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Chapter 1

Introduction

In the vast majority of cases, information about a physical system can only be obtained by

means of approximation methods. This is due to the fact that the equations which describe

physical phenomena normally cannot be solved analytically. Therefore, over the course of

the history of physics, many different approximation techniques have been developed in order

to treat non-analytically solvable systems. These methods can be roughly classified into two

different categories: numerical methods, which exploit the possibility to rapidly execute cal-

culations on a computer, and analytical approximation methods, where certain assumptions

are made in order to simplify the original problem. Numerical methods have proven to be

an enormously powerful and successful tool to describe even the most complicated physical

scenarios, and computational physics has become an independent branch of physics itself [1].

Nevertheless, the accuracy of numerical methods is not always superior to that of analytical

ones, and usually more insight into physical principles is obtained by means of analytical

approximation approaches.

Perturbation theory is one of the most well-known analytical approximation methods. It

can be applied when a system is exactly solvable for a particular value of a coupling con-

stant (normally, for vanishing coupling). One then seeks to expand the physical quantity

in which one is interested into a power series of the coupling constant. However, the con-

vergence of a perturbation expansion is not at all a trivial issue. Indeed, it turns out that

most perturbation series are divergent, i.e. their convergence radius vanishes. This diver-

gence of perturbation series may, nevertheless, not necessarily be a handicap for practical

calculations. Namely, for asymptotic series, the results which are obtained for small coupling

constants in low orders seem to converge to the exact result so that the divergence of such a

series only becomes noticeable when the expansion is driven to higher orders. However, when

a system can only be described correctly in the strong-coupling limit, i.e. for large coupling

constants, the original weak-coupling series will be completely inadequate to describe the

system. In either case, in order for the description of a system to be closed and complete, it

must be possible that the exact result can be approached to any desired accuracy, at least

in principle. Therefore, it is necessary to find means for treating divergent perturbation se-
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6 CHAPTER 1. INTRODUCTION

ries. For this purpose, different resummation techniques have been developed. Often, these

methods are based on introducing an artificial parameter, which is later revoked from the

equations by setting it to some special value or by performing some limit.

In recent years, based on a variational approach due to Feynman and Kleinert [2], a sys-

tematic and uniformly convergent variational perturbation expansion has been developed,

which has become known as variational perturbation theory (VPT) [3–7]. VPT permits

the turning of divergent weak-coupling into convergent strong-coupling expansions and has

been applied successfully in different fields of physics, such as quantum mechanics, quantum

statistics, field theory, condensed matter physics, theory of critical phenomena, etc. In order

to examine the quality of VPT, in Refs. [8,9] its accuracy has been tested extensively for the

ground-state energy of the system

V (x) =
M

2
ω2x2 + gx4 . (1.1)

In the strong-coupling limit, Eq. (1.1) effectively becomes a purely quartic potential. Apart

from a generalization to D dimensions, one might suppose that a cubic potential would

be the next easiest test system. However, for real A, the potential V (x) = Ax3 is not

quantum-mechanically stable. Interestingly, if the parameter A is chosen to be imaginary,

V (x) = ix3 , (1.2)

the spectrum of the Hamiltonian associated with (1.2) turns out to be real and positive.

This remarkable property of the hence non-Hermitian Hamilton can be attributed to the

fact that it obeys to a different symmetry: it is invariant under the combined application of

the parity and time-reversal operation [10–14].

It is one purpose of this work to examine how VPT can be applied in the case of the imagin-

ary cubic potential (1.2). In a first approach, the weak-coupling series of the ground-state

energy for the anharmonic oscillator

V (x) =
M

2
ω2x2 + igx3 (1.3)

is resummed via VPT. In the strong-coupling limit, the potential (1.3) reduces to (1.2). It

turns out that the VPT-result approaches the corresponding numerical value for the ground-

state energy of (1.2), but the convergence is much slower than in the case of the quartic

potential. However, the combination of VPT with another variational technique of field

theory, namely the effective potential, permits the improvement of the rate of convergence

of the result. In a refined approach, we thus treat the effective potential with VPT.

In Chapter 2, the effective action is introduced as the functional Legendre transform of

the free energy with respect to an external current. The effective potential is obtained in the

special case of the current being constant. Subsequently, the standard method for calculating

the effective action or the effective potential, the background method [15,16], is presented. In
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the background method, the effective potential is obtained from all one-particle irreducible

vacuum Feynman diagrams. Chapter 2 ends with a diagrammatical calculation of the weak-

coupling perturbation series for the ground-state energy of an anharmonic oscillator with

both, cubic and quartic anharmonicity:

V (x) =
M

2
ω2x2 + gAx3 + g2Bx4 . (1.4)

In Chapter 3, it is demonstrated how the weak-coupling perturbation series for (1.4) can

be obtained more efficiently by deriving an algebraic recursion relation for the expansion

coefficients using the method developed by C.M. Bender and T.T. Wu [17,18]. In the dia-

grammatical approach, only Feynman diagrams with a special topology, i.e. the connected

vacuum diagrams, contribute to the ground-state energy. The Bender-Wu method thus

yields a recursion relation for the sum of connected Feynman diagrams. In Section 3.4, we

develop a recursion for the effective potential along similar lines. Since the effective potential

is obtained from a subset of the connected Feynman diagrams, namely the one-particle irre-

ducible diagrams, this amounts to a recursion relation for the sum of one-particle irreducible

Feynman diagrams.

The method of VPT is introduced in Chapter 4. First, its application to the potential

(1.1) is examined by resumming the corresponding perturbation series and proceeding to the

strong-coupling limit. Then, in Section 4.5.1, it is shown that in the case of the oscillator

with cubic anharmonicity (1.3), an analogous approach leads to results whose convergence is

less satisfactory. In Section 4.5.2, it is demonstrated how the convergence can be improved

by applying VPT not to the weak-coupling series of the ground-state energy, but to the

effective potential.

The anharmonic oscillator (1.1) is generalized to D spatial dimensions in Chapter 5. In

particular, the cases D = 2, 3, 10 are examined. The convergence of the result is found to

improve with increasing dimension. In Section 5.2, the calculation of the effective potential

by applying the background method is performed for an arbitrary rotationally symmetric

potential in D dimensions up to two loops.

Finally, in the outlook, further problems to which the methods developed in this work could

be extended are examined.





Chapter 2

Effective Action

In addition to the operator formalism of quantum mechanics and quantum statistics, there

exists another, equivalent formalism in which operators are avoided by using infinite products

of integrals, called path integrals. This formalism may lead to a more transparent under-

standing of quantum phenomena than the operator formalism [4,19,20]. In this chapter,

the effective action will be introduced using the path integral formalism. While in classical

mechanics all information on the dynamics of a system can be extracted from its action, in

quantum statistics, the effective action permits the deriving of the statistical properties of a

system.

2.1 Wick Rotation

For time-independent Hamiltonians Ĥ, the time displacement operator is given by

Û(tb, ta) = e−iĤ(tb−ta)/h̄ . (2.1)

Its matrix elements in the localized basis states are

(xb tb|xa ta) := 〈xb|Û(tb, ta)|xa〉 , tb > ta . (2.2)

In the path integral formalism, the matrix elements of the time displacement operator can

be obtained by calculating the sum over all paths in configuration space with a phase factor

that contains the form of the action A[x] [4, Sec. 2.1]:

(xb tb|xa ta) =

∫ x(tb)=xb

x(ta)=xa

Dx exp

{

i

h̄
A[x]

}

. (2.3)

For a point particle of mass M moving in a one-dimensional potential V (x), the action is

given in the form

A[x] :=

∫ tb

ta

dt

[

M

2
ẋ2(t) − V (x(t))

]

. (2.4)
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10 CHAPTER 2. EFFECTIVE ACTION

Quantum statistical systems in the state of thermal equilibrium and in contact with a reser-

voir of temperature T are described by the density operator

ρ̂(β) :=
1

Z
e−βĤ , (2.5)

where Z denotes a normalization factor,

Z = Tr
(

e−βĤ
)

, (2.6)

and β := 1/kBT is proportional to the inverse temperature. Z is called the partition function.

It allows the determination of the bulk thermodynamic quantities for the system in question.

In the local particle basis |x〉, the partition function reads

Z =

∫ ∞

−∞

dx 〈x|e−βĤ |x〉 . (2.7)

Now, it is an important observation that the matrix elements of the time displacement

operator (xb tb|xa ta) can be linked to those of the density operator (2.5) according to the

substitution

tb − ta → −ih̄β . (2.8)

Setting

ta = 0, tb = −ih̄β (2.9)

and performing a so-called Wick rotation [21], i.e. substituting

t = −iτ , (2.10)

one obtains formally identical descriptions of quantum mechanics and quantum statistics:

ρ(xb, xa; β) :=
1

Z
〈xb|e−βĤ |xa〉 =

1

Z
(xb h̄β|xa 0)

=
1

Z

∫ x(−ih̄β)=xb

x(0)=xa

Dx exp

{

−1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(−iτ) + V (x(−iτ))

]}

.

(2.11)

Here, the dot denotes the derivative with respect to the imaginary time τ , and the identity

d

dt
=
dτ

dt

d

dτ
= i

d

dτ
(2.12)

has been used. Here and in the following, the imaginary time τ always denotes a quantity

within the interval [0, h̄β]. Introducing a new function x̃(τ) = x(−iτ) and renaming x̃ to x

yields

(xb h̄β|xa 0) =

∫ x(h̄β)=xb

x(0)=xa

Dx exp

{

−1

h̄
A[x]

}

, (2.13)
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with the imaginary-time action

A[x] =

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) + V (x(τ))

]

. (2.14)

Note that its integrand coincides with the classical Hamilton function. In the same way as

the matrix elements of the density operator (2.13), the quantum-statistical partition function

(2.6) in the form (2.7) can be expressed as a path integral:

Z =

∫ ∞

−∞

dx′
∫ x(h̄β)=x′

x(0)=x′

Dx exp

{

−1

h̄
A[x]

}

=:

∮

Dx exp

{

−1

h̄
A[x]

}

. (2.15)

Whereas in (2.13) the integration is performed with respect to all paths with Dirichlet

boundary conditions, one has periodic boundary conditions in (2.15).

2.2 Definition of the Effective Action

In the presence of an external current j(τ), define

A[x, j] := A[x] −
∫ h̄β

0

dτ j(τ)x(τ) . (2.16)

Consider the generating functional of all Green functions

Z[j] :=

∮

Dx exp

{

−1

h̄
A[x, j]

}

, (2.17)

where the integration runs over all periodic paths, x(0) = x(h̄β). Note that for a vanishing

current, j ≡ 0, the generating functional (2.17) equals the partition function (2.15):

Z[j]
∣

∣

∣

j=0
≡ Z . (2.18)

Thus, the free energy F := −kBT lnZ becomes a functional of the current j(τ):

F [j] = − 1

β
lnZ[j] . (2.19)

The expectation value of the path x(τ), i.e. the average

X(τ) := X[j](τ) := 〈x(τ)〉[j] :=
1

Z[j]

∮

Dx x(τ) exp

{

−1

h̄
A[x, j]

}

, (2.20)

is proportional to the first functional derivative of the free energy

δF [j]

δj(τ)
= − 1

h̄β
X(τ) . (2.21)
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The last identity is obtained by replacing the path x(τ) in the integrand of the right-hand side

of (2.20) with the first functional derivative with respect to the external current multiplied

by the reduced Planck constant h̄:

x(τ) → h̄
δ

δj(τ)
. (2.22)

Assume that the identity (2.21) can be inverted to yield the current j(τ) as a functional of

the path average X(τ):

j(τ) = j[X](τ) . (2.23)

Then, Eq. (2.21) serves as a motivation to define the functional Legendre transform of F [j]

with respect to the current j(τ). Due to dimensional considerations, a factor h̄β is included

in the definition:

Γ[X] := h̄β F [j[X]] +

∫ h̄β

0

dτ j[X](τ)X(τ) . (2.24)

This quantity is called the effective action. Note that it has indeed the dimension of an

action. The first functional derivative of the effective action leads to

δΓ[X]

δX(τ)
= h̄β

∫ h̄β

0

dτ ′
δF [j[X]]

δj[X](τ ′)

δj[X](τ ′)

δX(τ)
+

∫ h̄β

0

dτ ′
δj[X](τ ′)

δX(τ)
X(τ ′) + j[X](τ) . (2.25)

Thus, due to (2.21), one reobtains the external current:

δΓ[X]

δX(τ)
= j[X](τ) . (2.26)

The situation when the external current j(τ) vanishes is of particular interest. In this case,

the path average X[j](τ) is denoted by

Xe(τ) := X[j ≡ 0](τ) . (2.27)

From (2.26), one reads off that the particular path average (2.27) has the property of ex-

tremizing the effective action:

δΓ[X]

δX(τ)

∣

∣

∣

∣

X(τ)=Xe(τ)

≡ 0 . (2.28)

Furthermore, from (2.24), it follows that in the case of a vanishing current one has

F [0] =
1

h̄β
Γ[Xe] . (2.29)

Thus, the free energy F can be obtained by extremizing the effective action.

The effective potential, which will be introduced in the following section, is closely related to

the effective action. The calculation of the effective potential constitutes an approach that is

less general than the concept of the effective action, since there the current j(τ) is assumed

to be τ -independent. Nevertheless, the effective potential also permits the determination of

the free energy.
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2.3 Definition of the Effective Potential

The procedure in this section is similar to that of the previous one. In order to define the

effective potential, it is assumed that the external current from the previous section j(τ) is

now a τ -independent current j. It is then merely necessary to replace functionals of j(τ) by

corresponding functions of j.

In the presence of an external current that is constant in the imaginary time τ , j(τ) ≡ j,

define

A[x](j) := A[x] − j

∫ h̄β

0

dτ x(τ) = A[x, j]
∣

∣

∣

j(τ)=j
. (2.30)

Consider the generating function

Z(j) :=

∮

Dx exp

{

−1

h̄
A[x](j)

}

= Z[j]
∣

∣

∣

j(τ)=j
. (2.31)

Again, for a vanishing current, j = 0, the partition function (2.15) is reobtained:

Z(j)
∣

∣

∣

j=0
≡ Z . (2.32)

And the free energy reads

F (j) = − 1

β
lnZ(j) (2.33)

The first derivative of F (j) now yields

∂F (j)

∂j
= − 1

h̄βZ(j)

∮

Dx exp

{

−1

h̄
A[x](j)

}
∫ h̄β

0

dτ x(τ) =: −X . (2.34)

As with the other definitions of this section, the quantity X(τ) defined by (2.20) becomes

simply the quantity X defined by the last identity in the case of a constant current j(τ) ≡ j.

This is due to the fact that in the case of a τ -independent Lagrangian the path average

(2.20) is also τ -independent. Furthermore, the τ -integral and the path integral in (2.34) are

interchangeable, and the τ -integral thus merely gives a factor h̄β.

Assume that (2.34) can be inverted to yield j as a function of X:

j = j(X) . (2.35)

Again, (2.34) leads to the Legendre transform of F (j):

Veff(X) := F (j(X)) + j(X)X . (2.36)

This quantity is called the effective potential. Indeed, as comparison with (2.24) shows,

except for the factor 1/h̄β, it corresponds to the effective action evaluated at a constant

average X(τ) ≡ X:

Veff(X) =
1

h̄β
Γ[X]

∣

∣

∣

X(τ)=X
. (2.37)
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Due to (2.34), the first derivative of the effective potential gives back the external current j:

∂Veff(X)

∂X
=
∂F (j(X))

∂j(X)

∂j(X)

∂X
+
∂j(X)

∂X
X + j(X) = j(X) . (2.38)

As above, the free energy F is obtained in the case of a vanishing current j. And therefore,

according to (2.38), it can be determined by evaluating the effective potential at the average

Xe that extremizes it.

F = Veff(Xe) , (2.39)

where Xe is determined by the condition

∂Veff(X)

∂X

∣

∣

∣

∣

X=Xe

= 0 . (2.40)

Note that, since the free energy F = E − TS equals the ground-state energy in the limit

T → 0, the latter can be determined from the effective potential:

E0 = lim
T→0

Veff(Xe) . (2.41)

The effective potential has another remarkable property: it is convex for all values of the

average X. The validity of this statement can be seen as follows. According to (2.38) the

second derivative of the effective potential with respect to the average X reads

∂2Veff(X)

∂X2
=
∂j(X)

∂X
=

[

∂X(j)

∂j

∣

∣

∣

∣

j=j(X)

]−1

. (2.42)

Due to (2.34), the last identity can be rewritten in the form

∂2Veff(X)

∂X2
= −

[

∂2F (j)

∂j2

∣

∣

∣

∣

j=j(X)

]−1

. (2.43)

Using the result (2.34) for the first derivative of F (j) with respect to the constant current j

and the definitions (2.30), (2.31), one obtains the second derivative

∂2F (j)

∂j2
=

1

h̄2βZ2(j)

(
∮

Dx
∫ h̄β

0

dτ x(τ) exp

{

−1

h̄
A[x](j)

})2

(2.44)

− 1

h̄2βZ(j)

∮

Dx
∫ h̄β

0

dτ1 x(τ1)

∫ h̄β

0

dτ2 x(τ2) exp

{

−1

h̄
A[x](j)

}

.

Using the definition of the expectation value in (2.20), where the current j is now constant,

the last identity can be rewritten as

∂2F (j)

∂j2
= − 1

h̄2β

{

〈[
∫ h̄β

0

dτ x(τ)

]2〉

(j) −
[〈
∫ h̄β

0

dτ x(τ)

〉

(j)

]2
}

. (2.45)

And one obtains

∂2F (j)

∂j2
= − 1

h̄2β

〈

[
∫ h̄β

0

dτ x(τ) −
〈
∫ h̄β

0

dτ x(τ)

〉]2
〉

(j) ≤ 0 . (2.46)

Together with (2.43), this proves that the effective potential Veff(X) is convex for all values

of the average X.
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2.4 Example: Harmonic Oscillator

Consider, as an illustrative example, the harmonic oscillator with the imaginary-time action

Aω[x] =

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) +

M

2
ω2x2(τ)

]

(2.47)

and its generating functional

Zω[j] =

∮

Dx exp

{

−1

h̄
Aω[x, j]

}

. (2.48)

Here, the quantity Aω[x, j] is defined as in (2.16). Inserting (2.47) into (2.48) permits the

rewriting of the imaginary-time action in the integrand of the path integral:

Zω[j] =

∮

Dx exp

{

−1

h̄

∫ h̄β

0

dτ1

[
∫ h̄β

0

dτ2
1

2
x(τ1)G

−1
ω (τ1, τ2)x(τ2) − j(τ1)x(τ1)

]}

, (2.49)

with the integral kernel

G−1
ω (τ1, τ2) :=

δ2Aω[x]

δx(τ1)δx(τ2)
= M

(

− d2

dτ 2
1

+ ω2

)

δ(τ1 − τ2) . (2.50)

The validity of the identity (2.49) can be seen by integrating out the τ2-integral and perform-

ing an integration by parts for the first term of the τ1-integral. Note that the surface term

vanishes since the path integration only runs over paths that are periodic in the imaginary

time τ . Thus, one has:

x(0) = x(h̄β) and ẋ(0) = ẋ(h̄β) . (2.51)

In Appendix A, the generating functional (2.49) is calculated, yielding

Zω[j] = Zw exp

[

1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 Gω(τ1, τ2)j(τ1)j(τ2)

]

, (2.52)

where the partition function Zω reads

Zω =
1

2 sinh(h̄βω/2)
. (2.53)

Furthermore, the propagator Gω(τ1, τ2) is defined as the inverse of the kernel G−1
ω (τ1, τ2) by

the identity

∫ h̄β

0

dτ G−1
ω (τ1, τ)Gω(τ, τ2) ≡ h̄ δ(τ1 − τ2) . (2.54)

As shown in Appendix A, Gω(τ1, τ2) can be expressed explicitly in the form

Gω(τ1, τ2) =
h̄

2Mω

cosh(ω|τ1 − τ2| − h̄βω/2)

sinh(h̄βω/2)
, (2.55)
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which in the limit T → 0 simplifies to

lim
T→0

Gω(τ1, τ2) =
h̄

2Mω
e−ω|τ1−τ2| . (2.56)

Note that the propagator (2.55) is symmetric in its two arguments

Gω(τ1, τ2) = Gω(τ2, τ1) . (2.57)

Using the result (2.52), one obtains the free energy in presence of a τ -dependent external

current (2.19) for the harmonic oscillator:

Fω[j] = − 1

β
lnZω − 1

2h̄2β

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 Gω(τ1, τ2)j(τ1)j(τ2) . (2.58)

Using this result together with the property (2.57) of the propagator, the identity (2.21) for

the path average reduces to

Xω[j](τ) =
1

h̄

∫ h̄β

0

dτ ′ Gω(τ, τ ′)j(τ ′) . (2.59)

From the identities (2.54) and (2.59), one obtains the current j(τ) as a functional of the

path average Xω(τ):

j[Xω](τ) =

∫ h̄β

0

dτ ′ G−1
ω (τ, τ ′)Xω(τ ′) . (2.60)

The effective action (2.24) for the harmonic oscillator then follows from the results (2.58)

and (2.60) by taking into account the identity (2.54):

Γω[Xω] = −h̄ lnZω +
1

2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 Xω(τ1)G
−1
ω (τ1, τ2)Xω(τ2) . (2.61)

Using the definition (2.50), the effective action can be rewritten in the form

Γω[Xω] = −h̄ lnZω +

∫ h̄β

0

dτ

[

−M
2
Xω(τ)

d2

dτ 2
Xω(τ) +

M

2
ω2X2

ω(τ)

]

. (2.62)

Since according to the definition (2.20) the average Xω(τ) and its first derivative are periodic

in the imaginary time τ , i.e.

Xω(0) = Xω(h̄β) and Ẋω(0) = Ẋω(h̄β) , (2.63)

integration by parts of the first term of the integrand on the right-hand side of the identity

(2.62) yields

Γω[Xω] = −h̄ lnZω +

∫ h̄β

0

dτ

[

M

2
Ẋ2

ω(τ) +
M

2
ω2X2

ω(τ)

]

. (2.64)
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Note that the extremal condition (2.28) for the path average Xω(τ) reduces to the classical

equation of motion for the harmonic oscillator in imaginary time:

δΓω[Xω]

δXω(τ)

∣

∣

∣

∣

Xω(τ)=Xω,e(τ)

=

∫ h̄β

0

dτ ′
[

MẊω(τ ′)
d

dτ ′
δ(τ − τ ′) +Mω2Xω(τ ′)δ(τ − τ ′)

]

∣

∣

∣

∣

∣

Xω(τ)=Xω,e(τ)

= M
[

−Ẍω,e(τ) + ω2Xω,e(τ)
]

= 0 . (2.65)

The minus sign in front of the second derivative of the extremizing path average Ẍω,e(τ)

reflects the fact that the equation of motion is considered in imaginary time. According to

the result (2.37), evaluating the identity (2.64) for a τ -independent path-average, Xω(τ) ≡ X,

allows us to obtain the effective potential for the harmonic oscillator by taking into account

(2.53):

Veff(Xω) =
M

2
ω2X2

ω +
1

β
ln [2 sinh(h̄βω/2)] . (2.66)

Note that the effective potential (2.66) is the sum of the classical harmonic potential and

the free energy of the harmonic oscillator. In the limit T → 0, i.e. β → ∞, the effective

potential becomes

lim
T→0

Veff(Xω) =
M

2
ω2X2

ω +
h̄ω

2
. (2.67)

This reflects the fact that the free energy in the zero temperature limit equals the ground-

state energy.

The effective potential can also be obtained directly, without calculating the effective ac-

tion, as demonstrated in Section 2.3. This procedure will be illustrated in the following by

applying it to the harmonic oscillator. Due to (2.31) and the results (2.52), (2.53), (2.55),

the harmonic oscillator’s partition function in presence of a constant external current is given

by

Zω(j) =
1

2 sinh(h̄βω/2)
(2.68)

× exp

[

j2

4Mh̄ω sinh(h̄βω/2)

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 cosh(ω|τ1 − τ2| − h̄βω/2)

]

.

Using the result (B.4), one obtains

Zω(j) =
1

2 sinh(h̄βω/2)
exp

(

β

2Mω2
j2

)

. (2.69)

This leads to the free energy

Fω(j) =
1

β
ln[2 sinh(h̄βω/2)] − j2

2Mω2
. (2.70)
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Its first derivative with respect to j yields the negative of the average X

X =
j

Mω2
or equivalent j = Mω2X . (2.71)

Thus, the effective potential (2.36) reads

Veff(X) =
1

β
ln[2 sinh(h̄βω/2)] +

M

2
ω2X2 . (2.72)

Indeed, one has again found (2.66).

