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Abstract

The computational potential of neural circuits arises from the intercaiomscand interactions be-
tween their elements. Feedback is a universal feature of neurormadipagion and has been shown
to be a key element in neural signal processing. In biological neuralitsr delays arise from
finite axonal conduction speeds and at the synaptic level due to transraldase dynamics. In
this work, the influence of temporal delay on neural network dynamics estigated. The basic
feedback mechanisms involved in the regulation of neural activity cons®nall circuits com-
posed of two to three neurons. We analyze a system of two interconnmeateahs and show that
finite delays can induce oscillations in the system. Employing a perturbativeaghpin combi-
nation with a resummation scheme, we evaluate the limit cycle dynamics of the systeshow
that synchronous oscillations can arise when the delays are asymmeitticerfore, distributed
delays can stabilize the system and lead to an increased range of pasdioreterich the system
converges to a stable fixed point. We next consider a delayed neurchMtitia a characteristic
topology commonly found in neural feedback circuits. We show that thtersysan be both robust
and sensitive in regard to small parameter changes and examine the sigeifafathe different
projections. We then address the functional role of a particular fe&dbap found in the visual
system of nonmammalian vertebrates. We show that the system can funcioniaser-take-all’
and novelty detector and examine the influence of temporal delays on tieens/performance.
Biological systems are subject to stochastic influences and display somee ddglisorder. We
examine the role of noise and its effect on the stability of the synchronizedista system of two
coupled active rotators. Finally, we show that disordering the drivinge®in arrays of coupled

oscillators can lead to synchronization in these systems.
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Chapter 1

Introduction

The computational potential of neural circuits arises from the intercaiomscand interactions be-
tween their elements. Among the cells found in living organisms, neurong@u&kable in their
ability to generate electrical signals in response to chemical and other inpdtsansmitting them
to other cells. They achieve rapid signal propagation over large disté@yagenerating characteris-
tic electrical pulses called action potentials or spikes, which travel dowre riigrers. Neurons are
nonlinear elements, which is evident from the fact that they have a tHdefshigroducing spikes.
A weak stimulation may have no effect, while several weak stimuli togetheraiupe an action
potential, and thus cause a dramatic change in the neuron’s membrane potentia

The nervous systems of higher animals are complex. These intricate netwfaynaptic con-
nections among neurons of diverse phenotypes take incoming sersaryedcode them into var-
ious biophysical variables, and subsequently perform differermatipes on these variables to ex-
tract relevant features from the input. The outcome of some of these tatiops is stored for later
access and will, ultimately, control the motor output of the animal in various Jtdy$he remark-
able effectiveness of biological information processing depends tnthe nonlinear response of
the neurons and the large connectivity among them [2].

The flow of information in neural circuits is not unidirectional. Rather, feadrd connections,
which bring input to a given region from another region located at dieeatage along a particular
processing pathway, are often paralleled by descending feedbaskat®ns. In fact, many neural
pathways are dominated by feedback [3]. Often pairs of reciprocalyected regions in the

nervous system are spatially separate. For instance, the primate coftdioathéeedback loop

1



Introduction

extends over a distance of approximately 100 mm. Thus, for a typical acbiemiml speed of
1 m/s we expect a signal delay of 100 ms. In addition to the delays arisingtfrempropagation

of action potentials, delays occur at the synaptic level due to transmittesealigaamics and due
to the integration time of post-synaptic potentials at the dendritic tree level vpostesynaptic

potentials have a finite conduction speed to the soma [4]. It is well-knowtitiatelay can cause
an otherwise stable system to oscillate [5—-7]. In particular, it has beemnstiat when signal

delays are larger than the neural response time, complex loop dynamiagedBiet0]. Therefore,

finite delays are an essential property of any realistic model of a populaftieurons [11].

Nonlinear dynamics is a powerful analytical tool for understanding aedigting behaviors
of complex systems. In 1952, Hodgkin and Huxley developed the nonldi#arential equations
that explain the generation of action potential in neurons [12]. Since tlygamical modeling of
neural systems has had a history of success. For instance, fedtneesal rhythmic behavior have
been explained and predicted, and many interesting dynamical modelsmfiteand memory have
been suggested. Often, the study of bifurcations in neural models anditno experiments is a
keystone for understanding the dynamical origin of single-neuron mogittphenomena involved
in neural information processing [13].

The equations that arise in the description of the dynamics of complex systemstaisually
be solved in closed form. Fortunately, many different approximation teaksifgave been devel-
oped in order to treat systems that cannot be solved analytically. Thesedsethn be roughly
classified into two different categories: numerical methods, which explipdssibility to rapidly
execute calculations on a computer, and analytical approximation methoele edrtain assump-
tions are made in order to simplify the original problem. Numerical methods hravempto be an
enormously powerful and successful tool to describe even the mostlicated physical scenarios.
Nevertheless, the accuracy of numerical methods is not always sufgetiwat of analytical ones,
and usually more insight into the underlying system is obtained by meanslgfieaaapproxima-
tion approaches.

