+1)W (p+1): (6.86)On the right hand side of Eq. (6.81), we express the �rst and seond funtional derivatives with respetto the kernel S�1 in terms of funtional derivatives with respet to the propagator S by using Eq. (6.62)and Æ2ÆS�112 ÆS�134 = Z5678 S51S26S73S48 Æ2ÆS56ÆS78 + Z56 [S53S41S26 + S23S46S51℄ ÆÆS56 : (6.87)Inserting here the expansion (6.26) and omparing equal powers in e with those in Eq. (6.86), weobtain the following reursion formula for the expansion oeÆients of the vauum funtionalW (p+1) = 12(p+ 1)( Z1:::10 V123V456D36S71S28S94S5 10 Æ2W (p)ÆS78ÆS9 10+2 Z1:::8 V123V456D36 (S51S28S74 � S71S28S54) ÆW (p)ÆS78+ p�1Xq=1 Z1:::10 V123V456D36S71S28S94S5 10 ÆW (q)ÆS78 ÆW (p�q)ÆS9 10 ); p � 1 (6.88)and the initial value (6.72). This equation enables us to derive the onneted vauum diagramssystematially to any desired order from the diagrams of the previous orders, as will now be shown.6.4.3 Graphial SolutionWith the help of the Feynman rules (6.28){(6.30), the funtional reursion relation (6.88) an bewritten diagrammatially as followsW (p+1) � 12(p+ 1) ( 1234 Æ2W (p)Æ 1 2 Æ 3 4 + 2 " 12 � 12 # ÆW (p)Æ 1 2+ p�1Xq=1 ÆW (p�q)Æ 1 2 21 43 ÆW (q)Æ 3 4 ); p � 1 (6.89)and the �rst-order result is given by Eq. (6.73). The right-hand side ontains four graphial operations.The �rst three are linear and involve one or two eletron line amputations of the previous perturbativeorder. The fourth operation is nonlinear and mixes two di�erent eletron line amputations of lowerorders. To demonstrate the working of this formula, we alulate the onneted vauum diagrams inseond and third order. We start with the amputation of one or two eletron lines in �rst order (6.73):ÆW (1)Æ 1 2 � 12 � 12 ; Æ2W (1)Æ 1 2 Æ 3 4 � 1234 � 1432 : (6.90)



90 6. Quantum Field TheoryInserting (6.90) into (6.89), where we have to take are of onneting only legs with the same label,we �nd the seond-order orretion of the vauum funtional W :W (2) � 14 + � 12 � 14 � 12 : (6.91)The alulation of the third-order orretion W (3) leads to the following 20 diagrams:W (3) � 12 + 16 + 16 + � 16+ 12 + + + �� 12 � � + 13+ 12 � 12 � 16 � � 12 � 13 : (6.92)From the vauum diagrams (6.73), (6.91), and (6.92), we observe a simple mnemoni rule for theweights of the onneted vauum diagrams in QED. At least up to four loops, eah weight is equalto the reiproal number of eletron lines, whih, by utting, generate the same two-point diagrams.The sign is given by (�1)L, where L denotes the number of eletron loops. Note that the total weight,whih is the sum over all weights of the vauum diagrams in the order to be onsidered, vanishes inQED. The simpliity of the weights is a onsequene of the Fermi statistis and the three-point formof interation (6.11). The weights of the vauum diagrams in other theories, like �4 theory [5,21,23℄,follow more ompliated rules.6.5 Sattering Between Eletrons and PhotonsFrom the above vauum diagrams, we obtain all even-point orrelation funtions by utting eletronor photon lines. For the generation of the odd-point funtions we use the funtional derivative (6.66)with respet to the interation funtion V whih removes a vertex from a diagram.As an illustration, we generate the diagrams for the self interations desribed by the propagators(6.15) and (6.16) G212 = h Â1 Â2 i; eG212 = h  ̂1 �̂ 2 i (6.93)and the four-point funtionsG41234 = h Â1 Â2 Â3 Â4 i; eeG41234 = h  ̂1  ̂2 �̂ 3 �̂ 4 i; eG41234 = h  ̂1 Â2 Â3 �̂ 4 i; (6.94)whih represent the simplest sattering proesses of the theory. In addition, we give the perturbativeexpansion of the three-point vertex funtionG3123 = h  ̂1 �̂ 2 Â3 i: (6.95)The following examples illustrate the simple weights (�1)L of diagrams ontributing to an n-pointfuntion with n � 2, with L being the number of eletron loops.



6.5 Sattering Between Eletrons and Photons 916.5.1 Self InterationsSubstituting the produt of the photon �elds A1A2 in the funtional integral (6.15) by the photonifuntional derivative �2Æ=ÆD�112 , the photoni two-point funtion of the interating theory is given byG212 = �2 ÆÆD�112 W [S�1; D�1; V ℄: (6.96)Applying the assoiated utting rule (6.39) to the vauum diagrams (6.73) and (6.91) leads to theonneted diagramsG2;12 � 1 2 � e2 + e4 "� � �+ + + #+O(e6): (6.97)For brevity, we have omitted the labels 1 and 2 at the ends of the higher-order diagrams. The full andthe onneted propagators G212 and G2;12 satisfy the umulant relationG2;12 = G212 � h Â1 ih Â2 i: (6.98)Note that although the expetation value of the eletromagneti �eld h Â�(x) i is zero in quantumeletrodynamis, it does not vanish in our generalized theory with arbitrary propagators S and D [seeEq. (6.79)℄.The derivative of vauum diagrams with respet to the eletron kernel S�1,eG212 = ÆÆS�121 W [S�1; D�1; V ℄; (6.99)leads to the eletroni two-point funtion, whose diagrams areeG212 � 1 2 + e2 " � #+ e4" ++ � � �
� � + � #+O(e6): (6.100)6.5.2 Sattering ProessesThe generation of diagrams for sattering proesses between eletrons and photons (6.94) and highereven-point funtions is now straightforward.



92 6. Quantum Field TheoryPhoton-Photon-SatteringThe four-point funtion of photons is obtained by utting two photon lines in the vauum diagrams orone photon line in the photoni two-point funtion:G41234 = 4� Æ2WÆD�112 ÆD�134 + ÆWÆD�112 ÆWÆD�134 � = �2Æ G212ÆD�134 + G212G234: (6.101)After applying one of the two possible operations in (6.101), the resulting onneted diagrams to ordere4 are G4;1234 � �e4 " 21 34 + 5 perm.#+O(e6); (6.102)eah permutation of two external spaetime oordinates leading to a di�erent diagram.M�ller and Bhabba SatteringThe sattering of two eletrons (M�ller sattering) is desribed by the eletroni four-point funtioneeG41234 = Æ2WÆS�141 ÆS�132 + ÆWÆS�141 ÆWÆS�132 = Æ eG223ÆS�141 + eG214eG223: (6.103)To order e4, the onneted diagrams ontributing to the fermioni four-point funtion areeeG4;1234 � e2 " 12 43 � (3$ 4)#+ e4 " + ++ + + + + �� � � � � (3$ 4)#+O(e6); (6.104)where the spaetime indies in all diagrams are arranged as in the �rst. Eah diagram on the right-hand side has a partner with opposite sign, where the spaetime indies either of the inoming orof the outgoing eletrons are interhanged. The tadpole diagrams vanish for physial propagatorsS = SF, D = DF, and the orresponding orretions attahed to external legs do not ontribute whenalulating the S-matrix elements. In our general vauum funtional, however, we must not disardthem, sine they ontribute to higher funtional derivatives, whih would be needed for the alulationof, e.g. the six-point funtion.By interhanging spaetime arguments in the kernels of Eq. (6.104) apparently, the Feynman dia-grams (6.104) desribe also sattering of eletron and positron (Bhabba sattering) and sattering oftwo positrons.Compton SatteringThe amplitude of Compton sattering is given by the mixed four-point funtion eG41234. To obtainthe relevant Feynman diagrams, we have to perform one of the possible operationseG41234 = �2� Æ2WÆD�123 ÆS�141 + ÆWÆD�123 ÆWÆS�141 � = Æ G223ÆS�141 + eG214G223 = �2Æ eG214ÆD�123 + eG214G223 : (6.105)



6.6 Sattering of Eletrons and Photons in the Presene of an External Eletromagneti Field 93The resulting onneted Feynman diagrams to order e4 areeG4;1234 � e2 " 12 43 + (2$ 3)#+ e4 " + ++ + + � � �� � � + (2$ 3)#+O(e6); (6.106)where the diagrams with interhanged photon oordinates 2$ 3 possess the same sign as the originalone.6.5.3 Three-Point Vertex FuntionThe three-point vertex funtion is obtained from the vauum energy W by performing the derivativewith respet to the interation funtion V123, whih we have de�ned in Eq. (6.64):G3123 = �1e ÆWÆV213 : (6.107)The easiest way to �nd the assoiated Feynman diagrams is to apply the graphial operation (6.65),whih removes a vertex from the vauum diagrams in all possible ways and lets the remaining legsopen. Dropping disonneted diagrams by onsidering the umulantG3;123 = G3123 � h  ̂1 �̂ 2 ih Â3 i (6.108)we obtainG3;123 = e 21 3 + e3 " + + � �� #+O(e5): (6.109)6.6 Sattering of Eletrons and Photons in the Presene of anExternal Eletromagneti FieldTo desribe the sattering of eletrons and photons on external eletromagneti �elds, the ationA[ � ;  ;A℄ in Eq. (6.13) must be extended by an additional external urrent J , whih is oupledlinearly to the eletromagneti �eld A:AJ [ � ;  ;A; J ℄ = A[ � ;  ;A℄� e Z1 J1A1: (6.110)Then the partition funtion (6.12) beomes a funtional in the physial urrent J and is given byZ[J ℄ = I D � D DA e�AJ [ � ; ;A;J℄ (6.111)



94 6. Quantum Field Theorywith Z = Z[0℄. The external urrent is usually supplied by some atomi nuleus of harge Ne withinteger number N . For this reason, the fator e is removed from the urrent in Eq. (6.110) to be able toollet systematially all Feynman diagrams of the same order in e. This organization may not alwaysbe the most useful one. If we onsider, for instane, an external heavy nuleus with a high harge Ne,we may have to inlude many more orders in the external harge Ne than in the internal harge e.Suh subtleties will be ignored here, for simpliity.6.6.1 Reursion Relation for the Vauum Energy with External SoureAlong similar lines as before, we derive the reursion relation for the vauum energy in the preseneof an external urrent, W [J ℄ = lnZ[J ℄ whih is now also a funtional of J (suppressing the otherarguments D�1; S�1; V ). After that, we derive a reursion relation only produing those vauumdiagrams whih ontain a oupling to the soure. It turns out that the resulting reursion relationfor urrent diagrams is extremely simple. Hene, this reursion relation is the ideal extension of theformer Eq. (6.89) whih generates only the soure-free diagrams.Complete Reursion Relation for All Vauum DiagramsThe reursion relation for all vauum diagrams with and without external soure is derived in asimilar manner as that for all soure-free vauum diagrams (6.89). There will be, however, a fewsigni�ant di�erenes in omparison with the proedure in Setion 6.4. Sine the urrent J ouples tothe eletromagneti �eld A, vauum diagrams with external urrent always ontain photon lines. Forthis reason, we start with the identityI D � D DA ÆÆA1 nA2e�AJ [ � ; ;A;J℄o = 0 (6.112)instead of Eq. (6.74). Performing the funtional derivative leads toZ[J ℄Æ12 + 2 Z3D�113 ÆZ[J ℄ÆD�123 � e Z34 V341 ÆÆS�134 [h Â2 iJZ[J ℄℄ + eJ1h Â2 iJZ[J ℄ = 0 (6.113)in analogy to Eq. (6.76). The expetation value of the eletromagneti �eld A in the presene of anexternal soure J is found by exploiting the identityI D � D DA ÆÆA1 e�AJ [ � ; ;A;J℄ = 0 (6.114)to derive, as in Eqs. (6.77){(6.79),h Â1 iJ = �e Z234 V234D14 ÆW [J ℄ÆS�123 + e Z2D12J2; (6.115)where we have set W [J ℄ = lnZ[J ℄. Inserting the expetation value (6.115) into Eq. (6.113), theresulting funtional di�erential equation readsÆ12 + 2 Z3D�113 ÆW [J ℄ÆD�123 = �e2 Z3���7 V341V567D27� Æ2W [J ℄ÆS�134 ÆS�156 + ÆW [J ℄ÆS�134 ÆW [J ℄ÆS�156 �+2e2 Z345 V345D25J1 ÆW [J ℄ÆS�134 � e2 Z3 J1D23J3: (6.116)Using relations (6.43) and (6.62), and taking the trae, this beomes� Z1 Æ11 + 2 Z12D12 ÆW [J ℄ÆD12= 2e2 Z1���8 V123V456D36S71S24S58 ÆW [J ℄ÆS78 + e2 Z1���10 V123V456D36S71S28S94S5 10



6.6 Sattering of Eletrons and Photons in the Presene of an External Eletromagneti Field 95�� Æ2W [J ℄ÆS78ÆS9 10 + ÆW [J ℄ÆS78 ÆW [J ℄ÆS9 10 �+ 2e2 Z1���6 V123D34J4S51S26 ÆW [J ℄ÆS56 + e2 Z12 J1D12J2; (6.117)whih generalizes Eq. (6.81). Expanding W [J ℄ as in Eq. (6.26),W [J ℄ =W (0) + 1Xp=1 e2pW (p)[J ℄; (6.118)and using the fat that the free vauum energy W (0)[J ℄ = W (0)[0℄ = W (0) is independent of theexternal urrent, the �rst term on the left-hand side in Eq. (6.117) is aneled by an identity followingfrom Eq. (6.34) 2 Z12D12 ÆW (0)ÆD12 = Z1 Æ11: (6.119)Introduing a Feynman diagram for the oupling to the urrent J1 � J1; (6.120)we obtain the graphial reursion relation2 12 ÆW (p+1)[J ℄Æ 1 2 � 1234 Æ2W (p)[J ℄Æ 1 2 Æ 3 4 + 2 " 12 � 12 #ÆW (p)[J ℄Æ 1 2+ p�1Xq=1 ÆW (p�q)[J ℄Æ 1 2 21 43 ÆW (q)[J ℄Æ 3 4 + 2 21 ÆW (p)[J ℄Æ 1 2 ; p � 1; (6.121)and the �rst-order diagramsW (1)[J ℄ =W (1)[0℄ + 12 � ; (6.122)where W (1)[0℄ = W (1) ontains the soure-free �rst-order vauum diagrams (6.73). An importantdi�erene between the reursion relation (6.121) and the previous (6.89) is that the vauum diagramsin a series of the oupling onstant e ontain di�erent numbers of photon (or eletron) lines, thusnot satisfying a simple eigenvalue equation like (6.84). In fat, eah vauum diagram, generated byusing the right-hand side of the reursion relation (6.121), must be divided by twie the number ofphoton lines in the diagram to obtain the orret weight fator. This proedure is a onsequene ofthe left-hand side of Eq. (6.121), whih ounts the number of photon lines in eah diagram separately.By taking this into onsideration, the seond-order vauum diagrams are given byW (2)[J ℄ =W (2)[0℄ � � � 12 (6.123)with the soure-free diagrams given in (6.91). In third order, there are 15 diagrams whih ouple tothe physial soure:W (3)[J ℄ =W (3)[0℄ � � � + ++ + + � �



96 6. Quantum Field Theory� 12 � � + 12 � 13 : (6.124)In the following we derive a reursion relation whih allows us to generate only those vauum diagramswhih ontain a oupling to the soure.Reursion Relation for Vauum Diagrams Coupled to the External SoureSine we have the possibility to generate all soure-free vauum diagrams with the help of the reursionrelation (6.89), we are able to set up a reursion relation to generate only the diagrams with soureoupling. Inserting on the left-hand side of Eq. (6.115) the equationh Â1 iJ = 1e ÆW [J ℄ÆJ1 ; (6.125)multiplying both sides with J1, and performing the integral R1 yieldsZ1 J1 ÆW [J ℄ÆJ1 = e2 Z1���6 V234D14J1S52S36 ÆW [J ℄ÆS56 + e2 Z12 J1D12J2: (6.126)On the right-hand side we have hanged the funtional derivatives with respet to the kernel S�1 intofuntional derivatives with respet to the propagator S using Eq. (6.62). Inserting the deomposition(6.118) and utilizing the fat that W (0) from Eq. (6.22) is soure-free, ÆW (0)=ÆJ1 = 0, we �ndZ1 J1 ÆW (1)[J ℄ÆJ1 + 1Xn=1 e2n Z1 J1 ÆW (n+1)[J ℄ÆJ1 =� Z1���4 V234D14J1S32 + Z12 J1D12J2 + 1Xn=1 e2n Z1���6 V234D14J1S52S36 ÆW (n)[J ℄ÆS56 : (6.127)To lowest order, the right-hand side yields the soure diagrams~W (1)[J ℄ = 12 � ; (6.128)where we have used the wiggle to indiate the restrition to the soure diagrams of W (1)[J ℄ inEq. (6.122). The full funtional solving Eq. (6.127) onsists of the termsW (n)[J ℄ =W (n)[0℄ + ~W (n)[J ℄; (6.129)where the soure-free ontributions W (n)[0℄ = W (n) of Setion 6.4 represent integration onstantsundetermined by Eq. (6.127). Introduing a diagram for the funtional derivative with respet to theurrent J , ÆÆ 1 � ÆÆJ1 ; (6.130)the reursion relation for the vauum diagrams with soure-oupling Eq. (6.127) is graphially writtenfor n � 1 as 1 ÆW (n+1)[J ℄Æ 1 � 21 ÆW (n)[J ℄Æ 1 2 : (6.131)



6.6 Sattering of Eletrons and Photons in the Presene of an External Eletromagneti Field 97The graphial operation on the right-hand side means that an external urrent is attahed througha photon line to a fermion line in all possible ways. The iteration of this reursion relation is verysimple sine the right-hand side is linear. Eah diagram alulated with the right-hand side of thisequation must be divided by the number of soure-oupling within the diagram sine the operation onthe left-hand side ounts the number of soure-ouplings in the diagram. By onsidering Eq. (6.129),one easily reprodues the higher-order vauum diagrams given in the Eqs. (6.123) and (6.124).6.6.2 Sattering of Eletrons and Photons in the Presene of an External SoureTypially, an external eletromagneti �eld is produed by a heavy partile suh as a nuleus or anion. Quantum eletrodynamial e�ets like pair reation, Bremsstrahlung, and Lamb shift are ausedby suh eletromagneti �elds. The Feynman diagrams for the n-point funtions assoiated with theseproesses are again obtained by utting eletron or photon lines from the just-derived vauum diagrams.Vauum Polarization Indued by External FieldThe photon propagator in the presene of an external soureG212[J ℄ = �2ÆW [J ℄ÆD�112 (6.132)is found by utting a photon line in the vauum diagrams (6.122){(6.124):G2;12 [J ℄ = G2;12 [0℄ + e4 " � 21 � (1$ 2) #+O(e6); (6.133)showing polarization aused by the external �eld.Lamb Shift and Anomalous Magneti MomentThe important phenomena of Lamb shift and anomalous magneti moments are obtained from theperturbative orretions in the eletron propagator:eG212[J ℄ = ÆW [J ℄ÆS�121 ; (6.134)whose diagrams ome from utting an eletron line in the vauum diagrams (6.122){(6.124). To ordere4, we haveeG212[J ℄ = eG212[0℄ + e2 21 + e4 " + + � �� + #+O(e6): (6.135)As already mentioned before, diagrams with orretions on external legs and tadpole graphs do notontribute to S-matrix elements. In some problems, diagrams with more than one soure-oupling areirrelevant.



98 6. Quantum Field TheoryPair Creation, Pair Annihilation, and BremsstrahlungBy di�erentiating the vauum energy diagrams (6.122){(6.124) with respet to the interation funtionV123, we obtain the vertex funtion in the presene of an external �eld:G3123[J ℄ = �1e ÆW [J ℄ÆV213 : (6.136)The onneted Feynman diagrams are to order e3:G3;123[J ℄ = G3;123[0℄ + e3 " 1 23 + 1 23 #+O(e5) (6.137)with G3;123[0℄ = G3;123 of Eq. (6.109). These diagrams appear in pair reation, pair annihilation, orBremsstrahlung proesses.



Part III

Variational Perturbation Theoryin Quantum Statistis





Chapter 7
Introdution

The exat alulation of path integrals is only possible, if they are or an be transformed in a Gaussianshape. In Part II of this thesis, we have onsidered a very general Gaussian ation (3.1) and alulatedthe quantum-statistial properties of systems governed by suh an ation. All Eulidean systems, wherethe ation only ontains terms of the form xm(�)pn(�) with (m;n) 2 f(2; 0); (1; 1); (0; 2)g, belong tothis lass of exatly solvable problems. An example is a partile in a harmoni potential and inuenedby external soures whih linearly ouple to partile position or momentum. In order to motivate thegeneral theory in Part II, we have investigated the quantum statistis of the one-dimensional problemin detail. Another system in this lass is a harged partile in stati eletri and/or magneti �eld,sine the salar potential of the eletri �eld ouples linearly to the position, and the vetor potentialof the magneti �eld is minimally oupled to the momentum. We will onsider an appliation inthis part, where we investigate the quantum-statistial properties of hydrogen in uniform magneti�eld. As a warm-up exerise, we will treat there the exatly solvable problem of a single eletron inmagneti �eld at arbitrary temperature. It is worth noting that the alulation of the path amplitudefor the three-dimensional hydrogen atom is also exatly done after mapping it to a four-dimensionalosillator [4℄.Nevertheless, most of the interesting systems have nontrivial interations, whih prevent an exatevaluation of quantum-statistial quantities. A harateristi property of suh systems is that theyare usually governed by potentials, whih \disturb" the Gaussian shape of the ation, for examplethe x4 term of the anharmoni osillator, its pendant in the �eld theory of ritial phenomena, �4,or the interation � � A� between matter �elds � ,  and eletromagneti �eld A� in quantumeletrodynamis (QED). The oupling strength between these �elds in QED is rather small, it isthe �ne struture onstant � = e2=4�"0~ � 1=137. In ases, where the oupling onstant is small,it is useful to expand the time evolution operator (or the orresponding ation exponential in thefuntional integral) into a Taylor series and to alulate perturbative orretions to the result of theexatly solvable unperturbed system. Sine it is usually impossible to evaluate the orretions inall orders, the perturbation series must be broken up after any order n. For weak oupling, the�rst ontributing perturbative order yields already satisfatory results for many systems. There isno guarantee, however, that, despite a small oupling onstant, the perturbative series onverges.The reason is that the number of terms ontributing to a ertain order of perturbation is extremelyinreasing from order to order. A pratial quantity for heking the onvergene of a series is itsradius of onvergene, whih is de�ned as the in�nite-order limit of the absolute ratio of ontributions101



102 7. Introdutionan of suessive orders: R = limn!1 ���� anan+1 ���� : (7.1)The series onverges, if R > 1, and diverges for R < 1. Sine in nth order an = ngn, where n is theexpansion oeÆient and g the oupling onstant, we �ndR = rg ; r = limn!1 ���� nn+1 ���� : (7.2)In this relation, the ompetitive harater of expansion oeÆients and oupling strength turns outlearly. Thus, a perturbative series onverges, if r > g, sine the overall ontribution dereases for su-essive orders of perturbation. A diverging series is haraterized by r < g. Unfortunately, the radiusof onvergene an only be evaluated exatly, if a reursion equation for the perturbative oeÆientsexists, whih relates n and n+1. For most problems, it is not possible to exatly determine R, and onean only make an extrapolation estimated from suessive low orders, for whih the oeÆients n areknown. Following Dyson [42℄, even perturbative series in QED will diverge for orders of perturbationhigher than the inverse �ne struture onstant, i.e. n > 1=�.In order to obtain �nite results from trunated perturbative expansions, it is neessary to applymethods, whih perform an approximate summation of the series. It is even possible to use suhsummation methods for strong-oupling series, where the perturbations are not small in omparisonwith the unperturbed ontribution. Well-known summation methods were developed by Euler, Borel,and Pad�e. The appliabiltiy of suh methods is usually restrited to series obeying some requirementsregarding the growth of the expansion oeÆients for large orders [43℄. Alternative promising proe-dures are based on nonlinear transformations, e.g. sequene transformations [44℄, for aelerating theonvergene of originally diverging series.We use a di�erent powerful method for the summation of perturbative series, whih is alledvariational perturbation theory [4, Chap. 5℄. A �rst approah was used by Feynman in 1954 fordisussing the polaron problem [45℄. This proedure was improved by Feynman and Kleinert [8℄ and,independently, by Giahetti and Tognetti [9℄ in 1985/86. In this approah, the ation of a harmoniosillator with trial frequeny 
(x0) serves as trial system and the remainder as perturbation. Theorretly treated zero-frequeny mode x0 of the path by a separate x0-integration makes it possible toreexpress the quantum-statistial partition funtion by an integral over a lassially looking Boltzmannfator, whih ontains the e�etive lassial potential. Based on the Jensen-Peierls inequality, variationwith respet to the trial frequeny 
(x0) yields an upper bound for the e�etive lassial potential.Meanwhile, this method is denoted as variational approah, sine a systemati extension to higher-ordervariational perturbation theory was developed by Kleinert [4,46,47℄. We will review the fundamentalsof the approah and the systemati theory in the following setions.In the following hapters, we present generalizations of this theory, whih enable us to enlargethe range of appliability of variational perturbation theory. We develop variational perturbationtheory for density matries [20℄ and alulate the density of a partile in the double-well potential.Furthermore, we investigate the pair-distribution funtion for hydrogen, whih is a harateristi quan-tity of hydrogen plasma. By extending variational perturbation theory for appliations in phase spae,where we pratially introdue the e�etive lassial Hamiltonian, we alulate the quantum-statistialproperties of hydrogen in magneti �elds [18,19℄. The zero-temperature limit of the e�etive lassialHamiltonian yields the binding energy. This quantity possesses quite di�erent asymptoti behaviorsfor weak and strong magneti �elds. We investigate these limits in detail, and the results on�rmthe power of the variational summation method. Finally, in Part IV of this thesis, we turn to mem-brane physis, where we alulate the utuation pressure whih uid membranes exert upon hardwalls [48,49℄. By an analyti strong-oupling alulation, we evaluate the onstants ouring in Hel-frih's ideal-gas-like pressure law [50℄ to suh a high auray that their values lie well within the errorbounds of Monte-Carlo simulations. Aside from the very suessful alulation of ritial exponents in�4 theory [5℄, the results for the utuating membranes show that variational perturbation theory isalso appliable for the summation of perturbation series arising from �eld theories.