2.5 Example: Ordinary Integral

In the following, the structure of the effective action is further investigated by considering

the example of an ordinary integral in the so-called saddle-point approximation, i.e. in the

limit h̄ → 0. The example of an ordinary integral corresponds to an application of the

formalism introduced above in zero dimensions.

Let A(x) be an arbitrary function which is only required to be sufficiently smooth in or-

der that the following definitions are valid. Then define

Z(j) :=
1√
2πh̄

∫ ∞

−∞

dx exp

[

−1

h̄
A(x, j)

]

, (2.73)

where

A(x, j) := A(x) − h̄β jx . (2.74)

Here, the factor h̄β has been included in the definition, so that (2.16) becomes (2.74) when

the former is evaluated for a constant current, j(τ) ≡ j, and a constant position variable,

x(τ) ≡ x. The argument of the exponential function in (2.73) becomes extremal when x

takes its classical value xcl, which is defined by the condition

∂ A(x, j)

∂x

∣

∣

∣

∣

x=xcl

= 0 , (2.75)

or equivalent

∂A(x)

∂x

∣

∣

∣

∣

x=xcl

= h̄β j . (2.76)

Performing a Taylor expansion of A(x, j) around xcl and applying (2.76) yields

A(x, j) = A(xcl, j) +
1

2
A′′(xcl)δx

2 +
1

6
A′′′(xcl)δx

3 +
1

24
A(4)(xcl)δx

4 + O(δx5) , (2.77)

where δx := x− xcl denotes the deviation from xcl.
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The aim is now to expand Z(j) until the first order in h̄. For this purpose, it is useful

to recall the following result [22, p. 337]:

1√
2πh̄

∫ ∞

−∞

dx xn exp

(

− 1

2h̄
λx2

)

=
(n− 1)!! h̄n/2

√
λn+1

[λ > 0] , (2.78)

where n is an arbitrary even integer. For n being odd the integral vanishes. Inserting the

expansion (2.77) into (2.73) and expanding the exponential function into a Taylor series

yields

Z(j) =
1√
2πh̄

exp

[

−1

h̄
A(xcl, j)

]
∫ ∞

−∞

dδx exp

[

− 1

2h̄
A′′(xcl)δx

2

]

(2.79)

×
[

1 − 1

6h̄
A′′′(xcl)δx

3 − 1

24h̄
A(4)(xcl)δx

4 +
1

72h̄2 (A′′′(xcl))
2
δx6 + . . .

]

,

where terms contributing to Z(j) in an order higher than linear in h̄ according to the result

(2.78) have been omitted. Applying (2.78) then yields

Z(j) = exp

[

−1

h̄
A(xcl, j)

]

[

1
√

A′′(xcl)
− h̄

8

A(4)(xcl)
√

(A′′(xcl))5
+

5h̄

24

(A′′′(xcl))
2

√

(A′′(xcl))7
+ O(h̄2)

]

.

(2.80)

This expression can be converted, using the Taylor expansion

ln(1 − x) = −
(

x+
x2

2
+
x3

3
+ . . .+

xn

n
+ . . .

)

, (2.81)

into the form

Z(j) = exp

[

−1

h̄
A(xcl, j) −

1

2
lnA′′(xcl) + h̄

{

5

24

[A′′′(xcl)]
2

[A′′(xcl)]3
− 1

8

A(4)(xcl)

[A′′(xcl)]2

}

+ O(h̄2)

]

.

(2.82)

Defining

F (j) := − 1

β
lnZ(j) , (2.83)

one obtains

F (j) =
1

h̄β
A(xcl, j) +

h̄

2h̄β
lnA′′(xcl) −

h̄2

h̄β

{

5

24

[A′′′(xcl)]
2

[A′′(xcl)]3
− 1

8

A(4)(xcl)

[A′′(xcl)]2

}

+ O
(

h̄3
)

.

(2.84)

In the saddle-point approximation, the reduced Planck constant h̄ is considered a small

quantity. Nevertheless, in order to include the zero-temperature limit, i.e. β → ∞, in the

calculation, a factor h̄β cannot be considered a small, but rather an arbitrary quantity.

Moreover, a factor 1/β has to be rewritten as h̄/h̄β. The average X is now defined by

X := X(j) :=
1

Z(j)

1√
2πh̄

∫ ∞

−∞

dx x exp

[

−1

h̄
A(x, j)

]

. (2.85)
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Consequently, its negative is given by the first derivative of F (j) with respect to j

−X =
∂F (j)

∂j
. (2.86)

From the identity (2.76), it follows that

A′′(xcl) = h̄β
∂j

∂xcl
(2.87)

or, correspondingly,

∂xcl

∂j
=

h̄β

A′′(xcl)
. (2.88)

Using the last identity and the results (2.84), (2.86), the average X takes the form

X = xcl −
h̄

2

A′′′(xcl)

[A′′(xcl)]2

+ h̄2

{

2

3

A′′′(xcl)A(4)(xcl)

[A′′(xcl)]4
− 5

8

[A′′′(xcl)]
3

[A′′(xcl)]5
− 1

8

A(5)(xcl)

[A′′(xcl)]3

}

+ O(h̄3) . (2.89)

Inverting (2.89) leads to

xcl = X +
h̄

2

A′′′ (X + h̄A′′′(X)/2[A′′(X)]2)

{A′′ (X + h̄A′′′(X)/2[A′′(X)]2)}2

+ h̄2

{

1

8

A(5)(X)

[A′′(X)]3
− 2

3

A′′′(X)A(4)(X)

[A′′(X)]4
+

5

8

[A′′′(X)]3

[A′′(X)]5

}

+ O(h̄3) . (2.90)

Performing a Taylor expansion in powers of h̄,

A′′

(

X + h̄
A′′′(X)

2[A′′(X)]2

)

= A′′(X) + h̄A′′′(X)
A′′′(X)

2 [A′′(X)]2
+ O(h̄2) , (2.91)

and using the expansion

1

(1 + x)2
= 1 − 2x+ 3x2 − 4x3 + . . .+ (n + 1)(−x)n + . . . (2.92)

leads to

xcl = X + h̄X1 + h̄2X2 + O(h̄3) , (2.93)

where the first-order correction reads

X1 =
1

2

A′′′(X)

[A′′(X)]2
, (2.94)

and the second-order correction is given by

X2 =
1

8

A(5)(X)

[A′′(X)]3
− 5

12

A′′′(X)A(4)(X)

[A′′(X)]4
+

1

8

[A′′′(X)]3

[A′′(X)]5
. (2.95)
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The Legendre transform of F (j) with respect to j multiplied by a factor h̄β now reads

Γ(X) := h̄β [F (j) + jX] . (2.96)

It corresponds to the effective action defined in Section 2.2. Using the result (2.84), one

obtains Γ(X) by expanding A(x) around xcl as given in (2.93):

Γ(X) = A(X) + h̄β jX +
∂A(X)

∂X
(h̄X1 + h̄2X2) − h̄β j(X + h̄X1 + h̄2X2)

+
h̄

2
lnA′′(X + h̄X1) − h̄2

{

5

24

[A′′′(X)]2

[A′′(X)]3
− 1

8

A(4)(X)

[A′′(X)]2

}

+ O(h̄3) . (2.97)

Using the identity (2.76) together with the result (2.94) then yields

Γ(X) = A(X) +
h̄

2
lnA′′(X) + h̄2

{

1

8

A(4)(X)

[A′′(X)]2
− 1

12

[A′′′(X)]2

[A′′(X)]3

}

+ O(h̄3) . (2.98)

Thus, the second-order correction (2.95) to the average X does not contribute to Γ(X) in

(2.98). Furthermore, note that in the limit h̄→ 0 the result (2.98) takes the form

lim
h̄→0

Γ(X) = A(X) . (2.99)

2.6 Background Method: Ordinary Integral

In this section, an important method to efficiently determine the loop expansion for the

effective action will be introduced. This so-called background method [4, Ch. 3] was originally

introduced by B. De Witt in field theory of gravitation [15]. Later, the background method

was further elaborated and established by R. Jackiw in relativistic quantum field theory [16].

It constitutes an important simplification for evaluating the saddle point approximation of

functional integrals. Here, the background method will be illustrated first for the ordinary

integral from the previous section. To this end, the following steps are performed. Consider

the integral (2.73) without the artificial current j, i.e.

Z =
1√
2πh̄

∫ ∞

−∞

dx exp

[

−1

h̄
A(x)

]

, (2.100)

and expand the function A(x) around some background X, which corresponds to the average

introduced in (2.85). By introducing δx := x−X as the deviation of the integration variable

x from the background X, one obtains

A(X + δx) = A(X) + A′(X)δx+
1

2
A′′(X)δx2 + A(int)(δx) , (2.101)

with the interaction

A(int)(δx) =
1

6
A′′′(X)δx3 +

1

24
A(4)(X)δx4 + . . . . (2.102)
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The respective terms in the expansion (2.101) have the following consequences for the effec-

tive action (2.96) [4, Ch. 3]: The zeroth order A(X) appears directly in the effective action

as stated in (2.98). The first-order term A′(X)δx has to be neglected in the background

method as it is implicitly taken into account when performing the Legendre transforma-

tion. The second-order term A′′(X)δx2/2 leads to the expression [h̄ lnA′′(X)]/2 as stated

in (2.98). Furthermore, the remaining interactions (2.102) are characterized in terms of

Feynman diagrams. To this end, the following Feynman rules are introduced:

• A line corresponds to the inverse of A′′(X):

≡ h̄

A′′(X)
. (2.103)

• An n-vertex with n ≥ 3 stands for the nth derivative A(n)(X):

1

2

3

n

≡ −1

h̄
A(n)(X) . (2.104)

Thus, the effective action reads

Γ(X) = A(X) +
h̄

2
lnA′′(X) + Γ(int)(X) , (2.105)

where Γ(int)(X) turns out to consist of all one-particle irreducible vacuum diagrams which

are compatible with the Feynman rules (2.103), (2.104) [4, Ch. 3]. A diagram is referred

to as a ‘vacuum diagram’ if it does not possess any lines that do not end in a vertex. It is

called ‘one-particle irreducible’ if cutting an arbitrary line of the diagram does not lead to

two unconnected diagrams. Γ(int)(X) can be expanded into the form

Γ(int)(X) = −h̄
∞
∑

l=2

Γ(l)(X) , (2.106)

where, in its diagrammatic representation, each order Γ(l)(X) consists of all one-particle

irreducible vacuum diagrams with l loops. For such a diagram with N vertices, let ni with

i = 1, 2, . . . , N be the degree of the ith vertex. The number of loops for this diagram then

reads

l =
1

2

N
∑

i=1

ni − (N − 1) , (2.107)

which can be proven by induction over the number of vertices N . On the other hand, as

a consequence of the Feynman rules (2.103), (2.104), an arbitrary one-particle irreducible

vacuum diagram contributes to Γ(int)(X) in the order h̄m, where

m =
1

2

N
∑

i=1

ni −N . (2.108)
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Consequently, comparing (2.107) and (2.108) shows that diagrams with l loops lead to con-

tributions to Γ(l)(X) which are of the order h̄l−1. So, according to (2.106), a diagram with l

loops contributes to Γ(int)(X) in the order h̄l. The diagrams for l = 2, 3 and their respective

weights are given by

Γ(2)(X) =
1

8
+

1

12
, (2.109)

Γ(3)(X) =
1

8
+

1

12
+

1

48
+

1

16

+
1

8
+

1

8
+

1

24
+

1

16
. (2.110)

Here, the weights of the diagrams follow from combinatorial considerations. For instance,

the weights wd of the diagrams with three- and four-vertices are given by [23]

wd =
1

2!S+D 3!T 4!F P
, (2.111)

where S, D, T , F denote the number of self-, double, triple, fourfold connections, and P

stands for the number of vertex permutations that leave the diagram unchanged. Consider,

for example, the diagram . This diagram possesses D = 2 double connections, and

among the six possible vertex permutations two leave the topology of the diagram unchanged.

Thus, one has P = 2. Therefore, the weight of this diagram reads

wd

( )

=
1

2!2 · 2 =
1

8
. (2.112)

Applying the Feynman rules (2.103), (2.104) to the results (2.109) and (2.110) leads to the

analytical expression

Γ(int)(X) = h̄2

[

1

8

A(4)(X)

(A′′(X))2
− 1

12

(A′′′(X))2

(A′′(X))3

]

+ h̄3

[

1

8

A(6)(X)

(A′′(X))3
− 1

12

A′′′(X)A(5)(X)

(A′′(X))4

− 1

12

(A(4)(X))2

(A′′(X))4
+

1

4

(A′′′(X))2A(4)(X)

(A′′(X))5
− 5

48

(A′′′(X))4

(A′′(X))6

]

+ O(h̄4) , (2.113)

where the h̄2-terms correspond to the previous result (2.98). All one-particle irreducible

vacuum diagrams arising for 3- and 4-vertices follow from a recursive graphical construction

method, which also determines their respective weights [23].

2.7 Background Method: Path Integral

In the following, the application of the background method will be examined for the partition

function

Z =

∮

Dx exp

{

−1

h̄
A[x]

}

. (2.114)
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Accordingly, a functional Taylor expansion of the action A[x] has to be performed around

an arbitrarily chosen background X(τ):

A[X + δx] = A[X] +

∫ h̄β

0

dτ1
δA[X]

δX(τ1)
δx(τ1) (2.115)

+
1

2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2
δ2A[X]

δX(τ1)δX(τ2)
δx(τ1)δx(τ2)

+
1

6

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3
δ3A[X]

δX(τ1)δX(τ2)δX(τ3)
δx(τ1)δx(τ2)δx(τ3)

+
1

24

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

∫ h̄β

0

dτ4

× δ4A[X]

δX(τ1)δX(τ2)δX(τ3)δX(τ4)
δx(τ1)δx(τ2)δx(τ3)δx(τ4) + . . . .

Again, δx(τ) := x(τ) − X(τ) denotes the deviation of the path x(τ) from the background

X(τ). Similar to the procedure above, the first order term,

∫ h̄β

0

dτ1
δA[X]

δX(τ1)
δx(τ1) , (2.116)

will be neglected, and terms being of higher than second order in δx define the interaction

A(int)[δx] :=
1

6

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3
δ3A[X]

δX(τ1)δX(τ2)δX(τ3)
δx(τ1)δx(τ2)δx(τ3) (2.117)

+
1

24

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

∫ h̄β

0

dτ4

× δ4A[X]

δX(τ1)δX(τ2)δX(τ3)δX(τ4)
δx(τ1)δx(τ2)δx(τ3)δx(τ4) + . . . .

The integral kernel is defined as

G−1(τ1, τ2) :=
δ2A[X]

δX(τ1)δX(τ2)
, (2.118)

and the partition function (2.114) can be written in the form

Z = exp

{

−1

h̄
A[X]

}

(2.119)

×
∮

Dδx exp

{

− 1

2h̄

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 G
−1(τ1, τ2)δx(τ1)δx(τ2) −

1

h̄
A(int)[δx]

}

.

In order to determine the second-order contribution to the partition function, it is helpful

to remember the result of the one-dimensional Gaußian integral

∫ ∞

−∞

dx exp

(

−1

2
Ax2

)

=

√

2π

A
[A > 0] . (2.120)
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In D dimensions, A can be taken as a matrix, and the Gaußian integral evaluates to
∫ ∞

−∞

dDx exp

(

−1

2
xTAx

)

=
(2π)D/2

√

det(A)
[A = A†, det(A) > 0] . (2.121)

The path integral in (2.119) constitutes an infinite-dimensional integration. Therefore, one

would expect that the second-order contribution to the partition function is the generaliza-

tion of the result (2.121) to infinite dimension:
∮

Dδx exp

[

− 1

2h̄

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 G
−1(τ1, τ2)δx(τ1)δx(τ2)

]

=
1

√

det(G−1)
. (2.122)

The determinant of the integral kernel is defined as the product of its eigenvalues λk, which

are obtained by solving the eigenvalue problem
∫ h̄β

0

dτ2 G
−1(τ1, τ2) δxk(τ2) = Mλkδxk(τ1) , (2.123)

with δxk(τ) being periodic in the imaginary time:

δxk(0) = δxk(h̄β) . (2.124)

Accordingly, the right-hand side of (2.122) can be rewritten in the form

1
√

det(G−1)
= exp

(

−1

2
Tr lnG−1

)

, (2.125)

where the trace-log of the integral kernel G−1(τ1, τ2) is defined by

Tr lnG−1 :=
∑

k

lnλk . (2.126)

The preceding argument lacks, of course, mathematical rigor. In Appendix A, the partition

function for the harmonic oscillator is calculated, and an analogous procedure could be

applied to demonstrate that the result (2.122) – (2.126) is indeed valid. Since the application

of the background method implies a vanishing external current j, one obtains from (2.24)

Z[X] = exp

{

−1

h̄
Γ[X]

}

. (2.127)

Thus, when neglecting the interactions, i.e. when setting A(int)[δx] = 0, from the last identity,

(2.119), and (2.122) – (2.126), one obtains the first order approximation of the effective

action:

Γ(0)[X] + Γ(1)[X] = A[X] +
h̄

2
Tr lnG−1 ; (2.128)

and the complete effective action is given by [4, Ch. 3]

Γ[X] = A[X] +
h̄

2
Tr lnG−1 + Γ(int)[X] . (2.129)

The zeroth-order term A[X] in (2.129) is referred to as ‘tree-level’. As before, the remaining

interactions Γ(int)[X] can be characterized in terms of Feynman diagrams. The respective

Feynman rules are now:
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• All outgoing lines of all vertices are numbered arbitrarily.

• A connection between the ith and the jth line corresponds to the propagator G(τi, τj):

i j ≡ G(τi, τj) , (2.130)

where the propagator G(τi, τj) is defined by the identity

∫ h̄β

0

dτi G
−1(τh, τi)G(τi, τj) ≡ h̄ δ(τh − τj) . (2.131)

• The resulting product of propagators is multiplied by functional derivatives of A[X] and

then integrated. An n-vertex with n ≥ 3 and the n outgoing lines i, j, k, . . . ,m stands

for the nth functional derivative ofA[X] with respect toX(τi), X(τj), X(τk), . . . , X(τm)

and leads to the integration

i

j

k

m

→ −1

h̄

∫ h̄β

0

dτi

∫ h̄β

0

dτj

∫ h̄β

0

dτk . . .

∫ h̄β

0

dτm

× δnA[X]

δX(τi) δX(τj) δX(τk) . . . δX(τm)
. (2.132)

Again, Γ(int)[X] consists of all one-particle irreducible vacuum diagrams which are compatible

with the Feynman rules (2.130) – (2.132). Furthermore, Γ(int)[X] can be obtained by a loop

expansion,

Γ(int)[X] = −h̄
∞
∑

l=2

Γ(l)[X] , (2.133)

where each loop order l consists of all one-particle irreducible vacuum diagrams with l loops

[4, Ch. 3]. Thus, the diagrams contributing to Γ(int)[X] with two and three loops are the

same as in the case of an ordinary integral. Applying the Feynman rules (2.130) – (2.132) to

the diagrams (2.109), (2.110) and taking into account (2.133) yields the analytical expression
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for the interaction part of the effective action

Γ(int)[X] = −h̄
{

− 1

8h̄

∫

1234

G12G34
δ4A[X]

δX1δX2δX3δX4

+
1

12h̄2

∫

12...6

G12G34G56
δ3A[X]

δX1δX3δX5

δ3A[X]

δX2δX4δX6

− 1

8h̄

∫

12...6

G12G34G56
δ6A[X]

δX1δX2δX3δX4δX5δX6

+
1

12h̄2

∫

12...8

G12G34G56G78
δ5A[X]

δX1δX3δX5δX7δX8

δ3A[X]

δX2δX4δX6

+
1

48h̄2

∫

12...8

G12G34G56G78
δ4A[X]

δX1δX3δX5δX7

δ4A[X]

δX2δX4δX6δX8

+
1

16h̄2

∫

12...8

G12G34G56G78
δ4A[X]

δX1δX2δX3δX5

δ4A[X]

δX4δX6δX7δX8

− 1

8h̄3

∫

12...0̄

G12G34G56G78G90̄

δ3A[X]

δX1δX6δX7

δ3A[X]

δX4δX5δX0̄

δ4A[X]

δX2δX3δX8δX9

− 1

8h̄3

∫

12...0̄

G12G34G56G78G90̄

δ3A[X]

δX1δX7δX9

δ3A[X]

δX4δX8δX0̄

δ4A[X]

δX2δX3δX5δX6

+
1

24h̄4

∫

12...2̄

G12G34G56G78G90̄G1̄2̄

δ3A[X]

δX1δX8δX9

δ3A[X]

δX2δX3δX1̄

× δ3A[X]

δX4δX5δX0̄

δ3A[X]

δX6δX7δX2̄

+
1

16h̄4

∫

12...2̄

G12G34G56G78G90̄G1̄2̄

δ3A[X]

δX1δX8δX9

δ3A[X]

δX2δX3δX1̄

× δ3A[X]

δX4δX5δX2̄

δ3A[X]

δX6δX7δX0̄

+ . . .

}

, (2.134)

where the following abbreviations have been used:

∫

12...n

:=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 . . .

∫ h̄β

0

dτn , (2.135)

Gij := G(τi, τj), Xi := X(τi), and a digit with an overscore stands for the corresponding

number plus ten, e.g. 2̄ = 12.

At this point, it is not yet obvious that the loop expansion of the interaction part of the

effective action corresponds to an expansion in powers of the reduced Planck constant h̄.

However, this is the case if the propagator G(τi, τj) contains a factor h̄. Note that this

condition was valid for the harmonic propagator (2.55) and also for the propagator of the

ordinary integral (2.103).
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2.8 Calculation of the Effective Potential

In this section, it is demonstrated how the effective potential can be calculated for any given

potential by applying the background method. To this end, due to (2.37), it is sufficient

to evaluate the effective action (2.129), (2.134) for a constant background field X(τ) ≡ X .

For an arbitrary potential V (x), the imaginary-time action A[X] is given by (2.14). Its first

functional derivative reads

δA[X]

δX(τ1)
= −MẌ(τ1) + V ′(x)

∣

∣

∣

x=X(τ1)
. (2.136)

The second functional derivative, which according to definition (2.118) equals the integral

kernel, is

G−1(τ1, τ2) =

[

−M d2

dτ 2
1

+ V ′′(x)
∣

∣

∣

x=X(τ2)

]

δ(τ1 − τ2) . (2.137)

For n ≥ 3, the nth functional derivative of the imaginary-time action is given by

δnA[X]

δX(τ1)δX(τ2) . . . δX(τn)
= δ(τ1 − τ2) δ(τ2 − τ3) . . . δ(τn−1 − τn) V (n)(x)

∣

∣

∣

x=X(τn)
. (2.138)

The propagator G(τ1, τ2) is determined by the identity (2.131). However, since the aim of

this section is only to calculate the effective potential rather than the effective action, it is

sufficient to solve (2.131) for a constant background X. Together with (2.137), this leads to

an ordinary differential equation of second order for the propagator in presence of a constant

background GX(τ, τ2):
∫ h̄β

0

dτ

[

−M d2

dτ 2
1

+ V ′′(X)

]

δ(τ1 − τ)GX(τ, τ2) = h̄δ(τ1 − τ2) . (2.139)

This equation can be reduced to the corresponding problem for the harmonic oscillator

(2.50), (2.54) by introducing the frequency

Ω :=

√

V ′′(X)

M
. (2.140)

Thus, from the previous result (2.55), one obtains the propagator for an arbitrary potential

and a constant background

GΩ(τ1, τ2) =
h̄

2MΩ

cosh(Ω|τ1 − τ2| − h̄βΩ/2)

sinh(h̄βΩ/2)
. (2.141)

In the limit T → 0, it simplifies to

lim
T→0

GΩ(τ1, τ2) =
h̄

2MΩ
e−Ω|τ1−τ2| . (2.142)

As in (2.133) for the interaction part of the effective action, the effective potential interactions

will be expanded in the form

V
(int)
eff (X) = −h̄

∞
∑

l=2

V
(l)
eff (X) , (2.143)
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where, according to (2.37), each loop order V
(l)
eff (X) is obtained by evaluating the correspond-

ing loop order of the effective action at a constant background X:

V
(l)
eff (X) =

1

h̄β
Γ(l)[X]

∣

∣

∣

X(τ)=X
. (2.144)

In order to determine the interaction part of the effective potential for arbitrary tempera-

tures until the third loop order, the integrals in (2.134) have to be evaluated for a constant

background X and the propagator Gij as specified in (2.140), (2.141). Taking into account

(2.133), (2.143), and (2.144) and performing the integration over the delta functions stem-

ming from (2.138) yields

V
(int)
eff (X) =

1

β

{

V (4)(X)

8h̄

∫

1

G2
11 −

[V (3)(X)]2

12h̄2

∫

12

G3
12 +

V (6)(X)

8h̄

∫

1

G3
11

− V (3)(X)V (5)(X)

12h̄2

∫

12

G11G
3
12 −

[V (4)(X)]2

48h̄2

∫

12

G4
12 −

[V (4)(X)]2

16h̄2

∫

12

G11G22G
2
12

+
[V (3)(X)]2V (4)(X)

8h̄3

∫

123

(G13G
2
12G

2
23 +G12G22G23G

2
13)

− [V (3)(X)]4

h̄4

∫

1234

(

G12G13G14G23G24G34

24
+
G13G24G

2
12G

2
34

16

)

+ . . .

