Path Integral Methods

in Quantum Statistics, Quantum Field Theory, and Membrane Physics

Michael Bachmann

im

Fachbereich Physik der Freien Universitat Berlin

eingereichte Dissertation

Berlin, 14. Mai 2001



Erstgutachter: Prof. Dr. H. Kleinert
Zweitgutachter: Prof. Dr. B. Hamprecht

Disputation: 25. Juni 2001



Contents

Preface

1

Introduction

1.1 PathIntegrals. . . . . . . . . L . e
1.2 Perturbative and Non-Perturbative Methods for the Calculation of Path Integrals . . . .
1.3 Contents of This Thesis . . . . . . . . . . . . .

Part I: The Path Integral from a Perturbative Perspective

2 Perturbatively Defined Path Integral in Phase Space

2.1 Introduction . . . . . . . . . . . e e e e
2.2 Perturbative Definition of the Path Integral for Density Matrices . . . . . .. .. .. ..
2.3 Restricted Partition Function and Two-Point Correlations . . . . . . . .. ... ... ..
2.4 Perturbative Expansion for the Effective Classical Hamiltonian . . . . .. ... ... ..
2.5 Effective Classical Hamiltonian of Harmonic Oscillator . . . . . . . .. .. ... ... ..
2.6 High-Temperature Versus Weak-Coupling Expansion . . . . . ... ... . ... ... ..
2.7 Free-Particle Smearing Formula . . . . . . . ... ... L o oo

Smearing Formulas for Fluctuation Effects
3.1 Generalized Euclidean Action in Phase Space . . . . . .. .. ... ... ... ... ..
3.2 Density Matrix with External Sources . . . . . . .. . ... ... L oo
3.2.1 Calculation of the Phase Space Path Integral . . . .. ... ... .........
3.2.2 Example: Density Matrix of the One-Dimensional Harmonic Oscillator with
SOUTCES . . v v o e
3.2.3 Expectation Values and Correlation Functions . . . . .. .. ... .. ... ...
3.3 Smearing Formula for Density Matrices . . . . . .. . .. .. ... ... ... ... ..
3.3.1 Perturbative Expansion for the Density Matrix of a System with Interaction
3.3.2 Smearing Formula for Gaussian Fluctuations . . . .. ... .. .. ... .....
3.4 Generalized Wick Rules and Feynman Diagrams . . . .. .. ... ... .. .......
341 Ordinary Wick Rules . . . . . . . . .
3.4.2 Generalized Wick Rule . . . . .. ... .
3.4.3 New Feynman-Like Rules for Nonpolynomial Interactions . . . . ... ... ...
3.5 Particle Density in the Presence of External Sources . . . . . ... .. .. ... ... ..
3.6 Partition Function with Currents . . . . . . . . . ... . .
3.6.1 Partition Function in the Presence of External Sources . . . . . . . ... .. ...
3.6.2 The Harmonic Oscillator Revisited . . . . . . . .. . ... ... ... ... ....
3.7 Perturbative Expansion for the Free Energy . . . . . . .. .. ... oL oo
3A Algebraic Properties of Block Matrices . . . . . . . . . ... ... ...
3B Generalized Correlation Functions . . . . . . .. . ... . oL 0oL oo



4 Contents

4 Effective Classical Theory for Quantum Systems 53
4.1 The Zero-Mode Problem . . . . . . . . . . ... 53
4.1.1 Harmonic Fluctuation Width for Periodic Paths . . . . .. ... ... ... ... 53

4.1.2 Fluctuation Width for Fixed Ends . . . . . . . . . .. ... ... .. ....... 55

4.2 Restricted Partition Function and Effective Classical Hamiltonian . . . . . . .. ... .. 57

Part 1l: Graphical Recursion Relations for Feynman Diagrams 63

5 Quantum Statistics 65
5.1 Introduction . . . . . . . . . . . o e e 65
5.2 Systematic Construction of Feynman Diagrams for the Quartic Oscillator Free Energy . 66

5.2.1 Basic Graphical Operations . . . . . . . . .. . .. e 67
5.2.2  Perturbation Theory . . . . . . . . ... L 74
5.2.3 Functional Differential Equation for W =InZ . . ... .. ... ... .. ..... 76
5.2.4 Recursion Relation and Graphical Solution . . . . . . ... ... .. ... ..., 77

6 Quantum Field Theory 81
6.1 Introduction . . . . . . . . . . . e e 81
6.2 Generating Functional without Particle Sources . . . . . . . . . ... ... ... .. ... 82

6.2.1 Partition Function of QED . . . . . . . . ..o oL 82
6.2.2 Generalized Action . . . . . . .. L 82
6.3 Perturbation Theory . . . . . . . . . e 84
6.3.1 Functional Derivatives . . . . . . . . . . . ... L 85
6.3.2 Vacuum Energy as Generating Functional . . . . . . . ... .. .. ... ..... 88
6.4 Graphical Recursion Relation for Connected Vacuum Diagrams . . . . . . ... ... .. 89
6.4.1 Functional Differential Equation for W =InZ . . . . . .. ... .. ... ..... 89
6.4.2 Recursion Relation . . . . . . ... .. L L 90
6.4.3 Graphical Solution . . . . . . . ... 91
6.5 Scattering Between Electrons and Photons . . . . . . . ... ... ... ... ... 92
6.5.1 Self Interactions . . . . . . . . . .. 93
6.5.2 Scattering Processes . . . . . . ... 94
6.5.3 Three-Point Vertex Function . . . ... . ... ... ... ... ... 95
6.6 Scattering of Electrons and Photons in the Presence of an External Electromagnetic Field 95
6.6.1 Recursion Relation for the Vacuum Energy with External Source . . . . . . . .. 96
6.6.2 Scattering of Electrons and Photons in the Presence of an External Source . . . 99

Part 1ll: Variational Perturbation Theory in Quantum Statistics 101

7 Introduction 103
7.1 Variational Approach via Jensen-Peierls Inequality . . . . . . .. . ... ... .. .... 105
7.2 Variational Perturbation Theory to Any Order . . . . .. .. .. ... ... ....... 107

8 Variational Perturbation Theory for Density Matrices 109
8.1 Introduction . . . . . . . . . . . e e 109
8.2 General Features . . . . . . . . . .. L 109
8.3 Variational Perturbation Theory . . . . . . . .. ... ... ... oo 111
8.4 Smearing Formula for Density Matrices . . . . . .. . ... . ... ... ... ... .. 112
8.5 First-Order Variational Results . . . . . . . . . . . . . .. ... ... 114

8.5.1 Alternative Formula for First-Order Smearing . . . . . . .. .. .. ... ... .. 114
8.5.2 C(lassical Limit of Effective Classical Potential . . . . . .. . ... ... ... ... 116
8.5.3 Zero-Temperature Limit . . . . . . .. . . ... .. L o 117
8.6 Smearing Formula in Higher Spatial Dimensions . . . . . . . ... .. ... .. ..... 118

8.6.1 Isotropic Approximation . . . . . . . . . . ..o e 118



Contents 5

8.6.2 Anisotropic Approximation . . . . .. ... Lo e 119

8.7 Applications . . . . . . L e 119

8.7.1 The Double Well . . . . . . . . . . .. 119

8.7.2 Distribution Function for the Electron in the Hydrogen Atom . . . . . . ... .. 125

9 Variational Approach to Hydrogen Atom in Uniform Magnetic Field 129

9.1 Introduction . . . . . . . . . . . L 129

9.2 Effective Classical Representations for the Quantum Statistical Partition Function . . . 130

9.2.1 Effective Classical Potential . . . . . . . . .. ... .. ... ... ... .. 130

9.2.2 Effective Classical Hamiltonian . . . . . . . .. ... ... . ... ...... 131
9.2.3 Exact Effective Classical Hamiltonian for an Electron in a Constant Magnetic

Field . . . . o e 132

9.3 Hydrogen Atom in Constant Magnetic Field . . . . . . .. .. ... ... ... ..... 135

9.3.1 Generalized Variational Perturbation Theory . . . .. .. .. ... ... .. ... 135

9.3.2 First-Order Effective Classical Potential . . . . . . .. .. .. ... .. ... ... 137

9.3.3 Application to the Hydrogen Atom in a Magnetic Field . . ... ... ... ... 138

9.4 Results. . . . . . . o 139
9.4.1 Effective Classical Potential for Different Temperatures and Magnetic Field

Strengths . . . . . . L 140

9.4.2 Ground-State Energy of the Hydrogen Atom in Uniform Magnetic Field . . . . . 140

9A  Generating Functional for Particle in Magnetic Field and Harmonic Oscillator Potential 146

9B Properties of Green Functions . . . . . . . . ... L L 150

9B.1 General Properties . . . . . . . . . L. 150

9B.2 Derivatives of Green Functions . . . . . . ... ... ... . . 150

9C Generating Functional for Position- and Momentum-Dependent Correlation Functions . 152

Part 1V: Strong-Coupling Theory for Membranes 159
10 Fluctuating Membranes 161
10.1 Introduction . . . . . . . . . . L e 161
10.2 Differential Geometry for Curves and Surfaces . . . . . . . . . .. ... ... ... .... 162
10.2.1 Local Curvature of Curves . . . . . . . . . . . . . . .. 162

10.2.2 Local Curvature of Surfaces . . . . . . . . . . . .. . . ... ... ... 164

11 Strong-Coupling Calculation of Fluctuation Pressure of a Membrane 171
11.1 Membrane Between Walls . . . . . . . . . .. . . L 171
11.2 Smooth Potential Model of Membrane Between Walls . . . . . . ... .. ... ... .. 172
11.2.1 Smooth Potential Adapting Walls . . . . . . . .. .. ... ... ... ..... 172

11.2.2 Perturbation Expansion for Free Energy . . . . . . . . ... ... ... ... 173

11.3 Evaluation of the Fluctuation Pressure up to Four-Loop Order . . . . .. .. ... ... 175
11.4 Extrapolation Towards the Exact Constant . . . . . . . ... ... ... ... ..... 178
11.5 Comparison with the Renormalization Group Approach . . . . . . ... ... ... ... 179
12 Fluctuation Pressure of a Stack of Membranes 181
12.1 Introduction . . . . . . . . . . L e 181
12.2 Stack of Strings . . . . . . . L 182
12.2.1 Free Fermion Model . . . . . . . . . . . . . ... 182

12.2.2 Perturbative Approach . . . . . . . . ... 182

12.3 Stack of Membranes . . . . . . . . ... 187
12A Evaluation of the Sunset Diagram . . . . . .. . ... ... . ... ... . ... ... 191
Concluding Remarks 195

13 Summary 197



Contents

Acknowledgments
Bibliography
Zusammenfassung

Curriculum Vitae

199
201
207
209



Preface







CHAPTER 1

Introduction

In this thesis, some new aspects in dealing with path integrals are discussed, in particular the per-
turbatively defined quantum statistical path integral and the application of methods known from
quantum field theory such as generating functionals in phase space. The expectation values appearing
in perturbative expansions of path integrals are usually pictured by Feynman diagrams. We derive
a graphical recursion relation to systematically construct topologically different Feynman diagrams
with their correct multiplicities for the anharmonic oscillator as an quantum statistical example and
for scattering processes in quantum electrodynamics, which illustrates the power of this method for
quantum field theoretic problems. Generalizations and extensions of variational perturbation theory
are used to calculate statistical properties of quantum systems and membranes.

1.1 Path Integrals

It was in 1948 when R.P. Feynman introduced the quantum mechanical path integral to calculate the
transition amplitude for a charged particle in electromagnetic field [1]. With the path integral, the
reinterpretation of the classically known notions “paths” and “orbits” became possible. Not only the
paths which make the action extremal but also all other ways the particle may follow contribute to the
transition amplitude with a phase factor which relates the action of a path to Planck’s constant /. In
its Euclidean form, the statistical path integral is built up from Boltzmann factors indeed indicating
the probability of a certain path of the particle [2—4].

The exact calculation of path integrals is only possible for systems whose action is quadratic in
the canonical variables, for example position z(7) and momentum p(7). In quantum mechanics, the
path integrals for the transition amplitudes of the free particle and the harmonic oscillator are exactly
calculated by time-slicing. Explicitly evaluating the path integral for a system with a more complicated
potential is impossible, if it cannot be brought into the necessary Gaussian form. This is, however,
possible for a class of systems, where the path integral can be transformed to be of oscillator type, e.g.
for the hydrogen atom by applying the Duru-Kleinert transformation [4]. In non-interacting quantum
field theories, e.g. for Klein-Gordon or Dirac fields, the Lagrangian density is usually quadratic in the
fields and their derivatives. Thus such path integrals are of Gaussian type and can easily be calculated.
If quantum fields interact, functional integrals cannot be evaluated analytically in almost all cases.

9



10 1. Introduction

1.2 Perturbative and Non-Perturbative Methods for the
Calculation of Path Integrals

Nevertheless, the interest in functional integrals has grown rapidly. Path integrals for a physical system
with weakly coupled interaction allow for a simple perturbation expansion, where the correlation func-
tions can be graphically pictured by Feynman diagrams. The most famous example is the interaction
of charged relativistic particles with an electromagnetic field, as described by quantum electrodynam-
ics, where the coupling constant is @ & 1/137. For strong-coupling systems, path integrals are used
for the development of nonperturbative methods. Strong-coupling theories are necessary for calcu-
lating critical exponents of a system near a phase transition [5], for describing confinement between
quarks in quantum chromodynamics [6], or for the investigation of interacting strings [7]. Path integral
Monte Carlo methods on a lattice were developed to combine the selective probability picture of path
integrals with the great numerical power of supercomputers. Analytic non-perturbative methods for
strongly coupled systems are usually used to perform resummations of perturbative expansions as, for
example, by Padé or Borel methods. Alternatively, Feynman and Kleinert [8] as well as Giachetti
and Tognetti [9] developed a variational approach to approximatively calculate path integrals for arbi-
trarily coupled quantum mechanical systems. Within the last decade, the precision has been strongly
improved by extending it to higher-order variational perturbation theory [4, Chap. 5]. Additionally,
considerable progress was achieved in applying it to calculate critical exponents from strong-coupling
series of the Ginzburg-Landau theory of critical phenomena [5,10,11].

1.3 Contents of This Thesis

This thesis is divided into four parts. In Part I, a perturbative definition of the quantum statistical
phase space integral is introduced. Conventional time-slicing methods for calculating path integrals
yield integration measures, which are not well defined since these are infinite in the continuum limit.
Moreover, it is difficult to prove reparametrization invariance of the path integral under coordinate
transformations, in particular in curved spaces. A perturbative expansion of any phase space path
integral, where the complete Hamiltonian is treated as perturbation, does not possess these problems,
since the exactly solvable contribution has a regular measure and is trivially reduced to products of
0 functions. It is interesting that this procedure leads directly to a high-temperature expansion for
the partition function. We prove the applicability of this method by calculating the effective classical
potential for the harmonic oscillator.

Since it is necessary to calculate expectation values of products of Hamiltonians, it is useful to in-
troduce Feynman rules, which can also be applied, if the Hamiltonian contains nonpolynomial terms.
This requires to generalize Wick’s rule, too. Furthermore, the calculation of mixed position-momentum
correlations must be considered. As examples, we study harmonic expectation values whose treatment
is necessary for the harmonic variational perturbation theory. In the case of nonpolynomial perturba-
tions, so-called smearing formulas replace the ordinary Wick decompositions of polynomial correlations
into products of two-point correlation functions. We also discuss the role of zero-mode fluctuations for
paths with periodic and fixed boundary conditions.

In high orders of perturbation theory, it becomes often difficult to determine all topologically dif-
ferent Feynman diagrams and their multiplicities. Usually this problem is attacked with the help of
combinatorial considerations. A powerful alternative is presented in Part II. We derive recursion rela-
tions from which all Feynman diagrams in any order are systematically generated without introducing
artificial currents. These relations can be completely expressed in a graphical way. This means that
the Feynman diagrams of a certain theory in any order are generated by cutting, removing, and glue-
ing operations on diagrams of previous orders of perturbation. We present recursion relations for the
quantum mechanical anharmonic oscillator and investigate the applicability to quantum field theories,
where we specialize to quantum electrodynamics.

The resummation of divergent perturbative series with harmonic variational perturbation theory is
the central aspect of Part III. After a short introduction of variational perturbation theory, we first
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generalize this theory to density matrices and calculate the particle densities for the double well and
the pair distribution function of hydrogen for different temperatures. Another interesting system is
the hydrogen atom in a uniform external magnetic field, since it destroys the isotropy of the Coulomb
interaction between electron and proton. The calculation of the effective classical potential, which
governs the quantum statistics of this system, is followed by a detailed treatment of the ground-state
energy. This quantity has a power expansion for weak strengths of the magnetic field, but a complicated
logarithmic behavior for strong magnetic fields. We use the variational approach to find an expression
for the ground-state energy as a function of the magnetic field strength, which is valid for all strengths
of the magnetic field although the asymptotic behavior is so extremely different. The results are in good
agreement with known values from numerical calculations. Considering the strong-field asymptotics
in detail, we go analytically beyond an estimate presented by Landau.

Another example, where variational perturbation theory yields very good results, is the strong-
coupling calculation of the fluctuation pressure of a membrane between walls. This shall be discussed
in Part IV. A fluid membrane is tensionless, and its shape is governed by the curvature energy. By
thermal fluctuations, the membrane exerts a pressure upon the walls. The pressure law is ideal-gas-
like and contains a dimensionless pressure constant, whose value is not exactly known. From our
strong-coupling calculation we obtain a very precise value that lies well in the error bounds of former
Monte Carlo simulations. We also evaluate the pressure constants for a stack of membranes, where our
strong-coupling approach is applicable for any number of membranes. Compared with Monte Carlo
simulations, where only constants for low numbers of membranes were computed, our results are in
very good agreement.






Part |

The Path Integral from a
Perturbative Perspective







CHAPTER 2

Perturbatively Defined Path Integral in
Phase Space

As an alternative to Feynman’s time-sliced definition, we introduce a perturbative definition of path
integrals in phase space [12]. This will be shown to lead naturally to a high-temperature expansion for
the effective classical Hamiltonian of quantum statistical systems. In this definition, the unperturbed
system is trivial and the calculation of Feynman diagrams is simple. As an application, we shall apply
this formalism to find the effective classical Hamiltonian for the harmonic oscillator.

2.1 Introduction

The definition of path integrals by time-slicing [4] becomes ambiguous for physical systems with non-
trivial metric, where operator quantum mechanics has an ordering problem and reparametrization
invariance has been a problem for many years [13]. It was solved recently by a perturbative defi-
nition of path integrals in configuration space [14] using dimensional regularization methods, which
successfully guarantees gauge invariance in the quantum theory of non-Abelian gauge fields [15]. Ul-
timately, rules were found for calculating integrals over products of distributions, which establish a
unique procedure for a perturbative calculation of path integrals, which fully respects reparametriza-
tion invariance [16]. The path integral of any system is expanded around that of a free particle in
powers of the coupling constant of the potential.

Here we extend the definition to path integrals in phase space and derive a short-time expansion
of the Hamiltonian quantum mechanical time evolution amplitude. In Euclidean space, the density
matrix is obtained as a high-temperature expansion. By a simple resummation, this series can be
turned into an expansion in powers of the coupling constant of the potential described above. In the
expansion to be derived the solution for an exactly known nontrivial path integral such as that of a free
particle is not required. The perturbative definition presented here is completely general. The usual
expansion around the free-particle system can always be reproduced by simply changing the order of
summations.

In a first step, the method is used to calculate the effective classical Hamiltonian of the harmonic
oscillator H,, e (po, o) by exactly summing up the perturbation series. In terms of H, e (po, %o), the
quantum statistical partition function is given by the classically looking phase space integral

dzod
Zo= [ TRE exp {~fH. en(pn,a0)} (21)

15



16 2. Perturbatively Defined Path Integral in Phase Space

where 8 = 1/kgT is the inverse thermal energy.

2.2 Perturbative Definition of the Path Integral for Density
Matrices

Slicing the interval [0, i3] into N + 1 pieces of width e = B3 /(N + 1), the unnormalized density matrix
can be expressed by the continuum limit of a product of integrals as [4]

N o N+1 © dp N+1
= 1 2PN ipn(n—zn-1)/h _
(20, 20) = J\}E;Iloo H [/_Oo dxn] H [/_Oo o oiPn (Tn—2n_1 ] exp{ € Z H(pn,xn)/h}, (2.2)
n=1 n=1 n=1
where z, = 79 and z, = zy4; are the fixed end points of the path. Upon expanding the last

exponential in powers of ¢/, we recognize that the zeroth-order contribution to the density matrix
(2.2) is an infinite product of § functions due to the identity

/ P ip, (20 —an-1)/h _ §(@n — Tn_1). (2.3)
oo 2mh

This infinite product simply reduces to
o0

A}im den - dry 6(xnyr —an) - 0(x2 — x1)0(21 — m0) = §(Tp — W), (2.4)
—00

which is the unperturbed contribution to the unnormalized density matrix (2.2) obtained here from a
trivial path integral. Thus, the phase space path integral for the unnormalized density matrix (2.2)
can be perturbatively defined as

: S &
o(zp,za) = 6(wb—ma)+; el ), dry - - i dry
X (H(p(r1), (1)) - - H(p(n), 2(0))) """ , (2.5)
with expectation values
Tp,w . af > = > dpn ipn(Tn—Tn_1)/h
<-“>0b’a:1\;gn00n_1{/—oodxn nl;[l /_w%...ez’n Tt ] (2.6)

These expectation values may be pictured by Feynman diagrams. This is possible for polynomial as
well as nonpolynomial functions of momentum and position [17]. We show this in detail in Section 3.4.
Note that the exponent on the right-hand side of Eq. (2.6) is the time-sliced version of the eikonal
S = —i [drp(r)dz(r)/dr.

2.3 Restricted Partition Function and Two-Point Correlations

The trace over the unnormalized density matrix (2.5) of our unperturbed system with vanishing Hamil-
tonian H(p,z) = 0 yields the partition function, which diverges with the phase space volume. This
divergence is the same as in the classical partition function. The regularization of these divergences
is possible by excluding from the phase space path integral the zero-frequency fluctuations zy and pg
of the Fourier decomposition of the periodic path z(7) and momentum p(7), respectively [4,18,19]. At
the end, we may calculate the quantum statistical partition function from the classical phase space

integral
dzod,
7 = / % A (2.7)
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The restricted partition function in the integrand contains the Boltzmann factor of the effective classical
Hamiltonian defined by the path integral

77070 = exp {—BHea(po, z0)} = 271'71%7)1‘7)1)5@0 —7)d(po — D)

with the measure

hB
xexp<—% / dr{—i[za(r)—po]dii[x(r)—xo]+H(p(r>,x<r>>}>, (2.8)
N+1

. e dz,dp,
%Dm@p = Jim_ 11 [/ s ] : (2.9)
n=1 -

The quantities T and P are the temporal mean values T = fow dr z(r)/hfB and p = fow dr p(r)/hs.
As illustrated in the preceding section, the unperturbed system can be assumed to have a vanishing
Hamiltonian. The calculation of the restricted partition function ZP9%0 of this system, denoted by
ZE§°™° | is then as trivial as for its unnormalized density matrix in (2.4). A cancellation of § functions
yields Z°" = 1.
In what follows, we want to find the correlation functions of position- and momentum-dependent
quantities. For this purpose it is convenient to introduce the generating functional

zZEr g, 0] = 27rh7{DmDp6(a:0 —T)d(po — D)
hB
<exp {—,ll [ i) =l fa(e) = 0] + 30 fe(r) = 0] + o)) = ] } 210

with currents j(7) and v(7). The action in the exponent contains only the trivial Euclidean eikonal
S =—i [dr(p—po)d(x — xo)/dr. The calculation yields

1 h3 h3
Z5" [, 0] = exp ﬁ/o dT/o dr' j(r)GPoro (r, ' )u(') ¢ (2.11)

where the periodic Green function has the Fourier representation

Gree(r, ) = 5 3 Ten=T) (2.12)
B m=1 Wm
with Matsubara frequencies
2™m

= 2.13
m = 42 (213)

omitting the zero-mode. Evaluating the sum in Eq. (2.12) yields
GPoro(r,7') = —% {2(r —7") = hB[O(r —7") —O(" —1)]}. (2.14)
Observe the antisymmetry GPo%0 (7, 7') = —GP°®o (7' 7). As a consequence of reparametrization invari-

ance of the eikonal S = —i [ d7 (p— po)d(z — z¢)/dr, the Green function depends only on the reduced
variables

™2

T (2.15)
and can thus be written as

GPoro(7,7') = —% 20-7)-h[OF -7)—-0(F —7)]}. (2.16)
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Introducing expectation values as

hj

(" = 27Th%D€UDP(5(930 —7)6(po —P) - -exp {1

B ), dTi[p(T)—PO]d%[ﬂf(T)—wo]}, (2.17)

the two-point functions are obtained from the generating functional (2.10) by performing appropriate
functional derivatives with respect to j(7) and v(7), respectively:

(@(r)z(r')e " =0, (2.18)
(@(r)p(r))g ™" = Groro(r, ), (2.19)
(B()p(r")g"™ = 0. (2.20)

The off-diagonal nature of the trivial action in (2.17) entails that only mized position-momentum
correlations do not vanish.

2.4 Perturbative Expansion for the Effective Classical
Hamiltonian

Expanding the restricted partition function (2.8) in powers of the Hamiltonian,

[e%S) ﬁB h3
Z/PoTo — Z nn' A T A dry, (H(p(Tl)yx(Tl))"'H(p(Tn)ax(Tn)»goxo ) (2.21)

n=1

rewriting this into a cumulant expansion, and utilizing the relation (2.8) between restricted partition
function and effective classical Hamiltonian, we obtain

n+1 h3 h3

He (po, o) 52 o [ [ dn () 2(m) - B, 20 (222)

Using Wick’s rule, all correlation functions can be expressed in terms of products of two-point func-
tions. Since only mixed two-point functions (2.14) can lead to nonvanishing contributions to the
effective classical Hamiltonian, we use the rescaled version (2.16) of the Green function. The scaling
transformation gives a factor 8 from each of the n integral measures. Thus the expansion (2.22) is a
high-temperature expansion of the effective classical Hamiltonian:

n+1
Heg(po, 70) ZB’” o / dri - / AT (H(p(r1), 2(71)) -+ H(p(ma), a(Fa) - (2:23)

For the following considerations it is useful to assume the Hamilton function to be of standard form

o P(T) _
H(p(7),2(7)) = 537 + 9V (@), (2.24)

where we have introduced the coupling constant g of the potential. Defining the functionals

B h p2(F) B h _
ol = [ ard b= [ arva), (2.25)

the high-temperature expansion (2.23) is expressed as

Harosmn) = 300 S () (@ i) (2.26)

n=1 k=0

Before pointing out how this high-temperature expansion is connected with an expansion in powers of
the coupling constant g of the potential, we calculate the exact effective classical Hamiltonian of the
harmonic oscillator.
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2.5 Effective Classical Hamiltonian of Harmonic Oscillator

In this section, we calculate the effective classical Hamiltonian for the harmonic oscillator

2

H,(p,z) = ;’—M NSV (2.27)

by an exact resummation of the high-temperature expansion (2.26). For systematically expressing the
terms of this expansion, it is useful to introduce the following Feynman rules:

1 T2 = (p(T1)p(T2))g"" —pﬁa (2.28)
1 T2 = (@(T)e(T2))g" = 3, (2.29)
Ti -=- T2 = (2(T)p(T))g’ ™" = G (T1,T2) + zopo, (2.30)
Tioo=- T2 = (p(T1)a(Ta))y’ ™" = —G™" (T1,72) + poo, (2.31)
T o = ()" = po, (2.32)
- = (2(7))°" =z, (2.33)

. = /Oh dr, (2.34)

where the current-like expectations in (2.32) and (2.33) arise from (p(7));°" = 0 and (Z(7))5°"* =0,
respectively. In order to simplify the calculation of the expectation values in the high-temperature

expansion of the effective classical Hamiltonian (2.26), we also define operational subgraphs

h
= %Mh/ &7 p2(7), (2.35)
—— = —Mw / d7 2*( (2.36)

which are useful for the systematic construction of the Feynman diagrams. These diagrams are com-
posed by attaching the legs of such subgraphs to one another or by connecting legs with suitable
currents. Note that only combinations of different types of subgraphs lead to nonvanishing contribu-
tions, since the connection of subgraphs of same type,

, , (2.37)

leads to a new subgraph, which contains a propagator (2.28) or (2.29), respectively. These propagators
are, however, independent of 7, such that the T-integrals related to the vertices in these subgraphs

are trivial. Thus, there does not really exist a connection between these vertices and the propagators
(2.28) and (2.29) can be expressed by the currents (2.32) and (2.33):

?1 Fg = ?1 ~k de ?2 5 (238)

?1 Fg = ?1 —k ?2 . (239)
As a consequence, connected diagrams for n > 1 containing propagators of type (2.28) or (2.29) must
break up into disconnected parts. Analytically, this is seen by considering for example

(2 (F)a(F))h™ = (FF)FTE™ + (@(F))" (o(F))5™ (2.40)

The first term on the right-hand side vanishes due to Eq. (2.18), while the second simply yields x3,
which proves Eq. (2.29). This means that only Feynman diagrams, which consist of a mixture of
subgraphs (2.35) and (2.36) contribute to the effective classical Hamiltonian. To illustrate this, we
discuss the first and second order of expansion (2.23) in more detail.
The Feynman diagrams of the first-order contribution to the effective classical Hamiltonian are
simply constructed from the subgraphs
H)

o (P0; T0) X e 4
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1
- M Mw* *—e—
QMEQ +2h W) = 2Mh + oM
P
= 2]\04{- Mw z3, (2.41)

where we have used the identities (2.38) and (2.39) in the second expression of the second line. Note
that the first-order term (2.41) obviously reproduces the classical Hamiltonian. This is the consequence
of the high-temperature expansion (2.26), since only the first-order contribution is nonzero in the limit
B =1/kgT — 0. The second-order contribution reads

H{E}Q’lﬁ-(po,l‘o) X (m + — )( e+ )
w? aa
! =

The chain diagram is zero, while the loop diagram has the value —h*((2)/272, where

2= ni (2.43)

n=1

is the Riemann ( function. Thus we obtain

H?) 0 (0o, m0) = BR*w?((2)/4n°. (2.44)

This second-order contribution (2.42) shows the characteristic types of Feynman diagrams appearing
in each order n > 1 of the expansion (2.23) for the harmonic oscillator: chain and loop diagrams.
In order to calculate the nth-order contribution, we must evaluate these diagrams more general. By
constructing Feynman diagrams from the product of n sums of subgraphs,

Hf)ilgﬁ(po,wo)ocgm i [ L e a i (2.45)

v

~~
n times

it turns out that only following chain and loop diagrams contribute:

./*‘k.

- a- -0 .,<,M, 1 \
¢ o (2.46)

h—o-a-o-p-o -k, ‘ ’

h—o-a-o-p-o o—<—4xmk, .\* ’

The evaluation of the chain diagrams is easily done and yields zero. An explicit calculation in Fourier
space shows that there occur Kronecker symbols §,,9. Since the Matsubara sum of the Green func-
tion (2.12) does not contain the zero mode m = 0, all chain diagrams are zero.

Determining the values of loop diagrams is more involved. It is obvious that loop diagrams can
only be constructed in even order (n = 2,4,6,...), since for a loop diagram with mixed propagators
(2.30) or (2.31) pairs of different subgraphs (2.35) and (2.36) are necessary. Thus we have found the
result that odd orders of expansion (2.26) vanish, and only loop diagrams for n € {2,4,6,...} must be
calculated. Evaluating loop diagrams of nth order in Fourier space is straightforward and entails

PR N
. .

o\ 2k
{. } =21t () clem, (247

.

where k = n/2. The multiplicity of such a diagram with 2k vertices is easily determined, yielding

22k (2k)!
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Thus the high-temperature expansion for the effective Hamiltonian of the harmonic oscillator can be
written as

H, e (o, o) = 2p]\04 + = Mw +Z (2= 1 <Z:) C(2k). (2.49)

Substituting the ¢ function by its definition (2.43) and exchanging the summations, the last term in
Eq. (2.49) can be expressed as a logarithm

Z gt ,zkﬂ <Z—L;> ((2k) = %ln <10_j[ {1+ fif;:f]). (2.50)

k=1 n=1

Applying the relation

1 . > 22
~sinh 2 = nl;[l (1 + n2ﬂ2> : (2.51)
we find the more familiar form of the effective classical Hamiltonian for a harmonic oscillator
e 1 1 hwp

Hw7ef‘f(p0a$0) + < M ——lIn

2M B 2sinh hwfB/2’ (2.52)

Performing the - and pp-integrations in Eq. (2.1), we obtain the well-known form of the partition
function of the harmonic oscillator Z,, = 1/2sinh Aw/3/2.

2.6 High-Temperature Versus Weak-Coupling Expansion

In Section 2.4 we have shown that the perturbative expansion around a vanishing Hamiltonian leads
to a perturbative series in powers of the inverse temperature in a natural manner. Now we elaborate
its relation to more customary perturbative expansions in powers of the coupling constant g of the
potential. Changing the order of summation in Eq. (2.26), we obtain

(_1)n+k+1 1

Herr(po, o) Zg Zﬂ”*’“‘l(n2k>Wﬁ”[ﬂbk[wnﬁf’fwg, (2.53)

n=0
which is rewritten, after explicitly evaluating the (n = 0)- and (k = 0)-contributions, as

p2 n+k+1
Hegr(po, 20) = 577 + 9V (20) B Z Z nlklhn-i-k (2M)"
n=

h3 hB3 h3 hs
X / dm / di/ dTg+1 / AT 4n
0 0 0

x (V(z(r)) -~ V(z(m)p* (Thar) - D (Tk+n)>p0 °. (2.54)

In this expression, we have inverted the scaling transformation in Eq. (2.15), and used the expectation
values

KB - h3
[ e <ok, [ e = 1V e 255)

All higher-order expectations of functions, which only depend on z or p are zero, due to the vanishing
of expectations of functions of # or p in a Wick expansion into products of two-point functions (2.18)
and (2.20). All other possible contributions are disconnected.

We now observe that the expansion (2.54) is equal to a perturbation expansion around a free-particle
theory

2

Her(po,z0) = 7 + gV (o)

1 k+1 hB hB
2M E; k'hk

dry -+ dry,
0 0
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X (V(z(11)) - VI(@(7))ree,c (2.56)

in which cumulants are formed from position-dependent expectation values

(- Vite = 20e™ § DaDp 30 ~ 7)o - D)

hj
xexp{—% | ar [—up(r)—po)a%(x(r)—xo>+ﬁp2<r>}}. (257)

This expression is identical with

2 h3
()2 =1/ 2mh2p %D’m (xg —T)---exp { ]2\/;2 dr i2(7')} , (2.58)

with the dot denoting the derivative with respect to 7. The new measure is

D'z = lim (2.59)

N+1

N—oo [/ v 27rh€ / ]
In the following section we will consider how the expectation values appearing in the high-temperature
expansion (2.54) of the effective classical Hamiltonian go over into the cumulants in the weak-coupling
expansion (2.56). We thus study the relation between both expansions and we are led to the so-
called smearing formula for arbitrary expectation values of functions depending on position or/and
momentum. Being a Gaussian convolution of these functions, its application will be in particular useful
for calculating expectation values of nonpolynomial expressions.

2.7 Free-Particle Smearing Formula

Consider a general correlation function appearing in the expansion (2.54) of the effective classical
Hamiltonian, which can be written as

k+n h3 k n PoTo
M =[] VO dTm] <H H (Thts) > : (2.60)

m=1 =1 s=1 0

In order to reduce the expectation value to an expression, which has already been calculated we split
off the time dependences by Fourier transformations. This yields

o = X[ L vt E [ i oo
x <exp { Z klz(m) — o] - ,%anas[p(ms) —po]}>pm : (2.61)
=1 s=1 0

By introducing currents

n

k
(1) = —ihz o(r —m)Ky, wv(r)= iZtS(T — Trys)Es, (2.62)

s=1

the expectation value in Eq. (2.61) can be rewritten as the generating functional (2.10) with the result
(2.11). We reinsert now the expressions (2.62) for the currents into the functional (2.11) and perform
the 7-integrations. This leads to

k. n

1
ZPO% [ €] = exp - Z Z K GPO%0 (1), This)Es | - (2.63)

=1 s=1
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Using this result in Eq. (2.61), the &-integration can be done and yields

® . k k
dés T . . _ . z
/ %GXP{E Ps—po—i Yy kG" °(Tz,7k+s)] €s} =4 (ps —po—i»_ KIG” °(Tz,7k+s)> :

e =1 I=1

(2.64)
leaving us with

k h3 iy } n |- ¥e] k 2-|
M, = H l/ dm / o V(’il)emwo‘| H / ATy s (po +i Z K GPOTe (TlaTk+S)> . (2'65)
1=1 /0 —oo &7 s=1 L 0 =1 J

After expanding the squared parentheses, terms like

[%6; hs3 h3
dTP(k+1)p(2) dTP(k+2) T dTP(k+s) fi (TP(k+2) yee TP(k+s)) (2-66)
0 0
and
KB hB3 h3
d7p(ks1) GP" (Tp(kt1), T1) dTp(p42) " dTp(kts) f2(TP(k42)s - - s TP(kts)) (2.67)
0 0
occur, where fi(Tp(r42)s- -+ TP(k+s)) a0d f2(Tp(k42),- -, TP(k+s)) are functions independent of 74;.

Due to the separate time integration, expressions of the form (2.66) correspond to disconnected dia-

grams and may be omitted in the following. Since fohﬁ dr GPo:%o (1, 7') vanishes, terms like (2.67) do
not contribute. The permutation operator P exhibits that this is also right for any permutation of

the 7;’s (i € {1,...,s}). Since we shall omit disconnected contributions (2.66), we are left with the
cumulant
hj
M g = / dTl/ e
n
X H ( Z K,llh:b/ di+ GPox 0(7‘[1 Tk_;,_s)GpO O(Tk+s,7'12) . (2.68)
= l1,lo=1

Using the Fourier decomposition of the Green function (2.12) with Matsubara frequencies (2.13), the
time integration in the second product is easily done yielding

hs 2h o= 1
di+st0m0 (TluTk—i—s)Gpozo (Tk-i-sale) = — Z —5 COSWm Tl1 7-12)
0 B m=1 Wi
M
= — = C;’ﬁ'oee0 (Tll ) Tl2)7 (269)
where ) )
Gtz (') = s (I =P = gl = o1+ 1257 (2.70)

is the Green function for a free particle with periodic boundary conditions and the zero-frequency
mode excluded. It satisfies the equation of motion

M 82 PoZTo ! ! !
552 Gioe (1, 7") = 0(1 = 1), r,7 € [0,h3)]. (2.71)
with periodic boundary conditions GE%°(r,7') = GELo(r — ') = GR°(7 — 7' + hB). Thus the
cumulant (2.68) can be written as

n
k

" dk M
ckn = [/ dTl/ l mzzo] f Z Hlleree (TlmTlg)"'?lQ A (272)

l1,l2=1
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The expansion (2.54) can now be expressed as

2

1 o0
Hegt (po, @o) = 57- + 9V (w0) B Z

k+1 X 1\n
(=1 M
2M

k,hk gint Men- (2.73)

It is useful to move the classical potential term gV (zo) into the last sum. This is done by extending
the second sum in (2.73) by the n = 0-term:

o0 k k+1 hp3
> 9" k'hk /dn/ _V e
o0

k=1
k+1 hp3 hB

Z_l Co |V (o))t = gV (o) (2.74)

In the second expression we have utilized that terms with £ > 1 lead to disconnected contributions,
which do not appear in M, j,. Thus expansion (2.73) reads

k k+1 k h3 00 [eS) dlﬂ‘,l
Her (o, z0) = 2M 52 k'hk II /0 dTl/ dCUlV(CUl)/ o
! —0o0 -0

=1

1
X exp {in(xo - x) — EKTGQ‘;@O } , (2.75)
where we have introduced the n-dimensional vectors k = (K1, ..., k,) and the symmetric n x n matrix
of Green functions oo oo
Gfree (T17 Tl) T Gfree (T17 Tn)
G = : . : . (2.76)
Gﬁoe? (Tl ’ Tn) e G?roezo (TT“ Tn)

After diagonalizing this matrix, the x;-integrals in Eq. (2.75) are easily calculated. The effective
classical Hamiltonian can then be expressed with the help of a Gaussian convolution integral, which
smears out products of the potential V()

k+1 hB oo
Hegr(po, o) = BZ k / de/ doy V()

k

1

X ¢ xy, — x0)[GP0 (11, ,71,)] " (2, — . 2.77
\/W llgl 51 0 [ free ( I 12)] ( l2 0) ( )

N)I»—t

The extension of this result to higher spatial dimensions is straightforward.



CHAPTER O

Smearing Formulas for Fluctuation
Effects

It is well known from perturbative expansions of interacting quantum fields and quantum mechanical
systems with polynomial interactions that correlation functions appearing in a certain perturbative
order can be decomposed into sums of products of two-point correlation functions by applying Wick’s
rule [4, Chap. 3]. When the potential of a physical system is nonpolynomial, the correlation functions
are more complicated, and Wick’s rule fails. This case can only be treated with a so-called smearing
formula, which simply turns out to be a Gaussian convolution of the original classical potential. The
width of the Gaussian distribution is governed by the two-point correlation functions or Green functions
of the unperturbed system. A special example was the perturbative expansion for the effective classical
Hamiltonian (2.77), which will now be generalized to arbitrary Gaussian systems.

3.1 Generalized Euclidean Action in Phase Space

The most general Fuclidean quadratic action in flat 2d-dimensional phase space reads

] B
Aolp, x;j,v] = ’—;/0 dT/O dr' [XT(T)DXX(T, x(1") + xT (1) Dyp (1,7 )p(T")

hj

+p7 (1) Dpx (7, 7)x(7') + " (7) Dpp (7, 7')p(7")] +/0 dr [jT (r)x(r) + v ()p(n)],  (3.1)

where j(7) and v(7) are external currents coupled linearly to the respective d-dimensional phase space
coordinate x(7) or p(r). The superscript T' denotes the transpose with respect to the phase space
coordinates. The d x d matrices Dxx(7,7"), Dxp(T, "), Dpx(7,7'), and Dpp(7,7') are arbitrary at the
moment.

Integrating exp{—Ao[p, X; j, v]/h} over all possible configurations satisfying periodic boundary con-
ditions in phase space yields the partition function of the system with external sources

Zolj,v] = %Ddxpdpefflo[p,x;j,v]/h_ (3.2)

This serves as the generating functional for all correlation functions. The path integral measure is

25
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defined by slicing:
N+1

d*z,,d%
deDlp = 1 & InG Pn
fotev=m I | [ 555 35)

The partition function can also be written as an integral over the unnormalized particle density
éO(X)[jav]a

Zol, v] = /dda: oo (x)[d, v]- (3.4)

The unnormalized particle density go(x)[j,v] is the diagonal element of the unnormalized density
matrix

i x,)v) = [ DDl Alpoi (3.5)

with the sliced measure

Jorteon= g T [[ o] TL[f ] 69

The density matrix is normalized by the partition function (3.2):

00 (X, Xa)[J, V]
Zo[j,V]

For the calculation of the density matrix in the presence of external sources (3.5), it is useful to
introduce natural units with A = 8 = M = 1, where M is the particle mass. Thus, positions are
measured in units of \/A28/M, and the Euclidean time is given as a multiple of hf3.

The action (3.1) can be written in the 2d x 2d matrix form

00(xp,X4)[1, V] = (3.7)

Aolp, %3, v] = %/0 dr/0 dT'wT(T)S(T,T')w(T')+/O dr CT(r)w(r), (3.8)

with 2d phase space vectors w”(r) = (x(7),p” (7)) and currents C"(r) = (j7(r),v"(r)). The
2d x 2d matrix S(7,7") is composed as follows:

st = ( Btr ) Botrr), 59

T, T
DPX(Ta ') pp( )

Utilizing the invariance of the first term of the action (3.8) under transposing and interchanging 7 and
7', we introduce a symmetrized matrix

sty _ [ Dix(T,7") Dip(7,7")
S (7‘,7‘)— (D;X(T,T') D;p(T,T') ) (3-10)

where the superscript “s” denotes the symmetry S%(7,7') = S87 (7', 7). The symmetrized kernels are

1 1
DS (1, 7') = 3 [Dyx(1,7') + DIx(TI,T)] , Dyl 1) = 2 [Dpp (7, 7') + Dgp(r',r)] (3.11)
and satisfy
Di(r.) = DiL(r', 7)., Dyplrir') = Dyb(e' 7). (3.12)
For the mixed kernels, we have
1 1
Df(p(TaTI) = 5 [DXP(TaTI) +D;1;x(7-la7-)] ’ Dlspx(T’TI) = 5 [DPX(TvTI) +D;1;p(7'l,7')] ’ (313)

which implies the symmetry
D5, (r,7') = DL (', 7). (3.14)

PX
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We will only use the symmetrized kernels in the following sections, where we calculate the path integrals
for the unnormalized density matrix (3.5) and the partition function (3.2) in the presence of external
sources. For simplicity, we omit the superscript “s” for the symmetrized matrices in the sequel.

By varying the symmetrized action without external sources,

d0An[p,x;0,0] =0, (3.15)

we find the general Hamiltonian equations of motion
1
/dT' [Dxx (7, 7)Xe1(7") + Dxp (7, 7 )pa(7')] = 0, (3.16)
0
1
/ 47" [Dpp (7,7 )Pt (7") + D7, )t ()] = 0 (3.17)
0

for the classical paths in phase space xq(7) and pe (7).

3.2 Density Matrix with External Sources

We now calculate the general path integral (3.5) by a time-slicing procedure and find in particular
the generating functional and the two-point correlation functions for the one-dimensional harmonic
oscillator.

3.2.1 Calculation of the Phase Space Path Integral

By dividing the time interval [0, 1] into N + 1 pieces of length ¢, the unnormalized density matrix in
the presence of external sources (3.5) can be written as

N N+1 d N
éo(Xb,Xa)[j,V] = J\}E)noo H |:/ ddxn:| H |:/ é:;i] exp [_ Z (Xn.]n + ann)]
N+1
X exp l—E Z (Xn[Dxx]nmxm + 2xn[Dxp]nmpm + pn[Dpp]nmpm)] y (318)

where we have absorbed the lattice constant € in the discrete matrices and currents, respectively. The
calculation of the momentum integrals is easily done after quadratic completion and rotation into the
diagonal basis of Dpp. In continuum representation, we obtain

00(Xp,%a)[j, V] = —————exp |—= | d dr' v (r)DZ (1, 7' )v ']
o0, %)l ] = e esp | [ [ ar VDR )
x(1)=xs 1 1 1
1 —1 T
X / Dz exp [—5/ dT/ dr' xT(1)GP_ " (r,7")x(1") —/ drJ (T)X(T)], (3.19)
0 0 0
x(0)=xg4

where the path integral measure in configuration space is

/Dgsx = Nhinooﬁ [/ (Qd;%} . (3.20)

The expression (3.19) possesses the remarkable property that the current

J(r) =j(1) —/0 d7'1/0 dmy Dxp(T,Tl)D;;(Tl,Tg)V(TQ), (3.21)
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which linearly couples to the coordinate x(7), contains a term with v(7) originally being coupled to
the momentum. It is a general property of such functionals that currents coupling to momenta can
always be considered as new currents, which couple to positions [17].