In this work, analytical and computational methods are applied to examine tzanilyal be-
havior of neural feedback loops. Special emphasis is given to thesdptagent in such systems.
Additionally, the effects of noise and disorder on systems of coupled dscdlare investigated.

This dissertation contains eight chapters based on the following papdrstd in scientific jour-
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nals, and manuscripts submitted for publication or in preparation:

Chapter 2: S. F. Brandt, A. Pelster, and R. Wesgailiational calculation of the limit cycle
and its frequency in a two-neuron model with delBiays. Rev. E74, 036201/1-14 (2006).

Chapter 3: S. F. Brandt, A. Pelster, and R. WesSghchronization in a neuronal feedback
loop through asymmetric temporal delaygirophys. Lett79, 38001/1-5 (2007).

Chapter 4: U. Meyer, J. Shao, S. Chakrabarty, S. F. Brandt, ksdly and R. WesseDis-
tributed delays stabilize neural feedback systé&nbmitted).
ar Xi v: 0712. 0036 [ physi cs. bi o-ph].

Chapter 5: M. Caudill, S. F. Brandt, and R. Wesggslnamics of neural feedback triads with

delays(in preparation).

Chapter 6: S. F. Brandt and R. Wess@linner-take-all selection in a neural system with

delayed feedbaciBiol. Cybern.97, 221-228 (2007).

Chapter 7: S. F. Brandt and R. WessEhe isthmotectal feedback loop as a winner-take-all

and novelty detection circuftn preparation).

Chapter 8: S. F. Brandt, A. Pelster, and R. Weddeise-dependent stability of the synchro-

nized state in a coupled system of active rotatorpreparation).

Chapter 9: S. F. Brandt, B. K. Dellen, and R. WesSghchronization from disordered driving
forces in arrays of coupled oscillatarBhys. Rev. Lett96, 034104/1-4 (2006):

Many anatomical, histochemical, and physiological observations showetedms are incorporated

into functional circuits, or modular units [3, 14-16]. The basic feedbaekhanisms involved in

the regulation of neural activity arise from small neural circuits compa$édto 3 neurons [11],

which constitute the building blocks out of which larger modular units aretogeted. In Chap. 2,

we consider a system of two neurons with delayed coupling, where th#icgs are of opposite

signs. We show that the system of delay differential equations (DDEsYscribes the dynamics

of our two-neuron model has a stable stationary point, as long as the stiva délays does not

A reprint of this publication has also been included in: B. K. Dell@omputing Visual Contex®h.D. thesis,
Washington University in St. Louis, 2006.



Introduction

exceed a critical value. Once the delays are increased beyond this tredixed point looses its
stability and a stable limit cycle emerges via supercritical Hopf bifurcation. pjiéy/a perturbative
approach to evaluate the frequency and trajectory of these oscillatipusvas series in the delay.
The perturbation expansions yield accurate results for delays closelifubmation. For delays far
away from the bifurcation, however, the perturbative results are sselkherefore, we apply two
different resummation methods to the perturbation expansions in order to ofsalts that hold
for larger delays. We first apply the Shohat expansion method [17wdilows us to evaluate
the frequency of the oscillations and the limit cycle trajectory for larger deldyowever, with
increasing delays, the accuracy of the Shohat expansion worsenigidr to improve the accuracy
of our results, we then apply variational perturbation theory (VPT). Tinithod is based on a
variational approach due to Feynman and Kleinert [18], which has $estamatically extended to
the nonperturbative approximation scheme now called VPT. It is capaldenverting divergent
weak-coupling into convergent strong-coupling expansions and éas successfully applied in
various quantum or statistical field theories [19-22]. A first applicatioWBT in the field of
nonlinear dynamics is found in Ref. [23], while the publication reprinted iafCR extends the use
of VPT for the first time to a system described by DDE’s. After the variatioeeummation of our
perturbation expansions, we have very reliable results even in lowsoather for large delays for
both the angular frequency and the limit cycle of the oscillations.

For simplicity, we take the delays to be equal for both legs of the feedbapkioour model
of Chap. 2. In real feedback systems this is not necessarily the aadeed, in the isthmotectal
feedback loop, a feedback structure in the visual system of nonmammatligbates, which we
examine in Chaps. 4 to 7, the axons for the feedforward projection latesety thin and unmyeli-
nated, whereas they are thick and myelinated for the feedback proje&ione the conduction
velocity along unmyelinated axons is 0.1-1.5 m/s, whereas it is 30-50 m/s in myelavaias
[24], it can be expected that the action potential propagation delayseftwthdirections could dif-
fer significantly. Chapter 3 extends the two-neuron model consideretlap.@ to the case where
the delays are asymmetric. We show that for couplings of opposite sigmsireetric delays lead to
synchronous oscillations in the feedback loop. Employing an approach istmilee procedure in
Chap. 2, we first evaluate the phase shift between the oscillations of theetwons perturbatively.