}

, (2.145)

where the same abbreviations have been used as in (2.134). This formula can also be derived

by defining Feynman rules that are less general than (2.130) – (2.132), as they are only

applicable in case of a constant background, and taking into account (2.143) and (2.144):

• The vertices of the diagram are numbered arbitrarily.

• A connection between the ith and the jth vertex stands for the propagator:

i

j

k

m

≡ GΩ(τi, τj) , (2.146)

where GΩ(τi, τj) for arbitrary temperatures is given by (2.140), (2.141) and in the

zero-temperature limit by (2.140), (2.142).

• The resulting products of propagators is integrated. Let the ith vertex be of degree n,

with n ≥ 3; then it leads to the integration

i j → −V
(n)(X)

h̄

∫ h̄β

0

dτi . (2.147)

In order to determine the interaction part of the effective potential for arbitrary temperatures

until the second loop order, the first two integrals in (2.145) have to be evaluated with

the propagator Gij specified in (2.140), (2.141). Taking into account (2.143) yields the

intermediate result

V
(2)
eff (X) = −h̄ V

(4)(X)

8(2MΩ)2

1

tanh2(h̄βΩ/2)
+

[V (3)(X)]2

12β(2MΩ)3

1

sinh3(h̄βΩ/2)

×
∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 cosh3(Ω|τ1 − τ2| − h̄βΩ/2) . (2.148)
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The remaining twofold integral is evaluated in Appendix B, yielding the result

V
(2)
eff (X) = −h̄ V

(4)(X)

8(2MΩ)2

1

tanh2(h̄βΩ/2)
+

h̄

6Ω

[V (3)(X)]2

(2MΩ)3

[

1

3
+

1

sinh2(h̄βΩ/2)

]

. (2.149)

In order to specify the total effective potential up to the second order in the reduced Planck

constant h̄, the tree-level and the trace-log term have to be included. For the harmonic

oscillator (2.47), the interaction part of the effective action Γ(int)[X] vanishes. Therefore, by

comparing (2.14) and (2.64) with (2.129) and taking into account (2.53), one reads off the

trace-log for the harmonic oscillator

Tr lnG−1
ω = −2 lnZω = 2 ln (2 sinh h̄βω/2) . (2.150)

To obtain the trace-log for an arbitrary potential one merely has to replace the frequency ω

by Ω. Thus, according to (2.37), (2.129), (2.143), and (2.149), the effective potential for an

arbitrary potential reads

Veff(X) = V (X) +
h̄

h̄β
ln (2 sinh h̄βΩ/2) + h̄2 V

(4)(X)

8(2MΩ)2

1

tanh2(h̄βΩ/2)

− h̄2

6Ω

[V (3)(X)]2

(2MΩ)3

[

1

3
+

1

sinh2(h̄βΩ/2)

]

+ O(h̄3) . (2.151)

Note that in order to include the limit T → 0, i.e. β → ∞, in the calculation, terms including

the product h̄β cannot be considered as merely depending on a term that is proportional

to the reduced Planck constant h̄, which goes to zero in this approximation. The product

h̄β has rather to be considered an arbitrary quantity. Furthermore, a factor 1/β has to

be extended to h̄/h̄β. In (2.151), only the tree-level is temperature-independent. In the

zero-temperature limit, the effective potential (2.151) simplifies to

lim
T→0

Veff(X) = V (X) +
h̄Ω

2
+ h̄2 V

(4)(X)

8(2MΩ)2
− h̄2

18Ω

[V (3)(X)]2

(2MΩ)3
+ O(h̄3) . (2.152)

One can extend the last result to the third order by evaluating the Feynman diagrams (2.110)

in the zero-temperature limit. Thus, the remaining eight multiple integrals in (2.145) have

to be solved, where the propagator Gij is specified by (2.142). Taking into account (2.143)
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yields the intermediate result

lim
T→0

V
(3)
eff (X) = − h̄

2V (6)(X)

8(2MΩ)3
+
h̄V (3)(X)V (5)(X)

12(2MΩ)4β

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 exp(−3Ω|τ1 − τ2|)

+
h̄[V (4)(X)]2

(2MΩ)4β

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

[ 1

48
exp(−4Ω|τ1 − τ2|) +

1

16
exp(−2Ω|τ1 − τ2|)

]

− h̄V (4)(X)[V (3)(X)]2

8(2MΩ)5β

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

×
[

exp(−2Ω|τ1 − τ2| − Ω|τ1 − τ3| − 2Ω|τ2 − τ3|)

+ exp(−Ω|τ1 − τ2| − 2Ω|τ1 − τ3| − Ω|τ2 − τ3|)
]

+
h̄[V (3)(X)]4

(2MΩ)6β

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

∫ h̄β

0

dτ4

×
[ 1

24
exp(−Ω|τ1 − τ2| − Ω|τ1 − τ3| − Ω|τ1 − τ4| − Ω|τ2 − τ3| − Ω|τ2 − τ4| − Ω|τ3 − τ4|)

+
1

16
exp(−Ω|τ1 − τ2| − 2Ω|τ1 − τ4| − 2Ω|τ2 − τ3| − Ω|τ3 − τ4|)

]

. (2.153)

The remaining two-, three-, and fourfold integrals are calculated in Appendix B. Applying

(B.15) and (B.27) – (B.30) to (2.153), one obtains

lim
T→0

V
(3)
eff (X) = − h̄2V (6)(X)

8(2MΩ)3
+
h̄2V (3)(X)V (5)(X)

18Ω(2MΩ)4
+

7h̄2[V (4)(X)]2

96Ω(2MΩ)4

− 13h̄2V (4)(X)[V (3)(X)]2

72Ω2(2MΩ)5
+

17h̄2[V (3)(X)]4

216Ω3(2MΩ)6
. (2.154)

Combining the last result with (2.152) and taking into account (2.143), one obtains the

effective potential in the zero-temperature limit up to the third order in h̄:

lim
T→0

Veff(X) = V (X) +
h̄Ω

2
+ h̄2 V

(4)(X)

8(2MΩ)2
− h̄2

18Ω

[V (3)(X)]2

(2MΩ)3
+
h̄3

8

V (6)(X)

(2MΩ)3

− h̄3

18Ω

V (3)(X)V (5)(X)

(2MΩ)4
− 7h̄3

96Ω

[V (4)(X)]2

(2MΩ)4
+

13h̄3

72Ω2

V (4)(X)[V (3)(X)]2

(2MΩ)5

− 17h̄3

216Ω3

[V (3)(X)]4

(2MΩ)6
+ O(h̄4) . (2.155)

2.9 Example: Anharmonic Oscillator

Consider an anharmonic oscillator with the potential

V (x) =
M

2
ω2x2 + gAx3 + g2Bx4 , (2.156)

where the parameter B is assumed to be positive, and g is the coupling constant. In this

section, the effective potential for this oscillator will be calculated until the second loop order
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for arbitrary temperatures and until the third loop order for T = 0 by applying the results

from the previous section. To this end, one only needs to replace the derivatives of the

arbitrary potential from the last section by their actual values for the anharmonic oscillator.

The propagator GΩ(τ1, τ2) of the anharmonic oscillator for arbitrary temperatures is given

by (2.141), and in the zero-temperature limit by (2.142), where the frequency Ω reads

Ω = ω

√

1 +
6gAX

Mω2
+

12g2BX2

Mω2
. (2.157)

Note that in order to ensure that Ω in (2.157) is real for all values of X, the condition

|A| ≤
√

4Mω2B

3
(2.158)

must hold. Applying the result (2.151) to the anharmonic oscillator, one obtains its temper-

ature dependent effective potential up to the second order in h̄:

Veff(X) =
M

2
ω2X2 + gAX3 + g2BX4 +

h̄

h̄β
ln (2 sinh h̄βΩ/2) + h̄2 3g2B

(2MΩ)2

1

tanh2(h̄βΩ/2)

− h̄2

6Ω

(6gA+ 24g2BX)2

(2MΩ)3

[

1

3
+

1

sinh2(h̄βΩ/2)

]

+ O(h̄3) . (2.159)

According to (2.39), one obtains the free energy by evaluating (2.159) for that particular

average X that extremizes the effective potential. Since here the calculation is only up to

the second order in the reduced Planck constant h̄, the background X can be expanded in

the form

X = X0 + h̄X1 + h̄2X2 + O(h̄3) . (2.160)

Inserting this identity into the first derivative of (2.159), expanding it in powers of h̄, and

setting the resulting expression to zero leads to a system of three equations, each correspond-

ing to the respective order in h̄. This system of equations for the extremizing average Xe

can be solved consecutively. First, one obtains

X
(1)
0 = 0 , X

(2)
0 = −3A+ 9

√
9A2 − 16BMω2

8gB
, X

(3)
0 =

−3A + 9
√

9A2 − 16BMω2

8gB
.

(2.161)

Since the solution is required to be real for all allowed parameters A, B, only X
(1)
0 = 0 is

a valid solution. The solutions X
(2)
0 and X

(3)
0 are complex due to condition (2.158). Using

this result, one further obtains

X1 = − 3gA

2M2ω3 tanh(h̄βω/2)
. (2.162)

Since X0 vanishes, one reads off from (2.159) that X2 does not contribute to the free energy

in the second order of h̄. This corresponds to the previous example of an ordinary integral in
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Section 2.5, where the second-order correction of the average X did not affect the effective

action in the order h̄2. Furthermore, the frequency Ω reduces to

Ω = ω + O(h̄) . (2.163)

Inserting the solutions (2.161), (2.162) into (2.159) and expanding until the second order in

h̄ yields the free energy in this order:

F =
h̄

h̄β
ln (sinh h̄βω/2) (2.164)

+ h̄2

{[

3Bg2

4M2ω2
− 9A2g2

8M3ω4

]

1

tanh2 (h̄βω/2)
− 3A2g2

4M3ω4

[

1

3
+

1

sinh2 (h̄βω/2)

]}

+ O(h̄3) .

In the zero-temperature limit, the effective potential (2.159) simplifies to

lim
T→0

Veff(X) =
M

2
ω2X2 + gAX3 + g2BX4 +

h̄Ω

2
+ h̄2 3g2B

(2MΩ)2

− h̄2

18Ω

(6gA+ 24g2BX)2

(2MΩ)3
+ O(h̄3) . (2.165)

To obtain the ground-state energy, according to (2.41), one has to evaluate this expression

for the particular average that extremizes the effective potential (2.165). To this end, the

background X is expanded in the form (2.160). Inserting (2.160) into the first derivative of

(2.165) with respect to average X, expanding this expression until the second order in h̄,

and determining the zeros for each order of h̄ yields the result

X0 = 0 , (2.166)

X1 = − 3gA

2M2ω3
, (2.167)

X2 = − g3A(33A2 − 31BMω2)

2M5ω8
. (2.168)

Other possible solutions for X are ruled out, since they lead to a complex average X when

the condition (2.158) is fulfilled. Note that (2.167) represents the T → 0 limit of (2.162).

Inserting (2.166) – (2.168) into (2.165) and expanding the resulting expression until the

second order in h̄ gives, according to (2.41), the ground-state energy of the anharmonic

oscillator in this order:

E0 = h̄
ω

2
+ h̄2g

2 (−11A2 + 6BMω2)

8M3ω4
+ O(h̄3) . (2.169)

Note that, as above, due to (2.165) and (2.166), the second-order correction X2 does not

contribute to the ground-state energy in this order. One can extend the previous calculation

to the third order by using the result (2.155). Due to the fact that all of the anharmonic

potential’s derivatives of higher than fourth order vanish, the terms in (2.155) containing

V (5)(X) or V (6)(X) do not contribute to this calculation. Thus, the effective potential for
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the anharmonic oscillator in the zero-temperature limit up to the third order in h̄ reads:

lim
T→0

Veff(X) =
M

2
ω2X2 + gAX3 + g2BX4 +

h̄Ω

2
+ h̄2 3g2B

(2MΩ)2
(2.170)

− h̄2

18Ω

(6gA+ 24g2BX)2

(2MΩ)3
− 7h̄3

96Ω

(24g2B)2

(2MΩ)4

+
13h̄3

72Ω2

24g2B(6gA+ 24g2BX)2

(2MΩ)5
− 17h̄3

216Ω3

(6gA+ 24g2BX)4

(2MΩ)6
+ O(h̄4) .

The ground-state energy of the anharmonic oscillator in the third order of h̄ is then obtained

in the same way as before. All calculations merely have to be extended by one order. From

(2.170) it follows, when the zeroth order of the background vanishes, that it is sufficient to

know the corrections to the background X up to the second order (2.166) – (2.168) to obtain

the third-order correction for the oscillator’s ground-state energy, as has been discussed

above. Inserting (2.166) – (2.168) into (2.170) and expanding until the third order in h̄

yields the result

E0 = h̄
ω

2
+ h̄2g

2 (−11A2 + 6BMω2)

8M3ω4

− h̄3 g
4 (465A4 − 684A2BMω2 + 84B2M2ω4)

32M6ω9
+ O(h̄4) . (2.171)

In the next section, this three-loop result for the ground-state energy is verified by applying

perturbation theory.

2.10 Perturbation Theory

In this section, the partition function for the anharmonic oscillator (2.156),

Z =

∮

Dx exp

{

−1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) +

M

2
ω2x2(τ) + gAx3(τ) + g2Bx4(τ)

]}

, (2.172)

will be calculated perturbatively by an expansion in the coupling constant g. In a first step,

separating harmonic and anharmonic contributions to Z and expanding the exponential

function yields

Z =

∮

Dx exp

{

−1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) +

M

2
ω2x2(τ)

]}

(2.173)

×
{

1 − 1

h̄

∫ h̄β

0

dτ1
[

gAx3(τ1) + g2Bx4(τ1)
]

+
1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2
[

gAx3(τ1) + g2Bx4(τ1)
] [

gAx3(τ2) + g2Bx4(τ2)
]

+ . . .

}

.

Since all contributions to the path integral that are odd in the path x(τ) vanish, one obtains

by using the result for the harmonic partition function (2.53) and introducing the notation

〈 • 〉ω =
1

Zω

∮

Dx • exp

{

−1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) +

M

2
ω2x2(τ)

]}

(2.174)
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the following expression for the partition function:

Z = Zω

[

1 − g2B

h̄

∫ h̄β

0

dτ1 〈x4(τ1)〉ω +
g2A2

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 〈x3(τ1)x
3(τ2)〉ω + O(g4)

]

.

(2.175)

Expectation values of products of an even number of paths can be transformed by applying

Wick’s rule [4, Sec. 3.9]:

• The expectation value of a product of two paths defines the corresponding propagator

Gω(τ1, τ2) := 〈x(τ1)x(τ2)〉ω . (2.176)

• An expectation value of a product of n paths can be rewritten as a sum of n − 1

products of propagators and expectation values of n− 2 paths:

〈x(τ1)x(τ2)x(τ3) . . . x(τn)〉ω = Gω(τ1, τ2)〈x(τ3)x(τ4) . . . x(τn)〉ω (2.177)

+ Gω(τ1, τ3)〈x(τ2)x(τ4) . . . x(τn)〉ω + . . . + Gω(τ1, τn)〈x(τ2)x(τ3) . . . x(τn−1)〉ω .

By applying Wick’s rule (2.176), (2.177) one obtains

〈x4(τ1)〉ω = 3 G2
ω(τ1, τ1) , (2.178)

and

〈x3(τ1)x
3(τ2)〉ω = 9 Gω(τ1, τ1)Gω(τ1, τ2)Gω(τ2, τ2) + 6 G3

ω(τ1, τ2) . (2.179)

Note that the propagator Gω(τ1, τ2) defined by (2.174) and (2.176) is indeed identical with

the propagator (2.55):

〈x(τ1)x(τ2)〉ω =
h̄2

Zω

δ2

δj(τ1)j(τ2)

∮

Dx exp

(

−1

h̄

{

Aω[x] +

∫ h̄β

0

dτ x(τ)j(τ)

})

∣

∣

∣

∣

∣

j=0

(2.48), (2.52)
= h̄2 δ2

δj(τ1)j(τ2)
exp

[

1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 Gω(τ1, τ2)j(τ1)j(τ2)

]

∣

∣

∣

∣

∣

j=0

.

(2.180)

Carrying out the functional derivatives and using (2.57) then yields the proposition.

Applying (2.178) and (2.179) to (2.175) yields

F = −kBT lnZ = −kBT lnZω + kBT

{

3g2B

h̄

∫ h̄β

0

dτ1G
2
ω(τ1, τ1) (2.181)

− g2A2

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2
[

9 Gω(τ1, τ1)Gω(τ1, τ2)Gω(τ2, τ2) + 6 G3
ω(τ1, τ2)

]

+ O(g4)

}

,

where the Taylor expansion (2.81) has been used. The free energy can be expressed in terms

of Feynman diagrams. To this end, the following Feynman-rules are introduced:
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• The vertices of the diagram are numbered arbitrarily.

• A connection between the ith and the jth vertex stands for the propagator Gω(τi, τj)

1

2

3

n

i ≡ Gω(τi, τj) , (2.182)

where Gω(τi, τj) for arbitrary temperatures is given by (2.55) and in the zero temper-

ature limit by (2.56).

• The resulting product of propagators is integrated.

A three-vertex leads to an integration

i j → −6gA

h̄

∫ h̄β

0

dτi . (2.183)

And a four-vertex leads to an integration

i
→ −24g2B

h̄

∫ h̄β

0

dτi . (2.184)

Applying these Feynman rules to (2.181), one obtains the diagrammatic representation of

the free energy in this order

F = −kBT lnZω − kBT

{

1

8
+

1

8
+

1

12
+ O(g4)

}

. (2.185)

In Ref. [23], it is shown that the free energy can be obtained by a diagrammatic loop

expansion, where each loop order l consists of all connected vacuum diagrams with l loops.

This is in contrast to the interaction part of the effective action Γ(int)[X], which only consists

of all one-particle irreducible vacuum diagrams (compare with Section 2.6). The diagrams

contributing to the next loop order are given in Ref. [23] and lead to the following expression

for the free energy

F = −kBT lnZω − kBT

{

1

8
+

1

8
+

1

12
+

1

24
+

1

16

+
1

8
+

1

16
+

1

48
+

1

8
+

1

8
+

1

12

+
1

8
+

1

16
+

1

48
+

1

16
+ O(g6)

}

. (2.186)

The right-hand side of equation (2.181) with the propagator Gω(τ1, τ2) being specified in

(2.55) can be evaluated by using the results (B.4) and (B.7). In doing so, one obtains the

free energy up to the second order in the coupling constant g

F = −kBT lnZω (2.187)

+ g2

{[

3Bh̄2

(2Mω)2
− 9A2h̄2

ω(2Mω)3

]

1

tanh2(h̄βω/2)
− 6A2h̄2

ω(2Mω)3

[

1

3
+

1

sinh2(h̄βω/2)

]}

+ O(g4) .
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To obtain the free energy in the zero-temperature limit, i.e. the ground-state energy, up to

the fourth order in the coupling constant g, one can evaluate the Feynman diagrams (2.186)

specified by the Feynman rules (2.182) – (2.184). In this limit, the trace-log term −kBT lnZω

becomes the ground-state energy of the harmonic oscillator h̄ω/2. Using the results (B.27)

– (B.36), one obtains

E0 =
h̄ω

2
+ g2 h̄

2(6BMω2 − 11A2)

8M3ω4
− g4 h̄

3(465A4 − 684A2BMω2 + 84B2M2ω4)

32M6ω9
+ O(g6) .

(2.188)

Note that the ground-state energy is even in the coupling constant g. This is due to the fact

that changing the sign of the coupling constant would only result in an oscillator potential

that is mirrored by the ordinate-axis, and this would only affect the resulting wave functions

but not the energy levels.





Chapter 3

Recursion Relations

3.1 Motivation

In this chapter, methods will be introduced which allow the obtaining of the sum of Feynman

diagrams without explicitly evaluating the single diagrams. In Section 3.2, an expansion for

the ground-state energy of the anharmonic oscillator (3.4) in terms of the coupling constant g

will be obtained by applying the Bender-Wu recursion method. This method was developed

by C.M. Bender and T.T. Wu to approximatively solve the time-independent Schrödinger

equation in 1969/1973 [17,18]. Later on, its application was extended to the time-dependent

Schrödinger equation [24] and to the Fokker-Planck equation [25]. While in principle two

approaches, a perturbational expansion or a cumulant expansion, are possible, in this work

the latter will be pursued. In the perturbational expansion, which is e.g. found in [4, App.

3E], the oscillator’s ground-state wave function is expanded in the form

ψ(x) =

(

Mω

πh̄

)1/4

exp

(

−Mω

2h̄
x2

)

[1 + φ(x)] , (3.1)

whereas in the cumulant expansion one chooses an ansatz of the form

ψ(x) =

(

Mω

πh̄

)1/4

exp

[

−Mω

2h̄
x2 + φ(x)

]

. (3.2)

The correction to the wave function φ(x) is not to be understood as being identical for the

two approaches. The correction φ(x) will be expanded in powers of the coupling constant g:

φ(x) =

∞
∑

k=1

gk φk(x) . (3.3)

Each expansion can be derived from the other. However, the cumulant expansion offers

the advantage that fewer coefficients arise in the Taylor expansion of the φk(x), which is

performed in a second step. In the following sections, the Bender-Wu recursion will be

applied to an anharmonic oscillator with or without external current. In Section 3.4, we will

extend it to a recursion for the effective potential Veff(X).