The other new quantity, which has been introduced in Eq. (3.19), is

1 1
GEx_l(T, 7') = Dyx(7,7") —/0 d7'1/0 ds Dyp(T, Tl)Dl;l},(Tl,Tz)Dpx(Tz,T,). (3.22)

Enclosed by coordinates x(7) in the configuration space path integral appearing in Eq. (3.19), the

quantity GP. ' (r,7') is interpreted as a new kernel. It maps the Green function Gy, (T,7') to a §

function:

d 1
Z/ dr G];)i;,l(ﬁ,r) Gszzk(T, To) = 0k 0(T1 — T2), (3.23)
j=170
where the Kronecker symbol ¢;; is defined as
_JL o oi=y,
0ij = { 0 it (3.24)
The § function has the property
1
/ dr f(r)6(r —7') = f(«"), 7' €(0,1), (3.25)
0

for any smooth test function f(7). With Egs. (3.22) and (3.23), we write the matrix of Green functions

as
-1

1 1
GEX(T, ') = [Dxx(r, ') —/ dTl/ dry Dyp (T, Tl)Dgé(Tl,Tg)Dpx(Tg,Tl) . (3.26)
0 0

Since the end points of the paths are fixed, x(0) = x, and x(1) = x;, fluctuations are vanishing at
these edges, and the Green function Gle,z], (r,7') must obey Dirichlet boundary conditions:

GEW 0,7y=aGP _ (1,7) =0, Gg_xj (1,0) = G;Dm (1,1) = 0. (3.27)

Tilj

The calculation of the configuration space path integral in Eq. (3.19),

x(1)=xp
(x5 1|x, 0)[J] = / DE g e~ Ao/ (3.28)
x(0)=x4
with the action in configuration space
hoL 1 . 1
Aoes[x;T] = 5/0 dT/O dr' xT(r)G2, (T,T')X(T')+/O dr IT (1)x(7), (3.29)

is done on usual footing. We decompose the path x(7) into a classical part x.;(7) and the fluctuation
term 0x(7),
x(7) = xa (1) + 0x(7), (3.30)

where the fluctuations may vanish at the boundaries, §x(0) = éx(1) = 0. The variation of the action
(3.29) in the absence of the external current J(7) vanishes for the classical path. Performing this
variation, we obtain a relation, which we need for the following considerations:

1 1
8 Aoes[Xe1; 0] = %/ dT/ dr' I:(SXT(T)GEX_l(T, % (7)) +X5(T>GEX_1(T, T')&x(r')]
0 0

1 1
= / dT/ dr' §XT(T)GE;1(T, ™)xa(r") = 0. (3.31)
0 0
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Here we have utilized in the last line the symmetry of G ! (r,7'), which is obvious from the definition
(3.22) and the properties (3.12) and (3.14). From (3.31), we read off the Euler-Lagrange equations of
motion

1
/ dr' GE;l(T, )% (') = 0. (3.32)
0

Inserting now the decomposition (3.30) into the action (3.29), considering the vanishing of the coupling
of fluctuations and classical path from the last line in (3.31), and acknowledging that the measure is
invariant under the translation (3.30), DLz = DL 4z, the functional (3.28) can be expressed as

(x5 1[4 0)[J] =exp{% /0 dr /0 L [IT (G2, ) ) - xR 1(7,7')xd(7')]}

ox(1)=0

Xexp{—/oldr.] P)xa(r } / D! §xexp{——/ dT/ !
sx(iyzo
y [5XT(T)+ /0 1dT1JT(T1)G£x(T1,T)} G () [ / drs G2 (', 75)3 (72)] }

(3.33)

The path integral over the fluctuations is a constant, since it is independent of the end points x, and
xp. For convenience, we introduce the new variable

y(7) = ox(7) +/0 dr' GEX(T, ™JI(r), (3.34)

which also vanishes at the boundary, y(0) = y(1) = 0, since the Green functions G2, (, ') satisfy the
Dirichlet boundary conditions (3.27). The measure of the path integral over the fluctuations remains
unchanged, D&y = DLz, and the calculation of this path integral is simply done, e.g. in discrete
space, yielding

y(1)=0
1 1
Dgsy exp [—1/ dT/ dr' yT(T)GEX_l(T Tl)y(Tl):| = N . (3.35)

/ 2 ’ 1
¥(0)=0 o \/det G,

Combining the results (3.19), (3.33), and (3.35), we obtain the density matrix in the presence of
external sources

M O\Y? 1 1 .
00(Xp,%Xa)[j,v] = (27rh B) \/detD detGD’l exp {_ﬁ/o dT[J (T)Xe(T) +v (T)Pcl(T)]}

X exp [—%/0 / dr' x4 (1)GR, 1(7'7')X(-1( "
p{%/ / [§7 (G277 + 57 (1) G2y (.7 v ()

+VT(T)GI[,)X(T, ™) + VT(T)GEP(T, T')V(T')] }, (3.36)

where we have reused the standard units. In order to prevent complications, the determinants shall
be treated as dimensionless quantities here. For this reason, we have already extracted the dimension-
carrying prefactor (M/h?3)%/?. As a rule, the determinants are calculated with 7 = 3 = M = 1. At
the end, powers of 7, 3, and M are multiplied to the determinant to make it dimensionless.
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In (3.36), we further utilized the relation

hB hB
pa(7) = —/ drm dry D 1(7' 71 ) Dpx (71, T2)Xe1 (T2), (3.37)
0 0
which is a direct consequence of the Hamiltonian equation of motion (3.17), when solved with respect

t0 pei (7).
Additionally to G2, (r,7'), defined by (3.26), we have introduced the d x d matrices

Grp(r,7') = / dn/ dry G (1,71) Dyp (11, 72) D (72, '), (3.38)
G (1, 7') = [GD] (r',7)
- / dn / drs D) (7, 71) Dpx (11, 72) Gy (2, '), (3.39)
hB
Gpo(r,7') = Dpp(r,7') + ; drl ; dry
XDy 2 (7,71) Do (71, 72) G (T2, 73) Dacp (73, 4) Dy (14, 7). (3.40)

These expressions are equivalent to position- and/or momentum-dependent two-point correlation func-
tions, as we show in Section 3.2.3. Before embarking to this, however, we will first check the density
matrix functional (3.36) for a simple example, the one-dimensional harmonic oscillator.

3.2.2 Example: Density Matrix of the One-Dimensional Harmonic Oscillator with Sources

The harmonic oscillator is usually a pretty good system for checking a general theory, since its exact
quantum statistical properties are well known. Due to the Gaussian type of the Boltzmann factor, the
path integrals for density matrix and partition function are simply solved. Additionally, this system
is nontrivial in a sense that it possesses a nonvanishing interaction.

In what follows, we calculate the density matrix functional for the one-dimensional case, since it
already contains the interesting properties that we would like to point out, e.g. the two-point correlation
functions. The action of this system in the presence of external sources j(7) and v(7) reads

hj 2(r
Aol = [ ar i) a5 (52 + M 0)] + a0 +ompn b @4

By comparing this action with the general one introduced in Eq. (3.1), we identify

A s =190 s
hM(S(T,T), sz(T7T) - haT(s(T,T),

Dy 7") = =+ 2 5(r,7%) 4 (7, ) 3(A8,7) — 3(r,0)]. (342)
The ¢ functions with two arguments act as the usual § function with the exception of time translational
invariance. It is a consequence of the Dirichlet boundary conditions the paths must satisfy due to the
fixing of the end points. This will become clear after expanding the fluctuations into a complete set, of
orthonormal functions and is shown later on.
The symmetric splitting of the first term in the action (3.41) is necessary to ensure the symmetry
of the matrix S(r,7"), defined in Eq. (3.9). This requires that the nondiagonal elements D, and D,,
of S must be transposed to one another.! Tt is a nice problem to show what the transpose of the
operator ¢0/07 is. It is well known from quantum mechanics that the operator

Dyy(r,7') = %w%(’r, ), Dpp(r,7") =

.0
1The second and thlrd terms of Dpz(r 7') appear since operators with derivatives yield boundary terms:
f dr f(T)g(T) = f(n)g(1)| = ﬁB f dTg f(7). If f(7) and g(7) have periodic or Dirichlet boundary conditions,

these addmonal terms vamsh and Dpa (7, 7") 1s exactly the transpose of Dgyp(7,7").
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is Hermitian, H = H*. This means that any representation of this operator is identical to its transpose
with complex conjugated elements. With (3.43), we obtain
a\" o
— ] =—-=. 3.44
(87‘) or ( )

() =[2G

This explains the different signs of D, and the first term of D, in (3.42).

The first quantity we shall calculate is G 7'), defined in Eq. (3.22). Inserting the identifica-
tions from (3.42) into (3.22) yields

T

ZZUJ(

G&Mvmv:éfwmﬁ—ﬂ—avngﬁw—r»—éf(gE_WQa@_Tu (3.45)

Thus, calculating the classical action of the density matrix (3.36) for the one-dimensional harmonic
oscillator gives the known result (without external currents):

Asals] = 2 / /m% G2, L (r, 7 )aa ()

hpg 2
7 lxd(hﬂ)xd(hﬂ) — l‘cl(O)i‘cl(O) —A dT 1‘01(7') <% — w2> xcl(r)]

"1 1
/0 dr bM:cfl(T) + §Mw2le(7')] . (3.46)
Since the classical path for the harmonic oscillator is known to be [4, Chap. 2]

1 . .
za(T) = Sinh 7B [zp sinh wT + z, sinhw(hS — 7)], (3.47)

the classical action (3.46) becomes the usual one

Mw

Aw,cl(xb’ x“) = m

[(z2 + 2}) cosh hBw — 2z,ms] - (3.48)

Now we consider the Green function G, ,(7,7') given by Eq. (3.26). Due to the vanishing of the
fluctuations dz(7) at the fixed end points of the path, this Green function is required to satisfy Dirichlet
boundary conditions (3.27). The fluctuations can be expanded into a complete set of orthonormal
functions [4, Chap. 3],

1
0 (T) = ——= sinv,T, (3.49)
VhB
with .
Up = 8 (3.50)
being half the Matsubara frequencies defined in Eq. (2.13).
The completeness relation is then
1
n;m 8z (1)0xn (7') = hﬂ n;m sinv,Tsinv,r’ = hﬂ Z sin v, 7 sin v, 7. (3.51)

Here we see the necessity to introduce the § function with two arguments, since the expression on the
right-hand side is not invariant under time translations. Substituting the ¢ functions in expression
(3.45) by the completeness relation (3.51), it turns out that the boundary terms vanish. Thus we
obtain the decomposition

2 = M
Glxjxw T, T ——Bzf w? + v2) sinv,Tsiny, 7. (3.52)
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Inverting the kernel yields the Green function in Fourier space

h 1

D e
G (Vn)_MwQ—l—y%'

TT,Ww (353)
After performing the Fourier back transformation, we obtain the Green function for the harmonic
oscillator with fixed end points

h

GD  —
zeo(T:7) 2Mw sinh hBw

[coshw(|T — 7'| = hB) — coshw(T + 7' — KB)]. (3.54)

The calculation of the two-point functions (3.38)—(3.40) is straightforward, since these can be derived
from GD,  (r,7"). Inserting (3.42) into (3.38) leads to

TT,w

D / " " b i 0 ,
Gupo(T,T) = — dn dra Gy, (T,71)==—06(T1, 72) RM (72, 7")
’ 0 0 ’ h 67'1
kb ) 0
= —iM | dn GP (r,m)=—0(m1,7") =iM==G? _(r,7'). (3.55)
0 ’ 67'1 87” ’

In the last line we have carried out a partial integration, where the boundary term vanishes due to
the Dirichlet boundary conditions (3.27). The derivative with respect to the second argument of the
Green function (3.54) is easily performed and yields

D AN _@# Y A oA _ I . I _
Gopo(T,T) = > sinh e [@(7‘ sinhw(r — 7' — hB) — O(r' — 7)sinhw(r" — 7 — hp)
+sinhw(r + 7' — hPB)]. (3.56)

As the explicit calculation of (3.39) shows, it is

0
GD, (1 7) =iM G2, (r,7"). (3.57)

Or LW

The difference between (3.55) and (3.57) is that the derivative now acts on the first argument of the
Green function GD, (7,7'). Thus, we obtain

TT,w

D AN @# P A Qs o _ I . I
Gpu (T, 1) = > s o [G)(T )sinhw(r — 7" — hB) — O(r' — 7)sinhw(7' — 7 — hB)
—sinhw(r + 7' = hB)] =GY, (7', 7). (3.58)

Calculating (3.40) exposes no new aspects and yields

82
D A N 2 D '
Gppw(T) = BMo(r,7') = M 87‘87"G”’“’(T’T)
Mh
= m [coshw(|T — 7'| = BB) + coshw(r + 7' — KB)]. (3.59)

The sole task remaining to be done to specify the density matrix functional (3.36) for the one-
dimensional harmonic oscillator is the calculation of the determinants. Since we know that the prefactor
/M /h?B carries the complete physical dimension of the density matrix, it is useful, for evaluating the
determinants, to return to dimensionless natural variables by setting M = A = § = 1. Determining
the determinant of D,, is quite simple and yields det D,, = 1. This is a simple consequence that D,,
is unity in Fourier space and an infinite product of unity yields again unity. The calculation of the
other determinant is much more involved and shall be presented in detail in the following. With the

Fourier representation (3.52) of GxDx;j , the appropriate fluctuation factor of (3.36) can be written as

—17-1/2 1 - 1/t —
[det G]x)%wl] = exp <—§ Tr In G]gcjx;) = exp l—i / dr2 Z In(w? + v2) sin®v,7| . (3.60)
0 n=1
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The integration of the sine-squared over 7 is easily done, fol dr sin? v,,,7 = 1/2, and Eq. (3.60) becomes

{det GY w] i = exp {—% In H [w? + (7n)?] } . (3.61)

n=1

Obviously, the product diverges, but this divergence is not physical. A lattice calculation would have
proved the finiteness of the determinant [4, Chap. 2]. By regularizing the expression within the product
with respect to the free-particle Green function, we obtain

[+ ] = H[“’ (fm”"] 1][

n=1 n=1

1
] = —sinhw. (3.62)
w

Inserting this result into (3.61), we eventually find

—11-1/2 hBw
detGP ! =4 /— .
[ e Gmw] \ smh e (3.63)
with physical units.

Thus we have calculated the density matrix of the one-dimensional harmonic oscillator in the
presence of external sources, with the result [17]

- . Mw Mw 9 N
=\ _— + h hfw — 2
0@, Za)lJ V] 2mh sinh Afw <P { 2h sinh hfw [(m“ wb) cosh ifs a:a:nb] }

1 T 9 : .
X exp {—m /0 dr [](T) + ZM’U(T)E1| [p sinhwT + x4 sinhw(hF — 7')]}

p{% [ [ #5062 5,756 + IRt
FUIGD, o (1 V() + (7)o (7 '>v<T'>}}, (364

where the two-point functions are given by (3.54), (3.56), (3.58), and (3.59). For j(r) = v(r) = 0,
Eq. (3.64) reduces to the well-known expression for the density matrix of the one-dimensional harmonic
oscillator.

3.2.3 Expectation Values and Correlation Functions

We usually define expectation values as
(o) = éal(xb,xa)/D’da:de oo g Aol XI/h (3.65)

with the action (3.1) but vanishing currents,
AO[pax] = Ao[p,X;0,0]- (366)

The expectation values are normalized with respect to the density matrix (3.36) with vanishing cur-
rents,

éO(XbaXa) = éO(XbaXa)[an]a (367)

which ensures (1) = 1. For the following consideration, however, it is useful to reintroduce the
currents as artificial quantities. If the expectation value of a polynomial function consisting of powers

XpsXa
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of z and p shall be evaluated, one can apply functional derivatives with respect to these currents. Such
derivatives act as follows:

5 [ st ue = [ gt TEELUE) S 04((m),ulr)
s [t = [ar LED s - o - STERSEL ey

Applying, for example, to the action (3.1) a functional derivative with respect to j(7) yields:

0
037 (7)

Analogously, one obtains when differentiating with respect to v(7):

MTL(T)Ao[p,X;j,V] =p(7): (3.70)

Ao[p, x3j, v] = x(7). (3.69)

We can use this recovery of x and p to formulate a redefinition of expectation values for polynomial
quantities, e.g.

m

R ) = a5 x0T |2 TT | i

(3.71)

j=v=0

2

In the following, we specify some values for (n,m), where n denotes the overall power of 2 and m that
of p, to obtain the lowest-order correlations. For (1,0), we obtain the expectation value of x(7) by
applying to the density matrix functional (3.36) a single functional derivative with respect to j(7) and
setting the currents to zero thereafter:

)

(7)) = ~hay (e, %) 7y o0 ) .V

= xa (7). (3.72)

j=v=0

Thus, the expectation value of x(7) is simply identical with the classical path. Evaluating the case
(0,1), we obtain the expectation value of the momentum p(7):

= pa(7). (3.73)

(P = ~hdy (31 %0) s o) o |

Calculating (2,0), (0,2), and (1,1) yields the two-point correlation functions

(@ (T2 (T))™™" = h*Gy " (xp,%a)

52 R .
57 () () 20 X0 X b

GD (1, 7)) + zar(T)Ta (), (3.74)

T
52

§Uk (T)§Ul (T')

j=v=0

k(M) (7)) = B8, " (xb,%4) 00 (X5, %Xq)[J, V] .

j=v=0

= G}E)kpl (Ta TI) ~+ Pel,k (T)pcl,l(Tl),
62
N\ XbsXa 2 ~—1 - .
(i (T)pe (1)) = h"0, (Xb,xa)itsjk(T)(S’Ul(T')QO(Xb,Xa)[J,v]

j=v=0
= G, (1, 7) + ek (T)pera (7). (3.75)
From Eq. (3.39) follows that the latter expectation value can be used to identify
52
vk (1)07(7") =v=0
= G (1, 7) + pak(T)za (1)) (3.76)

(pr(T)z (7)) = 155" (x5, %) 00(%s,Xa)[j, V]
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Re-expressing the two-point functions with the help of Egs. (3.72) and (3.73), we obtain

Grpa (1,7) = (T (DT(T)) ™, G, (1, 7') = (Br(T)a (7)™

DR, GE, (1T = () E ) (3.77)

Q
w]
—~~
A
\]\
I
N
S
B

3

with abbreviations
x(1) = x(7) — xa(71), p(7) = p(1) — pa(7). (3.78)

Thus, we have identified the elements of the d x d matrices Gy (1, 7'), Gy (7,7'), Gpy(1,7'), and

Ggp(r, 7'), introduced in Eq. (3.36), with appropriate two-point correlation functions.

3.3 Smearing Formula for Density Matrices

In the previous sections we have investigated the exactly solvable density matrix for systems governed
by a Gaussian action (3.1) with external sources. We will now use the results to set up a perturbative
treatment of density matrices for systems with nontrivial interaction. In order to calculate the expec-
tation values, which appear in the perturbation expansion, we derive the smearing formula, which is
useful, in particular, for nonpolynomial potentials.

3.3.1 Perturbative Expansion for the Density Matrix of a System with Interaction

The exact calculation of the density matrix

x(h@3)=x
0(xp,X,4) = / DDl e AlPxl/h (3.79)
x(0)=%a4
with an action which contains a potential,
hB
Alp,x] = Ao[p, x] + ; drV(p(1),x(1)), (3.80)

is impossible for most systems. The potential V (p(7),x(7)) shall be as general as possible, and thus it
may depend on momentum and position. The potential is considered as a perturbation of the exactly
calculable system with the action (3.66). A Taylor expansion of the exponential in (3.79) with respect
to V yields a perturbation expansion around the density matrix go(xp,x,) of the unperturbed system,
defined in (3.67):

x(hB)=xy

hB
0(xp,Xq) = / D'z Dlp e~ Aolp /1 [1—%/ dr V(p(r),x(1))
x(0)=x, 0
1 1B 1B
b [ dn [ anVe@) XV EExm) -] @)

Using the definition (3.65) of the expectation values, the perturbation expansion can be written as

G s
TH D o, e [ dm VR, x(m)) - V((ra) x(m))

(3.82)

é(xba Xa) = éO(Xba Xa)

The introduction of cumulants, where the first two are given by

(V(p(r),x(r))z"™ = (V(p(r1), x(m1)))™"*,
(V(p(1), x(m))V(p(72),x(12)))7"™* = (V(p(m), x(m0))V (P(72), X(72))) ™™
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— (V(p(m1), x(m0))) ™™ (V(p(72), %(72)))"*"

enables us to re-express the right-hand side of Eq. (3.82) by

M\ 2
@(bexa)=<m> exp [—BVerr,o1 (X5, X4)] - (3.83)

Here, we have used that, written in the form of a classical particle density

Mo\ 92

0100 = (5755 xRV, (3.5)

the quantum statistical density matrix is governed by the effective classical potential

1 1 o= (=1 (" ni

Véff,cl(xbaxa) = _B In |:>‘t}{ QO(XbaXa)] - B ; (n'hl o dry - o dry
x (V(p(m1),x(11)) - - V(p(0), x(m0))) 207", (3.85)
with the thermal wavelength
2mh?f3

Mt = 3.86
w = (3.56)

The calculation of the density matrix for any system reduces to the calculation of the effective classical
potential (3.85) and thus to an evaluation of the respective cumulants.

3.3.2 Smearing Formula for Gaussian Fluctuations

As a first application of the generating functional (3.36) we derive a general rule for calculating cor-
relation functions of polynomial or nonpolynomial functions of x(7) and p(7) [17]. The result will
be expressed in the form of a smearing formula. This formula will represent an essential tool for
calculating perturbation expansions with nonpolynomial interactions.

Consider the correlation functions of a product of local functions

(Fi(x(11))Fa(x(12)) - .. FN(%X(TN)) FNg1 (P(TN 1)) FN 42 (P(TN42)) - - Fnvgpmr (X (T ar))) 0™
x(hB)=xy N M
=3y " (x4, Xa) / D' e Dp? [ [Fa(x(ra))] [] [Fx-m (P(7vim))] e AolPxI/n, (3.87)

x(0)=x4 n=1

By Fourier transforming the functions F,, (x(7,,)) and Fy4m(P(TN+m)) according to

d’&,
(2m)

F,(x(1,)) = /ddxn F(x,)0(xn — x(m0)) :/ddxn F(xn)/ exp {i€,, (xn, —x(7m,))} (3.88)

and

d
Fran(®(rwin)) = [ GE8 Py (B)3(ors = prrcen)

= [ e Exmton) [ a0 {~Lrn(on —prvan) |, (2:59)

the correlation functions (3.87) may be re-expressed as

N d
(Fi(x(r0) - Pvear Bl = 5" Gxnx) T | [ s B [ 555 oxp i)

n=1



3.3 Smearing Formula for Density Matrices 37

M

<11 [ / (d;%h’;d Frven(D) [ ' ex (—%nmpmﬂ o (%8, %) V1, (3.90)

where the generating functional is given by (3.36). The currents j(r) and v(7) are specialized to

N M
T) = ihz £,.0(1 — ), v(T) = —i Z BmO(T — TNam)- (3.91)

Inserting these equations into the action of the functional (3.36) and the Green functions (3.26) and
(3.38)—(3.40), we find the Fourier decomposition of the generating functional (3.36), so that the corre-
lation functions (3.90) become

N d
(F(x(10)) ... Fx s (p(rvsan))) H[/ a0, Fo(xa) [ g—g’;exp{ign[xn—x(ﬂ(m]}}

)
X H U Zl;imd N+m(pm)/ddﬁm exp{—%ﬂm[pm —pcl(TN+m)]H

1 L NoM 1 M
xexp | —3 S e, R D GG g ) G s (392)
n,n'=1 n=1m=1 m,m’'=1
where we used the abbreviations
Gex = GEx(Tna Tar)s GQ;” = GEp(TTH TN+m), Gg;;n = Ggp (TN4m> TN m?)- (3.93)

To proceed, it is more convenient to write expression (3.92) as a convolution integral

(Fu(x(r1)) - .. Fnpar (p(Thgan))) " = 1]_:[ |:/ddwnFn(Xn):| lj\_i[ {(ddimd FN+7n(pm):|

2mh)
xhMTP(xy,....,XN,P1,-..,PM) (3.94)
involving the Gaussian distribution
P(x1,...,pm) = ﬁ /dN+Mw1 exp {iwlTW2 - %wawl} . (3.95)
The vectors w; and wy have (N + M)d components and are defined as
1 1
wi = <£17---7£Na’_i’{'17---7’_iKrM> (3.96)
and
wy = (x1 = Xa(T1), -, XN = X (TN ), =P1 + Pet(TN41), - -, —PM + Pal(TN4-M)) - (3.97)
The (N + M)d x (N + M)d-matrix of Green functions
G = <;T g) (3.98)

can be decomposed into block matrices A, B, and C. The Nd x Nd-matrix A and the Md x M d-matrix
C are defined by

Groe Gre -+ Gt Gop Gpp ~+ Gprl
CERCICE Gy, Gy -+ Gy
A= = |, Cc=| . o (3.99)

1N 2N 11 M 2M 11
Gxx Gxx Gxx Gpp Gpp Gpp
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and yield quadratic forms of the position and momentum variables, respectively. The Nd x M d-matrix

11 12 1M
e et
B= P :"p P (3.100)
.N .N i NM
_er} _pr2 o —=GRp

gives rise to quadratic terms, which are linear in both position and momentum variables. The multidi-
mensional integral in (3.95) is of Gaussian type and can easily be done, yielding an explicit expression
for the Gaussian distribution (3.95)

1 1 _
P(x1,... XN,P1,---,PM) = e ide G exp {—§W2T G™! W2} , (3.101)

where G~! represents the matrix inverse of (3.98) whose block form is [see Appendix 3A for a direct
derivation]
Xt —-X-1BCc!
-1 _
G = <—013TX1 C14+C'BTX 1RO ) (3.102)

with the abbreviation
X=A-BC BT, (3.103)

The calculation of the determinant is presented in Appendix 3A and yields

det G = det C det X, (3.104)
when the matrix C' is regular. For singular matrix C' but A regular, we obtain

det G = det X det A, (3.105)

with X = C — BTA'B.

With the Gaussian distribution (3.101), our result (3.94) constitutes a smearing formula, which de-
scribes the effect of harmonic fluctuations upon arbitrary products of functions of space and momentum
variables at different times.

3.4 Generalized Wick Rules and Feynman Diagrams

In applications, there often occur correlation functions for mixtures of nonpolynomial functions F'(Zj,)
or F(pg) and powers according to

(F@e(r) 37 ()™, (Pl 57 ()
(Fum) 3 ()™, () i ()

where we consider functions of the shifted phase space coordinates (3.78). In order to evaluate such
correlation functions, we derive in this section generalized Wick rules and Feynman diagrams on the
basis of the smearing formula (3.94). For simplicity, we restrict ourselves to the calculation in one
dimension, since it already involves the interesting features, which we want to discuss in the following.

(3.106)

3.4.1 Ordinary Wick Rules

It is well known that if one has to calculate expectation values of polynomials with even power, Wick’s
rule can be written as the sum over all possible permutations of products of two-point functions. We
shortly recall to this expansion by considering the case of a position-dependent n-point correlation
function in one dimension, n even, defined as

G (1y,. .., Tn) = (E(1) - (1)) ™70 . (3.107)
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Note that it will be sufficient to study only the correlation functions involving the deviations from
the classical path, respectively. This expectation value can be decomposed with the help of Wick’s
expansion
G (r,. ) =Y GO (1pa),TP) - G (Tp(n_1): TP()); (3.108)
pairs
where P denotes the operation of pairwise index permutation. Note that Eq. (3.108) may be considered
as a consequence of a simple derivative rule

(F(&(1)) &(12))""" = (&(11) &(12))™" (F'(#(m1))) """ (3.109)

with F'(&) = OF(Z)/0xz. By applying this recursively, one eventually obtains (3.108). And conversely,
the derivative rule (3.109) can be proved for polynomial functions F(Z(7)), following directly from

Wick’s theorem (3.108).
The two-point Green function G?) (71, 7y), occurring in (3.108), can be considered as a Wick con-
traction, which we introduce as follows:

5:(%72) = (#(r1) #(m))"" = G, (11, ™), (3.110)
f(Lﬁ(Tz) = (@(n1) p(m2))™" = G5, (11, 1), (3.111)
ﬁ(Lf(Tz) = ((r1) F(12))™" = G, (11, 12) = Gy (2, 7), (3.112)
ﬁ(ﬁ)ﬂz) = (p(r) p(12))™"" = G (11, 72). (3.113)

Decomposing polynomial correlations of Z(7) and p(7) with the help of these contractions corresponding
to Eq. (3.108) or successively applying the derivative rule (3.109) leads to following results

min(n,m)

n e e —1)/2 l —1)/2
@ ()@ m) ™ = Y (G2, m)] " [GR ()] (G (7)) T (3114
e
e Neere AR 1D (n=0/2 p [0 (m—0)/>
(iL” (Tl)p (7—2)> ' = Z Cl [Ga:a:(Tlarl)] [Ga:p(rlaTQ)] [Gpp(7—277-2)] ) (3115)
S
e R (n=0)/2 [ p o (m=1)/2
(p (7-1)3j (7—2)> = Z & [GPP(Tl’Tl)] [Gacp(TQaTl)] [Ga:a:(TQaTQ)] > (3116)
O
e L (n=0)/2 [ 4p g~ (m=1)/2
@ ()P (R)™T = Y a [Gpp(ri,m)] [GD (11, 72)] [GD, (72, 72)] , (3.117)
S
with the multiplicity factor
_(n=1-=1)"(m—1—-1)"n!'m!
a= (n — D) (m —1)! (3.118)
Note, that (—k)!! = 1 for any positive integer k. For nonvanishing correlation, the sum n 4+ m must be
even so that the regulation parameter «a is defined as follows:
0, n,m even,
*= { 1, n,modd. (3.119)

The contractions defined in (3.110)—(3.113) can be used to treat Taylor-expandable functions F'(#(7))
and F(p(7)) only. The desired derivative rules for such correlations read

(F(E(r)) 3 ()" =
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n
Tb,Ta

> m_”—;)”“[amm,m]("”” (G2 ) (FOG@Em)) 7, (3.120)
I=a,a+2,a+4,...
(F(E(m) 57 ()™ =

n
Tb,Ta

Z (n_nil')”“ [GEp(T2aT2)](nil)/2 [G]Qp(TlaT?)]l <F(l) (j'(Tl))> , (3121)

I=a,a+2,a+4,...
(F(p(11)) p" (1)) " =

n

n' ne B Tp,Tq
> oGl G ) (FUGm)) T, 3122)
I=a,a+2,a+4,... o

(F(p(r)) 2" ()™ =

n

n! (n—1)/2 ~ Ty, Tq
> o e G ) (FOG)) T (3129)
l=a,a+2,a44,...
The parameter « distinguishes between even and odd power n:
0, neven,
a= { 1. nodd, (3.124)

since even (odd) powers of n lead to even (odd) derivatives of the function F(#(71)). The Ith derivative
FO(#(r)) is formed with respect to z(r), and F" (p(r1)) is the Ith derivative with respect to p(ry).
Note, that in (3.123) the Green function Gsz appears with exchanged time arguments, which in this
case happens to be inessential due to the symmetry G3 (2, 71) = Gp, (11, 72).

3.4.2 Generalized Wick Rule

According to their derivation, the contractions (3.120)—(3.123) are only applicable to functions F(%(7))
and F(p(7)) which can be Taylor-expanded. In the following, we will show with the help of the smearing
formula (3.94) that these derivative rules remain valid for functions F(#(7)) and F(p(7)) with Laurent
expansions. Expectations of this type appear in variational perturbation theory (see Ref. [20] for
position-position coupling). Since the proceeding is similar in all the cases (3.120)—(3.123), we shall
only discuss the expectation value

() 5 ()" (3.125)

in detail. For this we consider the generating functional of all such expectation values following from
(3.94)

o T
P gar)\"Te _ B / dr F / A i
(F(a(r)) ™)) T | #F@ [ g
1
X exp {—m [Gpr(Tg, ) x? — QGEp(ﬁ, ) zp + G, (1, T1)p2]} . (3.126)
The p-integration can easily be done, leading to
+0o0o d
ey ThyTa D .2 €T 2 D
F(&(m)) e?" (72) = Crp(t2:12)i"/2 / Y F(x + jGD (t1,tz)) e™T /2Cax(trst1)
< > e QWGxDx(tl,tl) P
aR(tata)i?/2 5~ Lo PO G
= Ol N LG ()] (FOG®) (3.127)
=0

The correlation of two functions at different times has been reduced to a single-time expectation value
of the Ith derivative of the function F(#(r;)) with respect to (7 ), denoted by F)(#(r;)), with Green
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functions describing the dependence on the second time. Expanding both sides in powers of j, we
re-obtain (3.121).

Now we demonstrate that the derivative rules (3.120)—(3.123) for Laurent-expandable functions
F(#(r)) and F(p(r)) also follow from generalized Wick rules. Without restriction of universality, we
only consider the expectation value

(F(&(m)) & (m2))"" . (3.128)

The proceeding to reduce the power of the polynomial at the expense of the function F(Z(m)) is as
follows:
la. If possible (n > 2), contract (7o) Z(72) with multiplicity (n — 1), giving

(n —1)&(r2) #(72) (F(&(11)) "2 (1)), (3.129)
L
else jump to 1b. directly.
1b. Contract F(Z(m))Z(m2) and let the remaining polynomial invariant. We define this contraction
by the symbol

F(#(n)) #(r2) " (12) = #(r1) #(r2) (F'(#(m)) & (m2))™""". (3.130)
(I L
1c. Add the terms la. and 1b.
2. Repeat steps la.-1c. until only expectation values of F'(Z) or expectations of its derivatives remain.
Summarizing, we can express the first power reduction by the generalized Wick rule (n > 2)

(F(&(r)) 2" (r2))"" = (n — 1) #(72) 3(1) (F(&(n))a" 2 (r))""

+ F(2(n)) &(m2) 2" (12) (3.131)

R

with the contraction rules defined in (3.110) and (3.130). For n = 1, we obtain

(F(E(r) #(m)) ™™ = #(n) () (F'(a(n))™", (3.132)
L
which is valid for any function F(Z(7)) generalizing the rule (3.109) that was proved for polynomial
functions only. Recursively applying this power reduction, we finally end up with the derivative rule
(3.120). Note that the generalization of Wick’s rule for mixed position-momentum or pure momentum
couplings is done along similar lines, leading to the derivative rules (3.121)—(3.123).

3.4.3 New Feynman-Like Rules for Nonpolynomial Interactions

Higher-order perturbation expressions become usually complicated. For simple polynomial interac-
tions, Feynman diagrams are a useful tool to classify perturbative contributions with the help of
graphical rules. Here, we are going to set up analogous diagrammatic rules for perturbation expansions
for nonpolynomial interactions V (z(7), p(7)), whose contributions may be expressed as expectations

values
KB 13

; dry -+ ; drn (V(z(m1),p(11)) - V(x(ma), p(13))) " . (3.133)

From (3.110)—(3.113) follows that we have four basic propagators whose graphical representation may
be defined as (setting i = M = 8 = 1 from now on)

T1

T = (F(n)E(n)"T = GRu(n, ),

Tl ~rn~ T2

(B(m1) P(r2))™" = Gpr(T1,T2),

T T = (#(R) B(n)) T = G, (1, 7),
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Mo = (p(n) # () = G (11, m) = G (12, m).

A vertex is represented as usual by a small dot. The time variable is integrated over at a vertex in a
perturbation expansion,
1
= / dr.
0

We now introduce the diagrammatic representations of the expectation value of arbitrary functions
F(%(r)) or F(p(7)) and their derivatives as

s = /1<HﬂDW“, "
= /dT (F"(@(r))™", = /dT (F'(p(r)))™",

« /dT (@ (), a<

With these elements, we can compose Feynman graphs for two-point correlation functions of the type
(3.106) for arbitrary n by successively applying the generalized Wick rule (3.131) or directly using
the derivative relations (3.120)—(3.123). The general results become obvious by giving explicitly a
graphical representation of the following four correlation functions

/ dﬁ/ dry 1)) B(m2))"" = /01 dry /Oldrg GP (11, m) (F'(&(r)))"™" (3.134)

Il
\,_,
N
!
-~
=
\]
g
A
~
R
=
&
8

-
Q.
N
”1
ot
&
B
g

—— ,

/dﬁ/ dry (F(E(m) 2 (m)) ™" = /Oldrl/oldm{agz(@,@) (F(#(n))™"

+w2mmMWW@mm““} (3.135)

O <O

/dﬁ/ drs (F(i#(r)) & (r))"""" = / dﬁ/ dTQ{sa (71,72) G, (13, 72) (F ((r1 ))) ™"

+w2mmﬂ<Wﬁmm%“} (3.136)

0 LD

/dﬁ/ dry (F(&(1)) &' (r))""" = / dﬁ/ dTg{ 72,72)] (F(&(r)))" "
+6 [GD, (11, m)]” GB, (72, m2) (F"(i(m1))) """
+GE (o)) (FOG) " ] (3.137)

SORTOORT "
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Mixed position-momentum and momentum-momentum correlations and their graphical representations
are given in Appendix 3B.

The consideration of higher-order correlations with more than one function F(Z(r)) or F(p(7)) can
be reduced to the results (3.114)—(3.117) or (3.120)—(3.123) by expanding them with respect to the
classical path or momentum, respectively. By expanding both functions in the expectation value, one
obtains for example

(Fi(Z(n)) Fa(2(12))) ™" = Z Z 'n' fiomfon (E™ (1) " (12))"" (3.138)

m=0 n=0

with
fim =F™(0), i=1,2 (3.139)

But constructing graphical rules for such general correlations is more involved due to the various
summations over products of powers of propagators G2 (7, 7;) with i,7 = 1,2.

Finally, we apply the diagrammatic rules to the anharmonic oscillator with #*-interaction, which is
a powerful system being discussed in detail by the help of a perturbation expansion [4, Chap. 3]. With
the Green functions given by (3.26) and (3.38)—(3.40), the two-point-correlation for the anharmonic
system can then be expressed graphically, yielding the known decomposition for the second-order
perturbative contribution

/ dﬁ/ de () (7'2) xb,xa = m @ (3.140)

with subscript ¢ indicating that we restrict ourselves to connected graphs only. Beyond this, our
theory allows to describe nonstandard systems with polynomial interactions (3.133) depending on both,
position and momentum, to higher order. Finally, we want to give the graphs for a four-interaction
22 p? to second order to see the variations of possible graphs in comparison with (3.140):

/dT1/ dry P (1) 3 (1) (), = 2 m m
=00 000+ 000 -+ 00
+16 A I S {{/r @ (3.141)

We see, that we have the same class of graphs already occurring in (3.140), however, with different
propagators connecting the vertices. Thus, both classes decay into subclasses with different multiplic-
ities, but the total numbers remain 72 and 24 for each type of class, respectively. Furthermore, all
graphs are vacuum-like graphs. Eventually, it is easy to construct the Feynman graphs for polyno-
mial correlations higher than second order by applying Wick’s rule or the Feynman rules given in this
section.

Due to its universality, the theory should serve as a basis for investigating physical systems with
nonstandard Hamiltonian via perturbation theory and its variational extension.

3.5 Particle Density in the Presence of External Sources

The particle density for a quantum statistical system is given by the diagonal elements of the density
matrix. This means, for an explicitly given system, that the knowledge of the density matrix implies
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the particle density and is obtained by

o5 H e

The normalization ensures

=

In order to calculate the particle density for the general action (3.1), we follow, however, a different
way, since extracting the diagonal elements of expression (3.36) requires the knowledge of the classical
path with periodic boundary conditions x(0) = x, = x(hf) = x; = x, which is determined by the
solution (we assume that there is only one) of the general Hamiltonian equations (3.16) and (3.17).
Rather, we utilize that the unnormalized particle density 9(x) can also be obtained from a path integral
over all periodic paths with an inserted § function §(x(7') — x), which restricts the end points of the
periodic paths to x. This position is any point of the loop-like path x(7) at the time 7/, but it is the
same position in space for all loops we integrate over. Thus all periodic paths touch each other in this
point. The unnormalized particle density for a system with an action (3.1) reads

i()fj-v] = § DUDIpa(x(r') — x) e AP, (3.144)

where the path integral measure is given by (3.3). Without any restriction of universality and as a
consequence of the time-translation invariance of actions of periodic paths, one could also have chosen,
for example, the points x(0) = x, or x(hf) = xp.

Similarly to (3.91), we rewrite the § function in Eq. (3.144) as

, d'k P R L
d(x(r") —x) = 2n) exp |ik’ x — 5, dr jo (T)x(7)| , (3.145)
with the artificial current
Jo(r) = ihk §(r — 7). (3.146)

After adding the second term in the brackets of the expression (3.145) to the action in the path integral
of Eq. (3.144), the Gaussian phase space path integral is easily solved. Introducing 2d-dimensional
phase space coordinates and currents

wl(r) = (XT(T),pT(T)) , n’ = (jT(T) +j0(7'),vT(T)) , (3.147)

and using the symmetric 2d x 2d-matrix (3.10), expression (3.144) can be written as

i) = [ e f
hp

1
X exp [——/ dT1/ drow? (11)S (11, 1) W (1) — ﬁ/ dTnT(T)W(T)] . (3.148)
0
The calculation is straightforward. After a quadratic completion and a rotation of the phase space
vectors which makes S diagonal, the 2d-dimensional path integral reduces to a 2d-fold product of a
single one. This yields

. . ddk ika 1 "o " T —1
Oo(x)[3, v] M exp 32 ; dm ; drom’ (11)S " (m,2)n(m)| . (3.149)

For further proceeding, it is practical to rewrite this expression with the help of the submatrices of S
as defined in (3.10), (3.11), and (3.13). The calculation of the inverse of S and its determinant is done
in Appendix 3A. We insert into Eq. (3.149) the components of

“10 oy = [ Gxx(TT) Grp(TyT)
S (T,T ) = < ng(Ta 7_/) GEP(T’ 7_/) ) (3.150)
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which are two-point functions satisfying periodic boundary conditions,

GRa(7,0) = GRs(r 1B),  GL(0,7) = GR(hB,7'),  r;s€(x,p). (3.151)

These two-point functions have the same shape as those for Dirichlet boundary conditions defined in
Eqgs. (3.26) and (3.38)—(3.40). We will discuss the properties of Green functions with periodic boundary
conditions later on. To proceed, we substitute jo(7) by the right-hand side of Eq. (3.146), which enables
us to perform the Fourier integral over k. This finally yields the general expression for the particle
density:

~ . M d/2 1 1 3
Gl v] = (27rh2ﬂ> : exp{—EXTGixl(T’,T')X}
\/det Dpp, det GB5 ! dety Gl (', )
1 [h8
XeXp{"ﬁ ) TG () 2ﬁ%/)dﬁy/ drs [§7 (1) G (1, )i (72)
+2jT(T1)G§p(T1,T2)V(T2) + VT(Tl)GFp,p(Tl,Tg)v(ﬁ)] }, (3.152)

where we have used the abbreviation

h3 h3
IT(r) =31 (1) G2 (1, 7') — VT(T)/ dry | dr GY

b o (T, 71) Dpx (11, 72)Goy (12, 7). (3.153)
0 0
It is necessary to remark that, after discretizing the Euclidean time interval [0, 28] into N + 1 pieces,
the dimension of the matrix G, (7', 7') remains d x d, since 7' is a fixed point of time within this
interval. Thus, its determinant is calculated only over the space components. The determinant of
the (N 4 1)d x (N + 1)d matrices GR;' and Dpp must be calculated, however, over all space-time
components. We have marked the difference by attaching the subscript “s” to the determinant in the
first case. For the evaluation of the determinants, it is useful to take into account, once more, the rules
regarding the physical dimension given after Eq. (3.36).

3.6 Partition Function with Currents

The partition function is, beside the density matrix, another fundamental quantity of statistics. In the
canonical ensemble of a closed thermodynamic system, it is related to the free energy F' via

Z=e"F, (3.154)

It is the free energy that we will devote considerable attention throughout this thesis. In a subsequent
part, we are going to discuss its properties at finite and zero temperature, and in a different form, the
role as effective classical potential.

Additionally, the partition function in the presence of external sources can also be used as a
generating functional of the correlation functions, similar to the proceeding in Section 3.2.3.

3.6.1 Partition Function in the Presence of External Sources

The quantum statistical partition function is defined as the trace over the unnormalized density matrix.
For a system governed by the action (3.1), this is the space integral of (3.152):

%uﬂzﬂm@mwz/wM@mﬂ

B \/ditSeXp [2_7112 /0 / dr' €T (7)S~! (r,7)C(7')] , (3.155)
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with CT(r) = (j7(r),vT(r)). Written in components of the matrix S~*(r,7), the functional (3.155)
reads

1
exp
\/det Dy det Gix!

1 [hs hB .
Zolj,v) = {5 [ an [ dn [ )62t i)
0 0

+3iT (1) G (11, 72)v(72) + VT (1) GR (11, m2)j(72) + VT(Tl)G;p)p(T17T2)v(T2)] } (3.156)

The Green functions are obtained as the elements of the inverse matrix S—!, which we investigate in
detail in Appendix 3A. They look similar to those obeying Dirichlet boundary conditions defined in
Eqgs. (3.26) and (3.38)—(3.40), but they must satisfy periodic boundary conditions (3.151) now:

—1
h3 hB

G (1,7 = lex(T,TI)—/ dr dry Dxp(T,Tl)D;;(Tl,TQ)Dpx(TQ,TI)] , (3.157)
0 0

B hB

Gop(r,T') = —/0 drm ; dry G (7, 71) Dyp (1, T2) D (72, 7'), (3.158)
, hB B

G (r,7) = [G%]" (') = — /0 dny [ dr Dy (7. 10) D1, )Gl 7). (3159)

hB hB
GEP(T,T') = DI;;(T,T')-I-/O d7'1---/0 dta

XD (7, 71) Dpx (11, 72) G2, (T2, 73) Dxcp (73, 74) D (74, ). (3.160)

oo
In the following, we specify these Green functions in the example of the one-dimensional harmonic
oscillator.

3.6.2 The Harmonic Oscillator Revisited

As an illustration, we calculate the partition function and the periodic Green functions of the one-
dimensional harmonic oscillator in the presence of external sources j and v (3.41). With the definitions
(3.42), where we now omit the boundary terms for D, (7,7") due to the periodicity of the paths to be
considered, the matrix S reads

2 .
S(r,7') = % <Jf‘%r Azf_fl > (r— 1), (3.161)

where 9, = 9/07. Since only periodic paths must be considered, it is useful to transform the system
to Fourier space. The completeness relation for the periodic eigenfunctions is

S(r— 1) = % S eminr=r), (3.162)

m=—00

with Matsubara frequencies wy, = 2mm/hS. Inserting this into (3.161), the Fourier representation of
the matrix S(r,7') becomes

-~ ; ,

S(r,r') = 7B m;m S (wpp e m (77T, (3.163)

where (o)

D Dyp(w
S(wm) = re wpiEms) 3.164
(tm) (Dpx(wm) Dyp > ( )
Thus, the elements of this matrix are
Mw? W 1

Dzz = 7 y Dmp(wm) = T = —Dpz(wm), Dpp = M—h (3165)
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Combining these components according to the expressions (3.157)—(3.160), we obtain the periodic two-
point correlation functions of the one-dimensional harmonic oscillator in Fourier space. Then, the back
transformation in time space yields

Grrw(nT) = %m;m Mﬁfw(r—rl) B zﬁw COShws(i';h_h;l/_zm/Q)’ (8.166)
GP, (7)) = —% mioo 7w%f‘imw2faw<ff’> = —z’Ma%_Ggm’w(r, ')

= - [oe B e - e

= ng w( ) =Gh, (7, 7), (3.168)
e, (r.7) = % m;m %Mi:’;e—iwm“—f’) = MG (')

= %m;MCOSh “’S(Kh_h;l/;hﬁ /2) (3.169)

For the calculation of the prefactor in (3.155), we use the eigenvalue representation of the determinant

of S

—1/2

[det 5]71/2 = H H Ak (W) = exp (—%Tr In S>

m=—00 k=+,—
_ exp{—% 3 [ln)\+(wm)+ln)\_(wm)]}. (3.170)

The eigenvalues of S(wy,) are determined from Egs. (3.164) and (3.165). According to our rule to
calculate determinants in units with i = 8 = M = 1, this leads to

At (W) = % (w?+1) + \/i (w?+1) — (w? +w?). (3.171)

n (3.170), we have also utilized the definition of the logarithm of matrices via the diagonal represen-
tation of S(wm,),

In Suiag (0m) = <1n A+0(wm) - A70(wm) ) _ (3.172)

The use of the diagonal representation is possible, since the trace appearing in (3.170) is independent
of the representation of S.
Inserting the eigenvalues (3.171) in (3.170), we find

[det 5]~/ =exp{—§ln H [w2+w,2n]}=exp{—lnw ml_zll w? + w2, } (3.173)

m=—00

The product in the latter expression diverges, and we regularize it, similar to (3.62), with respect to
the free particle. Thus, we obtain

w/2

1/2 _
[det ST = wsmhw/2

(3.174)

For vanishing currents, j = v = 0, this is just the partition function of the one-dimensional oscillator,

1

Z = 2,00,0] = [det 5]V = 5o,

(3.175)
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where we have chosen again physical units by demanding that the argument of sinh and the partition
function itself must be dimensionless. Combining this result with the exponential containing the
currents in Eq. (3.156), we obtain

1 1 hB hB
Z,l7 e _ 1 p Nt . p ' '
[, 0] Qsmhhﬂw/zexp{w / dr / dr' [§(7)GE (7, T () + (PG, o (1,7 o)

UG (7)) +0(1)GRy 7 ()] (3.176)

where the periodic Green functions of the harmonic oscillator are given in Eqs. (3.166)—(3.169).