The accuracy of the results that we obtain is only good as long as the siin@ w¥o delays in the
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Introduction

feedback system is close to the bifurcation point, and we again apply VREWorour perturbation
expansion. The VPT results that we obtain are very accurate even ind@nsa@nd for large delays.

The optic tectum (TeO, mammalian homolog: superior colliculus, SC) is the prinisugalv
center in the midbrain of non-mammalian vertebrates. It is reciprocally ctethéz and strongly
affected by a smaller midbrain nucleus called the nucleus isthmi (NI) in nonmanmaaichpara-
bigeminal nucleus in mammalian vertebrates [25]. In the avian visual pathieai! consists of
three subnuclei: the nucleus pars parvocellularis (Ipc), the nuclessrgnocellularis (Imc), and
the nucleus pars semilunaris [26, 27]. In both Ipc and Imc the projectioon the tectum is topo-
graphically organized such that the retinotopic map is preserved in bokdi,nuith the projection
to the Imc being somewhat coarser than for the Ipc. In contrast, the isthajgpons back to the
TeO are very different for Ipc and Imc. Ipc neurons project badkéoTeO in a precise homotopic
manner, i.e., the axons of each Ipc neuron terminate in that part of the atimtéom which their
visual inputs come. Imc, on the other hand, has two populations of neunesof the populations
makes heterotopic projections onto the TeO whereas the other one prgestsdpically onto the
Ipc. Anatomical studies furthermore indicate that a given cell in the Imc doeproject back to
the locus in the TeO, or to the corresponding locus in the Ipc, from whigtéives input, whereas
it does project to all other locations [26, 27]. In this sense, the feddbam the Imc can be termed
‘antitopographic.’

Experimental results obtained by U. Meyer, J. Shao, H. Luksch, aMieRsel for the delays
between the different components of the isthmotectal feedback loopveme igi Chap. 4. These
results show that the delays in the isthmic system exhibit considerable variabilgytherefore
extend our two-neuron model from Chaps. 2 and 3 to accommodate thefdadis&ributed delays
in Chap. 4. In this approach, the model can be considered to descrilmdiractions between two
populations of neurons. We model the distribution of the delays with a Gammiagligin, which is
characterized by its mean and standard deviation. We show that the irttoodofonzero variance
in the delays leads to increased stability of the system, in the sense that theatssaat @vhich the
fixed point of the system looses its stability grows with increasing standaidtibe of the delay
distribution. We demonstrate that this increased stability can be attributed torttrdoation from
shorter delays in the Gamma distribution.

In Chap. 5, we consider a three-neuron system representing tHefdeslystem between TeO,

5
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Ipc, and Imc. As pointed out above, this topology consists of two delagedbiack loops with an
asymmetric lateral connection between them. We observe that this feedbaddoprology appears
to have evolved independently in different vertebrate neural feddtieauits. A simple model in
terms of finite difference equations of the feedback triad has five ctiopnextrength parameters.
We show that, under certain circumstances, the system dynamics depgioa dwo effective pa-
rameters that are given by algebraic combinations of subsets of theifjirgabparameters. Thus,
equivalent system dynamics can be observed with widely differing paearsettings. When the
lateral connection between the two elements of the feedback loop is nehprese of the effective
parameters vanishes and geometrical convergence to a fixed poimng émcmany choices of the
synaptic strengths. The parameter space of synaptic weights in the dkedbe has regions with
robustness towards parameter changes, where shifts in the weightsldadito changes in the ac-
tivity state of the circuit. However, the parameter space also contains sdgiaich small changes
in synaptic strength lead to drastically different network activity. This is resoént, of neural cen-
tral pattern generators, which are small microcircuits capable of progidaythmic outputs without
rhythmic sensory inputs [28, 29]. The activity states of these circuits eazhlnged by sensory
afferents and neuromodulators making the circuits multifunctional and dya#dynitastic [30].

Chapter 6 contains a computational study of the isthmotectal feedback lcegmirdrto its func-
tioning as a ‘winner-take-all' (WTA) network. In models of selective visatéention, the stimulus
is encoded in a ‘saliency map’ that topographically represents the caoitgmé€ the stimulus over
the visual scene. The most salient location is then chosen by a WTA netwarky a neurally
implemented maximum detector [31]. The isthmotectal feedback loop has bejectooed to per-
form WTA selection by different authors [32, 33]. However, divargviews of which elements
in the isthmic system mediate excitation or inhibition were expressed. In Chapsé tlifferent
scenarios are studied and their efficiency for WTA selection is evaluslitedshow that the delays
in the feedback loop can be crucial, as they may induce WTA behavior tdrthet.c

The investigation presented in Chap. 6 employs a model for the neuronglrfites. In Chap. 7
we use a spiking-neuron model to further examine under what circunestéme isthmotectal feed-
back loop can function as a WTA system. Furthermore, recent resultshi@4demonstrate the
sensitivity of the isthmic system to novel stimuli are taken into account. Ouaheetwork model

contains a large number of free parameters. We restrict some of thesegtars according to re-
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sults obtained in anatomical and electrophysiological experiments. The iagige parameters
are then optimized by applying a genetic algorithm. Our algorithm uses therparioe of the
network model in a WTA and novelty detection task as a fitness function faptimization proce-
dure. We show that for optimized parameter values the isthmotectal feedémetrk can perform
the specified WTA and novelty detection tasks almost perfectly. Examiningtiveegence of the
algorithm to certain regions of the parameter space, we demonstrate \Wdiaereombinations
of different parameters can be expected in the biological system. We ceitiygse findings with
available experimental data.