39
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3.2 Ground-State Energy without External Current

For the potential

V (x) =
M

2
ω2x2 + gAx3 + g2Bx4 , (3.4)

the time-independent Schrödinger equation reads

− h̄2

2M
ψ′′(x) +

(

M

2
ω2x2 + gAx3 + g2Bx4

)

ψ(x) = E ψ(x) . (3.5)

Inserting the ansatz (3.2) into the Schrödinger equation (3.5) yields an ordinary differential

equation for the correction φ(x):

− h̄2

2M
φ′′(x) + h̄ω x φ′(x) − h̄2

2M
[φ′(x)]

2
+ gAx3 + g2Bx4 = ǫ , (3.6)

where ǫ denotes the correction to the ground-state energy

E =
h̄ω

2
+ ǫ . (3.7)

Expanding the ground-state energy of the oscillator in powers of the coupling constant g,

E =
h̄ω

2
+

∞
∑

k=1

gk ǫk , (3.8)

inserting the expansion (3.3) into (3.6), and performing a coefficients comparison, one obtains

a differential equation for the φk(x):

− h̄2

2M
φ′′

k(x) + h̄ω x φ′
k(x) −

h̄2

2M

k−1
∑

l=1

φ′
k−l(x) φ

′
l(x) + δk,1Ax

3 + δk,2Bx
4 = ǫk . (3.9)

Assuming that φk(x) is a polynomial, one can show by induction that its degree cannot be

greater than k + 2. Thus, the φk(x) can be written in the form

φk(x) =
k+2
∑

m=1

c(k)
m xm . (3.10)

Here, the constant terms c
(k)
0 have been omitted as they can only be determined later by

normalization of the wave function ψ(x). By inserting (3.10) into (3.9) for k = 1, one finds

c
(1)
1 = − A

Mω2
, c

(1)
2 = 0 , c

(1)
3 = − A

3h̄ω
, and ǫ1 = 0 . (3.11)

For k = 2, the solution reads

c
(2)
1 = 0 , c

(2)
2 =

7A2

8M2ω4
− 3B

4Mω2
, c

(2)
3 = 0 , c

(2)
4 =

A2

8Mh̄ω3
− B

4h̄ω
, (3.12)

and ǫ2 = −11A2h̄2

8M3ω4
+

3Bh̄2

4M2ω2
. (3.13)



3.2. GROUND-STATE ENERGY WITHOUT EXTERNAL CURRENT 41

For the general case k ≥ 3, it is helpful to rewrite (3.10) in the form

φk(x) =

∞
∑

m=1

c(k)
m xm , with c(k)

m ≡ 0 for m > k + 2 , (3.14)

as this allows the application of the Cauchy product rule to the product of the derivatives

φ′
k−l(x) and φ′

l(x) in (3.9). The recursively determinable solution for the φk(x) and the

energy corrections ǫk is then obtained as

c(k)
m =

(m+ 2)(m+ 1)h̄

2mMω
c
(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m+1
∑

n=1

n(m+ 2 − n) c(l)n c
(k−l)
m+2−n ,

with c(k)
m ≡ 0 for m > k + 2 , (3.15)

ǫk = − h̄
2

M
c
(k)
2 − h̄2

2M

k−1
∑

l=1

c
(l)
1 c

(k−l)
1 . (3.16)

Applying this result leads to the expansion coefficients and the energy correction in the third

order of the coupling constant:

c
(3)
1 = − 5A3h̄

M4ω7
+

6ABh̄

M3ω5
, c

(3)
2 = 0 , c

(3)
3 = − 13A3

12M3ω6
+

3AB

2M2ω4
,

c
(3)
4 = 0 , c

(3)
5 = − A3

10M2h̄ω5
+

AB

5Mh̄ω3
, (3.17)

and ǫ3 = 0 . (3.18)

And for the fourth order one obtains

c
(4)
1 = 0 , c

(4)
2 =

305A4h̄

32M5ω9
− 123A2Bh̄

8M4ω7
+

21B2h̄

8M3ω5
, c

(4)
3 = 0 ,

c
(4)
4 =

99A4

64M4ω8
− 47A2B

16Mω6
+

11B2

16M2ω4
, c

(4)
5 = 0 ,

c
(4)
6 =

5A4

48M3h̄ω7
− A2B

4M2h̄ω5
+

B2

12Mh̄ω3
, (3.19)

and ǫ4 = −465A4h̄3

32M6ω9
+

171A2Bh̄3

8M5ω7
− 21B2h̄3

8M4ω5
. (3.20)

Comparing (3.13), (3.18), and (3.20) with (2.188), one sees that the result obtained by

Bender-Wu recursion is indeed identical to the one obtained by explicitly evaluating Feynman

diagrams. Since one wants to drive the expansion to higher orders, it is important to optimize

the recursion formula with regard to its evaluation by a computer. To this end, it is helpful to

introduce natural units, in which one has h̄ = 1, M = 1. Furthermore, since calculations on a

computer can be performed more effectively when dealing with mere rational numbers, which

are not afflicted with parameters like A, B, or ω, it is desirable to expand the coefficients

c
(k)
m and the energy corrections ǫk in products of powers of these parameters. Dimensional

considerations lead to the following approaches for the coefficients c
(k)
m :

c(k)
m =

⌊k/2⌋
∑

λ=0

Ak−2λBλ

ω5k/2−m/2−2λ
c
(k)
m,λ , with c

(k)
m,λ ≡ 0 for m > k + 2 , (3.21)
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and for the energy corrections ǫk:

ǫk =

⌊k/2⌋
∑

λ=0

Ak−2λBλ

ω5k/2−1−2λ
ǫk,λ . (3.22)

Similar to the procedure in (3.14), it is helpful to rewrite (3.21) in the form

c(k)
m =

∞
∑

λ=0

Ak−2λBλ

ω5k/2−m/2−2λ
c
(k)
m,λ , with c

(k)
m,λ ≡ 0 for m > k + 2 or λ >

⌊

k

2

⌋

, (3.23)

as this allows the application of the Cauchy product rule to the product of the coefficients

c
(l)
n and c

(k−l)
m+2−n when inserting (3.23) into (3.15). Doing so and performing a coefficients

comparison yields a recursion relation for the expansion coefficients c
(k)
m,λ:

c
(k)
m,λ =

(m+ 2)(m+ 1)

2m
c
(k)
m+2,λ +

1

2m

k−1
∑

l=1

m+1
∑

n=1

λ
∑

λ′=0

n(m+ 2 − n) c
(l)
n,λ−λ′ c

(k−l)
m+2−n,λ′ ,

with c
(k)
m,λ ≡ 0 for m > k + 2 or λ >

⌊

k

2

⌋

. (3.24)

The starting values follow from comparing (3.11) and (3.12) with (3.21):

c
(1)
1,0 = −1 , c

(1)
2,0 = 0 , c

(1)
3,0 = −1

3
, (3.25)

c
(2)
1,0 = 0 , c

(2)
1,1 = 0 , c

(2)
2,0 =

7

8
, c

(2)
2,1 = −3

4
,

c
(2)
3,0 = 0 , c

(2)
3,1 = 0 , c

(2)
4,0 =

1

8
, c

(2)
4,1 = −1

4
. (3.26)

The expansion coefficients ǫk,λ for the energy corrections ǫk are obtained by inserting (3.22)

and (3.21) into (3.16) using natural units:

ǫk,λ = −c(k)
2,λ − 1

2

k−1
∑

l=1

λ
∑

λ′=0

c
(l)
1,λ−λ′ c

(k−l)
1,λ′ . (3.27)

Table 3.1 shows the energy corrections ǫk up to the tenth order.

3.3 Ground-State Energy with External Current

In the presence of a constant external current j, the time-independent Schrödinger equation

for the anharmonic oscillator (2.156) reads

− h̄2

2M
ψ′′(x) +

(

M

2
ω2x2 + gAx3 + g2Bx4 − jx

)

ψ(x) = E ψ(x) . (3.28)

This problem can, for instance, be physically realized by taking the anharmonic oscillator

into a constant electric field. The solution for the case of a vanishing coupling constant,

g = 0, can be obtained analytically by introducing the new variables x′ and E ′:

x′ = x− j

Mω2
and E ′ = E +

j2

2Mω2
. (3.29)
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k ǫk

1 0

2
−11A2 + 6Bω2

8ω4

3 0

4 −465A4 − 684A2Bω2 + 84B2ω4

32ω9

5 0

6
−39709A6 + 91014A4Bω2 − 47308A2B2ω4 + 2664B3ω6

128ω14

7 0

8 −3(6416935A8 − 19945048A6Bω2 + 18373480A4B2ω4

+4962400A2B3ω6164720B4ω8)/(2048ω19)

9 0

10 (−2944491879A10 + 11565716526A8Bω2 − 15341262168A6B2ω4

+7905514480A4B3ω6 − 1320414512A2B4ω8 + 29335392B5ω10)/(8192ω24)

Table 3.1: Expansion coefficients for the ground-state energy of the anharmonic oscillator

(3.4) up to the 10th order.

Performing these substitutions, the differential equation to be solved reduces to the case of

the harmonic oscillator. Thus, in this section, for the wave function, the approach

ψ(x) = N eφ(x) , with φ(x) =
j

h̄ω
x− Mω

2h̄
x2 +

∞
∑

k=1

gk φk(x) , (3.30)

where N denotes a normalization constant, is chosen. Furthermore, the energy is expanded

in the form

E(j) =
h̄ω

2
− j2

2Mω2
+

∞
∑

k=1

gk ǫk . (3.31)

Inserting (3.30) and (3.31) into (3.28) and performing a coefficients comparison, one obtains

an ordinary differential equation for the φk(x):

− h̄2

2M
φ′′

k(x) −
h̄2

2M

k−1
∑

l=1

φ′
k−l(x) φ

′
l(x) +

(

h̄ωx− jh̄

Mω

)

φ′
k(x) + δk,1 Ax

3 + δk,2 Bx
4 = ǫk .

(3.32)
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Under the assumption that φk(x) is a polynomial, it is, as before, possible to show by

induction that the degree of φk(x) cannot be greater than k + 2. Thus, the φk(x) can

be written in the form (3.10). Again, the constant terms c
(k)
0 can only be determined by

exploiting the normalization condition for the wave function. Inserting (3.10) into (3.32)

allows the φk(x) to be determined recursively. First, one finds for k = 1

c
(1)
1 = − A

Mω2
− j2A

M2h̄ω5
, c

(1)
2 = − jA

2Mh̄ω3
, c

(1)
3 = − A

3h̄ω
, (3.33)

and ǫ1 =
3h̄jA

2Mω3
+

j3A

M3ω6
. (3.34)

And for k = 2 one obtains

c
(2)
1 =

17jA2

4M3ω6
+

4j3A2

M4h̄ω9
− 5jB

2M2ω4
− j3B

M3h̄ω7
,

c
(2)
2 =

7A2

8M2ω4
+

3j2A2

2M3h̄ω7
− 3B

4Mω2
− j2B

2M2h̄ω5
, c

(2)
3 =

jA2

2M2h̄ω5
− jB

3Mh̄ω3
,

c
(2)
4 =

A2

8Mh̄ω3
− B

4h̄ω
, (3.35)

and ǫ2 = −11h̄2A2

8M3ω4
− 27h̄j2A2

4M4ω7
− 9j4A2

2M5ω10
+

3h̄2B

4M2ω2
+

3h̄j2B

M3ω5
+

j4B

M4ω8
. (3.36)

Note that, for j = 0, Eqs. (3.33) – (3.36) are identical with (3.11) – (3.13). Using the

convention (3.14), one finds the solution for the general case k ≥ 3:

c(k)
m =

(m+ 2)(m+ 1)h̄

2mMω
c
(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m+1
∑

n=1

n(m+ 2 − n) c(l)n c
(k−l)
m+2−n

+
j(m+ 1)

Mmω2
c
(k)
m+1 , with c(k)

m ≡ 0 for m > k + 2 , (3.37)

ǫk = − jh̄

Mω
c
(k)
1 − h̄2

M
c
(k)
2 − h̄2

2M

k−1
∑

l=1

c
(l)
1 c

(k−l)
1 . (3.38)

Table 3.2 shows the energy corrections ǫk in the presence of an external current up to the

sixth order using natural units, h̄ = 1, M = 1. Note that Tab. 3.2 reduces to Tab. 3.1 for a

vanishing current.

According to Section 2.3, the knowledge of the ground-state energy E(j) permits the calcula-

tion of the effective potential Veff(X) in the zero-temperature limit by performing a Legendre

transformation with respect to the constant external current j. Since the free energy becomes

the ground-state energy in the limit T → 0, one has due to (2.36):

E(j(X)) = Veff(X) − j(X)X . (3.39)

Furthermore, due to (2.38), one has

j(X) = V ′
eff(X) . (3.40)
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k ǫk

1
Aj(2j2 + 3ω3)

2ω6

2
2Bω2(4j4 + 12j2ω3 + 3ω6) −A2(36j4 + 54j2ω3 + 11ω6)

8ω10

3
Aj[3A2(36j4 + 63j2ω3 + 22ω6) − 2Bω2(24j4 + 66j2ω3 + 31ω6)]

4ω14

4 [36A2Bω2(112j6 + 324j4ω3 + 212j2ω6 + 19ω9)

−4B2ω4(64j6 + 264j4ω3 + 248j2ω6 + 21ω9)

−3A4(2016j6 + 4158j4ω3 + 2112j2ω6 + 155ω9)]/(32ω10)

5 Aj[27A4(1728j6 + 4158j4ω3 + 2816j2ω6 + 465ω9)

+4B2ω4(1536j6 + 6408j4ω3 + 7072j2ω6 + 1683ω9)

−12A2Bω2(3456j6 + 10908j4ω3 + 9176j2ω6 + 1817ω9)]/(32ω22)

6 [8B3ω6(1536j8 + 8544j6ω3 + 14144j4ω6 + 6732j2ω9 + 333ω12)

−4A2B2ω4(103680j8 + 454032j6ω3 + 584928j4ω6 + 221706j2ω9 + 11827ω12)

+6A4Bω2(285120j8 + 991224j6ω3 + 1024224j4ω6 + 323544j2ω9 + 15169ω12)

−A6(1539648j8 + 4266108j6ω3 + 3649536j4ω6 + 979290j2ω9 + 39709ω12)]/(128ω26)

Table 3.2: Energy corrections for the ground-state energy of the oscillator with cubic and

quartic anharmonicity in the presence of an external current up to the 6th order.

Thus, the effective potential is obtained by solving the differential equation

Veff(X) = E (V ′
eff(X)) + V ′

eff(X)X . (3.41)

To this end, the effective potential is expanded in the coupling constant,

Veff(X) =
∞
∑

k=0

gkVk(X) , (3.42)

and each order Vk(X) is assumed to be a polynomial in the background X:

Vk(X) =

k+2
∑

m=0

C(k)
m Xm . (3.43)

Using the result for the energy (3.31), where the first orders of ǫk are given by Tab. 3.2, and

inserting the ansatz (3.42), (3.43) into the differential equation (3.41) permits us to obtain

the effective potential by performing a coefficients comparison, first in the relevant order of

the coupling constant g, and then for each order of X. It turns out that for k being even or
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k Vk(X)

0
ω

2
+
ω2

2
X2

1 AX3 +
3A

2ω
X

2
−A2(1 + 9ωX2) +Bω2(3 + 12ωX2 + 4ω2X4)

4ω4

3
AX[3A2(4 + 9ωX2) − 2Bω2(13 + 18ωX2)]

4ω6

4 −[4B2ω4(21 + 104ωX2 + 72ω2X4) − 12A2Bω2(13 + 152ωX2 + 108ω2X4)

+A4(51 + 864ωX2 + 810ω2X4)]/(32ω9)

5 3AX[9A4(51 + 256ωX2 + 126ω2X4) + 4B2ω4(209 + 544ωX2 + 216ω2X4)

−4A2Bω2(341 + 1296ωX2 + 540ω2X4)]/(32ω11)

6 [24B3ω6(111 + 836ωX2 + 1088ω2X4 + 288ω3X6)

−36A2B2ω4(365 + 5654ωX2 + 8448ω2X4 + 2160ω3X6)

+6A4Bω2(2129 + 46008ωX2 + 85248ω2X4 + 22680ω3X6)

−A6(3331 + 90882ωX2 + 207360ω2X4 + 61236ω3X6)]/(128ω14)

Table 3.3: Effective potential of the anharmonic oscillator (3.4) up to the 6th order, expanded

in the coupling constant g.

odd, also Vk(X) is even or odd respectively, i.e. C
(k)
m = δ(−1)m+k ,1 C

(k)
m , where δi,j denotes the

Kronecker symbol. Table 3.3 shows the first six orders of the effective potential, which have

been obtained in this way.

Note that (3.42) and Tab. 3.3 represent an expansion in powers of the coupling constant

g, whereas the previous result (2.170) together with (2.157) constitutes an expansion in h̄.

Re-expanding (2.157), (2.170) into a g-expansion, however, yields a result which is identical

with (3.42), Tab. 3.3 up to the order g4.

On the other hand, it is possible to convert the expansion (3.42) into an h̄-expansion. In

Section 2.8, an h̄-expansion for the effective potential is obtained by applying the background

method. Evaluating the generating functional (2.114) and the expansion (2.115) for the po-

tential (3.4) at a constant background X(τ) ≡ X yields, by taking into account (2.137) and
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(2.138),

Z =

∮

Dδx exp

{

− 1

h̄
A(X) − 1

h̄

∫ h̄β

0

dτ

[

M

2
δẋ2(τ) (3.44)

+
M

2
ω2

(

1 +
6gAX

Mω2
+

12g2BX2

Mω2

)

δx2 +
(

gA+ 4g2BX
)

δx3 + g2Bδx4

]}

,

where, according to the background method, the first order term has been omitted, and

the integration runs over all fluctuations δx that are periodic in the imaginary time, i.e.

δx(0) = δx(h̄β). Due to (2.37) and (2.127), one has the following relation between the

partition function Z and the effective potential:

Z = exp [−βVeff(X)] . (3.45)

And by comparing (3.44) and (3.45), one obtains

exp [−βVeff(X) + βV (X)] =

∮

Dδx exp

{

− 1

h̄

∫ h̄β

0

dτ (3.46)

×
[

M

2
δẋ2(τ) +

M

2
ω2

(

1 +
6gAX

Mω2
+

12g2BX2

Mω2

)

δx2 +
(

gA+ 4g2BX
)

δx3 + g2Bδx4

]}

.

In Section 2.7 and 2.8, we have evaluated the expression on the right-hand side of the

last identity in the saddle-point approximation, i.e. we have performed an expansion in h̄.

However, in (3.46), the powers of the fluctuations δx are not related to the powers of the

coupling constant g. Taking into account that the potential (3.4) vanishes at the origin, one

obtains from (3.46)

exp[−βVeff(X = 0)] = (3.47)
∮

Dδx exp

{

− 1

h̄

∫ h̄β

0

dτ

[

M

2
δẋ2(τ) +

M

2
ω2δx2 + gAδx3 + g2Bδx4

]}

.

Thus, the effective potential can be transformed according to

Veff(X) = V (X) + Veff(X = 0)

∣

∣

∣

∣

ω2=Ω2, A=A+4gBX

, (3.48)

where Ω is defined by (2.157). It is important to note that in contrast to (3.46), there

is a fixed relation between the powers of the fluctuations and the coupling constant in

(3.47). Therefore, except for the tree-level, an expansion for the effective potential in the

coupling constant g can be transformed into the corresponding h̄-expansion by performing

the substitutions

X → 0 , ω → Ω , A→ A+ 4gBX (3.49)

in (3.42) and reintroducing h̄ (and M) into Tab. 3.3. Evaluating (3.42), Tab. 3.3 in the

second order of the coupling constant according to (3.49) reproduces (2.165). In the fourth

order, one reobtains (2.170). In general, when the h̄-expansion is given in the form

Veff(X) =
N
∑

l=0

h̄lV (l)(X) + O(h̄N+1) , (3.50)
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l V (l)(X)

0
1

2
ω2X2 + gAX3 + g2BX4

1
Ω

2

2
3g2B

4Ω2
− g2(A + 4gBX)2

4Ω4

3 −21g4B2

8Ω5
+

39g4B(A + 4gBX)2

8Ω7
− 51g4(A+ 4gBX)4

32Ω9

4 −3285g6B2(A+ 4gBX)2

32Ω10
+

6387g6B(A+ 4gBX)4

64Ω12
− 3331g6(A+ 4gBX)6

128Ω14

Table 3.4: Effective potential of the anharmonic oscillator (3.4) up to the 4th order, expanded

in the reduced Planck constant h̄.

it is related to the g-expansion by

N
∑

l=0

h̄lV (l)(X) = V (X) +

⌊N/2⌋+1
∑

k=0

gkVk(X)

∣

∣

∣

∣

X=0, ω=Ω, A=A+4gBX

. (3.51)

Up to the fourth order, Tab. 3.4 shows the expansion coefficients V (l)(X), which have been

obtained accordingly, for M = 1.

3.4 Effective Potential

The effective potential of the anharmonic oscillator can also be obtained directly by means

of a recursion relation, which will be developed in this section. Using (3.39), (3.40) the

Schrödinger equation (3.28) becomes

− h̄2

2M
ψ′′(x) +

[

M

2
ω2x2 + gAx3 + g2Bx4 − V ′

eff(X)x

]

ψ(x)

= [Veff(X) − V ′
eff(X)X] ψ(x) . (3.52)

Since this equation has emerged from (3.28) by replacing the current j and the energy

E according to (3.39), (3.40), the ansatz (3.30), (3.31) will have to be modified accord-

ingly. To this end, consider the effective potential for a vanishing coupling constant, i.e. the

harmonic oscillator’s effective potential, which has been calculated in Section 2.4. In the

zero-temperature limit, it is given by (2.67). Therefore, for g = 0 one has

j = Mω2X . (3.53)
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Thus, the ansatz (3.30), (3.31) becomes

ψ(x) = N eφ(x) , with φ(x) =
MωX

h̄
x− Mω

2h̄
x2 +

∞
∑

k=1

gkφk(x) , (3.54)

and

Veff(X) =
h̄ω

2
+
M

2
ω2X2 +

∞
∑

k=1

gk Vk(X) . (3.55)

Inserting (3.54) and (3.55) into (3.52), one finds by coefficients comparison

− h̄2

2M
φ′′

k(x) −
h̄2

2M

k−1
∑

l=1

φ′
k−l(x) φ

′
l(x) + h̄ω (x−X)φ′

k(x) − xV ′
k(X) + δk,1 Ax

3 + δk,2 Bx
4

= Vk(X) − V ′
k(X)X . (3.56)

As before, we use the approach (3.10), or rather (3.14), to solve this differential equation.

First, for k = 1, one finds

c
(1)
1 =

A

2Mω2
+

2AX2

h̄ω
, c

(1)
2 = −AX

2h̄ω
, c

(1)
3 = − A

3h̄ω
, (3.57)

and V1(X) =
3Ah̄

2Mω
+ AX3 . (3.58)

And for k = 2 one obtains

c
(2)
1 = −13A2X

4M2ω4
− 2A2X3

Mh̄ω3
+

7BX

2Mω2
+

3BX3

h̄ω
,

c
(2)
2 =

A2

8M2ω4
− 3B

4Mω2
− BX2

2h̄ω
, c

(2)
3 =

A2X

2Mh̄ω3
− BX

3h̄ω
,

c
(2)
4 =

A2

8Mh̄ω3
− B

4h̄ω
, (3.59)

and V2(X) = − h̄2A2

4M3ω4
− 9h̄A2X2

4M2ω3
+

3h̄2B

4M2ω2
+

3h̄BX2

Mω
+BX4 . (3.60)

For k ≥ 3 one finds

c(k)
m =

(m+ 2)(m+ 1)h̄

2mMω
c
(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m+1
∑

n=1

n(m+ 2 − n) c(l)n c
(k−l)
m+2−n

+
X(m+ 1)

m
c
(k)
m+1 for m ≥ 2 and with c(k)

m ≡ 0 for m > k + 2, (3.61)

c
(k)
1 =

3h̄

Mω
c
(k)
3 + 2X c

(k)
2 +

h̄

Mω

k−1
∑

l=1

(

c
(k−l)
2 c

(l)
1 + c

(k−l)
1 c

(l)
2

)

+
1

h̄ω
V ′

k(X) , (3.62)

Vk(X) = − h̄
2

M
c
(k)
2 − 3h̄2

M
X c

(k)
3 − 2h̄ωX2 c

(k)
2 − h̄2

M
X

k−1
∑

l=1

(

c
(k−l)
2 c

(l)
1 + c

(k−l)
1 c

(l)
2

)

− h̄2

2M

k−1
∑

l=1

c
(l)
1 c

(k−l)
1 . (3.63)

Using these results, the effective potential can be determined recursively. Indeed, one reob-

tains the results from Table 3.3.





Chapter 4

Variational Perturbation Theory

4.1 Basic Principles

The vast majority of physical systems cannot be treated exactly since the underlying equa-

tions cannot be solved analytically. A commonly applied method to obtain information on

such a system approximatively is perturbation theory. This method is based upon the fact

that in many cases a physical quantity f , e.g. the ground-state energy of a particle in some

potential, is known exactly for a certain value g0 of a coupling constant g, which is typically

g0 = 0. An approximation for the physical quantity f as a function of the coupling constant

g is then obtained by expanding f in powers of g up to some order N :

fN(g) =
N
∑

n=0

ang
n . (4.1)

A prominent example for this procedure is the calculation of the anomalous magnetic mo-

ment of the electron ge in powers of the fine-structure constant α ≈ 1/137. This calculation

has been done up to the order α4, see Ref. [26], and yields a result, which coincides with the

experimental value, ge = 2.0023193043(74) [27], up to 9 digits. This impressive agreement

has established quantum electrodynamics as the prototype of a relativistic quantum field

theory.

However, as has been observed already by Freeman Dyson in 1952 [28], the quality of this

agreement depends crucially on the smallness of the fine-structure constant. Dyson dis-

covered that physical quantities in quantum electrodynamics have a vanishing convergence

radius with respect to α. His argumentation was based on the observation that changing

the sign of the fine-structure constant would be equivalent to repulsion between equal elec-

tric charges; resulting in a vacuum which disintegrates by spontaneous polarization. Thus,

power series in the fine-structure constant α are not examples for convergent expansions,

but, on the contrary, for expansions with a vanishing radius of convergence (see Fig. 4.1).