7.1 Variational Approah via Jensen-Peierls Inequality 1037.1 Variational Approah via Jensen-Peierls InequalityWe review the variational approah [4,8,45℄ for the alulation of the quantum-statistial partitionfuntion Z in the more general phase spae representation. As shown in Eq. (4.29), we express thepartition funtion (4.28) as an integral of the restrited partition funtion Zp0x0 over the zero-frequenyphase spae oordinates p0 and x0. The relation between Zp0x0 and the e�etive lassial HamiltonianHe�(p0; x0) is given by Eq. (4.31). We write the restrited partition funtion for any system with andimensionless ation A[p;x℄ as a path integral over the phase spae oordinates wT = (xT ;pT ) asZw0 = (2�~)d I D2dw Æ(w0 �w(�)) e�A[w℄=~: (7.3)In general, this quantity annot be alulated exatly, and therefore we deompose the ation A[w℄into a part Aw0
 [w℄, for whih the restrited partition funtion is known, and a remainder, whih weall the interation term Aint[w℄: A[w℄ = Aw0
 [w℄ +Aint[w℄: (7.4)The ation of the exatly solvable system shall be expressed asAw0
 [w℄ = ~2 Z ~�0 d� Z ~�0 d� 0 �wT (�) �wT0 �S
(�; � 0) (w(� 0)�w0) ; (7.5)where we have subtrated the zero-frequeny mode from the phase spae oordinates. The elementsof the symmetri matrix S
 are of the form S
;ij = 
ijSij , where the 2d2 + d parameters 
ij = 
jiare still undetermined. The matrix S shall be of the form (3.10), whih makes it possible to exatlyalulate the orresponding restrited partition funtion:Zw0
 = (2�~)d I D2dw Æ(w0 �w(�)) exp(�12 Z ~�0 d� Z ~�0 d� 0 �wT (�) �wT0 �S
(�; � 0) (w(� 0)�w0))= 1qdetps S
;0�1 detS
 : (7.6)Here, we have made use of the alulation for the restrited partition funtion in Setion 4.2, with theresult (4.52). The exponential funtion ourring in (4.52) is absent in Eq. (7.6) due to the subtrationof the zero-frequeny modes of the phase spae path in the ation of Eq. (7.5). In analogy to Eq. (4.53),we use the path integral (7.6) to de�ne expetation valueshO1(w(�1))O2(w(�2)) � � �iw0
 = (2�~)d [Zw0
 ℄�1 I D2dw Æ(w0 �w(�))�O1(w(�1))O2(w(�2)) � � � e�Aw0
 [w℄=~: (7.7)By adding and subtrating the trial ation (7.5) to the full ation in the Boltzmann fator of expression(7.3), we obtainZw0 = (2�~)d I D2dw Æ(w0 �w(�)) e�Aw0
 [w℄=~ exp f� (A[w℄�Aw0
 [w℄) =~g : (7.8)With the de�nition (7.7), the right-hand side of this equation an be written as expetation value ofthe exponential funtion ontaining the perturbation A[w℄�Aw0
 [w℄ � Aint[w℄:Zw0 = Zw0
 De�Aint[w℄=~Ew0
 : (7.9)With the help of the Jensen-Peierls inequality,
e�O� � e�hOi; (7.10)



104 7. Introdutionwe an estimate Eq. (7.9) by Zw0 � Zw0
 e�hAint[w℄=~iw0
 : (7.11)Sine the restrited partition funtions are related to the e�etive lassial Hamiltonians viaZw0 = e��Heff (w0); Zw0
 = e��Heff;
(w0); (7.12)the inequality (7.11) an be written asHe�(w0) � He�;
(w0) + 1~� hAint[w℄iw0
 � H(1)
 (w0): (7.13)We express the ation Aint[w℄ as a time integral over an interation potential Vint(w(�)),Aint[w℄ = Z ~�0 d� Vint(w(�)): (7.14)The invariane of the expetation value under time translations makes the time integral trivial andthe expetation value of the ation beomeshAint[w℄iw0
 = Z ~�0 d� hVint(w(�))iw0
 = ~� hVint(w)iw0
 : (7.15)Thus the estimate H(1)
 (w0) an be written asH(1)
 (w0) = He�;
(w0) + hVint(w)iw0
 : (7.16)This quantity is now optimized with respet to the set of parameters 
ij to yield the optimal upperbound for the e�etive lassial Hamiltonian:�H(1)
 (w0)�
ij != 0: (7.17)Let us denote the set of optimal parameters satisfying these 2d2 + d equations as 
(1)ij (w0). Insertingthese results into (7.16), the optimal upper bound for the e�etive lassial Hamiltonian is given byH(1)(w0) = H(1)
(1) (w0): (7.18)If more than one solution to the equations (7.17) exist, the smallest must be hosen, sine the e�e-tive Hamiltonian (whih an also be onsidered as a loal free energy Fw0) must be minimal in theequilibrium state of the system. Should no solutions exist, the parameters are hosen from the attestregion, i.e. where H(1)
(1) (w0) depends minimally on the parameters 
ij . This is the priniple of mini-mal sensitivity, whih states that the best estimate possesses the least dependene of the variationalparameters [51℄. This is a onlusion of the independene of the exat e�etive lassial Hamiltonianfrom these parameters.The simplest ase for the trial ation (7.5) is the usual harmoni osillator in one dimensionAp0x0
 [p; x℄ = Z ~�0 d� � 12M [p(�) � p0℄2 + 12M
2[x(�) � x0℄2� ; (7.19)where only the potential ontains a trial parameter 
.7.2 Variational Perturbation Theory to Any OrderA Taylor expansion of the exponential funtion in the expetation value of Eq. (7.9) in powers ofthe interation Aint[w℄ makes it possible to systematially improve the variational approah. Sine



7.2 Variational Perturbation Theory to Any Order 105the summations of perturbative expansions trunated in di�erent orders of perturbation an yieldapproximations for the e�etive lassial Hamiltonian, whih alternate around the exat result, theinequality (7.10) does not hold in general.Performing the Taylor expansion, Eq. (7.9) beomesZw0 = Zw0
 1Xn=0 (�1)n~nn! * Z ~�0 d� Vint(w(�))!n+w0
 : (7.20)This an be written in the exponential formZw0 = Zw0
 exp8<: 1Xn=1 (�1)n~nn! * Z ~�0 d� Vint(w(�))!n+w0
;9=; ; (7.21)where the subsript  indiates as usual umulants. The lowest umulants are related to the fullexpetation values as follows:hO1(w(�1))iw0
; = hO1(w(�1))iw0
 ;hO1(w(�1))O2(w(�2))iw0
; = hO1(w(�1))O2(w(�2))iw0
 � hO1(w(�1))iw0
 hO2(w(�2))iw0
 ;... ; (7.22)where Oi(w(�j)) denotes any observable depending on position and momentum. Realling the rela-tions (7.12) between partition funtions and e�etive lassial Hamiltonians we obtain from (7.21) thee�etive lassial Hamiltonian as a umulant expansion:He�(w0) = � 1� lnZw0
 + 1� 1Xn=1 (�1)n+1~nn! * Z ~�0 d� Vint(w(�))!n+w0
; : (7.23)Up to now, we did not make any approximation. The expansion on the right-hand side is an exatexpression for the e�etive lassial Hamiltonian for all omponents of 
.For systems with a nontrivial interation, we are apable of alulating only some initial trun-ated part of the series (7.23), say up to the Nth order, leading to the approximate e�etive lassialHamiltonian H(N)
 (w0) = � 1� lnZw0
 + 1� NXn=1 (�1)n+1~nn! * Z ~�0 d� Vint(w(�))!n+w0
; : (7.24)This depends expliitly on the parameters 
. Sine the exat expression (7.23) is independent of 
,the best approximation for H(N)
 (w0) should depend on 
 minimally. Thus the optimal solution willbe found by determining the parameters from the 2d2 + d onditions��
ijH(N)
 (w0) != 0: (7.25)Let us denote the optimal variational parameters to Nth order by 
(N)ij (w0). Inserting these intoEq. (7.24) yields the optimal e�etive lassial Hamiltonian H(N)(w0).





Chapter 8
Variational Perturbation Theory forDensity Matries

We develop a onvergent variational perturbation theory for quantum statistial density matries,whih is appliable to polynomial as well as nonpolynomial interations [20℄. We illustrate the powerof the theory by alulating the temperature-dependent density of a partile in the double-well potentialto seond order, and of the eletron in the hydrogen atom to �rst order.8.1 IntrodutionVariational perturbation theory [4,46℄ transforms divergent perturbation expansions into onvergentones, where the resulting onvergene even extends to in�nitely strong ouplings [52℄. The theory has�rst been developed in quantum mehanis for the path integral representation of the free energy of theanharmoni osillator [47℄ and the hydrogen atom [4,53℄. Loal quantities suh as quantum statistialdensity matries have been treated so far only to lowest order for the anharmoni osillator and thehydrogen atom [54,55℄.In this hapter, we develop a systemati onvergent variational perturbation theory for the pathintegral representation of density matries of a point partile moving in a polynomial as well as anonpolynomial potential. By systematially taking into aount higher orders, we thus go beyondrelated �rst-order treatments in lassial phase spae [56℄ and early Rayleigh-Ritz type variationalapproximations [57℄. With the help of a generalized smearing formula, whih aounts for the e�etsof quantum utuations, we an furthermore treat nonpolynomial interations, thus extending therange of appliability of the work in Ref. [58℄. As a �rst appliation, we alulate here the partiledensity in the double-well potential to seond order and then the eletron density in the hydrogenatom to �rst order.8.2 General FeaturesVariational perturbation theory approximates a quantum statistial system by perturbation expansionsaround harmoni osillators with trial frequenies, whih are optimized di�erently for eah order of theexpansions. We have shown in Setion 4.1.1 that, when dealing with the free energy, it is essential togive a speial treatment to the utuations of the path average x � (kBT=~) R ~=kBT0 d� x(�), sine this107



108 8. Variational Perturbation Theory for Density Matriesperforms violent utuations at high temperatures T . These annot be treated by any expansion, unlessthe potential is lose to harmoni. The e�et of these utuations may, however, easily be alulated atthe end by a single numerial utuation integral. For this reason, variational perturbation expansionsare performed for eah position x0 of the path average separately, yielding an Nth order approximationWN (x0) to the loal free energy Ve�;l(x0), alled the e�etive lassial potential [59℄. The nameindiates that one may obtain the full quantum partition funtion Z from this objet by a simpleintegral over x0 just as in lassial statistis,Z = Z +1�1 dx0p2�~2=MkBT e�Veff;l(x0)=kBT : (8.1)Having alulated WN (x0), we obtain the Nth-order approximation to the partition funtionZN = +1Z�1 dx0p2�~2=MkBT e�WN (x0)=kBT : (8.2)The separate treatment of the path average is important to ensure a fast onvergene at larger tem-peratures. In the high-temperature limit, WN (x0) onverges against the initial potential V (x0) for anyorder N .Consider the Eulidean path integral over all periodi paths x(�), with x(0) = x(~=kBT ), for aharmoni osillator with minimum at xm, where the ation isA
;xm [x℄ = Z ~�0 d� �12M _x2(�) + 12M
2[x(�) � xm℄2� : (8.3)Its partition funtion is Z
;xm = I Dx exp��A
;xm [x℄=~	 = 12 sinh ~�
=2 ; (8.4)and the unnormalized density matrix is given by~% 
;xm0 (xb; xa) =s M
2�~ sinh~�
 exp�� M
2~ sinh~�
 �(~x2b + ~x2a) osh~�
� 2~xb~xa�� ; (8.5)where we have introdued the abbreviation~x(�) = x(�) � xm: (8.6)At �xed end points xb; xa, the quantum mehanial orrelation funtions arehO1(x(�1))O2(x(�2)) � � � i
;xmxb;xa = 1~% 
;xm0 (xb; xa) x(~�=xb)Zx(0)=xa DxO1(x(�1))O2(x(�2)) � � �� exp��A
;xm [x℄=~	 : (8.7)The lassial path of a partile in a translated harmoni potential isxl(�) = ~xb sinh
� + ~xa sinh
(~� � �)sinh ~�
 : (8.8)



8.3 Variational Perturbation Theory 1098.3 Variational Perturbation TheoryTo obtain a variational approximation for the density matrix, it is useful to separate the general ationA[x℄ = Z ~�0 d� �M2 _x2(�) + V (x(�))� (8.9)into a trial one, for whih the density matrix is known, and a remainder ontaining the originalpotential.We have pointed out in Setion 4.1.2 that a separate treatment of the utuations x0 = x =R ~�0 d� x(�)=~� is not neessary for paths with �xed ends. As a remnant of the extra treatment of x0we must, however, perform the initial perturbation expansion around the minimum of the e�etivelassial potential, whih will lie at some point xm determined by the end points xb; xa, and by theminimum of the potential V (x). Thus we shall use the Eulidean path integral for the density matrixof the harmoni osillator entered at xm as the trial system around whih to perform the variationalperturbation theory, treating the utuations of x0 around xm on the same footing as the remainingutuations. The position xm of the minimum is a funtion xm = xm(xb; xa), and has to be optimizedwith respet to the trial frequeny, whih itself is a funtion 
 = 
(xb; xa) to be optimized.Hene we start by deomposing the ation (8.9) asA[x℄ = A
;xm [x℄ +Aint[x℄ (8.10)with an interation Aint[x℄ = Z ~�0 d� Vint(x(�)); (8.11)where the interation potential is the di�erene between the original one V (x) and the inserted displaedharmoni osillator: Vint(x(�)) = V (x(�)) � 12M
2[x(�) � xm℄2: (8.12)Now we evaluate the path integral for the unnormalized density matrix~%(xb; xa) = x(~�)=xbZx(0)=xa Dx e�A[x℄=~ (8.13)by treating the interation (8.11) as a perturbation, leading to a moment expansion~%(xb; xa) = ~% 
;xm0 (xb; xa) �1� 1~ hAint[x℄ i
;xmxb;xa + 12~2 
A2int[x℄ �
;xmxb;xa � : : :� ; (8.14)with expetation values de�ned in (8.7). The zeroth order onsists of the harmoni ontribution (8.5)and higher orders ontain harmoni averages of the interation (8.11). The orrelation funtions in(8.14) an be deomposed into onneted ones by going over to umulants, yielding~%(xb; xa) = ~% 
;xm0 (xb; xa) exp��1~ h Aint[x℄ i
;xmxb;xa; + 12~2 
A2int[x℄ �
;xmxb;xa; � : : :� ; (8.15)where the �rst umulants are de�ned as usual:hO1(x(�1)) i
;xmxb;xa; = hO1(x(�1)) i
;xmxb;xa ;hO1(x(�1))O2(x(�2)) i
;xmxb;xa; = hO1(x(�1))O2(x(�2)) i
;xmxb;xa � hO1(x(�1)) i
;xmxb;xa hO2(x(�2)) i
;xmxb;xa ;... : (8.16)



110 8. Variational Perturbation Theory for Density MatriesThe series (8.15) is trunated after the Nth term, resulting in the Nth-order approximant for thequantum statistial density matrix~% 
;xmN (xb; xa) = ~% 
;xm0 (xb; xa) exp" NXn=1 (�1)nn!~n hAnint[x℄ i
;xmxb;xa;# ; (8.17)whih expliitly depends on both variational parameters 
 and xm.In analogy to lassial statistis, where the Boltzmann distribution in on�guration spae is on-trolled by the lassial potential V (x) aording to~%l(x) =s M2�~2� exp [��V (x)℄ ; (8.18)we now introdue a new type of e�etive lassial potential Ve�;l(xb; xa), whih governs the unnormal-ized density matrix ~%(xb; xa) =s M2�~2� exp [��Ve�;l(xb; xa)℄ : (8.19)Its Nth-order approximation is obtained from (8.5), (8.17), and (8.19) via the umulant expansionW
;xmN (xb; xa) = 12� ln sinh ~�
~�
 + M
2~� sinh ~�
 �(~x2b + ~x2a) osh ~�
� 2~xb~xa	� 1� NXn=1 (�1)nn!~n h Anint[x℄ i
;xmxb;xa; ; (8.20)whih is optimized for eah set of end points xb; xa in the variational parameters 
2 and xm, the resultbeing denoted by WN (xb; xa). The optimal values 
2(xb; xa) and xm(xb; xa) are determined from theextremality onditions �W
;xmN (xb; xa)�
2 != 0; �W 
;xmN (xb; xa)�xm != 0: (8.21)The solutions are denoted by 
2N ; xNm, both being funtions of xb; xa. If no extrema are found, onehas to look for the attest region of the funtion (8.20), where the lowest higher-order derivativedisappears. Eventually the Nth-order approximation for the normalized density matrix is obtainedfrom %N (xb; xa) = Z�1N ~% 
2N ;xNmN (xb; xa); (8.22)where the orresponding partition funtion readsZN = Z +1�1 dx ~% 
2N ;xNmN (xb; xa): (8.23)In priniple, one ould also optimize the entire ratio (8.22), but this would be harder to do in pratie.Moreover, the optimization of the unnormalized density matrix is the only option, if the normalizationdiverges due to singularities of the potential. This will be seen in Setion 8.7.2 by the example of thehydrogen atom.8.4 Smearing Formula for Density MatriesIn order to alulate the onneted orrelation funtions in the variational perturbation expansion(8.17), we must �nd eÆient formulas for evaluating expetation values (8.7) of any power of theinteration (8.11)hAnint[x℄ i
;xmxb;xa = 1~% 
;xm0 (xb; xa) ~xb;~�Z~xa;0 D~x nYl=1 "Z ~�0 d�l Vint(~x(�l) + xm)# exp��1~A
;xm [~x+ xm℄� :(8.24)



8.4 Smearing Formula for Density Matries 111This an be done by an extension of the smearing formalism, whih is developed in Ref. [53℄. To thisend we rewrite the interation potential asVint(~x(�l) + xm) = +1Z�1 dzl Vint(zl + xm) +1Z�1 d�l2� expfi�lzlg exp"� Z ~�0 d� i�lÆ(� � �l)~x(�)# (8.25)and introdue a urrent J(�) = nXl=1 i~�lÆ(� � �l); (8.26)so that (8.24) beomeshAnint[x℄ i
;xmxb;xa = 1~% 
;xm0 (xb; xa)� nYl=1"Z ~�0 d�l Z +1�1 dzl Vint(zl + xmin) Z +1�1 d�l2� expfi�lzlg# K
;xm [J ℄: (8.27)The kernel K
;xm [J ℄ represents the generating funtional for all orrelation funtions of the displaedharmoni osillatorK
;xm [J ℄ = ~xb;~�Z~xa;0 D~x exp(�1~ Z ~�0 d� �m2 _~x2(�) + 12M
2~x2(�) + J(�) ~x(�)�) : (8.28)For zero urrent J , this generating funtional redues to the Eulidean harmoni propagator (8.5):K
;xm [J = 0℄ = ~% 
;xm0 (xb; xa): (8.29)For nonzero J , the solution of the funtional integral (8.28) is given byK
;xm [J ℄ = ~% 
;xm0 (xb; xa) exp"�1~ Z ~�0 d� J(�)xl(�) + 12~2 Z ~�0 d� Z ~�0 d� 0 J(�)G
(�; � 0) J(� 0)# ;(8.30)where xl(�) denotes the lassial path (8.8) and G
(�; � 0) the harmoni Green funtionG
(�; � 0) = ~2M
 osh
(j� � � 0j � ~�)� osh
(� + � 0 � ~�)sinh ~�
 : (8.31)The expression (8.30) an be simpli�ed by using the expliit expression (8.26) for the urrent J . Thisleads to a generating funtionalK
;xm [J ℄ = ~% 
;xm0 (xb; xa) exp��i�Txl � 12 �T G�� ; (8.32)where we have introdued the n-dimensional vetors � = (�1; : : : ; �n)T , xl = (xl(�1); : : : ; xl(�n))Twith the supersript T denoting transposition, and the symmetri n� n-matrix G whose elements areGkl = G
(�k ; �l). Inserting (8.32) into (8.27), and performing the integrals with respet to �1; : : : ; �n,we obtain the nth-order smearing formula for the density matrixhAnint[x℄ i
;xmxb;xa = nYl=1"Z ~�0 d�l Z +1�1 dzl Vint(zl + xm)#� 1p(2�)n detG exp8<:�12 nXk;l=1 [zk � xl(�k)℄G�1kl [zl � xl(�l)℄9=; : (8.33)



112 8. Variational Perturbation Theory for Density MatriesThe integrand ontains an n-dimensional Gaussian distribution desribing both thermal and quantumutuations around the harmoni lassial path xl(�) of Eq. (8.8) in a trial osillator entered at xm,whose width is governed by the Green funtion (8.31).For losed paths with oiniding end points (xb = xa), formula (8.33) leads to the nth-ordersmearing formula for partile densities%(xa) = 1Z ~%(xa; xa) = 1Z I Dx Æ(x(� = 0)� xa) expf�A[x℄=~g; (8.34)whih an be written ashAnint[x℄ i
;xmxa;xa = 1%
;xm0 (xa) nYl=1 "Z ~�0 d�l Z +1�1 dzl Vint(zl + xm)#� 1p(2�)n+1 det a2 exp0��12 nXk;l=0 zk a�2kl zl1A (8.35)with z0 = ~xa. Here a2 denotes a symmetri (n + 1)� (n + 1)-matrix whose elements a2kl = a2(�k; �l)are obtained from the harmoni Green funtion for periodi paths G
;p(�; � 0) as (see Chapters 3 and5 in Ref. [4℄) a2(�; � 0) � ~MG
;p(�; � 0) = ~2M
 osh
(j� � � 0j � ~�=2)sinh ~�
=2 : (8.36)The diagonal elements a2 = a2(�; �) represent the utuation width (4.8), whih behaves in the lassiallimit like (4.11) and at zero temperature like (4.9).Both smearing formulas (8.33) and (8.35) allow in priniple to determine all harmoni expetationvalues for the variational perturbation theory of density matries and partile densities in terms ofordinary Gaussian integrals. Unfortunately, in many appliations ontaining nonpolynomial potentials,it is impossible to solve neither the spatial nor the temporal integrals analytially. This irumstanedrastially inreases the numerial e�ort in higher-order alulations.8.5 First-Order Variational ResultsThe �rst-order variational approximation gives usually a reasonable estimate for any desired quantity.Let us investigate the lassial and the quantum mehanial limit of this approximation. To failitatethe disussion, we �rst derive a new representation for the �rst-order smearing formula (8.35), whihallows a diret evaluation of the imaginary time integral. The resulting expression will depend onlyon temperature, whose low- and high-temperature limits an easily be extrated.8.5.1 Alternative Formula for First-Order SmearingFor simpliity, we restrit ourselves to the ase of partile densities and allow only symmetri potentialsV (x) entered at the origin. If V (x) has only one minimum at the origin, then also xm will be zero. IfV (x) has several symmetri minima, then xm goes to zero only at suÆiently high temperatures. To�rst order, the smearing formula (8.35) readshAint[x℄ i
xa;xa = 1%
0 (xa) ~�Z0 d� +1Z�1 dz2� Vint(z) 1pa400 � a401 exp��12 (z2 + x2a)a200 � 2zxaa201a400 � a401 � ; (8.37)so that Mehler's summation formula1p1� b2 exp(� (x2 + x02)(1 + b2)� 4xx0b2(1� b2) ) = exp��12(x2 + x02)� 1Xn=0 bn2nn! Hn(x)Hn(x0) (8.38)



8.5 First-Order Variational Results 113C(n)�
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Figure 8.1: Temperature-dependene of the �rst 9 funtions C(n)� , where � = 1=kBT .leads to an expansion in terms of Hermite polynomials Hn(x), whose temperature dependene stemsfrom the diagonal elements of the harmoni Green funtion (8.36):h Aint[x℄ i
xa;xa = 1Xn=0 ~�2nn! C(n)� Hn�xa=q2a200� +1Z�1 dzp2�a200 Vint(z) e�z2=2a200 Hn�z=q2a200� :(8.39)Here the dimensionless funtions C(n)� are de�ned byC(n)� = 1~� ~�Z0 d� �a201a200�n : (8.40)We have plotted the funtions C(n)� for n = 0; : : : 8 in Fig. 8.1. Inserting (8.36) and performing theintegral over � , we obtainC(n)� = 12n oshn ~�
=2 nXk=0 �nk � sinh ~�
(n=2� k)~�
(n=2� k) : (8.41)At high temperatures, these funtions of � go all to unity,lim�!0C(n)� = 1; (8.42)whereas for zero temperature we yieldlim�!1C(n)� =8<: 1; n = 0;2~�
n; n > 0: (8.43)



114 8. Variational Perturbation Theory for Density MatriesAording to (8.20), the �rst-order approximation to the e�etive lassial potential is given byW
1 (xa) = 12� ln sinh ~�
~�
 + M
~� x2a tanh ~�
2 + V 
a2(xa) (8.44)with the smeared interation potentialV 
a2(xa) = 1~� hAint[x℄ i
xa;xa : (8.45)It is instrutive to disuss separately the limits � ! 0 and � !1 of dominating thermal and quantumutuations, respetively.8.5.2 Classial Limit of E�etive Classial PotentialIn the lassial limit � ! 0, the �rst-order e�etive lassial potential (8.44) redues toW
;l1 (xa) = 12M
2x2a + lim�!0 V 
a2(xa): (8.46)The seond term is determined by inserting the high-temperature limit of the utuation width (4.11)and of the polynomials (8.42) into the expansion (8.39), leading tolim�!0 V 
a2(xa) = lim�!0 1Xn=0 12nn! Hn �pM
2�=2xa�� +1Z�1 dzp2�=M
2� Vint(z) e�M
2� z2=2Hn �pM
2�=2 z� : (8.47)Then we make use of the ompleteness relation for Hermite polynomials1p� e�x2 1Xn=0 12nn! Hn(x)Hn(x0) = Æ(x � x0); (8.48)whih may be derived from Mehler's summation formula (8.38) in the limit b ! 1�, to redue thesmeared interation potential V 
a2(xa) to the pure interation potential (8.12):lim�!0 V 
a2(xa) = Vint(xa): (8.49)Realling (8.12) we see that the �rst-order e�etive lassial potential (8.46) approahes the lassialone: lim�!0 W
;l1 (xa) = V (xa): (8.50)This is a onsequene of the vanishing utuation width b2 [see Eq. (4.25)℄ of the paths around thelassial orbits. This property is universal to all higher-order approximations to the e�etive lassialpotential (8.20). Thus all orretion terms with n > 1 must disappear in the limit � ! 0,lim�!0 �1� 1Xn=2 (�1)nn!~n h Anint[x℄ i
xa;xa; = 0: (8.51)8.5.3 Zero-Temperature LimitAt low temperatures, the �rst-order e�etive lassial potential (8.44) beomesW
;qm1 (xa) = ~
2 + lim�!1V 
a2(xa): (8.52)



8.5 First-Order Variational Results 115The zero-temperature limit of the smeared potential in the seond term de�ned in (8.45) follows fromEq. (8.39) by taking into aount the limiting proedure for the polynomials C(n)� in (8.43) and for theutuation width a2qm (4.9). Thus we obtain with H0(x) = 1 and the inverse length � =pM
=~:lim�!1V 
a2(xa) = +1Z�1 dzr�2� H0(�z)2 expf��2z2gVint(z): (8.53)Introduing the harmoni eigenvalues E
n = ~
�n+ 12� ; (8.54)and the harmoni eigenfuntions 
n (x) = 1pn!2n ��2� �1=4 e��2x2=2Hn(�x); (8.55)we an re-express the zero-temperature limit of the �rst-order e�etive lassial potential (8.52) with(8.53) by W
;qm1 (xa) = E
0 + h 
0 jVint j 
0 i: (8.56)This is reognized as the �rst-order harmoni Rayleigh-Shr�odinger perturbative result for the ground-state energy.For the disussion of the quantum mehanial limit of the �rst-order normalized density,%
1 (xa) = ~% 
1 (xa)Z = %
0 (xa) expn� 1~ hAint[x℄ i
xa;xaoR +1�1 dxa %
0 (xa) expn� 1~ hAint[x℄ i
xa;xao ; (8.57)we proeed as follows. First we expand (8.57) up to �rst order in the interation, leading to%
1 (xa) = %
0 (xa)241� 1~ 0�hAint[x℄ i
xa;xa � +1Z�1 dxa %
0 (xa) hAint[x℄ i
xa;xa1A35 : (8.58)Inserting (8.5) and (8.39) into the third term in (8.58), and assuming 
 not to depend expliitly onxa, the xa-integral redues to the orthonormality relation for Hermite polynomials12nn!p� +1Z�1 dxaHn(xa)H0(xa)e�x2a = Æn0; (8.59)so that the third term in (8.58) eventually beomes� +1Z�1 dxa %
0 (xa) hAint[x℄ i
xa;xa = �� +1Z�1 dzr�2� Vint(z) expf��2z2gH0(�z): (8.60)But this is just the n = 0-term of (8.39) with an opposite sign, thus aneling the zeroth omponentof the seond term in (8.58), whih would have been divergent for � !1.The resulting expression for the �rst-order normalized density is%
1 (xa) = %
0 (xa)241� 1Xn=1 �2nn! C(n)� Hn(�xa) +1Z�1 dzr�2� Vint(z) exp(��2z2)Hn(�z)35 : (8.61)



116 8. Variational Perturbation Theory for Density MatriesThe zero-temperature limit of C(n)� is from (8.43) and (8.54)lim�!1�C(n)� = 2E
n �E
0 ; (8.62)so that we obtain from (8.61) the limit%
1 (xa) = %
0 (xa)"1� 2 1Xn=1 12nn! 1E
n �E
0 Hn(�xa) 1Z�1 dzr�2� Vint(z) expf��2z2gHn(�z)H0(�z)#:(8.63)Taking into aount the harmoni eigenfuntions (8.55), we an rewrite (8.63) as%
1 (xa) = j 0(xa)j2 = [ 
0 (xa)℄2 � 2 
0 (xa)Xn>0 
n (xa) h 
n jVint j 
0 iE
n �E
0 ; (8.64)whih is just equivalent to the harmoni �rst-order Rayleigh-Shr�odinger result for partile densities.Summarizing the results of this setion, we have shown that our method has properly reproduedthe high- and low-temperature limits. Beause of relation (8.64), the variational approah for partiledensities an be used to determine approximately the ground-state wave funtion  0(xa) for the systemof interest. Thus our method supplies earlier perturbative [60℄ and variational [61℄ attempts to diretlyompute the ground-state wave funtion.8.6 Smearing Formula in Higher Spatial DimensionsMost physial systems possess many degrees of freedom. This requires an extension of our method tohigher spatial dimensions. In general, we must onsider anisotropi harmoni trial systems, where theprevious variational parameter 
2 beomes a d� d-matrix 
2�� with �; � = 1; 2; : : : ; d.8.6.1 Isotropi ApproximationAn isotropi trial ansatz 
2�� = 
2Æ�� (8.65)an give rough initial estimates for the properties of the system. In this ase, the nth-order smearingformula (8.35) generalizes diretly tohAnint[r℄ i
ra;ra = 1%
0 (ra) nYl=1 "Z ~�0 d�l Z ddzl Vint(zl)# 1p(2�)n+1 det a2d exp24�12 nXk;l=0 zk a�2kl zl35(8.66)with the d{dimensional vetors zl = (z1l; z2l; : : : ; zdl)T . Note, that Greek labels �; �; : : : = 1; 2; : : : ; dspeify spatial indies and Latin labels k; l; : : : = 0; 1; 2; : : : ; n refer to the di�erent imaginary times.The vetor z0 denotes ra, the matrix a2 is the same as in Setion 8.4. The harmoni density reads%
0 (r) =s 1(2�a200)d exp"� 12 a200 dX�=1 x2�# : (8.67)8.6.2 Anisotropi ApproximationIn the disussion of the anisotropi approximation, we shall only onsider radially-symmetri potentialsV (r) = V (jrj) beause of their simpliity and their major ourrene in physis. The trial frequeniesdeompose naturally into a radial frequeny 
L and a transversal one 
T (see Ref. [4℄):
2�� = 
2L xa�xa�r2a +
2T �Æ�� � xa�xa�r2a � (8.68)



8.7 Appliations 117with ra = jraj. For pratial reasons we rotate the oordinate system by �xn = U xn so that �ra pointsalong the �rst oordinate axis, (�ra)� � �z�0 = � ra; � = 1;0; 2 � � � d; (8.69)and rotated 
2-matrix is diagonal:
2 = 0BBBBB� 
2L 0 0 � � � 00 
2T 0 � � � 00 0 
2T � � � 0... ... ... . . . ...0 0 0 � � � 
2T
1CCCCCA = U 
2 U�1: (8.70)After this rotation, the anisotropi nth-order smearing formula in d dimensions readshAnint[r℄ i
L;Tra;ra = (2�)�d(n+1)=2%
L;T0 (�ra) nYl=1 "Z ~�0 d�l Z dd�zl Vint(j�zlj)# (det a2L)�1=2 (det a2T )�(d�1)=2� exp8<:�12 nXk;l=0 �z1kaL�2kl �z1l9=; exp8<:�12 dX�=2 nXk;l=1 �z�kaT�2kl �z�l9=; : (8.71)The omponents of the longitudinal and transversal matries a2L and a2T area2Lkl = a2L(�k ; �l); a2T kl = a2T (�k; �l) ; (8.72)where the frequeny 
 in (8.36) must be substituted by the new variational parameters 
L;
T , re-spetively. For the harmoni density in the rotated system %
L;T0 (�r), whih is used to normalize (8.71),we �nd %
L;T0 (�r) =s 12�a2L00 s 1(2�a2T 00)d�1 exp"� 12 a2L00 �x21 � 12 a2T 00 dX�=2 �x2�# : (8.73)8.7 AppliationsBy disussing the appliations, we shall employ for simpliity natural units with ~ = kB =M = 1. Inorder to develop some feeling how our variational method works, we approximate at �rst the partiledensity in the double-well potential in seond order. After that we approximate the temperature-dependent eletron density of the hydrogen atom in �rst order.8.7.1 The Double WellA detailed analysis of the �rst-order approximation shows that the partile density in the double-wellpotential is nearly exat for all temperatures if we use the two variational parameters 
2 and xm,whereas one variational parameter 
2 leads to larger deviations at low temperatures and ouplingstrengths. For suh onditions, leading to a maximum of the density far away from origin xa = 0, thedisplaement of the trial osillator xm may not be supposed to vanish. Considering that, our �rst-orderresults improve those obtained in Ref. [58℄. Sine the di�erenes between the optimization proeduresusing one or two variational parameters beome less signi�ant in higher orders, the subsequent seond-order alulation is restrited to the optimization in 
.