3.7 Perturbative Expansion for the Free Energy
The free energy of a quantum statistical system is obtained as the logarithm of the partition function
1
F= —Ean. (3.177)

If we assume that the action of the system has the form (3.80), the partition function is given by the
phase space path integral

Z = 7{ DipDlg e~ APXI/R, (3.178)
and cannot exactly be solved in general. Considering the decomposition of the action ratio (3.80) into

an unperturbed term and the interaction, and expanding the Boltzmann factor with respect to the
potential V(p(7),x(7)) into a Taylor series, we obtain the perturbative expansion

P (—1)" h3 hB3
Z =2y+ Z (=1) dry --- dr, (V(p(m1),x(11)) - - V(P(T0), X(T0)))g - (3.179)
= nlhr o 0
The expectation values are defined with the help of the unperturbed path integral
(Y = Zy* ffpdppdx oo g Aolp /R (3.180)
where
Zo = Zo[0,0] = 7{dede e Aolp:xl/h (3.181)

is the partition function of the unperturbed system and its solution for vanishing currents is given
by (3.156) with j = v = 0. With the definition of the expectation values (3.180), the periodic Green
functions (3.157)—(3.160) can be expressed by the two-point correlation functions

G (1, 7)) = (2i(T)Ta (1)), (3.182)
ng7pl(7',7'l) = <xk(7—)pl(7.,)>07 (3.183)
G (1, 7)) = (pr(T)zi(T))y (3.184)
G (1) = (pr(T)Pi(T"))y - (3.185)
We introduce cumulants, where the first two are
(Vp(m),x(11)))o,. = (V(P(71),%(1)))g , (3.186)
(V(p(m), x(1))V(p(72),%(72)))g,. = (V(P(11),x(1))V (P(72),%(72))),

= (V(p(m),x(1)))o (V(P(72), X(72)))g ,  (3.187)

which enable us to find a suitable expression for the free energy from (3.179) by using (3.177). Thus,
the perturbative expansion for the free energy reads

Ipn
ot n'h

O 1\n h3 %63
F=F,— % Z (=1) /0 dry -+ -/0 dr, (V(p(m1)x(m1)) - - - V(p(Tn)X(Tn)»O’C, (3.188)
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with the free energy of the unperturbed system

1
Fy=—=
s

The free energy is the energy, which is available for a canonical thermodynamic system in a heat
bath with volume V' at temperature T to perform mechanical work. Thus, it is the portion of energy,
which remains when the inner system energy U is reduced by the entropic energy T'S. Assuming the
system to be closed (T' = const., V' = const.), the entropy S ensures that the number of possible
configurations of the system, expressed by the partition function Z, is maximal at equilibrium for a
certain temperature 7'. Since Z is at maximum for an equilibrated system, the free energy is minimum.
This is what Eq. (3.177) states. Thus, it is plausible that thermodynamics requires the relation

In Zo. (3.189)

F=U-TS. (3.190)

Since the inner energy U is identical with the entire system energy E, and the system goes over into its
ground state for zero temperature, the quantum mechanical limit 7' — 0 (8 — o0) of the free energy
is equal to the ground-state energy E(©) of the system:

lim F = E©, (3.191)

B—o0

This is easily seen for the example of the harmonic oscillator, whose free energy is F, =
(1/8)In2sinh ifw/2. For 8 — oo, sinh Afw/2 has the asymptotics exp(hSw/2)/2. Inserting this into
the free energy yields limg_, o F, = hw/2 = ES,O), which is the ground-state energy of the harmonic
oscillator with one degree of freedom.
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3A Algebraic Properties of Block Matrices

Consider a symmetric matrix consisting of block matrices A, B, and C,

S = <BAT g) =57 (3A.1)

where A and C are also symmetric matrices. In what follows we calculate the inverse of S. In a first
step, we decompose the matrix into a product of triangular matrices. For regular matrix C, this means
that C~! exists, we choose

I, B X 0
S =515, Sl:((?C)’ S2=<C_1BT Ic)’ (3A.2)

with the abbreviation
X=A-BC BT, (3A.3)

In (3A.2), we have also introduced the identity matrices I4 and I, which act in the same space as A
and C, respectively. The inverse of S is determined by

S™'=(8;8y) ' =8,18, 1. (3A.4)
Since SiS;l = Ig, 1 =1,2, we have to calculate
ap by _ az by _
S1 <C1 d1> =1Ig, S <02 d2> =Ig. (3A.5)
The identity matrix
_(I4 O
Is = ( 0 Io) (3A.6)

is composed of the identity matrices 4 and I. Thus, the determination of the elements of the inverse
matrices S; " and Sy ' becomes simple and we obtain

1 _ [ a by o X! 0 -1 _ as bsy - I4 —BC!
Sl - (Cl dl) - (_C—lBTX—l IC) 9 SQ - <02 d2> — < 0 C_l . (3A7)
Multiplying both in the order given in Eq. (3A.4) yields the desired inverse of S
_ X1 —_X-1pc-1
St = ( _C-'BTX-1 0! 4 ¢ 'BTX1BC! > . (3A.8)

For the calculation of the determinant of S, we use again the decomposition (3A.2). Then, the
determinant of S is given by the product rule for matrices

det S = det Sy det So = det C det X. (3A.9)
If C is singular but A regular, we can make use of another decomposition than (3A.2):
_ In 0 A B
s= (i 2) (2 2), A
with R
X=C-BTA"'B. (3A.11)

Then, the inverse of S turns out to be

g1 <A—1 +A'BX-'BTA-! —A-'BX! )

_X-1pTA-1 - (3A.12)

and the determinant is R
det S = det X det A. (3A.13)
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3B Generalized Correlation Functions

In this appendix we give the expectations for the correlation between a general position or momentum
dependent function and a polynomial up to order n = 4:
Position-Momentum-Coupling:

/dﬁ/ drs (F(#(1)) (7))

/0 dr /0 dry G2 (r1,m2) (F'(3(m)))™* " (3B.1)

= K---—-—----o N

/0 L / iy (F((r)) P(r))™ ™ = / Lin / dn {G,?,,(r2,r2> (F (@)™

+ [GxDp(TlvTQ)]Q <F”( (3B.2)

ST
—~
\]
SN
SN
=
]
-
&
Q2
—

Il
*
_|_
*

/01 dny /01 dry (F(#(r)) p* ()" = /OldT1 /01 dr2{3G5p(ﬁ,T2)GPDP(T2,T2)(F'(:z(n)))“’“

3 ~ Tp,Ta
+ [GxDp(Tl,TQ)] (F""(2(m)))"™ } (3B.3)
“Q N

/Oldﬁ /d (F(E(n)) ' (m))™" = / dr, / dr2{ raom)]” (F ()
)" G

2

+6 (G, (11,7 ) (72, 72) (F"(&(1)))™""

+[GD(r1, )] <F( #(m1)) zz} (3B.4)

Tl
* + * ’j/) ;
\</ //

Momentum-Position-Coupling:

/ dn / drs ( )i (r)) T = / dn / dr G, (r1,m2) (F"(3(m )™ (3B.5)

Y- -e

/ Cdn, / "ty (F(p(m)) 22(m))™" = / L / s {G5x<r2,r2> (F((r))™"

+ 6B ) (P ) | (3B.6)

Il
X
_|_
e
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/01 dri /01 dry (F(p(r)) & (1)) = /Oldn /01 d@{?,G,?x(ﬁ,Tg)ng(fg,@)<F'(ﬁ(ﬁ))>“7%
T [GE, (s )] (F™ )™ } (38.7)

i
w
i
!
+
*
Y

/01 an /01 dry (F(p(m)) & (r2)) """

/ dT1/ dTQ{ za 7'2,72)]2(}7(15(71)»%7%
+6 G0, (r1,7)]” GP, (72, 72) <F" (B(r))"™"

+ Gy (1, )" <F( i) } (3B.8)
C O e Q ey
Momentum-Momentum-Coupling:

/dﬁ/ dry (F(p(m1)) p(r2))*""" = / dﬁ/ dry G (r1,m3) (F'(3(m1)))™" (3B.9)

Yo

/0 an / s (F(3(r) 5 ()™ = / dn, / dn{ 72, m) (F((r)) ™"

+[GY, (n,Tz)] (F"(p(r1)))""" } (3B.10)

SIS
/Oldﬁ/oldf2 (F(p(r)) 7P (ra))*" = / dﬁ/ dTQ{se (r1,72) GP, (72, 12) (F' (3(m)))™* ™"

+ (G (r1, 7)) (F" ()™ } (3B.11)

/dﬁ/ drs { B (r))" e = /Oldrl Old { D (ray1)]? (F(5(r))) ™"
+6 [GD(r1,m)]” GD,(r2, ) (F"(5(m)))™""

+ (G (11, 7)] <F ) (ﬁ(ﬂ))>xb7% } (3B.12)

The case of position-position-coupling has already been calculated in Section 3.4.3.
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Effective Classical Theory for
Quantum Systems

We have shown in Section 3.3.1 that the quantum statistical density matrix can be expressed with the
help of a bilocal potential Ve c1(xp, X4), which makes the density matrix classically looking (3.83). In
the following we will develop a similar formalism for the quantum statistical partition function and the
free energy. Since the path integral counts all paths in phase space, which satisfy periodic boundary
conditions x(0) = x(hB), we first investigate the Fourier decomposition of such paths, and the influence
of the zero modes on the Green functions (3.157)—(3.160) [4,20]. Then, we consider the fluctuations of
paths with fixed end points.

After having separated the zero-frequency Fourier modes, which lead to diverging correlations in
the classical limit of high temperatures § = 1/kgT — 0, we finally turn to the derivation of the
smearing formula for restricted partition functions.

4.1 The Zero-Mode Problem

In order to illustrate the relation between zero-mode fluctuations and classical statistical properties
more obviously, we consider, once more, the example of the harmonic oscillator with the action

hB
A ] = /0 dr [%:g?(r)Jr%Mw?x?(r) : (4.1)

where the dot means differentiation with respect to 7.

4.1.1 Harmonic Fluctuation Width for Periodic Paths

According to Eq. (3.175), the partition function of the harmonic oscillator with the action (4.1) is
given by

1
_ —Aulzl/h _
Zo %Dxe 2sinh Afw/2 (42)
Correlation functions of local quantities Oy (x(71))O2(x(72)) - - - are then defined as
(O1(2(m1))Oa(x(72)) -+ +), = Z5, " %DI 01 ((71))O2(m(72)) - - € AL/P, (4.3)

53
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The path z(7) shall be periodic: z(0) = z(h3). Thus, it can be expanded into the Fourier series

z(1) = 2 + Z (2 e mT 4k e mT) . (4.4)

m=1

Here, we have separated the zero frequency component zy from the sum. Since the quantities z(7),
Zo, and the fluctuations must be real, there is the constraint =¥, = x_,,. The Matsubara frequencies
are as usual w,, = 2mrm/hpS.

Now, we integrate (4.4) over 7 and divide the result by i3. This entails

—— 1 (ks
z(r) = 7 ), dr z(1) = w0, (4.5)

where the contribution of the fluctuations around zy vanishes as a consequence of the orthogonality
relation

L )
Onm = —/ dr !\ “n=wWm)T 4.6
i/, (4.6)

From Eq. (4.5), we conclude that the temporal mean value of the path is identical with the zero-
frequency component xg. In the following, we investigate the violence of these zero-mode fluctuations.
First we calculate the particle distribution of the harmonic oscillator at a certain position z = (7).
This yields

1 x2
mewax—Mﬂ»w—Viﬁfm(—Zﬁ), (4.7)

where a is the Gaussian fluctuation width and is related to the Green function (3.166) for equal times:

@ =Gl (r,7) =

coth —. (4.8)

At zero temperature, this is equal to the square of the ground-state wave function of the harmonic
oscillator, whose width is

h
2 4.9
Qg IMw ( )
In the limit & — 0, from Eqgs. (4.7) and (4.8) we obtain the classical distribution
1 x?
Py(z) = exp| —=—5 1|, 4.10
i) = e (<5 (4.10)
with )
2 _
Qe = W (411)

The linear growth of this classical width is the origin of the famous Dulong-Petit law for the specific
heat of a harmonic system. The classical fluctuations are governed by the integral over the Boltzmann
factor

e~AMw?a*/2 (4.12)

in the classical partition function

—BMuw /2 (4.13)

7 _/"" _dz
T ) o 2r2 M

From this we obtain the classical distribution (4.10) as the expectation value

Pa(z) = (6(z — T) e AMwie /2 (4.14)

S dz
amﬂ=43[w7i%ﬁﬁﬂx_
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Which fluctuations cause the divergence of the Gaussian width (4.8) for high temperatures? In order
to answer this question we exclude from the path integral (4.2) the zero-frequency contributions, which
we have identified in (4.5) to be equal to the temporal mean value z(7) of the path. Thus, we define
for each zy new local expectation values

<5(:U0 —2(7)) 01 (2(11)) O (x(13)) - - .>w
(8(z0 —2(7) )

The original quantum statistical distribution of the harmonic oscillator (4.7) collects fluctuations of
xo = z(7) and those around zp, and can therefore be written as the convolution integral

(O1(2(11))O2(z(12)) - - )20 =

(4.15)

w

Plz) = [ " o Py, (2 — 20) Pa(10) (4.16)

over the classical distribution (4.10) and the local one

Pay() = (30 — a(r))2* = ﬁ—;— exp |-l ). (4.17)

Such a convolution of Gaussian distributions as in Eq. (4.16) leads to another Gaussian distribution
with added widths, so that the width of the local distribution is given by the difference

h hfw 2
al, =a’—a} = M <coth 5 hﬁw) , (4.18)

which starts out at the finite value (4.9) for T = 1/kpf = 0, and goes to zero for T' — oo with
the asymptotic behavior i5w/12 (see Fig. 4.1). The latter property suppresses all fluctuations around
x(7). Thus it turns out that the zero-frequency fluctuations xg lead to the divergence of the fluctuation
width for T"— o0o. Such violent fluctuations cannot be treated by perturbation theory. They must
be separated from the path integral (4.2) and integrated at the end of the calculation. Thus we shall
revise the perturbative treatment for the free energy in Section 3.7.

4.1.2 Fluctuation Width for Fixed Ends

Now we dwell on the question how the fluctuation width behaves for a system with fixed ends. We
consider the unnormalized density matrix g(zy,x,), which is expressed by the path integral

z(hB)=x
o(xh, xa) = / Dz e All/h (4.19)
z(0)=z,

over all paths with the fixed end points z(0) = z, and z(hf3) = x. For a harmonic oscillator (4.1),
the path integral (4.19) can easily be done, with the result

- Mw Mw N 9
Al s s —_—— h A, -2 . 4.20
0u(Tp,T0) = 4 | STy sinh i exp { 2 sinh o [(z; + z2) cosh hBw — 2zpx,] } (4.20)

At fixed end points xp, z,, the quantum mechanical correlation functions are

z(hB)=zy
Ip,T 1 — x
(01 (2(n) Os(a(m)) " = o= / Dz O1(x(11)) Oz(w(r)) -+ e~ BN (4.21)
’ z(0)=zq4
and the distribution function is found to be
_ Ty Lo __ 1 (ZE - 3301(7—))2
plz,7) = (0(z — (1)) " = i) exp [ 202 (r) . (4.22)
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1.0 ‘ —

12 ’

S/ fluctuation
S/ width

FIGURE 4.1: Temperature dependence of fluctuation widths of any point z(7) on the path in a harmonic
oscillator (I? is a square length in units of i/ Mw). The quantity a® (dashed) is the quantum mechanical width,
whereas aio (dash-dotted) is the width after separating out the fluctuations around the path average xo. The
quantity a2 (long-dashed) is the width of the classical distribution, and b? (solid curve) is the fluctuation width
at fixed ends.

The classical path of a particle in a harmonic potential is given by Eq. (3.47), and the time-dependent
width b2(7) is found to be

1 (r) = G2, (r,7) =

(4.23)

{coth BB — Coshle @7 = h5) }

h
2Mw sinh Afw
and is thus identical with the harmonic equal-time Green function (3.54) for Dirichlet boundary con-
ditions. Since the Euclidean time 7 lies in the interval 0 < 7 < Af, the width (4.23) is bounded
by

h hfw
2 < —— tanh — 4.24
(1) < g tanh "0, (424
thus remaining finite at all temperatures. The temporal average of (4.23) is
h 1
dr b (1 — thhfw — — ). 4.25
T he / = 2Mw (CO pe hﬁw) (4.25)

Just as aio, this goes to zero for T — oo with an asymptotic behavior /fw/6, which is twice as big
as that of a%o (see Fig. 4.1). Because of the finiteness of the fluctuation width b% at all temperatures,
which is similar to that of aio, the special treatment of T = zy becomes superfluous for paths with
fixed end points xp, 2,. While the separation of xg was necessary to deal with the diverging fluctuation
width of the path average T, paths with fixed ends have fluctuations of the path average, which are
governed by the distribution

pmm,xa)s(a(xo—f»zb’“=#exp{—i[xo—é(xbm) 2 an h’w—“’} } (4.26)

/2702, 202, hBw 2
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FIGURE 4.2: Temperature dependence of the width of fluctuations around the path average zo = T at fixed
ends. For comparison we also show the width a’, of Fig. 4.1. The vertical axis gives these square lengths [* in
units of i/Mw again.

with the width . 5 .
w
b2, = 1- tanh
T MBw? || hBw 2 |7
which goes to zero for both limits § — oo and § — 0 (see Fig. 4.2). At each Euclidean time, z(7)
fluctuates narrowly around the classical path x.(7) connecting x and z,. This is the reason why we
may treat the fluctuations of T = zg by perturbation theory, just as the other fluctuations.

Thus there is no need for particularly treating certain fluctuations for quantities with fixed bounds.

(4.27)

4.2 Restricted Partition Function and Effective Classical
Hamiltonian

As was shown in the previous section, a separate treatment of the zero-frequency fluctuations for
periodic paths is necessary. We illustrate how this separation leads to a reformulation of quantum
statistics, which is then governed by an effective classical Hamiltonian.

We rewrite the partition function

Z = 7{ DlaDlp e~ AlPXI/R (4.28)
for an arbitrary system as
d?zodpo d4zodipo
7 = —BHeg (Po,X0) — / ZP0X0 4.99
/ (2rh)d © (2rh)d ’ (4.29)

where we have introduced the restricted partition function

27 = (21t)" § D3 D"pd(pa ~ PP (xa X)) e AP, (4:30)
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From (4.29) follows that the effective classical Hamiltonian Heg(po,Xo) and the restricted partition
function ZPo*e are related by

1
Hemr(Po,X0) = ~3 In ZPoxo. (4.31)

This expression for the effective classical Hamiltonian has a similar form like a free energy, which is
here local in phase space. Thus, we can also write

FPo¥xo = Heﬁ‘ (po, Xo). (432)

Now we turn to the general Gaussian action (3.1), which we will use in the form (3.8), and calculate
the restricted functional

Z30[C] = (2rh)! 7{ D2y §(wo — w(T))

hB hB 1 [h8

X exp —5/ dr | dr'wT(r)S(r,7")w(r') — 7 dr CT(r)w(r)|, (4.33)
0 0 0

with w”(7) = (x"(7),p" (7)) and CT(r) = (j"(r),v"(r)). The temporal mean value of w(r) is

defined as before, w(r) = foﬁ%r w(r)/hB. The symmetric matrix S is given by (3.10). There is no

difficulty to calculate Zj™°. Along similar lines as in Section 3.5, we express the ¢ function by its

Fourier transform

2d h3
d(wo —w(r)) = / %exp [zwok ’11 ; dr ng(T)] ) (4.34)

where Cj is a constant current vector,

Co = -k. (4.35)

The functional (4.33) becomes

i Pk
23°1€1 = @at)? [ et § D
m

(2m)
1 (18 %] 1 8
X exp —5/ dr dr'wT(r)S(r, 7 w(r') — = dr CT(r)w(r)|, (4.36)
0 0 0
where we have introduced the current
C(r) = C(7) 4 Cy. (4.37)

The path integral is calculated on equal footing as for the particle density (3.144) and yields an
expression similar to the partition function (3.155). We obtain

w 2mh)4 2k v 1 -
Zy°|C] = ( det)S (27r)2de o Kexp {2—712/0 / dr' CT(r)SY(r ,T')C(T')} , (4.38)

with the 2d-fold k integral still to be done. Re-expressing the current C by (4.37) and inserting
(4.35), the integrations over k turn out to be simple Gaussian ones. Executing the usual procedure
of completing the square, rotation in phase space to find a diagonal representation to decouple the
k-components, and translation of the components of k enables us to solve the k integrals, yielding

1 g R 1
wo _ _ J _ T
Zy°|Cl = —idetps T exp { —5Wo B “wy 6/0 / dr' C Y, 7B “wy
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Xexp{%/o /dr cT(r [ (r,7") /dn/ dry S 771)3'151(72,#)}0(7')}.

(4.39)

We have introduced the 2d x 2d matrix

hp hp
B' = / dr [ dr' S7'(r,T), (4.40)
0 0

which is constant in time and therefore its determinant is calculated in phase space only. This differs
from the calculation of the determinant of S, which is done in phase and time space. A similar case
has been considered below Eq. (3.153).

It is revealing to continue the discussion of the expressions (4.39) and (4.40) in frequency space.
We write the matrix S(r,7') and its inverse in Fourier space as

' 1 1« —iwm (T—7") iwm (T—7")
= —Sp+— ) ) , 4.41
S(rr) = 355+ 73 m§::1 [S(wm)e +S(~wm)e ] (4.41)
1 1 & : / , :
-1 N — _— qg-1 - -1 —iwm (T—7") —1/_ twm (T—7") 4.49
ST = 355 + m§::1 (57 wn)e + 57 (~wm)e |, @4

where we have abbreviated the zero-frequency components by Sy = S(wy, = 0) and S5 = S~ (W =
0), respectively. In particular, we are interested in time integrations of S~ (7, 7'). Inserting the Fourier
decomposition the integration over one time argument yields the result

hB
dr S~ (r,7') =S5, (4.43)
0
which is independent of time. This is obvious, since S~!(r,7') = S~'(r — ') is invariant under
translations of time. Thus, an additional integration of (4.43) over 7 only contributes a “volume
factor” hg:

/ / dr S™'(r,7') = hBS, ' = B'. (4.44)
0
An alternative representation is to use temporal mean values:
- h3 hB
S—(r,7") = / dr | dr' S~ (r, T —S_ 4.45
) = |, o [ (r7) = 755 (4.45)

These results are very useful to simplify the expression (4.39). We obtain

1 1 1 e
Zy°[Cl = exp —5/ / dr' wl'S(r, " ywo — ﬁ/ dr C' (1)wg
\/detps So~" det S 0 0

]' ‘W0 !
XeXp{Q_fiQ/O / dr' CT(r)G™ (r, T)C(T)}, (4.46)

where the 2d x 2d matrix G%°(r,7') of Green functions is defined as

(4.47)

_ PoX ! PoX !
GYo(r,m') =S Y r 1) - S I(r,7) = (Gxg‘ °(r, ) Gy (T T )> .

G (r, ) GEE™(r,7)
The elements are d x d block matrices and identified with the Green functions (3.157)—(3.160) with
excluded zero-frequency mode:

CE(r,7) = Gl 7') = Ganlr,7) = Gl ) = G

xx,cl?

(4.48)
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GRo(r,7') = G (7,7') — Gp(r,7') = Gou (1, 7") — Gy o1, (4.49)
Gp(1,7") = Gpu(1,7') — Gpx (7, 7') = GRi (1, 7') =GPy o = GRp (7', 7), (4.50)
GBY(1,7') = GBu(1,7") = Gpp(7, ') = G (1, 7') = G 1 (4.51)

where we have used the identity of the zero-frequency component of the quantum statistical Green
functions and the classical fluctuation width. As a consequence of the relations (4.31) and (4.32), and
the zero-temperature limit (3.191), the restricted partition function (4.46) is the fundamental quantity,
which enables us to calculate the free energy and the effective classical Hamiltonian of any system with
Gaussian action. For later use, we introduce expectation values in phase space with the zero-frequency
modes excluded in a similar manner as in Eq. (4.15). Defining the restricted partition function as the
functional (4.46) with vanishing currents,

Zy0 = 7300 = 1 exp {—%/ / dr' wi S(r, 7 )wo} , (4.52)
\/ detpg So~!det S 0

the restricted expectation value for any quantity, which depends on position and/or momentum is
expressed as

(---yPoX0 = (27R)4 [ Zwo]f 7{7)2%)5 (wo — w(7)) --- exp [——/ / dr' wl(r)S(r TI)W(TI)]

(4.53)
Similar to the method of calculating expectation values and the results obtained in Section 3.2.3, we
find that the one-point function is
)P = w, (4.54)

and the two-point functions are evaluated as
(Wi (T)wi (T1))PF0 = GROX0 4w mwo,n, m,n=1,...,2d . (4.55)

This makes it possible to rewrite the Green functions (4.48)—(4.51) as two-point correlation functions

GRI (1, 7') = (@ (N T ()P, GRepe(r, ') = (i (r)pu (7)),

TR PrD1
(Br(T)@ (7))P°%°

Gpgxg( I) — <i'k(7')ﬁl (TI»POXO, Gngg( T, I)

TrP1 PrZ1

kil=1,...,d, (4.56)

with abbreviations

x(1) = x(1) =x0,  P(1) =p(7) — Po- (4.57)
For the calculation of an expectation value of a quantity, which is a nonpolynomial function F' of x
or p, we need the smearing formula. The derivation of this multiple convolution integral follows along
a similar procedure as presented in Section 3.3.2 for the density matrix. We do not repeat it here
and give only the result for the general case of a product of N + M functions, where N of which may
depend on x and M on p:

(Fi(x(m1))Fa(x(72)) . Fn (%(78)) En 41 (P(TN41) Fiv2 (P(Tv42)) - - Fvaear (X(Tvea ) 7

- ﬁ [ o ptx)| mfi[ [é’%’; From(on)| exo { = gyTI6P Iy} a9

where y is the (N + M)d-dimensional vector
y" = (x1(n1) = %o, -, xn(7n) — X0, P1(TN41) = P, - - - PM(TN4M) — Po) - (4.59)
The (N + M)d x (N + M)d-matrix
GPoxo — ( 4 B ) (4.60)

BT C
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is composed of the Nd x Nd-matrix A and the Md x Md-matrix C,

GRY*0 (11, 11) GRYXO(71,75) -+ GRYX(1y,7N)
GRXo (11, m2) GRY*O(T1,71) - GRYC(7T2,7TN)

A= ) . _ _ , (4.61)
GPX(1y,7N) GBI (19, 7N) --- GRIXO(71,71)
GRoxo(r,m1) GRY°(m,m2) -+ GR°(T1,Tar)
Gpoxo(rl 7—2) Gpoxo(rl 7—1) GPOXO(T2 TM)

O — PP - ? PP - ? ‘ PP - ? , (462)
GRoxo (11, 7ar) GBY (T2, Tar) -+ GRS (1, 71)

as well as the Nd x Md-matrix

_GEE,XO(Tl,Tl) —Ggf,xo(ﬁ,Tz) —GE%XO(Tl,TM)
—GRp(re, 1) —GRP (T, 1) - —GRY (72, ™)

B= _ _ _ _ _ (4.63)
—GRYO(Tn, 1) —GRYO(Tn, o) o —GRY (TN, Tar)

The inverse and the determinant of the block matrix GP°*° are calculated as described in Appendix 3A.

We calculate now the appropriate Green functions and the partition function (4.46) for the harmonic
oscillator. The calculation of the Green functions with the zero-frequency components excluded is
simply done, since we know the complete Green functions for the harmonic oscillator from Eqs. (3.166)—
(3.169). Subtracting the twice-averaged terms, we obtain

1
Glm)omgi?) (Ta TI) = ng,w(Ta TI) - MB&)Q, (464)
Gra(rr) =GR, (1,7, (4.65)
Ggom,xug (T’ TI) - ng,u} (Ta TI): (466)
M
o (7)) = Gu(nt) = 5 (4.67)

The zero-frequency modes of the mixed two-point functions vanish. Thus, the matrix of the zero

components simply reads
Mh~'w? 0
So = < 0 (hM)~! > . (4.68)

The determinant is easily calculated and yields det,s Sop = w? in units, where h = 3 = M = 1. Together
with the result (3.175) for the partition function of the harmonic oscillator, this gives the restricted
partition function
hBw I 1 2 2
ZPoTo — Bl =—=+=-M 4.69
v = Ysinh w2 eXp[ h <2M T )| (4.69)
where the exponential contains the effective classical Hamiltonian of the harmonic oscillator, Heg ,, =

pe/2M + Mw?x3/2. Performing the integral over the zero-frequency components z and po leads to
the known partition function (3.175) of the harmonic oscillator.
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CHAPTER O

Quantum Statistics

The free energy of a quantum statistical system with polynomial interaction can be considered as a
functional of the free correlation function (3.182). As such it obeys a nonlinear functional differential
equation which can be turned into a recursion relation [21-23]. This is solved order by order in
the coupling constant of the interaction to find all connected vacuum diagrams with their proper
multiplicities. The procedure is applied here to a system with quartic interaction as it occurs for the
anharmonic oscillator or the double well. The results obtained with this method are, of course, the
same as for a scalar field theory with a ¢* self interaction.

All Feynman diagrams with external lines are obtained from functional derivatives of the connected
vacuum diagrams with respect to the free correlation function. The recursive graphical construction
can efficiently be automatized by computer algebra with the help of a unique matrix notation for the
Feynman diagrams [23].

5.1 Introduction

Within the path integral (3.178) for the partition function Z we have expanded the Boltzmann factor
of the action into a Taylor series with respect to the potential and obtained the general perturbative
expansion (3.188) for the free energy F' of a quantum statistical system. The perturbative coefficients
are mainly determined by the time integrals over the connected correlation functions of the poten-
tial. As known from the “ordinary” Wick rule, presented for the density matrix in Section 3.4.1,
these correlation functions can easily be decomposed into products of two-point functions, if the po-
tential is of polynomial type. For the expansion of the free energy (3.188), the two-point correlation
functions (3.182)—(3.185) must be used.

Since the number of contributions to the perturbative coefficients rapidly increases from order to
order, it is troublesome to write them down for high orders. Moreover, many contributions are iden-
tical. The number of such repetitions is called the multiplicity of this contribution. It was a main
simplification, when Feynman introduced his pictorial representation. The two-point correlation func-
tions were displayed by lines with ends representing the time arguments of these two-point functions.
Lines with joint end points are connected. The joint point is integrated over and is called vertex. In
diagrams for interacting quantum fields, particles hit each other in these interaction points. Examples
for the decomposition of a second-order perturbation contribution for a quartic potential into Feynman
diagrams are given in Eqgs. (3.140) and (3.141).

In order to circumvent the use of the lengthy analytic description of perturbative contributions
for the construction of Feynman diagrams, one can approach from a topological point of view. In
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any order, which is in our case characterized by the number of vertices, all topologically different
diagrams having the appropriate number of vertices and obeying the condition that the number of
legs connected by a vertex is identical with the polynomial degree of the potential contribute to the
perturbative coefficient of this order. The multiplicity of each Feynman diagram follows combinatorially
from its symmetry interchanging its lines and vertices. Although the topological point of view is a main
progress in comparison with the naive analytic description of perturbative coefficients, it remains a
tedious task to determine all possible topologically different diagrams and their correct multiplicities of
a high-order perturbative coefficient. There exist various convenient computer programs, for instance
FeynArts [24,25] or QGRAF [26], for constructing and counting Feynman graphs in different field
theories. These programs are based on a combinatorial enumeration of all possible ways of connecting
vertices by lines according to Feynman’s rules.

We develop an alternative systematic approach to construct all topologically different Feynman
diagrams with their multiplicities. It relies on considering a Feynman diagram as a functional of its
graphical elements, i.e. its lines and vertices. Functional derivatives with respect to these elements are
represented by graphical operations which remove lines or vertices of a Feynman diagram in all possible
ways. With these operations, our approach proceeds in two steps. First the connected vacuum dia-
grams are constructed as solutions of a graphical recursion relation derived from a nonlinear functional
differential equation. In a second step, all connected diagrams with external lines are obtained from
functional derivatives of the connected vacuum diagrams with respect to the free correlation function.
The recursion relation enables one to automatize the process of constructing Feynman diagrams and
to count the multiplicity with the help of an efficient computer algorithm which is based on a practical
matrix notation for these diagrams [23].

In the following, the graphical recursion relation for the free energy of a system with z* potential
is derived and graphically solved.

5.2 Systematic Construction of Feynman Diagrams for the
Quartic Oscillator Free Energy

In order to illustrate the power of the recursive graphical construction for Feynman diagrams for
quantum statistical systems with polynomial interaction, we consider the quartic oscillator in one
dimension, whose thermal fluctuations are controlled by a path integral

Z = ?{Dx e~ ALl (5.1)

over the Boltzmann factor containing the action

1 _
Alz] = —/ 211Gy sy + % Vigsa 21222324 (5.2)
2 J12 4l J1234

with some coupling constant g. In this short-hand notation, where we have also used natural units
(h = kg = M = 1), the argument of the coordinate x, the bilocal kernel G—!, and the quartic
interaction V' are indicated by simple number indices, i.e.

1
z; = x(1y), /E/dn, o =GN (1, m), Vissa =V(ni,72,73,74). (5.3)
i Jo

The kernel is a functional matrix G~!, while V is a functional tensor, both being symmetric in their
indices.

In the following we shall leave G~! and V completely general, except for the symmetry with respect
to their indices, and insert the physical values

82
G71(71,7'2) = <_W -|-w2> (5(7’1 - T2), V(Tl,Tg,Tg,T4) = (5(7’1 - T2)($(T1 - T3)($(T1 - T4) (54)
1
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at the end.

We may evaluate the partition function (5.1) perturbatively as a power series in the coupling
constant g. From this we obtain the functional W = In Z, which is related to the free energy F' of the
system by W = —fF, as an expansion

L =9\ o
w=> = o) w7 (5.5)
— p! !

The coefficients W () may be displayed as connected vacuum diagrams constructed from lines and
vertices. Each line represents a free correlation function

1

2 = G12 s (56)

which is the functional inverse of the kernel G~! in the energy functional (5.2), defined by

/G12 G;; = (513 . (57)
2

The vertices represent an integral over the interaction

> = /1 Vioss - (5.8)

234

To construct all connected vacuum diagrams contributing to W) to each order p in perturbation
theory, one connects p vertices with 4p legs in all possible ways according to Feynman’s rules which
follow from Wick’s expansion of correlation functions into a sum of all pair contractions. This yields
an increasing number of Feynman diagrams, each with a certain multiplicity which follows from combi-
natorics. In total there are 4!Pp! ways of ordering the 4p legs of the p vertices. This number is reduced
by permutations of the legs and the vertices which leave a vacuum diagram invariant. Denoting the
number of self, double, triple and fourfold connections with S, D, T, F, there are 2!, 210 317 41F leg
permutations. An additional reduction arises from the number N of identical vertex permutations,
where the vertices remain attached to the lines emerging from them in the same way as before. The
resulting multiplicity of a connected vacuum diagram in the ¢* theory is therefore given by the for-
mula [5,27)

417 pl

E=0 _
M S 2ISHDZITYIF N’

(5.9)

where £ = 0 records that the number of external legs of vacuum diagrams is zero. The diagram-
matic representation of the coefficients W () in the expansion (5.5) of the quantity W is displayed in
Table 5.1 up to five loops [28-30]. For higher orders, the factorially increasing number of diagrams
makes it more and more difficult to construct all topologically different diagrams and to count their
multiplicities. In particular, it becomes quite hard to identify by inspection the number N of identical
vertex permutations. This identification problem is solved by introducing a unique matrix notation
for the graphs [23].

In the following, we shall generate iteratively all connected vacuum diagrams. We start by identi-
fying graphical operations associated with functional derivatives with respect to the kernel G~*, or the
propagator G. Then we show that these operations can be applied to the one-loop contribution of the
free partition function to generate all perturbative contributions to the partition function (5.1). After
deriving a nonlinear functional differential equation for W, its graphical solution yields all connected
vacuum diagrams order by order in the coupling strength.

5.2.1 Basic Graphical Operations

Each Feynman diagram is composed of integrals over products of free correlation functions G and
may thus be considered as a functional of the kernel G~!. The connected vacuum diagrams satisfy a
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TABLE 5.1: Connected vacuum diagrams and their multiplicities of the z* theory up to five loops. Each diagram
is characterized by the vector (S, D, T, F; N) whose components specify the number of self, double, triple
and fourfold connections, and of the identical vertex permutations leaving the vacuum diagram unchanged,

respectively.
P w®)
#1
1 3
(2,1,0,051)

> o OO0

(0,0,0,1;2) (2,1,0,0;2)

#4 #7
3 1728 @ 3456 1728 2592 m
(0,3,0,0;6) (1,0,1,0;2) (3,0,0,0;6) (2,2,0,0;2)
#8 #9
4 62208 248832 55296 497664 165888
(0,4,0,0;8) (0,2,0,0;8) (0,0,2,0;4) (1,2,0,0;2) (2,0,1,0;2)

#13
248832 165888 248832 62208 124416
(2,1,0,0;4) (1,1,1,0;2) (3,1,0,0;2) (4,0,0,0;8) (2,3,0,0;2)

certain functional differential equation, from which they will be constructed recursively. This will be
done by a graphical procedure, for which we set up the necessary graphical rules now. First we observe
that functional derivatives with respect to the kernel G~! or to the free propagator G correspond to
the graphical prescriptions of cutting or of removing a single line of a diagram in all possible ways,
respectively.

Cutting Lines

Since z is a real scalar coordinate, the kernel G~! is a symmetric functional matrix. This property
has to be taken into account when performing functional derivatives with respect to the kernel G,
whose basic rule is
3Gy
6Gai

1
= 5 {513542 + 514532} . (510)

From the identity (5.7) and the functional chain rule, we find the effect of this derivative on the free
correlation function
0G12

-2 = G13G42 + G14GS: 5.11
e, 13Ga2 14G32 (5.11)
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which has the graphical representation

5
6G 3!

1 —— 2 = 1 2 4+ 1 2 . (5.12)

Thus differentiating a propagator with respect to the kernel G~! amounts to cutting the associated
line into two pieces. The differentiation rule (5.10) ensures that the spatial indices of the kernel are
symmetrically attached to the newly created line ends in the two possible ways. When differentiating
a general Feynman integral with respect to G~', the product rule of functional differentiation leads to
a sum of diagrams in which each line is cut once.

With this graphical operation, the product of two fields can be rewritten as a derivative of the
action with respect to the kernel
0A[x]
0GT
as follows directly from (5.2) and (5.10). Applying the substitution rule (5.13) to the functional integral
for the fully interacting two-point function

1T = 2 (513)

G12 = % /DJL‘ T1T Q_A[x] s (514)
we obtain the fundamental identity
ow
Gy =-2——. 5.15
12 (SG;; ( )

Thus, by cutting a line of the connected vacuum diagrams in all possible ways, we obtain all diagrams
of the fully interacting two-point function. Analytically this has a Taylor series expansion in powers
of the coupling constant g similar to (5.5)

G —il =9} g (5.16)
T L\ 4l 12 '

p=0

with coefficients
SW (P
6GT

The cutting prescription (5.17) converts the vacuum diagrams of pth order in the coefficients W in

Table 5.1 to the corresponding ones in the coefficients Gg’;) of the two-point function. The results are

shown in Table 5.2 up to four loops. The numbering of diagrams used in Table 5.2 reveals from which
connected vacuum diagrams they are obtained by cutting a line.

For instance, the diagrams #15.1-#15.5 and their multiplicities in Table 5.2 follow from the con-
nected vacuum diagram #15 in Table 5.1. We observe that the multiplicity of a diagram of a two-point
function obeys a formula similar to (5.9):

G =2 (5.17)

417 pl 21

E=2 __
M T IS+D3IT N

(5.18)
In the numerator, the 4!P p! permutations of the 4p legs of the p vertices are multiplied by a factor 2! for
the permutations of the two end points of the two-point function. The number N in the denominator
counts the identical permutations of both the p vertices and the two end points.

Performing a differentiation of the two-point function (5.14) with respect to the kernel G™! yields

(5G12

-2
6G3)!

= G134 — G12G3y, (5.19)
where G234 denotes the fully interacting four-point function

1
Gz = 7 /Dm Ty Toxary e A (5.20)
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TABLE 5.2: Connected diagrams of the two-point function and their multiplicities of the z* theory up to four
loops. Each diagram is characterized by the vector (S, D,T; N) whose components specify the number of self,
double, triple connections, and of the combined permutations of vertices and external lines leaving the diagram

unchanged, respectively.

(p)
p Giy
#1.1
1 12
(1,0,0;2)
#2.1 #3.1 #3.2
2 192 288 8 288
(0,0,1;2) (1,1,0;2) (2,0,0;2)
#4.1 #5.1 #5.2 #5.3
3 20736 @ 6912 @ 20736 % 13824 @Q
(0,2,0;2) (0,0,1;4) (1,1,0;2) (1,0,1;1)
#6.1 #6.2 #7.1
10368 10368 10368 20736
(2,0,0;4) (3,0,0;2 (1,2,0;2) (2,1,051)
#8.1 #9.1 #9.2 #10.1 #10.2
4 995328 @ 1990656 1990656 «@ 221184 @—@ 663552
(0,3,0;2) ,1,0;4) 2,0;2) (0,0,2 (0,1,1;2)
#11.1 #11.2 #11.3 #11.4 #12.1
995328 @ 1990656 995328 3981312 %L 995328
(0,2,0;4) (1,2,05 1) (1,2,052) (1,1,051) (2,1,0;2)
#12.2 #12.3 #12.4 #13.1 #13.2
331776 Q@Q 663552 Qm 663552 @> 995328 995328
(2,0,1;2) (2,0,151) (1,0,152) (2,0,0;4) (1,1,054)
#13.3 #14.1 #14.2 #14.3 #14.4
1990656 8@ 995328 663552 663552 g@ 331776
(2,1,0;1) (1,2,0;2) (1,1,151) (1,0,1;2) (0,1,1;4)
#15.1 #15.2 #15.3 #15.4 #15.5
995328 497664 197664 995328 995328
(3,1,0;1) (3,1,0;2) (2,1,0;4) (2,1,0;2) (3,0,0;2)
#16.1 #16.2 #17.1 #17.2 #17.3
497664 <>8<> 497664 O O O O 497664 995328 497664 %
(3,0,0;4) (4,0,0;2) (1,3,0;2) (2,2,0;1) (2,2,0;2)
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The term G12G34 in (5.19) subtracts a certain set of disconnected diagrams from G1234. By subtracting
all disconnected diagrams from G234, we obtain the connected four-point function

Gis34 = Graza — G12G3a — G13Gas — G14Gas (5.21)
in the form
c 6G12
Glags = =2 —7 — G13G2 — G14Go3. (5.22)
0G5

The first term contains all diagrams obtained by cutting a line in the diagrams of the two-point-function
G1>. The second and third terms remove from these the disconnected diagrams. In this way we obtain
the perturbative expansion

1234 = Z i (T) Gl (5.23)
—1 p: .
p
with coefficients
.(p) IGH & (-0 4(0) | P—0) 4(0)
Gy = —2 sa1 Z <q> (G13 Gy + Gy "Gy ) - (5.24)
34 q=0

They are listed diagrammatically in Table 5.3 up to three loops. As before in Table 5.2, the multiple
numbering in Table 5.3 indicates the origin of each diagram of the connected four-point function.
For instance, the diagram #11.2.2, #11.4.3, #14.1.2, #14.3.3 in Table 5.3 stems together with its
multiplicity from the diagrams #11.2, #11.4, #14.1, #14.3 in Table 5.2.

The multiplicity of each diagram of a connected four-point function obeys a formula similar to
(5.18):

417 pl 4!
218+D3IT N °

This multiplicity decomposes into equal parts if the spatial indices 1,2,3,4 are assigned to the four
end points of the connected four-point function, for instance:

1 3 1 2 1 2
62208 X ¥ ¥ = 20736 2>@Q<4 + 20736 3>@Q<4 + 20736 4>@Q<3

(5.26)

MP= = (5.25)

Generalizing the multiplicities (5.9), (5.18), and (5.25) for connected vacuum diagrams, two- and four-
point functions to an arbitrary connected correlation function with an even number E of end points,

we see that
4!7 p! B!

E _
M= 215+D 31T 4I1F N’

(5.27)

where N counts the number of permutations of vertices and external lines which leave the diagram
unchanged.

Removing Lines

We now study the graphical effect of functional derivatives with respect to the free propagator G,
where the basic differentiation rule (5.10) becomes

5G 1
5 G;i =3 {613642 + 014032} . (5.28)

We represent this graphically by extending the elements of Feynman diagrams by an open dot with
two labeled line ends representing the ¢ function:

1—2 = 612 . (529)
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TABLE 5.3: Connected diagrams of the four-point function and their multiplicities of the z* theory up to four
loops. Each diagram is characterized by the vector (S, D,T; N) whose components specify the number of self,
double, triple connections, and of the combined permutations of vertices and external lines leaving the diagram
unchanged, respectively.

<, (p)
p G1234
#1.1.1
1 u X
(0,0,0;24)
#2.1.1, #3.1.1 #3.1.2, #3.2.1
9 1152,576 ><>< 1152,1152 @
1728 2304
(0,1,0;8) (1,0,0;6)

#4.1.1, #7.1.1 #4.1.2, #5.1.1, #5.2.1 #5.1.2, #5.3.2
3 41472,20736 m 165888,41472,41472 27648,27648 %

62208 248832 55296
(0,2,0;8) (0,1,0;4) (0,0,1;6)
#5.2.2, #6.1.1 #5.2.3, #5.3.1, #7.1.2, #7.2.1 #6.1.2, #6.2.2, #7.2.2
82944,41472 82944,82944,41472,41472 @ 20736,20736,82044 QQ
124416 248832 124416
(1,0,0;8) (1,1,0;2) (2,0,0;4)
#6.1.3, #6.2.1 #7.1.3, #7.2.3
41472,41472 M 41472,41472
82944 82944
(2,0,0;6) (1,1,06)
#8.1.1, #17.1.1 #8.1.2, #9.2.1, #10.2.1 #8.1.3, #11.1.2, #11.3.1
4 1990656,995328 m 3981312,3981312,3981312 m 7962624,1990656,1990656
2085984 11943936 11943936
(0,3,0;8) (0,2,0;4) (0,2,0;4)
#9.1.1, #13.2.1 so.12 #9.1.3, #9.2.3, #11.1.1, #11.4.1
3981312,1990656 % X 15925248,15925248,7962624,7962624
5971968 7962624 47775744
(0,1,0;16) (0.0.0:24) (0,1,0;2)
#9.2.2, #14.1.1, #14.4.3 #10.1.1, #10.2.3, # 14.2.1, #14.4.2 #10.2.2, #12.4.1
7962624,1990656,1990656 2654208,2654208,1327104,1327104 2654208,1327104 @
11943936 7962624 3981312
(0,2,0;4) (0,1,1;2) (0,0,1;8)
#11.1.3, #11.2.1 #11.2.2, #11.4.3, #14.1.2, #14.3.3 #11.2.3, #11.4.2, #13.2.2, #13.3.1
3981312,3981312 2 E 7962624,7962624,3981312,3981312 7962624,7962624,3981312,3981312
7962624 23887872 23887872

(0,2,0:6) (1,1,0:2) (1,1,0:2)

3981312,3981312,1990656,1990656 7962624,7962624,3981312,3981312 7962624,1990656,1990656
11943936 23887872 11943936
(1,2,0;2) (1,1,0;2) (1,1,0;4)

#11.2.4, #11.3.2, #17.1.2, #17.2.1 #11.3.3, #11.4.4, #12.1.1, #12.4.5 #11.4.5, #15.3.1, #15.4.1 \%
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Table 5.3 (Continued)

#11.4.6, #13.1.1, #13.2.3 #12.1.2, #12.2.2, #13.3.3, #17.2.2 #12.1.3, #16.1.2
4 15925248,3981312,3981312 1990656,1990656,3981312,3981312 QQQ 3981312,1990656
23887872 11943936 5971968
(1,0,0;4) (2,1,0;2) (2,0,0;8)
#12.1.4, #12.3.3, #15.1.1, #15.3.2 #12.2.1, #12.4.2 #12.3.2, #12.4.3, #14.2.2, #14.3.2
3981312,3981312,1990656,1990656 1327104,1327104 +@Q 1327104,1327104,2654208,2654208 %
11943936 2654208 7962624
(2,1,0;2) (1,0,1;6) (1,0,1;2)
#12.3.1, #12.4.4 #13.1.2, #13.3.4, #15.4.2, #15.5.1 #13.1.3, #16.1.1
1327104,1327104 ( ) E} 7962624,7962624,3981312,3981312 1990656,995328
2654208 23887872 2985984
(1,0,1;6) (2,0,0;2) (2,0,0;16)
#13.2.4, #13.3.5 #13.3.2, #15.2.1, #15.3.3 #14.1.3, #14.2.3, #17.1.3, #17.3.1
3981312,3981312 % 3981312,995328,995328 m 3981312,3981312,1990656,1990656 Eﬁ
7962624 5971968 11943936
(1,1,0;6) (2,1,0;4) (1,2,0;2)
#14.1.4, #15.4.4 #14.3.1, #14.4.1 #15.1.2, #15.5.3, #16.1.3, #16.2.2
3981312,1990656 1327104,1327104 3981312,3981312,1990656,1990656 M
5971968 2654208 11943936
(1,1,0;8) (0,0,1;12) (3,0,0;2)
#15.1.3, #15.4.3, #17.2.3, #17.3.2 #15.1.4, #15.4.5 #15.2.2, #15.5.2
1990656,1990656,3981312,3981312 1990656,1990656 1990656,1990656
11943936 3981312 3981312
(2,1,0;2) (2,1,0;6) (3,0,0;6)
#15.2.3, #15.4.6 #15.3.4, #15.5.4 #16.1.4, #16.2.1
1990656,1990656 1990656,1990656 4% 1990656,1990656 M
3981312 3981312 3981312
(2,1,0;6) (2,0,0;12) (3,0,0;6)
#17.1.4, #17.2.4
1990656,1990656
3981312
(1,2,0;6)

Thus we can write the differentiation (5.28) graphically as follows:

53674 1 2 :% 1——-3 4—2 4+ 1-4 325, (5.30)

Differentiating a line with respect to the free correlation function removes the line, leaving in a sym-
metrized way the spatial indices of the free correlation function on the vertices to which the line was
connected.