Such divergent series might lead to reasonable results as long as the truncation number N

is kept limited, as in the case of the calculation of the anomalous magnetic moment of the

51
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Figure 4.1: Schematic comparison of analytic properties of a) convergent and b) divergent

series.

electron. However, once the expansion is driven past a certain order N , the result will cease

to improve and will start to worsen. Eventually, for N → ∞, the result of the expansion

will diverge, no matter how small the coupling constant is.

To extract satisfying results for all values of the coupling constant, including the strong-

coupling limit g → ∞, from a divergent expansion of the form (4.1), it is thus necessary to

resum (4.1). Padé approximants, which are derived by expanding a function as a ratio of

two power series, constitute a crude method for such a resummation [29–31]. For quantum

mechanical systems, physical results can be obtained by variational methods. For instance,

the so-called δ-expansion allows the resummation of divergent perturbation series [32]. This

method is based on introducing artificially a harmonic oscillator term in the potential and a

subsequent optimization with respect to the trial-frequency of the artificial oscillator. This

technique is called variational perturbation theory (VPT) [3–7]. It permits the evaluation

of a divergent series of the form (4.1) for all values of the coupling constant g, including the

strong-coupling limit, and yields a strong-coupling expansion of the generic form

f(g) = gp/q
M
∑

m=0

bm g−2m/q . (4.2)

Here, p and q are real growth parameters and characterize the strong-coupling behavior. It

turns out that due to dimensional reasons, for all quantum mechanical systems, p and q are

integers, whereas, e.g., in the theory of critical phenomena p and q are irrational, as they

are related to the critical exponents.

4.2 Arbitrary Coupling Strength

In this section, it is demonstrated how the resummation of a weak-coupling series is per-

formed by applying VPT. To this end, we consider the perturbation series (4.1) of an arbi-
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trary physical quantity f . Introducing a scaling parameter κ, which is afterwards set to one,

Eq. (4.1) can be rewritten as

fN (g) = κp
N
∑

n=0

an

( g

κq

)n

∣

∣

∣

∣

∣

κ=1

. (4.3)

The parameters p and q will indeed determine the strong-coupling behavior of f as stated

in (4.2). By performing Kleinert’s square-root substitution [4, Ch. 5], i.e. by setting

κ = K
√

1 + gr , (4.4)

with

r =
κ2 −K2

gK2
, (4.5)

in (4.3), the variational parameter K is introduced into the perturbation series:

fN(g) =

N
∑

n=0

ang
nKp−nq (1 + gr)(p−nq)/2

∣

∣

∣

κ=1
. (4.6)

The Taylor series of the factor (1 + gr)α with α ≡ (p− nq)/2 reads

(1 + gr)α
∣

∣

∣

κ=1
=

N−n
∑

k=0

(

α

k

)(

1

K2
− 1

)k

+ O
(

gN−n+1
)

, (4.7)

where the generalized binomial coefficient is defined by
(

α

k

)

≡ Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
. (4.8)

The series (4.7) is truncated after k = N −n since the original function fN(g) is only known

until the order gN , and a later truncation would lead to terms of higher than this original

perturbation order. As a result of this truncation, the function fN(g) becomes dependent

on the variational parameter K:

fN(g,K) =

N
∑

n=0

ang
nKp−nq

N−n
∑

k=0

(

(p− nq)/2

k

)(

1

K2
− 1

)k

. (4.9)

Since the dependence on the variational parameter K is merely due to the truncation of the

Taylor expansion (4.7), one expects that the best approximation for the actual value of the

physical quantity f(g) can be obtained by minimizing the influence of K. In order to obtain

an approximative result for f(g), one will therefore evaluate the function fN(g,K) for that

value of K for which its dependence on K becomes minimal. This concept is referred to as

principle of minimal sensitivity [33]. In accordance with this principle, one seeks to minimize

the influence of K by searching for local extrema, i.e. one determines K by solving

∂fN (g,K)

∂K

∣

∣

∣

∣

K=K(N)(g)

= 0 . (4.10)
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From the set of solutions to this conditional equation one will accept only the physical ones,

e.g. the variational parameter might be required to be real and positive, in order to obtain a

positive ground-state energy. In cases where (4.10) has no physical solutions, one looks for

turning points instead, i.e. one will look for the solutions of

∂2fN(g,K)

∂K2

∣

∣

∣

∣

K=K(N)(g)

= 0 . (4.11)

In cases, where either (4.10) or (4.11) yields a multitude of physically acceptable solutions,

one can apply different criteria for choosing a particular value of the variational parameter.

It is possible, for instance, to choose the solution which is nearest to the solution of the

previous order. Alternatively, one can look for solutions with as many vanishing derivatives

as possible [34].

4.3 Strong-Coupling Limit

Even though VPT can be used to increase the precision of approximations obtained by

evaluating weak-coupling series, its main purpose is the resummation of such series in cases of

a large coupling constant or in the strong-coupling limit. In the theory of critical phenomena,

for instance, reasonable results can only be obtained by resummation techniques, since the

coupling constant typically diverges when approaching a critical point [5]. Thus, it is of

particular interest to investigate the quality of the procedure introduced in the previous

section for the strong-coupling limit. A careful analysis [5] of the conditions (4.10) and

(4.11) for the function (4.9) shows that the variational parameter has the strong-coupling

behavior

K(N)(g) = g1/q
(

K
(N)
0 +K

(N)
1 g−2/q +K

(N)
2 g−4/q + . . .

)

. (4.12)

The power behavior of K is thus independent of the order N being considered and solely

the coefficients K
(N)
m , m = 0, 1, 2, . . ., depend on N . Inserting (4.12) into (4.9) yields the

strong-coupling behavior of the approximation fN(g,K) for the physical quantity f :

fN

(

g,K(N)(g)
)

= (4.13)

gp/q
[

b
(N)
0

(

K
(N)
0

)

+ b
(N)
1

(

K
(N)
0 , K

(N)
1

)

g−2/q + b
(N)
2

(

K
(N)
0 , K

(N)
1 , K

(N)
2

)

g−4/q + . . .
]

.

Therefore, also the power behavior of f is independent of the order N . The fraction p/q

yields the leading power behavior in g, and 2/q indicates the approach to scaling. The

leading-order strong-coupling coefficient turns out to be given by

b
(N)
0

(

K
(N)
0

)

=

N
∑

n=0

N−n
∑

k=0

(

(p− nq)/2

k

)

(−1)kan(KN
0 )p−nq , (4.14)

where the inner sum can be further simplified by using [22, p. 3]

m
∑

k=0

(−1)k

(

α

k

)

= (−1)m

(

α− 1

m

)

. (4.15)
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Thus, the leading strong-coupling coefficient reduces to

b
(N)
0 (K

(N)
0 ) =

N
∑

n=0

(−1)N−n

(

(p− nq)/2 − 1

N − n

)

an

(

K
(N)
0

)p−nq

, (4.16)

and if one is only interested in the leading-order term of fN(g,K), it is sufficient to look for

local extrema,

∂b
(N)
0 (K)

∂K

∣

∣

∣

∣

∣

K=K
(N)
0

= 0 , (4.17)

or turning points,

∂2b
(N)
0 (K)

∂K2

∣

∣

∣

∣

∣

K=K
(N)
0

= 0 , (4.18)

of (4.16). Inserting the optimizedK
(N)
0 into (4.16) then leads to the approximation b

(N)
0 (K

(N)
0 )

of the leading strong-coupling coefficient b0. A detailed analysis of the convergence behavior

of b
(N)
0 shows that the VPT result approaches the exact value exponentially [5,35]:

|b(N)
0 − b0|
b0

∝ exp
(

−CN1−2/q
)

. (4.19)

4.4 Potential with Quartic Anharmonicity

In this section, the application of VPT to the anharmonic oscillator

V (x) =
M

2
ω2x2 + gx4 (4.20)

will be demonstrated. The weak-coupling expansion for the ground-state energy of this

system follows from the results of Section 3.2 for A = 0, B = 1, and g → √
g. Up to the

third order it reads

E =
h̄ω

2
+ g

3h̄2

4M2ω2
− g2 21h̄3

8M4ω5
+ g3 333h̄4

16M6ω8
+ . . . , (4.21)

which can also be written in the form

E = ω

(

h̄

2
+ g

3h̄2

4M2ω3
− g2 21h̄3

8M4ω6
+ g3 333h̄4

16M6ω9
+ . . .

)

. (4.22)

Comparing the last identity with (4.3) and identifying ω with the scaling parameter κ already

indicates that for the anharmonic oscillator (4.20), one has p = 1 and q = 3. Now, the basic

idea of VPT amounts to introducing an effective harmonic oscillator with trial frequency Ω

according to

V (x) =
M

2
Ω2x2 + gx4 +

M

2

(

ω2 − Ω2
)

x2 (4.23)
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and treating the deviation of the potential V (x) from the harmonic oscillator with the trial

frequency Ω as a perturbation. To this end, one rewrites the potential (4.23) as

V (x) =
M

2

(

Ω

√

1 + g
ω2 − Ω2

gΩ2

)2

x2 + gx4 . (4.24)

Thus, if the weak-coupling expansion is available until some order N in the coupling constant

g, one replaces the frequency ω according to

ω → Ω
√

1 + gr , with r =
ω2 − Ω2

gΩ2
, (4.25)

and then expands the resulting expression up to the order N in g. Equation (4.25) corre-

sponds to the substitution (4.4), (4.5), and Ω plays the role of the variational parameter.

As an example, consider the first order of the weak-coupling expansion as given by (3.8)

and (3.13):

E(1) =
h̄ω

2
+ g

3h̄2

4M2ω2
. (4.26)

Performing Kleinert’s square-root substitution (4.25) and expanding until the first order in

g then yields the ground-state energy as a function of the trial frequency Ω:

E(1)(Ω) =
h̄Ω

4
+
h̄ω2

4Ω
+ g

3h̄2

4M2Ω2
. (4.27)

The principle of minimal sensitivity can be visualized by considering the function E(N)(Ω).

Figure 4.2 shows how E(N)(Ω) depends on the variational parameter for N = 1, 2, 3 and for

a certain value of the coupling constant. One sees indeed that a good approximation for the

ground-state energy can be obtained by evaluating it at its minimum or turning point. For

the first three orders, one thus has the conditional equations

∂E(1)(Ω)

∂Ω
= 0 , (4.28)

∂2E(2)(Ω)

∂Ω2
= 0 , (4.29)

∂E(3)(Ω)

∂Ω
= 0 , (4.30)

the solutions of which, Ω(1), Ω(2), Ω(3), then yield the corresponding approximations for the

ground-state energy. In the first order, it follows from (4.27) and (4.28) that one has to solve

h̄

4
− h̄ω2

4(Ω(1))2
− g

3h̄2

2M2(Ω(1))3
= 0 , (4.31)

which can be done analytically using Cardano’s formula. The equations arising in higher

orders must be solved numerically. From the multiple solutions to these equations, one ac-

cepts only those with a real and positive value of the variational parameter. It is particularly
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Figure 4.2: Trial function E(N)(Ω) for N = 1, 2, 3 in natural units, h̄ = M = ω = 1, and

g = 0.1. The solid line represents the exact value for the ground-state energy, obtained by

a numerical calculation using the shooting method, which is introduced in Appendix C.

interesting to examine the conditional equation (4.28), or rather (4.31), for the case of a large

coupling constant g. Multiplying (4.31) with (Ω(1))3 and inserting the approach

Ω(1) = Ω
(1)
0 gα + Ω

(1)
1 gβ + Ω

(1)
2 gγ + . . . , (4.32)

with

1 > α > 0 > β > γ > . . . , (4.33)

allows the determination of the strong-coupling behavior of the variational parameter. Here,

condition (4.33) turns out to be self-consistent. One finds:

α =
1

3
, β = −1

3
, γ = −1 , . . . , (4.34)

and

Ω
(1)
0 =

3

√

6h̄

M2
, Ω

(1)
1 =

ω2

3
3

√

M2

6h̄
, Ω

(1)
2 =

ω4M2

324h̄
, . . . . (4.35)

Thus, the variational parameter can be written in the form

Ω(1) = g1/3
(

Ω
(1)
0 + Ω

(1)
1 g−2/3 + Ω

(1)
2 g−4/3 + . . .

)

. (4.36)

Inserting the last result into (4.27), one obtains the strong-coupling behavior of the ground-

state energy:

E(1) = g1/3
(

b
(1)
0 + b

(1)
1 g−2/3 + b

(1)
2 g−4/3 + . . .

)

, (4.37)
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Figure 4.3: Numerical calculation of the ground-state energy for different values of the

coupling constant obtained by applying the shooting method, introduced in Appendix C. In

a) the solid line represents a fit assuming E = b0 g
1/3 . In b) the solid line represents the

high-precision value (4.40) for b0 given by F. Vinette and J. Č́ıžek [36].

where

b
(1)
0 =

3h̄

8
3

√

6h̄

M2
, b

(1)
1 =

h̄ω2

4
3

√

M2

6h̄
, b

(1)
2 = −ω

4M2

144
, . . . . (4.38)

Thus, one has indeed an expansion of the form (4.2) with

p = 1 and q = 3 , (4.39)

as has already been stated in the remark after (4.22). Figure 4.3 shows a numerical calcu-

lation of the ground-state energy for different values of the coupling constant g. In natural

units, b
(1)
0 has the numeric value b

(1)
0 ≈ 0.68142. The leading-order strong-coupling coefficient

has been determined with extreme precision by F. Vinette and J. Č́ıžek [36]:

b0 = 0.66798625915577710827096201619860199430404936 . . . . (4.40)

Thus, the relative deviation is

|b(1)0 − b0|
b0

≈ 2% . (4.41)

Following Refs. [8,9], Fig. 4.4 shows the logarithmic relative deviation of the leading strong-

coupling coefficient calculated via VPT from the value given in Ref. [36] plotted, due to

(4.19) and (4.39), versus the cubic root of the perturbation order. The values for b
(N)
0 have

been obtained by optimizing (4.16) according to (4.17) and (4.18). The convergence of the

calculation is found to be exponential. Fitting the logarithm of the relative error of the VPT

result to a straight line yields

ln
|b(N)

0 − b0|
b0

= −9.23(11)N1/3 + 5.50(34) . (4.42)
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Figure 4.4: Logarithm of the relative deviation of the result for b0 obtained via VPT from

the value given in Ref. [36] versus the cubic root of the perturbation order up to the 100th

order [8,9].

4.5 Potential with Cubic Anharmonicity

In this section, an oscillator with the potential

V (x) =
M

2
ω2x2 + igx3 (4.43)

is considered. The Hamiltonian

H = p2 − (ix)n (4.44)

has been examined thoroughly, see Refs. [10–14]. For n = 2, Eq. (4.44) reduces to the

Hamiltonian of the harmonic oscillator. For n > 1, it turns out that with properly defined

boundary conditions the spectrum of (4.44) is real and positive. Ordinarily, the boundary

conditions that give quantized energy levels when considering the Schrödinger eigenvalue

equation of a Hamiltonian are

|ψ(x)| → 0 as |x| → ∞ . (4.45)

In case of the Hamiltonian (4.44), this condition suffices when 1 < n < 4. However, for

arbitrary real n, the corresponding eigenvalue problem has to be continued into the complex

x-plane, and the real x-axis is thus replaced by a contour in the complex plane. The spec-

trum of (4.44), obtained by imposing these boundary conditions, is shown in Fig. 4.5. The

remarkable attribute of this generally non-Hermitian Hamiltonian (4.44) to possess a real

and positive spectrum is attributed to its PT -symmetry. Here, P and T are the operators

of parity and time reversal, respectively:

P : p→ −p , x → −x , (4.46)

T : p→ −p , x → x , i→ −i . (4.47)
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Figure 4.5: Spectrum of the Hamiltonian (4.44) [10].

Consider the time-independent Schrödinger equation for the potential (4.43) in natural units,

h̄ = M = 1,

−1

2

∂2

∂x2
ψ(x) +

(

1

2
ω2x2 + igx3

)

ψ(x) = E ψ(x) . (4.48)

Substituting

x→ αx = g−1/5x , (4.49)

Eq. (4.48) becomes

−1

2

∂2

∂x2
ψ(x) +

(

1

2
g−4/5ω2x2 + ix3

)

ψ(x) = g−2/5E ψ(x) . (4.50)

Expanding the wave function and the energy in terms powers of the coupling constant yields

ψ(x) = ψ0(x) + g−4/5ψ1(x) + g−8/5ψ2(x) + . . . , (4.51)

and

E = g2/5b0 + g−2/5b1 + g−6/5b2 + . . . . (4.52)

Thus, by considering (4.50) in the strong-coupling limit one obtains the following relation

between the leading strong-coupling coefficient b0 and the energy eigenvalues of the Hamil-

tonian (4.44) for n = 3:

E(n = 3) = 23/5 b0 . (4.53)
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Here, the factor 23/5 is due to the fact that in (4.44) the kinetic term is p2 instead of p2/2.

A numerical value for the ground-state energy associated with the Hamiltonian (4.44) was

given by C.M. Bender [10,37]:

E(n = 3) = 1.15626707 . . . . (4.54)

4.5.1 Resummation of Ground-State Energy

Due to (4.53), the ground-state energy associated with the Hamiltonian (4.44) can be ob-

tained by determining the leading strong-coupling coefficient of the ground-state energy for

the oscillator (4.43). To this end, one can resum the weak-coupling series obtained in Section

3.2 for A = i and B = 0 via VPT. Up to the third order, the weak-coupling series reads

E =
h̄ω

2
+ g̃

11h̄2

8M3ω4
− g̃2 465h̄3

32M6ω9
+ g̃3 39709h̄4

128M9ω14
+ . . . , (4.55)

where we have replaced g2 → g̃ in order to facilitate the correct counting of each respective

order in the coupling constant. Equation (4.55) can also be written in the form

E = ω

(

h̄

2
+ g̃

11h̄2

8M3ω5
− g̃2 465h̄3

32M6ω10
+ g̃3 39709h̄4

128M9ω15
+ . . .

)

. (4.56)

As before, we compare the last identity with (4.3) and identify ω with the scaling parameter

κ. Therefore, in the case of the anharmonic oscillator (4.43), we expect to obtain p = 1 and

q = 5, and due to (4.13), the strong-coupling behavior of the ground-state energy of (4.43)

will be of the form

E(N) = g̃1/5
(

b
(N)
0 + b

(N)
1 g̃−2/5 + b

(N)
2 g̃−4/5 + . . .

)

. (4.57)

Thus, when reintroducing the original coupling constant, g̃ → g2, we obtain the same strong-

coupling behavior as in (4.52).

The first order of the weak-coupling expansion as given by (3.8), (3.13) reads

E(1) =
h̄ω

2
+ g̃

11h̄2

8M3ω4
. (4.58)

Performing Kleinert’s square-root substitution (4.25) and re-expanding (4.58) in g̃ yields

E(1)(Ω) =
h̄Ω

4
+
h̄ω2

4Ω
+ g̃

11h̄2

8M3Ω4
. (4.59)

Setting the first derivative with respect to the variational parameter Ω to zero and multi-

plying with 4Ω5/h̄, one obtains

(Ω(1))5 − ω2(Ω(1))3 − g̃
22h̄

M3
= 0 . (4.60)
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Again, we consider this equation in the strong-coupling limit and solve it with an approach

of the form (4.32), (4.33):

Ω(1) = Ω
(1)
0 g̃α + Ω

(1)
1 g̃β + Ω

(1)
2 g̃γ + . . . , (4.61)

with

1 > α > 0 > β > γ > . . . . (4.62)

One obtains

α =
1

5
, β = −1

5
, γ = −3

5
, . . . , (4.63)

and

Ω
(1)
0 =

5

√

22h̄

M3
, Ω

(1)
1 =

ω2

5

5

√

M3

22h̄
, Ω

(1)
2 =

ω4M

25
5

√

M4

10648h̄3 , . . . . (4.64)

Inserting this result into (4.59) yields the strong-coupling behavior of the ground-state en-

ergy:

E(1) = g̃1/5
(

b
(1)
0 + b

(1)
1 g̃−2/5 + b

(1)
2 g̃−4/5 + . . .

)

, (4.65)

where the coefficients read

b
(1)
0 =

5h̄

16
5

√

22h̄

M3
, b

(1)
1 = 4h̄ω2 5

√

M3

22h̄
. b

(1)
2 = − h̄ω

4

100
5

√

M3

22h̄
, . . . . (4.66)

Thus, we have indeed an expansion of the form (4.2), with

p = 1 and q = 5 , (4.67)

and by reintroducing the original coupling constant g =
√
g̃ in (4.65) we reobtain (4.57) for

N = 1.

However, it turns out that in the case of the potential with the cubic anharmonicity igx3

the convergence of the VPT-result is not as satisfactory as in the case of the gx4-oscillator.

Whereas, according to (4.41), for the oscillator with the quartic anharmonicity the relative

deviation of the first order result (4.38) from the exact value (4.40) is only in the order of

a few percent, the first-order result (4.66) for the ground-state energy associated with the

Hamiltonian (4.44) is much less precise:

|23/5b
(1)
0 −E(n = 3)|
E(n = 3)

≈ 24% . (4.68)

Figure 4.6 shows the logarithm of the relative deviation of the ground-state energy calculated

by VPT from the value given by C.M. Bender up to the order N = 20. Due to (4.19) and

(4.67) the plot is versus N3/5. Fitting the logarithm of the relative deviation to a straight

line yields

ln
|23/5b

(N)
0 −E(n = 3)|
E(n = 3)

= −0.96(11)N3/5 − 1.83(44) . (4.69)
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Figure 4.6: Logarithm of the relative deviation of the result for b0, obtained via resummation

of the corresponding weak-coupling series, from the value (4.54) given in Refs. [10,37] versus

N3/5. The dashed line represents a fit of the data to a straight line.

4.5.2 Resummation of Effective Potential

The convergence of the calculation in the previous section can be increased crucially by in-

troducing a second variational parameter. This can be achieved naturally by combining two

variational approaches: VPT and effective potential. The standard way of calculating the ef-

fective potential is the background method from field theory, which requires the evaluation of

one-particle irreducible Feynman diagrams. Since the involved multiple imaginary-time inte-

grals are not trivial to evaluate, only relatively low perturbation orders are accessible within

the background method. Nevertheless, in Section 3.4 the effective potential for the potential

(3.4) is obtained recursively by performing a Legendre transformation of the ground-state

energy in presence of a constant external current. This expansion in g is then converted into

an h̄-expansion by (3.51), corresponding to the formalism of the background method. Table

4.1 shows the first five orders of the h̄-expansion of the effective potential,

Veff(X) =
∞
∑

l=0

h̄lV (l)(X) , (4.70)

for (4.43) obtained by setting

A→ i , B → 0 , and Ω →
√

ω2 +
6igX

M
(4.71)

in Tab. 3.4. Now, h̄ plays the role that was held before by the coupling constant g. Therefore,

when performing Kleinert’s square-root substitution (4.25), one needs to replace ω according

to

ω → Ω
√

1 + h̄r , with r =
ω2 − Ω2

h̄Ω2
. (4.72)
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l V (l)(X)

0
M

2
ω2X2 + igX3

1
1

2

√

ω2 +
6igX

M

2
g2

4M(Mω2 + 6igX)2

3 − 51g4

32M6

(

ω2 +
6igX

M

)9/2

4
3331g6

128M2(Mω2 + 6igX)7

5 − 1371477g8

2048M12

(

ω2 +
6igX

M

)19/2

Table 4.1: Coefficients for the effective potential (4.70) of the potential (4.43).

In the first order, one has

V
(1)
eff (X,Ω) =

M

2
ω2X2 + igX3 +

h̄

2

√

Ω2 +
6igX

M
. (4.73)

In order to obtain an approximation for the ground-state energy, one has to combine the

principle of minimal sensitivity (4.28) with condition (2.40). We thus seek to solve the

coupled equations

∂

∂Ω
V

(1)
eff (X,Ω)

∣

∣

∣

∣

X=X(1), Ω=Ω(1)

= 0 (4.74)

and

∂

∂X
V

(1)
eff (X,Ω)

∣

∣

∣

∣

X=X(1), Ω=Ω(1)

= 0 . (4.75)

In this order, (4.74) merely leads to

Ω(1) = 0 . (4.76)

Thus, we obtain from (4.75):

X(1) +
Mω2

3ig
+

h̄

2
√

6igM(X(1))3/2
= 0 . (4.77)
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1-loop VPT 1.12580003

2-loop VPT 1.15887214

3-loop VPT 1.15010079

4-loop VPT 1.15625481

5-loop VPT 1.15626432

Numerical 1.15626707

Table 4.2: Variational results for the ground-state energy of (4.44) for n = 3 compared to

the numerical result (4.54) of Refs. [10,37].