118 8. Variational Perturbation Theory for Density MatriesFirst-Order ApproximationIn the ase of the double-well potentialV (x) = �12!2x2 + 14gx4 + 14g (8.74)with oupling onstant g, we obtain for the expetation of the interation (8.39) to �rst order, alsosetting !2 = 1,h Aint[x℄ i
;xmxa;xa = 12�g0 + 12g1C(1)� H1�(xa � xm)=q2a200�+ 14g2C(2)� H2 �(xa � xm)=q2a200�+18g3C(3)� H3�(xa � xm)=q2a200�+ 116g4C(4)� H4 �(xa � xm)=q2a200� (8.75)with g0 = �a200(
2 + 1) + 32ga400 + 3ga200x2m + 12gx4m + 12g � 12x2m;g1 = �q2a200xm + 34g(2a200)3=2xm + gq2a200x3m;g2 = �a200(
2 + 1) + 3ga400 + 3ga200x2m;g3 = g(2a200)3=2xm;g4 = ga400:Inserting (8.75) in (8.45), we obtain the unnormalized double-well density~% 
;xm1 (xa) = 1p2�� exp[��W
;xm1 (xa)℄ (8.76)with the �rst-order e�etive lassial potentialW
;xm1 (xa) = 12 ln sinh�
�
 + 
� (xa � xm)2 tanh �
2 + 1� hAint[x℄ i
;xmxa;xa : (8.77)After optimizing W
;xm1 (xa), the normalized �rst-order partile density %1(xa) is found by dividing~%1(xa) by the �rst-order partition funtionZ1 = 1p2�� +1Z�1 dxa exp[��W1(xa)℄: (8.78)SubjetingW
;xm1 (xa) to the extremality onditions (8.21), we obtain optimal values for the variationalparameters 
2(xa) and xm(xa). Usually there is a unique minimum, but sometimes this does not existand a turning point or a vanishing higher derivative must be used for optimization. Fortunately,the �rst ase is often realized. Figure 8.2 shows the dependene of the �rst-order e�etive lassialpotential W
;xm1 (xa) at � = 10 and g = 0:4 for two �xed values of position xa as a funtion of thevariational parameters 
2(xa) and xm(xa) in a three-dimensional plot. Thereby, the darker the regionthe smaller the value of W
;xm1 . We an distinguish between deep valleys (darkgray), in whih theglobal minimum resides, and hills (lightgray). After having determined roughly the area around theexpeted minimum, one solves numerially the extremality onditions (8.21) with some nearby startingvalues, to �nd the exat loations of the minimum.The example in Fig. 8.2 gives an impression of the general features of this minimization proess.Furthermore we note that for symmetry reasons,xm(xa) = �xm(�xa); (8.79)
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Figure 8.2: Plots of the �rst-order approximation W
;xm1 (xa) to the e�etive lassial potential as a funtionof the two variational parameters 
2(xa); xm(xa) at g = 0:4 and � = 10 for two di�erent values of xa.and 
2(xa) = 
2(�xa): (8.80)Some �rst-order approximations to the e�etive lassial potentialW1(xa) are shown in Fig. 8.3, whihare obtained by optimizing with respet to 
2(xa) and xm(xa). The sharp maximum ourring forweak-oupling is a onsequene of a nonvanishing xm(xa = 0). In the strong-oupling regime, on theother hand, where xm(xa = 0) � 0, the sharp top is absent. This behavior is illustrated in of Figs. 8.4b)and 8.5b) at di�erent temperatures.The inuene of the enter parameter xm diminishes for inreasing values of g and dereasing height1=4g of the entral barrier (see Fig. 8.3). The same thing is true at high temperatures and large valuesof xa, where the preise knowledge of the optimal value of xm is irrelevant. In these limits, the partiledensity an be determined without optimizing in xm, i.e. setting simply xm = 0, where the expetationvalue (8.75) redues tohAint[x℄ i
xa;xa = 14C(2)� H2�xa=q2a200� (g1 + 3g2) + 116 g2C(4)� H4�xa=q2a200�+��12g1 + 34g2 + g3� ; (8.81)with the abbreviations g1 = �a200(
2 + 1); g2 = ga400; g3 = 14g :Inserting (8.81) in (8.45) we obtain the unnormalized double-well density~% 
1 (xa) = 1p2�� exp[��W
1 (xa)℄ (8.82)with the �rst-order e�etive lassial potentialW
1 (xa) = 12 ln sinh�
�
 + 
� x2a tanh �
2 + 1� hAint[x℄ i
xa;xa : (8.83)The optimization at xm = 0 gives reasonable results for moderate temperatures at ouplings suh asg = 0:4, as shown in Fig. 8.6 by a omparison with the exat density, whih is obtained from numerialsolutions of the Shr�odinger equation. An additional optimization in xm annot be distinguished on
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�2=pg �1=pg 0 +1=pg +2=pgxa0:5
1:0
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Figure 8.3: First-order approximation to the e�etive lassial potential, W1(xa), for di�erent ouplingstrengths g as a funtion of the position xa at � = 10 by optimizing in both variational parameters 
2; xm(solid urves) in omparison with the approximations obtained by variation in 
2 only (dashed urves).the plot. An example, where the seond variational parameter xm beomes important, is shown inFig. 8.7, where we ompare the �rst-order approximation with one (
) and two variational parameters(
; xm) with the exat density for di�erent temperatures at the smaller oupling strength g = 0:1.In Fig. 8.4 we see that for xa > 0, the optimal xm-values lie lose to the right hand minimum of thedouble-well potential, whih we only want to onsider here. The minimum is loated at 1=pg � 3:16.We observe that, with two variational parameters, the �rst-order approximation is nearly exat for alltemperatures, in ontrast to the results with only one variational parameter at low temperatures (seethe urve for � = 20 in Fig. 8.7).Seond-Order ApproximationIn seond-order variational perturbation theory, the di�erenes between the optimization proeduresusing one or two variational parameters beome less signi�ant. Thus, we restrit ourselves to theoptimization in 
(xa) and set xm = 0.The seond-order density ~% 
2 (xa) = 1p2�� exp[��W
2 (xa)℄ (8.84)with the seond-order approximation of the e�etive lassial potentialW
2 (xa) = 12 ln sinh�
�
 + 
� x2a tanh �
2 + 1� hAint[x℄ i
xa;xa � 12� 
A2int[x℄ �
xa;xa; (8.85)requires evaluating the smearing formula (8.33) for n = 1, whih is given in (8.81) and n = 2 to bealulated. Going immediately to the umulant we have
A2int[x℄ �
xa;xa; = �Z0 d�1 �Z0 d�2(14(
2 + 1)2 [I22(�1; �2)� I2(�1)I2(�2)℄
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2(xa) at di�erent temperatures and oupling strength g = 0:1. b) Minimumof trial osillator xm(xa) at di�erent temperatures and oupling g = 0:1.
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Figure 8.5: a) Trial frequeny 
2(xa) at di�erent temperatures and oupling strength g = 10. b) Minimumof trial osillator xm(xa) at di�erent temperatures and oupling g = 10.�14g(
2 + 1) [I24(�1; �2)� I2(�1)I4(�2)℄ + 116g2 [I44(�1; �2)� I4(�1)I4(�2)℄) (8.86)with Im(�k) = (a400 � a40k)m �m�jm exp � j2 + 2xaa20kj2a200(a400 � a40k)�j=0 ; k = 1; 2 (8.87)and Imn(�1; �2) = (�detA)m+n �m�jm1 �n�jn2 exp � F (j1; j2)2a200(detA)2 �j1=j2=0 (8.88)detA = a600 + 2a201a202a212 � a200(a401 + a402 + a412):The generating funtion isF (j1; j2) = a400(j21 + j22)� 2a600(a201j1 + a202j2)xa + 2a200(a212j1j2 + (a401 + a402 + a412)(a201j1 + a202j2)xa)�(a201j1 + a202j2)(a201j1 + a202j2 + 4a201a202a212xa): (8.89)
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Figure 8.6: First-order approximation of the double-well partile density for � = 10 and g = 0:4 omparedwith the exat partile density in a double well from numerial solution of the Shr�odinger equation. All valuesare in natural units.%1(xa)
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Figure 8.7: First-order partile densities of the double well for g = 0:1 obtained by optimizing with respetto two variational parameters 
2; xm (dashed urves) and with only 
2 (dash-dotted) vs. exat distributions(solid) for di�erent temperatures. The parameter xm is very important for low temperatures.
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Figure 8.8: Seond-order partile density (dashed) ompared with exat results from numerial solutions ofthe Shr�odinger equation (solid) in a double well at di�erent inverse temperatures. The oupling strength isg = 0:4.All neessary derivatives and the imaginary time integrations in (8.86) have been alulated ana-lytially. After optimizing the unnormalized seond-order density (8.84) in 
 we obtain the resultsdepited in Fig. 8.8. Comparing the seond-order results with the exat densities obtained from nu-merial solutions of the Shr�odinger equation, we see that the deviations are strongest in the regionof intermediate �, as expeted. Quantum mehanial limits are reprodued very well, lassial limitsexatly.8.7.2 Distribution Funtion for the Eletron in the Hydrogen AtomWith the insights gained in the last setion by disussing the double-well potential, we are prepared toapply our method to the eletron in the hydrogen atom, whih is exposed to the attrative Coulombinteration V (r) = �e2r : (8.90)Apart from its physial signi�ane, the theoretial interest in this problem originates from the non-polynomial nature of the attrative Coulomb interation. The usual Wik rules or Feynman diagramsdo not allow to evaluate harmoni expetation values in this ase. Only by the aid of the above-mentioned smearing formula we are able to ompute the variational expansion. Sine we learned fromthe double-well potential that the importane of the seond variational parameter rm diminishes fora dereasing height of the entral barrier, it is suÆient for the Coulomb potential with an absententral barrier to set rm = 0 and to take into aount only one variational parameter 
2. By doing sowe will see in the �rst order that the anisotropi variational approximation beomes signi�ant at lowtemperatures, where radial and transversal quantum utuations have quite di�erent weights. Thee�et of anisotropy disappears ompletely in the lassial limit.



124 8. Variational Perturbation Theory for Density MatriesIsotropi First-Order ApproximationIn the �rst-order approximation for the unnormalized density, we must alulate the harmoni expe-tation value of the ation Aint[r℄ = ~�Z0 d�1 Vint(r(�1)) (8.91)with the interation potential Vint(r) = ��e2r + 12rT 
2 r� ; (8.92)where the matrix 
2�� has the form (8.68). Applying the isotropi smearing formula (8.66) for n = 1to the harmoni term in (8.91) we easily �nd
 r2(�1) �
ra;ra = 3a400 � a401a200 + a401a400 r2a: (8.93)For the Coulomb potential we obtain the loal average� e2r(�1) �
ra;ra = e2ra a200a201 erf  a201p2a200(a400 � a401)ra! : (8.94)The time integration in (8.91) annot be done in an analytial manner and must be performed numer-ially. Alternatively we an use the expansion method introdued in Setion 8.5.1 for evaluating thesmearing formula in three dimensions, whih yieldshAint[r℄ i
ra;ra = [%
0 (ra)℄�1 e�r2a=2a200�2a200ra 1Xn=0 H2n+1(ra=p2a200)22n+1(2n+ 1)! C(2n)� 1Z0 dy y Vint(q2a200 y)e�y2H2n+1(y):(8.95)This an be rewritten in terms of Laguerre polynomials L�n(r) ashAint[r℄ i
ra;ra = r2a200� 1ra 1Xn=0 (�1)nn!(2n+ 1)!C(2n)� H2n+1�ra=q2a200�� 1Z0 dy y1=2Vint�q2a200 y1=2� e�yL1=2n (y)L1=20 (y): (8.96)Using the integral formula [62, Eq. 2.19.14.15℄1Z0 dx x��1e�xLm(x)L�n(x) = (1 + )m(�� �+ 1)n�(�)m!n!� 3F2(�m;�; ���; +1; ����n; 1); (8.97)where the (�)n are Pohhammer symbols, pFq(a1; : : : ; ap; b1; : : : ; bq ;x) denotes the onuent hypergeo-metri funtion, and �(x) is the Gamma funtion, we apply the smearing formula to the interationpotential (8.92) and �ndhAint[r℄ i
ra;ra = � e2p�ra 1Xn=0 (�1)n(2n� 1)!!2n(2n+ 1)! C(2n)� H2n+1(ra=q2a200)�34q2a600
4 1ra �C(0)� H1(ra=q2a200) + 16C(2)� H3(ra=q2a200)� : (8.98)The �rst term omes from the Coulomb potential, the seond from the harmoni potential. Inserting(8.98) in (8.17), we ompute the �rst-order isotropi form of the radial distribution funtiong(r) =p2��3 ~%(r) : (8.99)
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Figure 8.9: Radial distribution funtion for an eletron{proton pair at di�erent temperatures. The �rst-order results obtained with isotropi (dashed urves) and anisotropi (solid) variational perturbation theoryare ompared with Storer's numerial results [63℄ (dotted) and an earlier approximation derived from thevariational e�etive potential method to �rst order in Ref. [55℄ (dash{dotted).This an be written as g
1 (ra) = exp[��W
1 (ra)℄ (8.100)with the isotropi �rst-order approximation of the e�etive lassial potentialW
1 (ra) = 32� ln sinh�
�
 + 
� r2a tanh �
2 + 1� hAint[r℄ i
ra;ra ; (8.101)whih is shown in Fig. 8.9 for various temperatures. The results ompare well with Storer's preisenumerial results [63℄. Near the origin, our results are better than those obtained with an earlierapproximation derived from lowest-order e�etive lassial potential W1(x0) [55℄.Anisotropi First-Order ApproximationThe above results an be improved by taking are of the anisotropy of the problem. For the harmonipart of the ation (8.91), Aint[r℄ = A
[r℄ +AC [r℄; (8.102)the smearing formula (8.71) yields the expetation value
A
[r℄ �
L;Tra;ra = �12 �
2La2L00 �C(0)� + 12C(2)�;LH2(ra=q2a2L00)�+ 2
2Ta2T 00(C(0)� � C(2)�;T )� ; (8.103)where the C(n)�;L(T ) are the polynomials (8.41) with 
 replaed by the longitudinal or transverse fre-queny. For the Coulomb part of ation, the smearing formula (8.71) leads to a double integralh AC [r℄ i
L;Tra;ra = �e2 ~�Z0 d�1s 2�a2L00(1� a4L) 1Z0 d� �1 + �2 �a2T 00(1� a4T )a2L00(1� a4L) � 1���1



126 8. Variational Perturbation Theory for Density Matries� exp�� r2aa4L�22a2L00(1� a4L)� (8.104)with the abbreviations a2L = a2L01a2L00 ; a2T = a2T 01a2T 00 : (8.105)The integrals must be done numerially and the �rst-order approximation of the radial distributionfuntion an be expressed by g
L;T1 (ra) = exp[��W
L;T1 (ra)℄ (8.106)with W
L;T1 (ra) = 12� ln sinh�
L�
L + 1� ln sinh�
T�
T + 
L� r2a tanh �
L2 + 1� h Aint[r℄ i
L;Tra;ra : (8.107)This is optimized in 
L(ra);
T (ra) with the results shown in Fig. 8.9. The anisotropi approahimproves the isotropi result for temperatures below 104 K.



Chapter 9
Variational Approah to HydrogenAtom in Uniform Magneti Field

Applying the generalized variational approah presented in Setion 7.1, we alulate the temperature-dependent e�etive lassial potential governing the quantum statistis of a hydrogen atom in a uniformmagneti at all temperatures [18,19℄. The zero-temperature limit yields the binding energy of theeletron whih is quite aurate for all magneti �eld strengths and exhibits, in partiular, the orretlogarithmi growth at large �elds.9.1 IntrodutionThe quantum statistial and quantum mehanial properties of a hydrogen atom in an external mag-neti �eld are not exatly alulable. Perturbative approahes yield good results only for weak uniform�elds as disussed in detail by Le Guillou and Zinn-Justin [64℄, who interpolated with analyti map-ping tehniques the ground-state energy between weak- and strong-�eld regime. Other approahes arebased on reursive proedures in higher-order perturbation theory [65{67℄. Zero-temperature proper-ties were also investigated with the help of an operator optimization method in a seond-quantizedvariational proedure [68℄. The behavior at high uniform �elds was inferred from treatments of theone-dimensional hydrogen atom [69{71℄. Hydrogen in strong magneti �elds is still a problem underinvestigation, sine its solution is neessary to understand the properties of white dwarfs and neutronstars, as emphasized in Refs. [72{75℄.A ompat and detailed presentation of the bound states and highly aurate numerial values forthe energy levels are given in Ref. [76℄.Equations for a �rst-order variational approah to the ground-state energy of hydrogen in a uniformmagneti �eld based on the Jensen-Peierls inequality were written down a long time ago [77℄, but neverevaluated. Apparently, they merely served as a preparation for attaking the more ompliated problemof a polaron in a magneti �eld [77{79℄.In plasma physis, the equation of state of a hydrogen plasma, whih is inuened by a magneti�eld, was reently investigated with the help of fugaity expansions for weak and strong �elds [80{82℄.In our approah, we alulate the quantum statistial properties of the system by an extensionof variational perturbation theory [4℄. The ruial quantity is the e�etive lassial potential. In thezero-temperature limit, it yields the ground-state energy. Our alulations in a magneti �eld requirean extension of the formalism in Ref. [4℄ whih derives the e�etive lassial potential from the phase127



128 9. Variational Approah to Hydrogen Atom in Uniform Magneti Fieldspae representation of the partition funtion.Variational perturbation theory has an important advantage over other approahes: The alulationyields a good e�etive lassial potential for all temperatures and oupling strengths. The quantumstatistial partition funtion is obtained from a simple integral over a Boltzmann-fator involving thee�etive lassial potential. The ground-state energy is then obtained from its zero-temperature limit.The asymptoti behavior in the strong-oupling limit is emerging automatially and does not have tobe derived from other soures.9.2 E�etive Classial Representations for the QuantumStatistial Partition FuntionA point partile in d dimensions with a potential V (x) and a vetor potential A(x) is desribed by aHamiltonian H(p;x) = 12M [p� eA(x)℄2 + V (x): (9.1)The quantum statistial partition funtion is given by the Eulidean phase spae path integralZ = I D0dxDdp e�A[p;x℄=~ (9.2)with an ation A[p;x℄ = Z ~�0 d� [�ip(�) � _x(�) +H(p(�);x(�))℄ ; (9.3)and the path measure I D0dxDdp = limN!1N+1Yn=1 �Z ddxnddpn(2�~)d � : (9.4)The parameter � = 1=kBT denotes the usual inverse thermal energy at temperature T , where kB isthe Boltzmann onstant. From Z we obtain the free energy of the system:F = � 1� lnZ: (9.5)In perturbation theory, one treats the external potential V (x) as a small quantity, and expands thepartition funtion into powers of V (x). Suh a naive expansion is appliable only for extremelyweak ouplings, and has a vanishing radius of onvergene. Convergene is ahieved by variationalperturbation theory [4℄, whih yields good approximations for all potential strengths, as we shall seein the sequel.9.2.1 E�etive Classial PotentialAll quantum mehanial systems studied so far in variational perturbation theory were governed by aHamiltonian of the standard form H(p;x) = p22M + V (x): (9.6)The simple quadrati dependene on the momenta makes the momentum integrals in the path integral(9.2) trivial. The remaining on�guration spae representation of the partition funtion is used tode�ne an e�etive lassial potential Ve�(x0), from whih the quantum mehanial partition funtionis found by a lassially looking integralZ = Z ddx0�dth exp [��Ve�(x0)℄ ; (9.7)



9.2 E�etive Classial Representations for the Quantum Statistial Partition Funtion 129where �th = p2�~2�=M is the thermal wavelength. The Boltzmann fator plays the role of a loalpartition funtion Zx0 , whih is alulated from the restrited path integrale��Veff (x0) � Zx0 = �dth I Ddx Æ(x0 � x(�)) e�A[x℄=~; (9.8)with the ation A[x℄ = Z ~�0 d� �M2 _x2(�) + V (x(�))� ; (9.9)and the path measure I Ddx = limN!1N+1Yn=1 �Z ddxn[2�~2�=M(N + 1)℄d=2� : (9.10)As pointed out in Setion 4.1, the speial treatment of the temporal average of the Fourier pathx0 = x(�) = 1~� Z ~�0 d� x(�) (9.11)is essential for the quality of the results. It subtrats from the harmoni utuation width hx2ilthe lassial divergene proportional to T = 1=kB� of the Dulong-Petit law [4,20℄. Suh divergingutuations annot be treated perturbatively, and require the �nal integration in expression (9.7) tobe done numerially.For the Coulomb potential V (x) = �e2=4�"0 jxj in three dimensions, the e�etive lassial potentialin Eq. (9.8) an be approximated well by variational perturbation theory [4,20,53,55℄.9.2.2 E�etive Classial HamiltonianIn order to deal with Hamiltonians like (9.1) whih ontain a p � A(x)-term, we must apply thegeneralized variational proedure introdued in Setion 7.2. Extending (9.8), we de�ne an e�etivelassial Hamiltonian by the phase spae path integrale��Heff (p0;x0) � Zp0;x0 = (2�~)d I D0dxDdp Æ(x0 � x(�))Æ(p0 � p(�)) e�A[p;x℄=~; (9.12)with the ation (9.3) and the measure (9.4). This allows us to express the partition funtion as thelassially looking phase spae integralZ = Z ddx0ddp0(2�~)d exp [��He�(p0;x0)℄ ; (9.13)where p0 is the temporal average of the momentum:p0 = p(�) = 1~� Z ~�0 d� p(�): (9.14)The �xing of p0 is done for the same reason as that for x0, sine the lassial expetation value hp2ilis diverging linearly with T , just as hx2il.In the speial ase of a standard Hamiltonian (9.6), the e�etive Hamiltonian in Eq. (9.13) reduesto the e�etive lassial potential, sine the momentum integral in Eq. (9.12) an then be easilyperformed, and the resulting restrited partition funtion beomesZp0;x0 = exp��� p202M� Zx0 (9.15)with the loal partition funtion of Eq. (9.8). Thus the omplete quantum statistial partition funtionis given by (9.13), with an e�etive lassial Hamilton funtionHe�(p0;x0) = p202M + Ve�(x0): (9.16)



130 9. Variational Approah to Hydrogen Atom in Uniform Magneti FieldAs a onsequene of the purely quadrati momentum dependene of H(p;x) in (9.6), the p0-integralin (9.13) an be done, thus expressing the quantum statistial partition funtion as a pure on�gura-tion spae integral over the Boltzmann fator involving the e�etive lassial potential Ve�(x0), as inEq. (9.7).9.2.3 Exat E�etive Classial Hamiltonian for an Eletron in a Constant Magneti FieldThe e�etive lassial Hamiltonian for the eletron moving in a onstant magneti �eld an be al-ulated exatly. We onsider a magneti �eld B = Bez pointing along the positive z-axis. The onlynontrivial motion of the eletron is in the x�y-plane. In symmetri gauge the vetor potential is givenby A(x) = B2 (�y; x; 0): (9.17)The hoie of the gauge does not a�et the partition funtion sine the periodi path integral (9.2)is gauge invariant. Ignoring the trivial free partile motion along the z-diretion, we may restrit ourattention to the two-dimensional HamiltonianH(p;x) = p22M � !Blz(p;x) + 12M!2Bx2 (9.18)with x = (x; y) and p = (px; py). Here, !B = eB=2M is half the Landau frequeny, andlz(p;x) = (x� p)z = xpy � ypx (9.19)the third omponent of the orbital angular momentum.It is useful at intermediate stages of the following development to treat the more general problemH(p;x) = p22M � !Blz(p;x) + 12M
2?x2: (9.20)At the end of the alulation only the limit 
? ! !B will be relevant. The partition funtion of theproblem is given by Eq. (9.13), with d = 2. Being interested in an e�etive lassial formulation, wehave to alulate the path integral (9.12). First we express the Æ funtion for the averaged momentumas a Fourier integralÆ(p0 � p(�)) = Z d2�(2�~)2 exp�� i~� � p0� exp"�1~ Z ~�0 d� v0(�) � p(�)# (9.21)involving an auxiliary soure v0(�) = � i~� � (9.22)whih is onstant in time. Substituting the Æ funtion in Eq. (9.12) by this soure representation, thepartition funtion readsZp0;x0 = lim
?!!B Z d2� exp�� i~� � p0�I D02xD2p Æ(x0 � x(�))� exp(�1~ Z ~�0 d� [�ip(�) � _x(�) +H(p(�);x(�)) + v0(�) � p(�)℄) : (9.23)Evaluating the momentum integrals and utilizing the periodiity property x(0) = x(~�), we obtainthe on�guration spae path integralZp0;x0 = lim
?!!B Z d2� exp�� i~� � p0 � M2~2� �2�I D2x Æ(x0 � x(�))� exp(�1~ Z ~�0 d� �M2 _x2(�) + 12M �
2? � !2B�x2(�) � iM!B(x(�) � _x(�))z + x(�) � j1(�)�) ;