A common feature of both biological and model neurons is that sufficientngtinput causes
them to fire periodically; the neuron displays oscillatory activity. For s@stwld inputs, on the
other hand, the neuron is quiescent. When a subthreshold input is cahitfiea noisy input,
however, the neuron will be pushed above threshold from time to time arspfites in a stochastic
manner. In this regime, the neuron acts as an excitable element. The dyn&sich @ system
can be described by the active rotator model developed by Kuramotooaradkers [35, 36]. In
Chap. 8 we examine the influence of noise in a system of two coupled aatatens. Depending
on both the coupling strength and the noise, the two rotators can be in aa@yizeld or desyn-
chronized state. We distinguish between the two states by considering thebpity density of
the system that we obtain as the stationary solution to the correspondingrilikck equation.
The synchronized state of the system is most stable for intermediate noisstintarthe sense
that the coupling strength required to desynchronize the system is maxithid abise level. We
evaluate the phase boundary between synchronized and desyimetretates through numerical
and analytical calculations.

Networks of coupled nonlinear oscillators provide useful model systenthé study of a vari-
ety of phenomena in physics and biology [37]. Among many others, exarfinplagphysics include
solid-state lasers [38] and coupled Josephson junctions [39, 40plbgl, the central nervous sys-
tem can be described as a complex network of oscillators [41], and alihete/orks of heart cells
are examples of biological structures with strong nearest-neighboticgg2]. In particular, the
emergence of synchrony in such networks has received incretisatian in recent years [43, 44].
Disorder and noise in physical systems tend to destroy spatial and termggukdrity. However, in

nonlinear systems, often the opposite effect is found and intrinsically poigesses, such as ther-
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mal fluctuations or mechanically randomized scattering, lead to surprisindgyext patterns [45].
In Chap. 9 we consider an array of coupled oscillators. When dripechsonously, i.e., all driving
forces have the same phase, the networks display chaotic dynamics.oWéhstt random phases
in the driving forces result in regular, periodic network behavior. rmediate phase disorder can
produce network synchrony. Specifically, there is an optimal amourtia$epdisorder, which can
induce the highest level of synchrony. These results demonstrate ¢hsppdkiotemporal structure

of external influences can control chaos and lead to synchronizatimniinear systems.
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Chapter 2

Variational calculation of the limit cycle
and its frequency in a two-neuron model

with delay

We consider a model system of two coupled Hopfield neurons, which esided by
delay differential equations taking into account the finite signal propayatial pro-
cessing times. When the delay exceeds a critical value, a limit cycle emergas via
supercritical Hopf bifurcation. First, we calculate its frequency anddtayjg pertur-
batively by applying the PoincasLindstedt method. Then, the perturbation series are
resummed by means of the Shohat expansion in good agreement with nlinedtiea.
However, with increasing delay, the accuracy of the results from thb&expansion
worsens. We thus apply variational perturbation theory (VPT) to the fiation ex-
pansions to obtain more accurate results, which moreover hold even in thefliange

delays.

2.1 Introduction

Feedback in biological systems has received increased attention irt yeees [1]. In particular,
the role of delayed recurrent loops in models of population dynamics, reptgy, physiology,

immunology, neural networks, and cell kinetics has been studied ex¢gng. Neural network
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systems are complex and large-scale nonlinear dynamical systems, arythéineick of a delayed

network are yet richer and more complicated [3]. Hopfield [4] propassdnplified model of a

neural network in which each neuron is represented by a linear cikmnsisting of a resistor and a
capacitor, coupled to other neurons via nonlinear sigmoidal activatianifunrs. From this model,

he derived a system of first-order ordinary differential equationsetriibe the network dynam-
ics. Extending Hopfield's model, Marcus and Westervelt [5] considdreceffect of including a

temporal delay in the model to account for finite propagation and signeépsing times.