This equation allows us to determine the strong-coupling behavior of X:

X(1) = −ig−1/5
(

X
(1)
0 +X

(1)
1 g−4/5 +X

(1)
2 g−8/5 + . . .

)

, (4.78)

where the coefficients read

X
(1)
0 =

5

√

h̄2

24M
, X

(1)
1 = −2ω2M

15
, X

(1)
2 =

ω4M2

75
5

√

24M

h̄2 , . . . . (4.79)

As before, the power behavior of X does not depend on the order of the calculation, and

only the coefficients X
(N)
0 , X

(N)
1 , X

(N)
2 , . . . are dependent on N . Since one has extremized

the effective potential, inserting the results (4.76) and (4.77) into (4.73) yields the strong-

coupling behavior of the ground-state energy:

E(1) = g2/5
(

b
(1)
0 + b

(1)
1 g−4/5 + b

(1)
2 g−8/5 + . . .

)

, (4.80)

with

b
(1)
0 =

5h̄

2
5

√

h̄

432M3
, b

(1)
1 = −Mω2

4

5

√

h̄4

18M2
, b

(1)
2 =

ω4M2

15

5

√

h̄2

24M
, . . . . (4.81)

The first-order result for the leading strong-coupling coefficient is already in good agreement

with the numerical value (4.54) for the ground-state energy associated with the Hamiltonian

(4.44) for n = 3:

|23/5b
(1)
0 − E(n = 3)|
E(n = 3)

≈ 3% . (4.82)

Thus, as comparison to (4.68) shows, the introduction of a second variational parameter

has led to a significant improvement of the first-order result. In the second order, after

performing Kleinert’s square root substitution (4.72), the effective potential becomes

V
(2)
eff (X,Ω) =

M

2
ω2X2 + igX3 + h̄

M(ω2 + Ω2) + 12igX

4M
√

Ω2 + 6igX/M
+ h̄2 g2

4M(MΩ2 + 6igX)2
. (4.83)
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Figure 4.7: Logarithm of the relative deviation of the result for b0, obtained via resummation

of the effective potential, from the value (4.54) given in Refs. [10,37] versus N3/5. The dashed

line represents a fit of the data to a straight line.

Extremizing (4.83) in X and Ω allows the determining of the strong-coupling behavior of

the variational parameter Ω:

Ω(2) = g2/5
(

Ω
(2)
0 + Ω

(2)
1 g−4/5 + Ω

(2)
2 g−8/5 + . . .

)

. (4.84)

Table 4.2 summarizes the results for 23/5 b
(N)
0 until the fifth order. Figure 4.7 shows the

logarithm of the relative deviation of the results obtained via VPT from the value (4.54)

given by C.M. Bender up to the fifth order. In order to compare the quality of the convergence

with that of the results from Section 4.5.1, the plot is again versus N3/5. Fitting the logarithm

of the relative deviation to a straight line yields

ln
|23/5b

(N)
0 − E(n = 3)|
E(n = 3)

= −5.8(1.6)N3/5 + 3.0(3.0) . (4.85)

Comparing Fig. 4.6 and Fig. 4.7 or (4.69) and (4.85) shows that the convergence of the

results obtained by resummation of the effective potential is significantly faster than that

of the results obtained by resumming the weak-coupling series of the ground-state energy.

Whereas the relative error of the 20th order result from Section 4.5.1 is still in the order of

per mill,

|23/5b
(20)
0 − E(n = 3)|
E(n = 3)

≈ 0.6h , (4.86)

already the fifth-order result obtained in this section is more than two orders of magnitude

more precise:

|23/5b
(5)
0 − E(n = 3)|
E(n = 3)

≈ 2 ppm . (4.87)



Chapter 5

Extension to D Dimensions

5.1 Oscillator with Quartic Anharmonicity

In this section, we generalize the oscillator with quartic anharmonicity to D spatial dimen-

sions. In Section 5.1.1, we obtain the weak-coupling series for its ground-state energy. In

Section 5.1.2, we proceed to the strong-coupling limit and determine the leading strong-

coupling expansion coefficients for D = 2, 3, 10. In Section 5.1.3, we introduce the method

of large-D expansion.

5.1.1 Bender-Wu Recursion

In this section, a perturbation series for the ground-state energy of the D-dimensional an-

harmonic oscillator

V (x) =
M

2
ω2x2 + g(x2)2 (5.1)

will be calculated recursively. In the following, x denotes the modulus of x. Since the

potential is rotationally symmetric, the ground-state wave function will depend on x only,

and we identify V (x) ≡ V (x) and ψ(x) ≡ ψ(x). The time-independent Schrödinger equation

reads

− h̄2

2M
∆ ψ(x) +

(

M

2
ω2x2 + gx4

)

ψ(x) = E ψ(x) . (5.2)

In D dimensions, we choose an ansatz of the form

ψ(x) =

(

Mω

πh̄

)D/4

exp

[

−Mω

2h̄
x2 + φ(x)

]

, (5.3)

with

φ(x) =
∞
∑

k=1

gkφk(x) , (5.4)

67
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and

E = D
h̄ω

2
+

∞
∑

k=1

gkǫk . (5.5)

Inserting (5.3) – (5.5) into (5.2) and comparing the coefficients yields a differential equation

for the φk(x):

− h̄2

2M
φ′′

k(x) + h̄ω x φ′
k(x) − (D − 1)

h̄2

2Mx
φ′

k(x) −
h̄2

2M

k−1
∑

l=1

φ′
k−l(x) φ

′
l(x) + δk,1x

4 = ǫk .

(5.6)

One can show by induction that if φk(x) is assumed to be a polynomial its degree cannot be

greater than 2k+ 2. The potential (5.1) is even in x, and this symmetry is passed on to the

φk(x). Thus, the φk(x) can be written in the form

φk(x) =

k+1
∑

m=1

c
(k)
2m x2m . (5.7)

The constant terms c
(k)
0 can only be determined by normalizing the wave function. By

inserting (5.7) into (5.6), one finds for k = 1

c
(1)
2 = −2 +D

4Mω2
, c

(1)
4 = − 1

4h̄ω
, and ǫ1 =

D(2 +D)h̄2

4M2ω2
. (5.8)

In the general case, k ≥ 2, one finds

c(k)
m =

(m+ 2)(m+ 1) + (D − 1)(m+ 2)

2mMω
h̄c

(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m
∑

n=2

n(m+ 2 − n) c(l)n c
(k−l)
m+2−n ,

with c(k)
m ≡ 0 for m > 2k + 2 , (5.9)

ǫk = −D h̄2

M
c
(k)
2 . (5.10)

As in Section 3.2, it is desirable to render the recursion relations (5.9), (5.10) dimensionless

in order to achieve a more efficient numerical evaluation. To this end, one can use units in

which h̄ = M = 1 and consider the approach (3.21), (3.22) for A = 0 and B = 1. One thus

obtains the approach

c(k)
m =

c̃
(k)
m

ω3k−m/2
, (5.11)

and

ǫk =
ǫ̃k

ω3k−1
. (5.12)
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k ǫk

1
D(2 +D)

4ω2

2 −D(10 + 9D + 2D2)

8ω5

3
D(120 + 146D + 59D2 + 8D3)

16ω8

4 −D(8840 + 12960D + 7144D2 + 1773D3 + 168D4)

128ω11

5
D(216960 + 360736D + 241464D2 + 82222D3 + 14325D4 + 1024D5)

256ω14

Table 5.1: Expansion coefficients for the ground-state energy of the anharmonic oscillator

(5.1) up to the 5th order.

Inserting (5.7) together with (5.11) and (5.12) into (3.9) and setting h̄ = M = 1 yields for

k = 1

c̃
(1)
2 = −2 +D

4
, c̃

(1)
4 = −1

4
, and ǫ̃1 =

D(2 +D)

4
. (5.13)

In the general case, k ≥ 2, one finds

c̃(k)
m = [(m+ 2)(m+ 1) + (D − 1)(m+ 2)]

c̃
(k)
m+2

2m
+

1

2m

k−1
∑

l=1

m
∑

n=2

n(m+ 2 − n) c̃(l)n c̃
(k−l)
m+2−n ,

with c̃(k)
m ≡ 0 for m > 2k + 2 , (5.14)

ǫ̃k = −D c̃
(k)
2 . (5.15)

Using natural units, i.e. h̄ = M = 1, Tab. 5.1 shows the energy corrections ǫk up to the fifth

order. For D = 1, it is identical with Table (3.1) when setting A→ 0, B → 1, g → √
g.

5.1.2 Strong-Coupling Limit

In this section, we consider the strong-coupling limit for the anharmonic oscillator (5.1).

Since the weak-coupling series of its ground-state energy is of the same form as in one

dimension and the dimension D merely contributes to the weak-coupling coefficients ǫk, we

can use the same formalism as in Section 4.4. As to our knowledge the strong-coupling

coefficient b
(N)
0 (D) has not yet been calculated for D 6= 1, we will first examine how a

numerical value for b
(N)
0 (D) can be obtained for D = 2, 3, 10. In Appendix C, the shooting
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b0(D = 2) 1.4771497535779972(31)

b0(D = 3) 2.3936440164822970(37)

b0(D = 10) 10.758265165443755(69)

Table 5.2: Numerical results for the leading strong-coupling coefficient b0 for the ground-state

energy of (5.1).

method is introduced. We have applied this method to determine numerically the ground-

state energy of the anharmonic oscillator (5.1) for different values of the coupling-constant

g. The strong-coupling behavior (4.37) can be rewritten in the form

E(g)

g1/3
= b0 + b1 g

−2/3 + b2 g
−4/3 + . . . , (5.16)

and when substituting

y =
E(g)

g1/3
and x = g−2/3 , (5.17)

one obtains

y = b0 + b1 x+ b2 x
2 + . . . . (5.18)

In order to obtain a numerical value for the leading strong-coupling coefficient b0, we will

thus fit our data to a function of the form (5.18). In doing so, a hierarchy of approximations

is obtained by choosing polynomials of increasing degree as functions for fitting the data.

Once the results for b0 cease to converge, the value for b0 from the preceding order is taken

as the result of the fitting procedure, and its error is estimated by considering the difference

to the result of the previous order. Table 5.2 summarizes our numerical results, which have

been obtained accordingly.

In the following, we show how the leading strong-coupling coefficient can be calculated

by applying a formalism analogous to the one used in Section 4.4. As an example, we again

consider the resummation of the first order of the weak-coupling series. In D dimensions,

the first-order result (5.5), (5.8) reads

E(1) = D
h̄ω

2
+ g

D(D + 2)h̄2

4M2ω2
. (5.19)

Performing Kleinert’s square-root substitution (4.25) and expanding again in the coupling

constant g, the last identity becomes

E(1)(Ω) = D
h̄Ω

4
+D

h̄ω2

4Ω
+ g

D(D + 2)h̄2

4M2Ω2
. (5.20)

According to the principal of minimal sensitivity, we thus seek to solve the conditional

equation

D
h̄

4
−D

h̄ω2

4(Ω(1))2
− g

D(D + 2)h̄2

2M2(Ω(1))3
= 0 . (5.21)
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b0(D = 2) 1.477149753577994356(33)

b0(D = 3) 2.3936440164823030895(77)

b0(D = 10) 10.758265165443797408091(18)

Table 5.3: VPT results for the leading-order strong-coupling coefficient b0 for the ground-

state energy of (5.1).

In order to solve (5.21), we use, as before, an ansatz of the form (4.32), (4.33) and obtain

Ω(1) = g1/3
(

Ω
(1)
0 + Ω

(1)
1 g−2/3 + Ω

(1)
2 g−4/3 + . . .

)

, (5.22)

with

Ω
(1)
0 =

3

√

2(D + 2)h̄

M2
, Ω

(1)
1 =

ω2

3
3

√

M2

2(D + 2)h̄
, Ω

(1)
2 =

ω4M2

108(D + 2)h̄
, . . . . (5.23)

Inserting (5.22), (5.23) into (5.19) yields the strong-coupling behavior of the ground-state

energy:

E(1) = g1/3
(

b
(1)
0 + b

(1)
1 g−2/3 + b

(1)
2 g−4/3 + . . .

)

, (5.24)

with

b
(1)
0 =

3Dh̄

8

3

√

2(D + 2)h̄

M2
, b

(1)
1 =

Dh̄ω2

4
3

√

M2

2(D + 2)h̄
, b

(1)
2 = − Dω4M2

48(D + 2)
, . . . . (5.25)

Note that for D = 1 Eqs. (5.23), (5.25) pass into the earlier results (4.35), (4.37). Due

to the exponential convergence of VPT, it turns out that the accuracy of our numerical

results for the leading strong-coupling coefficients b0 is not sufficient for useful examination

of the convergence behavior of VPT in high orders. Therefore, we use our results from the

80th VPT order as a more precise approximation for b0. Table 5.3 summarizes our results,

where in each case the uncertainty of b0 has been estimated by examining the deviation from

the result of the previous order. For D = 2 and D = 10, the VPT results lie within the

error margins of the numerical results. However, this is not the case for D = 3, where the

VPT result lies just outside of the corresponding numerical error margins. We attribute this

discrepancy to an overly optimistic error estimation for the numerical result. The precision

of the results shown in Tab. 5.3 improves with increasing dimension, which already indicates

that the calculation converges faster in higher dimensions. Figure 5.1 shows the convergence

of the VPT results for the three different cases. Fitting the data to straight lines yields

ln
|b(N)

0 (D = 2) − b0(D = 2)|
b0(D = 2)

= −9.89(23)N1/3 + 5.98(72) , (5.26)

ln
|b(N)

0 (D = 3) − b0(D = 3)|
b0(D = 3)

= −10.67(15)N1/3 + 7.43(48) , (5.27)
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Figure 5.1: Logarithm of the relative deviation of the result for the leading strong-coupling

coefficient b0(D) for D = 2 (circles), D = 3 (diamonds), and D = 10 (triangles) versus the

cubic root of the perturbation order up to the 70th order. The dashed lines represent fits of

the data to straight lines.

ln
|b(N)

0 (D = 10) − b0(D = 10)|
b0(D = 10)

= −13.33(20)N1/3 + 11.89(63) . (5.28)

Thus, we find that the convergence of the VPT result improves with increasing dimension.

But this tendency does not come as a surprise since for D → ∞ the oscillator with quartic

anharmonicity is exactly solvable [38, Ch. 14].

5.1.3 Large-D Expansion

In quantum mechanics, the large-D expansion is equivalent to the large-N expansion of field

theory, where N denotes the number of field components, see e.g. Ref. [39]. For the ground-

state energy of the anharmonic oscillator (5.1), the large-D expansion can be derived by

applying the Hubbard-Stratonovich transformation, which is given by the functional identity

∮

Dσ exp

{

−1

h̄

∫ h̄β

0

dτ

[

1

g
σ2(τ) + 2ix2(τ)σ(τ)

]}

= exp

{

−g
h̄

∫ h̄β

0

dτ
[

x2(τ)
]2
}

, (5.29)

and which can be considered the continuum limit of the discretized expression

∏

i

1√
πh̄g

∫ ∞

−∞

dσi exp

[

−1

h̄

(

1

g
σ2

i + 2ix2
iσi

)]

=
∏

i

exp
[

−g
h̄

(

x2
i

)2
]

. (5.30)

In this section, for the leading strong-coupling coefficient b0 of the ground-state energy of

the anharmonic oscillator (5.1), we demonstrate how the large-D expansion can be obtained

approximately by resumming the corresponding weak-coupling series via VPT and consid-

ering the large-D limit.
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The partition function of the D-dimensional anharmonic oscillator (5.1) reads

ZD(g) =

∮

Dx exp

{

−1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) +

M

2
ω2x2(τ) + g

[

x2(τ)
]2
]}

. (5.31)

Using (5.29) in order to rewrite (5.31), one obtains

ZD(g) =

∮

Dσ exp

[

− 1

h̄g

∫ h̄β

0

dτ σ2(τ)

]

(5.32)

×
∮

Dx exp

{

−1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) +

M

2

(

ω2 +
4iσ(τ)

M

)

x2(τ)

]}

.

The x(τ)-path integral factorizes into D one-dimensional path integrals for a harmonic os-

cillator with the frequency

Ω(τ) := ω

√

1 +
4i

Mω2
σ(τ) (5.33)

and can be evaluated using the results from Appendix A. One obtains

ZD(g) =

∮

Dσ exp {−DA[σ]} , (5.34)

where the action

A[σ] :=
1

h̄Dg

∫ h̄β

0

dτσ2(τ) +
1

2
Tr ln

[

− d2

dτ 2
+ ω2 +

4i

M
σ(τ)

]

(5.35)

has been introduced. Thus, in analogy to (2.114) and (3.45) we define the effective potential

according to

ZD(g) = exp [−βVeff(σ0)] (5.36)

and evaluate the path integral (5.34) by applying the background method. Since nowD plays

the role that was held before by 1/h̄, we thus consider the limit D → ∞. The ground-state

energy can then be obtained by extremizing the effective potential Veff(σ0) with respect to the

background σ0. According to the background method, the zeroth loop-order approximation

of the effective potential is given by the tree-level:

V
(l=0)
eff (σ0) = D

(

σ2
0

g̃
+
h̄

2

√

ω2 +
4i

M
σ0

)

, (5.37)

with g̃ := gD. Introducing σ̃0 according to

σ0 = −iσ̃0 , (5.38)

the extremization condition reads

∂V
(l=0)
eff (σ̃0)

∂σ̃0

= D

(

−2σ̃0

g̃
+

h̄

M
√

ω2 + 4σ̃0/M

)

= 0 . (5.39)
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In the strong-coupling limit, g̃ → ∞, one obtains the solution

σ̃0 ≈ g̃2/3 1

4

3

√

4h̄2

M
, (5.40)

which leads to the following strong-coupling behavior of the ground-state energy:

E(l=0) ≈ Dg̃1/33h̄

8
3

√

2h̄

M2
. (5.41)

Reintroducing the original coupling constant, the last identity becomes

E(l=0) = g1/3D4/3 3h̄

8
3

√

2h̄

M2
. (5.42)

However, this result can also be obtained directly by considering the large-D limit for the

leading strong-coupling coefficient obtained in Section 5.1.2. Our VPT-result in the first

order (5.25) reads

b
(1)
0 =

3Dh̄

8

3

√

2(D + 2)h̄

M2
, (5.43)

and in the leading order of D we obtain immediately

b
(1)
0 ≈ D4/3 3h̄

8
3

√

2h̄

M2
, (5.44)

which is in accordance with (5.42). Up to the second order of the coupling constant, the

weak-coupling series reads

E(2) = D
h̄ω

2
+ g

D(D + 2)h̄2

4M2ω2
− g2D(10 + 9D + 2D2)h̄3

8M4ω5
. (5.45)

The leading strong-coupling coefficient as a function of the variational parameter Ω can be

obtained from the weak-coupling series by applying (4.16):

b
(2)
0 (Ω) = D

3h̄Ω

16
+
D(D + 2)h̄2

2M2Ω2
− D(10 + 9D + 2D2)h̄3

8M4Ω5
. (5.46)

Here, we have identified the parameter κ from (4.3) with ω and have thus again found p = 1

and q = 3. Consequently, the extremization condition (4.17) reads

3M4h̄(Ω(2))6 − 16(D + 2)h̄2M2(Ω(2))3 + 10(10 + 9D + 2D2)h̄3 = 0 . (5.47)

In order to solve this equation, we use the approach

Ω(2) = D1/3

(

C0 + C1
1

D
+ . . .

)

(5.48)

and obtain

C0 =
3

√

2h̄

M2
, C1 =

13

12
3

√

2h̄

M2
, . . . . (5.49)
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Figure 5.2: Leading strong-coupling coefficient b0(D) versus the dimension D. The solid line

represents the first-order result (5.44). The dotted line is the second-order result (5.50). The

circles represent the quasi-exact values, obtained from the 80th VPT order, as given in Tab.

5.3.

Inserting this result into (5.46), we find

b
(2)
0 = D4/3

(

3h̄

8
3

√

2h̄

M2
+

7h̄

32D
3

√

2h̄

M2
+ . . .

)

. (5.50)

This procedure can easily be driven to higher orders. Figure 5.2 shows the leading strong-

coupling coefficients b
(1)
0 and b

(2)
0 as given by (5.44) and (5.50) versus the dimension D. The

relative deviation of these results from the 80th VPT order results is shown in Fig. 5.3.

5.2 Background Method for Effective Potential

In this section, the calculation of the effective potential from Sections 2.7 and 2.8 is gen-

eralized to the case of a rotationally symmetric potential in D spatial dimensions. Unless

otherwise stated, throughout this section, we use sum convention, i.e. when an index occurs

twice on one side of an equation the respective summation sign is omitted. Thus, we write

e.g.

D
∑

i=1

XiYi ≡ XiYi . (5.51)

Consider the partition function

Z =

∮

Dx exp {−A[x]/h̄} , (5.52)
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Figure 5.3: Relative deviation of the leading strong-coupling coefficients b
(1,2)
0 (D) from the

quasi-exact values, obtained from the 80th VPT order, as given in Tab. 5.3. The circles

represent the relative deviation of the result (5.44). The relative error of the result (5.50) is

represented by diamonds.

where A[x] is the D-dimensional generalization of the imaginary-time action (2.14):

A[x] =

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) + V (x(τ))

]

. (5.53)

Within the background method, the position variable x is expanded around some background

X(τ), according to x(τ) = X(τ) + δx(τ). Since in this chapter we are only interested in the

effective potential and not in the effective action, all calculations are done for a τ -independent

background: X(τ) ≡ X. A functional Taylor expansion of the imaginary-time action (5.53)

yields

A[X + δx] = A[X]
∣

∣

∣

X(τ)≡X

+

∫ h̄β

0

dτ1
δA[X]

δXi(τ1)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1) (5.54)

+
1

2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2
δ2A[X]

δXi(τ1)δXj(τ2)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1)δxj(τ2)

+
1

6

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3
δ3A[X]

δXi(τ1)δXj(τ2)δXk(τ3)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1)δxj(τ2)δxk(τ3)

+
1

24

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

∫ h̄β

0

dτ4

× δ4A[X]

δXi(τ1)δXj(τ2)δXk(τ3)δXl(τ4)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1)δxj(τ2)δxk(τ3)δxl(τ4) + . . . .
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As in Section 2.7, the first-order term will be neglected, and terms that are of higher than

second order define the interaction part

A(int)[δx] =
1

6

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3
δ3A[X]

δXi(τ1)δXj(τ2)δXk(τ3)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1)δxj(τ2)δxk(τ3)

+
1

24

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

∫ h̄β

0

dτ4

× δ4A[X]

δXi(τ1)δXj(τ2)δXk(τ3)δXl(τ4)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1)δxj(τ2)δxk(τ3)δxl(τ4) + . . . . (5.55)

Thus, by changing the functional integration variable in (5.52) from x to δx, one obtains

Z = exp

{

−1

h̄
A[X]

∣

∣

∣

X(τ)≡X

}
∮

Dδx exp
{

−A(1)[δx]/h̄−A(int)[δx]/h̄
}

, (5.56)

with

A(1)[δx] =
1

2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2
δ2A[X]

δXi(τ1)δXj(τ2)

∣

∣

∣

∣

X(τ)≡X

δxi(τ1)δxj(τ2) . (5.57)

The second functional derivative of the imaginary-time action (5.53), the integral kernel,

reads

δ2A[X]

δXi(τ1)δXj(τ2)

∣

∣

∣

∣

X(τ)≡X

≡ G−1
ij (τ1, τ2) =

[

−M d2

dτ 2
2

δij +
∂2V (X)

∂Xi(τ1)∂Xj(τ2)

]
∣

∣

∣

∣

X(τ)=X

δ(τ2 − τ1) .