9.2 E�etive Classial Representations for the Quantum Statistial Partition Funtion 131(9.24)where the soure v0 oupled to the momentum in (9.23) has turned to a soure j1 oupled to the pathin on�guration spae [17℄, with omponentsj1(�) =M!B ( v0y(�);�v0x(�) ) = i!BM~� (��y; �x ) : (9.25)Expressing the Æ funtion in the path integral of Eq. (9.24) by the Fourier integralÆ(x0 � x(�)) = Z d2�(2�)2 exp (i� � x0) exp"�1~ Z ~�0 d� j2(�) � x(�)# (9.26)with the new soure j2(�) = i�� ; (9.27)the partition funtion (9.24) an be written asZp0;x0 = lim
?!!B Z d2� exp�� i~� � p0 � M2~2� �2�Z d2�(2�)2 exp (i� � x0) Z
[J(�;�)℄: (9.28)The funtional Z
[J(�;�)℄ is de�ned as the on�guration spae path integralZ
[J(�;�)℄ = I D2x exp"�12 Z ~�0 d� Z ~�0 d� 0 x(�)G�1(�; � 0)x(� 0)� 1~ Z ~�0 d� J(�;�) � x(�)# ;(9.29)where we have introdued the ombined soure J(�;�) = j1(�) + j2(�). Formally, the solution readsZ
[J(�;�)℄ = Z
[0℄ exp" 12~2 Z ~�0 d� Z ~�0 d� 0 J(�;�)G(�; � 0)J(�;�)# ; (9.30)where G(�; � 0) is the matrix of Green funtions obtained by invertingG�1(�; � 0) = M~  � d2d�2 +
2? � !2B �2i!B dd�2i!B dd� � d2d�2 +
2? � !2B ! Æ(� � � 0): (9.31)The inversion is easily done in frequeny spae after spetrally deomposing the Æ funtion into theMatsubara frequenies !m = 2�m=~�,Æ(� � � 0) = 1~� 1Xm=�1 ei!m(��� 0): (9.32)The result is ~G(!m) = ~M 1det ~G � !2m +
2? � !2B �2!B!m2!B!m !2m +
2? � !2B � : (9.33)At this point, the additional osillator in Eq. (9.24) proves useful: It ensures that the determinantdet ~G(!m) = �!2m +
2? � !2B�2 + 4!2B!2m (9.34)is nonzero for m = 0, thus playing the role of an infrared regulator. The Fourier expansionG(�; � 0) = 1~� 1Xm=�1 ~G(!m)e�i!m(��� 0) (9.35)



132 9. Variational Approah to Hydrogen Atom in Uniform Magneti Fieldyields the matrix of Green funtionsG(�; � 0) = � Gxx(�; � 0) Gxy(�; � 0)Gyx(�; � 0) Gyy(�; � 0) � (9.36)whih inherits the symmetry properties from the kernel (9.31):Gxx(�; � 0) = Gyy(�; � 0); Gxy(�; � 0) = �Gyx(�; � 0): (9.37)A more detailed desription of these Green funtions is given in Appendies 9A and 9B.Sine the urrent J does not depend on the Eulidean time, the expression (9.30) simpli�es thereforeto Z
[J(�;�)℄ = Z
[0℄ exp" 1~2 J2(�;�) Z ~�0 d� Z ~�0 d� 0Gxx(�; � 0)# : (9.38)The Green funtion has the Fourier deompositionGxx(�; � 0) = 1M� 1Xm=�1 !2m +
2? � !2B(!2m +
2+)(!2m +
2�) e�i!m(��� 0); (9.39)where 
� are the frequenies 
� = 
? � !B (9.40)and 
? > !B , for stability.The ratios in the sum of (9.39) an be deomposed into two partial frations, eah of them repre-senting a single harmoni osillator with frequeny 
+ and 
�, respetively. The analyti form of theperiodi Green funtion of a single harmoni osillator is well known (see Chap. 3 in Ref. [4℄), and weobtain for the present Green funtion (9.39):Gxx(�; � 0) = ~4M
? �osh
+(j� � � 0j � ~�=2)sinh ~�
+=2 + osh
�(j� � � 0j � ~�=2)sinh ~�
�=2 � : (9.41)By fatorizing the determinant (9.34) aording todet ~G(!m) = (!2m +
2+)(!2m +
2�) (9.42)and summing over the logarithms of this, we alulate the partition funtion as a produt of two singleharmoni osillators: Z
 = Z
[0℄ = 12 sinh~�
+=2 12 sinh ~�
�=2 : (9.43)The results (9.41) and (9.43) determine the generating funtional (9.38). The Eulidean time integra-tions are then easily done, and subsequently the �- and �-integrations in (9.28). As a result, we obtainthe restrited partition funtionZp0;x0 = lim
?!!B exp���� 1� ln sinh ~�
+=2~�
+=2 sinh ~�
�=2~�
�=2 + p202M � !Blz(p0;x0) + 12M
2?x20�� :(9.44)Taking the limit 
? ! !B , we �nd from (9.40): 
+ ! 2!B, 
� ! 0, and thereforelim
?!!B sinh ~�
+=2~�
+=2 = sinh~�!B~�!B ; lim
?!!B sinh ~�
�=2~�
�=2 = 1: (9.45)Realling the de�nition (9.12), we identify the exat e�etive lassial Hamiltonian for an eletron ina magneti �eld asHe�(p0;x0) = 1� ln sinh ~�!B~�!B + p202M � !B lz(p0;x0) + 12M!2Bx20: (9.46)



9.3 Hydrogen Atom in Constant Magneti Field 133Integrating out the momenta in Eq. (9.13), the on�guration spae representation (9.7) for the partitionfuntion ontains the e�etive lassial potential for a harged partile in the plane perpendiular tothe diretion of a uniform magneti �eld:Ve�(x0) = 1� ln sinh ~�!B~�!B : (9.47)Note that this is a onstant potential.Denoting the area R d2x0 by A, we �nd the exat quantum statistial partition funtionZ = A�2th ~�!Bsinh ~�!B : (9.48)After these preparations, we an turn our attention to the system we want to study in this hapter:the hydrogen atom in a uniform magneti �eld, where the additional Coulomb interation prevents usfrom �nding an exat solution for the e�etive lassial Hamilton funtion.9.3 Hydrogen Atom in Constant Magneti FieldThe zero-temperature properties of the hydrogen atom without external �elds are exatly known. Forthe quantum statistis at �nite temperatures an aurate approximative result was found with thehelp of variational perturbation theory [53℄. Similar alulations have been performed for the eletron-proton pair distribution funtion whih an be interpreted as the unnormalized density matrix [20℄.Here we extend this method to the hydrogen atom in a onstant magneti �eld. This extensionis quite nontrivial sine the weak- and strong-�eld limits will turn out to exhibit ompletely di�erentasymptoti behaviors. Let us �rst generalize variational perturbation theory to an eletron in a onstantmagneti �eld and arbitrary potential.9.3.1 Generalized Variational Perturbation TheoryWe onsider one more the e�etive lassial form (9.13) of the quantum statistial partition funtionwhih requires the path integration (9.12) in phase spae. Flutuations parallel and vertial to themagneti �eld lines are now both nontrivial, and we must deal with the full three-dimensional systemand the omponents of the eletron position and momentum are now denoted by x = (x; y; z) andp = (px; py; pz). For the uniform magneti �eld pointing along the z-axis, the vetor potential A(x)is used in the gauge (9.17). Thus the Hamilton funtion of an eletron in a magneti �eld and anarbitrary potential V (x) isH(p;x) = p22M � !Blz(p;x) + 12M!2Bx2 + V (x): (9.49)The orbital angular momentum lz(p;x) was introdued in Eq. (9.19), and the frequeny !B belowEq. (9.18). The importane of the separation of the zero frequeny omponents x0 and p0 was disussedin Setion 9.2. Their divergene with the temperature T prevents a perturbative treatment. Thus itis essential to set up the perturbation theory only for the utuations around x0 and p0. For this werewrite the ation funtional (9.3) assoiated with the Hamiltonian (9.49) asA[p;x℄ = Ap0;x0
 [p;x℄ +Aint[p;x℄; (9.50)where we have introdued the utuation ationAp0;x0
 [p;x℄ = Z ~�0 d� n� i[p(�) � p0℄ � _x(�) + 12M [p(�) � p0℄2 � 
Blz(p(�) � p0;x(�) � x0)+12M
2? �x?(�) � x?0 �2 + 12M
2k[z(�) � z0℄2o; (9.51)



134 9. Variational Approah to Hydrogen Atom in Uniform Magneti Fieldin whih x? = (x; y; 0) denotes the transverse part of x and 
? > 
B , for stability. The interationis now Aint[p;x℄ = Z ~�0 d� Vint(p(�);x(�)) = A[p;x℄�Ap0;x0
 [p;x℄ (9.52)with the interation potentialVint(p(�);x(�)) = 12M np2(�) � [p(�) � p0℄2o� !B x?(�) � p?(�)+
B(x?(�) � x?0 )� (p?(�)� p?0 ) + 12M!2Bx?2(�)�12M
2? �x?(�) � x?0 �2 � 12M
2k[z(�)� z0℄2 + V (x(�)); (9.53)where p? = (px; py; 0). The frequenies 
 = (
B ;
?;
k) are for the moment arbitrary. The deom-position (9.50) forms the basis for the variational approah, where the �rst term in the ation (9.50)allows an exat treatment. The transverse part was given in Setion 9.2.3 and the longitudinal part istrivial, sine it is harmoni with frequeny 
k. The assoiated partition funtion is given by the pathintegral Zp0;x0
 = I D03xD3p Æ(x0 � x(�))Æ(p0 � p(�))e�Ap0;x0
 [p;x℄=~; (9.54)whih an be performed. Details are given in Appendix 9C. The result isZp0;x0
 = ~�
+=2sinh ~�
+=2 ~�
�=2sinh ~�
�=2 ~�
k=2sinh ~�
k=2 ; (9.55)where auxiliary frequenies are omposed of the frequenies 
B ;
? in the ation (9.51) as
�(
B ;
?) = 
? � 
B : (9.56)This partition funtion serves in the subsequent perturbation expansion as trial system whih dependsexpliitly on the frequenies 
. The orrelation funtions are a straightforward generalization of (9.36)to three dimensions: Gx0(�; � 0) = 0� Gx0xx(�; � 0) Gx0xy(�; � 0) 0Gx0yx(�; � 0) Gx0yy(�; � 0) 00 0 Gx0zz (�; � 0)1A ; (9.57)whose expliit form is derived in Appendix 9C.The 
-dependent ation in Eq. (9.50) is treated perturbatively. Writing the partition funtion(9.12) as Zp0;x0 = (2�~)3 I D03xD3p Æ(x0 � x(�))Æ(p0 � p(�)) exp��1~Ap0;x0
 [p;x℄�� exp(�1~ Z ~�0 d� Vint(p(�);x(�))) ; (9.58)the seond exponential is expanded into a Taylor series, yieldingZp0;x0 = (2�~)3 I D03xD3p Æ(x0 � x(�))Æ(p0 � p(�)) exp��1~Ap0;x0
 [p;x℄��"1� 1~ Z ~�0 d� Vint(p(�);x(�)) + 12!~2 Z ~�0 d�1 Z ~�0 d�2 Vint(p(�1);x(�1))Vint(p(�2);x(�2))� : : :# :(9.59)In three dimensions, the harmoni expetation values are de�ned with respet to the restrited pathintegral ash : : : ip0;x0
 = (2�~)3Zp0;x0
 I D03xD3p : : : Æ(x0 � x(�))Æ(p0 � p(�)) exp��1~Ap0;x0
 [p;x℄� : (9.60)



9.3 Hydrogen Atom in Constant Magneti Field 135Similar to the proedure presented in Setion 7.2, we rewrite the Taylor expansion (9.59) as a umulantexpansion of the form (7.21). The �rst umulants are given by Eqs. (7.22). Expressing the restritedpartition funtions by the help of the relations (7.12), we obtain a perturbation series for the e�etivelassial Hamiltonian:He�(p0;x0) = � 1� lnZp0;x0
 + 1� 1Xn=1 (�1)n+1~nn! * Z ~�0 d� Vint(p(�);x(�))!n+p0;x0
; : (9.61)The Nth-order approximation of the e�etive lassial Hamiltonian is then given byH(N)
 (p0;x0) = � 1� lnZp0;x0
 + 1� NXn=1 (�1)n+1~nn! * Z ~�0 d� Vint(p(�);x(�))!n+p0;x0
; : (9.62)This expression depends expliitly on the three parameters 
. Sine the exat expression (9.61) isindependent of 
, the best approximation for H(N)
 (p0;x0) should minimally depend on 
. Theoptimal solution is obtained by determining the parameters from the onditionsr
H(N)
 (p0;x0) != 0: (9.63)The solutions for the optimal variational parameters to Nth order are given by
(N) = �
(N)B (p0;x0);
(N)? (p0;x0);
(N)k (p0;x0)� : (9.64)Inserting these into Eq. (9.62) yields the optimal e�etive lassial Hamiltonian H(N)(p0;x0).9.3.2 First-Order E�etive Classial PotentialThe �rst-order approximation of the e�etive lassial Hamiltonian (9.62) readsH(1)
 (p0;x0) = � 1� lnZp0;x0
 + hVint(p;x) ip0;x0
 : (9.65)The invariane of the system under time translations makes one of the time integrals in the expansion(9.61) trivial, yielding merely an overall fator ~�. In partiular, the �rst-order expetation value ofVint(x) in (9.65) is independent of the Eulidean time � .In order to alulate H(1)
 (p0;x0), we use the two-point orrelation funtions derived in Ap-pendix 9C, and the vanishing of the linear expetations, e.g.h px(�) � p0x ip0;x0
 = 0 (9.66)to �nd H(1)
 (p0;x0) = p202M � !Blz(p0;x0) + 12M!2B(x20 + y20) +W (1)
 (x0); (9.67)where we have olleted all terms depending on the variational parameters 
 in the potentialW (1)
 (x0) = � 1� lnZp0;x0
 �M
B(!B � 
B) b2?(x0) +M �!2B � 
2?� a2?(x0)� 12M
2ka2k(x0)+ hV (x) ip0;x0
 : (9.68)The quantities a2?(x0), a2k(x0), and b2?(x0) are the transverse and longitudinal utuation widthsa2?(x0) = Gp0;x0xx (0); a2k(x0) = Gp0;x0zz (0); b2?(x0) = 2M
BGp0;x0xpy (0): (9.69)Note that the potential (9.68) is independent of p0. This means that the approximation (9.67) to thee�etive lassial Hamiltonian ontains no oupling of the momentum p0 to a variational parameter



136 9. Variational Approah to Hydrogen Atom in Uniform Magneti Field
, suh that the optimal 
(1) determined by minimizing H(1)
 (p0;x0) is independent of p0. We maytherefore integrate out p0 in the phase spae representation of the �rst-order approximation for thepartition funtion Z(1) = Z d3x0d3p0(2�~3) e��H(1)
 (p0;x0) (9.70)to �nd the pure on�guration spae integralZ(1) = Z d3x0�3th e��W (1)
 (x0); (9.71)in whih W (1)
 (x0) represents the �rst-order approximation to the e�etive lassial potential of aneletron in a potential V (x) and a uniform magneti �eld.9.3.3 Appliation to the Hydrogen Atom in a Magneti FieldWe now apply the formulas of the preeding setion to the Hamiltonian (9.49) with an attratingCoulomb potential V (x) = � e24�"0 jxj ; (9.72)where jxj is the distane between the eletron and the proton. The only nontrivial problem is thealulation of the expetation value hV (x(�)) ip0;x0
 in Eq. (9.68). This is done using the so-alledsmearing formula, whih is a Gaussian onvolution of V (x). This formula was �rst derived by Feynmanand Kleinert [8℄, and exists now also in an extension to arbitrary order [20,53℄. The generalizationto position and momentum dependent observables was given in the phase spae formulation [17℄. Webriey re-derive the �rst-order smearing formula. The expetation value is de�ned byhV (x(� 0)) ip0;x0
 = (2�~)3Zp0;x0
 I D03xD3p V (x(� 0)) Æ(x0 � x(�))Æ(p0 � p(�))e�Ap0;x0
 [p;x℄=~: (9.73)Now we substitute the potential by the expressionV (x(� 0)) = Z d3xV (x)Æ(x � x(� 0))= Z d3xV (x) Z d3�(2�)3 exp �i�T (x� x0)� exp(�1~ Z ~�0 d� jT (�)[x(�) � x0℄) ; (9.74)where we have introdued the soure j(�) = i~�Æ(� � � 0): (9.75)Inserting the expression (9.74) into Eq. (9.73) we obtainh V (x(� 0)) ip0;x0
 = 1Zp0;x0
 Z d3xV (x) Z d3�(2�)3 exp [i� � (x� x0)℄ Zp0;x0
 [j℄; (9.76)with the harmoni generating funtionalZp0;x0
 [j℄ = (2�~)3 I D03xD3p Æ(x0 � x(�))Æ(p0 � p(�))� exp(�1~Ap0;x0
 [p;x℄� 1~ Z ~�0 d� j(�) � [x(�) � x0℄) : (9.77)The solution is Zp0;x0
 [j℄ = Zp0;x0
 exp" 12~2 Z ~�0 d� Z ~�0 d� 0 j(�)Gx0(�; � 0) j(� 0)# (9.78)



9.4 Results 137with the 3 � 3-matrix of Green funtions of Eq. (9.57). The properties of the Green funtions aredisussed in the Appendies 9A and 9B. Expressing the soure j(�) in terms of � via Eq. (9.75) andperforming the � -integrations, we arrive athV (x(� 0)) ip0;x0
 = Z d3xV (x) Z d3�(2�)3 exp fi� � [x� x0℄g exp ��12�Gx0(0)�� : (9.79)Reognizing that Gx0yx(0) = Gx0xy(0) vanish, the �-integral is easily alulated and leads to the �rst-ordersmearing formula for an arbitrary position dependent potentialhV (x(� 0)) ip0;x0
 = 1(2�)3=2 a2?(x0)qa2k(x0) Z d3xV (x) exp"� (x� x0)2 + (y � y0)22a2?(x0) � (z � z0)22a2k(x0) # ;(9.80)the right-hand side ontaining the Gaussian utuation widths (9.69).For the Coulomb potential (9.72) that we are interested in, the integral in the smearing formula(9.80) an not be done exatly. An integral representation for a simple numerial treatment is�� e24�"0 jxj �p0;x0
 = � e24�"0r 2� a2k(x0) 1Z0 d�a2k(x0) + �2[a2?(x0)� a2k(x0)℄� exp(��22  x20 + y20a2k(x0) + �2[a2?(x0)� a2k(x0)℄ + z20a2k(x0)!) : (9.81)With this expression we know the entire �rst-order e�etive lassial potential (9.68) for an eletronin a Coulomb potential and a uniform magneti �eld whih has to be optimized in the variationalparameters 
.9.4 ResultsWe are now going to optimize the e�etive lassial potential by extremizing it in 
 at di�erenttemperatures and magneti �eld strengths. In the zero-temperature limit this will produe the ground-state energy.9.4.1 E�etive Classial Potential for Di�erent Temperatures and Magneti Field StrengthsThe optimization of W (1)
 (x0) proeeds by minimization in 
 and must be done for eah value of x0.Reinserting the optimal parameters 
(1)(x0) into the expressions (9.68) and (9.81), we obtain theoptimal �rst-order e�etive lassial potential W (1)(x0). The alulations are done numerially, wherewe used natural units ~ = e2=4�"0 = kB =  =M = 1. This means that energies are measured in unitsof �0 = Me4=(4�"0)2~2 � 2Ry � 27:21 eV, temperatures in �0=kB � 3:16� 105K, distanes in Bohrradii aB = (4�"0)2~2=Me2 � 0:53� 10�10m, and magneti �eld strengths in B0 = e3M2=~3(4�"0)2 �2:35� 105T = 2:35� 109G. Figure 9.1 shows the resulting urves for various magneti �eld strengthsB and an inverse temperature � = 1=T = 1. Examples of the lower temperature behavior are shownin Fig. 9.2 for � = 100. To see the expeted anisotropy of the urves in the magneti �eld diretionand in the plane perpendiular to it, we plot simultaneously the urves for W (1)(x0) transversal tothe magneti �eld as a funtion of �0 = px20 + y20 at z = 0 (solid urves) and parallel as a funtionof z0 at �0 = 0 (dashed urves). The urves beome strongly anisotropi for low temperatures andinreasing �eld strengths (see Fig. 9.2). At a given �eld strength B, the two urves onverge for largedistanes from the origin, where the proton resides, to the same onstant depending on B. This is dueto the dereasing inuene of the Coulomb interation whih shows the lassial 1=r-behavior in eahdiretion. When approahing the lassial high-temperature limit, the e�et of anisotropy beomesless important sine the violent thermal utuations do not have a preferred diretion (see Fig. 9.1).



138 9. Variational Approah to Hydrogen Atom in Uniform Magneti Field

0 0.5 1
−4

−2

0

2

0 5 10 15 20
−4

−2

0

2

4

�0=aB; z0=aB

W (1)
B = 0B = 5B = 10

Figure 9.1: E�etive lassial potential (in units of 2Ry) as a funtion of the oordinate �0 = px20 + y20perpendiular to the �eld lines at z0 = 0 (solid urves), and parallel to the magneti �eld as a funtion of z0 at�0 = 0 (dashed urves). The inverse temperature is �xed at � = 1, and the strengths of the magneti �eld Bare varied (all in natural units). The small �gure enlarges the range 0 � �0; z0 � 1 with notieable anisotropy.For �0 ! 1 or z0 ! 1, the expetation value of the Coulomb potential (9.81) tends to zero. Theremaining e�etive lassial potentialW (1)
 (x0) �! � 1� lnZp0;x0
 � 
B(!B � 
B) b2? + �!2B � 
2?� a2? � 12
2ka2k (9.82)is a onstant with regard to the position x0, and the optimization yields 
(1)B = 
(1)? = !B and
(1)k = 0, leading to the asymptoti onstant valueW (1)(x0) �! � 1� ln �!Bsinh�!B : (9.83)The B = 0-urves are of ourse idential with those obtained from variational perturbation theory forthe hydrogen atom [53,55℄.9.4.2 Ground-State Energy of the Hydrogen Atom in Uniform Magneti FieldIn what follows we investigate the zero-temperature behavior of the theory. Figures 9.1 and 9.2show that the minimum of eah potential urve lies at the origin. This means that the �rst-orderapproximation to the ground-state energy for a �xed magnitude of the magneti �eld B is found byonsidering the zero-temperature limit of the �rst-order e�etive lassial potential in the originE(1) = lim�!1W (1)(0): (9.84)
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Figure 9.2: Analogous plot to Fig. 9.1, but at the larger inverse temperature � = 100.Thus we obtain from Eq. (9.68) the variational expression for the ground-state energy:E(1)
 (B) = 12
? �
2? + !2B�+ 
k4 �� 1jxj �0
 ; (9.85)where the expetation value for the Coulomb potential (9.81) an now be alulated exatly sine theexponential in the integral simpli�es to unity:� 1jxj �0
 =r
k� 1p1� 
k=
? ln 1�p1� 
k=
?1 +p1� 
k=
? : (9.86)The equations (9.85) and (9.86) are independent of the frequeny parameter 
B suh that the opti-mization of the �rst-order expression for the ground-state energy (9.85) requires the satisfying of theequations �E(1)
 (B)�
? != 0; �E(1)
 (B)�
k != 0: (9.87)Reinserting the resulting values 
(1)? and 
(1)k into Eq. (9.85) yields the �rst-order approximation forthe ground-state energy E(1)(B). In the absene of the Coulomb interation the optimization withrespet to 
? yields 
(1)? = !B, rendering the ground-state energy E(1)(B) = !B , whih is the zerothLandau level. An optimal value for 
k does not exist sine the dependene of the ground-state energyof this parameter is linear in Eq. (9.85) in this speial ase. To obtain the lowest energy, this parameteran be set to zero (all optimal frequeny parameters used in the optimization proedure turn out tobe nonnegative). For a vanishing magneti �eld, B = 0, Eq. (9.85) exatly reprodues the �rst-ordervariational result for the ground-state energy of the hydrogen atom, E(1)(B = 0) � �0:42 [2Ry℄,obtained in Ref. [8℄.
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Figure 9.3: First-order variational result for the binding energy (in units of 2Ry) as a funtion of the strengthof the magneti �eld. The dots indiate the values of Ref. [64℄. The dashed urve shows the simple estimateof Landau-Lifshitz [69℄ 0:5 ln2B, whih is losely related to the ground-state energy of the one-dimensionalhydrogen atom [70,71℄.To investigate the asymptotis in the strong-�eld limit B ! 1, it is useful to extrat the leadingterm !B . Thus we de�ne the binding energy"(B) � !B �E(B) (9.88)whih possesses a harateristi strong-�eld behavior to be disussed in detail subsequently. The resultis shown in Fig. 9.3 as a funtion of the magnitude of the magneti �eld B, where it is ompared withthe high-auray results of Ref. [64℄. As a �rst-order approximation, this result is satisfatory. Itis of the same quality like other �rst-order results, for example those from the operator optimizationmethod in �rst order of Ref. [68℄. The advantage of variational perturbation theory is that it yieldsgood results over the omplete range of the oupling strength, here the magneti �eld. Moreover, asa onsequene of the exponential onvergene [4, Chap. 5℄, higher orders of variational perturbationtheory push the approximative result of any quantity very rapidly towards the exat value.The Weak-Field CaseWe investigate now the weak-�eld behavior of our theory starting from the expression (9.88) and theexpetation value of the Coulomb potential (9.86) in natural units:"(1)�;
(B) = B2 � 
2 �1 + �2�� B28
 �r�
� h(�) (9.89)with h(�) = 1p1� � ln 1�p1� �1 +p1� � : (9.90)



9.4 Results 141Table 9.1: Perturbation oeÆients up to order B6 for the weak-�eld expansions of the variational parametersand the binding energy in omparison to the exat ones of Ref. [65℄.n 0 1 2 3�n 1:0 �405�27168 � �0:5576 16828965�41258815488 � 1:3023 �3886999332075�6884272562962432� �4:2260
n 169� � 0:5659 99�448 � 0:6942 �1293975�339337984 � �1:0199 524431667187�555267035185152� 2:9038"n � 43� � �0:4244 9�128 � 0:2209 � 8019�31835008 � �0:1355 256449807�5322256764928� 0:2435"n [65℄ �0:5 0:25 � 53192 � �0:2760 55814608 � 1:2112In omparison with Eq. (9.85) we introdued new variational parameters� � 
k
? ; 
 � 
? (9.91)and utilized, as the alulations for the binding energy showed, that always � � 1. Performingthe derivatives with respet to these variational parameters and setting them zero yields onditionalequations whih an be written after some manipulations as
4 +s 
�� 11� � �1 + 12 1p1� � ln 1�p1� �1 +p1� �� != 0; (9.92)12 + �4 � B28
2 + 12r ��
 1p1� � ln 1�p1� �1 +p1� � != 0: (9.93)Expanding the variational parameters into perturbation series of the square magneti �eld B2,�(B) = 1Xn=0 �nB2n; 
(B) = 1Xn=0 
nB2n (9.94)and inserting these expansions into the self-onsisteny onditions (9.92) and (9.93) we obtain orderby order the oeÆients given in Table 9.1. Inserting these values into the expression for the bindingenergy (9.89) and expand with respet to B2, we obtain the perturbation series"(1)(B) = B2 � 1Xn=0 "nB2n: (9.95)The �rst oeÆients are also given in Table 9.1. We �nd thus the important result that the �rst-ordervariational perturbation solution possesses a perturbative behavior with respet to the square magneti�eld strength B2 in the weak-�eld limit thus yielding the orret asymptotis. The oeÆients di�erin higher order from the exat ones but are improved in higher orders of the variational perturbationtheory [4, Chap. 5℄.