The effect of this derivative is illustrated by studying the diagrammatic effect of the operator

N 1)
L= Gy —. 5.31
1o 206G (5:31)

Applying L to a connected vacuum diagram in W ®), the functional derivative & /0G12 generates dia-
grams in each of which one of the 2p lines of the original vacuum diagram is removed. Subsequently,
the removed lines are again reinserted, so that the connected vacuum diagrams W () are eigenfunctions
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of I:, whose eigenvalues 2p count the lines of the diagrams:
LWw® =2pw ) (5.32)

As an example, take the explicit first-order expression for the vacuum diagrams, i.e.
w = 3/ Vi23a G12G3a (5.33)
1234

and apply the basic rule (5.28), leading to the desired eigenvalue 2.

5.2.2  Perturbation Theory

We introduce an external current .J into the functional (5.2) which is linearly coupled to the coordinate
x. Thus the partition function (5.1) becomes the generating functional Z[.J] which allows us to find
all free n-point functions from functional derivatives with respect to this external current JJ. Due to
the shape of the functional (5.2) the expectation value of the coordinate z is zero and only correlation
functions of an even number of coordinates are nonzero. To calculate all of these, it is possible
to substitute two functional derivatives with respect to the current J by one functional derivative
with respect to the kernel G—'. This reduces the number of functional derivatives in each order of
perturbation theory by one half and has the additional advantage that the introduction of the current
J becomes superfluous.

Current Approach

Recall briefly the standard perturbative treatment, in which the energy functional (5.2) is artificially
extended by a source term
Alz, ] = Ala] - / T (5.34)
1
The functional integral for the generating functional

Z[J) = / Dy e Al (5.35)
is first explicitly calculated for a vanishing coupling constant g, yielding

ZOJ] = exp{—%TrlnG_l + %/

J1 G2 JQ} ; (5.36)
12

where the trace of the logarithm of the kernel is defined by the series [31]

el _1)n+1
T =3 E
nGTt =3

n=1

/ (G} =610} - {G =6} - (5.37)

If the coupling constant g does not vanish, one expands the generating functional Z[J] in powers of
the quartic interaction V', and re-expresses the resulting powers of the coordinate within the functional
integral (5.35) as functional derivatives with respect to the current .J. The original partition function
(5.1) can thus be obtained from the free generating functional (5.36) by the formula

g ot (0)
7 = _Z Viegs —————— » ZO[ ] 5.38
exp{ Al /1234 1234 6J16J26J36J4} []JZO (5.38)
Expanding the exponential in a power series, we arrive at the perturbation expansion
g 5
Z=41-< Viegg ————
{ 41 /1234 P S 16050056,
1o / Visaa Vi ik +... v 2O (5.39)
2(AN2 Jingusers o PO § 010050036040 050J50 J70 0 im0 '

in which the pth order contribution for the partition function requires the evaluation of 4p functional
derivatives with respect to the current J.
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Kernel Approach

The derivation of the perturbation expansion simplifies, if we use functional derivatives with respect
to the kernel G~! in the action (5.2) rather than with respect to the current .J. This allows us to
substitute the previous expression (5.38) for the partition function by

9 62 w©

Z =exp {—— Vi234 7} e (5.40)
6 Jisse G, 0Gs, ’

where the zeroth order of the negative free energy has the diagrammatic representation

WO = —% TrinG™' = % . (5.41)

Expanding again the exponential into a power series, we obtain

g 52 1 g? 54 W
Z = 1——/ Viesds ———— + 5= VisaVsers——————= +---r € .
{ 6 Ji234 0G5 0G5! 236 Jia345678 0G5 0G5, 0G5 0G 5.42)
5.42

Thus we need only half as many functional derivatives than in (5.39). Taking into account (5.10),
(5.11), and (5.37), we obtain

SW 1 2w 1
—— =—3G12, ———— = 7 {G13G21 + G14Ga3} , (5.43)
6GTy 2 6G, 0G3 4

such that the partition function Z becomes

g2

g 1
Z = { -3= Vigga G12Gs4 + = / Vi234Vsers
4l J1234 2 (42 J s345678

X [9 G12G34G56Gr8 + 24 G15G26G37Gas + 72 G12G35GasGrs

. } VY (5.44)

This has the diagrammatic representation

S-S (0 s |0 OO OO +a w12 OO0 [+ p .

(5.45)
All diagrams in this expansion follow directly by successively cutting lines of the basic one-loop vacuum
diagram (5.41) according to (5.42). By going to the logarithm of the partition function Z, we find a
diagrammatic expansion for W

O TG OREF 2 LS EE -1 S O FISNNCD

which turns out to contain precisely all connected diagrams in (5.45) with the same multiplicities. In
the next section we show that this diagrammatic expansion for W can be derived more efficiently by
solving a differential equation.

5.2.3 Functional Differential Equation for W = 1n Z

Regarding the partition function Z as a functional of the kernel G=', we derive a functional differential
equation for Z. We start with the trivial identity

g —AE])
'DIE {1‘2 e } =0. (5.47)
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Taking into account the explicit form of the action (5.2), we perform the functional derivative with
respect to the coordinate and obtain

/D$ {612 - /G;31$21‘3 - g V1345 1‘2$31‘41‘5} €7A[m] =0. (548)
3 6 345

Applying the substitution rule (5.13), this equation can be expressed in terms of the partition function
(5.1) and its derivatives with respect to the kernel G~!:

07 2 627
5 Z+2/G == / Vigss—0 2 5.49
12 B 5Gs 37 Jus 66,1060 (5:49)

Note that this linear functional differential equation for the partition function Z is, indeed, solved by
(5.40) due to the commutation relation

ex {_ﬁ/ v L}GI_GI ex {_ﬁ/ v 57}
p 6 /1054 1234 6G1_215G3_41 56 56 p 6 /104 1234 6G1_215G3_41

3 . G / 62 }
_9 _9 5.50
3 /78 peT8 6G g eXp{ 6 J)ipay 2 0G5 0G5 (5.50)

which follows from the canonical one
) )
Gl ——
G 34 34 e
Going over from Z to W = In Z, the linear functional differential equation (5.49) turns into a nonlinear
one:

1
= 5 {613624 + 514623} . (551)

2w oW W
d12 + 2 / G = - Vi { + }
” " 5G231 3 345 o 6G§315G251 6G§31 5G251
If the coupling constant g vanishes, this is immediately solved by (5.41). For a nonvanishing coupling

constant g, the right-hand side in (5.52) produces corrections to (5.41) which we shall denote with
WY Thus the quantity W decomposes according to

W =woO 4 i), (5.53)

(5.52)

Inserting this into (5.52) and taking into account (5.43), we obtain the following functional differential
equation for T/ (int).

6w(int) g g 5w(int)
Gl _ _/ Viasa G12G34 — —/ V1234 G2 ————
/12 e, 4 Ji234 3 Ji234 0G3,
g v { §2w(int) 6w(int) (SW(int)}
+= 1234 AT T = -
3 Ji234 0GT, 0G5, 8Gry  0G3
With the help of the functional chain rule, the first and second derivatives with respect to the kernel
G~ are rewritten as

(5.54)

)
G13G 5.55
§Gf2 / TN (5:55)
and
52 52
—_— = G15G26G37Gag————
0GTy 0Gis, sers o 5 G60Gs
1
2 / {G13G25G a6 + G14G25G36 + Go3G15Ga6 + G24G15G36} (5.56)
56
respectively, so that the functional differential equation (5.54) for Wnt) takes the form
6w(1nt g 5W (int)
G = —— V4GG4—g/ V4GGG4
. 125G . 1234 G12G3 s 1234 G12Gas Gae =57
g 52w(int) SW (int) 5w(int)

-= / Vi2sa G15G26G37Gas {
2345678

3 G0 | 0Gay 3G } (5:57)
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5.2.4 Recursion Relation and Graphical Solution

We now convert the functional differential equation (5.57) into a recursion relation by expanding Ty (int)

into a power series in g:

. 1 /—g\?
W(mt)zz (_g) w) (5.58)

= pl \ 4!

Using the property (5.32) that the coefficient W () satisfies the eigenvalue problem of the line numbering
operator (5.31), we obtain the recursion relation

SW () 5217 (@)
W(P+1>=12/ Visgs G12G35G +4/ Viags Gi5Ga6Ga7Gag——a—
s 1234 G12lras Gas 5 T 1234 Gslbros Gar Gas 5 S
p—1 _
P SWr—a) s (@)
4 Viaza G15G26G37Gag ———— —— 5.59
+ q_zl (q) /12345678 1234 G15G26Gar Gas —5—— “5m— (5.59)

and the initial condition (5.33). With the help of the graphical rules of Section 5.2.1, the recursion
relation (5.59) can be written diagrammatically as follows

1
52w (@) swe
(r+1) — 4 2 12
w 01—263—14 3 + 01—2 2>Q
4

4 63—4a

p—1 -
SW(p—a) Sw o
o4 Z<p> T . p>1.  (5.60)
This is iterated starting from

wh =3 (). (5.61)

The right-hand side of (5.60) contains three different graphical operations. The first two are linear
and involve one or two line amputations of the previous perturbative order. The third operation is
nonlinear and mixes two different one-line amputations of lower orders.

To demonstrate the working of (5.60), we calculate the connected vacuum diagrams up to five loops.
Applying the linear operations to (5.59), we obtain immediately

sw) 1 2w 1 3
§1—2 0 2>Q d1—203—14 0 2><4 (5.62)
Inserted into (5.60), these lead to the three-loop vacuum diagrams

W = 24 @ +2 (X)) - (5.63)

Proceeding to the next order, we have to perform one- and two-line amputations on the vacuum graphs
in (5.63), leading to

SW®2)
=06 1%2 + 144 8 + 144 1w2 , (5.64)
1 2
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and subsequently to

2w 1 2 1 3 @
—_— =2 144 2
01 2483 4 88 3><><4 + 2><><4 + 288 2 4

3

1 3

1 2
+144 3 2+ 144 1@4 + 144 . (5.65)
3 2@4

Inserting (5.64) and (5.65) into (5.60) and taking into account (5.62), we find the connected vacuum
diagrams of order p = 3 with their multiplicities as shown in Table 5.1. We observe that the nonlinear
operation in (5.60) does not lead to topologically new diagrams. It only corrects the multiplicities of
the diagrams generated from the first two operations. This is true also in higher orders. The connected
vacuum diagrams of the subsequent order p = 4 and their multiplicities are listed in Table 5.1.

As a cross-check we can also determine the total multiplicities M®) of all connected vacuum
diagrams contributing to W(®). To this end we recall that each of the M (?) diagrams in W ®) consists
of 2p lines. The amputation of one or two lines therefore leads to 2pM ) and 2p(2p — 1) M ?) diagrams
with 2p — 1 and 2p — 2 lines, respectively. Considering only the total multiplicities, the graphical
recursion relations (5.60) reduce to the form derived before in Ref. [22]

|
P MOME=D p>1. (5.66)

p—1
M®P) = 16p(p + 1)MP + 16
P+ 1) D e T CET]

q=1
These are solved starting with the initial value
MY =3, (5.67)
leading to the total multiplicities
M® =96, M® =9504, MW = 1880064, (5.68)
which agree with the results listed in Table 5.1. In addition we note that the next orders would contain
M®) =616108032, M = 301093355520, M =205062331760640 (5.69)

connected vacuum diagrams.



CHAPTER O

Quantum Field Theory

We present a method for a recursive graphical construction of Feynman diagrams with their correct
multiplicities in quantum electrodynamics (QED) [32]. The method is first applied to find all dia-
grams contributing to the vacuum energy from which all n-point functions are derived by functional
differentiation with respect to electron and photon propagators, and to the interaction. Basis for our
construction is a functional differential equation obeyed by the vacuum energy when considered as a
functional of the free propagators and the interaction. Our method does not employ external sources
in contrast to traditional approaches.

6.1 Introduction

In quantum field theory, it is well known [33,34] that the complete knowledge of all vacuum diagrams
implies the knowledge of the entire theory (“the vacuum is the world”). Indeed, it is possible to
derive all correlation functions and scattering amplitudes from the vacuum diagrams. This has been
elaborated explicitly for ¢* theory in the disordered phase in Refs. [5,23] and for the ordered phase in
Ref. [35,36], following a general theoretical framework laid out some time ago [21,22]. This knowledge
is now applied for constructing an efficient algebraic method along these lines for field theories of
fundamental particles [32].

The purpose of the present, chapter is to do this for quantum electrodynamics (QED). We show how
to derive systematically all Feynman diagrams of the theory together with their correct multiplicities
in a two step process: First we find the vacuum energy from a sum over all vacuum diagrams by a
recursive graphical procedure. This is developed by solving a functional differential equation which
involves functional derivatives with respect to the free electron and photon propagators. In a second
step, we find all correlation functions by a diagrammatic application of functional derivatives upon
the vacuum energy. In contrast to conventional procedures [6,37-41], no external currents coupled to
single fields are used, such that there is no need for Grassmann sources for the electron fields. An
additional advantage of our procedure is that the number of derivatives to be performed for a certain
correlation function is half as big as with external sources.

In Section 6.2 we establish the partition function of Euclidean QED as a functional with respect to
the inverse electron and photon propagators as well as a generalized interaction. By setting up graphical
representations for functional derivatives with respect to these bilocal and trilocal functions, we show in
Section 6.3 that the partition function constitutes a generating functional for all correlation functions.
This forms the basis for a perturbative expansion of the vacuum energy in terms of connected vacuum
diagrams. In Section 6.4 we then derive a recursion relation which allows to graphically construct
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the connected vacuum diagrams order by order. From these we obtain in Section 6.5 all diagrams for
self interactions and scattering processes by cutting electron as well as photon lines or by removing
vertices. Along similar lines we apply in Section 6.6 our method for scattering processes in the presence
of an external electromagnetic field.

6.2 Generating Functional without Particle Sources

We begin by setting up a generating functional for all Feynman diagrams of quantum electrodynamics
which does not employ external particle sources coupled linearly to the fields.

6.2.1 Partition Function of QED
Our notation for the action of QED in Euclidean spacetime with a gauge fixing of Feynman type is

AQED[z/_Jﬂ/JaA] = /d4x |:1/_Joz(7:7536u + m)d’ﬁ + %Au(_a2)A” - e&a’VZBAuz/’B (6-1)

with Dirac spinor fields v, 15 = wiﬁgﬁ (a, f=1,...,4) and Maxwell’s vector field A4, (x =0,...,3).
The properties of the vacuum are completely described by the partition function

ZqED = % DYDYDA e~ Aarn[0:4,4] (6.2)

where the electron fields ¢ and ¢ are Grassmannian. Let us split the action into the three terms

Aqen [V, ¥, A] = Ay [, ¥] + Aa[A] + Ainc [0, ¥, A], (6.3)

corresponding to the Dirac, Maxwell, and interaction terms in (6.1). For the upcoming development
it will be useful to consider the free parts of the action as bilocal functionals. The free action for the
Dirac fields is

Ay [, 9] = // d*zdz' o (x) SFT;B(I,II) ('), (6.4)

with a kernel
S_iﬁ(:c,:c') = (i7530u + mdap)d(z — '), (6.5)

while the free action for the Maxwell field reads
1 — v

AalA] = 5 / dtzd'a’ AM(z) D5, (x,2") A” (2!) (6.6)

with a kernel
Dgiy(x,x') =-0*(z — )60 (6.7)

In the following, we shall omit all vector and spinor indices, for brevity.

6.2.2 Generalized Action

Our generating functional will arise from a generalization of the free action
AL, v, A] = Ay[$, ¢] + Aa[A] (6.8)
to bilocal functionals of arbitrary kernels S~!(z1,z2) and D~ (z1,22) = D~ (22, 71) according to
Al > Afss ™) = [ [atnidtan B 87 wn,m) via), (69)
1

AA[A] — AA[A;Dil] = 2//d4$1d4$2 A($1)D71($1,1‘2)A($2). (610)
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The kernels S™1(z1,22) and D~!(z;,z2) are only required to possess a functional inverse S(z1,22)
and D(z1,22). Similarly, we shall generalize the interaction to

A [0, A] = A [, 4, V] = —e / / / A2, d o es V(21,20 23) B ) (e2) Alrs),  (6.11)

where V' (z1, z2;x3) is an arbitrary trilocal function. At the end we shall return to QED by substituting
S — Sr,D — Dy and eV (z1,22;23) = ey,0(x1 — 22)0(x1 — 23).
The generalized partition function

7= fD&szDA e~ Al ASTHDTLY] (6.12)

with the action
Alp, 0, 4,871 D7 V] = Ay, 5 S7' + Aalh, ; D7 + Aing [0, 1, A; V] (6.13)

then represents a functional of the bilocal quantities S~!(z1,x2), D~ (21, 22), and of the trilocal func-
tion V' (z1,x2;x3). All n-point correlation functions of the theory are obtained from expectation values
defined by

N N

(O1(z1) Os(m3) -+-) = Z7* fplzpwm O1(21)O0s(x3) - - - e Al A:STLDTLV] (6.14)

where the local operators O;(z) are products of field operators ¢)(z), ¥(z), and A(z) at the same
spacetime point. Important examples for expectation values of this kind are the photon and the
electron propagators of the interacting theory

7G2 (1‘1, 1‘2)

(A(z1) A(zs)) = 271 %D&DMDA Amy) A(ay) e ADw:ASTLDTLVI (6 15)

~ A

G221, 25) = (D(21) P(22)) = z*%mﬁwm (@) P(x2) e AWHASTHDTIVE - (6.16)
For a perturbative calculation of the partition function Z we define the free vacuum functional
70 = % DYDYDA e~ AV 0w A7 D (6.17)
whose action is quadratic in the fields. The path integral is Gaussian and yields

1
Z© = exp [TrinS~'] exp [—?[‘rlnDl} ) (6.18)

The free correlation functions of arbitrary local electron and photon operators O(a:) are defined by the
free part of the expectation values (6.14)

(O1(x1) O2(22) - >(0) = [Z(O)r1 ?{D@ED@ZJDA O1(x1)O02(z2) - - 'efA(O)W’w’A;S_l’D_I], (6.19)

and the free-field propagators are the expectation values

16*" (a1,2) = D1, 1) = (Almr) Aw2))®) = Dz, m), (6.20)
@ (@1, 22) = S(er,@2) = (D) () O (6.21)

To avoid a pile up of infinite volume factors in a perturbation expansion, it is favorable to go over from
7 to the vacuum energy W) defined by

WO = z® = w® W, (6.22)



82 6. Quantum Field Theory

where the free electron and photon parts are

Wi = Trin§~* (6.23)
and )
w0 = —5Trln D", (6.24)
The total vacuum energy
W=InZ (6.25)

is obtained perturbatively by expanding the functional integral (6.12) in powers of the coupling constant
e:

[ee]
w=> erwn, (6.26)
p=0

where the quantities W(®) with p > 1 are free-field expectation values of the type (6.19):
W = / Viaz - - Vep—26p-1 6p<1216p71 by oy Py Vep—2 A Ag -+ Aﬁp YO p>1. (6.27)
1---6p

In the sequel we shall use from now on the short-hand notation 1 = 1,2 = 25,...and [, = [ d*zy---.
The expectation values in (6.27) are evaluated with the help of Wick’s rule as a sum of Feynman
integrals, which are pictured as connected vacuum diagrams constructed from lines and vertices. A
straight line with an arrow represents an electron propagator

1 — 2 = 512, (628)

whereas a wiggly line stands for a photon propagator

1 2 = D12. (629)

The vertex represents an integral over the interaction potential:

/L = e /123 ‘/123. (630)

The vacuum energies (6.23) and (6.24) will be represented by single-loop diagrams

Wy =-() (6.31)
and

0 _1
Wi =3 e (6.32)

This leaves us with the important problem of finding all connected vacuum diagrams. For this we
shall exploit that the partition function (6.12) is a functional of the bilocal functions S~=!(zy, ),
D~1(x1,x5), and of the trilocal function V (z1, z2; z3).

6.3 Perturbation Theory

As a preparation for our generation procedure for vacuum diagrams, we set up a graphical represen-
tation of functional derivatives with respect to the kernels S~!, D~!, the propagators S, D, and the
interaction function V. After this we express the vacuum functional W in terms of a series of functional
derivatives of the free partition function Z(® with respect to the kernels.
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6.3.1 Functional Derivatives with Respect to S™"(zy,73), D™ (x1,73), and V (1, z9; x3)

Each Feynman diagram is composed of integrals over products of the propagators S, D and may thus
be considered as a functional of the kernels S—!, D~!. In the following we set up the graphical rules
for performing functional derivatives with respect to these functional matrices. With these rules we
can generate all 2n-point correlation functions with n = 1,2, ... from vacuum diagrams. To produce
also (2n + 1)-point correlation functions with n = 1,2, ... such as the fundamental three-point vertex
function from vacuum diagrams, it is useful to introduce additionally a functional derivative with
respect to the interaction function V723.

Functional Derivative with Respect to the Photon Kernel

The kernel D7,' of the photon is symmetric Dj3' = D', so that the basic functional derivatives are
also symmetric [23],

1

= {013042 + 614632}, 6.33
5D, 2{ 13042 + 614032} (6.33)
as is discussed in detail in Ref. [35]. By the chain rule of differentiation, this defines the functional
derivative with respect to D! for all functionals of D~!. As an example, we calculate the free photon
propagator (6.20) by applying the operator §/6D;5 to Eq. (6.17). Taking into account Eq. (6.22) and
Eq. (6.33), we find

s
Diy = —2 Wf_‘l i (6.34)
D
Inserting the explicit form (6.24), we obtain
Y 1
D

With the notation (6.29) and (6.32), we can write relation (6.34) graphically as

0
=—— . 6.36
1 2 6Df21 {:} ( )

This diagrammatic equation may be viewed as a special case of a general graphical rule derived as
follows: Let us apply the functional derivative (6.33) to a photon propagator Di5. Because of the
identity

[ Dy1D7) = 61s (6.37)
1

we find
0D12

0D/

1
= 5 {D13D42 + D14D32} . (638)

Diagrammatically, this equation implies that the operation —§/§Ds," applied to a photon line (6.29)

amounts to cutting the line:
— —671 1~~~ 2 = l 1 ~~r 3 4 2 . (639)
0D, 2

Note that the indices of the kernel D3_41 are symmetrically attached to the newly created line ends in
the two possible ways due to the differentiation rule (6.33). This rule implies directly the diagrammatic
equation (6.36).
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Consider now higher-order correlation functions which follow from higher functional derivatives of
WIEXO). From the definition (6.19) and Eq. (6.10), we obtain the free four-point function as the second
functional derivative

NA A 52 (0)
4(0) Wi

©
TGlyyy = (Ay Ay Az A4)10 = 467 (6.40)

Because of the symmetry of D2, the order in which the spacetime arguments appear in the inverse
propagators is of no importance. Inserting for W}EXO) the explicit form (6.24), the first derivative yields
via Eq. (6.35) just —Dsy exp{ngo)}, the second derivative applied to this gives with the rule (6.38)
and, once more (6.35),
©)
TGy = DisDay + D3y D1y + DiaDsy. (6.41)
The right-hand side has the graphical representation

2 3 2 3 2 3

= >+ o+ b (6.42)

1 4 1 4 1 4

The same diagrams are obtained by applying the cutting rule (6.39) twice to the single-loop diagram
(6.32).

While derivatives with respect to the kernel D! amount to cutting photon lines, we show now that
derivatives with respect to the photon propagator D lead to line amputations. The transformation
rule between the two operations follows from relation (6.38):

) J
— = Dy3D , 6.43
6D 34 B 5Dy ( )
which is equivalent to
] )
=— | DDyl —. 6.44
B =~ L, PP (6.44)
The functional derivative with respect to D;y satisfies of course the fundamental relation (6.33):
oD 1
wz = 5 {13002 + S1adza}) (6.45)

We shall represent the right-hand side graphically by extending the Feynman diagrams by the symbol:
1~ 2 = 512. (646)

If we write the functional derivative with respect to the propagator D15 graphically as

1) 1)
(SD12 o 01~2 ’

(6.47)

we may express Eq. (6.45) as

61123 4:%{1m24m2+ 1~w43~o~2}. (6.48)

Thus, differentiating a photon line with respect to the corresponding propagator amputates this line,
leaving only the symmetrized indices at the end points.
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Functional Derivative with Respect to the Electron Kernel

Setting up graphical representations for functional derivatives for electrons is different from that in
the photon case since the kernel S~! is no longer symmetric. The functional derivative is therefore the
usual one

5815

§Sa4t
from which all others are derived via the chain rule of differentiation. The free electron propagator Sy
is found in analogy to (6.34) by differentiating the free electron vacuum functional (6.23) with respect
to the inverse electron propagator S !:

= 013042, (6.49)

oWy
Si2 = . 6.50
12 652_11 ( )
This implies
)
Sip=——TrInS 1, 6.51
12 652_11 n ( )

which follows also from Eq. (6.49) and the chain rule of differentiation. The graphical interpretation
of the functional derivative 6/55’2_11 is quite analogous to the photon case. In analogy to Eq. (6.36), we
write expression (6.51) diagrammatically as

J
1 —=— 2 :—Fgll O - (652)

This, in turn, can be understood as being a consequence of the general cutting rule for electron lines:

5 1 2
1 —— 2 =— , 6.53
655" > (6.53)
3 4
which graphically expresses the derivative relation
dS12

= —51453s. 6.54
55! 14032 (6.54)

The free electron 4-point function is obtained from two functional derivatives according to

e o _ A A A 2 —W(O) 62 W(O)
G411234:<¢1 ¢2¢3¢4)(0) =e ¥ me L (6.55)

Here, the electron fields must be properly rearranged to 7,221/2131211/214 for applying the functional deriva-
tives with respect to S~!. Using Egs. (6.50) and (6.54) we obtain from Eq. (6.55)

4(0)

“Glazq = 523514 — 524513, (6.56)
or graphically
2 3 2 3
) —
Gloga = - >< . (6.57)
1 4 1 4

Derivatives with respect to the propagators S satisfy the relation

3512
0534

= 013042, (6.58)

which in analogy to (6.45) is represented graphically as an amputation of an electron line

)
03——4

2 =1 == 34 =ow 2. (6.59)
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Here we have introduced the additional diagrammatic symbols

1 == 2 = (512, (660)
) 0
ol (6.61)

Differentiating an electron line with respect to the corresponding propagator removes this line, leaving
only the indices at the end points of the remaining lines.

The analytic relations between cutting and amputating lines are now, just as in Egs. (6.43) and
(6.44):

1) 1)
= — S31504—, 6.62
685 34 o 245534 ( )
0 0
= — | S;'S;'——. 6.63
5512 /34 31 24 653—41 ( )

With the above graphical representations of the functional derivatives, it will be possible to derive
systematically all vacuum diagrams of the interacting theory order by order in the coupling strength
e, and from these all diagrams with an even number of legs.

Functional Derivative with Respect to the Interaction

If we want to find amplitudes involving an odd number of photons such as the three-point function
from vacuum diagrams, the derivatives with respect to the kernels S=', D~' are not enough. Here
the general trilocal interaction function V23 of Eq. (6.11) is needed. Thus, we define an associated
functional derivative with respect to this interaction to satisfy

V123
= §14052036. 6.64
Vine 14052036 (6.64)
By introducing the graphical rule
) )
= , 6.65
V123 (6.65)

3
o A
1 2
the definition of the functional derivative (6.64) can be expressed as

3
5 3 |
i AQ = S5 (6.66)
d i 1/ \2

where the right-hand side represents a product of § functions as defined in Egs. (6.46) and (6.60).

6.3.2 Vacuum Energy as Generating Functional

With the above-introduced diagrammatic operations, the vacuum energy W[S—1, D=1 V] constitutes a
generating functional for all correlation functions. Its evaluation proceeds by expanding the exponential
in the partition function (6.12) in powers of the coupling constant e, leading to the Taylor series

>0 62p - - - p )T o—1 py—1
= Z (2p)! %pri/’DA (/ V123V21561/11¢2A31/J4¢5AG> e~ AV, 457D, (6.67)
=0 ' 1.6

The products of pairs of fields 1112 and A3z Ag can be substituted by a functional derivative with
respect to S~ and D!, leading to the perturbation expansion

7 = i62pz(p) — i (=2¢%)P (/ ViasVise %)p 7(0) (6.68)
=0 (2p)! 1.6 0515 0S5, 6D3g

p=0
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Note the two advantages of this expansion over the conventional one in terms of currents coupled
linearly to the fields. First, it contains only half as many functional derivatives. Second, it does not
contain derivatives with respect to Grassmann variables.

Inserting for Z(®) the free vacuum functional (6.22), we obtain for the first-order term Z()

1 5°
zW = — ViaaVase(—2) —————— Z(0. 6.69
51 [, o (72) 0D 65,5165, (6.69)
Since
Z=70 4270 4 =exp {W<°> +ew® 4 } , (6.70)
this corresponds to a first-order correction W) to the vacuum energy W(:
1 §W(O) (52W(0) §W(0) 5w(0)
W(l) = _'/ V123V456(_2) él 1 v 1 + fl fl . (671)
21 )i 6 0D55 \ 051565, 0S5 65

Expressing the derivatives with respect to the kernels by the corresponding propagators via Egs. (6.34),
(6.50), and taking into account (6.54), W(!) becomes

1
wh =2 Vi23Vise D36 (S21554 — S24551) . (6.72)

216

According to the Feynman rules (6.28)—(6.30), this is represented by the diagrams

1 1
W= () -5 : (6.73)

Note that each closed electron loop causes a factor —1.

6.4 Graphical Recursion Relation for Connected Vacuum
Diagrams

In this section, we derive a functional differential equation for the vacuum functional W[S=!, D=1, V]
whose solution leads to a graphical recursion relation for all connected vacuum diagrams.

6.4.1 Functional Differential Equation for W = 1n Z

The functional differential equation for the vacuum functional W[S—t, D!, V] is derived from the
following functional integral identity

7 4 o —AlPw,A;STE DTNV
7{ DIDYDA 5o {w e } -0 (6.74)

with the action (6.13). This identity is the functional generalization of the trivial integral identity

ff;o dz f'(x) = 0 for functions f(z) which vanish at infinity. Nontrivial consequences of Eq. (6.74)
are obtained by performing the functional derivative in the integrand which yields

?{D&Dz/)DA {512 + /1/725f31¢3 —e ‘/'13411_121#3144} e~ Al ASTLDTLV] — (6.75)
3 34

Substituting the field product 1213 by functional derivatives with respect to the electron kernel 52_31,
this equation can be expressed in terms of the partition function (6.12):

0z 0 X
Zo1s — | St —— + /V ——[(44)Z] = 0. 6.76
o [ g ve [ Vin gglAn7 (6.76)
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To bring this functional differential equation into a more convenient form, we calculate explicitly the
term containing the expectation of the field A. This is done starting from the integral identity

f DYDYDA I - AwAsTIDTV] g, (6.77)
0A;
Note this identity is not endangered by the gauge freedom in the electromagnetic vector potential
A, due to the presence of a gauge fixing term in the action (6.1). This ensures that the exponential
vanishes at the boundary of all A field directions.
After differentiating the action in the exponential of Eq. (6.77), we find the expectation of the
photon field

/(1‘11 YDy, = —6/ Vaao(thaths ). (6.78)
1 34
Multiplying this with [, D5, we yield
A ow
(As5) = —e V342 Das——, (6.79)
234 0S4,
where we have used Z = e". Inserting this into Eq. (6.76), we obtain
2
/513 T = 62/ V134V567D47{ iW — + (WZ 5W1} (6.80)
0553 3.7 0555 0556 0553 0S5

Setting x1 = x5 and performing the integration over z, this leads to the nonlinear functional differ-
ential equation for the vacuum functional W

LW 52W SW oW
§ =’ ViasVise D { + } 6.81
/ LR S1z 655 pg T 56 5S T 6S, 08, (6.81)

which will form the basis for deriving the desired recursion relation for the vacuum diagrams. The
first term on the left-hand side of Eq. (6.81) is infinite, but in the next section we will show that this
cancels against an infinity in the second term.

6.4.2 Recursion Relation

Equation (6.81) contains functional derivatives with respect to the electron kernel S~—! which are
equivalent to cutting lines in the vacuum diagrams. For practical purposes it will be more convenient
to work with derivatives with respect to the propagators S which remove electron lines. The second
term on the left-hand side of Eq. (6.81) contains the operation — [, S.,16/8S;,", which we convert

into the differential operator
“ )
Ny = / S 6.82
r= ) Sesss (6.82)

with the help of (6.62). This operator has a simple graphical interpretation. The derivative §/§S;2
removes an electron line from a Feynman diagram, and the factor Si» restores it. This operation is
familiar from the number operator in second quantization. The operator Ng counts the number of
electron lines in a Feynman diagram G-

NG = NgG. (6.83)
When applied to the vacuum diagrams W ®) of order p > 1, this operator gives
NeW® =2pw®  p>1, (6.84)

since the number of electron lines in a vacuum diagram without external sources in quantum electro-
dynamics is equal to the number of vertices. The restriction in Eq. (6.84) to p > 1 is necessary due
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to a special role of the vacuum diagram. Take, for example, the electron vacuum diagram of the free
theory (6.23). By applying the operator Ng, we obtain with (6.50)

New ) = / St S = / 811, (6.85)

which is a divergent trace integral precisely canceling the infinite first term in Eq. (6.81).
Separating out W in the expansion (6.26) of the vacuum functional, the left-hand side of the
functional differential equation (6.81) has the expansion

/511 + NpW = Z e WP =3 " 2(p+1) Pt WHD, (6.86)
p=1 p=0

On the right hand side of Eq. (6.81), we express the first and second functional derivatives with respect
to the kernel S~! in terms of functional derivatives with respect to the propagator S by using Eq. (6.62)
and
52 = S51526573S 62 -I-/[SSS-I-SSS](s (6.87)
35058 Jsers 51026073548 5o o , 53041926 23046551] 5o .
Inserting here the expansion (6.26) and comparing equal powers in e with those in Eq. (6.86), we
obtain the following recursion formula for the expansion coefficients of the vacuum functional

1 52w ()
(p+1) — = -7
w 1) { /1“.10 Vi23Vas6 D36 S71.528 59455 10 557505010
SW (P
+2/ Vi23Vase D36 (S51S28S74 — S71528554) —5—
1.8 0578
p—1
SW@ s =9
D > 1 (6.
+ Z / Vi23Vas D36 S71.528 50455 10 —5— 55 0Sim0 }, p>1(6.88)

and the initial value (6.72). This equation enables us to derive the connected vacuum diagrams
systematically to any desired order from the diagrams of the previous orders, as will now be shown.
6.4.3 Graphical Solution

With the help of the Feynman rules (6.28)—(6.30), the functional recursion relation (6.88) can be
written diagrammatically as follows

1 52 ()
1) = = S ( >M.<
W T 2(p+1) { E 01—=—2603——14 ﬂ: §1+2

p—1
SWr—a) 1 3 sw@
>1 .
+Z S1-=-~2 2>‘W<4 d3——4 [’ b= (6.89)

and the first-order result is given by Eq. (6.73). The right-hand side contains four graphical operations.
The first three are linear and involve one or two electron line amputations of the previous perturbative
order. The fourth operation is nonlinear and mixes two different electron line amputations of lower
orders. To demonstrate the working of this formula, we calculate the connected vacuum diagrams in
second and third order. We start with the amputation of one or two electron lines in first order (6.73):

sw W B
1—=—2 >“O :D §1+253+4 - ;[ B i -+ (6.90)

W N

|
W N
N WA
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Inserting (6.90) into (6.89), where we have to take care of connecting only legs with the same label,
we find the second-order correction of the vacuum functional W

=i JO + GO0 -3000 -1 -3 O - oo

The calculation of the third-order correction W®) leads to the following 20 diagrams:

=3 0 5 GO 5 GO+ T0 -5 G0

1000 - OG0 - GO0 +3

BOOOO D2 D 0 o

From the vacuum diagrams (6.73), (6.91), and (6.92), we observe a simple mnemonic rule for the
weights of the connected vacuum diagrams in QED. At least up to four loops, each weight is equal
to the reciprocal number of electron lines, which, by cutting, generate the same two-point diagrams.
The sign is given by (—1)”, where L denotes the number of electron loops. Note that the total weight,
which is the sum over all weights of the vacuum diagrams in the order to be considered, vanishes in
QED. The simplicity of the weights is a consequence of the Fermi statistics and the three-point form
of interaction (6.11). The weights of the vacuum diagrams in other theories, like ¢* theory [5,21,23],
follow more complicated rules.

6.5 Scattering Between Electrons and Photons

From the above vacuum diagrams, we obtain all even-point correlation functions by cutting electron
or photon lines. For the generation of the odd-point functions we use the functional derivative (6.66)
with respect to the interaction function V' which removes a vertex from a diagram.

As an illustration, we generate the diagrams for the self interactions described by the propagators
(6.15) and (6.16)

G = (A ds), Gl =t ) (6.93)
and the four-point functions

WG%234 = <Al 1‘12 1213 1‘14 >a ° 1234 = <¢1 ¢2 ¢3 ¢4 > MG%234 = (@Zfl 1212 1‘13 @Z4 >a (6-94)

which represent the simplest scattering processes of the theory. In addition, we give the perturbative
expansion of the three-point vertex function

Glaos = (12 A3 ). (6.95)

The following examples illustrate the simple weights (—1)* of diagrams contributing to an n-point
function with n > 2, with L being the number of electron loops.



6.5 Scattering Between Electrons and Photons 91

6.5.1 Self Interactions

Substituting the product of the photon fields A; A, in the functional integral (6.15) by the photonic
functional derivative —28§/8D;,, the photonic two-point function of the interacting theory is given by

)

-1
12

w[s~', D', V]. (6.96)

VG%Q =2 5

Applying the associated cutting rule (6.39) to the vacuum diagrams (6.73) and (6.91) leads to the
connected diagrams

For brevity, we have omitted the labels 1 and 2 at the ends of the higher-order diagrams. The full and
the connected propagators "G, and "Gy satisfy the cumulant relation

+O(ed). (6.97)

TGl =G, — (An)(As). (6.98)
Note that although the expectation value of the electromagnetic field (/lu(x)> is zero in quantum
electrodynamics, it does not vanish in our generalized theory with arbitrary propagators S and D [see
Eq. (6.79)].
The derivative of vacuum diagrams with respect to the electron kernel S~!,

6G2 4

=—WI[S LDV, 6.99
b= gamr ! 1 (6.99)

leads to the electronic two-point function, whose diagrams are

+ 0(ef). (6.100)

6.5.2 Scattering Processes

The generation of diagrams for scattering processes between electrons and photons (6.94) and higher
even-point functions is now straightforward.
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Photon-Photon-Scattering

The four-point function of photons is obtained by cutting two photon lines in the vacuum diagrams or
one photon line in the photonic two-point function:

W ow W §7G?
G1234 { } =2 T

+ +7G3,7G3,. 6.101
§D;,'6D;! 6D 6D;) 6D;, 34 ( )

After applying one of the two possible operations in (6.101), the resulting connected diagrams to order

64 are
2 3
4,c _ 4
TG = e l ::Q: + 5 perm.

1 4

+ O(ef), (6.102)

each permutation of two external spacetime coordinates leading to a different diagram.

Mgller and Bhabba Scattering

The scattering of two electrons (Mgller scattering) is described by the electronic four-point function

32w oW W 8 eG2
et + = 28 1 eG2,°G2,. 6.103
12307 5 TS | 085, 0S5, 08, 14 s ( )

To order e*, the connected diagrams contributing to the fermionic four-point function are
2 3
“Gisgy = € l I - (3¢

P P [ R =
P I e T T -
- XE -

_|_

_|_

— (3 4) | +0(%), (6.104)

X
yi

where the spacetime indices in all diagrams are arranged as in the first. Each diagram on the right-
hand side has a partner with opposite sign, where the spacetime indices either of the incoming or
of the outgoing electrons are interchanged. The tadpole diagrams vanish for physical propagators
S = S, D = Dy, and the corresponding corrections attached to external legs do not contribute when
calculating the S-matrix elements. In our general vacuum functional, however, we must not discard
them, since they contribute to higher functional derivatives, which would be needed for the calculation
of, e.g. the six-point function.

By interchanging spacetime arguments in the kernels of Eq. (6.104) apparently, the Feynman dia-
grams (6.104) describe also scattering of electron and positron (Bhabba scattering) and scattering of
two positrons.

Compton Scattering

The amplitude of Compton scattering is given by the mixed four-point function ®?G%,3,. To obtain
the relevant Feynman diagrams, we have to perform one of the possible operations

§¢G3,

+°G?,0G2, = -2
14 23 (SD23

°G3,7G3,; . (6.105)

52W SW W } 657G,

vy ) +
1284 = {6D23165411 5Dy 65, 55,
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The resulting connected Feynman diagrams to order e* are

e
F e =
YT ke

2 3

e”G‘f’;M = ¢? l A + (24 3)

1 4

+et

+ + +

}.{ % + O(ed), (6.106)
where the diagrams with interchanged photon coordinates 2 <> 3 possess the same sign as the original
one.

6.5.3 Three-Point Vertex Function

The three-point vertex function is obtained from the vacuum energy W by performing the derivative
with respect to the interaction function Vj23, which we have defined in Eq. (6.64):

1 6w

3 - —_———_——
Gy = e 0Vors

(6.107)

The easiest way to find the associated Feynman diagrams is to apply the graphical operation (6.65),
which removes a vertex from the vacuum diagrams in all possible ways and lets the remaining legs
open. Dropping disconnected diagrams by considering the cumulant

Gy = Gy — (th 122 ){(As) (6.108)

T AT TR A

+O(e"). (6.109)

we obtain

3
3
Gy = e )\ + e’
1 2

6.6 Scattering of Electrons and Photons in the Presence of an
External Electromagnetic Field

To describe the scattering of electrons and photons on external electromagnetic fields, the action
A, ¥, A] in Eq. (6.13) must be extended by an additional external current .J, which is coupled
linearly to the electromagnetic field A:

AJ[/&awaAa J] :A[ZEN/J,A] —€/J1A1. (6110)
1
Then the partition function (6.12) becomes a functional in the physical current J and is given by

= %Dz/_JDMDA oA 1,4, 7] (6.111)
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with Z = Z[0]. The external current is usually supplied by some atomic nucleus of charge Ne with
integer number N. For this reason, the factor e is removed from the current in Eq. (6.110) to be able to
collect systematically all Feynman diagrams of the same order in e. This organization may not always
be the most useful one. If we consider, for instance, an external heavy nucleus with a high charge Ne,
we may have to include many more orders in the external charge Ne than in the internal charge e.
Such subtleties will be ignored here, for simplicity.

6.6.1 Recursion Relation for the Vacuum Energy with External Source

Along similar lines as before, we derive the recursion relation for the vacuum energy in the presence
of an external current, W[J] = ln Z[J] which is now also a functional of J (suppressing the other
arguments D1, S71 V). After that, we derive a recursion relation only producing those vacuum
diagrams which contain a coupling to the source. It turns out that the resulting recursion relation
for current diagrams is extremely simple. Hence, this recursion relation is the ideal extension of the
former Eq. (6.89) which generates only the source-free diagrams.

Complete Recursion Relation for All Vacuum Diagrams

The recursion relation for all vacuum diagrams with and without external source is derived in a
similar manner as that for all source-free vacuum diagrams (6.89). There will be, however, a few
significant differences in comparison with the procedure in Section 6.4. Since the current J couples to
the electromagnetic field A, vacuum diagrams with external current always contain photon lines. For
this reason, we start with the identity

7 5 7AJ[J"7¢7A7J] —
7{ DIDYDA 5 {A2e } -0 (6.112)

instead of Eq. (6.74). Performing the functional derivative leads to

2100 +2 [ DS —e [ Va2 Gy 20 + e ) 2001 = 0 (6.113)
23 34 5534

in analogy to Eq. (6.76). The expectation value of the electromagnetic field A in the presence of an
external source .J is found by exploiting the identity

_ 5 _
%szpzpDA A e AT AT] = (6.114)

to derive, as in Eqgs. (6.77)—(6.79),

~

oW [J
<A1 )J = —e - V234D14 55231

+6/D12J2, (6115)

where we have set W[J] = InZ[J]. Inserting the expectation value (6.115) into Eq. (6.113), the
resulting functional differential equation reads

2
d12 +2/D 10WL] = —62/ V341V567D27{ OWL] + WL 6W[J]}
37

8 5D5, 655,085 0S5 0S
0
+2¢? Vaas Das Jy Wi /J1D23J3 (6.116)
345 653,

Using relations (6.43) and (6.62), and taking the trace, this becomes

/611+2/ D2 5D12

oWI[J
= 2¢? Vi23Vas6 D36 571524 58 L]
1..-8 5578

+é? / Vi23Vas6 D36.571528 59455 10
110
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SWJ] OWI[J] SWJ] } ) SWJ /
+ + 2e Vi23D34.J4S51.S J1 D125, (6.117
{ 6578659 10 6578 (SSQ 10 1.6 123 5734J4951 026 6556 11242 ( )
which generalizes Eq. (6.81). Expanding W[J] as in Eq. (6.26),
W[J)=w© + Z 22 W], (6.118)

p=1

and using the fact that the free vacuum energy W([J] = W©[0] = W is independent of the
external current, the first term on the left-hand side in Eq. (6.117) is canceled by an identity following

from Eq. (6.34)
/ D12 5D12 2/511- (6.119)

Introducing a Feynman diagram for the coupling to the current J

>m L=, (6.120)

we obtain the graphical recursion relation

LWL ; S2W P[] 1 L swe
2{2 12 i 01—=203—=14 + 2 {E2 B O’<2 01——2

Wr—a| J] 1 3 SW(]] L swE)
_ _ > .
+ Z §1——2 2>\W<4 §3-——14 +2 >W<2 d1—2"’ p=1, (6.121)

and the first-order diagrams

WL =wD[] + %>«< - >@ , (6.122)

where WM[0] = WO contains the source-free first-order vacuum diagrams (6.73). An important
difference between the recursion relation (6.121) and the previous (6.89) is that the vacuum diagrams
in a series of the coupling constant e contain different numbers of photon (or electron) lines, thus
not satisfying a simple eigenvalue equation like (6.84). In fact, each vacuum diagram, generated by
using the right-hand side of the recursion relation (6.121), must be divided by twice the number of
photon lines in the diagram to obtain the correct weight factor. This procedure is a consequence of
the left-hand side of Eq. (6.121), which counts the number of photon lines in each diagram separately.
By taking this into consideration, the second-order vacuum diagrams are given by

WO = WOR — S 300 — HtD) _%>©,< (6.123)

with the source-free diagrams given in (6.91). In third order, there are 15 diagrams which couple to
the physical source:

WO =Wl = > - >0 - > + 200 + DGO
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;>@<>@<><i+;>o@<; o

In the following we derive a recursion relation which allows us to generate only those vacuum diagrams
which contain a coupling to the source.

Recursion Relation for Vacuum Diagrams Coupled to the External Source

Since we have the possibility to generate all source-free vacuum diagrams with the help of the recursion
relation (6.89), we are able to set up a recursion relation to generate only the diagrams with source
coupling. Inserting on the left-hand side of Eq. (6.115) the equation

s Lew]

J
(A1) =~ 57 (6.125)

multiplying both sides with J;, and performing the integral f1 yields

)
W[J] + 62 J1D12J2. (6126)

IWJ] 2
J———=e¢ VagaD14J1S52S
/1 L5, _ 234141952536 ~5 5 Y

On the right-hand side we have changed the functional derivatives with respect to the kernel S~! into
functional derivatives with respect to the propagator S using Eq. (6.62). Inserting the decomposition
(6.118) and utilizing the fact that W from Eq. (6.22) is source-free, sW () /5.J; = 0, we find

SWOLT] & o [ WD)
/1‘]17*;6 /ﬁT—

= SWILT
—/ V234D14J1S32+/ JiD12J> + 26%/ Va34D14J1552536 L]
1.4 12 —_ 1.6

—_ 12

To lowest order, the right-hand side yields the source diagrams

WL Z% >< _ >“Q , (6.128)

where we have used the wiggle to indicate the restriction to the source diagrams of W(M[J] in
Eq. (6.122). The full functional solving Eq. (6.127) consists of the terms

WL =w™o] + w1, (6.129)

where the source-free contributions W(™[0] = W) of Section 6.4 represent integration constants
undetermined by Eq. (6.127). Introducing a diagram for the functional derivative with respect to the
current .J,

56

the recursion relation for the vacuum diagrams with source-coupling Eq. (6.127) is graphically written

forn>1 as
swtn L swmLT]
> Sa - >, S (6.131)
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The graphical operation on the right-hand side means that an external current is attached through
a photon line to a fermion line in all possible ways. The iteration of this recursion relation is very
simple since the right-hand side is linear. Each diagram calculated with the right-hand side of this
equation must be divided by the number of source-coupling within the diagram since the operation on
the left-hand side counts the number of source-couplings in the diagram. By considering Eq. (6.129),
one easily reproduces the higher-order vacuum diagrams given in the Eqs. (6.123) and (6.124).

6.6.2 Scattering of Electrons and Photons in the Presence of an External Source

Typically, an external electromagnetic field is produced by a heavy particle such as a nucleus or an
ion. Quantum electrodynamical effects like pair creation, Bremsstrahlung, and Lamb shift are caused
by such electromagnetic fields. The Feynman diagrams for the n-point functions associated with these
processes are again obtained by cutting electron or photon lines from the just-derived vacuum diagrams.