In networks of real neurons, delays occur at the synaptic level dinartsmitter release dynam-
ics and the integration time of post-synaptic potentials at the dendritic tree lbeeb\wost-synaptic
potentials have a finite conduction speed to the soma, and in the axons duéinddtexonal con-
duction speed of action potentials [6]. It is well-known that time delay carseam otherwise
stable system to oscillate [7—9] and may lead to bifurcation scenarios redualtthgotic dynamics
[10, 11]. On the other hand, delayed feedback permits the controlaafscfi2], where it can be
used to stabilize unstable periodic orbits in chaotic attractors [13, 14].riExpetally, time-delayed
chaos control was successfully applied, for instance, to electroniitat@cs [15], mechanical pen-
dula [16], lasers [17], and chemical systems [18]. Furthermore,eatigcproposed scheme for the
treatment of neurological disorders employs delayed feedback in trééficiently desynchronize
the activity of oscillatory neurons [19]. Therefore, finite delays areessential property of any
realistic model of a neuron population [20].

In the vast majority of cases, information about a physical system canbenfibtained by
means of numerical or analytical approximation methods. Numerical method8tate a powerful
and effective tool to describe even extremely complicated physical saendNevertheless, their
accuracy is not always superior to that of analytical approximatiorsuanally more insight into
the physical principles that govern the system is obtained by pursuintpéyrtiaal approach. Often,
perturbation expansions are easily accessible, but they are usualtgeatit and need resummation.
A recently developed, powerful method to perform such a resummatiomiativaal perturbation
theory (VPT), which has been successfully applied in various quantwstatstical field theories
[21-25]. A first application of VPT in the field of deterministic nonlinear dynes is found in
Ref. [26], while the present work extends the use of VPT for the first toveesystem described by

delay differential equations (DDE’s).
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In Sect. 2.2, we introduce the two-neuron model and the system of DDdE'svehconsider. The
results of a linear stability analysis of the model system are reported in S&@n@ it is shown that
a limit cycle emerges via a supercritical Hopf bifurcation when the delayeslsca critical value.
In Sect. 2.4, the PoincasLindstedt Method is applied to derive the perturbation expansionsdor th
delay-induced limit cycle and its angular frequency. In Sect. 2.5, we &pplyshohat expansion
to the perturbation series of the limit cycle and its angular frequency ag arfide resummation
approach. In Sect. 2.6, we resum the perturbation expansions usingiiieh allows us to improve
the quality of our results significantly and to obtain results which are reakoaaen in the limit of

large delays.

2.2 Model

Neural circuits composed of two or three neurons form the basic fekdbachanisms involved
in the regulation of neural activity [20]. Many researchers have b#edcation analysis and nu-
merical simulations in order to analyze a system of two Hopfield-like neurotis discrete or

distributed time delays [27—-35]. In this investigation, we apply analyticalag@mation methods

to a two-neuron system with delay, described by the coupled first-orfd&'D

du;t(t) = —uy(t) + a; tanhfug(t — 7¥)]
dudgt(t) = —ua(t) + ag tanhfu; (t — 7_(1))] . 2.1)

Here,u; anduy denote the voltages of the Hopfield neurons afid and+(® are the signal propa-

gation or processing time delays, while anda, describe the couplings between the two neurons.

2.3 Linear Stability Analysis

The system of DDE’s (2.1) has a trivial stationary pointuat= us = 0 and we first analyze its

stability. Near the equilibrium point, linearizing the DDE system yields

w(t) = —ui(t) +ajug(t —7?),
ﬂg (t) = *UQ(t) + a2uq (t - ’7'(1)) . (22)
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Setting
u(t) = M (2.3)

in the last equation, wherkis a complex number, ang andcs, are constants, we get a nontrivial

solution if and only if
(A4 1)2 - araze T . (2.4)

This equation has been analyzed in detail in Ref. [28].drar < —2 the conditions of Theorem 2

in Ref. [28] are met. Defining = (r() + 7(?))/2 and
T = 1 [sin_l <—2w°) +2jw} , j=0,1,2,---, (2.5)
2(4)0

wherewy = +/]a1az| — 1, this theorem states that:
» If 7 €0, 19), then the zero solution of (2.1) is asymptotically stable.
* If 7 > 79, then the zero solution of (2.1) is unstable.
* 75, Withj =0, 1, 2 -- -, are Hopf bifurcation values of (2.1).

Furthermore, Theorem 3 in Ref. [28] states that the Hopf bifurcatien=atr, is supercritical. Note
thatiwy is the solution to (2.4) when = 7, and the period of the limit cycle at the Hopf bifurcation

is thusTy = 27‘(’/(4)0.

2.4 Poincae-Lindstedt Method

Figure 2.1 shows numerical solutions of the system of DDE’s (2.1) for tleecages in which the
delayr is either smaller or greater than its critical value. Below the critical vajuaf the delayr

no periodic solution exists, while above= 7 there is such a solution. We now consider the case
) =73 = 7 4149 < —2 and seek to calculate the period and trajectory of the periodic solution

approximately. To this end, we apply the Poireshindstedt method [36]. Since a supercritical
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a) b)
0.2 0.2
0.1 0.1
us(t) 0 @ us(t) 0
—0.2} —0.2
—0.4} —0.4
010 01 02 o1 0 01 02

uy (t) uy (t)

Figure 2.1: Numerical solutions of the system of DDE’s (2.1) with= —1, as = 2 andr(}) =
7(2) = 7. For this choice of parameters, the critical value of the delay is 7/4 ~ 0.7854... .