142 9. Variational Approah to Hydrogen Atom in Uniform Magneti FieldAsymptotial Behavior in the Strong-Field RegimeIn the disussion of the pure magneti �eld below Eq. (9.87) we have mentioned that the variationalalulation for the ground-state energy whih is thus assoiated with the zeroth Landau level yields afrequeny 
? / B while 
k = 0. Therefore we use the assumption
? � 
k; 
k � B (9.96)for the onsideration of the ground-state energy (9.85) of the hydrogen atom in a strong magneti �eld.In a �rst step we expand the last expression of the expetation value (9.86) whih orresponds to theondition (9.96) in terms of 
k=
? and reinsert this expansion in the equation of the ground-stateenergy (9.85). Then we omit all terms proportional to C=
? where C stands for any expression witha value muh smaller than the �eld strength B. In natural units, we thus obtain the strong-�eldapproximation for the �rst-order binding energy (9.88)"(1)
?;
k = B2 � 
?2 + B28
? + 
k4 +r
k� ln 
k4
?! : (9.97)As usual, we onsider the zeros of the derivatives with respet to the variational parameters�"(1)
?;
k�
k != 0; �"(1)
?;
k�
? != 0; (9.98)whih lead to the self-onsistene equationsq
k = � 2p� �ln
k � ln
? + 2� ln 4� ; (9.99)
? = r
k� + B2r1 + 4 
k�B2 : (9.100)Let us �rst onsider the last equation. Utilizing the seond of the onditions (9.96) we expand theseond root around unity yielding the expression
? = B2 +r
k� + 
k�B � 2 
2k�2B3 + : : : ; (9.101)where the terms are sorted with regard to their ontribution starting with the biggest. Sine we areinterested in the strong B limit, we an obviously neglet terms suppressed by powers of 1=B. Thuswe only onsider the following terms for the moment:
? � B2 +r
k� : (9.102)Inserting this into the other ondition (9.99), expanding the orresponding logarithm, and, one more,negleting terms of order 1=B, we �ndq
k � 2p� �lnB � ln
k + ln 2� 2� : (9.103)To obtain a tratable approximation for 
k, we perform some iterations starting fromq
(1)k = 2p� ln 2Be�2: (9.104)Reinserting this on the right-hand side of Eq. (9.103), one obtains the seond iteration q
(2)k . Westop this proedure after an additional reinsertion whih yieldsq
(3)k = 2p� �ln 2Be�2 � 2ln� 2p� �ln 2Be�2 � 2ln � 2p� ln 2Be�2���� : (9.105)



9.4 Results 143The reader may onvine himself that this iteration proedure indeed onverges. For a subsequentsystematial extration of terms essentially ontributing to the binding energy, the expression (9.105)is not satisfatory. Therefore it is better to separate the leading term in the urly brakets and expandthe logarithm of the remainder. Then this proeeding is applied to the expression in the angularbrakets and so on. Negleting terms of order ln�3B, we obtainq
(3)k � 2p� �ln 2Be�2 + ln�4 � 2lnln 2Be�2� : (9.106)The double-logarithmi term an be expanded in a similar way as desribed above:lnln 2Be�2 = ln �lnB�1 + ln 2� 2lnB �� = lnlnB + ln 2� 2lnB � 12 (ln 2� 2)2ln2B +O(ln�3B): (9.107)Thus the expression (9.106) may be rewritten asq
(3)k = 2p� �lnB � 2lnlnB + 2alnB + a2ln2B + b�+O(ln�3B) (9.108)with abbreviations a = 2� ln 2 � 1:307; b = ln�2 � 2 � �1:548: (9.109)The �rst observation is that the variational parameter 
k is always muh smaller than 
? in the highB-�eld limit. Thus we an further simplify the approximation (9.102) by replaing
? � B2  1 + 2Br
k� ! �! B2 (9.110)without a�eting the following expression for the binding energy. Inserting the solutions (9.108) and(9.110) into the equation for the binding energy (9.97) and expanding the logarithmi term one moreas desribed, we �nd up to the order ln�2B:"(1)(B) = 1��ln2B � 4 lnB lnlnB + 4 ln2lnB � 4b lnlnB + 2(b+ 2) lnB + b2� 1lnB �8 ln2lnB � 8b lnlnB + 2b2��+O(ln�2B): (9.111)Note that the prefator 1=� of the leading ln2B-term di�ers from a value 1=2 obtained by Landau andLifshitz [69℄. Our di�erent value is a onsequene of using a harmoni trial system. The alulationof higher orders in variational perturbation theory would improve the value of the prefator.At a magneti �eld strength B = 105B0, whih orresponds to 2:35 � 1010 T, the ontributionfrom the �rst six terms is 22:87 [2Ry℄. The next three terms suppressed by a fator ln�1B ontribute�2:29 [2Ry℄, while an estimate for the ln�2B-terms yields nearly �0:3 [2Ry℄. Thus we �nd"(1)(105) = 20:58� 0:3 [2Ry℄: (9.112)This is in very good agreement with the value 20:60 [2Ry℄ obtained from the full treatment desribedin Setion 9.4.2.Table 9.2 lists the values of the �rst six terms of Eq. (9.111). This shows in partiular the signi�aneof the seond-leading term �(4=�)lnB lnlnB, whih is of the same order of the leading term (1=�)ln2Bbut with an opposite sign. In Fig. 9.3, we have plotted the expression"L(B) = 12 ln2B (9.113)from Landau and Lifshitz [69℄ to illustrate that it gives far too large binding energies even at verylarge magneti �elds, e.g. at 2000B0 / 108T.



144 9. Variational Approah to Hydrogen Atom in Uniform Magneti FieldTable 9.2: Example for the ompeting leading six terms in Eq. (9.111) at B = 105B0 � 2:35 � 1010 T.(1=�)ln2B �(4=�)lnB lnlnB (4=�) ln2lnB �(4b=�) lnlnB [2(b+ 2)=�℄ lnB b2=�42:1912 �35:8181 7:6019 4:8173 3:3098 0:7632This strength of magneti �eld appears on surfaes of neutron stars (106 � 108T). A reentlydisovered new type of neutron star is the so-alled magnetar [83℄. In these, harged partiles suh asprotons and eletrons, produed by deaying neutrons, give rise to the giant magneti �eld of 1011T.Magneti �elds of white dwarfs reah only up to 102� 104T. All these magneti �eld strengths are farfrom a diret realization in experiments. The strongest magneti �elds ever produed in a laboratorywere only of the order 10T, an order of magnitude larger than the �elds in sun spots whih reahabout 0:4T. Reall, for omparison, that the earth's magneti �eld has the small value of 0:6�10�4T.It should, however, be noted that there are systems in solid state physis, where a resaling ofvariables orresponds to extremely strong magneti �elds. In a donor impured semiondutor likeGaAs, the properties of the system of an eletron bound to the positively harged donor nuleus inan external magneti �eld of strength 6:57T are omparable to a hydrogen atom in a �eld of strength2:35� 105T [84℄. The reason for this is the strongly redued e�etive mass of the eletron bound tothe donor nuleus, the large dieletri onstant of the semiondutor, and thus a muh larger radius ofthe orbit of the eletron. Hene the Coulomb interation between the donor nuleus and the eletronis muh weaker than in the hydrogen atom. This approximate analogy between both systems an thusbe used to investigate the e�ets of extremely strong magneti �elds in earthbound experiments.As we see in Fig. 9.3, the non-leading terms in Eq. (9.111) give important ontributions to theasymptoti behavior even at suh large magneti �elds. It is an unusual property of the asymptotibehavior that the absolute value of the di�erene between the Landau-expression (9.113) and ourapproximation (9.111) diverges with inreasing magneti �eld strengths B, only the relative di�erenedereases.9A Generating Funtional for Partile in Magneti Field andHarmoni Osillator PotentialFor the determination of the orrelation funtions of a system, we need to know the solution of thetwo-dimensional generating funtional in the presene of an external soure j = (jx; jy):Zx0 [j℄ = �2th I D2x Æ(x0 � x(�)) e�Ax0 [x;j℄=~: (9A.1)The ation of a partile in a magneti �eld in z-diretion and a harmoni osillator readsAx0 [x; j℄ = Z ~�0 d� �M2 _x2(�) � iM
B([x(�) � x0℄� _x(�))z + 12M �
2? � 
2B� [x(�) � x0℄2+j(�) � (x(�) � x0)�; (9A.2)where 
? > 
B , for stability. The position dependent terms are entered around x0 = (x0; y0), whihis the temporal average of the path x(�), and thus equal to the zero frequeny omponent of the Fourierpath x(�) = x0 + 1Xm=1 �xmei!m� + x?me�i!m�� (9A.3)with the Matsubara frequenies !m = 2�m=~� and omplex Fourier oeÆients xm = xrem + iximm .Introduing a similar Fourier deomposition for the urrent j(�) with Fourier omponents jm and



9A Generating Funtional for Partile in Magneti Field and Harmoni Osillator Potential 145using the orthonormality relation 1~� Z ~�0 d� ei(!m�!n)� = Æmn; (9A.4)the generating funtional an be written asZx0 [j℄ = 1Ym=1 �Z dxremdximm dyremdyimm(�=M�!2m)2 e�Am(xm;x?m;jm;j?m)=~� (9A.5)withAm(xm;x?m; jm; j?m) = ~�M �!2m +
2? � 
2B� ([xrem℄2 + [ximm ℄2 + [yrem℄2 + [yimm ℄2)+4i~�M
B!m(xremyimm � ximm yrem) + 2~�(xremjxrem + ximm jximm + yremjyrem + yimm jy imm ): (9A.6)Expression (9A.5) is equivalent to the path integral (9A.1) and after performing the integrations andre-transforming the urrents jm = 1~� Z ~�0 d� j(�)e�i!m� (9A.7)we obtain the resulting generating funtionalZx0 [j℄ = Zx0 exp( 12~2 Z ~�0 d� Z ~�0 d� 0 j(�)Gx0 (�; � 0)j(� 0)) (9A.8)with the partition funtion Zx0 � Zx0 [0℄ = 1Ym=1 !4m4
2B!2m + (!2m +
2?)2 (9A.9)and the 2� 2-matrix of Green funtionsGx0(�; � 0) = � Gx0xx(�; � 0) Gx0xy(�; � 0)Gx0yx(�; � 0) Gx0yy(�; � 0) � : (9A.10)The elements of this matrix are position-position orrelation funtions. This an easily be provedby applying two funtional derivatives with respet to the desired omponent of the urrent to thefuntional (9A.1), for exampleGx0xx(�; � 0) = h (x(�) � x0) (x(� 0)� x0) ix0 = �~2 1Zx0 [j℄ Æ2Æjx(�)Æjx(� 0)Zx0 [j℄�j=0 ; (9A.11)where we have de�ned expetation values byh : : : ix0 = �2thZx0 I D2x : : : Æ(x0 � x(�))e�Ax0 [x;0℄=~: (9A.12)From the above alulation we �nd the following expressions for the Green funtions in Fourier spae(0 � �; � 0 � ~�): Gx0xx(�; � 0) = h ~x(�) ~x(� 0) ix0 = Gx0yy(�; � 0) = h ~y(�) ~y(� 0) ix0= 2M� 1Xm=1 !2m +
2? � 
2B4
2B!2m + (!2m +
2? � 
2B)2 e�i!m(��� 0); (9A.13)Gx0xy(�; � 0) = h ~x(�) ~y(� 0) ix0 = �Gx0yx(�; � 0) = �h ~y(�) ~x(� 0) ix0= 4
BM� 1Xm=1 !m4
2B!2m + (!2m +
2? � 
2B)2 e�i!m(��� 0); (9A.14)



146 9. Variational Approah to Hydrogen Atom in Uniform Magneti Fieldwhere, for simpliity, ~x(�) = x(�) � x0. It is desirable to �nd analytial expressions for the Greenfuntions and the partition funtion (9A.9). All these quantities possess the same denominator whihan be deomposed as 4
2B!2m + (!2m +
2? � 
2B)2 = (!2m +
2+)(!2m +
2�) (9A.15)with frequenies 
�(
B ;
?) = 
? � 
B : (9A.16)Therefore the partition funtion (9A.9) an be split into two produts, eah of whih known from theharmoni osillator [4, Chap. 5℄:Zx0 = 1Ym=1 � !2m!2m +
2+ � 1Ym=1� !2m!2m +
2� � = ~�
+=2sinh ~�
+=2 ~�
�=2sinh ~�
�=2 : (9A.17)Now we apply the property (9A.15) to deompose the Green funtions (9A.13) into partial frations,yieldingGx0xx(�; � 0) = Gx0yy(�; � 0)= 1M�  �1 1Xm=�1 1!2m +
2+ e�i!m(��� 0) + �2 1Xm=�1 1!2m +
2� e�i!m(��� 0) � 1
+
�! (9A.18)with oeÆients�1 = 
2+ � 
2? +
2B
2+ � 
2� = 
? +
B2
? ; �2 = �
2� � 
2? +
2B
2+ � 
2� = 
? � 
B2
? : (9A.19)Following Ref. [4, Chap. 3℄, sums of the kind ourring in expression (9A.18) are spetral deomposi-tions of the orrelation funtion for the harmoni osillator and an be summed up:1Xm=�1 1!2m +
2� e�i!m(��� 0) = ~�2
� g�(�; � 0): (9A.20)Here we introdued the expressiong"(�; � 0) = osh
"(j� � � 0j � ~�=2)sinh ~�
"=2 ; �; � 0 2 (0; ~�); (9A.21)with " 2 f+;�;?; kg. Thus, the xx- and yy-orrelation funtions an be expressed byGx0xx(�; � 0) = Gx0yy(�; � 0) = 1M� � ~�4
? g+(�; � 0) + ~�4
? g�(�; � 0)� 1
+
�� ; (9A.22)where, from Eq. (9A.16), 
� = 
�(
B ;
?) are funtions of the original frequenies 
B from themagneti �eld and 
? from the additional harmoni osillator (9A.2). It is obvious that expression(9A.22) redues to the Green funtion of the harmoni osillator for 
B ! 0:lim
B!0Gx0ii (�; � 0) = 1M�
2? �~�
?2 g?(�; � 0)� 1� (9A.23)with i 2 fx; yg. In this limit, the partition funtion (9A.17) turns out to be the usual one [4, Chap. 5℄for suh a harmoni osillator lim
B!0Zx0 = ~�
?=2sinh ~�
?=2 : (9A.24)It is worth mentioning that with the last term in Green funtion (9A.22) the lassial harmoniutuation width Glxx = 
x2�l = 1M�(
2? � 
2B) (9A.25)



9B Properties of Green Funtions 147is subtrated. This is the onsequene of the exlusion of the zero frequeny mode of the Fourierpath (9A.3) in the generating funtional (9A.1). The neessity to do this has already been disussed inSetion 9.2. The other terms in Eq. (9A.22) are those whih we would have obtained without separatingthe x0-omponent. Thus these terms represent the quantum mehanial Green funtion ontaining allquantum as well as thermal utuations. It is a nie property of all Green funtions disussed in thishapter that Gx0xx(�; � 0) = Gqmxx (�; � 0)�Glxx: (9A.26)Suh a relation exists for all other Green funtions appropriately, inluding momentum-position or-relations whih we onsider subsequently.The knowledge of relation (9A.20) makes it quite easy to determine the algebrai expression forthe mixed xy-orrelation funtions. Rewriting Eq. (9A.14) asGx0xy(�; � 0) = �Gx0yx(�; � 0)= i2M�
? ���  1Xm=�1 1!2m +
2+ e�i!m(��� 0) + 1Xm=�1 1!2m +
2� e�i!m(��� 0)! (9A.27)and applying the derivative with respet to � to relation (9A.20), we obtain the following expressionfor the mixed Green funtion:Gx0xy(�; � 0) = �Gx0yx(�; � 0)= ~4iM
? f�(� � � 0)[h+(�; � 0)� h�(�; � 0)℄��(� 0 � �)[h+(� 0; �)� h�(� 0; �)℄g ; (9A.28)where we have used the abbreviationh"(�; � 0) = sinh
"(� � � 0 � ~�=2)sinh ~�
"=2 ; �; � 0 2 (0; ~�); (9A.29)with " 2 f+;�;?; kg. Note that lassially hxyil = 0 suh that Eq. (9A.26) redues toGx0xy(�; � 0) = Gqmxy (�; � 0): (9A.30)The Heaviside funtion in Eq. (9A.28) is de�ned symmetrially:�(� � � 0) =8<: 1 � > � 0;1=2 � = � 0;0 � < � 0: (9A.31)In the quantum mehanial limit of zero-temperature (� !1), the Green funtion (9A.22) simpli�esto lim�!1Gx0xx(�; � 0) = lim�!1Gx0yy(�; � 0) = ~4M
? �e�
+j��� 0j + e�
�j��� 0j� ; (9A.32)while in Eq. (9A.28) only h�(�; � 0) hanges:lim�!1h�(�; � 0) = �e�
�(��� 0): (9A.33)9B Properties of Green FuntionsIn this setion we list properties of the Green funtions (9A.22) and (9A.28) whih are important forthe forthoming onsideration of the generating funtional with soures oupling linearly to positionor momentum in Appendix 9C. For all relations we suppose that 0 � �; � 0 � ~�.



148 9. Variational Approah to Hydrogen Atom in Uniform Magneti Field9B.1 General PropertiesA �rst observation is the temporal translational invariane of the Green funtions:Gx0ij (�; � 0) = Gx0ij (� � � 0); (9B.1)where eah of the indies i; j stands for x or y, respetively. For equal times we �ndGx0ij (�; �) = 1M� � ~�4
? g+(�; �) + ~�4
? g�(�; �) � 1
+
���� 1 i = j;0 i 6= j: (9B.2)Moreover we read o� the following symmetries from the expressions (9A.22) and (9A.28):Gx0ij (�; � 0) = Gx0ij (� 0; �) �� 1 i = j;�1 i 6= j: (9B.3)Otherwise, Gx0ij (�; � 0) = Gx0ji (� 0; �): (9B.4)Throughout the hapter we always use periodi paths. Hene it is obvious that all Green funtions areperiodi, too: Gx0ij (0; � 0) = Gx0ij (~�; � 0); Gx0ij (�; 0) = Gx0ij (�; ~�): (9B.5)9B.2 Derivatives of Green FuntionsWe now proeed with derivatives of the Green funtions (9A.22) and (9A.28), sine these are essen-tial for deriving the generating funtional of position and momentum dependent orrelations in theforthoming Appendix 9C.Before onsidering the onrete expressions we introdue a new symbol indiating uniquely to whihargument the derivative is applied. A dot on the left-hand side means to perform the derivative withrespet to the �rst argument and the dot on the right-hand side indiates that to di�erentiate withrespet to the other argument. Having a dot on both sides the Green funtion is derived with respetto both arguments:�Gx0ij (�; � 0) = �Gx0ij (�; � 0)�� ; G�x0ij (�; � 0) = �Gx0ij (�; � 0)�� 0 ; �G�x0ij (�; � 0) = �2Gx0ij (�; � 0)���� 0 : (9B.6)Applying suh derivatives to the Green funtions (9A.22), we obtain (i 2 fx; yg):�Gx0ii (�; � 0) = ~4M
? [�(� � � 0)f1(�; � 0)��(� 0 � �)f1(� 0; �)℄ = �G�x0ii (�; � 0) (9B.7)with f1(�; � 0) = (
? +
B)h+(�; � 0) + (
? � 
B)h�(�; � 0); (9B.8)where h�(�; �) was de�ned in Eq. (9A.29). Performing the derivatives to both arguments leads to theexpression �G�x0ii (�; � 0) = � ~G�x0ii (�; � 0) + ~M Æ(� � � 0); (9B.9)where we have introdued the partial funtion� ~G�x0ii (�; � 0) = � ~4M
? �
2+g+(�; � 0) + 
2�g�(�; � 0)� (9B.10)whih is �nite for equal times.Applying derivatives with respet to the �rst respetive seond argument to the mixed orrelationfuntion (9A.28), we �nd�Gx0xy(�; � 0) = ~4iM
? [
+g+(�; � 0)� 
�g�(�; � 0)℄ = �G�x0xy(�; � 0) (9B.11)



9B Properties of Green Funtions 149and �Gx0yx(�; � 0) = ��Gx0xy(�; � 0): (9B.12)Di�erentiating eah argument of the mixed Green funtion results in�G�x0xy(�; � 0) = i~4M
? [�(� � � 0)f2(�; � 0)��(� 0 � �)f2(� 0; �)℄ = ��G�x0yx(�; � 0) (9B.13)with f2(�; � 0) = (
? +
B)2h+(�; � 0)� (
? � 
B)2h�(�; � 0): (9B.14)An additional property we read o� from Eqs. (9B.7) and (9B.11) is (i; j 2 fx; yg):�Gx0ij (�; � 0) = �Gx0ij (� 0; �)�� �1 i = j;1 i 6= j; (9B.15)G�x0ij (�; � 0) = G�x0ij (� 0; �)�� �1 i = j;1 i 6= j: (9B.16)The double-sided derivatives (9B.9), (9B.10), and (9B.13) imply�G�x0ij (�; � 0) = �G�x0ij (� 0; �)�� 1 i = j;�1 i 6= j: (9B.17)The derivatives (9B.7), (9B.10), (9B.11), and (9B.13) are periodi:�Gx0ij (�; 0) = �Gx0ij (�; ~�); �Gx0ij (0; � 0) = �Gx0ij (~�; � 0); (9B.18)G�x0ij (�; 0) = G�x0ij (�; ~�); G�x0ij (0; � 0) = G�x0ij (~�; � 0); (9B.19)� ~G�x0ii (�; 0) = � ~G�x0ii (�; ~�); � ~G�x0ii (0; � 0) = � ~G�x0ii (~�; � 0); (9B.20)�G�x0ij (�; 0) = �G�x0ij (�; ~�); �G�x0ij (0; � 0) = �G�x0ij (~�; � 0); (i 6= j): (9B.21)



150 9. Variational Approah to Hydrogen Atom in Uniform Magneti Field9C Generating Funtional for Position- and Momentum-Dependent Correlation FuntionsWith the disussion of the generating funtional for position-dependent orrelation funtions and, inpartiular, the Green funtions in Appendix 9A and their properties in Appendix 9B, we have layed thefoundation to derive the generating funtional for orrelation funtions depending on both, positionand momentum. Following the framework presented in Ref. [17℄, suh a funtional involving souresoupled to the momentum an always be redued to one ontaining position-oupled soures only.We start from the three-dimensional e�etive lassial representation for the generating funtionalZ
[j;v℄ = Z d3x0d3p0(2�~)3 Zp0;x0
 [j;v℄ (9C.1)with zero-frequeny omponents x0 = (x0; y0; z0) = onst: and p0 = (px0; py0; py0) = onst: of theFourier path separated. The redued funtional isZp0;x0
 [j;v℄ = (2�~)3 I D03xD3p Æ(x0 � x(�))Æ(p0 � p(�)) exp��1~Ap0;x0
 [p;x; j;v℄� ; (9C.2)where the path integral measure is that de�ned in Eq. (9.4). Extending the ation (9.3) by soure terms,onsidering a more general Hamilton funtion than (9.17), and introduing an additional harmoniosillator in z-diretion, the ation funtional in Eq. (9C.2) shall readAp0;x0
 [p;x; j;v℄ = Z ~�0 d� �� i~p(�) � _x(�) + 12M ~p2(�)� 
Blz(~p; ~x) + 12M
2? �~x2(�) + ~y2(�)�+12M
2k~z2(�) + j(�) � ~x(�) + v(�) � ~p(�)� (9C.3)with shifted positions and momenta~x = x(�) � x0; ~p = p(�) � p0: (9C.4)The orbital angular momentum lz(p;x) is de�ned in Eq. (9.19) and is used in Eq. (9C.3) with theshifted phase spae oordinates (9C.4). We have introdued three di�erent frequenies in (9C.3),
 = (
B ;
?;
k), where the �rst both omponents are used in regard to the osillations in theplane perpendiular to the diretion of the magneti �eld whih shall be onsidered here to point intoz-diretion. The last omponent, 
k, is the frequeny of a trial osillator parallel to the �eld lines.Due to the periodiity of the paths, we suppose that the soures are also periodi:j(0) = j(~�); v(0) = v(~�): (9C.5)Sine we want to simplify expression (9C.2) suh that we an use the results obtained in Appendix 9A,the momentum path integral is solved in the following. In a �rst step we re-express the momentumÆ-funtion in (9C.2) byÆ(p0 � p(�)) = Z d3�(2�~)3 exp(�1~ Z ~�0 d� v0 � [p(�) � p0℄) ; (9C.6)where v0(�) = i~� � (9C.7)is an additional urrent whih is oupled to the momentum and is onstant in time. De�ning the sumof all soures oupled to the momentum byV(�; �) = v(�) + v0(�); (9C.8)



9C Generating Funtional for Position- and Momentum-Dependent Correlation Funtions 151the funtional (9C.2) an be written asZp0;x0
 [j;v℄ = Z d3� I D03xD3p Æ(x0 � x(�)) exp(� 1~ Z ~�0 d� �� ip(�) � _x(�) + p2(�)2M�
Blz(p(�); ~x(�)) + 12M
2? �~x2(�) + ~y2(�)	 + 12M
2k~z2(�) + j(�) � ~x(�) +V(�; �) � p(�)�);(9C.9)where we have used the translation invariane ~p ! p of the path integral. To solve the momentumpath integral, it is useful to express it in its disretized form. Performing quadrati ompletions suhthat the momentum path integral separates into an in�nite produt of simple Gaussian integrals whihare easily alulated, the remaining funtional is redued to the on�guration spae path integralZp0;x0
 [j;v℄ = Z d3� exp"M2~ Z ~�0 d� V2(�; �)# I D3x Æ(x0 � x(�)) exp��1~Ap0;x0
 [x; j;V℄�(9C.10)with the measure (9.10) for d = 3. The ation funtional isAp0;x0
 [x; j;V℄ = Z ~�0 d� "M2 _x2(�) + iM
B f _x(�)~y(�) � _y(�)~x(�)g+12M �
2? � 
2B� �~x2(�) + ~y2(�)	 + 12M
2k~z2(�) + ~x(�) [jx(�) +M
BVy(�; �)℄+~y(�) [jy(�) �M
BVx(�; �)℄ + ~z(�)jz(�)# � iM~ Z ~�0 d� _x(�) �V(�; �); (9C.11)where the last term simpli�es by the following onsideration. A partial integration of this term yieldsZ ~�0 d� _x(�) �V(�; �) = � Z ~�0 d� (x(�) � x0) � _V(�; �): (9C.12)The surfae term vanishes as a onsequene of the periodiity of the path and the soure. Thisperiodiity is also the reason why we ould shift x(�) by the onstant x0 on the right-hand side ofEq. (9C.12). Obviously, the importane of this expression lies in the oupling of the time derivative ofV(�; �) to the path x(�). Thus, _V(�; �) an be handled like a j(�)-urrent [17℄ and the ation (9C.11)an be written asAp0;x0
 [x; j;V℄ = Ap0;x0
 [x;J; 0℄ = Ap0;x0
 [x; 0; 0℄� 1~ Z ~�0 d� ~x(�) � J(�; �) (9C.13)with the new urrent vetor J(�; �) whih has the omponentsJx(�; �) = jx(�) +M
BVy(�; �)� iM _Vx(�; �);Jy(�; �) = jy(�) �M
BVx(�; �)� iM _Vy(�; �); (9C.14)Jz(�; �) = jz(�) � 12M
kVz(�; �)and ouples to the path x(�) only. With the expression (9C.10) for the generating funtional and theation (9C.13), we have derived a representation similar to Eq. (9A.1) with the ation (9A.2), extendedby an additional osillator in z-diretion. We identifyjx � Jx; jy � Jy: (9C.15)



152 9. Variational Approah to Hydrogen Atom in Uniform Magneti FieldInserting the substitutions (9C.15) into the solution (9A.8) for the generating funtional in two dimen-sions and performing the usual alulation for a harmoni osillator with external soure [4, Chaps. 3,5℄in z-diretion, we obtain an intermediate result for the generating funtional in three dimensions (9C.2):Zp0;x0
 [j;v℄ = ��3th Zp0;x0
 Z d3� exp(M2~ Z ~�0 d� V2(�; �))� exp( 12~2 Z ~�0 d� Z ~�0 d� 0 J(�; �)Gx0(�; � 0)J(�; � 0)) : (9C.16)The partition funtion follows from Eqs. (9A.17) and (9A.24)Zp0;x0
 = Zp0;x0
 [0; 0℄ = ~�
+=2sinh ~�
+=2 ~�
�=2sinh ~�
�=2 ~�
k=2sinh ~�
k=2 (9C.17)and Gx0(�; � 0) is the 3� 3-matrix of Green funtionsGx0(�; � 0) = 0� Gx0xx(�; � 0) Gx0xy(�; � 0) 0Gx0yx(�; � 0) Gx0yy(�; � 0) 00 0 Gx0zz (�; � 0)1A : (9C.18)Exept Gx0zz (�; � 0), the Green funtions are given by the expressions in Eqs. (9A.22) and (9A.28). TheGreen funtion of the pure harmoni osillator in z-diretionGx0zz (�; � 0) = 1M�
2k �~�
k2 gk(�; � 0)� 1� (9C.19)follows diretly from the limit (9A.23). Sine the urrent J (9C.14) still depends on time derivatives ofV, we have to perform some partial integrations in the funtional (9C.16). This is a very extensive butstraightforward work and thus we only present an instrutive example. For that we apply the propertiesand the time derivatives of the Green funtions whih we presented in Appendix 9B. Consider theintegral I = �M22~2 Z ~�0 d� Z ~�0 d� 0 _Vi(�; �)Gx0ii (�; � 0) _Vi(�; � 0) (9C.20)ourring in the seond exponential of Eq. (9C.16) with i 2 fx; y; zg. A partial integration in the� 0-integral leads toI = �M22~2 Z ~�0 d� _Vi(�; �) Gx0ii (�; � 0)Vi(�; � 0)���� 0=~�� 0=0 � Z ~�0 d� 0 �Gx0ii (�; � 0)�� 0 Vi(�; � 0)!= M22~2 Z ~�0 d� Z ~�0 d� 0 _Vi(�; �)G�x0ii (�; � 0)Vi(�; � 0): (9C.21)The surfae term in the �rst line vanishes as a onsequene of the periodiity of the urrent (9C.5)and the Green funtion (9B.5). A seond partial integration, now in the � -integral, results inI = �M22~2 Z ~�0 d� Z ~�0 d� 0 Vi(�; �) �G�x0ii (�; � 0)Vi(�; � 0)= �M22~2 Z ~�0 d� Z ~�0 d� 0 Vi(�; �) � ~G�x0ii (�; � 0)Vi(�; � 0)� M2~ Z ~0 d� V 2i (�; �): (9C.22)Here we have applied the periodiity property of the right-hand derivative of the Green funtion(9B.19), leading to a vanishing surfae term in this ase, too. In the seond line, we have used thedeomposition (9B.9) of the double-sided di�erentiated Green funtion. Note that the last term just