Vacuum Polarization Induced by External Field

The photon propagator in the presence of an external source

TGRL[T] = —25W[j{] (6.132)
0D,
is found by cutting a photon line in the vacuum diagrams (6.122)—(6.124):
1
"Gyl = G0 + et | - >({ — (142) | +0(9), (6.133)

2

showing polarization caused by the external field.
Lamb Shift and Anomalous Magnetic Moment

The important phenomena of Lamb shift and anomalous magnetic moments are obtained from the
perturbative corrections in the electron propagator:

(6.134)

whose diagrams come from cutting an electron line in the vacuum diagrams (6.122)—(6.124). To order
e*, we have

1
G2[T] = “G2[0] + € M 4ot

+ O(e%). (6.135)

As already mentioned before, diagrams with corrections on external legs and tadpole graphs do not
contribute to S-matrix elements. In some problems, diagrams with more than one source-coupling are
irrelevant.
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Pair Creation, Pair Annihilation, and Bremsstrahlung

By differentiating the vacuum energy diagrams (6.122)—(6.124) with respect to the interaction function
Via3, we obtain the vertex function in the presence of an external field:
16W[J]

3 [ —
Gholl) = 2 52 (6.136)

The connected Feynman diagrams are to order e3:
3 3
yr K
1 2 1 2

with G25[0] = G355 of Eq. (6.109). These diagrams appear in pair creation, pair annihilation, or
Bremsstrahlung processes.

GislJ] = Gislo] + €° +O(e) (6.137)
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Introduction

The exact calculation of path integrals is only possible, if they are or can be transformed in a Gaussian
shape. In Part IT of this thesis, we have considered a very general Gaussian action (3.1) and calculated
the quantum-statistical properties of systems governed by such an action. All Euclidean systems, where
the action only contains terms of the form =™ (7)p™(r) with (m,n) € {(2,0),(1,1),(0,2)}, belong to
this class of exactly solvable problems. An example is a particle in a harmonic potential and influenced
by external sources which linearly couple to particle position or momentum. In order to motivate the
general theory in Part II, we have investigated the quantum statistics of the one-dimensional problem
in detail. Another system in this class is a charged particle in static electric and/or magnetic field,
since the scalar potential of the electric field couples linearly to the position, and the vector potential
of the magnetic field is minimally coupled to the momentum. We will consider an application in
this part, where we investigate the quantum-statistical properties of hydrogen in uniform magnetic
field. As a warm-up exercise, we will treat there the exactly solvable problem of a single electron in
magnetic field at arbitrary temperature. It is worth noting that the calculation of the path amplitude
for the three-dimensional hydrogen atom is also exactly done after mapping it to a four-dimensional
oscillator [4].

Nevertheless, most of the interesting systems have nontrivial interactions, which prevent an exact
evaluation of quantum-statistical quantities. A characteristic property of such systems is that they
are usually governed by potentials, which “disturb” the Gaussian shape of the action, for example
the z* term of the anharmonic oscillator, its pendant in the field theory of critical phenomena, ¢?,
or the interaction 17,1 A" between matter fields 1, ¢ and electromagnetic field A, in quantum
electrodynamics (QED). The coupling strength between these fields in QED is rather small, it is
the fine structure constant o = e?/4meghc ~ 1/137. In cases, where the coupling constant is small,
it is useful to expand the time evolution operator (or the corresponding action exponential in the
functional integral) into a Taylor series and to calculate perturbative corrections to the result of the
exactly solvable unperturbed system. Since it is usually impossible to evaluate the corrections in
all orders, the perturbation series must be broken up after any order n. For weak coupling, the
first contributing perturbative order yields already satisfactory results for many systems. There is
no guarantee, however, that, despite a small coupling constant, the perturbative series converges.
The reason is that the number of terms contributing to a certain order of perturbation is extremely
increasing from order to order. A practical quantity for checking the convergence of a series is its
radius of convergence, which is defined as the infinite-order limit of the absolute ratio of contributions
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a, of successive orders:

R = lim an

n—oo

. (7.1)

Ap41

The series converges, if R > 1, and diverges for R < 1. Since in nth order a, = ¢,g", where ¢, is the
expansion coefficient and ¢ the coupling constant, we find

Cn

R = C, r= lim
g n—o0

(7.2)

anrl

In this relation, the competitive character of expansion coefficients and coupling strength turns out
clearly. Thus, a perturbative series converges, if » > ¢, since the overall contribution decreases for suc-
cessive orders of perturbation. A diverging series is characterized by r < g. Unfortunately, the radius
of convergence can only be evaluated exactly, if a recursion equation for the perturbative coefficients
exists, which relates ¢, and ¢,41. For most problems, it is not possible to exactly determine R, and one
can only make an extrapolation estimated from successive low orders, for which the coefficients ¢,, are
known. Following Dyson [42], even perturbative series in QED will diverge for orders of perturbation
higher than the inverse fine structure constant, i.e. n > 1/a.

In order to obtain finite results from truncated perturbative expansions, it is necessary to apply
methods, which perform an approximate summation of the series. It is even possible to use such
summation methods for strong-coupling series, where the perturbations are not small in comparison
with the unperturbed contribution. Well-known summation methods were developed by Euler, Borel,
and Padé. The applicabiltiy of such methods is usually restricted to series obeying some requirements
regarding the growth of the expansion coefficients for large orders [43]. Alternative promising proce-
dures are based on nonlinear transformations, e.g. sequence transformations [44], for accelerating the
convergence of originally diverging series.

We use a different powerful method for the summation of perturbative series, which is called
variational perturbation theory [4, Chap. 5]. A first approach was used by Feynman in 1954 for
discussing the polaron problem [45]. This procedure was improved by Feynman and Kleinert [8] and,
independently, by Giachetti and Tognetti [9] in 1985/86. In this approach, the action of a harmonic
oscillator with trial frequency 2(zq) serves as trial system and the remainder as perturbation. The
correctly treated zero-frequency mode z( of the path by a separate zp-integration makes it possible to
reexpress the quantum-statistical partition function by an integral over a classically looking Boltzmann
factor, which contains the effective classical potential. Based on the Jensen-Peierls inequality, variation
with respect to the trial frequency Q(xo) yields an upper bound for the effective classical potential.
Meanwhile, this method is denoted as variational approach, since a systematic extension to higher-order
variational perturbation theory was developed by Kleinert [4,46,47]. We will review the fundamentals
of the approach and the systematic theory in the following sections.

In the following chapters, we present generalizations of this theory, which enable us to enlarge
the range of applicability of variational perturbation theory. We develop variational perturbation
theory for density matrices [20] and calculate the density of a particle in the double-well potential.
Furthermore, we investigate the pair-distribution function for hydrogen, which is a characteristic quan-
tity of hydrogen plasma. By extending variational perturbation theory for applications in phase space,
where we practically introduce the effective classical Hamiltonian, we calculate the quantum-statistical
properties of hydrogen in magnetic fields [18,19]. The zero-temperature limit of the effective classical
Hamiltonian yields the binding energy. This quantity possesses quite different asymptotic behaviors
for weak and strong magnetic fields. We investigate these limits in detail, and the results confirm
the power of the variational summation method. Finally, in Part IV of this thesis, we turn to mem-
brane physics, where we calculate the fluctuation pressure which fluid membranes exert upon hard
walls [48,49]. By an analytic strong-coupling calculation, we evaluate the constants occuring in Hel-
frich’s ideal-gas-like pressure law [50] to such a high accuracy that their values lie well within the error
bounds of Monte-Carlo simulations. Aside from the very successful calculation of critical exponents in
¢* theory [5], the results for the fluctuating membranes show that variational perturbation theory is
also applicable for the summation of perturbation series arising from field theories.
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7.1 Variational Approach via Jensen-Peierls Inequality

We review the variational approach [4,8,45] for the calculation of the quantum-statistical partition
function Z in the more general phase space representation. As shown in Eq. (4.29), we express the
partition function (4.28) as an integral of the restricted partition function ZP°*° over the zero-frequency
phase space coordinates pg and xg. The relation between ZP°*° and the effective classical Hamiltonian
Hesr(po, o) is given by Eq. (4.31). We write the restricted partition function for any system with an
dimensionless action A[p,x] as a path integral over the phase space coordinates w? = (xT,pT) as

7% = (2h)? 7{ D2y (wo — w(r)) e—AWI/E. (7.3)

In general, this quantity cannot be calculated exactly, and therefore we decompose the action A[w]
into a part Ag°[w], for which the restricted partition function is known, and a remainder, which we
call the interaction term Ajny[w]:

Aw] = A" [W] + Aing[w]- (7.4)
The action of the exactly solvable system shall be expressed as

ho[h8 hB
A w] = 5/0 dr [ dr' (W) = w3) Sa(r.7) (w(r) = wo). (7.5)
where we have subtracted the zero-frequency mode from the phase space coordinates. The elements
of the symmetric matrix Sq are of the form Sq ;; = ;;S;;, where the 2d? + d parameters Qi = Qs
are still undetermined. The matrix S shall be of the form (3.10), which makes it possible to exactly
calculate the corresponding restricted partition function:

. hg hg
ngzvo — (27Th)d %'Dde §(W0 — W(T)) exp {—%/0 dT/O dr’ (WT(T) — Wg) SQ(T, T’) (W(T’) - WO)}

_ L (7.6)

\/ detps S0 det S

Here, we have made use of the calculation for the restricted partition function in Section 4.2, with the
result (4.52). The exponential function occurring in (4.52) is absent in Eq. (7.6) due to the subtraction
of the zero-frequency modes of the phase space path in the action of Eq. (7.5). In analogy to Eq. (4.53),
we use the path integral (7.6) to define expectation values

(01 (W(1))O2(W(12)) - - )5° = (2xh)? [Z0) " 7{@2% 5(wo —w(r))
xO1(W(71))Os(W(1s)) - - - e~ Aa"WI/h, (7.7)

By adding and subtracting the trial action (7.5) to the full action in the Boltzmann factor of expression
(7.3), we obtain

Zvo = (2rh)* f D*w §(wo — w(r)) e 40" I/ exp {— (A[w] — AF°[w]) /5} . (7.8)

With the definition (7.7), the right-hand side of this equation can be written as expectation value of
the exponential function containing the perturbation A[w]| — AJ°[w] = Aine[W]:
wWo _ W —Aint[W]/h wo
Z O_ZQO<e [wl/ >Q . (7.9)

With the help of the Jensen-Peierls inequality,
(e @) > e (O, (7.10)
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we can estimate Eq. (7.9) by
Z%o > Z30e AimWI/nG? (7.11)

Since the restricted partition functions are related to the effective classical Hamiltonians via,

ZWo — e_BHeff(WO)’ Z(VZVO — e_BHeff,Q(WO)’ (7.12)

the inequality (7.11) can be written as

% (A W2 = 1D (wo). (7.13)

We express the action Ajn[w] as a time integral over an interaction potential Ving(w (7)),

Hew(wo) < Heo(wo) +

hp3
Aime[w] = /0 47 Vi (w(r). (7.14)

The invariance of the expectation value under time translations makes the time integral trivial and
the expectation value of the action becomes

hg
(Ain[W])g" = | dr (Vins (W(7)))g" = 7B (Vint (W) " - (7.15)

Thus the estimate ’HS )(wo) can be written as

HE) (Wo) = Hemra (o) + (Ving (w)) 5. (7.16)

This quantity is now optimized with respect to the set of parameters €;; to yield the optimal upper
bound for the effective classical Hamiltonian:

OHy, (Wo)
——=0. 7.17
5o, (7.17)
Let us denote the set of optimal parameters satisfying these 2d*> 4+ d equations as ngl.)(wo). Inserting
these results into (7.16), the optimal upper bound for the effective classical Hamiltonian is given by

H(l) (WO) = ’HS()U (WO) (7.18)

If more than one solution to the equations (7.17) exist, the smallest must be chosen, since the effec-
tive Hamiltonian (which can also be considered as a local free energy FW°) must be minimal in the
equilibrium state of the system. Should no solutions exist, the parameters are chosen from the flattest
region, i.e. where 7—[821) (wo) depends minimally on the parameters €;;. This is the principle of mini-
mal sensitivity, which states that the best estimate possesses the least dependence of the variational
parameters [51]. This is a conclusion of the independence of the exact effective classical Hamiltonian
from these parameters.

The simplest case for the trial action (7.5) is the usual harmonic oscillator in one dimension

hB
Agipa] = [ ar { o) =l + 00020t -} (7.19)

where only the potential contains a trial parameter ().

7.2 Variational Perturbation Theory to Any Order

A Taylor expansion of the exponential function in the expectation value of Eq. (7.9) in powers of
the interaction A;j,¢[w] makes it possible to systematically improve the variational approach. Since
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the summations of perturbative expansions truncated in different orders of perturbation can yield
approximations for the effective classical Hamiltonian, which alternate around the exact result, the
inequality (7.10) does not hold in general.

Performing the Taylor expansion, Eq. (7.9) becomes

© ¢ 1\n 1B ny wWo
wo _ Zé“’Z(hnl,Z; <( /0 dTvm(w(r))> > . (7.20)

n=0 Q

This can be written in the exponential form

) 1\n hB ny Wo
2% = Z% exp Z(nl,ig <</0 dTVint(w(T))> > : (7.21)

Q,c

where the subscript ¢ indicates as usual cumulants. The lowest cumulants are related to the full
expectation values as follows:

(Or(w(r)))gr = (O1(w(m)))g"
(O1(w(11))O2(w(12)))gr = (O1(W(1))02(W(m2)))g" — (O1(W(1)))g" (O2(w(72)))g"

: (7.22)

where O;(w(r;)) denotes any observable depending on position and momentum. Recalling the rela-
tions (7.12) between partition functions and effective classical Hamiltonians we obtain from (7.21) the
effective classical Hamiltonian as a cumulant expansion:

0 \ntl 13 ny Wo
Heﬂ(wo):_%nguéz% << / dTv;m(wm)) > . (7.23)

Q,c

Up to now, we did not make any approximation. The expansion on the right-hand side is an exact
expression for the effective classical Hamiltonian for all components of Q.

For systems with a nontrivial interaction, we are capable of calculating only some initial trun-
cated part of the series (7.23), say up to the Nth order, leading to the approximate effective classical
Hamiltonian

N \ntt h3 "\ "0
HYY (wo) = —%mz&” +%Z% << i dTVint(w(T))> > : (7.24)

Q,c

This depends explicitly on the parameters Q. Since the exact expression (7.23) is independent of Q,

the best approximation for HgN) (wo) should depend on Q minimally. Thus the optimal solution will
be found by determining the parameters from the 2d? 4+ d conditions

0
Oﬂij

HN (wo) = 0. (7.25)

Let us denote the optimal variational parameters to Nth order by QEJN) (wp). Inserting these into
Eq. (7.24) yields the optimal effective classical Hamiltonian H™N) (wy).






CHAPTER &

Variational Perturbation Theory for
Density Matrices

We develop a convergent variational perturbation theory for quantum statistical density matrices,
which is applicable to polynomial as well as nonpolynomial interactions [20]. We illustrate the power
of the theory by calculating the temperature-dependent density of a particle in the double-well potential
to second order, and of the electron in the hydrogen atom to first order.

8.1 Introduction

Variational perturbation theory [4,46] transforms divergent perturbation expansions into convergent
ones, where the resulting convergence even extends to infinitely strong couplings [52]. The theory has
first been developed in quantum mechanics for the path integral representation of the free energy of the
anharmonic oscillator [47] and the hydrogen atom [4,53]. Local quantities such as quantum statistical
density matrices have been treated so far only to lowest order for the anharmonic oscillator and the
hydrogen atom [54,55].

In this chapter, we develop a systematic convergent variational perturbation theory for the path
integral representation of density matrices of a point particle moving in a polynomial as well as a
nonpolynomial potential. By systematically taking into account higher orders, we thus go beyond
related first-order treatments in classical phase space [56] and early Rayleigh-Ritz type variational
approximations [57]. With the help of a generalized smearing formula, which accounts for the effects
of quantum fluctuations, we can furthermore treat nonpolynomial interactions, thus extending the
range of applicability of the work in Ref. [58]. As a first application, we calculate here the particle
density in the double-well potential to second order and then the electron density in the hydrogen
atom to first order.

8.2 General Features

Variational perturbation theory approximates a quantum statistical system by perturbation expansions
around harmonic oscillators with trial frequencies, which are optimized differently for each order of the
expansions. We have shown in Section 4.1.1 that, when dealing with the free energy, it is essential to
B/kgT

o dr z(7), since this

give a special treatment to the fluctuations of the path average T = (kgT'/h)

107
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performs violent fluctuations at high temperatures T'. These cannot be treated by any expansion, unless
the potential is close to harmonic. The effect of these fluctuations may, however, easily be calculated at
the end by a single numerical fluctuation integral. For this reason, variational perturbation expansions
are performed for each position zy of the path average separately, yielding an Nth order approximation
W (zo) to the local free energy Veg (o), called the effective classical potential [59]. The name
indicates that one may obtain the full quantum partition function Z from this object by a simple
integral over z( just as in classical statistics,

oo diL’o
7 = e~ Vett,c1(z0) /kBT (8.1)
—o0 \27R?/MEkpT

Having calculated Wi (x), we obtain the Nth-order approximation to the partition function

+00
Iy = / ___ I WG ksT, (8.2)

\/QWhQ/MkBT

The separate treatment of the path average is important to ensure a fast convergence at larger tem-
peratures. In the high-temperature limit, Wy (xo) converges against the initial potential V' (z) for any
order N.

Consider the Euclidean path integral over all periodic paths z(7), with 2(0) = z(h/kgT), for a
harmonic oscillator with minimum at z,,, where the action is

A (] = /0 Y {%M:&Q(T) + %MQ?[Q;(T) _ a:m]Q} . (8.3)

Its partition function is

1

2% = § Do exp {~AMn )/} = g

and the unnormalized density matrix is given by

s MQ MQ Y o
2 e oM h BB — 2 .
G0 " (p: Ta) 2rhsinh 730 P\ T 2% sinh hA0 (@ + &a) cosh hBQ — 23] (8.5)

where we have introduced the abbreviation
Z(r) = z(1) — Tp- (8.6)

At fixed end points xp, z,, the quantum mechanical correlation functions are

z(hB=xs)
(01(95(71))02(95(72))"')2,,’?;; = ﬁ / Dz O (2(m1)) O2(x(12)) - - -
%o (CUb,CUa) z(0)=z,
x exp { — A" [z]/h} . (8.7)

The classical path of a particle in a translated harmonic potential is

_ Ty sinh Q1 + 2, sinh Q(hB — 7)
za(r) = sinh K0 ' (8.8)
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8.3 Variational Perturbation Theory

To obtain a variational approximation for the density matrix, it is useful to separate the general action

hB
Afa] :/0 dr {%'2(7)+V(1’(7—)) (3.9)

into a trial one, for which the density matrix is known, and a remainder containing the original
potential.

We have pointed out in Section 4.1.2 that a separate treatment of the fluctuations zp = T =
fohﬁdr z(7)/hB is not necessary for paths with fixed ends. As a remnant of the extra treatment of
we must, however, perform the initial perturbation expansion around the minimum of the effective
classical potential, which will lie at some point z,, determined by the end points x;,x,, and by the
minimum of the potential V'(z). Thus we shall use the Euclidean path integral for the density matrix
of the harmonic oscillator centered at x,, as the trial system around which to perform the variational
perturbation theory, treating the fluctuations of zy around z,, on the same footing as the remaining
fluctuations. The position z;, of the minimum is a function z,, = Z,(xs, z,), and has to be optimized
with respect to the trial frequency, which itself is a function Q = Q(z;,x,) to be optimized.

Hence we start by decomposing the action (8.9) as

Alz] = AP 2] + Aing[z] (8.10)

with an interaction
hB
Aint[2] = At Ving (2(7)), (8.11)
0

where the interaction potential is the difference between the original one V' (x) and the inserted displaced
harmonic oscillator:

Vin(a(7) = V(a(r)) — 5 MO[a(r) ~ wn]” (3.12)

Now we evaluate the path integral for the unnormalized density matrix
z(hB)=zp
o(xp, o) = / Dz e All/R (8.13)
z(0)=z4

by treating the interaction (8.11) as a perturbation, leading to a moment expansion

1

9 Q,Tm
T (A7, ]z]) —.. } : (8.14)

ThsTa

i N 1
o(x0,2a) = 8o "™ (21, Ta) {1 = 7 (Aunc[z] Yo+

with expectation values defined in (8.7). The zeroth order consists of the harmonic contribution (8.5)
and higher orders contain harmonic averages of the interaction (8.11). The correlation functions in
(8.14) can be decomposed into connected ones by going over to cumulants, yielding

~ Q,xm

- 1 Tm 1 Q,zm
o(zp,2a) = 0y (@b, o) exp {_ﬁ ( Aint[z] )2;7%76 + TS ( Ap [2] )xb’xmc - ] , (8.15)

where the first cumulants are defined as usual:

(01 (T e = (Or (T
(O1(2(1))Os(2(12)) )ys . = (O1(@(m))Oa(e(r2)) )35 = (O1(@(m) )35 { Oala(m)) )

(8.16)
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The series (8.15) is truncated after the Nth term, resulting in the Nth-order approximant for the
quantum statistical density matrix

N
~ Qx, ~ Q,xm (_l)n n Q,zm
QN (l'b, x[l) = QO (l‘b, xﬂ«) exp [Z n'h” < int [l‘] >$b7$a70 ) (817)
n=1

which explicitly depends on both variational parameters ) and x,,.
In analogy to classical statistics, where the Boltzmann distribution in configuration space is con-
trolled by the classical potential V (z) according to

bux) = | 32 =P =BV (@), (5.15)

we now introduce a new type of effective classical potential Vog c1(p, x4), which governs the unnormal-
ized density matrix

- M
o(zp, x,) = 38 exp [—BVest,c1(Th, a)] - (8.19)
Its Nth-order approximation is obtained from (8.5), (8.17), and (8.19) via the cumulant expansion
Qo 1 sinh B0 MQ 2 .9 -
W™ (xy, 2q) = 55 In 1A +2hﬁsinhhﬁﬂ {(#} + 22) cosh hBQ — 23,7, }
N
L~ &G g @

_B n'hn ( int [1‘] )xb7xa7c7 (820)

n=1

which is optimized for each set of end points z, =, in the variational parameters Q2 and z,,, the result
being denoted by Wx (24, 2,). The optimal values Q?(xy, 2,) and 2., (25, z,) are determined from the
extremality conditions

8I/V](\;wm (zp,74) 1 0 aWNme (T3, %4q) i 0 (8.21)
00?2 - 0T, - '
The solutions are denoted by QQN,x%, both being functions of xy, z,. If no extrema are found, one

has to look for the flattest region of the function (8.20), where the lowest higher-order derivative
disappears. Eventually the Nth-order approximation for the normalized density matrix is obtained
from

1~ QQN,IN
QN(xbaxa) - ZN on m(l‘b,l‘a), (822)
where the corresponding partition function reads
+oo L Q2N N
ZN = / dz gy T (xh,x4). (8.23)
— 00

In principle, one could also optimize the entire ratio (8.22), but this would be harder to do in practice.
Moreover, the optimization of the unnormalized density matrix is the only option, if the normalization
diverges due to singularities of the potential. This will be seen in Section 8.7.2 by the example of the
hydrogen atom.

8.4 Smearing Formula for Density Matrices

In order to calculate the connected correlation functions in the variational perturbation expansion
(8.17), we must find efficient formulas for evaluating expectation values (8.7) of any power of the
interaction (8.11)

(AR L]y = —

Ty,h,

Zp,h3 hs
Ty, Ta  ~ Q2

99 ( 0

Dz [] [ A7y Ving (E(1) + 2m)
=1

1
exp § — =AD" [F + 34, }
) p{ h [ ]

Tq,0

(8.24)
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This can be done by an extension of the smearing formalism, which is developed in Ref. [53]. To this
end we rewrite the interaction potential as

+00 +oo
dX hs
Vint (Z(11) + ) = / dz Ving (21 + ) / 2—7: exp{i\z;} exp l—/ driNo(T — m)E(T) (8.25)
0

and introduce a current
n

J(r) =" ihNd(T =), (8.26)

=1
so that (8.24) becomes
1
(Aule])or'ss =~
’ e QOQ m(xbaxa)
n hp3 +oo +o00 d}\
X / dTl/ dz ‘/{nt(zl+xmin)/ 2—exp{z>\lzl} K%onl ). (8.27)
1=1 L’0 —o0 —o0

The kernel K% []] represents the generating functional for all correlation functions of the displaced
harmonic oscillator

Zp,hB

K®am [ ]] = / D7 exp {—%/Ohﬁ dr {%fﬁ(r) + %MQQCEQ(T) + J(T):E(T)} } (8.28)

Zq,0
For zero current J, this generating functional reduces to the Euclidean harmonic propagator (8.5):
KD [J = 0] = 6,0 (@, Ta). (8.29)

For nonzero J, the solution of the functional integral (8.28) is given by
o 1 (8 B hg
K%n[J] = 0o "™ (xp, T4) €XP _ﬁ/ dr J(1) za (T 2712 / dr / dr' J(r) G (r, ) ()|,
0

where 7. (7) denotes the classical path (8.8) and G*(7,7') the harmonic Green function

h coshQ(|r = 7'| — hB) — cosh Q(r + 7' — hﬁ)
2MQ sinh A2

GO(r, ) = (8.31)
The expression (8.30) can be simplified by using the explicit expression (8.26) for the current J. This
leads to a generating functional

1
K& (] = gog’mm(xb,xa) exp <—i)\Txcl ~3 )\TG)\> , (8.32)

where we have introduced the n-dimensional vectors A = (Ar,..., )T, xa = (za(m1), ..., za(m))?

with the superscript T denoting transposition, and the symmetric n X n-matrix G whose elements are
G = G% (1, 7). Inserting (8.32) into (8.27), and performing the integrals with respect to A1, ..., A,,
we obtain the nth-order smearing formula for the density matrix

Q,x a kb +eo
(An D2 = I / dn / d21 Vins (21 + )
=1 —0o0

1

1 n
e deia Py 72 2k — xa(Th)] Gy [0 —wa(n)] p - (8.33
(2m)" det G P72 Z k ()] Gy = 1(1)] (8.33)

k=1
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The integrand contains an n-dimensional Gaussian distribution describing both thermal and quantum
fluctuations around the harmonic classical path z.(7) of Eq. (8.8) in a trial oscillator centered at x,,
whose width is governed by the Green function (8.31).

For closed paths with coinciding end points (z; = x,), formula (8.33) leads to the nth-order
smearing formula for particle densities

1

0(2) = 5 8tasa) = 5 § Dadla(r =0) - 5,) exp{~Als]/1), (834

which can be written as

Q 1 n hi3 +o00
(Al = T | [ dn [ daViuta +am)
(:L”a) =1 Y0 —00

99

1

1 y
X—(27r)”+1 — exp | —3 Z 2 g 2 (8.35)

k,[=0

with 29 = #,. Here a® denotes a symmetric (n + 1) X (n 4+ 1)-matrix whose elements a3, = a®(1x, 77)
are obtained from the harmonic Green function for periodic paths G*P(7,7') as (see Chapters 3 and
5 in Ref. [4])

h  coshQ(|r —7'| — hB/2)

h
2 N — " ~Qp N —
a*(r,7') = MG (r, ") S0 Snh 52 . (8.36)

The diagonal elements a®> = a2(, 7) represent the fluctuation width (4.8), which behaves in the classical
limit like (4.11) and at zero temperature like (4.9).

Both smearing formulas (8.33) and (8.35) allow in principle to determine all harmonic expectation
values for the variational perturbation theory of density matrices and particle densities in terms of
ordinary Gaussian integrals. Unfortunately, in many applications containing nonpolynomial potentials,
it is impossible to solve neither the spatial nor the temporal integrals analytically. This circumstance
drastically increases the numerical effort in higher-order calculations.

8.5 First-Order Variational Results

The first-order variational approximation gives usually a reasonable estimate for any desired quantity.
Let us investigate the classical and the quantum mechanical limit of this approximation. To facilitate
the discussion, we first derive a new representation for the first-order smearing formula (8.35), which
allows a direct evaluation of the imaginary time integral. The resulting expression will depend only
on temperature, whose low- and high-temperature limits can easily be extracted.

8.5.1 Alternative Formula for First-Order Smearing

For simplicity, we restrict ourselves to the case of particle densities and allow only symmetric potentials
V(x) centered at the origin. If V' (z) has only one minimum at the origin, then also x,, will be zero. If
V(z) has several symmetric minima, then x,, goes to zero only at sufficiently high temperatures. To
first order, the smearing formula (8.35) reads

h3 +o0

1 dz 1 1 (22 4+ 22)ad, — 222,03
Ain[2]) = /dT / — Ving(2) ———=ex {—— o 10 L, (837
( t[ ] >xa7xa Q[()z(xa) / ) o t( ) ago agl p 9 ago — 031 ( )

so that Mehler’s summation formula

1 exp{_(l‘ +l‘l )(1+b )-41‘1"()} :exp{—%($2+$l2)}z b" o (I)Hn(l‘l) (838)

VI—1° 2(1—1?) oy Hn

n=0
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FIGURE 8.1: Temperature-dependence of the first 9 functions Clg”), where 8 = 1/kgT.

leads to an expansion in terms of Hermite polynomials H,(z), whose temperature dependence stems
from the diagonal elements of the harmonic Green function (8.36):

+o0

= W8 dz 202 A
(Aint[w] >Sa.7za. e Z 2nn' C’é )Hn (wa/ 20(2)0) / \/W Vint(z)e ~ /2 00 Hn (Z/ 2a§0> .
' 00

n=0

(8.39)
Here the dimensionless functions C’én) are defined by

%] y wn

) _ 1 %1 8.40

Cs hﬂ/dT <a30> | (8:40)
0

We have plotted the functions Cén) for n = 0,...8 in Fig. 8.1. Inserting (8.36) and performing the
integral over 7, we obtain

o _ 1 i (n) sinh A8Q(n/2 — k) (8.41)

#  2mcosh" nBQ/2 = Nk hBQ(n/2 k)
At high temperatures, these functions of 5 go all to unity,
lim oy =1, (8.42)
whereas for zero temperature we yield
fm o =) 2 "= (8.43)
Booo B n > 0. ’

hBQn’
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According to (8.20), the first-order approximation to the effective classical potential is given by

1 sinhhApQ MQ iy
Q _ 4 smhhpie  M3L npit Q
Wit(z,) = 23 In 1A + I3 x; tanh 5 + Vi(xa) (8.44)
with the smeared interaction potential
1
Vi (2a) = 75 (Auilo] Ve - (8.45)

It is instructive to discuss separately the limits 8 — 0 and 8 — oo of dominating thermal and quantum
fluctuations, respectively.

8.5.2 C(lassical Limit of Effective Classical Potential

In the classical limit 8 — 0, the first-order effective classical potential (8.44) reduces to
1
W (z,) = ~MQ%22 + lim VE(z,). (8.46)
2 £—0

The second term is determined by inserting the high-temperature limit of the fluctuation width (4.11)
and of the polynomials (8.42) into the expansion (8.39), leading to

g—0 ¢ e 2n—n!H” (V MQ2B/2IG)

+oo
dz ; —MQ23 32/2
x/ NeTher Vine (2) € H, (\/MQ2B/2 z) . (8.47)

Then we make use of the completeness relation for Hermite polynomials

%6_“2 S ﬁ Ho() H(2') = 6(z — o), (8.48)

which may be derived from Mehler’s summation formula (8.38) in the limit b — 17, to reduce the
smeared interaction potential V%(z,) to the pure interaction potential (8.12):

lim VS (24) = Vins(740). (8.49)
Recalling (8.12) we see that the first-order effective classical potential (8.46) approaches the classical

one:
lim W (2,) = V(za). (8.50)
B—0

This is a consequence of the vanishing fluctuation width b [see Eq. (4.25)] of the paths around the

classical orbits. This property is universal to all higher-order approximations to the effective classical

potential (8.20). Thus all correction terms with n > 1 must disappear in the limit 8 — 0,

L L I (8.51)

8.5.3 Zero-Temperature Limit

At low temperatures, the first-order effective classical potential (8.44) becomes

Q)
Wibam () = < + Jlim VE(z,). (8.52)
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The zero-temperature limit of the smeared potential in the second term defined in (8.45) follows from
Eq. (8.39) by taking into account the limiting procedure for the polynomials Cé") in (8.43) and for the
fluctuation width aZ,, (4.9). Thus we obtain with Hy(z) = 1 and the inverse length k = /MQ/h:

+oo
ma V(z,) = dz\/ HO k2)? exp{—k22%} Vi (2). (8.53)
—00

Introducing the harmonic eigenvalues

1
EY = hQ <n + 5) : (8.54)
and the harmonic eigenfunctions
1 I<.‘,2 1/4 _ 2
%?(93) = \/ﬁ <?> 2 g Hy(k), (8.55)

we can re-express the zero-temperature limit of the first-order effective classical potential (8.52) with
(8.53) by

W™ (20) = B + (U | Vine | 95)- (8.56)
This is recognized as the first-order harmonic Rayleigh-Schrédinger perturbative result for the ground-

state energy.
For the discussion of the quantum mechanical limit of the first-order normalized density,

. _1 . Q
) = 32(@a) _ (o) eXp{ h (Amt[r]hmxa} (8.57)
4 77 da o (va) exp { =+ (A [])D . }
we proceed as follows. First we expand (8.57) up to first order in the interaction, leading to
1
oP(wa) = 05 (wa) | 1= 3 | (Amele])y, o, — / Ao 0f (wa) (Awle])y, o, | |- (859)

—00
Inserting (8.5) and (8.39) into the third term in (8.58), and assuming Q not to depend explicitly on

X4, the x,-integral reduces to the orthonormality relation for Hermite polynomials

.2
an'\/_ / de,Hy,(z,)Ho(z,)e % = dpo, (8.59)

so that the third term in (8.58) eventually becomes

/da:a 0o (z4) mt[x] voz, = B / dz\/7 Vint (2) exp{—£222} Hy(kz). (8.60)

But this is just the n = O-term of (8.39) with an opposite sign, thus canceling the zeroth component
of the second term in (8.58), which would have been divergent for 5 — oo.
The resulting expression for the first-order normalized density is

+00

— B [

o (za) = o (xa) |1 — Z S C’é )Hn(mna) / dz ?Vint(z) exp(—k%2%) Hy(k2) | . (8.61)
n=1 — 00
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The zero-temperature limit of Cg”) is from (8.43) and (8.54)

2
I (= __ 2 __ 62
Jim 563" = ga g (562
so that we obtain from (8.61) the limit
<11 s
Q _Q , 2.2

01 (zs) = 0y (z0) |1 — 2; an!mHn(mxa) / dz — Vint (2) exp{—k°2°}H,,(k2) Ho(kz)|.
(8.63)

Taking into account the harmonic eigenfunctions (8.55), we can rewrite (8.63) as

(08 | Vi |96)

o (2a) = [Yo(wa)* = [ (2a)]? — 205 (2a) Y U5 (20) g (8.64)

)
n>0 ET(‘Z - Egz
which is just equivalent to the harmonic first-order Rayleigh-Schrédinger result for particle densities.

Summarizing the results of this section, we have shown that our method has properly reproduced
the high- and low-temperature limits. Because of relation (8.64), the variational approach for particle
densities can be used to determine approximately the ground-state wave function ¢ (z,) for the system
of interest. Thus our method supplies earlier perturbative [60] and variational [61] attempts to directly
compute the ground-state wave function.

8.6 Smearing Formula in Higher Spatial Dimensions

Most physical systems possess many degrees of freedom. This requires an extension of our method to
higher spatial dimensions. In general, we must consider anisotropic harmonic trial systems, where the
previous variational parameter Q2 becomes a d x d-matrix wa with u,v=1,2,...,d.

8.6.1 Isotropic Approximation

An isotropic trial ansatz
wa = 925W (8.65)

can give rough initial estimates for the properties of the system. In this case, the nth-order smearing
formula (8.35) generalizes directly to

R i LS
(AR)E = / dn /d 2t View (1) exp |23 man
ofa — of(r,) =1 | Jo (2m)nt! det a2’ 2 k,1=0
(8.66)
with the d-dimensional vectors z; = (21, 221, . .., za1)”. Note, that Greek labels u,v,... = 1,2,...,d
specify spatial indices and Latin labels k,1,... = 0,1,2,...,n refer to the different imaginary times.

The vector zg denotes r,, the matrix a? is the same as in Section 8.4. The harmonic density reads

d
1 2
2t 321 x“] . (8.67)

05 (r) =

—exp |-
(27”1(2)0)d l

8.6.2 Anisotropic Approximation

In the discussion of the anisotropic approximation, we shall only consider radially-symmetric potentials
V(r) = V(Jr|) because of their simplicity and their major occurrence in physics. The trial frequencies
decompose naturally into a radial frequency 7, and a transversal one Qr (see Ref. [4]):

2 2
Ta Ta

TouTay TapTay
0, =0 =5+ 0% <5W— i ) (8.68)



8.7 Applications 117

with r, = |r,|. For practical reasons we rotate the coordinate system by x,, = U x,, so that r, points
along the first coordinate axis,

S\ — s Ta, H=1,
(Ta)u = Zuo = { 0“, 2< <, (8.69)
and rotated Q?-matrix is diagonal:
Q2 0 0 -+ 0
0 Q2 0 -~ 0
@Z=| 0 097 0 | _you (8.70)

0 0 0 --- 0%
After this rotation, the anisotropic nth-order smearing formula in d dimensions reads

oq)—d(n+1)/2 1 h3
(A = BT / i / d'z Vi (7)) | (detad)™"/? (det af)~(1=1/2
Qo (Ta) =1 LYO

d n
I e~ _ 5. 1 o
X exp —55 zlkakazU exp —52 E zﬂkakazul . (8.71)
k,[=0 n=2k,l=1

The components of the longitudinal and transversal matrices a? and a3 are
a%kl = a%(TkaTl)a a%”kl = a%"(TkaTl) ) (872)
where the frequency € in (8.36) must be substituted by the new variational parameters Qy,, Qr, re-

spectively. For the harmonic density in the rotated system Q?L’T (T), which is used to normalize (8.71),
we find

d

Qr,1 (= 1 1 I 1 =2
o0 (F) = — exp |— T — z, | - (8.73)
° \/2“&00 \/(QWa%oo)d ! l 2030, | 207 =2 "

8.7 Applications

By discussing the applications, we shall employ for simplicity natural units with A=k = M = 1. In
order to develop some feeling how our variational method works, we approximate at first the particle
density in the double-well potential in second order. After that we approximate the temperature-
dependent electron density of the hydrogen atom in first order.

8.7.1 The Double Well

A detailed analysis of the first-order approximation shows that the particle density in the double-well
potential is nearly exact for all temperatures if we use the two variational parameters Q2 and z,,,
whereas one variational parameter Q2 leads to larger deviations at low temperatures and coupling
strengths. For such conditions, leading to a maximum of the density far away from origin z, = 0, the
displacement of the trial oscillator x,, may not be supposed to vanish. Considering that, our first-order
results improve those obtained in Ref. [58]. Since the differences between the optimization procedures
using one or two variational parameters become less significant in higher orders, the subsequent second-
order calculation is restricted to the optimization in .
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First-Order Approximation
In the case of the double-well potential

1,5, 1 , 1
- —_ .74
V(z) P +—gz” + (8.74)

with coupling constant g, we obtain for the expectation of the interaction (8.39) to first order, also
setting w? =1,

z 1 1 1
( Aint[7] >¥a£, = 5@1}0 + 5910é1)H1 ((Sva —Tm)/ 20(2)()) + ZgzcéQ)Hz <($a —Tm)/y/ 20%0)

1 1
+§ggcg3>H3 <(xa — )/ 2a30> + 1—6g4cg4>H4 ((a:a — )/ 2a30> (8.75)

with
3, 1, 1 1
go = —ago(Q° +1) + 59%0 + 3gagers, + 59%m + 2 §Ifna
3
g1 = —\/2a50Zm + Zg(2a%0)3/2xm +gv/ 203,23,
g2 = —agy(Q® + 1) + 3gag, + 3gagws,,
g3 = g(2a30)*x,m,
g4 = gaéo-

Inserting (8.75) in (8.45), we obtain the unnormalized double-well density

5 (24) = ﬂlw_ﬂ exp[— AW (1) (8.76)

with the first-order effective classical potential

ng’m’“(xa) _ lln sinh 3Q 9

ﬁﬂ 1 Q,Tm
5™ 30 T3

(zo — Tn)? tanh 5 + B (Aing[2] >xa7wa )

(8.77)

After optimizing W """ (z,), the normalized first-order particle density g1 (z,) is found by dividing
01(z4) by the first-order partition function

+oo
7, = 217r[3 /dxa exp[—SWi(z,)]- (8.78)

Subjecting W "™ (z,) to the extremality conditions (8.21), we obtain optimal values for the variational
parameters Q%(z,) and z,,(z,). Usually there is a unique minimum, but sometimes this does not exist
and a turning point or a vanishing higher derivative must be used for optimization. Fortunately,
the first case is often realized. Figure 8.2 shows the dependence of the first-order effective classical
potential ng’m’“(:va) at 8 = 10 and g = 0.4 for two fixed values of position z, as a function of the
variational parameters Q2(z,) and z,,(z,) in a three-dimensional plot. Thereby, the darker the region
the smaller the value of WlQ m_ We can distinguish between deep valleys (darkgray), in which the
global minimum resides, and hills (lightgray). After having determined roughly the area around the
expected minimum, one solves numerically the extremality conditions (8.21) with some nearby starting
values, to find the exact locations of the minimum.

The example in Fig. 8.2 gives an impression of the general features of this minimization process.
Furthermore we note that for symmetry reasons,

l‘m(l‘a) = _xm(_xa)a (879)
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FIGURE 8.2: Plots of the first-order approximation WIQ‘“”" (z4) to the effective classical potential as a function
of the two variational parameters Q? (Ta), zm(xa) at g = 0.4 and B = 10 for two different values of z,.

and
O2(x,) = D (—x,). (8.80)

Some first-order approximations to the effective classical potential Wi (z,) are shown in Fig. 8.3, which
are obtained by optimizing with respect to Q%(z,) and z,,(z,). The sharp maximum occurring for
weak-coupling is a consequence of a nonvanishing z,,(z, = 0). In the strong-coupling regime, on the
other hand, where z,,,(z, = 0) & 0, the sharp top is absent. This behavior is illustrated in of Figs. 8.4b)
and 8.5b) at different temperatures.

The influence of the center parameter z,, diminishes for increasing values of g and decreasing height
1/4g of the central barrier (see Fig. 8.3). The same thing is true at high temperatures and large values
of z,, where the precise knowledge of the optimal value of x,, is irrelevant. In these limits, the particle
density can be determined without optimizing in z,,, i.e. setting simply x,, = 0, where the expectation
value (8.75) reduces to

1 1
( Aing[7] >§:mxa = ZCEQ)Hz (Ia/ 2030) (91 +392) + 16 %2 024)H4 <l‘a/ 20%0)

1 3
81+ 592493 ), (8.81)
2 4
with the abbreviations
1
g1 = —ago(® +1), g2 =gagy, gs= i

Inserting (8.81) in (8.45) we obtain the unnormalized double-well density

5.2 (za) = \/;r_ﬁ expl— AV 2(z4)] (8.82)

with the first-order effective classical potential

1. sinhpQ O g 1

Q Q

W(z,) = 3 In 50 + Ewi tanh 5+ 3 (Ainsl2]),, . - (8.83)
The optimization at z,, = 0 gives reasonable results for moderate temperatures at couplings such as
g = 0.4, as shown in Fig. 8.6 by a comparison with the exact density, which is obtained from numerical
solutions of the Schrodinger equation. An additional optimization in z,, cannot be distinguished on
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FIGURE 8.3: First-order approximation to the effective classical potential, Wi(z,), for different coupling
strengths g as a function of the position z, at 8 = 10 by optimizing in both variational parameters Q2, z,
(solid curves) in comparison with the approximations obtained by variation in Q2 only (dashed curves).

the plot. An example, where the second variational parameter x,, becomes important, is shown in
Fig. 8.7, where we compare the first-order approximation with one (2) and two variational parameters
(Q, ) with the exact density for different temperatures at the smaller coupling strength g = 0.1.
In Fig. 8.4 we see that for z, > 0, the optimal x,,-values lie close to the right hand minimum of the
double-well potential, which we only want to consider here. The minimum is located at 1/,/g ~ 3.16.
We observe that, with two variational parameters, the first-order approximation is nearly exact for all

temperatures, in contrast to the results with only one variational parameter at low temperatures (see
the curve for 8 = 20 in Fig. 8.7).

Second-Order Approximation

In second-order variational perturbation theory, the differences between the optimization procedures
using one or two variational parameters become less significant. Thus, we restrict ourselves to the
optimization in Q(z,) and set z,, = 0.

The second-order density

5.2(za) = \/% exp—BW(za)] (8.84)

with the second-order approximation of the effective classical potential
1. sinhpQ O g 1

Q _ = 22 pie 2 ) Q _ i
W2 (‘rfl) - 2111 BQ + B‘ratanh ) + B <A1nt[x] )xmxa QB

requires evaluating the smearing formula (8.33) for n = 1, which is given in (8.81) and n = 2 to be
calculated. Going immediately to the cumulant we have

(Afel2] >$ﬂ7%7c (8.85)

B B

(Ala))? . = [ [ an {3(92 1 a1, ) — B () Ea ()]

0 0



8.7 Applications 121

02 (z,) T (Ta)

3.0
3.00 |

2.0 b

a) b) §
1o} 2.95 |
10
L L 20 L
“Uve 0 g 0 1/vg 2/\g
a xll

FIGURE 8.4: a) Trial frequency Q7(x,) at different temperatures and coupling strength g = 0.1. b) Minimum
of trial oscillator z.,(z.) at different temperatures and coupling g = 0.1.
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FIGURE 8.5: a) Trial frequency Q?(z,) at different temperatures and coupling strength g = 10. b) Minimum
of trial oscillator z.,(z.) at different temperatures and coupling g = 10.

1 1
—19(92 + 1) [Loa(m1, 72) — I2(11) Is(72)] + 1_692 [La4(71,72) — Is(m1)14(72)] } (8.86)
with 5 ) )
" . .
J°+2x.04;,]
Lo (1) = (aby — ag, )™ = exp{ , k=12 8.87
m( ) ( 00 Ok) 8]’” 2a(2)0(a%0 _agk) i—o ( )
and
om on F(j1,J2)
I = (—det A)"TP— et 8.88
el ) = (oA s g P (559
det A = afy + 2a3,a5,a3, — age(ag, + agy + aiy).
The generating function is
F(j1,2) = ago(j; + j3) — 2ado(agy i + agyjo)Ta + 2a50(atyi12 + (agy + agy + aty)(ag i1 + agyi=)za)

—(ady 1 + adojo)(adijr + adyia + 4ad adyalym,). (8.89)



122 8. Variational Perturbation Theory for Density Matrices

FIGURE 8.6: First-order approximation of the double-well particle density for 8 = 10 and g = 0.4 compared
with the exact particle density in a double well from numerical solution of the Schrédinger equation. All values
are in natural units.
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FIGURE 8.7: First-order particle densities of the double well for g = 0.1 obtained by optimizing with respect
to two variational parameters Q7,,, (dashed curves) and with only Q* (dash-dotted) vs. exact distributions
(solid) for different temperatures. The parameter x,, is very important for low temperatures.
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FIGURE 8.8: Second-order particle density (dashed) compared with exact results from numerical solutions of
the Schrodinger equation (solid) in a double well at different inverse temperatures. The coupling strength is
g=04.

All necessary derivatives and the imaginary time integrations in (8.86) have been calculated ana-
lytically. After optimizing the unnormalized second-order density (8.84) in 2 we obtain the results
depicted in Fig. 8.8. Comparing the second-order results with the exact densities obtained from nu-
merical solutions of the Schrodinger equation, we see that the deviations are strongest in the region
of intermediate 3, as expected. Quantum mechanical limits are reproduced very well, classical limits
exactly.