In (a) the delay isr = 0.7, and the origin is a stable fixed point. (n) the delay exceeds the critical
value: 7 = 0.8. In this case, the origin is unstable and the trajectory approaches a limit ¢gycle
both cases the initial conditions aug(t) = 0.2, ua(t) = 0 fort € [—7,0].

Hopf bifurcation occurs at = 7y, we assume that the amplitude and frequency of the new periodic

states are analytic in= /7 — 79 and expand them as

u(t) = €U@lt) =€ |UO@) +eUD@) +--- |, (2.6)

w(e) = wo+ews+ewyt . (2.7)

It is convenient to rescale the argument of these functions so that theynleeperiodic with period
27. We thus introduce the new independent varigldecording t&€ = w(e)t, and we writeU (t) =
V (&), Applying the perturbation expansion (2.6) to the system of DDE’s (2.d)p@mforming this

change of variables, we obtain

w(©THE — —vi(e) + L tani {3l — a(9)}
w(e) d‘gf) = Va(0) + Ztanh {eVilE — ale))} | 2.8)
in which
a(e) = w(e)T = w(e)(1o + %) = woTo + w1 Ty + € (wo + waTp) + - - . (2.9)
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The delayed variabl®) 5§ — a(e)] is written as
ViE—a(@] = VO a) +ev(Ea) +--- (2.10)
corresponding to the expansion in (2.6), which is equivalent to
V(E) =VOE +ev(©) + - (2.11)
In order to take into account (2.9), each term in the expansidi(gf— «) is expanded as a Taylor

series:

. , G (¢
V(J)(g,a) = V(J)(f — WoTo) — €W1To dvdjg,(g) +e (2.12)

&'=E—~woTo

Applying the expansions fov (£) andV (¢ — «) to (2.8) we obtain to zeroth order in

av© v
1d£<f> _ —1M)(€)+Z(1)V2(0)(§—w070),
v A
2@ - VO, a0 213

Imposing the initial condition:Vl(O) (0) = Ay, VQ(O) (0) = By on the periodic solutioV(? (¢), we

find the general solution to the system of homogeneous differential eqagfd 3) as

V(O) &) = Agcosé + Boaysin(wgmp) siné,
1
AO

(0)
- B S e VR
V2 (§) 0cosg a1 sin(woTp)

sin&. (2.14)

The periodic solutioV (¢) to (2.8) can only be determined up to an arbitrary phase. Without loss of
generality we can thus choog® = 0 in (2.14), which fixes the phase of the zeroth order solution,
at least up to a shift of.

In general, to ordet™, we have to solve the system of differential equations

v v n n
1d£<5> _ _1w0<€>+ %V; (€ = woro) + £ (e) |
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av™ ) § )
zdf({) N _2wo<§)+ szVl( (€ = woro) + £7(6), (2.15)

where the inhomogeneify™ (¢) is determined by the solutions to previous orders. Since we require
that the solutiorv (™) (&) be periodic in¢ with period2x, we can impose certain conditions on the
inhomogeneityf™ (¢). Namely, we demand th&t™ (¢) not contain terms that would lead to non-
periodic solutions fol (") (¢), i.e., f(") (¢€) must not contain secular terms. In order to identify the

conditions that must be satisfied By (¢), we expandv () (¢) andf(™ (¢) as Fourier series:

() < | ([ a® "

v, a b

1( )(5) _ Z 2’; cos k€ + 2]; sink&| , (2.16)
RGN = A bui

() o [ o o

(6%

D) < (o (8 e
f2 (g) k=1 I 0427,C ﬁz,k

By inserting the expansions (2.16), (2.17) into the systems of equatior,(2é find that the

coefficient of the the terms with = 1 in the inhomogeneit§(™) (¢) must satisfy the conditions

as sin(ono)osz) + ﬁéﬁ) = 0, (2.18)
agﬁ) —as sin(wOTo)ﬁﬁ) = 0. (2.19)
The derivation of these two conditions is demonstrated in the appendix.
After this general result, we now consider the first-order expansidmeosystem (2.8). Taking

into account the result (2.14) and the choige= 0, we obtain the inhomogeneif§!) to be given

by

wo

7€) = Agen (m cose + 1 H 0 g 5) (2.20)

and

1
az(1 + 7o) sin(woTo) cos € + ——0
wo aq sin(woyTo)

E = A [ sin g] . (2.21)
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Thus, according to the conditions (2.18), (2.19), we must demand

2Agw17'0 -0 and 4A0w1(1 + TO)

o 2eomlY — =0. 2.22
ay sin?(woTg) a1 sin(2woTo) ( )

We must thus have eithety = 0 or w; = 0. If we choosedy = 0, we only obtain the trivial
solution. Thus, we choose, = 0, and the coefficieni is yet to be determined. The solution for