9C Generating Funtional for Position- and Momentum-Dependent Correlation Funtions 153anels the appropriate term in the �rst exponential of the right-hand side of Eq. (9C.16). Eventually,after performing all suh partial integrations, we re-express Eq. (9C.16) byZp0;x0
 [j;v℄ = ��3th Zp0;x0
 Z d3� exp( 12~2 Z ~�0 d� Z ~�0 d� 0 ~s(�; �)Hx0(�; � 0) ~s(�; � 0)) (9C.23)with six-dimensional soures ~s(�; �) = ( j(�);V(�; �) ) : (9C.24)and the 6�6-matrixHx0(�; � 0) whih has no signi�ane as long as we have not done the �-integration.We expliitly insert the deomposition (9C.8) into expression (9C.24) of the soure vetor ~s. Sinev0(�) from Eq. (9C.7) is onstant in time, some temporal integrals in the exponential of Eq. (9C.23)an be alulated and we obtainZp0;x0
 [j;v℄ = ��3th Zp0;x0
 exp( 12~2 Z ~�0 d� Z ~�0 d� 0 s(�)Hx0(�; � 0) s(� 0))� Z d3� exp(� M2~2� �2 + i M~2� � � Z ~�0 d� v(�)) (9C.25)with the new 6-vetor s(�) = ( j(�);v(�) ) (9C.26)onsisting of the original soures j and v only. The Gaussian �-integral in Eq. (9C.25) an easily besolved and the terms appearing from quadrati ompletion modify the above matrix Hx0(�; � 0). The�nal result for the generating funtional of all position and momentum dependent orrelations is givenby Zp0;x0
 [j;v℄ = Zp0;x0
 exp( 12~2 Z ~�0 d� Z ~�0 d� 0 s(�)Gp0;x0(�; � 0) s(� 0)) : (9C.27)The omplete 6 � 6-matrix Gp0;x0(�; � 0) ontains all possible Green funtions desribing position-position, position-momentum, and momentum-momentum orrelations. As a onsequene of sepa-rating the utuations into those perpendiular and parallel to the diretion of the magneti �eld, allorrelations between x; y on the one and z on the other hand vanish as well as those for the appropriatemomenta. The symmetries for the Green funtions and their derivatives were investigated in detail inAppendix 9B and lead to a further redution of the number of signi�ant matrix elements. It turnsout that only 9 elements are independent of eah other. Therefore we an write the matrixGx0;p0(�; � 0)= 0BBBBBB� Gp0;x0xx (�; � 0) Gp0;x0xy (�; � 0) 0 Gp0;x0xpx (�; � 0) Gp0;x0xpy (�; � 0) 0Gp0;x0xy (� 0; �) Gp0;x0xx (�; � 0) 0 �Gp0;x0xpy (�; � 0) Gp0;x0xpx (�; � 0) 00 0 Gp0;x0zz (�; � 0) 0 0 Gp0;x0zpz (�; � 0)Gp0;x0xpx (� 0; �) �Gp0;x0xpy (� 0; �) 0 Gp0;x0pxpx (�; � 0) Gp0;x0pxpy (�; � 0) 0Gp0;x0xpy (� 0; �) Gp0;x0xpx (� 0; �) 0 Gp0;x0pxpy (� 0; �) Gp0;x0pxpx (�; � 0) 00 0 Gp0;x0zpz (� 0; �) 0 0 Gp0;x0pzpz (�; � 0)
1CCCCCCA :(9C.28)The matrix deomposes into four 3�3-bloks, eah of the whih desribing another type of orrelation:the upper left position-position, the upper right position-momentum (as well as the lower left one),and the lower right momentum-momentum orrelations. The di�erent elements of the matrix areGp0;x0xx (�; � 0) = h ~x(�)~x(� 0) ip0;x0
 = Gx0xx(�; � 0); (9C.29)Gp0;x0xy (�; � 0) = h ~x(�)~y(� 0) ip0;x0
 = Gx0xy(�; � 0); (9C.30)Gp0;x0zz (�; � 0) = h ~z(�)~z(� 0) ip0;x0
 = Gx0zz (�; � 0); (9C.31)



154 9. Variational Approah to Hydrogen Atom in Uniform Magneti FieldGp0;x0xpx (�; � 0) = h ~x(�)~px(� 0) ip0;x0
 = iMG�x0xx(�; � 0)�M
BGx0xy(�; � 0)= ~4i f�(� � � 0) [h+(�; � 0) + h�(�; � 0)℄��(� 0 � �) [h+(� 0; �) + h�(� 0; �)℄g ; (9C.32)Gp0;x0xpy (�; � 0) = h ~x(�)~py(� 0) ip0;x0
 = iMG�x0xy(�; � 0) +M
BGx0xx(�; � 0)= �~4 [g+(�; � 0)� g�(�; � 0)℄� 1� 
B
+
� ; (9C.33)Gp0;x0zpz (�; � 0) = h ~z(�)~pz(� 0) ip0;x0
 = iMG�x0zz (�; � 0)= ~2i ��(� � � 0)hk(�; � 0)��(� 0 � �)hk(� 0; �)� ; (9C.34)Gp0;x0pxpx (�; � 0) = h ~px(�)~px(� 0) ip0;x0
 =�M2� ~G�x0xx(�; � 0)� 2iM2
B�Gx0xy(�; � 0) +M2
2BGx0xx(�; � 0)�M�= ~M
?4 [g+(�; � 0) + g�(�; � 0)℄� M� �1� 
2B
+
�� ; (9C.35)Gp0;x0pxpy (�; � 0) = h ~px(�)~py(� 0) ip0;x0
 = 2iM2
B�Gx0xx(�; � 0)�M2�G�x0xy(�; � 0) +M2
2BGx0xy(�; � 0)= ~M
?4i f�(� � � 0) [h+(�; � 0)� h�(�; � 0)℄��(� 0 � �) [h+(� 0; �)� h�(� 0; �)℄g ; (9C.36)Gp0;x0pzpz (�; � 0) = h ~pz(�)~pz(� 0) ip0;x0
 = �M2� ~G�x0zz (�; � 0)� M� = ~M
k2 gk(�; � 0)� M� ; (9C.37)where the expetation values are de�ned by Eq. (9.60). Note that all these Green funtions are invariantunder time translations suh that Gp0;x0�� (�; � 0) = Gp0;x0�� (� � � 0) (9C.38)with �; � 2 fx; y; z; px; py; pzg.It is quite instrutive to prove that all these Green funtions an be deomposed into a quantumstatistial and a lassial part as we did it in Eq. (9A.22). Sine we know that the lassial orrelationfuntions do not depend on the Eulidean time, all derivative terms in Eqs. (9C.29){(9C.37) do notontain a lassial term. We an write eah Green funtionGp0;x0�� (�; � 0) = Gqm�� (�; � 0)�Gl�� : (9C.39)This relation has been already heked for Eqs. (9C.29)-(9C.31) in Appendix 9A. The lassial on-tribution is zero in Eqs. (9C.32), (9C.34), and (9C.36) following from the absene of lassial termsin derivatives of the Green funtions and mixed orrelations like (9A.30). It seems surprising thatthe orrelation (9C.33) ontains a lassial term while (9C.32) possesses none. This is, however, aonsequene of the ross produt of the orbital angular momentum appearing in the ation (9C.3) andthe expliit lassial alulation entailsGlxpx = hxpxil = 0; Glxpy = hxpyil = 1� 
B
2? � 
2B ; (9C.40)where the latter is the subtrated lassial term in Eq. (9A.22) when onsidering the �rst two substi-tutions in (9C.15). In Eq. (9C.37), the seond term is obviously the lassial one sineGlpzpz = hpzpzil = M� : (9C.41)The extration of the lassial termsGlpxpx = hpxpxil = M� �1 + 
2B
2? � 
2B� (9C.42)in the ase of the Green funtion Gp0;x0pxpx (�; � 0) requires the onsideration of the last two terms inEq. (9C.35). Thus we have shown that the deomposition (9C.39) holds for eah of the Green funtions(9C.29){(9C.37). Note the neessity of subtrating the lassial terms sine they all diverge in thelassial limit of high temperatures (� ! 0).



Part IV

Strong-Coupling Theory forMembranes





Chapter 10
Flutuating Membranes

We investigate the violent thermal out-of-plane utuations of a stak of membranes between twoparallel walls and alulate the pressure p that they exert upon these walls. In equilibrium with areservoir of moleules, tension vanishes and the shape is governed by extrinsi urvature energy. Thedi�erential geometri bakground of this model is disussed in this hapter. The pressure law wasfound by Helfrih [50℄ and reads for N membranespN = 2NN + 1�N (kBT )2�a3 ; (10.1)where L = (N + 1)a is the distane between the walls, and � the bending sti�ness. The universalpressure onstants �N are not alulable exatly. For a single membrane, �1 was roughly estimated bytheoretial [50℄ and Monte Carlo methods [85{88℄. By a strong-oupling alulation [48,89℄, presentedin Chapter 11, we �nd a value, whih lies well within the error bounds of the latest Monte Carloestimate [88℄. In a di�erent strong-oupling approah [49℄, we also alulate the pressure onstants fora stak of membranes in Chapter 12. Our results are in exellent agreement with all available MonteCarlo estimates [86{88℄ for N = 1; 3; 5. By an extrapolation to N ! 1 we determine the pressureonstant �1 for in�nitely many membranes.10.1 IntrodutionMembranes formed by lipid bilayers are important biophysial systems ourring as boundaries oforganells and vesiles. Their tension vanishes due to the lateral motion of moleules within the mem-brane. The exibility of uid membranes leads to an amazing variety of shapes of vesiles, whih arelarge enapsulating bags with a size of up to 100�m. Changes in temperature or osmoti onditions,e.g. the onentration of ions or moleules in the membrane, indue shape transformations of vesiles.Figure 10.1 shows shematially the proess of a budding transition, where the inrease of temperatureentails more violent membrane utuations, whih lead to an unoupling of a daughter vesile, whihan move independently of the mother vesile (see Ref. [90℄ for mirosopi photographs of a buddingtransition). Eventually, it an dok to another vesile by an inverse proess. Thus, shape transfor-mations of membranes are neessary to make possible matter and energy transport between ells andorganells in a omplex biologial system. 157
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27ÆC 36ÆC 38ÆC
39ÆC 41ÆC 41ÆCFigure 10.1: 3D pitures of a budding transition of a vesile by inreasing the temperature. The surfaes weremodeled from mirosopi photographs given in Ref. [90℄.10.2 Di�erential Geometry for Curves and SurfaesThe geometry of the vesile shapes an only be desribed loally, whih means that it is neessaryto apply di�erential geometry for modeling membranes. In what follows, we briey review the mainaspets of di�erential geometry.10.2.1 Loal Curvature of CurvesTopologially one-dimensional geometri objets appear in physis in di�erent forms, for example aspartile paths, polymers, strings, or vortex lines. They have in ommon that it is suÆient to identifyeah point of suh an urved objet by a vetor in the surrounding embedding spae, whih dependson only one parameter. The parameter hoie depends usually on the appropriate problem.We want to desribe a urve C in three-dimensional embedding spae and we parameterize it withthe help of the parameter s, whih we hoose to lie in the interval 0 � s � 1. As Fig. 10.2 shows, aertain point of the urve C is given by the ontravariant vetor r(s) = �xi(s)� = �x1(s); x2(s); x3(s)�T .The omponents of the tangent vetor t(s) = �ti(s)� at the point xi(s) are given by the di�erentialquotient ti(s) = lim�s!0 xi(s+�s)� xi(s)�s = dxi(s)ds : (10.2)The length of an in�nitesimal piee of the urve is given byds2 = [dx1(s)℄2 + [dx2(s)℄2 + [dx3(s)℄2 = �ijdxi(s)dxj(s); (10.3)where equal indies are summed over. The identity matrix (�ij) = diag(1; 1; 1) is used to transformovariant vetors to ontravariant ones: dxi = �ijdxj . The tangent vetor ti(s) is already normalized.To show this, we perform the salar produtjt(s)j =pt(s) � t(s) =pti(s)ti(s) =q�ijtitj =r�ij dxi(s)ds dxj(s)ds = 1; (10.4)where we have used relation (10.3) in the last step. Now we determine the vetors transversal to t(s).We know that the number of transversal vetors is D� 1, where D is the dimension of the embeddingspae. Thus, we expet in three dimensions two independent vetors, whih are orthogonal to t(s).One is easily determined by di�erentiating the salar produt ti(s)ti(s) = 1 with respet to s:ddsti(s)ti(s) = 0 =) dti(s)ds ? ti(s): (10.5)
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�sr(s) r(s+�s)

n(s) t(s)
Figure 10.2: Curve C, parameterized by s, whih we onventionally suppose to lie in the interval 0 � s � 1.The vetor dti(s)=ds is obviously orthogonal to ti(s), and we de�ne the normal vetor n(s) asni(s) = k�1(s)dti(s)ds = k�1(s)d2xi(s)ds2 ; k(s) = �����p�ijdtidtjds ����� : (10.6)The proportionality onstant k(s) is alled the urvature of the urve at the point s and the omponentsof the urvature vetor k(s) are given by ki(s) = k(s)ni(s); (10.7)thus pointing into the same diretion as the normal vetor. The larger its length k(s), the more urvedis the urve at s. The other transversal vetor is alled binormal vetor b(s) and is orthogonal to n(s)and t(s): bi(s) = b�1(s) dni(s)ds ; (10.8)where the length b(s) = jdni(s)=dsj desribes the strength of torsion of the urve. The more normalsat neighboring points of the urve di�er, the stronger is the torsion of the urve in this region.An important quantity of a stringy objet is its tension �. This material onstant is idential withthe strength of the fore, whih ats in the opposite diretion of an elongation to bring bak a deformedstring into its equilibrium state. In order to desribe quantitatively the onsequenes of elongating astring with tension, we onsider Fig. 10.3. The lower line represents a piee of an undeformed string.Dragging it at the position s by an amount j�u(s)j from r(s) to r(s) + �u(s), where we keep theends �xed, the overall length of this piee of string obviously inreases. As we are only interested inelongations, whih ause normal fores (whih means that the fore vetor is parallel to the normalvetor n(s)), the displaement vetor �u(s) is parallel to the normal vetor n(s). This ensures thatthe mehanial stress is the same for both legs of the triangle. It also allows us to hoose one of thetwo retangular triangles for the following onsiderations, sine the ratio of the hypotenuse to theappropriate horizontal sides is idential for both. With these suppositions, we read o� from Fig. 10.3:�s02(s) = �u2(s)=l20 +�s2; (10.9)where we have resaled the elongation with respet to the length of the undeformed string:l0 = l0 Z 10 ds: (10.10)Going over to in�nitesimal quantities, this relation gives us the measure of the deformed stringds0(s) = dss1 + �du(s)l0ds �2: (10.11)
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r(s)

r(s)+�u(s)
r(s+�s)�s�s0(s)�u(s)Figure 10.3: Change of sale (�s! �s0) by elongating a string with tension.The length of the deformed string an thus be written asl = l0 Z 10 dss1 + �du(s)l0ds �2 (10.12)in omparison to the undeformed one (10.10). Then, the energy E� of a deformed string due to itstension is equal to the mehanial work A� , whih is neessary to hange the length of the string froml0 to l: E� � A� = �(l � l0) = �l08<:Z 10 dss1 + �du(s)l0ds �2 � 19=;� l0�2 Z 10 ds �du(s)l0ds �2 = l0�2 Z 10 ds �ij dui(s)l0ds duj(s)l0ds = �2 Z l00 ds �ij dui(s)ds duj(s)ds ; (10.13)where we have performed the saling s ! l0s in the last step. The approximate expression (10.13) isvalid in the adiabati limit of small elongations ju(s)j.If the line-like objet an be deformed without hanging its overall length, suh as in the ase ofsti� polymers, another material property beomes important: the elastiity or bending rigidity �. Thedegree of elasti deformation strongly depends on the urvature k(s) at any position s. Thus, thebending or urvature energy is given by the urve integralEC = �2 Z 10 ds k2(s) = �2 Z 10 ds �ij dti(s)ds dtj(s)ds = �2 Z 10 ds �ij d2xi(s)ds2 d2xj(s)ds2 ; (10.14)where we have used the relation (10.6) between the urvature k(s) and the di�erene of neighboringtangential vetors t(s) and t(s + ds) per length element ds and, in the last expression, the de�nition(10.2) of the tangential vetor.10.2.2 Loal Curvature of SurfaesIn omplete analogy to line-like objets in the preeding setion, we investigate now topologially two-dimensional surfaes like membranes in three-dimensional embedding spae. A point of a surfae Smay be identi�ed by the position vetor r(u1; u2) = xi(u�) with � = 1; 2, where u1 and u2 are suitableoordinate lines and serve as a parameterization of the surfae (see Fig. 10.4). We use Latin indies foromponents of vetors in the embedding spae, while Greek indies denote omponents of the intrinsioordinates of the surfae. The oordinate lines u1, u2 span a mesh and over the surfae ompletely.At the moment, the hoie of these oordinates is arbitrary. Tangent vetors t�(u�) point along theseoordinate lines and are introdued byti�(u�) = �r(u�)�u� = �xi(u�)�u� ; � = 1; 2: (10.15)The surfae normal vetor N(u�) is then given by the ross produt of the tangent vetors:N(u�) = t1(u�)� t2(u�)jt1(u�)� t2(u�)j ; (10.16)
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u1u1+�u1r(u1+�u1;u2) r(u1;u2) r(u1; u2+�u2)t2 t1Nu2+�u2u2

Figure 10.4: Surfae S, whih is parameterized by intrinsi oordinates u1 and u2.or, written in omponents, N i(u�) = "ijktj1tk2q"ijktj1tk2"ilmt1;lt2;m ; (10.17)where "ijk is the totally antisymmetri tensor"ijk = 8<: +1 fijkg = f123g or yli;�1 fijkg = f213g or yli;0 else: (10.18)An in�nitesimal square length element on the surfae is obviously introdued byds2 = [dx1(u1; u2)℄2 + [dx2(u1; u2)℄2 + [dx3(u1; u2)℄2 = dxi(u�)dxi(u�): (10.19)Substituting the total di�erentials bydxi(u�) = �xi(u�)�u� du� = ti�du�; (10.20)Eq. (10.19) an be rewritten as the �rst fundamental formds2 = g��du�du� ; (10.21)with the metri g�� = ti�ti;� = �xi�u� �xi�u� = 0BB� � �r�u1�2 �r�u1 � �r�u2�r�u1 � �r�u2 � �r�u2�2 1CCA�� : (10.22)The metri is a symmetri tensor, whih uniquely haraterizes the shape of the surfae. It is diagonal,if the tangent vetors are perpendiular to eah other, whih happens to be for orthogonal oordinates.As the expliit alulation shows, the determinant of the metri is obtained by the square absolutevalue of the ross produt of the tangent vetorsg � det g�� = jt1 � t2j2 = "ijkti1tj2"ilmt1;lt2;m: (10.23)
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r(u1; u2) r(u1; u2+�u2)

r(u1+�u1; u2) r(u1+�u1; u2+�u2)� jr(u1+�u1; u2)�r(u1; u2)j sin��AFigure 10.5: Planar projetion of a surfae element.In Fig. 10.4, we have highlighted a surfae element and we alulate its area as follows. For anin�nitesimal small surfae element, whih is enlosed by the oordinates (u1; u2), (u1+du1; u2), (u1; u2+du2), and (u1+ du1; u2+ du2), the surfae element and its planar projetion are idential and we haveto alulate the area of a parallelogram as shown in Fig. 10.5. Sine the area of a parallelogram isidential to that of a retangle with one shortened side, we obtaindA = ��r(u1; u2 + du2)� r(u1; u2)�� ��r(u1 + du1; u2)� r(u1; u2)�� sin� = ���� �r�u1 ���� du1 ���� �r�u2 ���� du2 sin�= ���� �r�u1 � �r�u2 ���� du1du2 = jt1 � t2j du1du2 = pg du1du2; (10.24)where we have used relation (10.23) in the last step. The overall area of the surfae S is thus given bythe parameter integral AS = ZS dA = Z du1du2pg: (10.25)In the following we investigate the loal urvature of a surfae. For the one-dimensional urve, we havede�ned the urvature k as the proportionality onstant between the normal vetor n(s) at a positions and the derivative with respet to s of the tangent vetor t(s) in Eq. (10.6). A surfae possessesan in�nite number of tangent vetors, sine the two independent ones (10.15), whih point along theoordinate lines u1 and u2 span a tangential plane, in whih all possible tangential vetors at the pointr(u1; u2) reside. Thus there are in�nitely many urves on the surfae, whih touh the point r(u1; u2)and have di�erent urvatures in this point. Thus we need a new de�nition for what we want to all theurvature of a surfae. Let r(s) be a point of a urve C with urvature k(s) on the surfae S, wherethe same point is parameterized by r(u1; u2). Then, n(s) = d2r(s)=kds2 denotes the normal vetor ofthe urve and N(u1; u2) the surfae normal at this point. We de�ne the normal urvature kn at thispoint by kn � Ni d2xids2 = kinNi = kNini = k os�; (10.26)where we have used the de�nition (10.7) for the urvature vetor. The angle between n and N at aertain point is denoted by �.If we onsider the surfae oordinates as funtions of the urve parameter, u� = u�(s), we rewritethe tangent and the normal vetor of the urve at s asti(u�(s)) = dxi(u�(s))ds = �xi�u� du�ds ;ni(u�(s)) = k�1 d2xi(u�(s))ds2 = k�1� �2xi�u��u� du�ds du�ds + �xi�u� d2u�ds2 � : (10.27)Multiplying the seond relation byNi and aknowledging that the seond term vanishes due toN(u�) ?�xi(u�)=�u� = t�(u�), we obtain Ni d2xids2 � kn = h�� du�ds du�ds ; (10.28)
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u1
k2 k1Nu2

Figure 10.6: De�nition of main urvature lines.where we have introdued the urvature tensorh�� = Ni �2xi�u��u� = Ni ��u� ti� : (10.29)Now we di�erentiate the relation Niti� = 0 with respet to u� , yieldingNi �2xi�u��u� � h�� = � �xi�u� �Ni�u� = � dxidu� dNidu� ; (10.30)where we ould use total di�erentials sine du�=du� = Æ�� . Expression (10.30) exhibits the seondfundamental form [91,92℄ �dxidNi = h��du�du� : (10.31)Writing the right equation of (10.28) as knds2 = h��du�du� and substituting ds2 by the �rst funda-mental form (10.21), we obtain the important expressionkn = h��du�du�g��du�du� ; (10.32)whih relates the normal urvature with the metri and the urvature tensor of the surfae. As statedabove, there is an in�nite number of urves touhing a ertain point (u1; u2) of the surfae and havinga urvature vetor k at this point. In order to �nd a measure for the urvature of the surfae in thispoint, we determine the urves with maximum and minimum urvature. This is done by extremizingthe relation (10.32). Introduing abbreviations l� = du� and ��� = h�� � kng��(= 0), Eq. (10.32) anbe written as a�� l�l� = 0: (10.33)Di�erentiating this equation with respet to l� yields���l� = 0; (10.34)where we have utilized the symmetry of ��� . Re-expanding the abbreviations, multiplying by g��, andsubstituting g��du� = du� leads to h��du� � kndu� = 0: (10.35)



164 10. Flutuating MembranesThis is a set of two equations (� = 1; 2), whih onstitutes an eigenvalue equation:� h11 h21h12 h22 �� du1du2 � = kn � du1du2 � : (10.36)As usual, the eigenvalues kn are obtained from the vanishing determinant���� h11 � kn h21h12 h22 � kn ���� = 0: (10.37)Solving the quadrati equation (h11 � kn)(h22 � kn)� h12h21 = 0 yields the two eigenvaluesk1;2 = 12h�� �r14 (h��)2 � deth�� : (10.38)De�ning the Gaussian urvature K = k1k2 = deth�� (10.39)and the mean urvature H = 12(k1 + k2) = 12h�� = 12Trh�� ; (10.40)Eq. (10.38) an be expressed by k1;2 = H �pH2 �K: (10.41)These solutions are alled main urvatures of the surfae. The orresponding urves with urvaturevetors k1;2 satisfying k1;2 = k1;2 �N1;2 at the point (u1; u2) are denoted as main urvature lines onthe surfae. Their tangent vetors t1;2 are orthogonal to another. Thus the eigenvetors of h�� forma loal orthonormal oordinate system at this point of the surfae as shown in Fig. 10.6.Following Helfrih [93℄, the de�nitions of mean and Gaussian urvature are used to write the bendingenergy as an expansion in the urvature. The lowest-order ontribution is then given byEC = ZS dA �2�H2 + �GK� ; (10.42)whih is quadrati in the main urvatures k1 and k2. The elasti onstants � and �G are denotedas bending rigidity and Gaussian bending rigidity, respetively, and have the dimension energy. Theseond term in the parentheses in Eq. (10.42) is the topologial invariant 4��G(1 � G) as followsfrom the global Gauss-Bonnet theorem [91℄. The number G ounts the handles of the surfae and isalled the genus of the surfae. Sine we assume the surfae topology to be �xed, this onstant energyontribution an be omitted, leaving us with an urvature energy, whih only depends on the meanurvature. Thus, Eq. (10.42) is written asEC = �2 Z d2upg(h��)2: (10.43)This is the lassial urvature model for bilayer membranes and is valid for urvature radii muh largerthan the membrane thikness (4 nm) [94℄. The membrane equilibrium shape is then determined byminimizing the urvature energy.A frequently used speial parameterization of an almost planar surfae is theMonge representation.As shown in Fig. 10.7, it is haraterized by the following hoie of parameters:x(u1; u2) = u1; y(u1; u2) = u2; z(u1; u2) = z(x; y): (10.44)In this simple ase, only deformations orthogonal to the xy-plane an be desribed. Although this is astrong restrition for the investigation of the inuene of thermal utuations, whih have no preferreddiretion upon a membrane, we will use an even more simpli�ed form of this representation throughoutthe subsequent alulations. In Monge representation, the tangent vetors pointing into the diretion
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r(x; y; z(x; y))x yFigure 10.7: Out-of-plane deformations of an almost planar surfae are desribed with the Monge represen-tation, where Cartesian oordinates are used. The oordinates x and y span the parameter spae, and onlyz = z(x; y) depends on the parameterization.of the x and y unit vetors readt1 = (1; 0; �xz)T ; t2 = (0; 1; �yz)T : (10.45)The ross produt of these tangent vetors yields the surfae normal vetorN = 1p1 + (�xz)2 + (�yz)2 (��xz;��yz; 1)T ; (10.46)whih we have normalized aording to Eq. (10.16). The ovariant and ontravariant metris are givenby g�� = � 1 + (�xz)2 �xz�yz�xz�yz 1 + (�yz)2 ��� ; g�� = 1g � 1 + (�yz)2 ��xz�yz��xz�yz 1 + (�xz)2 ��� ; (10.47)where g is the determinant of the ovariant metrig = det g�� = 1 + (�xz)2 + (�yz)2: (10.48)For the urvature tensor we obtainh�� = 1pg � �2xz �x�yz�x�yz �2yz ��� ; (10.49)or in the form we need it for alulating the mean and the Gaussian urvature:h�� = g��h�� = 1g3=2  �1 + (�yz)2� �2xz � �xz�yz�x�yz �1 + (�yz)2��x�yz � �xz�yz�2yz�1 + (�xz)2� �x�yz � �xz�yz�2xz �1 + (�xz)2��2yz � �xz�yz�x�yz ! �� :(10.50)The mean urvature (10.40) of a Monge parameterized surfae in the point (x; y; z(x; y)) is half thetrae of the tensor (10.50). Thus it is given byH = 12 1[1 + (�xz)2 + (�yz)2℄3=2 ��1 + (�xz)2� �2yz + �1 + (�yz)2� �2xz � 2�xz�yz�x�yz	 (10.51)� 12�z �1 +O �(rz)2�� ; (10.52)where � is the Laplae operator �2x+�2y and r the gradient (�x; �y) in two dimensions. The Gaussianurvature (10.39) is obtained from the determinant of h�� :K = 1[1 + (�xz)2 + (�yz)2℄2 ��2xz�2yz � (�x�yz)2� : (10.53)



166 10. Flutuating MembranesThe simplest form of the urvature energy (10.43) for a membrane, whih an be parameterized withthe Monge representation is given by the expressionEC = �2 Z dxdy [�z(x; y)℄2; (10.54)whih we will use in the sequel to desribe thermal utuations of membranes between walls.