8.7.2 Distribution Function for the Electron in the Hydrogen Atom

With the insights gained in the last section by discussing the double-well potential, we are prepared to
apply our method to the electron in the hydrogen atom, which is exposed to the attractive Coulomb
interaction

V)= ——. (8.90)

Apart from its physical significance, the theoretical interest in this problem originates from the non-
polynomial nature of the attractive Coulomb interaction. The usual Wick rules or Feynman diagrams
do not allow to evaluate harmonic expectation values in this case. Only by the aid of the above-
mentioned smearing formula we are able to compute the variational expansion. Since we learned from
the double-well potential that the importance of the second variational parameter r,, diminishes for
a decreasing height of the central barrier, it is sufficient for the Coulomb potential with an absent
central barrier to set r,, = 0 and to take into account only one variational parameter Q2. By doing so
we will see in the first order that the anisotropic variational approximation becomes significant at low
temperatures, where radial and transversal quantum fluctuations have quite different weights. The
effect of anisotropy disappears completely in the classical limit.
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Isotropic First-Order Approximation

In the first-order approximation for the unnormalized density, we must calculate the harmonic expec-
tation value of the action

hB
Aim[t] = / 471 Ving (x(m1)) (8.91)
0
with the interaction potential
L |
Ving () = — <67 + ErT 0? r) , (8.92)

where the matrix 7, has the form (8.68). Applying the isotropic smearing formula (8.66) for n =1
to the harmonic term in (8.91) we easily find

- ]4 ]4 ]4
<I‘2(11) >ra7ra 3 OOG%O o )%; T‘[QL' (893)

For the Coulomb potential we obtain the local average

2\ @ 2 2 2
e e’a a
< > = —Lerf ol re | . (8.94)
r(11) [yor.  Ta GGy 2a5(ago — apy)
The time integration in (8.91) cannot be done in an analytical manner and must be performed numer-

ically. Alternatively we can use the expansion method introduced in Section 8.5.1 for evaluating the
smearing formula in three dimensions, which yields

B e—Tal2a5y 2 Hopi1(ra/A/2a2 n T —y2
(Aim[t))? . = (08 (ra)] 3 Henaaltalv2i0) m / dy y View (/2020 y)e V" Han g1 (y).
0

m2ad T, 2t (2n+1)!
(8.95)
This can be rewritten in terms of Laguerre polynomials L¥(r) as
o [2a3 1 S (D)™l on 5
(Aintlr])y, r, = VTE; m% Hans1 | Ta/y/ 2080
< [ dyy Vi ( 2a%oy”2> VL )Ly (). (8.96)
0

Using the integral formula [62, Eq. 2.19.14.15]

(1 + 7)m(>\ —a+ 1)nr(a)

oy T 3Fy(—m, a, a—X;y+1,a—A—n; 1), (8.97)

o0
/ dez®te L) (cx) L) (cx) =
0

where the (a),, are Pochhammer symbols, ,Fy(aq,...,ap;b1,...,bs; ) denotes the confluent hypergeo-
metric function, and I'(z) is the Gamma function, we apply the smearing formula to the interaction
potential (8.92) and find

e? i (=1)"(2n — 1)
Vrre = 27(2n +1)!
3 1 1
-3 oL {cg”H1 (ra/\2030) + SO Hy(ra 2a(2)0)} o s99)

The first term comes from the Coulomb potential, the second from the harmonic potential. Inserting
(8.98) in (8.17), we compute the first-order isotropic form of the radial distribution function

(Aimlr])e L. = — CP™ Hopy (1o \/ 203)

g(r) = /278" (x). (8.99)
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Ficure 8.9: Radial distribution function for an electron—proton pair at different temperatures. The first-
order results obtained with isotropic (dashed curves) and anisotropic (solid) variational perturbation theory
are compared with Storer’s numerical results [63] (dotted) and an earlier approximation derived from the
variational effective potential method to first order in Ref. [55] (dash-dotted).

This can be written as
g7 (ra) = exp[— W, (rq)] (8.100)

with the isotropic first-order approximation of the effective classical potential

3. sinhpgQ Q s 1 Q

Wi (r.) = —In r2 tanh —— in 101
1 (I‘ ) 2,8 ,BQ += ,8 2 + 2 ,8 (A t[r]>ra,ra7 (8 0 )
which is shown in Fig. 8.9 for various temperatures. The results compare well with Storer’s precise
numerical results [63]. Near the origin, our results are better than those obtained with an earlier
approximation derived from lowest-order effective classical potential Wy (o) [55].

Anisotropic First-Order Approximation

The above results can be improved by taking care of the anisotropy of the problem. For the harmonic
part of the action (8.91),
Aing[r] = A%[r] + Acx], (8.102)

the smearing formula (8.71) yields the expectation value
Qr,T 1 1 ] .
(A = = { Oty (O + SO0 L 2ah)) + 20t € - OEP) ), (8109

where the C’é 2 (1) are the polynomials (8.41) with Q replaced by the longitudinal or transverse fre-
quency. For the Coulomb part of action, the smearing formula (8.71) leads to a double integral

4 —1
(Aclr])rl = —e /dn /dA 1+ A2 {M”H
7 mago(1 az,g0(1—aj)
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2 412
roarA
__ Ta®LA 8.104
XeXp{ Qaioo(l—a‘i)} (8.104)

with the abbreviations
Lo01

. a2 = To (8.105)

2 _
Ao

afo0
The integrals must be done numerically and the first-order approximation of the radial distribution
function can be expressed by

9" (ra) = exp[—BIW T (xy)] (8.106)
with
Q 1 SinhBQL 1 SinhBQT QL 2 BQL 1 0
Wi T (rg) = z=In ——— 4+ —In ——— + —=r; tanh —— + — (Aine[r] ), "7 . 8.107
1 ( ) 26 ﬂQL B ﬂQT B 2 B ( t[ ]>ra, a ( )

This is optimized in Q,(r,), Qr(r,) with the results shown in Fig. 8.9. The anisotropic approach
improves the isotropic result for temperatures below 10* K.



CHAPTER 9

Variational Approach to Hydrogen
Atom in Uniform Magnetic Field

Applying the generalized variational approach presented in Section 7.1, we calculate the temperature-
dependent effective classical potential governing the quantum statistics of a hydrogen atom in a uniform
magnetic at all temperatures [18,19]. The zero-temperature limit yields the binding energy of the
electron which is quite accurate for all magnetic field strengths and exhibits, in particular, the correct
logarithmic growth at large fields.

9.1 Introduction

The quantum statistical and quantum mechanical properties of a hydrogen atom in an external mag-
netic field are not exactly calculable. Perturbative approaches yield good results only for weak uniform
fields as discussed in detail by Le Guillou and Zinn-Justin [64], who interpolated with analytic map-
ping techniques the ground-state energy between weak- and strong-field regime. Other approaches are
based on recursive procedures in higher-order perturbation theory [65-67]. Zero-temperature proper-
ties were also investigated with the help of an operator optimization method in a second-quantized
variational procedure [68]. The behavior at high uniform fields was inferred from treatments of the
one-dimensional hydrogen atom [69-71]. Hydrogen in strong magnetic fields is still a problem under
investigation, since its solution is necessary to understand the properties of white dwarfs and neutron
stars, as emphasized in Refs. [72-75].

A compact and detailed presentation of the bound states and highly accurate numerical values for
the energy levels are given in Ref. [76].

Equations for a first-order variational approach to the ground-state energy of hydrogen in a uniform
magnetic field based on the Jensen-Peierls inequality were written down a long time ago [77], but never
evaluated. Apparently, they merely served as a preparation for attacking the more complicated problem
of a polaron in a magnetic field [77-79].

In plasma physics, the equation of state of a hydrogen plasma, which is influenced by a magnetic
field, was recently investigated with the help of fugacity expansions for weak and strong fields [80-82].

In our approach, we calculate the quantum statistical properties of the system by an extension
of variational perturbation theory [4]. The crucial quantity is the effective classical potential. In the
zero-temperature limit, it yields the ground-state energy. Our calculations in a magnetic field require
an extension of the formalism in Ref. [4] which derives the effective classical potential from the phase

127
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space representation of the partition function.

Variational perturbation theory has an important advantage over other approaches: The calculation
yields a good effective classical potential for all temperatures and coupling strengths. The quantum
statistical partition function is obtained from a simple integral over a Boltzmann-factor involving the
effective classical potential. The ground-state energy is then obtained from its zero-temperature limit.
The asymptotic behavior in the strong-coupling limit is emerging automatically and does not have to
be derived from other sources.

9.2 Effective Classical Representations for the Quantum
Statistical Partition Function

A point particle in d dimensions with a potential V' (x) and a vector potential A (x) is described by a

Hamiltonian
1

T oM

The quantum statistical partition function is given by the Euclidean phase space path integral

H(p,x) p—eAX)] +V(x). (9.1)

7= fp'dwdp e~ APXI/h (9.2)
with an action
hB
Alpox] = [ dr[=ip(r) -5(r) + H(p(r),x(0)] 9.3)
0
and the path measure
N+1 d,. qd
1d_~d, s d'znd®py
7{2) xDp_ngnmg[/imh)d ] (9.4)

The parameter § = 1/kpT denotes the usual inverse thermal energy at temperature T, where kp is
the Boltzmann constant. From Z we obtain the free energy of the system:

F:—%mZ 9.5)

In perturbation theory, one treats the external potential V' (x) as a small quantity, and expands the
partition function into powers of V(x). Such a naive expansion is applicable only for extremely
weak couplings, and has a vanishing radius of convergence. Convergence is achieved by variational
perturbation theory [4], which yields good approximations for all potential strengths, as we shall see
in the sequel.

9.2.1 Effective Classical Potential

All quantum mechanical systems studied so far in variational perturbation theory were governed by a
Hamiltonian of the standard form
2
p
H(p,x) = — +V(x). 9.6
(0.x) = 2+ v(x) (9.6)
The simple quadratic dependence on the momenta makes the momentum integrals in the path integral
(9.2) trivial. The remaining configuration space representation of the partition function is used to
define an effective classical potential Veg(Xo), from which the quantum mechanical partition function

is found by a classically looking integral

d
Z:/%%ﬁm}ﬂ@&ﬁ, 9.7)
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where A\, = \/27h28/M is the thermal wavelength. The Boltzmann factor plays the role of a local
partition function Z*°, which is calculated from the restricted path integral

e BVert(x0) = Zxo0 — /\fthda: 8(xo — x(1)) e AXI/R, (9.8)
with the action
A= [ ar [?58(7) + V(x(r))} , (9.9)
0
and the path measure
N+1 d
d*z
Dz = lim {/ " } (9.10)
% N—voo 22 [27h2B8/M (N + 1)]4/2
As pointed out in Section 4.1, the special treatment of the temporal average of the Fourier path
T [ drx) (9.11)
Xg = X(T) = — dr x(t 9.11
’ hs Jy

is essential for the quality of the results. It subtracts from the harmonic fluctuation width (x2)!

the classical divergence proportional to T = 1/kpf of the Dulong-Petit law [4,20]. Such diverging
fluctuations cannot be treated perturbatively, and require the final integration in expression (9.7) to
be done numerically.

For the Coulomb potential V' (x) = —e?/4meq |x| in three dimensions, the effective classical potential
in Eq. (9.8) can be approximated well by variational perturbation theory [4,20,53,55].

9.2.2 Effective Classical Hamiltonian

In order to deal with Hamiltonians like (9.1) which contain a p - A(x)-term, we must apply the
generalized variational procedure introduced in Section 7.2. Extending (9.8), we define an effective
classical Hamiltonian by the phase space path integral

e Hentonoxn) = 701%0 — (21! § D s Dpa(xn — X()opo ~ BT e APHE (912)

with the action (9.3) and the measure (9.4). This allows us to express the partition function as the
classically looking phase space integral

ddl‘gddp[)
Z = /W exp [ BHogt (po, %0)] (9.13)
where pg is the temporal average of the momentum:
— 1 (™
pszz—/ dr p(7). 9.14

The fixing of pg is done for the same reason as that for xg, since the classical expectation value (p?)°!
is diverging linearly with T, just as (x2)°L.

In the special case of a standard Hamiltonian (9.6), the effective Hamiltonian in Eq. (9.13) reduces
to the effective classical potential, since the momentum integral in Eq. (9.12) can then be easily
performed, and the resulting restricted partition function becomes

2
X Po b d
ZPo-Xo — —B—= Z*° 9.15
P < 2M> (9.15)
with the local partition function of Eq. (9.8). Thus the complete quantum statistical partition function
is given by (9.13), with an effective classical Hamilton function

2

Hegt (Po,Xo0) = 2[)_]\04 + Verr (o). (9.16)
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As a consequence of the purely quadratic momentum dependence of H(p,x) in (9.6), the py-integral
in (9.13) can be done, thus expressing the quantum statistical partition function as a pure configura-
tion space integral over the Boltzmann factor involving the effective classical potential Veg(xg), as in
Eq. (9.7).

9.2.3 Exact Effective Classical Hamiltonian for an Electron in a Constant Magnetic Field

The effective classical Hamiltonian for the electron moving in a constant magnetic field can be cal-
culated exactly. We consider a magnetic field B = Be, pointing along the positive z-axis. The only
nontrivial motion of the electron is in the z—y-plane. In symmetric gauge the vector potential is given
by

A(x) = g(—y,x,O)- (9.17)

The choice of the gauge does not affect the partition function since the periodic path integral (9.2)
is gauge invariant. Ignoring the trivial free particle motion along the z-direction, we may restrict our
attention to the two-dimensional Hamiltonian

2

1
H(p,x) = 2p—M —wpl,(p,x) + §Mw129x2 (9.18)

with x = (z,y) and p = (pg, py)- Here, wp = eB/2M is half the Landau frequency, and

I.(p,X) = (X X P). = TPy — YPx (9.19)

the third component of the orbital angular momentum.
It is useful at intermediate stages of the following development to treat the more general problem

2
P 1
H(p,X) = m —LLJBlZ(p,X) + 5MQiX2 (920)
At the end of the calculation only the limit Q; — wp will be relevant. The partition function of the
problem is given by Eq. (9.13), with d = 2. Being interested in an effective classical formulation, we
have to calculate the path integral (9.12). First we express the § function for the averaged momentum
as a Fourier integral

- 2 ; B
Stbo (7)) = [ e exp (~ 7€ b ) exp [—,ll [ drvo(e -p<r>] 0.21)
involving an auxiliary source )
i
vo(€) = 3¢ (9.22)

which is constant in time. Substituting the § function in Eq. (9.12) by this source representation, the
partition function reads

ZPoxo —  im /d2£ exp <_%£'Po> %DIQ”SWM(XO—E)

Q) —swp
1 [
X exp {—ﬁ /0 dr [—ip(r) - x(1) + H(p(7),%x(7)) + vo(§) - p(T)]} - (9.23)

Evaluating the momentum integrals and utilizing the periodicity property x(0) = x(%i3), we obtain
the configuration space path integral

Q| »wp

ZPoX0 — lim [ d*¢ exp <—%£ Po — %Eﬁ fD%&(Xo —x(7))

hB
x exp {—% [ |5+ 51 (91— ) %2 (0) — iMun(x(r) x %(0). + x(7)-ia(©) } ,
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(9.24)

where the source vq coupled to the momentum in (9.23) has turned to a source j; coupled to the path
in configuration space [17], with components

inM

J1(§) = Mwp (voy(§), —v02(§) ) = na (=&y: &) - (9.25)
Expressing the 0 function in the path integral of Eq. (9.24) by the Fourier integral
- d’k 1 hB3
d(xo —x(1)) = / e exp (ik - Xp) €xp _ﬁ/o drj2(k) - x(7) (9.26)
with the new source )
) ik
jo(k) = R (9.27)
the partition function (9.24) can be written as
xo _ 1 5 i M 5 d*k )
Zee = QJ}I—I’QJB @°¢ exp <_ﬁ£.p0 B 2?’L2BE ) / (2m)? exp (ifs - Xo) Zal1(&, <)) (9.28)

The functional Zo[J(&, k)] is defined as the configuration space path integral

K3 hs hB
Zo[J (€, k)] = %DQ@" exp l_%/o dr i dr' x(1) G= (1, 7") x(7") — % drJ (€, k) -X(T)] ,

0
(9.29)
where we have introduced the combined source J(&, k) = j1(€) + j2(k). Formally, the solution reads

1 [h8 ]
ZQ[J(£"K’)] = ZQ[O] €Xp [ﬁ / dr dT,J(gaK’) G(Ta TI)J(£aK’) ) (930)
0 0
where G(7,7’) is the matrix of Green functions obtained by inverting

_d* 2 2 or ., d
Gfl(‘r, 7./) = % ( dr?2 + QL Wp 2iwp dr ) 5(7. _ 7_/)_ (9-31)

. d d? 2 2
h QZwBE _F-I-QL_WB

The inversion is easily done in frequency space after spectrally decomposing the ¢ function into the
Matsubara frequencies w,, = 2rm/hfj,

Sr—7")= % Z elom(T=1"), (9.32)

m=—00

The result is

N 1 2 2 2
h <wm-|-ﬂL w¥ 2WBWMm > 9.33)

Glom) = @ \ | 2wpwm Wl 402 — )

At this point, the additional oscillator in Eq. (9.24) proves useful: It ensures that the determinant
det G(wp,) = (wp, + Q7 — w%)2 + dwhw? (9.34)

m

is nonzero for m = 0, thus playing the role of an infrared regulator. The Fourier expansion

Grm)==—= > Gwp)e @) (9.35)
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yields the matrix of Green functions

o) = (G G ©30

which inherits the symmetry properties from the kernel (9.31):
Gz (1, 7") = Gyy (1,7, Goy(1,7') = =Gy (1, 7). (9.37)

A more detailed description of these Green functions is given in Appendices 9A and 9B.
Since the current J does not depend on the Euclidean time, the expression (9.30) simplifies therefore
to

1 hB hB
ZolJ (€, k)] = Zq[0] exp lﬁﬁ(&,n)/o dr i dr' G (1,7 | . (9.38)
The Green function has the Fourier decomposition

1 = w2 + 0% — w2
A m L B

emiwm(T=1") (9.39)

where ()4 are the frequencies
Qi = QL + wB (940)

and Q) > wp, for stability.

The ratios in the sum of (9.39) can be decomposed into two partial fractions, each of them repre-
senting a single harmonic oscillator with frequency Q4 and Q_, respectively. The analytic form of the
periodic Green function of a single harmonic oscillator is well known (see Chap. 3 in Ref. [4]), and we
obtain for the present Green function (9.39):

G (7, 7') = h coshﬂf(|r—r’|—h[3/2) +COShQT(|T—TI|—ﬁﬂ/2) (9.41)
AMQ | sinh AN, /2 sinh AN _ /2
By factorizing the determinant (9.34) according to
det G(wm) = (W2, + Q1) (w2, +02) (9.42)

and summing over the logarithms of this, we calculate the partition function as a product of two single

harmonic oscillators: 1 1

~ 2sinh hBQ, /2 2sinh hBQ_ /2
The results (9.41) and (9.43) determine the generating functional (9.38). The Euclidean time integra-

tions are then easily done, and subsequently the k- and €-integrations in (9.28). As a result, we obtain
the restricted partition function

Zqo = Zg|0] (9.43)

1. sinh ABQ, /2 sinh AN /2 2 1
oo —  lim exp{—ﬂ(—lnsm BQy /2 sinh A0/ +&_w312(p0,xo)+§MQix§>}

QL —wp B hBQ /2 hBQ_ /2 2M
(9.44)
Taking the limit Q; — wpg, we find from (9.40): Q4 — 2wp, Q_ — 0, and therefore
im sinh A3, /2 _ smhhﬂwB, im sinh ABQ_ /2 _ L (9.45)
Q| —swp h/89+/2 hﬁWB Q, —swp ﬁﬂQ,/Q

Recalling the definition (9.12), we identify the exact effective classical Hamiltonian for an electron in
a magnetic field as

1. sinhhfw 2
Heﬁ'(p07xt)) =—1In ﬁ B &

1
/8 hﬂT oM — WRB lz(p[),X[)) + §MW2BX(2) (946)
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Integrating out the momenta in Eq. (9.13), the configuration space representation (9.7) for the partition
function contains the effective classical potential for a charged particle in the plane perpendicular to
the direction of a uniform magnetic field:

1. sinhAfwp

Ve =—1 9.47
eff(XO) ,8 n thB ( )
Note that this is a constant potential.
Denoting the area [ d?’zo by A, we find the exact quantum statistical partition function
A h
Pus (9.48)

- /\_fh sinh hBwp

After these preparations, we can turn our attention to the system we want to study in this chapter:
the hydrogen atom in a uniform magnetic field, where the additional Coulomb interaction prevents us
from finding an exact solution for the effective classical Hamilton function.

9.3 Hydrogen Atom in Constant Magnetic Field

The zero-temperature properties of the hydrogen atom without external fields are exactly known. For
the quantum statistics at finite temperatures an accurate approximative result was found with the
help of variational perturbation theory [53]. Similar calculations have been performed for the electron-
proton pair distribution function which can be interpreted as the unnormalized density matrix [20].

Here we extend this method to the hydrogen atom in a constant magnetic field. This extension
is quite nontrivial since the weak- and strong-field limits will turn out to exhibit completely different
asymptotic behaviors. Let us first generalize variational perturbation theory to an electron in a constant
magnetic field and arbitrary potential.

9.3.1 Generalized Variational Perturbation Theory

We consider once more the effective classical form (9.13) of the quantum statistical partition function
which requires the path integration (9.12) in phase space. Fluctuations parallel and vertical to the
magnetic field lines are now both nontrivial, and we must deal with the full three-dimensional system
and the components of the electron position and momentum are now denoted by x = (z,y,2) and
P = (Pz, Py, P:). For the uniform magnetic field pointing along the z-axis, the vector potential A (x)
is used in the gauge (9.17). Thus the Hamilton function of an electron in a magnetic field and an
arbitrary potential V'(x) is
P’ 1
H(p,x) = o wpl.(p,x) + §Mw,2gx2 + V(x). (9.49)

The orbital angular momentum I, (p,x) was introduced in Eq. (9.19), and the frequency wg below
Eq. (9.18). The importance of the separation of the zero frequency components xo and pg was discussed
in Section 9.2. Their divergence with the temperature T prevents a perturbative treatment. Thus it
is essential to set up the perturbation theory only for the fluctuations around x¢ and pg. For this we
rewrite the action functional (9.3) associated with the Hamiltonian (9.49) as

A[p’ X] = "4507)(0 [p) X] + Ail’lt [p) X]) (950)
where we have introduced the fluctuation action
x " : . 1 ,
A?}o, °lp,x] = / dT{ —i[p(r) — po] - X(7) + m[p(ﬂ —po]® — Qpl.(p(7) — po,x(7) — X0)
0

+%Mﬂi [xt(r) —x¢]” + %Mﬂﬁ[z(r) - 20]2}, (9.51)
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in which x*+ = (2,y,0) denotes the transverse part of x and Q, > Qp, for stability. The interaction
is now

hg3
A D, ] = / 47 Vi (p(7), x(7)) = Alp, x] — AZ[p, x] (9.52)
with the interaction potential
Vi (p(r),x(7) = gz {P?(7) — [p(r) — pol* } — o x(r) x p*(7)

H (e () — ) x (b () — p) + 5 M (r)
—%Mﬂi [x* () — xé‘]2 - %Mﬂﬁ[z(r) — z]? + V(x(1)), (9.53)

where p* = (p.,py,0). The frequencies @ = (Qp, Q, Q) are for the moment arbitrary. The decom-
position (9.50) forms the basis for the variational approach, where the first term in the action (9.50)
allows an exact treatment. The transverse part was given in Section 9.2.3 and the longitudinal part is
trivial, since it is harmonic with frequency €. The associated partition function is given by the path
integral

28 = § DD pd(xa — X(7)o(pa ~ pr))e~ & P, (9.54)
which can be performed. Details are given in Appendix 9C. The result is

hAOL/2  RBQ_J2 BBy /2

Zpo,xo — .
Q@ sinh A3 /2 sinh h3Q_ /2 sinh 739 /2’ (9:55)
where auxiliary frequencies are composed of the frequencies g, in the action (9.51) as
Q:(0Qp,0,) =0, £05. (9.56)

This partition function serves in the subsequent perturbation expansion as trial system which depends
explicitly on the frequencies €. The correlation functions are a straightforward generalization of (9.36)
to three dimensions:

G ) Gy 0
G*(r,7') = Go(T, ) Gyo(T, ) 0 , (9.57)
0 0 G*o(r, 1)

whose explicit form is derived in Appendix 9C.
The Q-dependent action in Eq. (9.50) is treated perturbatively. Writing the partition function
(9.12) as

7000 = (aan)® § DD (o ~ XT3 (po — p) exp |~ AR}

1 e
X exp {_ﬁ / dT‘/int(p(T)ax(T))} ) (958)
0
the second exponential is expanded into a Taylor series, yielding

7000 = (ant)® § DD (x0 X750 — p7) exp { AR}

K3 h3 h3
X ll — %/o dr Vine (p(7), x(7)) + 2'—22/0 d7'1/0 dro Vine (P(71), X(11)) Vint (P(72), X(72)) — .. ] .

(9.59)

In three dimensions, the harmonic expectation values are defined with respect to the restricted path
integral as

poxo _ (27)° D3 xo — x(7) — p(7)) ex _ 1 poo x
(o™ = T § D7D . o = (7)o ~ D)) exp { ~1 AR Xl (0.00)




9.3 Hydrogen Atom in Constant Magnetic Field 135

Similar to the procedure presented in Section 7.2, we rewrite the Taylor expansion (9.59) as a cumulant
expansion of the form (7.21). The first cumulants are given by Egs. (7.22). Expressing the restricted
partition functions by the help of the relations (7.12), we obtain a perturbation series for the effective
classical Hamiltonian:

% 1yl h3 ™\ Poxo
Hea(pox0) =~ gt 28 + 3 50 S0 < ( [ vmt(pm,x(r))) > e
n=1

Q,c

The Nth-order approximation of the effective classical Hamiltonian is then given by

1 Po,Xo 1 Al (_1)n+1 hj n \ Po,Xo
“pna +E;W<(/O dTVint(p(T),X(T))> > . (9.62)

Q,c

1 (po, xo) =

This expression depends explicitly on the three parameters Q. Since the exact expression (9.61) is

independent of €2, the best approximation for H&N) (Po,Xo) should minimally depend on €. The
optimal solution is obtained by determining the parameters from the conditions

Vol (po, xo) = 0. (9.63)

The solutions for the optimal variational parameters to Nth order are given by
o) = (QSBN) (Po,xo),ﬂ(ﬁv) (pOaXO)aQﬁN) (Po,xo)) . (9.64)

Inserting these into Eq. (9.62) yields the optimal effective classical Hamiltonian (™) (pg,xg).

9.3.2 First-Order Effective Classical Potential

The first-order approximation of the effective classical Hamiltonian (9.62) reads

HEY (po. xo) = 510 2B + (Vi (. x) )5 (9.65)
The invariance of the system under time translations makes one of the time integrals in the expansion
(9.61) trivial, yielding merely an overall factor AS. In particular, the first-order expectation value of
Vint (%) in (9.65) is independent of the Euclidean time 7.
In order to calculate ’Hg)(po,xo), we use the two-point correlation functions derived in Ap-
pendix 9C, and the vanishing of the linear expectations, e.g.

(Po(7) = Do, )™ =0 (9.66)
to find )
(1) _ Py _ Lo 22 o (1)
Ha' (Po,Xo0) = M wpl(po, Xo) + QMWB(% +9) + Wg ' (x0), (9.67)
where we have collected all terms depending on the variational parameters 2 in the potential
1 x 1
Wf(zl)(xo) = —Bln Z5 — MQp(wp — Qp) b1 (x0) + M (wh — Q%) a? (x0) — §Mﬂﬁaﬁ(xo)
+(V(x))a ™. (9.68)

The quantities a? (%), aﬁ (x0), and b% (xo) are the transverse and longitudinal fluctuation widths

2
a? (x0) = G20 (0),  af(x0) =GR (0), B (x0) = - Qo GEe (0): (9.69)

Note that the potential (9.68) is independent of pg. This means that the approximation (9.67) to the
effective classical Hamiltonian contains no coupling of the momentum py to a variational parameter
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Q, such that the optimal Q) determined by minimizing ’Hg)(po, Xp) is independent of pp. We may
therefore integrate out pg in the phase space representation of the first-order approximation for the
partition function

3., 73
70 — / d(;ozgl)’o o—BHE (poxo) (9.70)
m
to find the pure configuration space integral
3
70 = [ EF0 —swl xa) (9.71)
A ’

in which Wf(ll)(xo) represents the first-order approximation to the effective classical potential of an
electron in a potential V(x) and a uniform magnetic field.

9.3.3 Application to the Hydrogen Atom in a Magnetic Field

We now apply the formulas of the preceding section to the Hamiltonian (9.49) with an attracting

Coulomb potential
2

V(x) = (9.72)

dmeg x|

where |x| is the distance between the electron and the proton. The only nontrivial problem is the
calculation of the expectation value (V(x(7)))o " in Eq. (9.68). This is done using the so-called
smearing formula, which is a Gaussian convolution of V' (x). This formula was first derived by Feynman
and Kleinert [8], and exists now also in an extension to arbitrary order [20,53]. The generalization
to position and momentum dependent observables was given in the phase space formulation [17]. We

briefly re-derive the first-order smearing formula. The expectation value is defined by

(Vx()))e™ = (Zfohl 7{ D aDPpV (x(7)) d(x0 — x(7))d(po — p(r))e A& " PX/E - (9.73)
Q

Now we substitute the potential by the expression
V(x(r") = /d3x V(x)d(x —x(1"))

d*k 1 [hs
_ /deV(x)/ G exp i (x —x0)] exp _ﬁ/o driT(D)x(r) —x0] b, (9.74)
where we have introduced the source
j(r) = ihkd(r — 7). (9.75)

Inserting the expression (9.74) into Eq. (9.73) we obtain

3I<.:
(V(x(r))g ™ = %/d%v(x)/ (;17)3 exp [ik - (x — x0)] ZBo™[j], (9.76)

with the harmonic generating functional

7B = (2mh)? 7{ D" D*p3(xo — x(7))3(po — P(7))

hg

X exp {—%A?{”xo [p,x] — % i dr j(7) - [x(7) — Xo]} ) (9.77)

The solution is

X0 X 1 hB hB ! AN !
ZEi] = Z5" exp ﬁ/ ‘”/0 dr'§(r) G*(7,7) j(7') (9.78)
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with the 3 x 3-matrix of Green functions of Eq. (9.57). The properties of the Green functions are
discussed in the Appendices 9A and 9B. Expressing the source j(7) in terms of k via Eq. (9.75) and
performing the T-integrations, we arrive at

3/‘6
(V(x(r)) )Bo0 = /d3a:V(x)/ (;IT)B exp {ik - [x — xo]} exp [—%KG"O(O) n} . (9.79)

Recognizing that G75(0) = G735 (0) vanish, the s-integral is easily calculated and leads to the first-order
smearing formula for an arbitrary position dependent potential

1
Vix 7_/ PoXo _ d3ggV xX) ex —
R = e Ty [ #avix e p[ 267 (x0) 207 (x0)

(9.80)

(2 —0)>+ (y—yo)® (2— 20)2]

the right-hand side containing the Gaussian fluctuation widths (9.69).
For the Coulomb potential (9.72) that we are interested in, the integral in the smearing formula
(9.80) can not be done exactly. An integral representation for a simple numerical treatment is

1

e> Po-xo _ e> \/227 d¢
<‘4wso x| >n e w“”(’“’)/ af (x0) + €2[a7 (x0) — af (xo)]
2

0

ex _& z3 + y} 2
X P{ 2 (aﬁ(xo) +&2[a% (xo) — a3 (xo)] + aﬁ(xO)> } . (9.81)

With this expression we know the entire first-order effective classical potential (9.68) for an electron
in a Coulomb potential and a uniform magnetic field which has to be optimized in the variational
parameters €.

9.4 Results

We are now going to optimize the effective classical potential by extremizing it in Q at different
temperatures and magnetic field strengths. In the zero-temperature limit this will produce the ground-
state energy.

9.4.1 Effective Classical Potential for Different Temperatures and Magnetic Field Strengths

The optimization of Wg)(xo) proceeds by minimization in € and must be done for each value of xq.
Reinserting the optimal parameters Q) (xg) into the expressions (9.68) and (9.81), we obtain the
optimal first-order effective classical potential W (! (xg). The calculations are done numerically, where
we used natural units i = e2 /4meg = kp = ¢ = M = 1. This means that energies are measured in units
of g = Me*/(4mep)?h? = 2Ry ~ 27.21eV, temperatures in €y/kp ~ 3.16 x 10° K, distances in Bohr
radii ag = (4meg)?h%/Me? =~ 0.53 x 1071 m, and magnetic field strengths in By = e*M?/h?(47weo)? ~
2.35 x 10° T = 2.35 x 10° G. Figure 9.1 shows the resulting curves for various magnetic field strengths
B and an inverse temperature § = 1/T = 1. Examples of the lower temperature behavior are shown
in Fig. 9.2 for # = 100. To see the expected anisotropy of the curves in the magnetic field direction
and in the plane perpendicular to it, we plot simultaneously the curves for W(l)(x[)) transversal to
the magnetic field as a function of pg = \/z3 + yg at z = 0 (solid curves) and parallel as a function
of zp at pp = 0 (dashed curves). The curves become strongly anisotropic for low temperatures and
increasing field strengths (see Fig. 9.2). At a given field strength B, the two curves converge for large
distances from the origin, where the proton resides, to the same constant depending on B. This is due
to the decreasing influence of the Coulomb interaction which shows the classical 1/r-behavior in each
direction. When approaching the classical high-temperature limit, the effect of anisotropy becomes
less important since the violent thermal fluctuations do not have a preferred direction (see Fig. 9.1).
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w4

po/as,z0/aB

FicURE 9.1: Effective classical potential (in units of 2Ry) as a function of the coordinate po = /xZ + y2
perpendicular to the field lines at zo = 0 (solid curves), and parallel to the magnetic field as a function of zg at
po = 0 (dashed curves). The inverse temperature is fixed at 8 = 1, and the strengths of the magnetic field B
are varied (all in natural units). The small figure enlarges the range 0 < po, 20 < 1 with noticeable anisotropy.

For pg — oo or zo — 00, the expectation value of the Coulomb potential (9.81) tends to zero. The
remaining effective classical potential

1 1 x 1
Wé)(xo) — —Bln Ze ™ — Qp(wp — Qp) b1 + (wh — ) af — §Qﬁaﬁ (9.82)
is a constant with regard to the position xg, and the optimization yields Qg) = Qﬂ_l) = wp and

Q‘(ll) = 0, leading to the asymptotic constant value

WO () — —ln —L28

The B = 0-curves are of course identical with those obtained from variational perturbation theory for
the hydrogen atom [53,55].

9.4.2 Ground-State Energy of the Hydrogen Atom in Uniform Magnetic Field

In what follows we investigate the zero-temperature behavior of the theory. Figures 9.1 and 9.2
show that the minimum of each potential curve lies at the origin. This means that the first-order
approximation to the ground-state energy for a fixed magnitude of the magnetic field B is found by
considering the zero-temperature limit of the first-order effective classical potential in the origin

EW = lim w®(0). (9.84)

B—00
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po/as,z0/aB

FIGURE 9.2: Analogous plot to Fig. 9.1, but at the larger inverse temperature 8 = 100.

Thus we obtain from Eq. (9.68) the variational expression for the ground-state energy:

1

Q 1\°
(1) 2 2 |
ES)(B) = Q S .
o (B) QQJ_( T twh) + 1 <|X|>n’ (9.85)

where the expectation value for the Coulomb potential (9.81) can now be calculated exactly since the
exponential in the integral simplifies to unity:

1N\ _ oy 1 Vi Ui
<|X| >n_\/7 I—Q”/QJ_I I = Tyiong (9.86)

The equations (9.85) and (9.86) are independent of the frequency parameter Qg such that the opti-
mization of the first-order expression for the ground-state energy (9.85) requires the satisfying of the
equations

OBy (B) « OBy (B) «
I =0, 5, = 0. (9.87)

Reinserting the resulting values Q(j) and Ql(ll) into Eq. (9.85) yields the first-order approximation for

the ground-state energy E(l)(B). In the absence of the Coulomb interaction the optimization with
respect to €, yields Q(j) = wp, rendering the ground-state energy E(l)(B) = wp, which is the zeroth
Landau level. An optimal value for Q) does not exist since the dependence of the ground-state energy
of this parameter is linear in Eq. (9.85) in this special case. To obtain the lowest energy, this parameter
can be set to zero (all optimal frequency parameters used in the optimization procedure turn out to
be nonnegative). For a vanishing magnetic field, B = 0, Eq. (9.85) exactly reproduces the first-order
variational result for the ground-state energy of the hydrogen atom, EM)(B = 0) ~ —0.42[2Ry],
obtained in Ref. [8].
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FIGURE 9.3: First-order variational result for the binding energy (in units of 2 Ry) as a function of the strength
of the magnetic field. The dots indicate the values of Ref. [64]. The dashed curve shows the simple estimate
of Landau-Lifschitz [69] 0.51n?B, which is closely related to the ground-state energy of the one-dimensional
hydrogen atom [70,71].

To investigate the asymptotics in the strong-field limit B — oo, it is useful to extract the leading
term wpg. Thus we define the binding energy

(B) = wp — E(B) (9.88)

which possesses a characteristic strong-field behavior to be discussed in detail subsequently. The result
is shown in Fig. 9.3 as a function of the magnitude of the magnetic field B, where it is compared with
the high-accuracy results of Ref. [64]. As a first-order approximation, this result is satisfactory. It
is of the same quality like other first-order results, for example those from the operator optimization
method in first order of Ref. [68]. The advantage of variational perturbation theory is that it yields
good results over the complete range of the coupling strength, here the magnetic field. Moreover, as
a consequence of the exponential convergence [4, Chap. 5], higher orders of variational perturbation
theory push the approximative result of any quantity very rapidly towards the exact value.

The Weak-Field Case

We investigate now the weak-field behavior of our theory starting from the expression (9.88) and the
expectation value of the Coulomb potential (9.86) in natural units:

0 gy =B _Lony_B _ [n2
(B =5 -5 (1+ 2) - =) (9.89)

S R oy
VI=n 1+/T=7

with

h(n) = (9.90)
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TABLE 9.1: Perturbation coefficients up to order B for the weak-field expansions of the variational parameters
and the binding energy in comparison to the exact ones of Ref. [65].

n 0 1 2 3
40572 168289657 3886999332075
n 1.0 - ~ —05576 —————  ~1.3023 —
g 7168 1258815488 884272562962432
~ —4.2260
16 997 120397572 5244316671877
Q — ~0.5659 2 ~06942 0 0 — 00 N~ 10199 0o DR
" I 448 39337984 55267035185152
~ 2.9038
4 o 80197° 2564498077
—— o~ —0.4244 Z7 ~0.2209 T~ -0.1355 Sttt L
on 3r 128 1835008 322256764928
~ 0.2435
53 5581
n 0. 2 — 22~ 02 297 N 1.2112
en [65] 0.5 0.25 o5~ —0.2760 1608

In comparison with Eq. (9.85) we introduced new variational parameters
0= QJ_ (991)

and utilized, as the calculations for the binding energy showed, that always n < 1. Performing
the derivatives with respect to these variational parameters and setting them zero yields conditional
equations which can be written after some manipulations as

Q Q1 1 1 1-yT—g
(14 = In ) Lo, (9.92)
4 m™ml-—n 21— 14+/1-n

B 1 1 1-yT=7
b= 4o,/ 1 7Ly (9.93)

1780 "oV T Ty i+ /Iy

+

1
2

Expanding the variational parameters into perturbation series of the square magnetic field B2,
[ee] [ee]
n(B)=Y_mB™  QB)=)Y Q,B” (9.94)
n=0 n=0

and inserting these expansions into the self-consistency conditions (9.92) and (9.93) we obtain order
by order the coefficients given in Table 9.1. Inserting these values into the expression for the binding
energy (9.89) and expand with respect to B?, we obtain the perturbation series

B S
(1) — =2 _ 2n
{(B) = 3 n§:0j B, (9.95)

The first coefficients are also given in Table 9.1. We find thus the important result that the first-order
variational perturbation solution possesses a perturbative behavior with respect to the square magnetic
field strength B? in the weak-field limit thus yielding the correct asymptotics. The coefficients differ
in higher order from the exact ones but are improved in higher orders of the variational perturbation
theory [4, Chap. 5].
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Asymptotical Behavior in the Strong-Field Regime

In the discussion of the pure magnetic field below Eq. (9.87) we have mentioned that the variational
calculation for the ground-state energy which is thus associated with the zeroth Landau level yields a
frequency Q) oc B while ) = 0. Therefore we use the assumption

Q1> Q Q< B (9.96)

for the consideration of the ground-state energy (9.85) of the hydrogen atom in a strong magnetic field.
In a first step we expand the last expression of the expectation value (9.86) which corresponds to the
condition (9.96) in terms of /€2, and reinsert this expansion in the equation of the ground-state
energy (9.85). Then we omit all terms proportional to C/2; where C stands for any expression with
a value much smaller than the field strength B. In natural units, we thus obtain the strong-field
approximation for the first-order binding energy (9.88)

w _B_ (9. B  j9 9
0.0, = 3 ( 5 -|-SQL t5 VS ln—49l . (9.97)

As usual, we consider the zeros of the derivatives with respect to the variational parameters

(1) (1)
T TR FE T (9.98)
09 ’ o0, ’ '
which lead to the self-consistence equations
2
QH = _ﬁ (IHQH —anJ_+2—1n4), (9.99)
Q B Q
Q= /L4 21 a—L 1
+ T + 2 + wB2 (9.100)

Let us first consider the last equation. Utilizing the second of the conditions (9.96) we expand the
second root around unity yielding the expression
B, [o o 9
0 =— — 4+ ——2——+... 9.101
D + © 7B T2 B3 teen ( )
where the terms are sorted with regard to their contribution starting with the biggest. Since we are
interested in the strong B limit, we can obviously neglect terms suppressed by powers of 1/B. Thus
we only consider the following terms for the moment:

+ —

QLN—

. 102
5 - (9.102)

Inserting this into the other condition (9.99), expanding the corresponding logarithm, and, once more,
neglecting terms of order 1/B, we find

2
1/QH %ﬁ(lnB—an”—}—IDQ—Q). (9103)
To obtain a tractable approximation for ), we perform some iterations starting from
2 _
i) = ﬁln 2Be~2. (9.104)

Reinserting this on the right-hand side of Eq. (9.103), one obtains the second iteration Q|(|2). We
stop this procedure after an additional reinsertion which yields

Y = % <ln 2Be % — 2ln {% {m 2Be 2 — 2In (%m zBe2> H) . (9.105)
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The reader may convince himself that this iteration procedure indeed converges. For a subsequent
systematical extraction of terms essentially contributing to the binding energy, the expression (9.105)
is not satisfactory. Therefore it is better to separate the leading term in the curly brackets and expand
the logarithm of the remainder. Then this proceeding is applied to the expression in the angular
brackets and so on. Neglecting terms of order In">B, we obtain

2
0 ~ = (ln 2Be~2 + h& — 2Inln 2Be*2) . (9.106)
™

The double-logarithmic term can be expanded in a similar way as described above:

_ _ _ 2
Inln2Be 2 = In [mB <1+ In2 2)] B4 B2 LW2=27 L iy (9107

1
In B In B 2 In’B

Thus the expression (9.106) may be rewritten as

2 2 2
,/QI<3> == (mB — 2lnln B + é + II?TB + b) +O(In*B) (9.108)

with abbreviations -
a=2-—1n2=~1.307, b:lnE — 2~ —1.548. (9.109)

The first observation is that the variational parameter ) is always much smaller than 2, in the high
B-field limit. Thus we can further simplify the approximation (9.102) by replacing

B 2 Q” B

without affecting the following expression for the binding energy. Inserting the solutions (9.108) and
(9.110) into the equation for the binding energy (9.97) and expanding the logarithmic term once more
as described, we find up to the order In=>B:

sV(B) = 1 <ln2B —4InBlnln B +41n’In B — 4bInln B + 2(b + 2) In B + b°
e

1
5 [81n*ln B — 8blnln B + 27 > +O(In"’B). (9.111)

n

Note that the prefactor 1/7 of the leading In® B-term differs from a value 1/2 obtained by Landau and
Lifschitz [69]. Our different value is a consequence of using a harmonic trial system. The calculation
of higher orders in variational perturbation theory would improve the value of the prefactor.

At a magnetic field strength B = 10°B,, which corresponds to 2.35 x 10'° T, the contribution
from the first six terms is 22.87[2Ry]. The next three terms suppressed by a factor In~' B contribute
—2.29 [2 Ry], while an estimate for the In"? B-terms yields nearly —0.3 [2Ry]. Thus we find

£ (10%) = 20.58 + 0.3[2 Ry]. (9.112)

This is in very good agreement with the value 20.60 [2 Ry] obtained from the full treatment described
in Section 9.4.2.

Table 9.2 lists the values of the first six terms of Eq. (9.111). This shows in particular the significance
of the second-leading term —(4/7)In B Inln B, which is of the same order of the leading term (1/7)In’B
but with an opposite sign. In Fig. 9.3, we have plotted the expression

1
eL(B) = 3 In’B (9.113)

from Landau and Lifschitz [69] to illustrate that it gives far too large binding energies even at very
large magnetic fields, e.g. at 2000B, o 108 T.
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TABLE 9.2: Example for the competing leading six terms in Eq. (9.111) at B = 10°By =~ 2.35 x 10*° T.
(1/m)n*B  —(4/7)InBlnln B (4/7)In*In B —(4b/7)Inln B [2(b+2)/7]In B b*/m
42.1912 —35.8181 7.6019 4.8173 3.3098 0.7632

This strength of magnetic field appears on surfaces of neutron stars (105 — 103 T). A recently
discovered new type of neutron star is the so-called magnetar [83]. In these, charged particles such as
protons and electrons, produced by decaying neutrons, give rise to the giant magnetic field of 10! T.
Magnetic fields of white dwarfs reach only up to 10> — 10* T. All these magnetic field strengths are far
from a direct realization in experiments. The strongest magnetic fields ever produced in a laboratory
were only of the order 10T, an order of magnitude larger than the fields in sun spots which reach
about 0.4 T. Recall, for comparison, that the earth’s magnetic field has the small value of 0.6 x 10~* T.

It should, however, be noted that there are systems in solid state physics, where a rescaling of
variables corresponds to extremely strong magnetic fields. In a donor impured semiconductor like
GaAs, the properties of the system of an electron bound to the positively charged donor nucleus in
an external magnetic field of strength 6.57 T are comparable to a hydrogen atom in a field of strength
2.35 x 10° T [84]. The reason for this is the strongly reduced effective mass of the electron bound to
the donor nucleus, the large dielectric constant of the semiconductor, and thus a much larger radius of
the orbit of the electron. Hence the Coulomb interaction between the donor nucleus and the electron
is much weaker than in the hydrogen atom. This approximate analogy between both systems can thus
be used to investigate the effects of extremely strong magnetic fields in earthbound experiments.

As we see in Fig. 9.3, the non-leading terms in Eq. (9.111) give important contributions to the
asymptotic behavior even at such large magnetic fields. It is an unusual property of the asymptotic
behavior that the absolute value of the difference between the Landau-expression (9.113) and our
approximation (9.111) diverges with increasing magnetic field strengths B, only the relative difference
decreases.