(5.58)

Here and in the following, it is assumed that the potential is rotationally symmetric, and

the modulus of the background variable, |X|, is denoted by X. Consequently, we identify

V (X) ≡ V (X). Evaluating the second derivative of the potential yields

∂2V (X(τ))

∂Xi(τ)∂Xj(τ)

∣

∣

∣

∣

X(τ)≡X

= PL
ij V

′′(X) + P T
ij

V ′(X)

X
, (5.59)

where the longitudinal and transversal projection operators P
L/T
ij are defined by

P T
ij =

XiXj

X2
and P T

ij = δij − PL
ij . (5.60)

Note that these projection operators have the following properties:

PL
ijP

L
jk = PL

ik , P T
ijP

T
jk = P T

ik , (5.61)

PL
ijP

L
ij = 1 , P T

ijP
T
ij = D − 1 , PL

ijP
T
jk = P T

ijP
L
jk = 0 , (5.62)

PL
ijXj = Xi , P T

ijXj = 0 . (5.63)
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Introducing the operator

Ôij(τ) = M

[

− d2

dτ 2
δij +

1

M
PL

ij V
′′(X) +

1

M
P T

ij

V ′(X)

X

]

, (5.64)

inserting (5.58) and (5.59) into (5.57), and performing the τ2-integration, one obtains the

intermediate result

A(1)[δx] =
1

2

∫ h̄β

0

dτ δxi(τ)Ôij(τ)δxj(τ) . (5.65)

Consider the eigenvalue problem of Ôij(τ):

Ôij(τ)v
(m,n)
j (τ) = Mλ(m)v

(m,n)
i (τ) and v(m,n)(0) = v(m,n)(h̄β) , (5.66)

for n = 1, 2, . . . , D . (5.67)

The approach

v
(m,1)
j (τ) = Xj e

−iωmτ , (5.68)

with ωm being the Matsubara frequencies

ωm =
2π

h̄β
m , m = 0, ±1, ±2, . . . , (5.69)

leads to the eigenvalue

λ
(m)
L = ω2

m +
V ′′(X)

M
. (5.70)

On the other hand, the approach

v
(m,n)
j (τ) = Y

(n)
j e−iωmτ , with XjY

(n)
j = 0 and Y

(n)
j =

(

Y
(n)
j

)∗

, (5.71)

for n = 2, 3, . . .D, (5.72)

leads to the (D − 1)-fold degenerate eigenvalue

λ
(m)
T = ω2

m +
V ′(X)

MX
. (5.73)

Thus, defining the longitudinal and transversal frequencies

ω2
L =

V ′′(X)

M
and ω2

T =
V ′(X)

MX
, (5.74)

the eigenvalues of the operator Ôij(τ) read

λ
(m)
L = ω2

m + ω2
L and λ

(m)
T = ω2

m + ω2
T . (5.75)

And without loss of generality

{v(m,n)(τ) |m = 0, ±1, ±2, . . . ;n = 1, 2, . . . , D} (5.76)
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can assumed to be an orthonormal basis of the solution space to (5.66), where

Ôij(τ)v
(m,1)
j (τ) = Mλ

(m)
L v

(m,1)
i (τ) , (5.77)

and

Ôij(τ)v
(m,n)
j (τ) = Mλ

(m)
T v

(m,n)
i (τ) for n = 2, 3, . . . , D . (5.78)

Then, the fluctuations δx(τ) can be expressed in the form

δx(τ) =

∞
∑

m=−∞

c(m,n)v(m,n)(τ) , (5.79)

and the orthonormality condition reads

∫ h̄β

0

dτ v
(m,n)
i v

(m′,n′)∗
i = δm,m′δn,n′h̄β . (5.80)

Since X and Y(n) are real, definitions (5.68) and (5.71) allow the rewriting of the last identity

in the form
∫ h̄β

0

dτ v
(m,n)
i v

(m′,n′)
i = δm,−m′δn,n′h̄β . (5.81)

In addition, the fluctuations δx(τ) must be real. Therefore, the expansion coefficients c(m,n)

in (5.79) must obey the condition

c(m,n) = c(−m,n)∗ , (5.82)

and their real and imaginary parts are even and odd, respectively:

Re c(m,n) = Re c(−m,n) , Im c(m,n) = −Im c(−m,n) . (5.83)

Inserting the decomposition (5.79) into (5.65) and using the properties (5.77) and (5.78) of

the operator Ôij(τ) yields

A(1)[δx] =
1

2

∫ h̄β

0

dτ
∞
∑

m,m′=−∞

D
∑

n=1

c(m,n)v
(m,n)
i

×M

(

λ
(m′)
L c(m

′,1)v
(m′,1)
i + λ

(m′)
T

D
∑

n′=2

c(m
′,n′)v

(m′,n′)
i

)

, (5.84)

where for reasons of clarity the use of sum convention has been set aside. Exploiting the

orthonormality relation (5.81) and the symmetry (5.82) of the coefficients c(m,n), one obtains

the result

A(1)[δx] =
Mh̄β

2

[

λ
(0)
L

∣

∣c(0,1)
∣

∣

2
+ λ

(0)
T

D
∑

n=2

∣

∣c(0,n)
∣

∣

2

+ 2
∞
∑

m=1

(

λ
(m)
L

∣

∣c(m,1)
∣

∣

2
+ λ

(m)
T

D
∑

n=2

∣

∣c(m,n)
∣

∣

2

)]

. (5.85)
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This result can be applied to evaluate the partition function

Z(1)(X) =

∮

Dδx exp
{

−A(1)[δx]/h̄
}

. (5.86)

As in Appendix A, the path integral measure Dδx is replaced by an infinite product of

integrals

∮

Dδx →
D
∏

n=1

[

N0

∫ ∞

−∞

dc(0,n)

∞
∏

m=1

(

Nm

∫ ∞

−∞

d Re c(m,n)

∫ ∞

−∞

d Im c(m,n)

)

]

, (5.87)

where the normalization constants N0 and Nm are obtained by comparison with the known

result [4, Ch. 5] for the D-dimensional harmonic oscillator, i.e. ω2
L = ω2

T = ω2. One thus

obtains as in Appendix A

N0 =

√

M

2πh̄2β
, Nm =

Mω2
mβ

π
, (5.88)

and

Z(1)(X) =
1

2 sinh(h̄βωL/2)

(

1

2 sinh(h̄βωT/2)

)D−1

. (5.89)

In Appendix A, it is shown that Z(1)(X) can also be written in the form

Z(1)(X) = exp

(

−1

2
Tr lnG−1

)

, (5.90)

with

Tr lnG−1 =

∞
∑

m=−∞

(

lnλ
(m)
L + (D − 1) lnλ

(m)
T

)

. (5.91)

In the one-dimensional case the effective action is given by (2.129), which remains valid in

D dimensions. Therefore, by evaluating (2.129) for a constant background and dividing by

h̄β, one obtains

Veff(X) = V (X) +
1

2β
Tr lnG−1 + V

(int)
eff (X) . (5.92)

As before, the interaction part of the effective potential V
(int)
eff (X) is expanded in the form

V
(int)
eff = −h̄

∞
∑

l=2

V
(l)
eff (X) , (5.93)

where each loop order V
(l)
eff (X) consists of all one-particle irreducible Feynman diagrams with

l loops. In the case of a D-dimensional rotationally symmetric potential the Feynman rules

for a constant background read:
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• The vertices of the diagram are numbered arbitrarily.

• All outgoing lines of all vertices are denoted by an arbitrary index.

• A line between the ath and bth vertex connecting the lines i and j stands for the

propagator Gij(τa, τb):

a
i

b
j

≡ Gij(τa, τb) , (5.94)

where the propagator Gij(τa, τb) is defined by the identity

∫ h̄β

0

dτa G
−1
ij (τc, τa)Gjk(τa, τb) ≡ h̄ δik δ(τc − τb) . (5.95)

• The resulting product of propagators is integrated. Let the ath vertex be of degree

n with n ≥ 3 and have the n outgoing lines i, j, k, . . . ,m; then it leads to the

integration:

i

j

k

m

a → −1

h̄

∂nV (X)

∂Xi ∂Xj ∂Xk . . . ∂Xm

∫ h̄β

0

dτa . (5.96)

The diagrams contributing to the second loop order and their respective weights are given

by (2.109). The diagram thus stands for

=
1

h̄2

∂3V (X)

∂Xi∂Xj∂Xk

∂3V (X)

∂Xl∂Xm∂Xn

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 Gil(τ1, τ2)Gjm(τ1, τ2)Gkn(τ1, τ2) .

(5.97)

And the diagram is given by

= −1

h̄

∂4V (X)

∂Xi∂Xj∂Xk∂Xl

∫ h̄β

0

dτ Gij(τ, τ)Gkl(τ, τ) . (5.98)

From (5.58) – (5.60) and (5.74), it follows that the integral kernel G−1
ij (τ1, τ2) is given by

G−1
ij (τ1, τ2) = M

[

PL
ij

(

− d2

dτ 2
1

+ ω2
L

)

+ P T
ij

(

− d2

dτ 2
1

+ ω2
T

)]

δ(τ2 − τ1) . (5.99)

Its Matsubara decomposition reads

G−1
ij (τ1, τ2) =

∞
∑

m=−∞

G
−1(m)
ij e−iωm(τ1−τ2) , (5.100)

and G
−1(m)
ij is given by Fourier inversion

G
−1(m)
ij =

1

h̄β

∫ h̄β

0

dτ G−1
ij (τ, 0) e+iωmτ =

M

h̄β

[

PL
ij (ω

2
m + ω2

L) + P T
ij (ω

2
m + ω2

T )
]

. (5.101)
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Expressing the integral kernel G−1
ij (τ1, τ2), the propagator Gjk(τ2, τ3), and the delta function

by their Matsubara decompositions, Eq. (5.95) becomes

∫ h̄β

0

dτ2

∞
∑

m=−∞

G
−1(m)
ij e−iωm(τ1−τ2)

∞
∑

m′=−∞

G
(m′)
jk e−iωm′ (τ2−τ3) ≡ h̄δik

∞
∑

m=−∞

1

h̄β
e−iωm(τ1−τ3) .

(5.102)

After performing the integration and comparing the coefficients one obtains

G
−1(m)
ij G

(m)
jk =

1

h̄β2
δik . (5.103)

This equation can be solved by the approach

G
(m)
jk = PL

jkA
(m) + P T

jkB
(m) . (5.104)

Inserting (5.101), (5.104) into (5.103) and using the properties (5.61), (5.62) yields

M

h̄β

[

PL
ikA

(m)(ω2
m + ω2

L) + P T
ikB

(m)(ω2
m + ω2

T )
]

=
1

h̄β2

(

PL
ik + P T

ik

)

. (5.105)

From the last identity and (5.104), it follows that

G
(m)
jk =

1

Mβ

(

PL
jk

1

ω2
m + ω2

L

+ P T
jk

1

ω2
m + ω2

T

)

. (5.106)

Thus, the Matsubara decomposition of the propagator becomes

Gjk(τ1, τ2) =
1

Mβ

∞
∑

m=−∞

(

PL
jk

1

ω2
m + ω2

L

+ P T
jk

1

ω2
m + ω2

T

)

e−iωm(τ1−τ2) . (5.107)

The series is evaluated in Appendix A, and the propagator Gij(τ1, τ2) can be decomposed

into a longitudinal and a transversal part, yielding

Gjk(τ1, τ2) = PL
jkGL(τ1, τ2) + P T

jkGT (τ1, τ2) , (5.108)

with

GL(τ1, τ2) =
h̄

2MωL

cosh(ωL|τ1 − τ2| − h̄βωL/2)

sinh(h̄βωL/2)
, (5.109)

and

GT (τ1, τ2) =
h̄

2MωT

cosh(ωT |τ1 − τ2| − h̄βωT/2)

sinh(h̄βωT/2)
. (5.110)

In order to evaluate the twofold integral (5.97) and the integral (5.98) we calculate the third

and fourth derivative of the potential. First, using (5.59), we find

∂3V (X)

∂Xi∂Xj∂Xk
= PL

ijkV
′′′(X) + P T

ijk

[

V ′′(X)

X
− V ′(X)

X2

]

, (5.111)
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where the operators PL
ijk and P T

ijk are given by

PL
ijk =

XiXjXk

X3
, and P T

ijk = δij
Xk

X
+ δik

Xj

X
+ δjk

Xi

X
− 3PL

ijk . (5.112)

Furthermore, the fourth derivative reads

∂4V (X)

∂Xi∂Xj∂Xk∂Xl

= PL
ijklV

(4)(X) + P T
ijkl

V ′′′(X)

X
+ PE

ijkl

[

V ′′(X)

X2
− V ′(X)

X3

]

, (5.113)

where the following abbreviations have been introduced:

PL
ijkl =

XiXjXkXl

X4
, (5.114)

P T
ijkl = δij

XkXl

X2
+ δik

XjXl

X2
+ δil

XjXk

X2
+ δjk

XiXl

X2
+ δjl

XiXk

X2
+ δkl

XiXk

X2
− 6PL

ijkl ,(5.115)

PE
ijkl = δijδkl + δikδjl + δilδjk − 3PL

ijkl − 3P T
ijkl . (5.116)

Note that the operators P
L/T
ij , P

L/T
ijk , P

L/T/E
ijkl are all totally symmetric tensors. The definitions

(5.60), (5.112), and (5.114) – (5.116) directly lead to the following relations:

Xi

X
PL

ijk = PL
jk ,

Xi

X
P T

ijk = P T
jk ; (5.117)

PL
ijP

L
ikl = PL

jkl , P T
ijP

T
ikl =

Xk

X
P T

jl +
Xl

X
P T

jk , PL
ijP

T
ikl =

Xj

X
P T

kl , P T
ijP

L
ikl = 0 ; (5.118)

PL
hijP

L
hkl = PL

ijkl , P T
hijP

T
hkl = P T

ijP
T
kl + PL

ikP
T
jl + PL

il P
T
jk + PL

jkP
T
il + PL

jlP
T
ik , (5.119)

PL
hijP

T
hkl = PL

ijP
T
kl , P T

hijP
L
hkl = P T

ijP
L
kl ; (5.120)

PL
ijP

L
ijkl = PL

kl , P T
ijP

T
ijkl = (D − 1)PL

kl , (5.121)

PL
ijP

T
ijkl = P T

kl , P T
ijP

L
ijkl = 0 , (5.122)

PL
ijP

E
ijkl = −2P T

kl , P T
ijP

E
ijkl = (D + 1)P T

kl − 2(D − 1)PL
kl . (5.123)

Using the results (5.108), (5.111), the relations (5.61), (5.62), and (5.117) – (5.120), one

obtains the intermediate result for the twofold integral (5.97)

=
1

h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

{

G3
L(τ1, τ2) [V ′′′(X)]

2

+ 3(D − 1)GL(τ1, τ2)G
2
T (τ1, τ2)

[

V ′′(X)

X
− V ′(X)

X2

]2}

. (5.124)



84 CHAPTER 5. EXTENSION TO D DIMENSIONS

The remaining integrals are solved in Appendix B, and one obtains

=
2h̄2β

ωL

1

(2MωL)3
[V ′′′(X)]2

[

1

3
+

1

sinh2(h̄βωL/2)

]

(5.125)

+
6h̄2β(D − 1)

2ωT + ωL

1

2MωL

1

(2MωT )2

[

V ′′(X)

X
− V ′(X)

X2

]2

×
[

coth2(h̄βωT/2) +
ωT

ωL

1

sinh2(h̄βωT/2)
+

ωT

2ωT − ωL

sinh(h̄β(ωT − ωL/2))

sinh(h̄βωL/2) sinh2(h̄βωT/2)

]

.

The integral (5.98) can be evaluated by using the results (5.108), (5.113) and the relations

(5.62) and (5.121) – (5.123). In this case, the integration is trivial as it only leads to a factor

h̄β. One obtains

= −β
{

G2
L(τ, τ)V (4)(X) + (D2 − 1) G2

T (τ, τ)

[

V ′′(X)

X2
− V ′(X)

X3

]

+ 2(D − 1)GL(τ, τ)GT (τ, τ)

[

V ′′′(X)

X
− 2V ′′(X)

X2
+

2V ′(X)

X3

]}

. (5.126)

And when explicitly inserting the result for the propagator (5.109), (5.110), one has

= − h̄2β

(2M)2

{

1

ω2
L

coth2(h̄βωL/2)V (4)(X) (5.127)

+
D2 − 1

ω2
T

coth2(h̄βωT/2)

[

V ′′(X)

X2
− V ′(X)

X3

]

+
2(D − 1)

ωLωT
coth(h̄βωL/2) coth(h̄βωT/2)

[

V ′′′(X)

X
− 2V ′′(X)

X2
+

2V ′(X)

X3

]}

.

Thus, using the results (5.89), (5.90), (5.92), (5.125), and (5.127) and taking into account

(2.109), (2.144), and (5.93), one obtains the temperature-dependent effective potential for a

rotationally symmetric potential in D spatial dimensions up to the second loop order:

Veff(X) = V (X) +
1

β

{

ln [2 sinh(h̄βωL/2)] + (D − 1) ln [2 sinh(h̄βωT/2)]
}

(5.128)

+
h̄2

8(2M)2

{

1

ω2
L

coth2(h̄βωL/2)V (4)(X) +
D2 − 1

ω2
T

coth2(h̄βωT/2)

[

V ′′(X)

X2
− V ′(X)

X3

]

+
2(D − 1)

ωLωT
coth(h̄βωL/2) coth(h̄βωT/2)

[

V ′′′(X)

X
− 2V ′′(X)

X2
+

2V ′(X)

X3

]}

− h̄2

6(2M)3

{

1

ω4
L

[V ′′′(X)]2
[

1

3
+

1

sinh2(h̄βωL/2)

]

+
3(D − 1)

2ωT + ωL

1

ωLω2
T

[

V ′′(X)

X
− V ′(X)

X2

]2

×
[

coth2(h̄βωT/2) +
ωT

ωL

1

sinh2(h̄βωT/2)
+

ωT

2ωT − ωL

sinh(h̄β(ωT − ωL/2))

sinh(h̄βωL/2) sinh2(h̄βωT/2)

]}

+ O(h̄3) .
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In the zero-temperature limit this simplifies to

lim
β→∞

Veff(X) = V (X) +
h̄ωL

2
+ (D − 1)

h̄ωT

2
+

h̄2

8(2M)2

{

1

ω2
L

V (4)(X)

+
D2 − 1

ω2
T

[

V ′′(X)

X2
− V ′(X)

X3

]

+
2(D − 1)

ωLωT

[

V ′′′(X)

X
− 2V ′′(X)

X2
+

2V ′(X)

X3

]}

− h̄2

6(2M)3

{

1

3ω4
L

[V ′′′(X)]2 +
3(D − 1)

2ωT + ωL

1

ωLω2
T

[

V ′′(X)

X
− V ′(X)

X2

]2}

+ O(h̄3) . (5.129)

Note that for D = 1 (5.128) and (5.129) pass into the earlier results (2.151) and (2.152),

respectively.





Chapter 6

Outlook

In this chapter, we examine how the methods presented in this work can be applied to

further problems. In Section 6.1, we show how the recursion relations for the ground-state

energy developed in Chapter 3 could be generalized to the free energy for finite temperatures.

Furthermore, the effective mass is introduced in Section 6.2.

6.1 Finite Temperature

In Chapter 3, we have obtained recursion relations for the ground-state energy of an anhar-

monic oscillator. At finite temperatures, thermal fluctuations become relevant in addition

to the quantum fluctuations. These temperature dependent fluctuations can be taken into

account by considering the free energy of a system. In imaginary-time, τ = it, the time-

dependent Schrödinger equation for the imaginary-time evolution amplitude (xb τ |xa 0) reads

−h̄ ∂
∂τ

(xb τ |xa 0) = − h̄2

2M

∂2

∂x2
b

(xb τ |xa 0) + V (xb)(xb τ |xa 0) , (6.1)

with the initial condition

(xb 0|xa 0) = δ(xb − xa) . (6.2)

According to (2.13) and (2.15), the partition function for a quantum-mechanical system

can be obtained by integrating over the diagonal elements of the imaginary-time evolution

amplitude evaluated at τ = h̄β:

Z =

∫ ∞

−∞

dx (x h̄β|x 0) . (6.3)

The partition function, and therefore the free-energy of a system, can thus be obtained by

solving (6.1). In Ref. [24] the following ansatz for the imaginary-time evolution amplitude

for the potential (1.1) is made:

(xb τ |xa 0) = (xb τ |xa 0)ω A(xb, xa, τ) , (6.4)
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where the imaginary-time evolution amplitude of the harmonic oscillator, (xb τ |xa 0)ω, is

modified by the function A(xb, xa, τ). The approach (6.4) leads to a partial differential

equation for the amplitude A(xb, xa, τ), which is then solved by expanding A(xb, xa, τ) in

the coupling constant g, in xb, and in xa with τ -dependent expansion coefficients

A (xb, xa, τ) =

∞
∑

k=0

2k
∑

m=0

2m
∑

n=0

gk
c
(k)
2m|n(τ)

sinhn ωτ
x2m−n

a xn
b . (6.5)

This procedure constitutes a generalization of the Bender-Wu recursion method introduced

in Chapter 3. There, it was used to solve the time-independent Schrödinger equation, and

the expansion coefficients were determined by solving algebraic recursion relations. In Ref.

[24], however, a recursive set of first-order ordinary differential equations is solved in order

to determine the expansion coefficients c
(k)
2m|n(τ). The resulting weak-coupling series is then

resummed via VPT, and the free energy of the anharmonic oscillator (1.1) is calculated up

to the fifth order for arbitrary temperatures.

The recursion relation for the ground-state energy of the anharmonic oscillator with cu-

bic anharmonicity (1.3), which has been obtained in Section 3.2, could now be generalized

in a similar way. By combining the methods from Chapter 3 and Ref. [24] it should thus

be possible to perturbatively calculate the free energy for the anharmonic oscillator (1.3) to

high orders.

6.2 Effective Mass

In the zeroth order, the effective action Γ[X] reduces to the tree-level, i.e. the imaginary-time

action evaluated at the background X(τ),

Γ(0)[X] = A[X] =

∫ h̄β

0

dτ

[

M

2
Ẋ2(τ) + V (X(τ))

]

. (6.6)

The self energy is defined as the second functional derivative of the effective action, evaluated

at a constant background:

Σ(τ1, τ2) =
δ2Γ[X]

δX(τ1)δX(τ2)

∣

∣

∣

∣

X(τ)≡X

. (6.7)

In the zeroth order, it thus reduces to

Σ(0)(τ1, τ2) =
δ2Γ(0)[X]

δX(τ1)δX(τ2)

∣

∣

∣

∣

X(τ)≡X

=

[

−M d2

dτ 2
1

+ V ′′(X)

]

δ(τ1 − τ2) . (6.8)

The Matsubara decomposition of the self energy in the zeroth order is given by

Σ(0)(τ1, τ2) =
1

h̄β

∞
∑

m=−∞

Σ(0)(ωm)e−iωm(τ1−τ2) , (6.9)
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with the Matsubara frequencies ωm as specified in (A.3). Taking into account the Matsubara

decomposition of the delta function (A.20), one obtains from (6.8) and (6.9):

Σ(0)(ωm) = Mω2
m + V ′′(X) . (6.10)

The identity

M =
∂Σ(0)(ωm)

∂ω2
m

∣

∣

∣

∣

ωm=0

(6.11)

then motivates the definition of the effective mass:

Meff =
∂Σ(ωm)

∂ω2
m

∣

∣

∣

∣

ωm=0

. (6.12)

In Ref. [40] the effective mass is calculated for an arbitrary potential in the first-loop order,

yielding the result

Meff = M + h̄
M1/2[V ′′′(X)]2

32[V ′′(X)]5/2
+ O(h̄2) . (6.13)

In order to extend this calculation to higher orders, it would be desirable to develop a

recursion relation for the effective mass, as for the effective potential in Section 3.4.





Appendix A

Harmonic Generating Functional

In this section, the generating functional (2.48) for the harmonic oscillator (2.47) is evaluated.

The path integration in (2.48) is performed over all paths x(τ) which are periodic in the

imaginary time τ , i.e.

x(0) = x(h̄β) . (A.1)

Thus, these paths x(τ) can be continued periodically and possess a Fourier decomposition.

In the context of the imaginary-time formalism, the decomposition of paths is referred to as

their Matsubara decomposition. It reads

x(τ) =
∞
∑

m=−∞

xme
−iωmτ , (A.2)

with the Matsubara frequencies

ωm =
2π

h̄β
m , m = 0, ±1, ±2, . . . . (A.3)

Note that the periodicity of the paths x(τ) is passed on to their derivatives ẋ(τ):

ẋ(0) = ẋ(h̄β) . (A.4)

Furthermore, the Matsubara amplitudes xm in (A.2) are restricted by the condition that the

path x(τ) be real. From x∗(τ) = x(τ) one concludes

xm = x∗−m , (A.5)

so the real and imaginary parts of the Matsubara amplitude xm are even and odd, respec-

tively:

Re xm = Re x−m , Im xm = −Im x−m . (A.6)

The Matsubara decomposition of the paths x(τ) permits us to rewrite the generating func-

tional of the harmonic oscillator (2.48). The path integral measure in (2.48) will have to be
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replaced by an infinite product of integrals. Due to (A.6), real and imaginary part of the

Matsubara amplitude xm with negative m are fixed by those with positive m. Thus, the

path x(τ) can be determined by specifying all xm with positive m and the zero mode x0.