V1 (¢) is then simply given by the solution to the homogeneous system:

‘/1(1)(5) = Ajcos¢,

W = 4
‘/2 (5) - aq Sin(WOT()) SIHE, (223)

whereA; is to be determined in higher orders.
Expanding (2.8) up to ordef while taking into account the zeroth- and first-order result, we

obtain the inhomogeneitff?) (¢) as given by the expansion (2.17). For the first component we have

2 A3(1 + w2)

agg = —W + Ao(wo + Tow2) ,
A1+ w?) Ayl

B = o two)+ o +TO)W2+A07

’ 4&1 wo
W2 ABwi—1)

13 12¢2

3 2

(2) — A0(3 - wO) 2.24

ﬂl,B 12@% : ( ' )

And for the second component we have

ag = —agsin(wyTp) [ 1+ TO) + Ao] 7
521) = —azsin(wyTy) [ + Ao(wo + TOW2)] ;
) A3
ag’g = —a Sm(wOTO)TS [2 cos(2womo) — 1] ,
A3
52?3 = —agsin(wyTp) T 02 cos(2woTo) + 1] , (2.25)
wo

while all other coefficients vanish. Imposing the conditions (2.18), (2.1%he inhomogeneity
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n o wp
5 _ 4
247
4 4(341 + 1087)
27(2 + )3
6 - 8(73843 + 407737 + 583272)
729(2 4 7)°
g 1440729464 + 37 (359606308 + 928145677 + 839808072)
98415(2 4+ m)”
0 - 2(1885638326848+ 97 (193375795408 4 37 (22966214893 + 47 (952738307 4 629856007) ) ))

13286025(2+1)?
12 (48294520193761504 + 3(17432699637100336 + 37(2577825095210584
+7(596088219927028 + 729593540944417 + 380936908800072))))/(8370195750(2 4 7))

14 —(137083613818976067424 + 37(56352224911533618320 + 37(9835626348748269040
+37(949130678879606440 + 37(54285350368574420
+7(5287281140608997 + 2285621452800007))))))/(1129976426250(2 + )*?)

16 (290578164278923471719089408 + 97 (44452665928743252091582336
+37(8868376426577693217600640 + 37(1013305929108995195501920+
97 (24272564564656648301080 + 7(3331148075811324207916 + 7(270489187825118497343
+99835945058304000007)))))))/(111054083171850000(2 + )'?)

Table 2.1: Expansion coefficients for the angular frequency of the linledpra; = —1, as = 2
up to ordere'S,

£()(¢), we obtain the system of equations

AF(1+ af + W) — 8afwo(wo +werg) = O,
Awo(1 4 a? +wd) +8a3wo + 8a (1 + mo)wa = 0. (2.26)
Its solutions read
3 2,,2
wp= - NE - and Ag=+ - Sog —. (27
1 4+ 70 + Towg (1+af+wg)(1+ 10+ wimo)

Choosing the sign ofdy to be positive fixes the phase of our zeroth order solution definitively.
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n (n

a\") k=1 k=3 o) k=1 k=3
4
n= . 0 n=0 0 0
3(2+ )

W9 C5V3(1164+331)  2V3 W 0 143

B 81(2 + m)5/2 27(24m)3/2 | 27(2 + )3/2
ay’) k=1 k=3 o) k=1 k=3
n=0 0 0 n= Ve 0

3(2+m)

g 0 106 o V6(436 +931)  2V6

B 27(2 + m)3/2 B 81(2 + 7)5/2 27(2 + m)3/2

Table 2.2: Fourier expansion coefficients of the limit cycledor= —1, as = 2 up to the second
order ine.

This procedure can easily be carried to higher orders, where ontyaeders lead to nonzero terms
for both the corrections to the angular frequengyand the expansion of the limit cyché (™) (¢).
Expanding (2.8) to ordes®”, we find the coefficientl,(,,_;) and the corrections,, from the con-
ditions (2.18), (2.19).

From here on, we consider the choice of parameters —1, as = 2. These parameter values

lead towy = 1, 7p = 7/4 and the solution (2.27) reduces to

4 and  Ag— > (2.28)

2+ erm

Table 2.1 shows the first eight nonvanishing corrections to the angetarédncy. Note that the signs

w9 = —

of the expansion coefficients, alternate and that their absolute value grows rapidly. This indicates
that the perturbation series foris a divergent Borel series. Table 2.2 shows the expansion coef-
ficients of the first two nonvanishing orders of the Fourier expansidheofimit cycle as given by

(2.16). Figure 2.2(a) shows the first eight orders of the perturldatbedculated angular frequency

W),

N
w) = ngne%, (2.29)
n=0
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a) |, | | | | Py
1t
1.0
050 /

0.8} j
ug(t) Ot |
0.6 05

0.4+

0.2 ‘ ! : : E"‘.‘t\ —1.5 L L i s . = I
0 0.2 0.4 0.6 0.8 1 -1 —05 0 05 ;