9A Generating Functional for Particle in Magnetic Field and
Harmonic Oscillator Potential

For the determination of the correlation functions of a system, we need to know the solution of the
two-dimensional generating functional in the presence of an external source j = (jz, jy):

2%05) = N, § D b0 — X)) e AR, (9A1)

The action of a particle in a magnetic field in z-direction and a harmonic oscillator reads

hpg
A*[x;j] = /0 dr {%5{2(7) —iMQp([x(T) — x0] X X(7))» + %M (07 — Q%) [x(1) — x0)°

() - (x(r) — xO>] , (04.2)

where Q, > Qp, for stability. The position dependent terms are centered around xg = (zg, yo), which
is the temporal average of the path x(7), and thus equal to the zero frequency component of the Fourier
path

o0
x(1) = x0 + Z (xme™mT + x5 e” ) (9A.3)
m=1

with the Matsubara frequencies w,, = 2rm/hB3 and complex Fourier coefficients x,, = xI¢ + ixi®.
Introducing a similar Fourier decomposition for the current j(7) with Fourier components j,, and
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using the orthonormality relation

h3
> / dr e “m =) =5, . (9A.4)
hi Jo

the generating functional can be written as

wor — TT | [ d@mdridysedyis 4 o o s iy m
zoi= I | [ SR oo "
m=1 m

with
A (X, X33 i) = BBM (wl, + Q1 — QF) (2] + [200]” + [y + [yin']?)
+AiRBM Qpwm (Y™ — P yre) + 2R3 (288 5o + 2l g, I 4 yieG, T 4 yim, M) (9A.6)

Expression (9A.5) is equivalent to the path integral (9A.1) and after performing the integrations and
re-transforming the currents

1 [hs ,
[T— drj(r)e iwmT 9A.7
j hﬁ/o i(7) (9A.7)

we obtain the resulting generating functional
1 [h8 I
Z*0[j] = Z*° exp oY / dT/ dr' j(r)G> (1, 7)j(r") (9A.8)
0 0

with the partition function

© 4

7%= z7700] = [[ Y (9A.9)

40%w2, + (w2, +03)?

and the 2 x 2-matrix of Green functions

G (r, 1) = <G§3(Ta ™) Gry(T, T')) _ (9A.10)

Ga(r,T) Gay(r,7)

The elements of this matrix are position-position correlation functions. This can easily be proved
by applying two functional derivatives with respect to the desired component of the current to the
functional (9A.1), for example

1 52
G, ') = ((x(1) — o) (x(7) — x xoz{fﬁ - — - Zxoj] , 9A.11
( ) (( ( ) 0)( ( ) 0)> ZXOL]] 6Jm(7)§]z(7-l) [] o ( )
where we have defined expectation values by
A2 — <0
(...)° = Z%h f@% . O(xo — x(7))e” AT BR0/R, (9A.12)

From the above calculation we find the following expressions for the Green functions in Fourier space
(0 <77 <hB):

Gra(r, ') = (2(r)@(r"))™ = Gyo(r,7") = (§(r) §('))™

yy
2 & W02 % —
. m —iwm (r=7") 9A.13
MB > 10202, + (W2, + 0% — Q)2 © ( )

Gx(nr) =

—~

B(r)g(r'))" = -Ga(r,m') = = (g(r) (1))

4QB ad Wm i (r—7")
_ it (77 9A.14
I mz::l 10502 + (@2, + 2 g ° : (94.14)
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where, for simplicity, X(7) = x(7) — xo. It is desirable to find analytical expressions for the Green
functions and the partition function (9A.9). All these quantities possess the same denominator which
can be decomposed as

40302 + (W2 + Q1 - 0%)? = (W2, + Q1) (W2 +0%) (9A.15)

with frequencies
0:(Qp,0,) =0, £05. (9A.16)

Therefore the partition function (9A.9) can be split into two products, each of which known from the
harmonic oscillator [4, Chap. 5]:

N w2 o w2 hBQy /2 hBQ_ /2
ZxO — m m — . Al
ngl L}?n + Qi] ml_:[1 [w?n + QQ] sinh Q4 /2 sinh ASQ_ /2 (94.17)

Now we apply the property (9A.15) to decompose the Green functions (9A.13) into partial fractions,
yielding

G, T) =Gy(r, ™)

1 = 1 , . = 1 , . 1
_ _ L e _ b i) _ 9A .18
M3 (al m;oo w2+ 02 € ) w2+ ¢ Q+Q_> (94.18)

m=—00

with coefficients
0 -02+0% QL +Qp a__QZ’_—Qi+Q2B_QL—QB
02— 20, Tz T 20,

ay = (9A.19)

Following Ref. [4, Chap. 3], sums of the kind occurring in expression (9A.18) are spectral decomposi-
tions of the correlation function for the harmonic oscillator and can be summed up:

o0

1 , N KB
E R 72“‘)”(7.77. ) = — ! . A2
w?n + Qi ¢ 204 9% (T, T ) (9 0)

m=—0o0
Here we introduced the expression

cosh Q. (|7 — 7'| — hB3/2)

" = ! A.21
gE (T7 T ) Sinh hﬁQE/Q 9 T, T € (Oa hﬁ), (9 )
with € € {+,—, 1, ||}. Thus, the zz- and yy-correlation functions can be expressed by
1 hs hs 1
X0 (1) — (X0 (m 1) — Ny Wy A.22
va(Tv T ) ny(T7 T ) Mﬁ <4QJ_ g+(Ta T ) + 4QJ_ (Ta T ) Q+Q> ) (9 )

where, from Eq. (9A.16), Q1 = Q4 (Qp,Q,) are functions of the original frequencies Qg from the
magnetic field and Q@ from the additional harmonic oscillator (9A.2). It is obvious that expression
(9A.22) reduces to the Green function of the harmonic oscillator for Qg — 0:

lim G(r,7) = — (—hml

- nN_1 A2
a8y ’ M2 \ " 2 g1(r,7) ) (94.23)

with ¢ € {x,y}. In this limit, the partition function (9A.17) turns out to be the usual one [4, Chap. 5]
for such a harmonic oscillator 586 /2

lim z%o = _OML/2

Qp—0 sinh ABQ, /2

It is worth mentioning that with the last term in Green function (9A.22) the classical harmonic
fluctuation width

(9A.24)

c cl 1
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is subtracted. This is the consequence of the exclusion of the zero frequency mode of the Fourier
path (9A.3) in the generating functional (9A.1). The necessity to do this has already been discussed in
Section 9.2. The other terms in Eq. (9A.22) are those which we would have obtained without separating
the zg-component. Thus these terms represent the quantum mechanical Green function containing all
quantum as well as thermal fluctuations. It is a nice property of all Green functions discussed in this
chapter that

GXo(r,7') = GI™ (1, 7") — GY,. (9A.26)

Such a relation exists for all other Green functions appropriately, including momentum-position cor-
relations which we consider subsequently.

The knowledge of relation (9A.20) makes it quite easy to determine the algebraic expression for
the mixed xy-correlation functions. Rewriting Eq. (9A.14) as

Gry(r, ) = =GR (7, 7")

71 9 S 1 —iwm (T—7" — 1 i (r—p
:2Mﬂ9L5<m§o g 2 gre )> (94.27)

m=—00

and applying the derivative with respect to 7 to relation (9A.20), we obtain the following expression
for the mixed Green function:

G;Z(Ta T,) = _ng (Ta T,)
_ h
C4iMQ,

{0(r =) hi(r.7") = ho(r,7')] = O —Dlhe(r',7) — h_(r',7)]},  (9A.28)

where we have used the abbreviation

sinh Q. (1 — 7' — hf3/2)

!
smhngaz 0 T € (0,h5), (9A.29)

he(r,7') =

with e € {+,—, L, ||}. Note that classically (zy)”" = 0 such that Eq. (9A.26) reduces to
Gy (r, ') = GE (T, T"). (9A.30)

The Heaviside function in Eq. (9A.28) is defined symmetrically:

1 T>T1,
O(r—1)=4¢1/2 7=1, (9A.31)
0 T< T

In the quantum mechanical limit of zero-temperature (8 — o0), the Green function (9A.22) simplifies
to

h , ,
Jim G3(r7) = lim Gy(r.7) = o (e*QHH | 4 e lr—7 \), (9A.32)

while in Eq. (9A.28) only h (7, 7') changes:

lim hy(r,7') = —e =7, (9A.33)

B—o0
9B Properties of Green Functions
In this section we list properties of the Green functions (9A.22) and (9A.28) which are important for

the forthcoming consideration of the generating functional with sources coupling linearly to position
or momentum in Appendix 9C. For all relations we suppose that 0 < 7,7/ < hf.
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9B.1 General Properties

A first observation is the temporal translational invariance of the Green functions:

ijo (r,7') = G;‘jo (r—1"), (9B.1)

where each of the indices i, j stands for x or y, respectively. For equal times we find

1 hp hp 1 1 i=j
X0 =— | = —g_ - L B.2
sz (Ta T) MB <4ng+(77 T) + 40, g (Ta T) Q+Q_> X { 0 i ;é j. (9 )
Moreover we read off the following symmetries from the expressions (9A.22) and (9A.28):

1 =17,

iz (9B.3)

G (r, ') =G (1, T) % {

Otherwise,
X, N _ YXo ()
G (r, ) =G (', 7). (9B.4)

Throughout the chapter we always use periodic paths. Hence it is obvious that all Green functions are
periodic, too:
x N _ X / X, _ X
G (0,7) = G} (hB, '), Gy (r,0) = Gy (1,h3). (9B.5)

9B.2 Derivatives of Green Functions

We now proceed with derivatives of the Green functions (9A.22) and (9A.28), since these are essen-
tial for deriving the generating functional of position and momentum dependent correlations in the
forthcoming Appendix 9C.

Before considering the concrete expressions we introduce a new symbol indicating uniquely to which
argument the derivative is applied. A dot on the left-hand side means to perform the derivative with
respect to the first argument and the dot on the right-hand side indicates that to differentiate with
respect to the other argument. Having a dot on both sides the Green function is derived with respect
to both arguments:
oG (1, 7')

oG, (1,7') B 62G;‘j° (r,7")

° X0 no_ X0 N — o yeXp N —
Gi]’ (TaT ) - or ) G ij (TaT ) or' ’ G ij (TaT ) 9roT (9B6)
Applying such derivatives to the Green functions (9A.22), we obtain (i € {z,y}):
R
G (7)) = O —1)fi(r, ) =0 —7)fi(r',7)] = =G*3° (1, 7") (9B.7)
AMSQ
with
fl (7-, 7-,) = (QL + QB)h+(T7 TI) + (QL - QB)h— (Ta Tl)v (gBS)

where hy (1, 7) was defined in Eq. (9A.29). Performing the derivatives to both arguments leads to the
expression

S X h
G (r ) = .G.iio (r,7) + iV [5(7' -7), (9B.9)
where we have introduced the partial function

R

Yal AN
Gii (T’T)_ 4MQJ_

(02 g (r,7) + 02 g_(7,7")] (9B.10)
which is finite for equal times.

Applying derivatives with respect to the first respective second argument to the mixed correlation
function (9A.28), we find

. GXO h

n n ! __ __(yeXo !
zy(TaT ) - 4'LMQL [Q+g+(T7T) Q,g,(T,T )] =-G zy(TaT) (9B]_]_)
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and
® X ! o X !
Goa(r,7') = =G, (1, 7). (9B.12)
Differentiating each argument of the mixed Green function results in
L[] o X ’Lh L[] oX
G(n ™) = i (00 =) T) O — (D] = —G(n ) (9B
with
fo(m, 7)) = (QL + Q) 2hy (1, 7') — (AL — Qp)*h_(1,7'). (9B.14)
An additional property we read off from Eqs. (9B.7) and (9B.11) is (4,5 € {z,y}):
G (n ) = @R xS (9B.15)
i (T i {7 1 i#j, '
G.XO (7' 7") = G.XO (T’ 7') X -1 1= j’ (gB 16)
1) ) 1) ) 1 i # j. .
The double-sided derivatives (9B.9), (9B.10), and (9B.13) imply
.G.XO N .GOXO ! ]- Z = j7 9B 17
ij(T’T)_ ij(TvT)X -1 Z;é_] ( . )
The derivatives (9B.7), (9B.10), (9B.11), and (9B.13) are periodic:
'ijo (1,0) = 'ijo (r,h8), 'ijo (0,7 = 'ijo(hﬂ,r’), (9B.18)
G'Z‘j‘) (1,0) = G'fjo (r,h8), G'fjo (0,7 = G’Z‘jo(hﬂ,r'), (9B.19)
G (1,0) = G (1, hB), G (0,7) =G (hB, ), (9B.20)
GUP(n,0) =GV (R hB), CGURO.,7) = GUF(ME ), (£ (9B21)



150 9. Variational Approach to Hydrogen Atom in Uniform Magnetic Field

9C Generating Functional for Position- and Momentum-
Dependent Correlation Functions

With the discussion of the generating functional for position-dependent correlation functions and, in
particular, the Green functions in Appendix 9A and their properties in Appendix 9B, we have layed the
foundation to derive the generating functional for correlation functions depending on both, position
and momentum. Following the framework presented in Ref. [17], such a functional involving sources
coupled to the momentum can always be reduced to one containing position-coupled sources only.
We start from the three-dimensional effective classical representation for the generating functional

. Prod*po oo .xors
Zaliv) = [ TGER Y (90.1)

with zero-frequency components xo = (2o,¥0,20) = const. and po = (Pzq,Pyg,Py,) = const. of the
Fourier path separated. The reduced functional is

2805:v] = (2n1)* § DD pi(xa - X()o(on ~ (7)) exp { 1 AB ™ [poxidivl},  (9C2)

where the path integral measure is that defined in Eq. (9.4). Extending the action (9.3) by source terms,
considering a more general Hamilton function than (9.17), and introducing an additional harmonic
oscillator in z-direction, the action functional in Eq. (9C.2) shall read

hB
A= lpoxsiv] = [ dr{ <i(r) %) + B0 — 0L (38) + MO [5(0) + (1)

1 .
+§Mﬂﬁ22(r) +j(r) - x(7) + v(1) - 13(7')} (9C.3)
with shifted positions and momenta

x = x(71) — %o, p =p(7) — po- (9C.4)

The orbital angular momentum [, (p, x) is defined in Eq. (9.19) and is used in Eq. (9C.3) with the

shifted phase space coordinates (9C.4). We have introduced three different frequencies in (9C.3),

Q = (28,921,9)), where the first both components are used in regard to the oscillations in the

plane perpendicular to the direction of the magnetic field which shall be considered here to point into

z-direction. The last component, €2, is the frequency of a trial oscillator parallel to the field lines.
Due to the periodicity of the paths, we suppose that the sources are also periodic:

J(0) =j(Ap),  v(0) =v(hp). (9C.5)

Since we want to simplify expression (9C.2) such that we can use the results obtained in Appendix 9A,
the momentum path integral is solved in the following. In a first step we re-express the momentum
d-function in (9C.2) by

- 3 hB
§(po —p(7)) = / % exp {—%/0 drvo - [p(1) — pg]} , (9C.6)

where .
i
v = —
l6) = 13
is an additional current which is coupled to the momentum and is constant in time. Defining the sum
of all sources coupled to the momentum by

(9C.7)

V(&,7) =v(r) +vo(§), (9C.8)
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the functional (9C.2) can be written as

- h3 2(r
Zg" g, v] = /d3§7{D'3xD3p5(x0 —x(7)) exp{ - % ; dr {— ip(T) - %x(1) + pQJEI)

~pl.(p(7),X(7)) + MO {F(7) + (1)} + GMATE() +3(r) %(1) + V(E,7) -p(7) }
(9C.9)

where we have used the translation invariance p — p of the path integral. To solve the momentum
path integral, it is useful to express it in its discretized form. Performing quadratic completions such
that the momentum path integral separates into an infinite product of simple Gaussian integrals which
are easily calculated, the remaining functional is reduced to the configuration space path integral

13 _
Zy g, v] = /d3€ exp l%/‘) dTVZ(ﬁ,T)] %DSWS(XO —x(7)) exp {—%A?zo’xo[xdav]}

(9C.10)
with the measure (9.10) for d = 3. The action functional is
hB M
A V] = [ dr |50 + MO () - ()3}
0
1 1
+5M (L - Q) {2°(71) + 7°(7)} + 5 MQZ () +2(7) [ja(r) + MRV (€, 7)]

iM [

) () = MOBVLE 7] + 20| = |

drx(r)-V(&,7), (9C.11)

where the last term simplifies by the following consideration. A partial integration of this term yields

hB h3
drx(r)-V(&, 1) =— dr (x(1) — %) V({',T) (9C.12)
0 0

The surface term vanishes as a consequence of the periodicity of the path and the source. This
periodicity is also the reason why we could shift x(7) by the constant xo on the right-hand side of
Eq. (9C.12). Obviously, the importance of this expression lies in the coupling of the time derivative of
V(&,7) to the path x(r). Thus, V(£,7) can be handled like a j(7)-current [17] and the action (9C.11)
can be written as

1 [
A7 [x;5, V] = AY ™ [x;3,0] = AF ™ [x;0,0] — 7 drx(r)-J(,7) (9C.13)
0

with the new current vector J(&,7) which has the components

N
™
\]
SN
|

= Ju(7) + MQpVy(§,7) — iMVx(ﬁ,T),
Jy(&aT) = ]y(T) - MQBVz(gaT) - ZMVy(&aT)a (9014)

. 1
J. (5: T) = Jz (T) - EMQHVZ (5: T)
and couples to the path x(7) only. With the expression (9C.10) for the generating functional and the
action (9C.13), we have derived a representation similar to Eq. (9A.1) with the action (9A.2), extended

by an additional oscillator in z-direction. We identify

Je = Jay Gy = Jy. (9C.15)
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Inserting the substitutions (9C.15) into the solution (9A.8) for the generating functional in two dimen-
sions and performing the usual calculation for a harmonic oscillator with external source [4, Chaps. 3,5]
in 2-direction, we obtain an intermediate result for the generating functional in three dimensions (9C.2):

hg

1 s ha
Xexp{ﬁ/o dT/O dr' J(&,7) GXO(T,T')J(E,T')} . (9C.16)

The partition function follows from Eqs. (9A.17) and (9A.24)

M
zZBrfi,v] = A\, Z}’f’“’/d% eXp{— dTVQ(ﬁ,T)}

hBOL/2  RBO_J2  hBQ /2

ZPO7XO — ZPO7XO — 1
Q@ a  [00] sinh h3Q /2 sinh ABQ_ /2 sinh A3 /2 (9C.17)
and G*°(1,7') is the 3 x 3-matrix of Green functions
Gu(r7) Gh(nr) 0
G*(r,7') = | Gya(r, ") Gyo(r,T") 0 : (9C.18)
0 0 Gxo(r, 1)

Except GX2(r,7'), the Green functions are given by the expressions in Eqs. (9A.22) and (9A.28). The
Green function of the pure harmonic oscillator in z-direction

1 (hBQ”

Mﬂﬂ —— g7, T " — 1) (9C.19)

GX(r, ') = 5

follows directly from the limit (9A.23). Since the current J (9C.14) still depends on time derivatives of
V, we have to perform some partial integrations in the functional (9C.16). This is a very extensive but
straightforward work and thus we only present an instructive example. For that we apply the properties
and the time derivatives of the Green functions which we presented in Appendix 9B. Consider the
integral

B B ‘
= 2h2/ dT/ dr' Vi &) G (r, ) Vi€, ") (9C.20)

occurrlng in the second exponential of Eq. (9C.16) with i € {z,y,z}. A partial integration in the

7'-integral leads to
s 0GR () |,
[ e v ))

hB 1B
= 2712/ dT/ dr' Vi & 1) G (r, ) Vi€, 7). (9C.21)

M2 hp3 .
=g arvien (GZ?(T,T')%@,T')

The surface term in the first line vanishes as a consequence of the periodicity of the current (9C.5)
and the Green function (9B.5). A second partial integration, now in the 7-integral, results in

M2 h3 hi3
I = ——2/ dr dr' Vi(&, 1) *G* 2 (1, 7") Vi (€, 7")
M2

W phs .
= _W/ dr dr' Vi(&,7)°G* ) (1, 7)) Vi€, T / dr V2 (€, 1) (9C.22)
0 0

Here we have applied the periodicity property of the right-hand derivative of the Green function
(9B.19), leading to a vanishing surface term in this case, too. In the second line, we have used the
decomposition (9B.9) of the double-sided differentiated Green function. Note that the last term just
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cancels the appropriate term in the first exponential of the right-hand side of Eq. (9C.16). Eventually,
after performing all such partial integrations, we re-express Eq. (9C.16) by

h3 hi3
ZR0%0[j,v] = AS? 780 / ngexp{Q—; / dr / dr'é(s,ﬂH"O(r,r')é(s,r')} (9C.23)

with six-dimensional sources
s(¢,7) =(J(7), V(& 7). (9C.24)

and the 6 x 6-matrix H** (7, 7') which has no significance as long as we have not done the &-integration.
We explicitly insert the decomposition (9C.8) into expression (9C.24) of the source vector §. Since
vo (&) from Eq. (9C.7) is constant in time, some temporal integrals in the exponential of Eq. (9C.23)
can be calculated and we obtain

1 hB hB
Zgo’xo [‘]’ V] _ >‘c_}13 Zgo,xo exp 57 /0 dr ; dr’ s(t) H* (7, TI) 5(7'/)

hB
X /d3§ exp {_2%552 +i%£- i dTv(T)} (9C.25)
with the new 6-vector
s(t) = (i(7),v(7)) (9C.26)

consisting of the original sources j and v only. The Gaussian ¢-integral in Eq. (9C.25) can easily be
solved and the terms appearing from quadratic completion modify the above matrix H** (7, 7'). The
final result for the generating functional of all position and momentum dependent, correlations is given
by

1 h3 hB
ZE””‘°[j,v]=ZS°’x°eXp{ﬁ / dr | dr's(m) GR(r,r)s(r) o (9¢.27)

The complete 6 x 6-matrix GPo*o(7,7') contains all possible Green functions describing position-
position, position-momentum, and momentum-momentum correlations. As a consequence of sepa-
rating the fluctuations into those perpendicular and parallel to the direction of the magnetic field, all
correlations between x, y on the one and z on the other hand vanish as well as those for the appropriate
momenta. The symmetries for the Green functions and their derivatives were investigated in detail in
Appendix 9B and lead to a further reduction of the number of significant matrix elements. It turns
out that only 9 elements are independent of each other. Therefore we can write the matrix

GXo:Po (T, TI)

Gy (r, ") GRy*o(r,7') 0 GEpxo(r, ') GEpxo(r,T') 0
GRyxe (r',7) GRo*o(T,7") 0 —GEB;"O (r,7") GEoo (r,7") 0

_ 0 0 GByXo (1, 7") 0 0 GBxo(r,7")
| GRe () =GRy T) 0 Gpoxo(r, ') GBoye(r,1) 0
GEo>o (r',7) GRoXo(r',T) 0 Ghoeo (r',7) GPoxo(r,T') 0

0 0 GPoxo (7', 7) 0 0 GRoxo(T,7')

(9C.28)

The matrix decomposes into four 3 x 3-blocks, each of the which describing another type of correlation:
the upper left position-position, the upper right position-momentum (as well as the lower left one),
and the lower right momentum-momentum correlations. The different elements of the matrix are

GRy*o(r,7') = (#(n)a(r))g ™" = Gu(r,7), (9C.29)
GRyxo(r,7') = (&(n)g(r'))g ™" = Gry(r.7"), (9C.30)
GPrxo(r,7') = (2(n)Z(r') ) ™" = G (r,7"), (9C.31)
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Goo(rr') = (#(n)p(r) ) ™" = iMG*3(r,7') = MQBG (7, T)

= 4_71 {O(r =) [hp(r, )+ h (r, ™) = O —7) [hp (', 7) + h_(7',7)]}, (9C.32)
Ggg;xo (r,7") = (2(1)py(7") )go’xo = iMG':Z(T, ™)+ MQpGEo (T, ")

_ _E AN N l QB

- 4 [g+(T7T ) g- (T7T )] ,8 Q+07 9 (9033)
G (1, 7)) = (Z(m)p. (")) ™ = iMG* T (T, ")

= % [O(r = )y (,7") = O(r" — T)hy (7', 7)], (9C.34)
GPoXo (1,7") = (Pa(1)pa (1) )or ™0 = = M>*G* o (1, 7') = 2iM>Qp* G2 (7, 7') + M2QRGX (1, 7') —%

_ hMS2 | ' INDE % _ 023

= B nr) o - (1- B (90.35)
Gpopeo (1, 7") = (Pa(T)Py (7)) )go’xo = 2iM*Qp°*G3o (1, 7) — M2.G.;;(T, ') + M2Q2BG;8(T, )

= Mﬁh {0(r =) [ha(r,7") = h_(7, 7)) = O(7" = 1) [y (7', 7) — h_(',7)]}, (9C.36)

X ~ aX hMQ

Gy ) = (Pa ™ = MG ) = M M oy M goa

where the expectation values are defined by Eq. (9.60). Note that all these Green functions are invariant
under time translations such that

GPyXo(r,7") = GRo*(r — 1) (9C.38)

with u,v € {2,Y, 2, Pz, Dy, D=}

It is quite instructive to prove that all these Green functions can be decomposed into a quantum
statistical and a classical part as we did it in Eq. (9A.22). Since we know that the classical correlation
functions do not depend on the Euclidean time, all derivative terms in Egs. (9C.29)—(9C.37) do not
contain a classical term. We can write each Green function

GPox(r,7') = GE(r,7") — G, (9C.39)

This relation has been already checked for Egs. (9C.29)-(9C.31) in Appendix 9A. The classical con-
tribution is zero in Egs. (9C.32), (9C.34), and (9C.36) following from the absence of classical terms
in derivatives of the Green functions and mixed correlations like (9A.30). It seems surprising that
the correlation (9C.33) contains a classical term while (9C.32) possesses none. This is, however, a
consequence of the cross product of the orbital angular momentum appearing in the action (9C.3) and
the explicit classical calculation entails

1 Op

Gl = (apa) =0, G, = (ap,) = -
Pz Py Yy Bgi

__—B __ (9C.40)
0z

where the latter is the subtracted classical term in Eq. (9A.22) when considering the first two substi-
tutions in (9C.15). In Eq. (9C.37), the second term is obviously the classical one since

M
Gy, = o) = (9C.41)
The extraction of the classical terms
M 02
1 1_ B
Grop, = (Pepa)” = r <1 + m) (9C.42)

in the case of the Green function GP°°(r,7') requires the consideration of the last two terms in
Eq. (9C.35). Thus we have shown that the decomposition (9C.39) holds for each of the Green functions
(9C.29)—(9C.37). Note the necessity of subtracting the classical terms since they all diverge in the
classical limit of high temperatures (8 — 0).
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CuaprTeEr 10

Fluctuating Membranes

We investigate the violent thermal out-of-plane fluctuations of a stack of membranes between two
parallel walls and calculate the pressure p that they exert upon these walls. In equilibrium with a
reservoir of molecules, tension vanishes and the shape is governed by extrinsic curvature energy. The
differential geometric background of this model is discussed in this chapter. The pressure law was
found by Helfrich [50] and reads for N membranes

N (kpT)?
n N-I-laN ka3

PN (10.1)

where L = (N + 1)a is the distance between the walls, and k the bending stiffness. The universal
pressure constants an are not calculable exactly. For a single membrane, a; was roughly estimated by
theoretical [50] and Monte Carlo methods [85-88]. By a strong-coupling calculation [48,89], presented
in Chapter 11, we find a value, which lies well within the error bounds of the latest Monte Carlo
estimate [88]. In a different strong-coupling approach [49], we also calculate the pressure constants for
a stack of membranes in Chapter 12. Our results are in excellent agreement with all available Monte
Carlo estimates [86-88] for N = 1,3,5. By an extrapolation to N — oo we determine the pressure
constant ay for infinitely many membranes.

10.1 Introduction

Membranes formed by lipid bilayers are important biophysical systems occurring as boundaries of
organells and vesicles. Their tension vanishes due to the lateral motion of molecules within the mem-
brane. The flexibility of fluid membranes leads to an amazing variety of shapes of vesicles, which are
large encapsulating bags with a size of up to 100 yum. Changes in temperature or osmotic conditions,
e.g. the concentration of ions or molecules in the membrane, induce shape transformations of vesicles.
Figure 10.1 shows schematically the process of a budding transition, where the increase of temperature
entails more violent membrane fluctuations, which lead to an uncoupling of a daughter vesicle, which
can move independently of the mother vesicle (see Ref. [90] for microscopic photographs of a budding
transition). Eventually, it can dock to another vesicle by an inverse process. Thus, shape transfor-
mations of membranes are necessary to make possible matter and energy transport between cells and
organells in a complex biological system.

157
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27°C 36° C 38°C

39°C 41° C 41°C

FIGURrE 10.1: 3D pictures of a budding transition of a vesicle by increasing the temperature. The surfaces were
modeled from microscopic photographs given in Ref. [90].

10.2 Differential Geometry for Curves and Surfaces

The geometry of the vesicle shapes can only be described locally, which means that it is necessary
to apply differential geometry for modeling membranes. In what follows, we briefly review the main
aspects of differential geometry.

10.2.1 Local Curvature of Curves

Topologically one-dimensional geometric objects appear in physics in different forms, for example as
particle paths, polymers, strings, or vortex lines. They have in common that it is sufficient to identify
each point of such an curved object by a vector in the surrounding embedding space, which depends
on only one parameter. The parameter choice depends usually on the appropriate problem.

We want to describe a curve C' in three-dimensional embedding space and we parameterize it with
the help of the parameter s, which we choose to lie in the interval 0 < s < 1. As Fig. 10.2 shows, a
certain point of the curve C'is given by the contravariant vector r(s) = (z(s)) = (z'(s), z%(s), 1‘3(3))T
The components of the tangent vector t(s) = (¢'(s)) at the point z?(s) are given by the differential

quotient ' ' '
z'(s + As) —2'(s)  dx'(s)

i T
t(s) = Al;rgo As ds (10-2)

The length of an infinitesimal piece of the curve is given by
ds? = [dz' (s)]* + [dz? ()] + [dz®(s)]* = mijdx’(s)da? (s), (10.3)

where equal indices are summed over. The identity matrix (n;;) = diag(1,1,1) is used to transform
covariant vectors to contravariant ones: dz; = n;;dz’. The tangent vector ¢*(s) is already normalized.
To show this, we perform the scalar product

6] = VAR H) = VEGEG) = /bt = |y Oy (104

where we have used relation (10.3) in the last step. Now we determine the vectors transversal to t(s).

We know that the number of transversal vectors is D — 1, where D is the dimension of the embedding

space. Thus, we expect in three dimensions two independent vectors, which are orthogonal to t(s).
One is easily determined by differentiating the scalar product ¢*(s)t;(s) = 1 with respect to s:

d dti(s

_ d()

Eti(s)ti(s) =0 s

1 t(s). (10.5)
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FIGURE 10.2: Curve C, parameterized by s, which we conventionally suppose to lie in the interval 0 < s < 1.

The vector dt(s)/ds is obviously orthogonal to #!(s), and we define the normal vector n(s) as

ni(s) = k‘l(s)dt;is) — ()Y ;”;2(5), k(s) = ‘7‘”7”;?%” . (10.6)

The proportionality constant k(s) is called the curvature of the curve at the point s and the components
of the curvature vector k(s) are given by

Ei(s) = k(s)n'(s), (10.7)

thus pointing into the same direction as the normal vector. The larger its length k(s), the more curved
is the curve at s. The other transversal vector is called binormal vector b(s) and is orthogonal to n(s)
and t(s):

(10.8)

where the length b(s) = |dn(s)/ds| describes the strength of torsion of the curve. The more normals
at neighboring points of the curve differ, the stronger is the torsion of the curve in this region.

An important quantity of a stringy object is its tension o. This material constant is identical with
the strength of the force, which acts in the opposite direction of an elongation to bring back a deformed
string into its equilibrium state. In order to describe quantitatively the consequences of elongating a
string with tension, we consider Fig. 10.3. The lower line represents a piece of an undeformed string.
Dragging it at the position s by an amount |Au(s)| from r(s) to r(s) + Au(s), where we keep the
ends fixed, the overall length of this piece of string obviously increases. As we are only interested in
elongations, which cause normal forces (which means that the force vector is parallel to the normal
vector n(s)), the displacement vector Au(s) is parallel to the normal vector n(s). This ensures that
the mechanical stress is the same for both legs of the triangle. It also allows us to choose one of the
two rectangular triangles for the following considerations, since the ratio of the hypotenuse to the
appropriate horizontal sides is identical for both. With these suppositions, we read off from Fig. 10.3:

As"”(s) = Au>(s) /12 + As?, (10.9)
where we have rescaled the elongation with respect to the length of the undeformed string:
1
0

Going over to infinitesimal quantities, this relation gives us the measure of the deformed string

ds'(s) = dsy[1 + ﬁ:‘((;)] . (10.11)
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r(s)+Au(s)

r(s) As r(s + As)

FIGURE 10.3: Change of scale (As — As') by elongating a string with tension.

The length of the deformed string can thus be written as

= lo/ (10.12)

lodS
in comparison to the undeformed one (10.10). Then, the energy E, of a deformed string due to its

tension is equal to the mechanical work A, , which is necessary to change the length of the string from
lo to I:

&3]
N
Il

Ay =a(l —1ly) =aly /ds l()dS

' Tdu(s) o Ydui(s) o [l du'(s) dui (s)
W2 [ d 12 [ dsyi — 2 [ dsy 23) 101
/0 s [lod ] /0 i lods lods 2/0 i g 0 1013)

where we have performed the scaling s — lps in the last step. The approximate expression (10.13) is
valid in the adiabatic limit of small elongations |u(s)].

If the line-like object can be deformed without changing its overall length, such as in the case of
stiff polymers, another material property becomes important: the elasticity or bending rigidity k. The
degree of elastic deformation strongly depends on the curvature k(s) at any position s. Thus, the
bending or curvature energy is given by the curve integral

1 ) y
K 5 dt’ dtf / d*xi(s) d*z7 (s)

_k ; " , 10.14
2/0 ds 1 ( / ds1) sy LoD (10.14)

X

where we have used the relation (10.6) between the curvature k(s) and the difference of neighboring
tangential vectors t(s) and t(s + ds) per length element ds and, in the last expression, the definition
(10.2) of the tangential vector.

10.2.2 Local Curvature of Surfaces

In complete analogy to line-like objects in the preceding section, we investigate now topologically two-
dimensional surfaces like membranes in three-dimensional embedding space. A point of a surface S
may be identified by the position vector r(u!,u?) = z?(u*) with g = 1,2, where u' and u? are suitable
coordinate lines and serve as a parameterization of the surface (see Fig. 10.4). We use Latin indices for
components of vectors in the embedding space, while Greek indices denote components of the intrinsic
coordinates of the surface. The coordinate lines u', u? span a mesh and cover the surface completely.
At the moment, the choice of these coordinates is arbitrary. Tangent vectors t,(u") point along these
coordinate lines and are introduced by

or(ut)  Ox'(u”)

dur  OQu

t(ut) = . op=12 (10.15)

The surface normal vector N(u”) is then given by the cross product of the tangent vectors:

tl(u“) X tg(u“)
|61 (ur) X to(ur)]’

N(u) = (10.16)
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u?+ Au?
FIGURE 10.4: Surface S, which is parameterized by intrinsic coordinates u' and u?.
or, written in components, .
i eijutith
N*(u*) = ' , (10.17)
\/Eijkt{tlgf;‘ilthltg,m
where €;;1 is the totally antisymmetric tensor
+1 {ijk} = {123} or cyclic,
gijg = ¢ —1 {ijk} = {213} or cyclic, (10.18)
0 else.
An infinitesimal square length element on the surface is obviously introduced by
ds® = [dz" (u", u®)]? + [de? (u', u?)]? + [d2® (u', u®)]* = da;(u)dz’ (uh). (10.19)
Substituting the total differentials by
: Ozt (uh) :
() = I 48 gt
dz'(u) = S dut = t, du*, (10.20)
Eq. (10.19) can be rewritten as the first fundamental form
ds® = gu,dutdu”, (10.21)
with the metric )
< or ) or Or
; 9z’ dw; oul')  ou' ou?
y =yt = 5o = : 10.22
In wes Out duY or Or or \° ( )
oul  Ou? ou? o

The metric is a symmetric tensor, which uniquely characterizes the shape of the surface. It is diagonal,
if the tangent vectors are perpendicular to each other, which happens to be for orthogonal coordinates.
As the explicit calculation shows, the determinant of the metric is obtained by the square absolute

value of the cross product of the tangent vectors

g =det g, = |t1 X ta]® = eijutitse ™t it .

(10.23)
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rut+Aul,u?)  rlul+Aut, u?+Au?)

AA : lr(ut +Aut, u?) —r(ut, u?)|sina
« | |

r(u!,u?) r(ut, u® 4+ Au?)

FIGURE 10.5: Planar projection of a surface element.

In Fig. 10.4, we have highlighted a surface element and we calculate its area as follows. For an
infinitesimal small surface element, which is enclosed by the coordinates (u', u?), (u' +du',u?), (u', u>+
du?), and (u! + du',u® + du?), the surface element and its planar projection are identical and we have
to calculate the area of a parallelogram as shown in Fig. 10.5. Since the area of a parallelogram is
identical to that of a rectangle with one shortened side, we obtain

dA = |r(ul,u2 + du?) — r(ul,u2)| |r(u1 + dut,u?) — r(ul,u2)| sina = ‘% du* % du? sin o
_ |2 X o dutdu® = |ty X to| du'du® = /g du'du® (10.24)
oul " ou? ’ ’

where we have used relation (10.23) in the last step. The overall area of the surface S is thus given by
the parameter integral

Ag :/dA: /duldu2 NG (10.25)
S

In the following we investigate the local curvature of a surface. For the one-dimensional curve, we have
defined the curvature k as the proportionality constant between the normal vector n(s) at a position
s and the derivative with respect to s of the tangent vector t(s) in Eq. (10.6). A surface possesses
an infinite number of tangent vectors, since the two independent ones (10.15), which point along the
coordinate lines u' and u? span a tangential plane, in which all possible tangential vectors at the point
r(u!,u?) reside. Thus there are infinitely many curves on the surface, which touch the point r(u', u?)
and have different curvatures in this point. Thus we need a new definition for what we want to call the
curvature of a surface. Let r(s) be a point of a curve C with curvature k(s) on the surface S, where
the same point is parameterized by r(u!,u?). Then, n(s) = d’r(s)/kds? denotes the normal vector of
the curve and N(ul,u?) the surface normal at this point. We define the normal curvature k,, at this
point, by
_ v &7 i i
k, = Ni@ =k, N; =kN;n' =kcos©, (10.26)

where we have used the definition (10.7) for the curvature vector. The angle between n and N at a
certain point is denoted by ©.

If we consider the surface coordinates as functions of the curve parameter, u* = u*(s), we rewrite
the tangent and the normal vector of the curve at s as

i dzi(ut (s Ox' dut
o)) = TR = SO

d*x' (u”(s)) 1 < 0%zt du* du’  Ox' d2u“>

Yo — 12\ 2 _ - - - -
n'(u(s)) =k k Ourdur ds ds =~ Our ds?

o (10.27)

Multiplying the second relation by N; and acknowledging that the second term vanishes due to N(ut) L
Ozt (u*) /Out = t,,(u"), we obtain

N, A2z’ P du” du?

i = s ds (10.28)
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FIGURE 10.6: Definition of main curvature lines.

where we have introduced the curvature tensor

0%zt o .
h,, = Nyj———— = N,—1t'. 10.2
’ Outou? Our v (10.29)

Now we differentiate the relation Nitz = 0 with respect to u”, yielding

—  =h,, = ——— =— , 10.
Outou? K Out duY dut du” (10.30)

where we could use total differentials since du*/du” = §*,. Expression (10.30) exhibits the second
fundamental form [91,92] .
—dz'dN; = hy,du”du”. (10.31)

Writing the right equation of (10.28) as knds® = h,,du*du” and substituting ds? by the first funda-
mental form (10.21), we obtain the important expression

_ hyvdutdu”

b —
" gepdurdur’

(10.32)

which relates the normal curvature with the metric and the curvature tensor of the surface. As stated
above, there is an infinite number of curves touching a certain point (u!,u?) of the surface and having
a curvature vector k at this point. In order to find a measure for the curvature of the surface in this
point, we determine the curves with maximum and minimum curvature. This is done by extremizing
the relation (10.32). Introducing abbreviations [* = du* and a ., = hyy — knguw (= 0), Eq. (10.32) can
be written as

au, MY = 0. (10.33)

Differentiating this equation with respect to [* yields
auelt =0, (10.34)

where we have utilized the symmetry of a,,,. Re-expanding the abbreviations, multiplying by ¢**, and
substituting g,"dut = du” leads to
h,"du* — kpdu” = 0. (10.35)
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This is a set of two equations (v = 1,2), which constitutes an eigenvalue equation:

h' ho'\ ((dul _ du*
<h12 h22 du2 - kn du2 - (1036)
As usual, the eigenvalues k,, are obtained from the vanishing determinant

=0. (10.37)

hi' —k,  ho'
h2 hy? —ky,

Solving the quadratic equation (hi' — ky)(ho® — kn) — h12ho' = 0 yields the two eigenvalues

1 1
k1o = Eh”u + \/Z (hu“)2 —deth,”. (10.38)
Defining the Gaussian curvature
K = k‘le = det huy (1039)
and the mean curvature 1 1 1
H = i(kl + k/'Q) == §huu = iTI' huu, (1040)

Eq. (10.38) can be expressed by
kio=H++VH?-K. (10.41)

These solutions are called main curvatures of the surface. The corresponding curves with curvature
vectors ki o satisfying k1o = ki - Ny 2 at the point (u',u?) are denoted as main curvature lines on
the surface. Their tangent vectors t; » are orthogonal to another. Thus the eigenvectors of h,"” form
a local orthonormal coordinate system at this point of the surface as shown in Fig. 10.6.

Following Helfrich [93], the definitions of mean and Gaussian curvature are used to write the bending
energy as an expansion in the curvature. The lowest-order contribution is then given by

Ec = / dA (26H? + kaK) , (10.42)
S

which is quadratic in the main curvatures k; and k. The elastic constants k and kg are denoted
as bending rigidity and Gaussian bending rigidity, respectively, and have the dimension energy. The
second term in the parentheses in Eq. (10.42) is the topological invariant 47kg(1 — G) as follows
from the global Gauss-Bonnet theorem [91]. The number G counts the handles of the surface and is
called the genus of the surface. Since we assume the surface topology to be fixed, this constant energy
contribution can be omitted, leaving us with an curvature energy, which only depends on the mean
curvature. Thus, Eq. (10.42) is written as

Ec = g/dz'u Va(h )2, (10.43)

This is the classical curvature model for bilayer membranes and is valid for curvature radii much larger
than the membrane thickness (4nm) [94]. The membrane equilibrium shape is then determined by
minimizing the curvature energy.

A frequently used special parameterization of an almost planar surface is the Monge representation.
As shown in Fig. 10.7, it is characterized by the following choice of parameters:

p(ut,u?) = oty oyt u?) =, () = 2(a,y). (10.44)

In this simple case, only deformations orthogonal to the zy-plane can be described. Although this is a
strong restriction for the investigation of the influence of thermal fluctuations, which have no preferred
direction upon a membrane, we will use an even more simplified form of this representation throughout
the subsequent calculations. In Monge representation, the tangent vectors pointing into the direction
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N

y

FIGURE 10.7: Out-of-plane deformations of an almost planar surface are described with the Monge represen-
tation, where Cartesian coordinates are used. The coordinates z and y span the parameter space, and only
z = z(z,y) depends on the parameterization.

of the z and y unit vectors read
t, = (1,0,0,2)",  t2=1(0,1,8,2)". (10.45)
The cross product of these tangent vectors yields the surface normal vector

1
N= V14 (022)2 + (0y2)?

which we have normalized according to Eq. (10.16). The covariant and contravariant metrics are given

by
_ (14 (0:2)" 0,202 w1 (14(8,2)2 —8,20,2 \"
i = ( 0220yz 14 (0y2)? v T =g\ =0,20,2 1+ (0,2)? ’ (10.47)

where g is the determinant of the covariant metric

(=0,z,—0yz, )T, (10.46)

g=det g, =1+ (9;2)* + (0,2)°. (10.48)
For the curvature tensor we obtain
1 02z 0.0y 2
h[,u/ - % <6m6y2 652 uy, (1049)

or in the form we need it for calculating the mean and the Gaussian curvature:

b 1 ([ @] 02— 000,007 [1+ (0,27] 0.0y — 0,202
w9 e = g3/? [1 + (ax2)2] 020yz — 8xz8yzagz [1 + (8$Z)2] 5§z = 0220,20,0yz
i

(10.50)
The mean curvature (10.40) of a Monge parameterized surface in the point (z,y, z2(z,y)) is half the
trace of the tensor (10.50). Thus it is given by
1 1 {
2 [1+ (9,2)2 + (0y2)?]3/?

%Az [1+0((V2)?)], (10.52)

H =

[14 (022)°] ;2 + [L+ (8y2)°] 022 — 20,20,20,0,z} (10.51)

X

where A is the Laplace operator 92 + 65 and V the gradient (9, J,) in two dimensions. The Gaussian
curvature (10.39) is obtained from the determinant of h,":

1 2 2 2
K= Tr@rr@op 050~ @027 (10.53)
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The simplest form of the curvature energy (10.43) for a membrane, which can be parameterized with
the Monge representation is given by the expression

Ec = g / dwdy [Az(z,y))?, (10.54)

which we will use in the sequel to describe thermal fluctuations of membranes between walls.



CuaprTeEr 11

Strong-Coupling Calculation of
Fluctuation Pressure of a Membrane
Between Walls

We calculate analytically the proportionality constant in the pressure law of a membrane thermally
fluctuating between parallel walls from the strong-coupling limit of variational perturbation theory
up to third order. Extrapolating these approximants to infinite order yields the pressure constant
a = 0.0797149 [48]. This result lies well within the error bounds of the most accurate available Monte
Carlo result oS = 0.0798 £+ 0.0003 [88].

11.1 Membrane Between Walls

The violent thermal out-of-plane fluctuations of a membrane between parallel walls generate a pressure
p following the law
kLT
p=a—7"-"733>
k(d/2)?

whose form was first derived by Helfrich [50] using dimensionality arguments. Here, k denotes the
elasticity constant of the membrane, and d the distance between the walls. The exact value of the

prefactor « is unknown, but estimates have been derived from crude theoretical approximations by
Helfrich [50] and by Janke and Kleinert [85], which yielded

(11.1)

ol ~0.0242, ol ~ 0.0625. (11.2)

More precise values were found from Monte Carlo simulations by Janke and Kleinert [85] and by
Gompper and Kroll [88], which gave

aNi€ ~ 0.079 4 0.002, adg ~ 0.0798 + 0.0003. (11.3)

In a previous work [89], a systematic method was developed for calculating a with any desired high
accuracy. Basis for this method is the strong-coupling version of variational perturbation theory [4].
The application of this method to the fluctuation pressure of the membrane is similar to that for the
particle in a box developed in Ref. [95]. In that theory, the free energy of the membrane is expanded into

167
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a sum of connected loop diagrams, which is eventually taken to infinite coupling strength to account
for the hard walls. As a first approximation, an infinite set of diagrams was calculated, others were
estimated by invoking a mathematical analogy with a similar one-dimensional system of a quantum
mechanical particle between walls. The result of this procedure was a pressure constant

2

th m
=-— =0.0771 114
oy 198 0.0771063 ... ., ( )

very close to (11.3).
It is the purpose of this paper to go beyond this estimate by calculating all diagrams up to four
loops exactly. In this way, we improve the analytic approximation (11.4) and obtain a value

a™ x 0.0797149, (11.5)

which is in excellent agreement with the precise MC value aM¥ in Eq. (11.3).

11.2 Smooth Potential Model of Membrane Between Walls

To set up the theory, we let the membrane lie in the x-plane and fluctuate in the z-direction with
vertical displacements ¢(x). The walls at z = +d/2 restrict the displacements to the interval p(x) €
(—d/2,d/2). Near zero temperature, the thermal fluctuations are small, ¢(x) =~ 0. The curvature
energy E¢ of the membrane has the harmonic approximation (10.54)

Ec = %Ii/dCUQ [0%p(x)]%. (11.6)

The thermodynamic partition function Z of the membrane is given by the sum over all Boltzmann
factors of field configurations ¢(x)

+d/2 d
p(x) { K / 2,192 2}
Z = / ————— | expq — d°z [0%p(x . 11.7
I [ o Tootrm| P | Cre0) (1L.7)
This simple harmonic functional integral poses the problem of dealing with a finite range of fluctuations.
This problem is solved by the strong-coupling theory of Ref. [89] as follows.

If the area of the membrane is denoted by A, the partition function (11.11) determines the free
energy per area as

1
f= —Zln Z. (11.8)
By differentiating f with respect to the distance d of the walls, we obtain the pressure p = —9f/0d.

11.2.1 Smooth Potential Adapting Walls

We introduce some smooth potential restricting the fluctuations p(x) to the interval (—d/2,d/2), for
instance

d? . . 2
V(p(x)) = m* =5 tan” Zo(x) = m*e?(x) + Vi (o(x)), (1L.9)
where we have split the potential into a harmonic and an interacting part
: _ 4 4 ™ Z 6 ™ t s
Vint (0(x)) = m {544,0 (x) + €6 (d) P’ (x) + €5 (d) o (x) + .. ] (11.10)
with e4 = 2/3,66 = 17/45,e5 = 62/315,... . Thus we are left with the functional integral

2

7= § Doty exp (3 [ o {107 00F + mie? ) + Vi) ). (11.11)
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V(p)

ma~Q —

—d/2 0 o /2

FIGURE 11.1: Smooth potential V() for different values of the parameter m. In the limit m — 0 the hard
walls at ¢ = +d/2 are adapted.

where we have set kK = kT = 1. After truncating the Taylor expansion around the origin, the
periodicity of the trigonometric function is lost and the integrals over ¢(x) in (11.7) can be taken from
—00 to +00. The interacting part is treated perturbatively. Then, the harmonic part of V(p(x)) leads
to an exactly integrable partition function Z,,2. The mass parameter m is arbitrary at the moment,
but will eventually be taken to zero, in which case the potential V' (p(x)) describes two hard walls at
» = £d/2. Figure 11.1 illustrates this behavior of the potential.

We shall now calculate a perturbation expansion for Z up to four loops. This will serve as a basis
for the limit m — 0, which will require the strong-coupling theory of Ref. [89].

11.2.2 Perturbation Expansion for Free Energy

The perturbation expansion proceeds from the harmonic part of Eq. (11.11):
T2 = %D(p(x) e Am2[¢] = gmASm2 (11.12)
with
Analidl = 5 [ 2 {10000 + mi? ()} (11.13)
From Refs. [85,89], the harmonic free energy per unit area f,,2 is known as

fim2 = %mZ. (11.14)

The harmonic correlation functions associated with (11.12) are

1
Zo

(01(p(x1)) Oa2(p(x2)) -+ )2 = j{DsO(X)Ol(sO(Xl)) On(p(xz)) - e m2 1], (11.15)

where the functions O;(¢(x;)) may be arbitrary polynomials of ¢(x;). The basic harmonic correlation
function

G2 (X1, %2) = (p(X1) (X2))m2 (11.16)
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determines, by Wick’s rule, all correlation functions (11.15) as sums of products of (11.16):
((x1) - @(Xn))m> = D G2 (Xp(1),Xp(2) G2 (Xp(n—1), XP(n))> (11.17)
pairs

where the sum runs over all pair contractions, and P denotes the associated index permutations. The
harmonic correlation function (11.16) reads in momentum space

G (k) = — :;2{ LI } (11.18)

k* +m? k2 4+im?2 k2 —im?

thus being proportional to the difference of two ordinary correlation functions (p? — p?)~! with an
imaginary square mass p? = +im?2. From their known x-space form we have immediately

{KO(\/WX1 — %o|) — Ko(vV=im|x —x2|)], (11.19)

Gl (61, %) = Gz (%1 = X2) = =3
where Ko(z) is a modified Bessel function [96, Section 8.432]. At zero distance, the ordinary harmonic
correlations are logarithmically divergent, but the difference is finite yielding G,,2(0) = 1/8m?>.