Chapter 11
Strong-Coupling Calulation ofFlutuation Pressure of a MembraneBetween Walls

We alulate analytially the proportionality onstant in the pressure law of a membrane thermallyutuating between parallel walls from the strong-oupling limit of variational perturbation theoryup to third order. Extrapolating these approximants to in�nite order yields the pressure onstant� = 0:0797149 [48℄. This result lies well within the error bounds of the most aurate available MonteCarlo result �MCGK = 0:0798� 0:0003 [88℄.11.1 Membrane Between WallsThe violent thermal out-of-plane utuations of a membrane between parallel walls generate a pressurep following the law p = � k2BT 2�(d=2)3 ; (11.1)whose form was �rst derived by Helfrih [50℄ using dimensionality arguments. Here, � denotes theelastiity onstant of the membrane, and d the distane between the walls. The exat value of theprefator � is unknown, but estimates have been derived from rude theoretial approximations byHelfrih [50℄ and by Janke and Kleinert [85℄, whih yielded�thH � 0:0242; �thJK � 0:0625: (11.2)More preise values were found from Monte Carlo simulations by Janke and Kleinert [85℄ and byGompper and Kroll [88℄, whih gave�MCJK � 0:079� 0:002; �MCGK � 0:0798� 0:0003: (11.3)In a previous work [89℄, a systemati method was developed for alulating � with any desired highauray. Basis for this method is the strong-oupling version of variational perturbation theory [4℄.The appliation of this method to the utuation pressure of the membrane is similar to that for thepartile in a box developed in Ref. [95℄. In that theory, the free energy of the membrane is expanded into167



168 11. Strong-Coupling Calulation of Flutuation Pressure of a Membrane Between Wallsa sum of onneted loop diagrams, whih is eventually taken to in�nite oupling strength to aountfor the hard walls. As a �rst approximation, an in�nite set of diagrams was alulated, others wereestimated by invoking a mathematial analogy with a similar one-dimensional system of a quantummehanial partile between walls. The result of this proedure was a pressure onstant�thK = �2128 = 0:0771063 : : : ; (11.4)very lose to (11.3).It is the purpose of this paper to go beyond this estimate by alulating all diagrams up to fourloops exatly. In this way, we improve the analyti approximation (11.4) and obtain a value�th � 0:0797149; (11.5)whih is in exellent agreement with the preise MC value �MCGK in Eq. (11.3).11.2 Smooth Potential Model of Membrane Between WallsTo set up the theory, we let the membrane lie in the x-plane and utuate in the z-diretion withvertial displaements '(x). The walls at z = �d=2 restrit the displaements to the interval '(x) 2(�d=2; d=2). Near zero temperature, the thermal utuations are small, '(x) � 0. The urvatureenergy EC of the membrane has the harmoni approximation (10.54)EC = 12� Z dx2 [�2'(x)℄2: (11.6)The thermodynami partition funtion Z of the membrane is given by the sum over all Boltzmannfators of �eld on�gurations '(x)Z =Yx "Z +d=2�d=2 d'(x)p2�kBT=�# exp�� �2kBT Z d2x [�2'(x)℄2� : (11.7)This simple harmoni funtional integral poses the problem of dealing with a �nite range of utuations.This problem is solved by the strong-oupling theory of Ref. [89℄ as follows.If the area of the membrane is denoted by A, the partition funtion (11.11) determines the freeenergy per area as f = � 1A lnZ: (11.8)By di�erentiating f with respet to the distane d of the walls, we obtain the pressure p = ��f=�d.11.2.1 Smooth Potential Adapting WallsWe introdue some smooth potential restriting the utuations '(x) to the interval (�d=2; d=2), forinstane V ('(x)) = m4 d2�2 tan2 �d'(x) � m4'2(x) + �2d2 Vint('(x)); (11.9)where we have split the potential into a harmoni and an interating partVint('(x)) = m4 �"4'4(x) + "6 ��d�2 '6(x) + "8 ��d�4 '8(x) + : : :� (11.10)with "4 = 2=3; "6 = 17=45; "8 = 62=315; : : : . Thus we are left with the funtional integralZ = I D'(x) exp��12 Z d2x �[�2'(x)℄2 +m4'2(x) + �2d2 Vint('(x))�� ; (11.11)
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m � 0 -
V (')

d=2'0�d=2Figure 11.1: Smooth potential V (') for di�erent values of the parameter m. In the limit m ! 0 the hardwalls at ' = �d=2 are adapted.where we have set � = kBT = 1. After trunating the Taylor expansion around the origin, theperiodiity of the trigonometri funtion is lost and the integrals over '(x) in (11.7) an be taken from�1 to +1. The interating part is treated perturbatively. Then, the harmoni part of V ('(x)) leadsto an exatly integrable partition funtion Zm2 . The mass parameter m is arbitrary at the moment,but will eventually be taken to zero, in whih ase the potential V ('(x)) desribes two hard walls at' = �d=2. Figure 11.1 illustrates this behavior of the potential.We shall now alulate a perturbation expansion for Z up to four loops. This will serve as a basisfor the limit m! 0, whih will require the strong-oupling theory of Ref. [89℄.11.2.2 Perturbation Expansion for Free EnergyThe perturbation expansion proeeds from the harmoni part of Eq. (11.11):Zm2 = I D'(x) e�Am2 ['℄ = e�Afm2 (11.12)with Am2 ['℄ = 12 Z d2x �[�2'(x)℄2 +m4'2(x)	 : (11.13)From Refs. [85,89℄, the harmoni free energy per unit area fm2 is known asfm2 = 18m2: (11.14)The harmoni orrelation funtions assoiated with (11.12) arehO1('(x1))O2('(x2)) � � �im2 = 1Zm2 I D'(x)O1('(x1))O2('(x2)) � � � e�Am2 ['℄; (11.15)where the funtions Oi('(xj)) may be arbitrary polynomials of '(xj). The basi harmoni orrelationfuntion Gm2(x1;x2) = h'(x1)'(x2)im2 (11.16)



170 11. Strong-Coupling Calulation of Flutuation Pressure of a Membrane Between Wallsdetermines, by Wik's rule, all orrelation funtions (11.15) as sums of produts of (11.16):h'(x1) � � �'(xn)im2 = Xpairs Gm2(xP (1);xP (2)) � � �Gm2(xP (n�1);xP (n)); (11.17)where the sum runs over all pair ontrations, and P denotes the assoiated index permutations. Theharmoni orrelation funtion (11.16) reads in momentum spaeGm2(k) = 1k4 +m4 = i2m2 � 1k2 + im2 � 1k2 � im2 � ; (11.18)thus being proportional to the di�erene of two ordinary orrelation funtions (p2 � �2)�1 with animaginary square mass �2 = �im2. From their known x-spae form we have immediatelyGm2(x1;x2) = Gm2(x1 � x2) = i4�m2 hK0(pimjx1 � x2j)�K0(p�imjx1 � x2j)i ; (11.19)where K0(z) is a modi�ed Bessel funtion [96, Setion 8.432℄. At zero distane, the ordinary harmoniorrelations are logarithmially divergent, but the di�erene is �nite yielding Gm2(0) = 1=8m2.We now expand the partition funtion (11.11) in powers of gVint(�(x)), where g � �2=d2, and usethe expetation values (11.15) to obtain a perturbation series for Z. Going over to the umulants, we�nd the free energy per unit areaf = fm2 + g2A Z d2xhVint('(x))im2 ; � g22! 14A Z d2x1d2x2hVint('(x1))Vint('(x)2)im2; + : : : ; (11.20)where the subsript  indiates the umulants. Inserting the expansion (11.10) and using (11.15) aswell as (11.17), the series an be written asf = m2 "a0 + 1Xn=1 an � gm2�n# ; (11.21)where the oeÆients an are dimensionless real numbers, starting with a0 = 1=8 from Eq. (11.14). Thehigher expansion oeÆients an are ombinations of integrals over the onneted orrelation funtions:a1 = "4m42A Z d2x h'4(x)im2;; (11.22)a2 = "6m62A Z d2x h'6(x)im2; � "24m108A Z d2x1d2x2 h'4(x1)'4(x2)im2;; (11.23)a3 = "8m82A Z d2x hv8(x)im2; � "4"6m124A Z d2x1d2x2 h'6(x1)'4(x2)im2; (11.24)+"34m1648A Z d2x1d2x2d2x3h'4(x1)'4(x2)'4(x3)im2;:To �nd the free energy (11.21) between walls, we must go to the limit m2 ! 0. Following [4,89℄, wesubstitute m2 by the variational parameter M2, whih is introdued via the trivial identitym2 �pM4 � gr (11.25)with r = 1g �M4 �m4� ; (11.26)and expand the r.h.s. of Eq. (11.25) in powers of g up to the order gN . In the limit m2 ! 0, thisexpansion reads m2(M2) =M2 � 12 rM2 g � 18 r2M6 g2 � 116 r3M10 g3 � : : : : (11.27)



11.3 Evaluation of the Flutuation Pressure up to Four-Loop Order 171Inserting this into (11.21), re-expanding in powers of g, re-substituting r from Eq. (11.26), and trun-ating after the Nth term, we arrive at the free energy per unit areafN(M2; d) =M2 a0 b0 + NXn=1 angnM2(1�n)bn; (11.28)with bn = N�nXk=0 (�1)k � (1� n)=2k � (11.29)being the binomial expansion of (1�1)(1�n)=2 trunated after the (N�n)th term [89℄. The optimizationof (11.28) is done as usual [4℄ by determining the minimum of fN (M2; d) with respet to the variationalparameter M2, i.e. by the ondition �fN (M2; d)�M2 != 0; (11.30)whose solution gives the optimal valueM2N (d). Re-substituting this result into Eq. (11.28) produes theoptimized free energy fN(d) = fN(M2N (d); d), whih only depends on the distane as fN(d) = 4�N=d2.Its derivative with respet to d yields the desired pressure law with the Nth-order approximation forthe onstant �N : pN = �N �d2��3 : (11.31)We must now alulate the umulants ourring in the expansion (11.21).11.3 Evaluation of the Flutuation Pressure up to Four-LoopOrderThe orrelation funtions appearing in (11.22){(11.24) are onveniently represented by Feynmangraphs. Green funtions are pitured as solid lines and loal interations as dots, whose oordinatesare integrated over: x1 x2 � Gm2(x1;x2); (11.32)� Z d2x: (11.33)These rules an be taken over to momentum spae in the usual way. One easily veri�es that theintegrals over the onneted orrelation funtions in (11.22){(11.24) have a dimension A=m2(l+V�1),where V is the number of the verties and l denotes the number of lines of the assoiated Feynman dia-grams. Thus we parameterize eah Feynman diagram by vA=m2(l+V�1), with a dimensionless numberv, whih inludes the multipliity. In Table 11.1, we have listed the values v for all diagrams up tofour loops. No divergenes are enountered. Exat results are stated as frational numbers. Theother numbers are obtained by numerial integration, whih are reliable up to the last written digit.The right-hand olumn shows numbers vK obtained by the earlier approximation [89℄, where all theFeynman diagrams were estimated by an analogy to the the problem of a partile in a box. In Ref. [89℄,it was shown that the value v of a large lass of diagrams of the membrane problem an be obtained bysimply dividing the value of the orresponding partile-in-a-box-diagram vPB by a fator 1=4L, whereL is the number of loops in the diagrams.Inserting the numbers in Table 11.1 into (11.22){(11.24), we obtain the oeÆients a1; a2; a3 of thefree energy per area (11.28), whih is then extremized in M2. To see how the results evolve from orderto order, we start with the �rst orderf1(M2; d) = 12a0M2 + a1�2d2 (11.34)



172 11. Strong-Coupling Calulation of Flutuation Pressure of a Membrane Between WallsTable 11.1: Feynman diagrams with loops L, multipliities s, and their dimensionless values v. The lastolumn shows the values vK = vPB=4L used in Ref. [89℄.L Graph s v vK2 3 364 364a1 = aK1 aK1 = 1=643 15 15512 1551272 9128 912824 0:828571� 3256 3256a2 = 1:114286 aK2 aK2 = 1=10244 105 1054096 1054096540 1352048 1352048360 0:828571� 452048 4520482592 81512 815121728 81512 815123456 0:828571� 1351024 13510241728 0:713194� 812048 812048a3 = 2:763097 � 10�5 aK3 = 0with a0 = 1=8 and a1 = 1=64. Here, an optimal value of M2 does not exist. Thus we simply usethe perturbative result for m = 0, whih is equal to (11.34) for M = 0. Di�erentiating f1(0; d) withrespet to d yields the pressure onstant in (11.31):�1 = 14a1 �2d2 = �2256 � 0:038553: (11.35)This value is about half as big as the Monte Carlo estimates (11.3) and agrees with the value foundin [89℄. To seond order, the re-expansion (11.28) readsf2(M2; d) = 38a0M2 + a1�2d2 + a2�4d4 1M2 (11.36)with a2 � 1:0882 � 10�3 from Table 11.1. Minimizing this free energy in M2 yields an optimal valueM22 (d) =r83 a2a0 �2d2 � 0:152362�2d2 ; (11.37)



11.4 Extrapolation Towards the Exat Constant 1730:0 4:0 8:0 N �10�110�210�3 �ex � �N�exK � �NK
Figure 11.2: Di�erene between the extrapolated pressure onstant �ex and the optimized N -th order value�N obtained from variational perturbation theory for the method presented in this hapter (solid line) and the�rst four values of the approximation sheme introdued in Ref. [89℄ (dashed line). Dots represent the valuesto order N in these approximations.and f2(d) = �2d2  a1 +r32a0a2! : (11.38)Inserting a0 = 1=8 and a1; a2 from Table 11.1, we obtain�2 � 0:073797; (11.39)thus improving drastially the �rst-order estimate (11.35). This value is by a fator 1:026 larger thanthat obtained in the approximation of Ref. [89℄.Continuing this proeeding to third order, we must minimizef3(M2; d) = 516a0M2 + a1�2d2 + 32a2�4d4 1M2 + a3�6d6 1M4 (11.40)with a3 � 2:7631 � 10�5. The optimal value of M2 isM23 (d) =r325 a2a0 os"13 aross52 a0a23a32 # �2d2 � 0:219608�2d2 : (11.41)Inserted into (11.40), we �nd the four-loop approximation for the proportionality onstant �:�3 � 0:079472: (11.42)This result is in very good agreement with the Monte Carlo results in (11.3) and should be a lowerbound for the exat value sine the suessive approximations inrease monotonously with the orderof the approximation. It di�ers from the approximate value of the method presented in Ref. [89℄ by afator 1:047.An even better result will now be obtained by extrapolating the sequene �1; �2; �3 to in�niteorder.11.4 Extrapolation Towards the Exat ConstantVariational perturbation theory exhibits typially an exponentially fast onvergene. This was exatlyproven for the anharmoni osillator [4℄. Other systems treated by variational perturbation theory
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Figure 11.3: Plot of suessive �-like funtions assoiated with expansion (11.46) to orders N = 1; 2; 3 (solidurves). For omparison, we also plot the orresponding funtions obtained from the approximate expansionoeÆients aKn (dashed urves). The urves oinide for N = 1. The zeros g?r;N of the Nth approximationare from right to left: g?r;1 = 64 (64), g?r;2 = 38:369 (39.554), and g?r;3 = 32:783 (34.796). The zeros approahrapidly the value g?r = 30:953 (fat dot) assoiated with the pressure onstant (11.45).show a similar behavior [53℄. Assuming that an exponential onvergene exists also here, we mayextrapolate the sequene of values �1; �2; �3 alulated above to in�nite order. It is useful to extendthis sequene by one more value at the lower end, �0 = 0, whih follows from the one-loop energy(11.14) at m2 = 0. This sequene is now extrapolated towards a hypothetial exat value �ex byparameterizing the approah as �ex � �N = exp (�� � �N �) : (11.43)The parameters �, �, ", and the unknown value of �ex are determined from the four values �0; : : : ; �3,with the result � = 2:529298; � = 0:660946; � = 1:976207; (11.44)and the extrapolated value for the exat onstant:�ex = 0:0797149: (11.45)This is now in perfet agreement with the Monte Carlo values (11.3).The approah is graphially shown in Fig. 11.2, where the optimized values �0; : : : ; �3 all lie on astraight line (solid line). For omparison, we have also extrapolated the �rst four values �0K; : : : ; �3K inthe approah of Ref. [89℄ yielding a value �exK � 0:0759786, whih is 4.9% smaller than (11.45).11.5 Comparison with the Renormalization Group ApproahRewriting the perturbation series (11.21) as f = [gr(~g)℄�1�2=d2 with the dimensionless funtiongr(~g) = ~g(a0 + a1~g + a2~g2 + a3~g3 + : : :)�1 = 1a0 �~g � a1a0 ~g2 +�a21a20 � a2a0� ~g3 + : : :� (11.46)of the redued oupling onstant ~g = g=m2, its logarithmi derivative s(~g) = � log gr(~g)=� log ~g vanishesat in�nitively strong oupling sine gr(~g ! 1) = g?r = onst. This onstant determines the pressureonstant as � = �24 [g?r ℄�1: (11.47)In analogy to the renormalization group method in �eld theory, we may now de�ne a �-like funtionby �(~g) = �gr(~g)s(~g), as done in Ref. [97℄. Sine this funtion vanishes in the limit of in�nitely strong



11.5 Comparison with the Renormalization Group Approah 175oupling ~g ! 1, we invert the series (11.46) for ~g(gr) and re-expand the �-like funtion in powersof gr obtaining �(gr). This funtion vanishes at the value g?r determining one more the pressureonstant via Eq. (11.47). The terms in Eq. (11.46) yield suessively the values �1 = 0:038553; �2 =0:064308; �3 = 0:075265, whih approah the estimate (11.45). Figure 11.3 shows the �rst three �-likefuntions for di�erent orders and their zeros together with the zero orresponding to our value (11.45).





Chapter 12
Flutuation Pressure of a Stak ofMembranes

We alulate the universal onstants �N in Helfrih's pressure law for a stak of N membranes betweenwalls by strong-oupling theory [49℄. Using the lose analogy between this system and a stak ofstrings, where the universal onstants are exatly known, we onstrut a smooth potential that keepsthe membranes apart. The strong-oupling limit of the perturbative treatment of the free energyyields pressure onstants for an arbitrary number of membranes, whih are in very good agreementwith values from Monte Carlo simulations.12.1 IntrodutionThe tension of membranes vanishes in equilibrium with a reservoir of moleules. Its shape is governedby the extrinsi urvature energy EC . If a stak of membranes is plaed between two parallel walls,violent thermal out-of-plane utuations of the membranes exert a pressure p upon the walls. Thepressure law is given by Eq. (10.1). The pressure onstant for a single membrane, �1, was roughlyestimated by theoretial [50℄ and Monte Carlo methods [85{88℄. The most preise theoretial result wasobtained by strong-oupling theory [48℄ (see also Chapter 11 of this thesis), yielding �th1 = 0:0797149,whih lies well within the error bounds of the latest Monte Carlo estimate �MC1 = 0:0798�0:0003 [88℄.For more than one membrane between the walls, the strong-oupling alulation of Refs. [48,89℄must be modi�ed in a nontrivial way. We must �nd a di�erent potential that keeps the membranesapart and whose strong-oupling limit ensures non-interpenetration. For this, we take advantage ofthe fat that membranes between walls have similar properties to a stak of nearly parallel stringsutuating in a plane between line-like walls [98,99℄, in partiular the same type of pressure law (10.1)with � substituted by the string tension �. The harateristi universal onstants of the latter systemwere exatly alulated in Refs. [88,98℄ from an analogy to a gas of fermions in 1+ 1 dimensions [100{102℄. We use these exat values to determine a potential that, when applied to the stak of membranes,yields a perturbation expansion for the pressure onstants for an arbitrary number of membranes tobe evaluated in the strong-oupling limit of omplete repulsion.Our results are in exellent agreement with all available Monte Carlo estimates [86{88℄ for N =1; 3; 5. Extrapolating toN !1, we estimate the pressure onstant �1 for in�nitely many membranes.177



178 12. Flutuation Pressure of a Stak of Membranes12.2 Stak of StringsWe begin by studying the exatly solvable statistial properties of a stak of N almost parallel stringsin a plane, whih are not allowed to ross eah other and whose average spaing at low temperature isa. The system is enlosed between parallel line-like walls with a separation L as illustrated in Fig. 12.1.In the Monge parameterization, the vertial position of a point of the nth string is zn = zn(x). Sinethe vertial positions of the nth string are utuating around the low-temperature equilibrium positionat na, it is useful to introdue the displaement �elds'n(x) � zn(x)� na: (12.1)The thermodynami partition funtion is given by the funtional integralZs = NYn=1Yx 264 'n+1(x)+aZ'n�1(x)�a d'n(x)p2�kBT=�375 exp(� �2kBT NXn=1 Z 1�1 dx �d'n(x)dx �2) ; (12.2)where � is the string tension, T is the temperature, and kB is the Boltzmann fator. We are interestedin the free energy per unit length f sN � �kBTA lnZs; (12.3)with A = R1�1 dx. Sine the strings may not pass through eah other, the utuations 'n(x) of thenth string are restrited to the interval'n(x) 2 f'n�1(x) � a; 'n+1(x) + ag: (12.4)12.2.1 Free Fermion ModelThe restrition (12.4) makes it diÆult to solve the funtional integral (12.2) expliitly. It is, however,possible to �nd a solution by identifying the system with a (1 + 1)-dimensional Fermi gas, as doneby de Gennes [100℄. Using this analogy, Gompper and Kroll [88℄ determined the 1=a2 ontribution to�f sN relevant for the pressure law (10.1) as�f sN = �sN (kBT )2�a2 ; (12.5)with the pressure onstants �sN = �212 2N + 1N + 1 : (12.6)ForN !1, this onstant has the �nite limit �s1 = �2=6. The analogy with fermions annot be used toalulate the free energy of a stak of membranes, where only approximate methods are available. Wewill takle this problem by making use of a strong-oupling theory as in Refs. [48,89℄. As a preparation,we apply this theory to the exatly solvable system of a stak of strings.12.2.2 Perturbative ApproahThe diÆulty in solving the funtional integral (12.2) arises from the restrition (12.4) of the utu-ations by the neighboring strings. To deal with this strong repulsion, we introdue into the ation ofthe funtional integral (12.2) a smooth potential that keeps the strings apart in suh a way that theintegration interval for the utuations an be extended to 'n(x) 2 f�1;1g. At the end, we take astrong-oupling limit, whih ensures (12.4). In Refs. [48,89℄, suh a method was used to evaluate thepressure onstant for one membrane between walls. The smooth potential for the analogous ase ofone string is V ('(x)) = (2a�=�)2 tan2[�'(x)=2a℄, whih desribes the hard walls exatly for � ! 0.This potential is symmetri and possesses a minimum at '(x) = 0. Thus its Taylor expansion aroundthis minimum is a series in even powers of '(x).
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Figure 12.1: Stak of N strings with equilibrium spaing a between two walls of distane L. The magni�ershows the loal displaement �eld 'N (x) as the distane from the position Na. The walls are labeled by 0 andN + 1 and treated as non-utuating strings with '0(x) � 'N+1(x) � 0.In the ase ofN strings, the minima of the repulsion potential should lie at the equilibrium positionsof the strings. The Taylor expansion of suh a potential will also have terms with odd powers. Unlikethe one-string system, where utuations are limited by �xed walls, the range of the displaements'n(x) of the nth string in an N -string system depends on the positions zn�1(x) and zn+1(x) of theneighboring strings. Thus the potential will be taken as a sum,Ve�(z0(x); z1(x); : : : ; zN(x); zN+1(x)) = �2 N+1Xn=1 V��rnzn(x)� ; (12.7)where rnzn(x) denotes the prepoint lattie gradient zn(x) � zn�1(x). This potential inludes theinteration of the �rst and last strings with the walls as non-utuating strings at z0 = 0 and zN+1 =(N + 1)a = L: '0(x) = 'N+1(x) = 0: (12.8)In the limit �! 0, the potential V��rnzn(x)� should again yield an in�nitely strong repulsion of twoneighboring strings for zn(x) lose to zn�1(x). For zn(x) > zn�1(x), the limiting potential should bezero. As a matter of hoie, we let the potential between two strings V��rnzn(x)� be minimal and zeroat the positions zeqn = na and zeqn�1 = a(n�1): dV�(a)=drnzn(x) = 0 and V�(zeqn � zeqn�1) = V�(a) = 0(see Fig. 12.2).The Taylor expansion around the minimum is, in terms of the variables (12.1),V��rn'n(x)� = �22 �rn'n(x)�2 + �2 1Xk=1 kgk �rn'n(x)�k+2 : (12.9)The parameter � governs the harmoni term, whereas higher-order terms sale with the ouplingonstant g = 1=a, whih makes the oeÆients k dimensionless.An example for a potential showing qualitatively the behavior in Fig. 12.2 with a Taylor expansion ofthe type (12.9) is V��rnzn(x)� = �2 �a=[rnzn(x)℄2 � 2=rnzn(x) + 1=a�=2, whih vanishes everywherefor in�nitesimal �, exept at rnzn(x) = 0. The strong-oupling limit of the perturbative expansionof order g2 presented in this hapter annot yield, however, reasonable results for suh an arbitraryhoie of the potential. The alulation of higher-order perturbative oeÆients requires high numerialpower, whih would make this proedure of alulating the universal onstants ineÆient.
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Figure 12.2: Potential V��rnzn(x)� of string-string interation for �nite � and small � as a funtion ofrnzn(x) = zn(x)� zn�1(x). The strings repel eah other strongly for rnzn(x)! 0, while the potential has aminimum at the equilibrium separation rnzn(x) = a, and we hoose to normalize it to zero at that point.Thus, we ontinue with the Taylor expansion (12.9), and the partition funtion (12.2) beomesZs = lim�!0 I DN'(x) exp8<:� �2kBT N+1Xn=1 1Z�1 dx  �d'n(x)dx �2 + 12�2 �rn'n(x)�2!9=;� exp8<:� �2kBT �2 1Xk=1 kgk N+1Xn=1 1Z�1 dx [rn'n(x)℄k+29=; (12.10)with the integral measure I DN'(x) = NYn=1Yx "Z 1�1 d'n(x)p2�kBT=�# : (12.11)The harmoni part of the partition funtion an be written asZs� = I DN'(x) exp8<:�12 N+1Xn=1 N+1Xn0=1 1Z�1 dx 1Z�1 dx0 'n(x)[Gsnn0 (x; x0)℄�1'n0(x0)9=; (12.12)with the funtional matrix[Gsnn0(x; x0)℄�1 = � �kBT � d2dx2 + 12�2rnrn� Æ(x� x0)Ænn0 : (12.13)Here rn'n(x) = 'n+1(x)�'n(x) denotes the postpoint lattie gradient in the z diretion, and rnrnis the lattie version of the Laplae operator [4℄.Let us now impose the vanishing of the utuations of the walls (12.8), orresponding to Dirihletboundary onditions. For a �nite number N of strings, the Kroneker symbol Ænn0 in Eq. (12.13) hasthe Fourier representation Ænn0 = 2N + 1 NXm=1 sin �mna sin �mn0a (12.14)



12.2 Stak of Strings 181with wave numbers �m = �m=(N + 1)a. Thus the kernel [Gsnn0(x; x0)℄�1 may be written in Fourierspae as [Gsnn0 (x; x0)℄�1 = 2N + 1 NXm=1 sin �mna sin �mn0a 1Z�1 dk2� [Gsm(k)℄�1e�ik(x�x0) (12.15)with the Fourier omponents [Gsm(k)℄�1 = �kBT �k2 + 2�2 sin2(�ma=2)� : (12.16)Integrating over k in the spetral representation (12.15) leads immediately to the orrelation funtionin on�guration spae,Gsnn0(x; x0) = 1p2(N + 1) kBT�� NXm=1 sin �mna sin �mn0asin(�ma=2) e�p2�jx�x0j sin(�ma=2); (12.17)and to the harmoni partition funtion (12.12),Zs� = exp��12Tr ln [Gs℄�1� = e�Af sN;�=kBT ; (12.18)the exponent giving the free energy per length,f sN;� = � kBT2 sin[�N=4(N + 1)℄sin[�=4(N + 1)℄ ; (12.19)whih vanishes for � = 0.The full partition funtion Zs in Eq. (12.10) is now alulated perturbatively. We introdue har-moni expetation valuesh � � � is� = �Zs���1 I DN'(x) � � � exp8<:�12 N+1Xn=1 N+1Xn0=1 1Z�1 dx 1Z�1 dx0 'n(x)[Gsnn0 (x; x0)℄�1'n0(x0)9=;(12.20)in terms of whih the orrelation funtion is given byGsnn0(x; x0) = h'n(x)'n0 (x0)is� : (12.21)The perturbation expansion ontains the two-point orrelation funtion of rn'n(x), whih is given by
rn'n(x)rn0'n0(x0)�s� = rnrn0 Gsnn0(x; x0): (12.22)We now expand the seond exponential in Eq. (12.10) in powers of the oupling onstant g. Harmoniexpetation values with odd powers of rn'n(x) do not ontribute, and the expansion readsZs = lim�!0Zs� 241� g20� �2kBT �22 N+1Xn=1 1Z�1 dx 
[rn'n(x)℄4�s�� 12! �24k2BT 2�421 N+1Xn;n0=1 1Z�1 dx 1Z�1 dx0 
[rn'n(x)℄3[rn0'n0(x0)℄3�s�1A+ : : :35 : (12.23)In the sequel, we restrit ourselves to the terms of seond order in g = 1=a, whih ontribute diretlyto the pressure law as in Eq. (12.5). The higher powers diverge for �! 0, and in Refs. [48,89℄ it wasshown how to alulate from them a �nite strong-oupling limit. Here we shall ignore these terms for