Furthermore, as a consequence of (A.6), x0 is real. Consequently, the following approach for

the path integral measure can be implemented:

∮

Dx → N0

∫ ∞

−∞

dx0

∞
∏

m=1

(

Nm

∫ ∞

−∞

d Re xm

∫ ∞

−∞

d Im xm

)

, (A.7)

where N0 and Nm denote normalization constants. They will be determined by comparing

the harmonic oscillator’s partition function within the path integral formalism (2.15) with the

quantum statistical partition function (2.6). The latter can be determined by considering the

occupation number representation of the eigenstates of the harmonic oscillator’s Hamiltonian

and is given by

Zω = Tr
(

e−βĤ
)

=
1

2 sinh h̄βω/2
. (A.8)

Applying (A.2) and using (A.7), the generating functional for the harmonic oscillator (2.48)

– (2.50) takes the form

Zω[j] = N0

∫ ∞

−∞

dx0

∞
∏

m=1

(

Nm

∫ ∞

−∞

d Re xm

∫ ∞

−∞

d Im xm

)

exp

{

− 1

h̄

∫ h̄β

0

dτ

×
[

M

2

∞
∑

m=−∞

∞
∑

m′=−∞

xmxm′(ω2 + ω2
m) e−i(ωm+ωm′)τ − j(τ)

∞
∑

m=−∞

xme
−iωmτ

]}

. (A.9)

The first part of the τ -integral can be evaluated by using the result

∫ h̄β

0

dτ e−i(ωm+ωm′)τ = h̄βδm,−m′ . (A.10)

Taking into account (A.5), one obtains

Zω[j] = N0

∫ ∞

−∞

dx0

∞
∏

m=1

(

Nm

∫ ∞

−∞

d Re xm

∫ ∞

−∞

d Im xm

)

(A.11)

× exp

[

− M

2

∞
∑

m=−∞

|xm|2(ω2 + ω2
m)β +

1

h̄

∞
∑

m=−∞

xm

∫ h̄β

0

dτ j(τ)e−iωmτ

]

.

By separating the zero mode and using (A.3), (A.6), one obtains

Zω[j] = N0

∫ ∞

−∞

dx0 exp

[

−M
2
x2

0ω
2β +

x0

h̄

∫ h̄β

0

dτ j(τ)

]

(A.12)

×
∞
∏

m=1

{

Nm

∫ ∞

−∞

d Re xm exp

[

−Mβ (Re xm)2 (ω2 + ω2
m) +

2 Re xm

h̄

∫ h̄β

0

dτ j(τ) cos (ωmτ)

]

×
∫ ∞

−∞

d Im xm exp

[

−Mβ (Im xm)2 (ω2 + ω2
m) +

2 Im xm

h̄

∫ h̄β

0

dτ j(τ) sin (ωmτ)

]

}

.
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Evaluating the x0-, Re xm-, and Im xm-integrals by using the result

∫ ∞

−∞

dx exp(−p2x2 + qx) =

√
π

p
exp

(

q2

4p2

)

[p > 0] , (A.13)

one obtains

Zω[j] = Zw exp

[

1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 Gω(τ1, τ2)j(τ1)j(τ2)

]

, (A.14)

where the partition function Zω reads

Zω[0] ≡ Zω = N0

√

2π

Mω2β

(

∞
∏

m=1

Nmπ

Mβ(ω2 + ω2
m)

)

, (A.15)

and the harmonic propagator Gω(τ1, τ2) is given by

Gω(τ1, τ2) :=
1

Mβ

∞
∑

m=−∞

e−iωm(τ1−τ2)

ω2 + ω2
m

. (A.16)

On the other hand, the partition function (A.8) can be expressed in the form [22, p. 37]

Zω =
1

h̄βω

∞
∏

m=1

4m2π2

h̄2β2ω2 + 4m2π2
. (A.17)

Comparing (A.15) and (A.17) yields the normalization constants

N0 =

√

M

2πh̄2β
and Nm =

Mω2
mβ

π
. (A.18)

Furthermore, by considering the identity

∫ h̄β

0

dτ M

(

− d2

dτ 2
1

+ ω2

)

δ(τ1 − τ)
1

Mβ

∞
∑

m=−∞

e−iωm(τ−τ2)

ω2 + ω2
m

=
1

β

∞
∑

m=−∞

e−iωm(τ1−τ2) (A.19)

and comparing it with the Matsubara decomposition of the delta function,

δ(τ1, τ2) =
1

h̄β

∞
∑

m=−∞

e−iωm(τ1−τ2) , (A.20)

and with the definition of the integral kernel (2.50), one reads off that the propagator defined

by (A.16) satisfies the relation (2.54). In the following it will be demonstrated that the

harmonic propagator (A.16) can indeed be expressed in the form (2.55). Poisson’s summation

formula implies the identity [4, Sec. 2.16]

∞
∑

m=−∞

f(m) =

∫ ∞

−∞

dµ
∞
∑

n=−∞

e−2πiµnf(µ) . (A.21)
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Using (A.21), one proves that

1

Mβ

∞
∑

m=−∞

e−iωm(τ1−τ2)

ω2 + ω2
m

=
h̄

2πM

∞
∑

n=−∞

∫ ∞

−∞

dωm
e−iωm(τ1−τ2+nh̄β)

ω2 + ω2
m

. (A.22)

The ωm-integral on the right-hand side of the last equation can be evaluated by applying

Cauchy’s residue theorem. The result is found in Ref. [22, p. 312]. Together with (A.16) one

thus obtains from the last identity

Gω(τ1, τ2) =
h̄

2Mω

∞
∑

n=−∞

e−ω|τ1−τ2+nh̄β| . (A.23)

Since both, τ1 and τ2, lie within the interval [0, h̄β], one has |τ1 − τ2| ≤ h̄β, and the sum on

the right-hand side of (A.23) can be decomposed:

Gω(τ1, τ2) =
h̄

2Mω

{

e−ω|τ1−τ2| +
∞
∑

n=1

[

e−ω(τ1−τ2+nh̄β) + e−ω(τ2−τ1+nh̄β)
]

}

. (A.24)

Evaluating the geometric series that stem from (A.24), the harmonic propagator takes the

form (2.55):

Gω(τ1, τ2) =
h̄

2Mω

cosh(ω|τ1 − τ2| − h̄βω/2)

sinh(h̄βω/2)
. (A.25)

Finally, we show that the function f(ω), defined by

f(ω) = exp

(

−1

2
Tr lnG−1

ω

)

, (A.26)

with

Tr lnG−1
ω =

∞
∑

m=−∞

ln
(

ω2 + ω2
m

)

, (A.27)

is identical to the partition function (A.8). Note that the eigenvalue problem of the integral

kernel (2.50) ,

∫ h̄β

0

dτ2 G
−1(τ1, τ2)xm(τ2) = Mλmxm(τ1) , (A.28)

with

xm(0) = xm(h̄β) , (A.29)

can be solved using the approach

xm(τ) = xme
−iωmτ (A.30)
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and that the eigenvalues of G−1(τ1, τ2) are given by

λm = ω2 + ω2
m . (A.31)

Forming the logarithmic derivative of f(ω) with respect to ω and taking into account (A.16),

(A.25), and (A.27) yields

∂

∂ω
ln f(ω) = − h̄β

2
coth(h̄βω/2) = − ∂

∂ω
ln sinh(h̄βω/2) . (A.32)

Integrating the last identity with respect to ω, one obtains

f(ω) =
c

sinh(h̄βω/2)
, (A.33)

where c does not depend on ω. It remains to demonstrate that c = 1/2. To this end, we

show that for ω ≪ 1 one has

f(ω) ≈ 1

h̄βω
. (A.34)

For ω ≪ 1 one can approximate

∞
∑

m=−∞

ln(ω2 + ω2
m) = lnω2 + 2

∞
∑

m=1

ln(ω2 + ω2
m)

ω≪1≈ lnω2 + 2
∞
∑

m=1

lnω2
m . (A.35)

Note that in the limit ω → 0 both terms on the right hand side of the last identity are

divergent. This divergence will be treated by means of zeta-function regularization [4, Ch.

2]. Using definition (A.3), one obtains

∞
∑

m=−∞

ln(ω2 + ω2
m)

ω≪1≈ lnω2 + 2 ln

(

2π

h̄β

)2 ∞
∑

m=1

1 + 2
∞
∑

m=1

lnm2 . (A.36)

For n 6= 1, the Riemann zeta function can be given by

ζ(n) =

∞
∑

k=1

1

kn
. (A.37)

In Ref. [22, p. 1074] the values

ζ(0) = −1

2
and ζ ′(0) = −1

2
ln 2π (A.38)

of the zeta function are given. Thus, considering the identity

lnm = − d

dx
m−x

∣

∣

∣

x=0
(A.39)

and identifying

∞
∑

m=1

1 = ζ(0) and

∞
∑

m=1

lnm = −ζ ′(0), (A.40)

one obtains from (A.26), (A.27), and (A.36)

f(ω)
ω≪1≈ exp [− (lnω + ln h̄β)] , (A.41)

which is identical to (A.34).





Appendix B

Standard Integrals

Calculating the effective potential up to l = 2, 3 loops necessitates the evaluation of the one-

particle irreducible vacuum diagrams (2.109), (2.110), which are specified by the Feynman

rules (2.146), (2.147), and where the propagator GΩ(τ1, τ2) is given by (2.140), (2.141). The

ground-state energy of the anharmonic oscillator (2.156) can be determined by evaluating

the Feynman diagrams (2.186) in the zero-temperature limit. The temperature-dependent

free energy in the second loop order is given by (2.181), where the propagator Gω(τ1, τ2)

is specified in (2.55). In D spatial dimensions, the effective potential up to l = 2 loops

is obtained by evaluating the diagrams (2.109), where the Feynman rules (5.94), (5.96)

apply, and where the propagator is given by (5.108) – (5.110). When performing these

calculations, certain multiple-integrals arise. The evaluation of these standard integrals will

be demonstrated in this appendix.

B.1 Integrals for Arbitrary Temperatures

The harmonic propagator Gω(τ1, τ2) is given by (2.55):

Gω(τ1, τ2) =
h̄

2Mω

cosh(ω|τ1 − τ2| − h̄βω/2)

sinh(h̄βω/2)
. (B.1)

Evaluating the second-order free energy (2.181) leads to the twofold integral

I1 :=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 cosh(ω|τ1 − τ2| − h̄βω/2) . (B.2)

In order to evaluate this integral, it can be decomposed into two twofold integrals:

I1 =

∫ h̄β

0

dτ1

∫ τ1

0

dτ2 cosh(ω(τ1 − τ2) − h̄βω/2)

+

∫ h̄β

0

dτ2

∫ τ2

0

dτ1 cosh(ω(τ2 − τ1) − h̄βω/2) . (B.3)
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Renaming τ1 to τ2 and τ2 to τ1 in the second twofold integral yields

I1 = 2

∫ h̄β

0

dτ1

∫ τ1

0

dτ2 cosh(ω(τ1 − τ2) − h̄βω/2) =
2h̄β

ω
sinh(h̄βω/2) . (B.4)

The propagator the in case of an arbitrary potential (2.141) is obtained by introducing the

new frequency (2.140). It has the same form as the propagator for the harmonic oscillator

(2.55). Therefore, the following results can be applied to calculate the effective potential

(2.148) and the free energy (2.181). In both cases, a twofold integral of the form

I2 :=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 cosh3(Ω|τ1 − τ2| − h̄βΩ/2) (B.5)

has to be evaluated. In order to do so, it can, as above, be decomposed into two twofold

integrals:

I2 = 2

∫ h̄β

0

dτ1

∫ τ1

0

dτ2 cosh3(Ω(τ1 − τ2) − h̄βΩ/2) . (B.6)

The remaining integrals can be solved subsequently. Their solution is, for example, given in

Ref. [22, p. 94f]. One obtains

I2 =
2h̄β

Ω

[

sinh(h̄βΩ/2) +
1

3
sinh3(h̄βΩ/2)

]

. (B.7)

This result permits the evaluation of the diagrams (2.109) for arbitrary temperatures and

the calculation of the free energy (2.181).

Calculating the effective potential for a rotationally symmetric potential in D spatial di-

mension leads to a twofold integral over a product of propagators with different frequencies:

I3 :=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 cosh(ωL|τ1 − τ2| − h̄βωL/2) cosh2(ωT |τ1 − τ2| − h̄βωT/2) . (B.8)

Again, it can be decomposed into two twofold integrals,

I3 = 2
1

ωT

∫ h̄β

0

dτ1

∫ ωT τ1−h̄βωT /2

−h̄βωT /2

dξ cosh2 ξ cosh

(

ωL

ωT
ξ

)

, (B.9)

where the substitution

τ2(ξ) = τ1 −
ξ

ωT
− h̄β/2 (B.10)

has been performed. The ξ-integral can be solved by using results from Ref. [22, p. 102, p.

105]. One obtains

I3 =
2

2ωT + ωL

{

h̄β
[

cosh2(h̄βωT/2) sinh(h̄βωL/2) +
ωT

ωL

sinh(h̄βωL/2) (B.11)

+
ωT

2ωT − ωL
sinh(h̄β(ωT − ωL/2))

]

+

∫ h̄βωT /2

−h̄βωT /2

dζ

[

cosh2 ζ sinh

(

ωL

ωT

ζ

)

+
ωT

ωL

sinh

(

ωL

ωT

ζ

)

+
ωT

2ωT − ωL

sinh

(

2ζ − ωL

ωT

ζ

)]

}

,
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where the substitution

τ1(ζ) =
ζ

ωT
+ h̄β/2 (B.12)

has been performed. Since all components of the ζ-integral are odd, and since the integration

limits are symmetric with respect to the origin, the ζ-integral vanishes, and one obtains the

result

I3 =
2h̄β

2ωT + ωL

[

cosh2(h̄βωT/2) sinh(h̄βωL/2) +
ωT

ωL
sinh(h̄βωL/2) (B.13)

+
ωT

2ωT − ωL
sinh(h̄β(ωT − ωL/2))

]

.

Note that due to cosh2 z − sinh2 z = 1, the result (B.13) becomes (B.7) for ωL = ωT = Ω.

B.2 Integrals in the Zero-Temperature Limit

In the zero-temperature limit, the propagator GΩ(τ1, τ2) is given by (2.142):

lim
T→0

GΩ(τ1, τ2) =
h̄

2MΩ
e−Ω|τ1−τ2| . (B.14)

Determining the effective potential in this limit up to l = 3 loops by evaluating the Feynman

diagrams (2.110), which are specified by (2.146), (2.147), leads to standard multiple-integrals.

These integrals arise also when calculating the anharmonic oscillator’s ground-state energy

(2.186). Here, the diagrams are specified by the Feynman rules (2.182) – (2.184). For both

calculations the multiplicity of an integration is determined by the number of vertices in the

corresponding diagram. When evaluating a diagram with two vertices, the twofold integral

I(n12) :=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 exp (−n12Ω|τ1 − τ2|) (B.15)

arises. A diagram with three vertices leads to the threefold integral

I(n12, n13, n23) :=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

× exp (−n12Ω|τ1 − τ2| − n13Ω|τ1 − τ3| − n23Ω|τ2 − τ3|) . (B.16)

And in order to calculate a diagram with four vertices the fourfold integral

I(n12, n13, n14, n23, n24, n34) :=

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

∫ h̄β

0

dτ3

∫ h̄β

0

dτ4 exp(−n12Ω|τ1 − τ2|

−n13Ω|τ1 − τ3| − n14Ω|τ1 − τ4| − n23Ω|τ2 − τ3| − n24Ω|τ2 − τ4| − n34Ω|τ3 − τ4|) (B.17)

has to be evaluated. The number nij turns out to denote the number of lines connecting the

vertices i and j. In the following, (B.15) – (B.17) will be calculated in the leading order for
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β → ∞. Decomposing the integral (B.15) into 2! = 2 contributions,

I(n12) :=

∫ h̄β

0

dτ1

∫ τ1

0

dτ2 exp [−n12Ω(τ1 − τ2)]

+

∫ h̄β

0

dτ2

∫ τ2

0

dτ1 exp [−n12Ω(τ2 − τ1)] , (B.18)

and renaming the integration variables of the second twofold integral yields the result

I(n12) =
2

n12Ω

[

h̄β +
1

n12Ω

(

e−n12h̄βΩ − 1
)

]

β→∞−→ 2h̄β

n12Ω
. (B.19)

Correspondingly, the threefold integral (B.16) can be decomposed into 3! = 6 contributions

I(n12, n13, n23) = J(n12, n13, n23) + J(n12, n23, n13) + J(n13, n12, n23)

+ J(n13, n23, n12) + J(n23, n12, n13) + J(n23, n13, n12) , (B.20)

where the evaluation of

J(n12, n13, n23) :=

∫ h̄β

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

× exp [−n12Ω(τ1 − τ2) − n13Ω(τ1 − τ3) − n23Ω(τ2 − τ3)] (B.21)

leads to

J(n12, n13, n23)
β→∞−→ h̄β

Ω2(n12 + n13)(n13 + n23)
. (B.22)

Thus, inserting (B.22) into (B.20) leads to the result

I(n12, n13, n23)
β→∞−→ 4h̄β

Ω2

n12 + n13 + n23

(n12 + n13)(n12 + n23)(n13 + n23)
. (B.23)

The fourfold integral (B.17) is solved in a similar way, but it has to be decomposed into

4! = 24 contributions, which correspond to the possibilities to order the imaginary times

τ1, τ2, τ3, τ4:

I(n12, n13, n14, n23, n24, n34) :=

∫ h̄β

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4 exp[−n12Ω(τ1 − τ2)

− n13Ω(τ1 − τ3) − n14Ω(τ1 − τ4) − n23Ω(τ2 − τ3) − n24Ω(τ2 − τ4) − n34Ω(τ3 − τ4)]

+ 23 fourfold integrals. (B.24)

The first contribution, which corresponds to the case τ1 ≥ τ2 ≥ τ3 ≥ τ4, yields:

∫ h̄β

0

dτ1

∫ τ1

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ4 exp[−n12Ω(τ1 − τ2) − n13Ω(τ1 − τ3) − n14Ω(τ1 − τ4)

−n23Ω(τ2 − τ3) − n24Ω(τ2 − τ4) − n34Ω(τ3 − τ4)]

β→∞−→ h̄β

Ω3(n12 + n13 + n14)(n14 + n24 + n34)(n13 + n14 + n23 + n24)
. (B.25)
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Evaluating the remaining 23 fourfold integrals by suitably renaming the integration variables

τ1, τ2, τ3, τ4 and the indices nij yields the final result

I(n12, n13, n14, n23, n24, n34)
β→∞−→ (B.26)

2h̄β

Ω3

{

1

n12 + n13 + n24 + n34

[

1

n12 + n13 + n14

(

1

n12 + n23 + n24

+
1

n13 + n23 + n34

)

+
1

n14 + n24 + n34

(

1

n12 + n23 + n24
+

1

n13 + n23 + n34

)]

+
1

n12 + n14 + n23 + n34

[

1

n12 + n23 + n24

(

1

n12 + n13 + n14
+

1

n13 + n23 + n34

)

+
1

n14 + n24 + n34

(

1

n12 + n13 + n14

+
1

n13 + n23 + n34

)]

+
1

n13 + n14 + n23 + n24

[

1

n13 + n23 + n34

(

1

n12 + n13 + n14
+

1

n12 + n23 + n24

)

+
1

n14 + n24 + n34

(

1

n12 + n13 + n14
+

1

n12 + n23 + n24

)]}

.

In Section 2.8, the following integrals are needed:

I(2, 1, 2)
β→∞−→ 5h̄β

9Ω2
, (B.27)

I(1, 2, 1)
β→∞−→ 8h̄β

9Ω2
, (B.28)

I(1, 1, 1, 1, 1, 1)
β→∞−→ 2h̄β

3Ω3
, (B.29)

I(1, 2, 2, 1, 0, 0)
β→∞−→ 22h̄β

27Ω3
. (B.30)

In Section 2.10, one needs additionally:

I(1, 3, 0)
β→∞−→ 4h̄β

3Ω2
, (B.31)

I(1, 2, 0)
β→∞−→ 2

h̄β

Ω2
, (B.32)

I(1, 1, 0)
β→∞−→ 4

h̄β

Ω2
, (B.33)

I(1, 1, 1, 2, 0, 0)
β→∞−→ 16h̄β

9Ω3
, (B.34)

I(1, 2, 1, 0, 0, 0)
β→∞−→ 4

h̄β

Ω3
, (B.35)

I(1, 1, 1, 0, 0, 0)
β→∞−→ 8

h̄β

Ω3
. (B.36)





Appendix C

Shooting Method

In this section, it will be demonstrated how the time-independent Schrödinger equation (3.5)

can be solved by using the so-called shooting method. In natural units, h̄ = 1, M = 1, Eq.

(3.5) reads

−1

2
ψ′′(x) +

(

1

2
ω2x2 + gAx3 + g2Bx4

)

ψ(x) = E ψ(x) . (C.1)

In order to illustrate the application of the shooting method, we consider this equation with-

out the cubic nonlinearity, i.e. A = 0, and for arbitrary positive but fixed values of ω2 and

g2B. For any preassigned value of E, the wave function ψ(x) can be obtained numerically,

e.g. with the aid of the Runge-Kutta method. Since the differential equation (C.1) is of

second order, the starting values ψ(xs) and ψ′(xs) need to be known in order to obtain a

unique solution. For A = 0, the anharmonic potential is even, and the eigenfunctions have

defined parity. The ground-state wave function has no zeros and is thus even. Therefore,

choosing xs = 0, one obtains the starting value ψ′(0) = 0 and ψ(0) is fixed by the normal-

ization condition. Initially, one can choose ψ(0) = 1. The ground-state energy E0 can be

ψ(x)

x642−2−4−6

1

0.8

0.6

0.4

0.2

a)

ψ(x)

x642−2−4−6

1

0.75

0.50

0.25

0.25−
0.50−

b)

Figure C.1: Numerical Solution of (C.1) for a) ω = 1, A = 0, B = 1, g = 0.01, E =

0.5007468224 and b) ω = 1, A = 0, B = 1, g = 0.01, E = 0.5007468283.
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Choose uncertainty ǫ

Find Emin, Emax

?

E0 =
Emin + Emax

2

?

Numerically solve

−1

2
ψ′′(x) + V (x)ψ(x) = E0ψ(x)

?

Examine divergence of numerical solution

→ + ∞

?

→ −∞

?

Emin = E0 Emax = E0

? ?

Emax − Emin ≤ ǫ

?

E = E0 ± ǫ

yes

no

�

Figure C.2: Algorithmic procedure of the shooting method.

determined iteratively since the numerical solution of the differential equation (C.1) will di-

verge towards positive infinity when an energy value is chosen that is greater than the actual

ground-state energy (E < Ereal), but it will diverge towards negative infinity when an energy

value is chosen that is smaller than the actual ground-state energy (E > Ereal). Figure C.1

a) and b) show examples for the two cases. In this way, one deduces that the actual ground

state energy for the potential V (x) = 0.5x2 + 10−4x4 is between Emin = 0.5007468224 and

Emax = 0.5007468283. Figure C.2 shows a flow chart of the algorithmic procedure of the

shooting method.

For A 6= 0, one can no longer assume ψ′(0) = 0. The shooting method can, nevertheless,

still be applied; but now two quantities, E0 and ψ′(0), have to be determined iteratively.

For an arbitrarily chosen pair of values of E0 and ψ′(0), the numerical solution of (C.1)

might diverge towards towards positive infinity for x→ ∞ and towards negative infinity for
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x → −∞, or vice-versa. Thus, when applying the shooting method as illustrated in Fig.

C.2, the type of divergence has to be determined for x > 0 or for x < 0; and depending on

which of the possibilities is chosen, one obtains different values for the ground-state energy.

The correct value of the ground-state energy, however, is obtained for that particular value

of ψ′(0) that leads to identical results when examining the solution’s divergence for x > 0

and x < 0.
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