We now expand the partition function (11.11) in powers of gVin:(¢(x)), where g = 72/d?, and use
the expectation values (11.15) to obtain a perturbation series for Z. Going over to the cumulants, we
find the free energy per unit area

f = fm2 + % /d2w<‘4nt(@(x))>m2,c 2| 4A /d2$1d x2< lnt(@(xl))unt((p( )2)>m2,c +.. (1120)

where the subscript ¢ indicates the cumulants. Inserting the expansion (11.10) and using (11.15) as
well as (11.17), the series can be written as

f=m?

ap + g:l an (%)n] : (11.21)

where the coefficients a,, are dimensionless real numbers, starting with ag = 1/8 from Eq. (11.14). The
higher expansion coefficients a,, are combinations of integrals over the connected correlation functions:

a; = 54—/d2 N m2.cr (11.22)
m10
az = €6ﬂ/d2$(<ﬂ6(x)>m2,c—Eig—A/d%ldQ@ (" (x1) 9" (X2)) m2 e (11.23)
m® ml2
az = Egﬂ/dQI‘ (V3 (X)) m2 5456 o Pz dz, ((p6(X1)(p4(X2)>m27c (11.24)

+€448A /d23’;1d21‘2d2x3< (x1)4p4(x2)§04(X3)>m2 .

To find the free energy (11.21) between walls, we must go to the limit m? — 0. Following [4,89], we
substitute m? by the variational parameter M2, which is introduced via the trivial identity

m? =/ M* - gr (11.25)

with 1
r==(M"-m"), (11.26)
g
and expand the r.h.s. of Eq. (11.25) in powers of g up to the order gV. In the limit m? — 0, this
expansion reads
17 1r2 5, 1 7

2 2\ __ 2
m (M7) =M™ = 5559~ gad ~ e

(11.27)
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Inserting this into (11.21), re-expanding in powers of g, re-substituting r from Eq. (11.26), and trun-
cating after the Nth term, we arrive at the free energy per unit area

N
FN(M?,d) = M?agbo + Y ang"M>"~™b,, (11.28)
n=1
with
N-—n
o= (—1)F <(1 _k”)/2> (11.29)
k=0
being the binomial expansion of (1—1)"=")/2 truncated after the (N —n)th term [89]. The optimization
of (11.28) is done as usual [4] by determining the minimum of fx (M?,d) with respect to the variational
parameter M2, i.e. by the condition
afN (MQ, d)
OM?

whose solution gives the optimal value M3 (d). Re-substituting this result into Eq. (11.28) produces the
optimized free energy fn(d) = fn(M%(d),d), which only depends on the distance as fn(d) = 4ay/d>.
Its derivative with respect to d yields the desired pressure law with the Nth-order approximation for
the constant an:

=0, (11.30)

PN =an (g) h : (11.31)

We must now calculate the cumulants occurring in the expansion (11.21).

11.3 Evaluation of the Fluctuation Pressure up to Four-Loop
Order

The correlation functions appearing in (11.22)—(11.24) are conveniently represented by Feynman
graphs. Green functions are pictured as solid lines and local interactions as dots, whose coordinates
are integrated over:

X1

Xy = sz(Xl,Xg), (1132)
. = /d2x. (11.33)

These rules can be taken over to momentum space in the usual way. One easily verifies that the
integrals over the connected correlation functions in (11.22)—(11.24) have a dimension A/m2(H+V=1),
where V' is the number of the vertices and [ denotes the number of lines of the associated Feynman dia-
grams. Thus we parameterize each Feynman diagram by vA/ m20+V =1 with a dimensionless number
v, which includes the multiplicity. In Table 11.1, we have listed the values v for all diagrams up to
four loops. No divergences are encountered. Exact results are stated as fractional numbers. The
other numbers are obtained by numerical integration, which are reliable up to the last written digit.
The right-hand column shows numbers vk obtained by the earlier approximation [89], where all the
Feynman diagrams were estimated by an analogy to the the problem of a particle in a box. In Ref. [89],
it was shown that the value v of a large class of diagrams of the membrane problem can be obtained by
simply dividing the value of the corresponding particle-in-a-box-diagram vpg by a factor 1/4%, where
L is the number of loops in the diagrams.

Inserting the numbers in Table 11.1 into (11.22)—(11.24), we obtain the coefficients a1, a2, a3 of the
free energy per area (11.28), which is then extremized in M?2. To see how the results evolve from order
to order, we start with the first order

2

1
AL, d) = SaM? + ay - (11.34)

&2
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TABLE 11.1: Feynman diagrams with loops L, multiplicities s, and their dimensionless values v. The last
column shows the values vk = vpp/4” used in Ref. [89].

L Graph S v VK
3 3
2 X0 3 o o
ar = a¥ aX =1/64
15 15
1 -2 =2
3 & g 512 512
COO r % =
128 128
3 3
@ 24 0.828571 x = b
4 = 1.114286 aX oK = 1/1024
105 105
4 1 il 1%
% 05 1096 4096
135 135
m 540 5048 2048
15 15
828571 x —— 0
O@ 360 0.828571 x 5 sa
81 81
2502 st 81
o88e 59 13 13
81 81
135 135
4 828571 x —— el
O@ 3456 0-828571 > 1004 1024
81 81
@ 1728 0.713194 x 5 now
a3 = 2.763097 - 105 aK =0

with ap = 1/8 and a; = 1/64. Here, an optimal value of M? does not exist. Thus we simply use
the perturbative result for m = 0, which is equal to (11.34) for M = 0. Differentiating f1(0,d) with
respect to d yields the pressure constant in (11.31):

1 72 2
= o= = 1 ~0.038553. 11.35
WELE T 256 (11.35)

This value is about half as big as the Monte Carlo estimates (11.3) and agrees with the value found
in [89]. To second order, the re-expansion (11.28) reads

3 2 11
f2(M?,d) = §GOM2 +a1ﬂ-— +a2ﬂ-

with as ~ 1.0882- 1072 from Table 11.1. Minimizing this free energy in M? yields an optimal value

. 8 ay w2 w2
2 — ~
M5 (d) = ”gao z 0.152362d2, (11.37)
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0.0 4.0 8.0 N¢

FI1GUurE 11.2: Difference between the extrapolated pressure constant aex and the optimized N-th order value
an obtained from variational perturbation theory for the method presented in this chapter (solid line) and the
first four values of the approximation scheme introduced in Ref. [89] (dashed line). Dots represent the values
to order N in these approximations.

and

f2(d) = 2—2 <G1 +14/ ;aoa2> . (11.38)

Inserting ap = 1/8 and ay, as from Table 11.1, we obtain
as = 0.073797, (11.39)

thus improving drastically the first-order estimate (11.35). This value is by a factor 1.026 larger than
that obtained in the approximation of Ref. [89].
Continuing this proceeding to third order, we must minimize

w2 3 7t 1 w1

5
[ (M, d) = qga0M* + a5 + 50250 s + 05 g

with a3 &~ 2.7631 - 10~°. The optimal value of M? is

32 as 1 5apa? | w2 w2
2 _ 3 ~ _
M3 (d) =4/ 5 a0 cos lg arccos { | s |E” 0.219608d2. (11.41)

Inserted into (11.40), we find the four-loop approximation for the proportionality constant a:

(11.40)

g ~ 0.079472. (11.42)

This result is in very good agreement with the Monte Carlo results in (11.3) and should be a lower
bound for the exact value since the successive approximations increase monotonously with the order
of the approximation. It differs from the approximate value of the method presented in Ref. [89] by a
factor 1.047.

An even better result will now be obtained by extrapolating the sequence ay,as,as to infinite
order.

11.4 Extrapolation Towards the Exact Constant

Variational perturbation theory exhibits typically an exponentially fast convergence. This was exactly
proven for the anharmonic oscillator [4]. Other systems treated by variational perturbation theory
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FIGURE 11.3: Plot of successive (-like functions associated with expansion (11.46) to orders N = 1,2,3 (solid
curves). For comparison, we also plot the corresponding functions obtained from the approximate expansion
coefficients a% (dashed curves). The curves coincide for N = 1. The zeros g,.n of the Nth approximation
are from right to left: g:; = 64 (64), g, » = 38.369 (39.554), and g, ; = 32.783 (34.796). The zeros approach

rapidly the value g; = 30.953 (fat dot) associated with the pressure constant (11.45).

show a similar behavior [53]. Assuming that an exponential convergence exists also here, we may
extrapolate the sequence of values oy, s, ag calculated above to infinite order. It is useful to extend
this sequence by one more value at the lower end, ay = 0, which follows from the one-loop energy
(11.14) at m? = 0. This sequence is now extrapolated towards a hypothetical exact value aex by
parameterizing the approach as

Qex —an = exp (—n — ENF). (11.43)
The parameters 7, £, €, and the unknown value of aey are determined from the four values ag, ..., as,
with the result
n = 2.529298, ¢ =0.660946, €= 1.976207, (11.44)
and the extrapolated value for the exact constant:
ex = 0.0797149. (11.45)
This is now in perfect agreement with the Monte Carlo values (11.3).
The approach is graphically shown in Fig. 11.2, where the optimized values ay, ..., a3 all lie on a
straight line (solid line). For comparison, we have also extrapolated the first four values o, ..., a¥ in

the approach of Ref. [89] yielding a value aexk & 0.0759786, which is 4.9% smaller than (11.45).

11.5 Comparison with the Renormalization Group Approach

Rewriting the perturbation series (11.21) as f = [g,(g)] 172 /d? with the dimensionless function

. _ . . _ 1 [. a?  a) .
9-(3) = glao + a1 + axd* + azg®> +...) L = — {g - —g° + <—; — —2> 3+ .. } (11.46)
Qg Qg ago

of the reduced coupling constant § = g/m?, its logarithmic derivative s(g) = 0log g-(§)/0 log § vanishes

at infinitively strong coupling since g.(§ — 00) = g5 = const. This constant determines the pressure

constant as

7T2

a= Z[g:]*l. (11.47)

In analogy to the renormalization group method in field theory, we may now define a $-like function
by 8(§) = —gr(3)s(g), as done in Ref. [97]. Since this function vanishes in the limit of infinitely strong
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coupling § — oo, we invert the series (11.46) for §(g,) and re-expand the §-like function in powers
of g, obtaining 3(g,). This function vanishes at the value g} determining once more the pressure
constant via Eq. (11.47). The terms in Eq. (11.46) yield successively the values a; = 0.038553, s =
0.064308, a3 = 0.075265, which approach the estimate (11.45). Figure 11.3 shows the first three §-like
functions for different orders and their zeros together with the zero corresponding to our value (11.45).






CHAPTER 12

Fluctuation Pressure of a Stack of
Membranes

We calculate the universal constants oy in Helfrich’s pressure law for a stack of N membranes between
walls by strong-coupling theory [49]. Using the close analogy between this system and a stack of
strings, where the universal constants are exactly known, we construct a smooth potential that keeps
the membranes apart. The strong-coupling limit of the perturbative treatment of the free energy
yields pressure constants for an arbitrary number of membranes, which are in very good agreement
with values from Monte Carlo simulations.

12.1 Introduction

The tension of membranes vanishes in equilibrium with a reservoir of molecules. Its shape is governed
by the extrinsic curvature energy FE¢. If a stack of membranes is placed between two parallel walls,
violent thermal out-of-plane fluctuations of the membranes exert a pressure p upon the walls. The
pressure law is given by Eq. (10.1). The pressure constant for a single membrane, aq, was roughly
estimated by theoretical [50] and Monte Carlo methods [85-88]. The most precise theoretical result was
obtained by strong-coupling theory [48] (see also Chapter 11 of this thesis), yielding af? = 0.0797149,
which lies well within the error bounds of the latest Monte Carlo estimate o}'© = 0.0798 £ 0.0003 [88].

For more than one membrane between the walls, the strong-coupling calculation of Refs. [48,89]
must be modified in a nontrivial way. We must find a different potential that keeps the membranes
apart and whose strong-coupling limit ensures non-interpenetration. For this, we take advantage of
the fact that membranes between walls have similar properties to a stack of nearly parallel strings
fluctuating in a plane between line-like walls [98,99], in particular the same type of pressure law (10.1)
with & substituted by the string tension . The characteristic universal constants of the latter system
were ezactly calculated in Refs. [88,98] from an analogy to a gas of fermions in 1 + 1 dimensions [100—
102]. We use these exact values to determine a potential that, when applied to the stack of membranes,
yields a perturbation expansion for the pressure constants for an arbitrary number of membranes to
be evaluated in the strong-coupling limit of complete repulsion.

Our results are in excellent agreement with all available Monte Carlo estimates [86-88] for N =
1,3, 5. Extrapolating to N — oo, we estimate the pressure constant a, for infinitely many membranes.

177
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12.2 Stack of Strings

We begin by studying the exactly solvable statistical properties of a stack of N almost parallel strings
in a plane, which are not allowed to cross each other and whose average spacing at low temperature is
a. The system is enclosed between parallel line-like walls with a separation L as illustrated in Fig. 12.1.
In the Monge parameterization, the vertical position of a point of the nth string is z, = z,(z). Since
the vertical positions of the nth string are fluctuating around the low-temperature equilibrium position
at na, it is useful to introduce the displacement fields

¢n(z) = 2n(2) — N0 (12.1)

The thermodynamic partition function is given by the functional integral

2kC;T ﬁ;/z dz {dc’%pr}, (12.2)

where o is the string tension, T is the temperature, and kp is the Boltzmann factor. We are interested
in the free energy per unit length

N eny1(z)+a don ()

s Pn \T

A _n\) _
HH / V2rkpT /o exp{

=1
" T en-1(z)—a

= —% In Z°, (12.3)

with A = ffooo dz. Since the strings may not pass through each other, the fluctuations ¢, (z) of the
nth string are restricted to the interval

on(7) € {pn-1() = a,ont1(2) +a}. (12.4)

12.2.1 Free Fermion Model

The restriction (12.4) makes it difficult to solve the functional integral (12.2) explicitly. It is, however,
possible to find a solution by identifying the system with a (1 4+ 1)-dimensional Fermi gas, as done
by de Gennes [100]. Using this analogy, Gompper and Kroll [88] determined the 1/a® contribution to
Af5 relevant for the pressure law (10.1) as

(ksT)?
Afy = Q%Wa (12.5)
with the pressure constants
722N +1
N =— . 12.
NTTN+1 (12:6)

For N — oo, this constant has the finite limit o, = 72 /6. The analogy with fermions cannot be used to
calculate the free energy of a stack of membranes, where only approximate methods are available. We
will tackle this problem by making use of a strong-coupling theory as in Refs. [48,89]. As a preparation,
we apply this theory to the exactly solvable system of a stack of strings.

12.2.2 Perturbative Approach

The difficulty in solving the functional integral (12.2) arises from the restriction (12.4) of the fluctu-
ations by the neighboring strings. To deal with this strong repulsion, we introduce into the action of
the functional integral (12.2) a smooth potential that keeps the strings apart in such a way that the
integration interval for the fluctuations can be extended to ¢, (z) € {—00,00}. At the end, we take a
strong-coupling limit, which ensures (12.4). In Refs. [48,89], such a method was used to evaluate the
pressure constant for one membrane between walls. The smooth potential for the analogous case of
one string is V(o(z)) = (2a u/7)? tan?[wp(x)/2a], which describes the hard walls ezactly for u — 0.
This potential is symmetric and possesses a minimum at ¢(z) = 0. Thus its Taylor expansion around
this minimum is a series in even powers of (z).
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3a -

FIGURE 12.1: Stack of N strings with equilibrium spacing a between two walls of distance L. The magnifier
shows the local displacement field pn (z) as the distance from the position Na. The walls are labeled by 0 and
N +1 and treated as non-fluctuating strings with ¢o(z) = pn+1(z) = 0.

In the case of N strings, the minima of the repulsion potential should lie at the equilibrium positions
of the strings. The Taylor expansion of such a potential will also have terms with odd powers. Unlike
the one-string system, where fluctuations are limited by fixed walls, the range of the displacements
@n(z) of the nth string in an N-string system depends on the positions z,_1(z) and z,41(z) of the
neighboring strings. Thus the potential will be taken as a sum,

N+1
Ve (20(x), 21 (%), - .., 25 (2), 2841 (2)) = % 3 Vi (Vazal2) (12.7)

where V,z,(r) denotes the prepoint lattice gradient z,(z) — 2, 1(x). This potential includes the
interaction of the first and last strings with the walls as non-fluctuating strings at zop = 0 and zy41 =
(N+1)a=L:

po(2) = prs1(2) = 0. (12.8)
In the limit ¢ — 0, the potential V), (V,2n(z)) should again yield an infinitely strong repulsion of two
neighboring strings for z,(z) close to z,—1(x). For z,,(x) > z,—1(z), the limiting potential should be
zero. As a matter of choice, we let the potential between two strings V), (V,,2,,(z)) be minimal and zero

at the positions 284 = na and 20* | = a(n —1): dV,(a)/dVpzn(z) = 0and V, (289 — 229 ) =V, (a) = 0
(see Fig. 12.2).
The Taylor expansion around the minimum is, in terms of the variables (12.1),
= u? 2 = k42
Vi(Vnpn(2) = 5 [Vangn(@)]” + 4’ > erg [Vaen(@)] . (12.9)
k=1

The parameter p governs the harmonic term, whereas higher-order terms scale with the coupling
constant ¢ = 1/a, which makes the coefficients ¢;, dimensionless.

An example for a potential showing qualitatively the behavior in Fig. 12.2 with a Taylor expansion of
the type (12.9) is V,, (Vn2zn(2)) = p? (a/[Vazn(2)]? — 2/Vpzyu(x) 4+ 1/a) /2, which vanishes everywhere
for infinitesimal p, except at V,z,(z) = 0. The strong-coupling limit of the perturbative expansion
of order g? presented in this chapter cannot yield, however, reasonable results for such an arbitrary
choice of the potential. The calculation of higher-order perturbative coefficients requires high numerical
power, which would make this procedure of calculating the universal constants inefficient.
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Vu (vzn (5‘3))
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0 a 2a 3a 4a Vizn ()

FIGURE 12.2: Potential Vj,(Vyp2n(z)) of string-string interaction for finite p and small p as a function of
Vnzn(x) = 2n(x) — zn—1(z). The strings repel each other strongly for V,z,(z) — 0, while the potential has a
minimum at the equilibrium separation V, z,(z) = a, and we choose to normalize it to zero at that point.

Thus, we continue with the Taylor expansion (12.9), and the partition function (12.2) becomes

_ilﬂ% DN () exp _2kBTNZ+17 <|:d§0n )r %z[—n% ]>

p [e%s) N+1 o0
2 k+2
X exp —mu k_g . Ckg / d:n n(p ] (1210)

with the integral measure

fDNw(w) = ﬁ II T _denlo) (12.11)
el —o0 \/21kpT /o ’
The harmonic part of the partition function can be written as
N+1 N+1 Q oo
7{DN ) exp{ —= Z Z / dz / dz' on(x)[GS,,, (z,2")] o (2) (12.12)
with the functional matrix
4 _ O d? 1 ,=

Here V@, () = pni1(z) — @n(z) denotes the postpoint lattice gradient in the z direction, and V,,V,,
is the lattice version of the Laplace operator [4].

Let us now impose the vanishing of the fluctuations of the walls (12.8), corresponding to Dirichlet
boundary conditions. For a finite number N of strings, the Kronecker symbol 4, in Eq. (12.13) has
the Fourier representation

N
Onmt = 2 Z sin v,na sinvy,n'a (12.14)

N+1m:1
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with wave numbers v,, = 7m/(N + 1)a. Thus the kernel [GS ., (z,2')]"! may be written in Fourier
space as

N o0
2 dk . .
' 71 _ : : ' O -1 _—ik(z—2")
(G (z,2)] " = N1 mE:1 sin vy na sinvy,n'a / o (G5, (k)] e (12.15)
with the Fourier components
[GS (k)" = [k* + 24° sin® (vima/2)] . (12.16)

kBT

Integrating over k in the spectral representation (12.15) leads immediately to the correlation function
in configuration space,

N
1 kT sin vpnasinvpn'a 500
G3 N — 2plz—z'| sin(vma/2) 12.17
(@) V2(N +1) po mZ:l sin(vy,a/2) € ’ ( )

and to the harmonic partition function (12.12),
1 s
Z;, = exp {—?I‘rln [GS]_l} = e AN /keT (12.18)

the exponent giving the free energy per length,

kBT sin[tN/4(N + 1)]
TN = Sy /AN £ 1)

(12.19)

which vanishes for p = 0.
The full partition function Z* in Eq. (12.10) is now calculated perturbatively. We introduce har-
monic expectation values

) N+1 N+1 %
R N LA S D 3 / dr / ! 90 (@) (.2 ()
n=1 n'=1_
(12.20)
in terms of which the correlation function is given by
G (2, 2") = (pn (@) (), - (12.21)

The perturbation expansion contains the two-point correlation function of V,,¢, (), which is given by
(Vaon @)V on (2)), = VoV G (z,7'). (12.22)

We now expand the second exponential in Eq. (12.10) in powers of the coupling constant g. Harmonic
expectation values with odd powers of V¢, (z) do not contribute, and the expansion reads

N+1 %
S _ 13 s _ 2
7' =lim 7, |1-g QkTu@Z/d:v Vapn(@)]'),

N+1 00

21'4k2T2” aa > /dx/dx' Voo (@) Vo (@), |+ - (12.23)

n,n/=1

— 00

In the sequel, we restrict ourselves to the terms of second order in g = 1/a, which contribute directly
to the pressure law as in Eq. (12.5). The higher powers diverge for u — 0, and in Refs. [48,89] it was
shown how to calculate from them a finite strong-coupling limit. Here we shall ignore these terms for
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reasons to be explained shortly. Re-expressing the right-hand side of Eq. (12.23) as an exponential of
a cumulant expansion, we obtain the free energy per length,

N+1 %
. 4 N2
fi = lim g | gt S [ (@@l
I B =
L o® 5 w7 i ivé 3o 3\8
VB n,n'=1_", %

We have used that the free energy f{, , of the harmonic system (12.19) vanishes in the limit g — 0.
The first cumulants are the expectations

(01(Vipn, (@),
(01(Vom, (21)) 02 (Vipm, (22)))

, (12.25)

defined for any polynomial function O;(V,, (2:)) of Vn, (z;). Following Wick’s rule, we expand the
expectations into products of two-point correlation functions (12.22). The different terms are displayed
with the help of Feynman diagrams, in which lines and vertices represent the correlation functions and
interactions:

T, N1

22,02 — (Voo (21) Vg (22)) (12.26)
N+1

) _, Z_: / ‘: dz. (12.27)

In what follows, we assume that the potential parameters ¢, with & > 3 are chosen in such a way
that they make all terms of order g* and higher vanish. Dividing the free energy (12.24) by N, we
obtain the following expression for the free energy per length and string, which can be compared with
Eq. (12.5):

S _ 13 3(7//,2 1 02:“‘4 2
AfN—&li% {514—01202 CD —gmcl 6@ +9 O—O . (12.28)

The calculation of the Feynman diagrams is straightforward using Eq. (12.17). The evaluation is only
complicated by the Dirichlet boundary conditions, which destroy momentum conservation. This makes
the numeric calculation quite time-consuming for an increasing number N of strings. As an explicit
example, consider the sunset diagram, which requires the evaluation of the multiple sum

k%T3 1 N+1 N
—_— m m m
@ =4 pt 2(N +1)3 Z Z hn11n2 hn12n2hn13n2

ni,ng=1 ml,m2,
1,n2 m3—1

1
x . (12.29
sin(vpm, a/2) sin(Vpy,a/2) sin(Vimya/2) [sin(Vm, a/2) + sin(vpm,a/2) + sin(vpga/2)] ( )
with the abbreviation
hy n, = sinvypnia sinvpnea — sinvygnia sin vy (ne — 1)a
—sinvy,(ny — 1)a sinvynea + sinvy, (ng — 1)a sin vy, (ny — 1)a. (12.30)

It is useful to factor out the physical dimension of the diagram. Any Feynman integral W* with [ lines
and v vertices can be expressed in terms of a reduced dimensionless Feynman integral W*" as

kT
g

l
WS =A < > p oD s, (12.31)
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TABLE 12.1: Reduced numeric values W*" of the two-loop diagrams for the free energy for a stack of NV strings.

r r s,r
v OO o GO
0 0

1 1/2

2 1.288675 0.398717 0.089316
3 2.100656 0.832299 0.146447
4 2.915827 1.270787 0.184463
5 3.730993 1.709326 0.211325
6 4.545586 2.147034 0.231245
7 5.359574 2.583849 0.246583

This brings Eq. (12.28) to the form

2 2
Afs s kBT
N N ga? ’

1 s,r s,r s,r
ay = N |:;CQ @ —ci <Z @ +§ O—O )} , (12.33)
where the diagrams indicate the reduced Feynman integrals. Their values are listed in Table 12.1 for
different string numbers N. Note that the 1/a” contributions to the free energy per length and string
in Eq. (12.28) are independent of u since the p prefactors are canceled by the p dependence of the
diagrams. Thus the limit g — 0 becomes trivial for these contributions.

With the knowledge of the exact values of the constants of; from Eq. (12.6), we are now in a
position to determine the potential parameters ¢; and co from Eq. (12.33) to obtain the exact result
from the two-loop expansion Eq. (12.33). Comparing Eqs. (12.33) and (12.6) for N =1 and N = 2,
we obtain

(12.32)

5 =g (12.34)
Note that (12.33) consists of more equations than necessary to compute ¢; and ce. It turns out,
however, that all of them give the same parameters ¢; and co, such that the same potential (12.9) can
be used for any N. This is the essential basis for applying this procedure to a stack of membranes.

We now justify the neglect of the higher g powers that would in principle give further contributions
to the pressure constant af; in the strong-coupling limit. We simply observe that it is possible to
choose the higher expansion coefficients ¢ to make all higher g” contributions vanish [103].

c1 =

12.3 Stack of Membranes

Having determined the parameters ¢; and ¢y of the Taylor expansion (12.9) of the smooth potential
applicable for any number of strings, we shall now use the same potential for a perturbative expansion
in a stack of N membranes displayed in Fig. 12.3. The equilibrium spacing at low temperature between
the membranes is again a. Denoting the vectors in the plane by x = (z,y), the vertical displacements
of the membranes from the positions na are ¢, (x), with Dirichlet boundary conditions at zp and zny1,

®o(x) = pn41(x) = 0. (12.35)

For membranes without tension, the energy has the harmonic approximation

Ecpn =g/d2x [0%0n(x)]”, (12.36)

where £ is the bending stiffness and 0> = 92 + 9, is the Laplacian in the plane parallel to the walls.
By analogy with the preceding section, the kernel of the harmonic stack now reads

1 ,—
[Gn1n2 (x17X2)]71 = _kBLT ([812(1]2 + §M4vn1vn1> 6(X1 - X2)5n1n27 (1237)
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FIGURE 12.3: Stack of self-avoiding fluid membranes fluctuating in the z direction between two walls. As for
the previous stack of strings, the walls are treated as non-fluctuating membranes.

where we have used a mass parameter u* instead of p2, for dimensional reasons. The partition function
for the stack of membranes is then written up to order g> = 1/a? by

Z = lim %DNgo(x) exp{—% NZH /dQ:vl/dQ:rg gonl(xl)[Gnlnz(xl,X2)]_1<pn2(X2)}

n—0
n1,n2:1
K N+1 4 [{,2 N+1
2 4 2 v 8 2 2 2
1o (gt X [ e Tl - gt 3 [ [

(12.38)

)

x [Fom 1) [T (xz>13)

with the same parameters ¢; and ¢, of the Taylor expansion (12.9) as in the string system, determined
in Eq. (12.34). We neglect terms of order g3, which certainly contribute in the strong-coupling limit,
and which vanish only for the strings, where the partition function (12.23) with the choice (12.34) for
the parameters ¢y, ¢y is exact in second order. An evaluation of the neglected terms by variational
perturbation theory is expected to give only a negligible contribution to our final result.

Inverting the kernel (12.37) yields the correlation function

d’k 1
2m)2 k4 + 24 sin® (v,a/2)

N
2  kgT
Gnino(X1,%2) = - B Sin v, n1asin vy, naa
te N+1 &k — (

e—ik(xl—xz) )

(12.39)
The explicit calculation of the Fourier integral leads to a difference of modified Bessel functions Ko(z)
as in Ref. [48]:

N
) kT sin v, nia sin vy, naa
G =
nin2 (X17X2) \/gﬂ'(N + 1)/"’2 K ynz—l Sin(]/ma/2)

x [KO (21/4\/mu|x_1 - x2|) - K, (21/4\/mu|xl - x2|)] . (12.40)

For x; = x5 = x and n; = ny = n, this reduces to

1 kpT <~ sin? vpna
Gan(x,%) = B > m 12.41
n (%) V32(N + 1) &k mZ:1 sin(v,a/2) ( )
leading to the partition function of the harmonic system,
1 _ Asin[r N/4(N + 1))
Z, = —~TrlnG '} = —ur= 12.42
. eXp{ prinG } eXp{ Fs Ssinfr/alN + 1) [ (1242)
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where A = [d?z is the area of the projected plane of the membranes. The free energy per area
v = —(kT/A)n Z,, vanishes again for p = 0.

As for the calculation of the free energy of the stack of strings, we introduce harmonic expectation
values

] NN+ o0
(b= 27 DY) e exp {5 Z )y [ / o () G (2, X e () b
— 00
(12.43)
which appear in the perturbation expansion of Eq. (12.38), the cumulants yielding a perturbative
expansion for the free energy per area fy = —(kpT/A)ln Z. The lines and vertices in the Feynman
diagrams now stand for
X1, X2,M2  — (Vi ¢n, (xl)Vn2<pn2(X2)>u (12.44)
N+1
. — Z/d%, (12.45)
n=1

and the two-loop approximation to the free energy per area and membrane in order 1/a® reads

2,.2,8
w2 h://, TR 1 1 1
Afy = lim { T ~ TAS (12 @ +3 O=0 >} (12.46)

Going over to reduced Feynman integrals as in Eq. (12.31),

kT
K

W= A( ) p 2=t (12.47)

where v is the number of vertices and [ the number of lines of the diagram, we obtain

KT
an 5
Kra

aN_gGOQT—I—IQQT—éQ{)r). (12.49)

The pressure exerted by the membranes upon the walls is obtained by differentiating the free energy
fn = NAfn with respect to the distance of the walls L = a(N + 1):

Afn (12.48)

oA 2N k2 T2
py = —N aj{jN = NN (12.50)

The first and the last Feynman integrals in Eq. (12.49) are the simplest:

. N+1[ N B 2
CD - N_|_1 (N 1 1)2 Z lz SlIl v G/Q)] ) (1251)

r N+1 pm1 pma  pms

= nlnl nin2 "ma2n2 12.52
Q—Q N +1)3 Z Z Sin(Vm, a/2) sin® (Vpm, a/2) sin(vm,a/2)’ ( )

ny,no=1 ml m2

where we have used the abbreviation h] . ~ defined in Eq. (12.30). The evaluation of the second
diagram in Eq. (12.49) is much more involved. The Fourier integrals can be done exactly, except for
one, which must be treated numerically. This calculation is deferred to Appendix 12A. The values of
the three diagrams are listed in Table 12.2 for various numbers of membranes. With these numbers,
the evaluation of the pressure constants yields the results given in Table 12.3. Except for N = 1 and

N — 00, no analytical values were found in the literature. We also compare with pressure constants
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TABLE 12.2: Numeric values W" of the reduced two-loop Feynman integrals contributing to the pressure
constants of a stack of N membranes in Eq. (12.49).

GO CHINNG .S
1 1/32 0 0

2 0.080542 0.022446 0.005582
3 0.131291 0.046992 0.009153
4 0.182239 0.071866 0.011529
5 0.233187 0.096762 0.013208
6 0.284099 0.121619 0.014453
7 0.334973 0.146428 0.015411
8 0.385815 0.171195 0.016172
9 0.436630 0.195925 0.016789
10 0.487422 0.220624 0.017300
11 0.538197 0.245300 0.017730
12 0.588958 0.269954 0.018097
13 0.639706 0.294592 0.018414
14 0.690444 0.319215 0.018690
15 0.741174 0.343827 0.018933

TABLE 12.3: Pressure constants apy for different numbers N of membranes in the stack, calculated from
Eq. (12.49), with the numerical values of the two-loop diagrams given in Table 12.2. We compare with results
from Monte Carlo simulations and earlier analytic results.

N an Monte Carlo results earlier analytic values

1 72/128 ~ 0.07711 0.060 [85], 0.078 £ 0.001 [86], 72 /128 [87,89], 0.079715 [48]
0.0798 + 0.0003 [88], 0.080 [86]

2 0.08669

3 0.09134 0.093 + 0.004 [88], 0.1002 + 0.0006 [86]

4 0.09408

5 0.09590 0.0966 [88], 0.1022 % 0.0006 [86]

6 0.09719

7 0.09815 0.1009 £ 0.0007 [86]

8 0.09890

9 0.09950

10 0.09999

11 0.10039

12 0.10074

13 0.10103

14 0.10129

15 0.10151

% 0.10409 0.074 [104], 0.101 % 0.002 [86], 0.106 [88] 372 /128 ~ 0.23 [50]
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obtained by Monte Carlo simulations and find a good agreement [86,88]. The values of the Monte Carlo
simulations for N = 3,5, 7 from Ref. [86] show an independence of the number N of membranes. This
arises by the simulation technique, where the free energy of the central membrane was determined. In
contrast to that, we have calculated the pressure constant from the free energy of the complete system
averaged over all membranes. Thus these Monte Carlo values cannot directly be compared with ours.

Table 12.3 contains also a value a, for an infinite number N — 0o of membranes in the stack. This
pressure constant is obtained by the following extrapolation procedure. We assume that the pressure
constants determined for N = 12,13, 14,15 are of higher accuracy than those for lower numbers of
membranes. This assumption is justified by comparing our values for N = 1,3,5 with the latest
Monte Carlo results [88]. For N = 1, the deviation is about 3.4%. Considering N = 3, the deviation
reduces to 1.8% and further to 1.1% for five membranes. Since the pressure constants are approximated
increasingly fast with an increasing number N of membranes, we make the following exponential ansatz
for determining the approach to infinite V:

aN = Qs [1 —nexp (—ENF)]. (12.53)

The unknown four parameters in this equation are then determined by solving the system of equations
with the pressure constants ais, ai3, a4, and ai5 listed in Table 12.3. We obtain  ~ 1.1712,
&~ 1.6417, ¢ =~ 0.3154, and thus the limiting pressure constant for an infinite stack of membranes,

oo ~ 0.1041. (12.54)

This value is in very good agreement with the Monte Carlo result [88] (see the last row of Table 12.3).
It differs by a factor close to 9/4 from the initial result by Helfrich [50,105].

12A  Evaluation of the Sunset Diagram

The second diagram in Eq. (12.49) requires some simplification before the numerical calculation. We
write the reduced Feynman integral as

N+1

@ E N -|- ]_ Z Z h:?lanh:?lln2h2111n2 mimams (12A1)

ni,na=1 "1, m2
m3=

with the integral

d2k71 d2k2 d2k3 e—i(k1+k2+k3)(x1—X2)
K ymams :/d2x1d2x2/ 2 2 2 (14 2 1 ) 1 2 :
(2m)? (2m)2 (27m)% (kT + 28in° vy, a) (k3 + 2sin® vy, a) (K3 + 2sin” v, a)
(12A.2)
All integrals are easily calculated, except for one. If we introduce abbreviations
M}P = 2sin’ vpy,a, 1=1,2,3, (12A.3)
we find
A o0
Km1m2m3 = 2_/ k' + M2 (kaM127M22) (12A4)
0
with )
d’p 1 1
J(k, M{, M3) = . 12A.5
(e, M, M3) /(27T)2(10—k)4+J\4121f>4+1\422 (124.5)

Decomposing the integrand into partial fractions

1 & 1 1 1 1
k, M7, M3) = — / - -
T Mi M) = — 3, (2m)2 {(p—k)2+iM1 (p—k)Q—iMJ L)Q-l-iMQ p> — il
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= 7k, My, M) — T(k, My, — M) — T(k, =My, M) + I(k, — My, —M>)] (12A.6)
AN, My

we are left with integrals of the type

d’p 1 1
2m)2 (p — k)2 + iy p? + iy’

(71, 7) = / : (12A.7)

where 7, » = £M; 5 are real numbers. Employing Feynman’s parameterization, these integrals become

1
1 1
I(k =—|[d 12A.8
(ks m,72) 4 / TR 2(k2 4+ iy —ive) + iy’ ( )
0
taking the general form
1 2
—_— = — 12A.
/daz i re VA arctan z(x) ( 9)
with
A =dac—b?, z(x)= bt 2az a=—k, b=k +i(y1—m), c=iv. (12A.10)
k) \/Z ) ) k)

Since b is a complex number, Re arctan z is discontinuous, if Re z changes sign and |Im z| > 1. Thus
the right-hand side of Eq. (12A.9) is discontinuous at a certain point zp within the interval [0, 1].
As will be seen subsequently, J(k, M2, M3) from Eq. (12A.5) must be real and thus all imaginary
contributions in the decomposed form (12A.6) cancel each other.

We determine the point of discontinuity zo to obtain the solution of the integral (12A.8) by in-
vestigating the zero of the real parts of z(z). Decomposing z(zg) into real and imaginary part, we
obtain

1 Re A 1 Re A
—IAI-L/2 | 2201 _ 2 _ .
Re z(z) = |A] [k (1 —2z) cos <2 arctan ImA) + (71 — 72) sin (2 arctan ImA)} , (12A.11)
. 1 Re A . 1 Re A
— IA|-L/2 o 1 1201 —
Im z(z) = |A] [(71 Y2) COS <2 arctan ImA) k*(1 — 2z) sin (2 arctan ImA)] , (12A.12)
where
ReA = (11 —72)? —k*, TmA = —2k*(y1 + 12). (12A.13)
Thus, the zero of Re z(x) is found at
1 N 1 2k% (1 +72)
g = 5 {]. + k2 tan |:§ arctan m . (12A14)

From the bounds of integration in Eq. (12A.8), it follows that we must include the discontinuities of
Eq. (12A.9) for o € [0,1]. This occurs if k < |y1 — 72| and sign~y; # signy2. Thus the solution of the
integral (12A.8) reads

I(k,71,72) =
r=1
S(k, 71,72, 7) K signy; = signya V (signy # signye Ak > /|71 — 12l),
r=
r=xog—¢€ r=1
lim [S(k,w,w,a:) + S(k,v1,72, ) ] signy1 # sighy2 Ak < /|1 — 2l
e—0 =0 r=xo+¢€
(12A.15)
where S(k, 71,72, ) is the explicit right-hand side of Eq. (12A.9):
1 E2(1 -2 ] —
Sk, v1,72,x) = : arctan ( 7) + 1(71. ) .
21/ (11 — 2)? — kY = 2ik2 (1 + 72) Vi —72)? — k= 2ik2 (1 + 72)

(12A.16)
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The function I(k,~;,72) possesses the properties

I(k,v1,—7) + I(k,—71,72) = 2RelI(k,£v1,F72), (12A.17)
I(k,71,72) + I(k, =71, =72) = 2ReI(k, £y, %72). (12A.18)

Inserting Eq. (12A.15) into Eq. (12A.6), the remaining integral in Eq. (12A.4) together with the sums
in expression (12A.1) for the sunset diagram can be calculated numerically. The values are listed for
N =1,...,15 in the third column of Table 12.2.






Concluding Remarks







CHAPTER 13

Summary

The main aspect of this thesis was to extend the range of applicability for functional integrals in
quantum statistics and quantum field theory. Distributed over four parts, this thesis combines the
formal justification of dealing with continuous path integrals from a perturbative point of view and a
general solution for Gaussian path integrals in phase space with variational perturbation theory as a
powerful resummation method which is also applicable for strongly coupled systems, where perturbative
methods fail. The perturbative column on the one hand and the nonperturbative one on the other
hand are bridged by a recursive graphical construction method which permits a systematic generation
of all topologically different Feynman diagrams contributing to any order of perturbation with their
correct multiplicities. As an interesting detail, the applicability of this method in quantum field theory
is demonstrated for quantum electrodynamical scattering processes.

Motivated by the partial nonexistence of analytic results we have applied variational perturbation
theory for atomic systems at arbitrary temperature and thermodynamical properties of fluctuating
membranes. To this end, we have extended and generalized variational perturbation theory in a
manifold way. For calculating density matrices, we generalized the smearing formula which accounts for
the effects of thermal and quantum fluctuations. This was essential for the treatment of nonpolynomial
interactions. We applied the theory to calculate the particle density in the double-well potential, and
the electron density in the Coulomb potential, the latter as an example for nonpolynomial application.
In both cases, the approximations were satisfactory.

We have also calculated the effective classical potential for the hydrogen atom in a magnetic field.
For this we have extended variational perturbation theory to phase space to make it applicable to
physical systems with uniform external magnetic field. The effective classical potential containing
the complete quantum statistical information of the system was determined in first-order variational
perturbation theory. For zero-temperature, it gave the binding energy of the system. Our result
consists of a single analytic expression which is quite accurate at all temperatures and magnetic field
strengths. The different asymptotic behavior of the perturbation series for the binding energy for weak
and strong magnetic fields has been investigated in detail. In the weak-field case, we confirmed the
power series character of the expansion, while for strong magnetic field strengths a deeply structured
logarithmic behavior occurs.

As an application for strong-coupling theory in membrane physics, we have calculated the universal
constant a occurring in the pressure law of a membrane fluctuating between two walls. This has been
done by replacing the walls by a smooth potential with a parameter m?. This potential approaches
the wall potential in the limit m?> — 0. The anharmonic part of the smooth potential was treated
perturbatively. The limit m? — 0 corresponds to a strong-coupling limit of the power series, and was
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calculated by variational perturbation theory. Extrapolating the lowest four approximations to infinity
yields a pressure constant, which is in very good agreement with Monte Carlo values.

We have also calculated the pressure constants for a stack of different numbers of membranes
between two walls in excellent agreement with results from Monte Carlo simulations. The requirement
that the membranes cannot penetrate each other was accounted for by introducing a repulsive potential
and going to the strong-coupling limit of hard repulsion. We have used the similarity of the membrane
system to a stack of strings enclosed by line-like walls, which is exactly solvable, to determine the
potential parameters in such a way that the two-loop result is exact. This minimizes the neglected
terms in the variational perturbation expansion, when applying the same potential to membranes.

It was shown in this thesis that variational perturbation theory can successfully be applied to a large
variety of problems in quantum statistics and membrane physics. The results obtained for fluctuating
strings and membranes open the gate to a large field of applications to be harvested with the help of
this strong-coupling theory.
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Zusammenfassung

Ein wesentlicher Aspekt dieser Dissertationsschrift ist die Erweiterung der Anwendbarkeit von Funk-
tionalintegralen in Quantenstatistik und Quantenfeldtheorie. Im ersten Teil wird die Definition kon-
tinuierlicher statistischer Pfadintegrale von einem stérungstheoretischen Standpunkt aus diskutiert, der
automatisch auf eine Hochtemperaturentwicklung fiihrt. Anschlieflend werden allgemeine Gaufische
Phasenraum-Pfadintegrale behandelt, wobei die harmonischen Korrelationsfunktionen dazu dienen,
die Variationsstorungstheorie als Resummationsmethode fiir divergente Storungsreihen in den Teilen
drei und vier weiterzuentwickeln. Der stérungstheoretische Teil auf der einen Seite und die nichtper-
turbative Berechnung von Pfadintegralen auf der anderen wird iiberbriickt mit der Entwicklung einer
rekursiven graphischen Konstruktionsmethode fiir Feynman-Diagramme in Teil zwei. Damit lassen
sich systematisch alle topologisch verschiedenen Diagramme und ihre Multiplizitdten generieren, die
zu einer bestimmten Ordnung der Storungsentwicklung beitragen. Entwickelt fiir die Erzeugung der
Vakuumdiagramme fiir die freie Energie des anharmonischen Oszillators in hohen stérungstheoretischen
Ordnungen, lassen sich die grundlegenden graphischen Manipulationstechniken wie Aufschneiden und
Amputieren von Linien und Vertizes auch auf n-Punkt-Korrelationsfunktionen anwenden. Damit
konnen auch Graphen fiir Streuprozesse in Quantenfeldtheorien systematisch generiert werden, wie
an verschiedenen Beispielen aus der Quantenelektrodynamik demonstriert wird.

Motiviert durch zum Teil nicht existierende analytische Resultate wenden wir die Variationssto-
rungstheorie auf atomare Systeme bei beliebigen Temperaturen und zur Bestimmung thermodyna-
mischer Eigenschaften fluktuierender Membranen an. Um dies zu erméglichen, wird das Resumma-
tionsverfahren in vielfiltiger Weise erweitert. Die Berechnung von Dichtematrizen macht z.B. eine
Verallgemeinerung der Verschmierungsformel erforderlich, bei der eine Gauf3sche Faltung des klassi-
schen Potentials die Beriicksichtigung von thermischen und Quantenfluktuationen ermdglicht. Diese
Verschmierungsformel ist ein wesentliches Hilfsmittel insbesondere bei nichtpolynomialen Potentialen,
wo die iibliche Wick-Regel zur Zerlegung der Korrelationsfunktionen einer Verallgemeinerung bedarf.
Diese Theorie wird auf die Berechnung der Teilchendichte im Doppelmulden-Potential und die Elek-
tronendichte im Coulomb-Potential angewendet, wobei letzteres als nichtpolynomiales Beispiel dient.
In beiden Féllen liefert das Naherungsverfahren gute Ergebnisse.

Eine weitere wichtige Anwendung ist die Berechnung des effektiven klassischen Potentials fiir das
Wasserstoffatom im Magnetfeld. Hierfiir wird die Variationsstérungstheorie im Phasenraum formuliert,
so daB sie jetzt auch fiir Systeme mit verallgemeinerten Impulsen benutzt werden kann. Das effektive
klassische Potential, das die gesamte quantenstatistische Information eines Systems enthélt, wurde in
erster Ordnung Variationsstérungstheorie bestimmt. Im Grenzfall verschwindender Temperatur liefert
das Minimum des effektiven klassischen Potentials die Grundzustandsenergie des Systems. Wir erhal-
ten einen analytischen Ausdruck, der automatisch die Grenzfille schwacher und starker Magnetfelder
interpoliert und fiir alle Feldstirken genaue Ergbenisse liefert. Das fiir schwache und starke Felder sehr
unterschiedliche asymptotische Verhalten der Bindungsenergie 148t sich mit Hilfe unseres Ausdruckes
detailliert untersuchen. Im Schwachfeldfall wird das Potenzreihenverhalten der Entwicklung bestétigt,
wahrend fiir starke Felder ein kompliziert strukturiertes logarithmisches Verhalten auftritt.

Als Anwendung der Starkkopplungstheorie in der Membranphysik berechnen wir die universelle
Druckkonstante, die im Druckgesetz von Helfrich fiir eine Membran auftritt, die zwischen zwei Wanden
fluktuiert. Dabei werden die Wande durch ein parameterbehaftetes Potential simuliert, das so konstru-
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iert ist, das es fiir verschwindenden Parameter die Winde exakt reproduziert. Der nichtharmonische
Anteil des Potentials kann storungstheoretisch behandelt und die Stérungsreihe mit Hilfe der Varia-
tionsstorungstheorie ndherungsweise aufsummiert werden. Die erhaltenen Nidherungen in verschiede-
nen Ordnungen der Variationsstorungstheorie lassen sich ins Unendliche extrapolieren. Die so erhaltene
Druckkonstante ist in exzellenter I"Jbereinstimmung mit fritheren Monte-Carlo-Ergebnissen.

Ein dhnliches Verfahren dient dazu, die Druckkonstanten fiir einen Stapel von mehreren Membranen
zwischen zwei Wanden zu berechnen. Wiederum stimmen die Ergebnisse sehr gut mit aus Monte-
Carlo-Simulationen gewonnenen Werten tiberein. Der Notwendigkeit, dal sich die Membranen nicht
gegenseitig durchdringen dirfen, wird durch die Betrachtung des Starkkopplungs-Grenzwertes eines
kiinstlich eingefiihrten Abstoungspotentials Rechnung getragen. Dabei wird die Ahnlichkeit zwischen
dem Membranstapel und einem System von Strings ausgenutzt, die sich zwischen zwei linienartigen
Winden befinden. Dieses Vergleichssystem ist exakt behandelbar und dient der Bestimmung von
Potentialparametern, die sich dann unmittelbar fiir das Membranproblem verwenden lassen.

In dieser Arbeit wird gezeigt, daf} sich die Variationsstérungstheorie erfolgreich auf eine Reihe von
Problemen aus verschiedenen Gebieten der Quantenstatistik und Membranphysik anwenden 148t. Die
fiir fluktuierende Strings und Membranen gewonnenen Ergebnisse 6ffnen das Tor zu einem groflen Feld
von Anwendungen, das sich mit Hilfe der Starkkopplungstheorie bearbeiten 148t.
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