182 12. Flutuation Pressure of a Stak of Membranesreasons to be explained shortly. Re-expressing the right-hand side of Eq. (12.23) as an exponential ofa umulant expansion, we obtain the free energy per length,f sN = lim�!0 g20� �2kBT �22 N+1Xn=1 1Z�1 dx 
[rn'n(x)℄4�s�;� 12! �24k2BT 2�421 N+1Xn;n0=1 1Z�1 dx 1Z�1 dx0 
[rn'n(x)℄3[rn0'n0(x0)℄3�s�;1A+ : : : : (12.24)We have used that the free energy f sN;� of the harmoni system (12.19) vanishes in the limit � ! 0.The �rst umulants are the expetations
O1(r'n1(x1))�s�; = 
O1(r'n1(x1))�s�
O1(r'n1(x1))O2(r'n2(x2))�s�; = 
O1(r'n1(x1))O2(r'n2(x2))�s�� 
O1(r'n1(x1))�s� 
O2(r'n2(x2))�s� ;... ; (12.25)de�ned for any polynomial funtion Oi(r'ni(xi)) of r'ni(xi). Following Wik's rule, we expand theexpetations into produts of two-point orrelation funtions (12.22). The di�erent terms are displayedwith the help of Feynman diagrams, in whih lines and verties represent the orrelation funtions andinterations: x1; n1 x2; n2 �! 
rn1'n1(x1)rn2'n2(x2)�s� ; (12.26)�! N+1Xn=1 Z 1�1 dx: (12.27)In what follows, we assume that the potential parameters k with k � 3 are hosen in suh a waythat they make all terms of order g3 and higher vanish. Dividing the free energy (12.24) by N , weobtain the following expression for the free energy per length and string, whih an be ompared withEq. (12.5):�f sN = lim�!0 �32 ��2Aa2 2 � 18 �2�4kBTAa2 21�6 + 9 �� : (12.28)The alulation of the Feynman diagrams is straightforward using Eq. (12.17). The evaluation is onlyompliated by the Dirihlet boundary onditions, whih destroy momentum onservation. This makesthe numeri alulation quite time-onsuming for an inreasing number N of strings. As an expliitexample, onsider the sunset diagram, whih requires the evaluation of the multiple sum� Ak3BT 3�4 12(N + 1)3 N+1Xn1;n2=1 NXm1;m2;m3=1 hm1n1n2hm2n1n2hm3n1n2� 1sin(�m1a=2) sin(�m2a=2) sin(�m3a=2) [sin(�m1a=2) + sin(�m2a=2) + sin(�m3a=2)℄ ; (12.29)with the abbreviationhmn1n2 = sin �mn1a sin �mn2a� sin �mn1a sin �m(n2 � 1)a� sin �m(n1 � 1)a sin �mn2a+ sin �m(n1 � 1)a sin �m(n2 � 1)a: (12.30)It is useful to fator out the physial dimension of the diagram. Any Feynman integralW s with l linesand v verties an be expressed in terms of a redued dimensionless Feynman integral W s;r asW s = A�kBT� �l ��(l+v�1)W s;r: (12.31)



12.3 Stak of Membranes 183Table 12.1: Redued numeri valuesW s;r of the two-loop diagrams for the free energy for a stak of N strings.N s;r s;r s;r1 1=2 0 02 1:288675 0:398717 0:0893163 2:100656 0:832299 0:1464474 2:915827 1:270787 0:1844635 3:730993 1:709326 0:2113256 4:545586 2:147034 0:2312457 5:359574 2:583849 0:246583This brings Eq. (12.28) to the form�f sN = �sN k2BT 2�a2 ; (12.32)�sN = 1N �322 s;r � 21�34 s;r + 98 s;r�� ; (12.33)where the diagrams indiate the redued Feynman integrals. Their values are listed in Table 12.1 fordi�erent string numbers N . Note that the 1=a2 ontributions to the free energy per length and stringin Eq. (12.28) are independent of � sine the � prefators are aneled by the � dependene of thediagrams. Thus the limit �! 0 beomes trivial for these ontributions.With the knowledge of the exat values of the onstants �sN from Eq. (12.6), we are now in aposition to determine the potential parameters 1 and 2 from Eq. (12.33) to obtain the exat resultfrom the two-loop expansion Eq. (12.33). Comparing Eqs. (12.33) and (12.6) for N = 1 and N = 2,we obtain 1 = �3 ; 2 = �26 : (12.34)Note that (12.33) onsists of more equations than neessary to ompute 1 and 2. It turns out,however, that all of them give the same parameters 1 and 2, suh that the same potential (12.9) anbe used for any N . This is the essential basis for applying this proedure to a stak of membranes.We now justify the neglet of the higher g powers that would in priniple give further ontributionsto the pressure onstant �sN in the strong-oupling limit. We simply observe that it is possible tohoose the higher expansion oeÆients k to make all higher gn ontributions vanish [103℄.12.3 Stak of MembranesHaving determined the parameters 1 and 2 of the Taylor expansion (12.9) of the smooth potentialappliable for any number of strings, we shall now use the same potential for a perturbative expansionin a stak of N membranes displayed in Fig. 12.3. The equilibrium spaing at low temperature betweenthe membranes is again a. Denoting the vetors in the plane by x = (x; y), the vertial displaementsof the membranes from the positions na are 'n(x), with Dirihlet boundary onditions at z0 and zN+1,'0(x) = 'N+1(x) = 0: (12.35)For membranes without tension, the energy has the harmoni approximationEC;n = �2 Z d2x ��2'n(x)�2 ; (12.36)where � is the bending sti�ness and �2 = �2x + �2y is the Laplaian in the plane parallel to the walls.By analogy with the preeding setion, the kernel of the harmoni stak now reads[Gn1n2(x1;x2)℄�1 = � �kBT ���2x1�2 + 12�4rn1rn1� Æ(x1 � x2)Æn1n2 ; (12.37)
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xyz

Figure 12.3: Stak of self-avoiding uid membranes utuating in the z diretion between two walls. As forthe previous stak of strings, the walls are treated as non-utuating membranes.where we have used a mass parameter �4 instead of �2, for dimensional reasons. The partition funtionfor the stak of membranes is then written up to order g2 = 1=a2 byZ = lim�!0 I DN'(x) exp(�12 N+1Xn1;n2=1 Z d2x1 Z d2x2 'n1(x1)[Gn1n2(x1;x2)℄�1'n2(x2))�"1� g2 �2kBT �42 N+1Xn=1 Z d2x �r'n(x)�4 � �28k2BT 2�821 N+1Xn1;n2=1 Z d2x1 Z d2x2� �r'n1(x1)�3 �r'n2(x2)�3!#; (12.38)with the same parameters 1 and 2 of the Taylor expansion (12.9) as in the string system, determinedin Eq. (12.34). We neglet terms of order g3, whih ertainly ontribute in the strong-oupling limit,and whih vanish only for the strings, where the partition funtion (12.23) with the hoie (12.34) forthe parameters 1, 2 is exat in seond order. An evaluation of the negleted terms by variationalperturbation theory is expeted to give only a negligible ontribution to our �nal result.Inverting the kernel (12.37) yields the orrelation funtionGn1n2(x1;x2) = 2N + 1 kBT� NXm=1 sin �mn1a sin �mn2a Z d2k(2�)2 1k4 + 2�4 sin2(�ma=2)e�ik(x1�x2):(12.39)The expliit alulation of the Fourier integral leads to a di�erene of modi�ed Bessel funtions K0(x)as in Ref. [48℄:Gn1n2(x1;x2) = ip8�(N + 1)�2 kBT� NXm=1 sin �mn1a sin �mn2asin(�ma=2)� hK0 �21=4pi sin(�ma=2)�jx1 � x2j��K0 �21=4p�i sin(�ma=2)�jx1 � x2j�i : (12.40)For x1 = x2 � x and n1 = n2 � n, this redues toGnn(x;x) = 1p32(N + 1)�2 kBT� NXm=1 sin2 �mnasin(�ma=2) ; (12.41)leading to the partition funtion of the harmoni system,Z� = exp��12Tr lnG�1� = exp���2A8 sin[�N=4(N + 1)℄sin[�=4(N + 1)℄ � ; (12.42)



12.3 Stak of Membranes 185where A = R d2x is the area of the projeted plane of the membranes. The free energy per areafN;� = �(kBT=A)lnZ� vanishes again for � = 0.As for the alulation of the free energy of the stak of strings, we introdue harmoni expetationvaluesh � � � i� = [Z�℄�1 I DN'(x) � � � exp8<:�12 N+1Xn=1 N+1Xn0=1 1Z�1 d2x 1Z�1 d2x0 'n(x)[Gnn0 (x;x0)℄�1'n0(x0)9=; ;(12.43)whih appear in the perturbation expansion of Eq. (12.38), the umulants yielding a perturbativeexpansion for the free energy per area fN = �(kBT=A)lnZ. The lines and verties in the Feynmandiagrams now stand forx1; n1 x2; n2 �! 
rn1'n1(x1)rn2'n2(x2)�� (12.44)�! N+1Xn=1 Z d2x; (12.45)and the two-loop approximation to the free energy per area and membrane in order 1=a2 reads�fN = lim�!0 ��24 ��4Aa2 � �2�2�8kBTAa2 � 112 + 18 �� : (12.46)Going over to redued Feynman integrals as in Eq. (12.31),W = A�kBT� �l ��2(l+v�1)W r; (12.47)where v is the number of verties and l the number of lines of the diagram, we obtain�fN = �N k2BT 2�a2 ; (12.48)�N = �2N �14 r � 112 r � 18 r� : (12.49)The pressure exerted by the membranes upon the walls is obtained by di�erentiating the free energyfN = N�fN with respet to the distane of the walls L = a(N + 1):pN = �N ��fN�L = 2NN + 1�N k2BT 2�a3 : (12.50)The �rst and the last Feynman integrals in Eq. (12.49) are the simplest:r � 132(N + 1)2 N+1Xn=1 " NXm=1 hmnnsin(�ma=2)#2 ; (12.51)r � 132(N + 1)3 N+1Xn1;n2=1 NXm1;m2;m3=1 hm1n1n1hm2n1n2hm3n2n2sin(�m1a=2) sin2(�m2a=2) sin(�m3a=2) ; (12.52)where we have used the abbreviation hmn1n2 de�ned in Eq. (12.30). The evaluation of the seonddiagram in Eq. (12.49) is muh more involved. The Fourier integrals an be done exatly, exept forone, whih must be treated numerially. This alulation is deferred to Appendix 12A. The values ofthe three diagrams are listed in Table 12.2 for various numbers of membranes. With these numbers,the evaluation of the pressure onstants yields the results given in Table 12.3. Exept for N = 1 andN ! 1, no analytial values were found in the literature. We also ompare with pressure onstants
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Table 12.2: Numeri values W r of the redued two-loop Feynman integrals ontributing to the pressureonstants of a stak of N membranes in Eq. (12.49).N r r r1 1=32 0 02 0:080542 0:022446 0:0055823 0:131291 0:046992 0:0091534 0:182239 0:071866 0:0115295 0:233187 0:096762 0:0132086 0:284099 0:121619 0:0144537 0:334973 0:146428 0:0154118 0:385815 0:171195 0:0161729 0:436630 0:195925 0:01678910 0:487422 0:220624 0:01730011 0:538197 0:245300 0:01773012 0:588958 0:269954 0:01809713 0:639706 0:294592 0:01841414 0:690444 0:319215 0:01869015 0:741174 0:343827 0:018933
Table 12.3: Pressure onstants �N for di�erent numbers N of membranes in the stak, alulated fromEq. (12.49), with the numerial values of the two-loop diagrams given in Table 12.2. We ompare with resultsfrom Monte Carlo simulations and earlier analyti results.N �N Monte Carlo results earlier analyti values1 �2=128 � 0:07711 0:060 [85℄, 0:078� 0:001 [86℄, �2=128 [87,89℄, 0:079715 [48℄0:0798� 0:0003 [88℄, 0:080 [86℄2 0:086693 0:09134 0:093� 0:004 [88℄, 0:1002� 0:0006 [86℄4 0:094085 0:09590 0:0966 [88℄, 0:1022� 0:0006 [86℄6 0:097197 0:09815 0:1009� 0:0007 [86℄8 0:098909 0:0995010 0:0999911 0:1003912 0:1007413 0:1010314 0:1012915 0:101511 0:10409 0:074 [104℄, 0:101� 0:002 [86℄, 0:106 [88℄ 3�2=128 � 0:23 [50℄



12A Evaluation of the Sunset Diagram 187obtained by Monte Carlo simulations and �nd a good agreement [86,88℄. The values of the Monte Carlosimulations for N = 3; 5; 7 from Ref. [86℄ show an independene of the number N of membranes. Thisarises by the simulation tehnique, where the free energy of the entral membrane was determined. Inontrast to that, we have alulated the pressure onstant from the free energy of the omplete systemaveraged over all membranes. Thus these Monte Carlo values annot diretly be ompared with ours.Table 12.3 ontains also a value �1 for an in�nite number N !1 of membranes in the stak. Thispressure onstant is obtained by the following extrapolation proedure. We assume that the pressureonstants determined for N = 12; 13; 14; 15 are of higher auray than those for lower numbers ofmembranes. This assumption is justi�ed by omparing our values for N = 1; 3; 5 with the latestMonte Carlo results [88℄. For N = 1, the deviation is about 3:4%. Considering N = 3, the deviationredues to 1:8% and further to 1:1% for �ve membranes. Sine the pressure onstants are approximatedinreasingly fast with an inreasing numberN of membranes, we make the following exponential ansatzfor determining the approah to in�nite N :�N = �1 [1� � exp (��N")℄ : (12.53)The unknown four parameters in this equation are then determined by solving the system of equationswith the pressure onstants �12, �13, �14, and �15 listed in Table 12.3. We obtain � � 1:1712,� � 1:6417, " � 0:3154, and thus the limiting pressure onstant for an in�nite stak of membranes,�1 � 0:1041: (12.54)This value is in very good agreement with the Monte Carlo result [88℄ (see the last row of Table 12.3).It di�ers by a fator lose to 9=4 from the initial result by Helfrih [50,105℄.12A Evaluation of the Sunset DiagramThe seond diagram in Eq. (12.49) requires some simpli�ation before the numerial alulation. Wewrite the redued Feynman integral asr � 8A(N + 1)3 N+1Xn1;n2=1 NXm1;m2;m3=1 hm1n1n2hm1n1n2hm1n1n2Km1m2m3 (12A.1)with the integralKm1m2m3 = Z d2x1d2x2 Z d2k1(2�)2 d2k2(2�)2 d2k3(2�)2 e�i(k1+k2+k3)(x1�x2)(k41 + 2 sin2 �m1a)(k42 + 2 sin2 �m2a)(k43 + 2 sin2 �m3a) :(12A.2)All integrals are easily alulated, exept for one. If we introdue abbreviationsM2l = 2 sin2 �mla; l = 1; 2; 3; (12A.3)we �nd Km1m2m3 = A2� 1Z0 dk kk4 +M23 J(k;M21 ;M22 ) (12A.4)with J(k;M21 ;M22 ) = Z d2p(2�)2 1(p� k)4 +M21 1p4 +M22 : (12A.5)Deomposing the integrand into partial frationsJ(k;M21 ;M22 ) = � 14M1M2 Z d2p(2�)2 � 1(p� k)2 + iM1 � 1(p� k)2 � iM1� � 1p2 + iM2 � 1p2 � iM2�



188 12. Flutuation Pressure of a Stak of Membranes= � 14M1M2 [I(k;M1;M2)� I(k;M1;�M2)� I(k;�M1;M2) + I(k;�M1;�M2)℄ ; (12A.6)we are left with integrals of the typeI(k; 1; 2) = Z d2p(2�)2 1(p� k)2 + i1 1p2 + i2 ; (12A.7)where 1;2 = �M1;2 are real numbers. Employing Feynman's parameterization, these integrals beomeI(k; 1; 2) = 14� 1Z0 dx 1�x2k2 + x(k2 + i1 � i2) + i2 ; (12A.8)taking the general form Z dx 1ax2 + bx+  = 2p� artan z(x) (12A.9)with � = 4a� b2; z(x) = b+ 2axp� ; a = �k2; b = k2 + i(1 � 2);  = i2: (12A.10)Sine b is a omplex number, Re artan z is disontinuous, if Re z hanges sign and jIm zj > 1. Thusthe right-hand side of Eq. (12A.9) is disontinuous at a ertain point x0 within the interval [0; 1℄.As will be seen subsequently, J(k;M21 ;M22 ) from Eq. (12A.5) must be real and thus all imaginaryontributions in the deomposed form (12A.6) anel eah other.We determine the point of disontinuity x0 to obtain the solution of the integral (12A.8) by in-vestigating the zero of the real parts of z(x). Deomposing z(x0) into real and imaginary part, weobtainRe z(x) = j�j�1=2 �k2(1� 2x) os�12 artan Re�Im��+ (1 � 2) sin�12 artan Re�Im��� ; (12A.11)Im z(x) = j�j�1=2 �(1 � 2) os�12 artan Re�Im��� k2(1� 2x) sin�12 artan Re�Im��� ; (12A.12)where Re� = (1 � 2)2 � k4; Im� = �2k2(1 + 2): (12A.13)Thus, the zero of Re z(x) is found atx0 = 12 �1 + 1 � 2k2 tan �12 artan 2k2(1 + 2)k4 � (1 � 2)2 �� : (12A.14)From the bounds of integration in Eq. (12A.8), it follows that we must inlude the disontinuities ofEq. (12A.9) for x0 2 [0; 1℄. This ours if k < j1 � 2j and sign 1 6= sign 2. Thus the solution of theintegral (12A.8) readsI(k; 1; 2) =8><>: S(k; 1; 2; x)���x=1x=0; sign 1 = sign 2 _ (sign 1 6= sign 2 ^ k �pj1 � 2j);lim"!0 �S(k; 1; 2; x)���x=x0�"x=0 + S(k; 1; 2; x)���x=1x=x0+"� ; sign 1 6= sign 2 ^ k <pj1 � 2j;(12A.15)where S(k; 1; 2; x) is the expliit right-hand side of Eq. (12A.9):S(k; 1; 2; x) = 12�p(1 � 2)2 � k4 � 2ik2(1 + 2) artan k2(1� 2x) + i(1 � 2)p(1 � 2)2 � k4 � 2ik2(1 + 2) :(12A.16)



12A Evaluation of the Sunset Diagram 189The funtion I(k; 1; 2) possesses the propertiesI(k; 1;�2) + I(k;�1; 2) = 2Re I(k;�1;�2); (12A.17)I(k; 1; 2) + I(k;�1;�2) = 2Re I(k;�1;�2): (12A.18)Inserting Eq. (12A.15) into Eq. (12A.6), the remaining integral in Eq. (12A.4) together with the sumsin expression (12A.1) for the sunset diagram an be alulated numerially. The values are listed forN = 1; : : : ; 15 in the third olumn of Table 12.2.





Conluding Remarks





Chapter 13
Summary

The main aspet of this thesis was to extend the range of appliability for funtional integrals inquantum statistis and quantum �eld theory. Distributed over four parts, this thesis ombines theformal justi�ation of dealing with ontinuous path integrals from a perturbative point of view and ageneral solution for Gaussian path integrals in phase spae with variational perturbation theory as apowerful resummation method whih is also appliable for strongly oupled systems, where perturbativemethods fail. The perturbative olumn on the one hand and the nonperturbative one on the otherhand are bridged by a reursive graphial onstrution method whih permits a systemati generationof all topologially di�erent Feynman diagrams ontributing to any order of perturbation with theirorret multipliities. As an interesting detail, the appliability of this method in quantum �eld theoryis demonstrated for quantum eletrodynamial sattering proesses.Motivated by the partial nonexistene of analyti results we have applied variational perturbationtheory for atomi systems at arbitrary temperature and thermodynamial properties of utuatingmembranes. To this end, we have extended and generalized variational perturbation theory in amanifold way. For alulating density matries, we generalized the smearing formula whih aounts forthe e�ets of thermal and quantum utuations. This was essential for the treatment of nonpolynomialinterations. We applied the theory to alulate the partile density in the double-well potential, andthe eletron density in the Coulomb potential, the latter as an example for nonpolynomial appliation.In both ases, the approximations were satisfatory.We have also alulated the e�etive lassial potential for the hydrogen atom in a magneti �eld.For this we have extended variational perturbation theory to phase spae to make it appliable tophysial systems with uniform external magneti �eld. The e�etive lassial potential ontainingthe omplete quantum statistial information of the system was determined in �rst-order variationalperturbation theory. For zero-temperature, it gave the binding energy of the system. Our resultonsists of a single analyti expression whih is quite aurate at all temperatures and magneti �eldstrengths. The di�erent asymptoti behavior of the perturbation series for the binding energy for weakand strong magneti �elds has been investigated in detail. In the weak-�eld ase, we on�rmed thepower series harater of the expansion, while for strong magneti �eld strengths a deeply struturedlogarithmi behavior ours.As an appliation for strong-oupling theory in membrane physis, we have alulated the universalonstant � ourring in the pressure law of a membrane utuating between two walls. This has beendone by replaing the walls by a smooth potential with a parameter m2. This potential approahesthe wall potential in the limit m2 ! 0. The anharmoni part of the smooth potential was treatedperturbatively. The limit m2 ! 0 orresponds to a strong-oupling limit of the power series, and was193



194 13. Summaryalulated by variational perturbation theory. Extrapolating the lowest four approximations to in�nityyields a pressure onstant, whih is in very good agreement with Monte Carlo values.We have also alulated the pressure onstants for a stak of di�erent numbers of membranesbetween two walls in exellent agreement with results from Monte Carlo simulations. The requirementthat the membranes annot penetrate eah other was aounted for by introduing a repulsive potentialand going to the strong-oupling limit of hard repulsion. We have used the similarity of the membranesystem to a stak of strings enlosed by line-like walls, whih is exatly solvable, to determine thepotential parameters in suh a way that the two-loop result is exat. This minimizes the negletedterms in the variational perturbation expansion, when applying the same potential to membranes.It was shown in this thesis that variational perturbation theory an suessfully be applied to a largevariety of problems in quantum statistis and membrane physis. The results obtained for utuatingstrings and membranes open the gate to a large �eld of appliations to be harvested with the help ofthis strong-oupling theory.
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Zusammenfassung
Ein wesentliher Aspekt dieser Dissertationsshrift ist die Erweiterung der Anwendbarkeit von Funk-tionalintegralen in Quantenstatistik und Quantenfeldtheorie. Im ersten Teil wird die De�nition kon-tinuierliher statistisher Pfadintegrale von einem st�orungstheoretishen Standpunkt aus diskutiert, derautomatish auf eine Hohtemperaturentwiklung f�uhrt. Anshlie�end werden allgemeine Gau�shePhasenraum-Pfadintegrale behandelt, wobei die harmonishen Korrelationsfunktionen dazu dienen,die Variationsst�orungstheorie als Resummationsmethode f�ur divergente St�orungsreihen in den Teilendrei und vier weiterzuentwikeln. Der st�orungstheoretishe Teil auf der einen Seite und die nihtper-turbative Berehnung von Pfadintegralen auf der anderen wird �uberbr�ukt mit der Entwiklung einerrekursiven graphishen Konstruktionsmethode f�ur Feynman-Diagramme in Teil zwei. Damit lassensih systematish alle topologish vershiedenen Diagramme und ihre Multiplizit�aten generieren, diezu einer bestimmten Ordnung der St�orungsentwiklung beitragen. Entwikelt f�ur die Erzeugung derVakuumdiagramme f�ur die freie Energie des anharmonishen Oszillators in hohen st�orungstheoretishenOrdnungen, lassen sih die grundlegenden graphishen Manipulationstehniken wie Aufshneiden undAmputieren von Linien und Vertizes auh auf n-Punkt-Korrelationsfunktionen anwenden. Damitk�onnen auh Graphen f�ur Streuprozesse in Quantenfeldtheorien systematish generiert werden, wiean vershiedenen Beispielen aus der Quantenelektrodynamik demonstriert wird.Motiviert durh zum Teil niht existierende analytishe Resultate wenden wir die Variationsst�o-rungstheorie auf atomare Systeme bei beliebigen Temperaturen und zur Bestimmung thermodyna-misher Eigenshaften uktuierender Membranen an. Um dies zu erm�oglihen, wird das Resumma-tionsverfahren in vielf�altiger Weise erweitert. Die Berehnung von Dihtematrizen maht z.B. eineVerallgemeinerung der Vershmierungsformel erforderlih, bei der eine Gau�she Faltung des klassi-shen Potentials die Ber�uksihtigung von thermishen und Quantenuktuationen erm�ogliht. DieseVershmierungsformel ist ein wesentlihes Hilfsmittel insbesondere bei nihtpolynomialen Potentialen,wo die �ublihe Wik-Regel zur Zerlegung der Korrelationsfunktionen einer Verallgemeinerung bedarf.Diese Theorie wird auf die Berehnung der Teilhendihte im Doppelmulden-Potential und die Elek-tronendihte im Coulomb-Potential angewendet, wobei letzteres als nihtpolynomiales Beispiel dient.In beiden F�allen liefert das N�aherungsverfahren gute Ergebnisse.Eine weitere wihtige Anwendung ist die Berehnung des e�ektiven klassishen Potentials f�ur dasWassersto�atom im Magnetfeld. Hierf�ur wird die Variationsst�orungstheorie im Phasenraum formuliert,so da� sie jetzt auh f�ur Systeme mit verallgemeinerten Impulsen benutzt werden kann. Das e�ektiveklassishe Potential, das die gesamte quantenstatistishe Information eines Systems enth�alt, wurde inerster Ordnung Variationsst�orungstheorie bestimmt. Im Grenzfall vershwindender Temperatur liefertdas Minimum des e�ektiven klassishen Potentials die Grundzustandsenergie des Systems. Wir erhal-ten einen analytishen Ausdruk, der automatish die Grenzf�alle shwaher und starker Magnetfelderinterpoliert und f�ur alle Feldst�arken genaue Ergbenisse liefert. Das f�ur shwahe und starke Felder sehruntershiedlihe asymptotishe Verhalten der Bindungsenergie l�a�t sih mit Hilfe unseres Ausdrukesdetailliert untersuhen. Im Shwahfeldfall wird das Potenzreihenverhalten der Entwiklung best�atigt,w�ahrend f�ur starke Felder ein kompliziert strukturiertes logarithmishes Verhalten auftritt.Als Anwendung der Starkkopplungstheorie in der Membranphysik berehnen wir die universelleDrukkonstante, die im Drukgesetz von Helfrih f�ur eine Membran auftritt, die zwishen zwei W�andenuktuiert. Dabei werden die W�ande durh ein parameterbehaftetes Potential simuliert, das so konstru-203



204 Zusammenfassungiert ist, das es f�ur vershwindenden Parameter die W�ande exakt reproduziert. Der nihtharmonisheAnteil des Potentials kann st�orungstheoretish behandelt und die St�orungsreihe mit Hilfe der Varia-tionsst�orungstheorie n�aherungsweise aufsummiert werden. Die erhaltenen N�aherungen in vershiede-nen Ordnungen der Variationsst�orungstheorie lassen sih ins Unendlihe extrapolieren. Die so erhalteneDrukkonstante ist in exzellenter �Ubereinstimmung mit fr�uheren Monte-Carlo-Ergebnissen.Ein �ahnlihes Verfahren dient dazu, die Drukkonstanten f�ur einen Stapel von mehreren Membranenzwishen zwei W�anden zu berehnen. Wiederum stimmen die Ergebnisse sehr gut mit aus Monte-Carlo-Simulationen gewonnenen Werten �uberein. Der Notwendigkeit, da� sih die Membranen nihtgegenseitig durhdringen d�urfen, wird durh die Betrahtung des Starkkopplungs-Grenzwertes einesk�unstlih eingef�uhrten Absto�ungspotentials Rehnung getragen. Dabei wird die �Ahnlihkeit zwishendem Membranstapel und einem System von Strings ausgenutzt, die sih zwishen zwei linienartigenW�anden be�nden. Dieses Vergleihssystem ist exakt behandelbar und dient der Bestimmung vonPotentialparametern, die sih dann unmittelbar f�ur das Membranproblem verwenden lassen.In dieser Arbeit wird gezeigt, da� sih die Variationsst�orungstheorie erfolgreih auf eine Reihe vonProblemen aus vershiedenen Gebieten der Quantenstatistik und Membranphysik anwenden l�a�t. Dief�ur uktuierende Strings und Membranen gewonnenen Ergebnisse �o�nen das Tor zu einem gro�en Feldvon Anwendungen, das sih mit Hilfe der Starkkopplungstheorie bearbeiten l�a�t.
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