Figure 2.2: Perturbative results for the angular frequen@nd the limit cycle{u, (t), ua(t)}. In

(a) the angular frequency is shown as a functiorz.offhe dashed lines represent the perturbative
results as given by (2.29) and Tab. 2.1. Numerical results are showatbyIn(b) the limit cycle
{u1(t), ua(t)} is shown fore = 1. Dashed lines represent perturbative results according to (2.30);
the numerical result is shown by the solid line.

as a function ot. Note that odd and even perturbation orders yield results which areatasgy
smaller and larger than the numerical values. For small values of the dedgyetturbative solu-
tion is in good agreement with the numerical data. Howevee, @ews, the perturbative solution
becomes unacceptable. Figure 2.2(b) shows an example of the pevilsbedilculated limit cycle

given by
N-1
uM (@) =€ > VEI(g/w)e, (2.30)
n=0

where we count the ordéy of our perturbation expansion such that in fki¢h order we obtain the
Nth nonvanishing corrections,y and VW -1)(¢). For the value: = 1 chosen in Fig. 2.2(b),
the limit cycle can still be obtained with good precision from the perturbatiaes€2.30) and as

in the case of the angular frequency we observe that the perturbppvexamations approach the
numerical result in an alternating manner. Howeveg mreases, the perturbative solution (2.30)
becomes useless as in the case of the angular frequency. Thus, inv®whtain analytical results
for larger values of the temporal delaywe must resum our perturbation series. In the next section,
we apply a Shohat transformation to the perturbative results for both theaarfrequencyw®)

and the limit cycleu™) ().
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2.5 Shohat Expansion

Now, we resum our perturbative results by performing a Shohat sigganThis method was first
introduced for calculating the period of a Van der Pol oscillator in Ref|. §id it has been conjec-
tured that the expansion yields results which are valid for all values ofdtearpation parameter
[37, 38]. Furthermore, it has been stated that the Shohat expansigetisssful when the periodic
solution to the differential equation in question is of softening type, i.e., thalanffequencyw
decreases with[39], which is the case for our system as is evident from Fig. 2.2(a).

The basic idea of the Shohat expansion is to map the perturbation pararagteroc) to a new
parametey € [0, 1). In order to perform the resummation of the angular frequency, we inted
the new expansion parametferaccording to the transformation suggested by Shohat in Ref. [37]

and thus set

62

= — 2.31
1+€2’ (2:31)

7

where we explicitly take into account that the perturbation series for thd@amigequency depends

only on even powers aof. Inverting (2.31), we have
2=_r (2.32)

We now obtain the Shohat expansion of our perturbative result byaiegle? in (2.29) according
to the last identity and re-expanding the seriew inp to orderu’V. The Shohat expansion of the
angular frequency is thus given by
N N n n—1
A3y < A >WZ(M>_ (2.33)
n=0 k=0
The resummation of the limit cycle (2.30) is performed in a similar manner and wimobta
N N-1 n n—1
alV () =edum Y ( B} )V@("’“”(t)- (2.34)
n=0 k=0

Finally, in order to evaluate the resummed angular frequency and limit cycedertain value of
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Figure 2.3: Angular frequency and limit cycle after Shohat resummatior§a)lthe angular fre-
qguency is shown as a function @fResults from the Shohat expansion as given by (2.33) are shown
by dashed lines. Numerical results are shown by dots. The inset shoagrafication of the inter-
val4 < e < 5. In (b) the limit cycle is shown foe = 2. Dashed lines represent results from the
Shohat expansion as given by (2.34); the numerical result is showrelsolid line.

€, we replacey in (2.33) and (2.34) according to (2.31).

Figure 2.3(a) shows the angular frequency after Shohat resummaitofuastion of the delay
parametere. We find that, if we go to sufficiently high orders, the resummed expansiddsyie
reasonably good results for all valuescofFigure 2.3(b) shows an example of the limit cycle after
resummation. Note that for the value of the delay parameter in Fig. 2.3(b) thelyive result
prior to resummation would be completely useless.

Figure 2.4(a) shows the convergence of the angular frequency ebtom the Shohat expan-
sion versus the perturbation ord®rfor different values of the temporal delay. For small values of
the delay, the convergence seems to be exponentially fast, at least ugetgtttreorder. For larger
delays, the convergence appears to be less regular. In order to extumiconvergence of the limit
cycle results, we consider the error measure

St ) —a®™ @),

V) = ‘1o , (2.35)
STt ()]

where we rescale the argument of our analytic solution so that its periodniicialeto the period
of the numerical solution and shift the phase of the analytic solution acgptaithe phase of the
numerical solution. Figure 2.4(b) shows the convergence of the resulted limit cycle. As in

the case of the angular frequency, the results from the Shohat éxpamsl their convergence with
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Figure 2.4: Convergence of the angular frequency and the limit cycle @lftehat resummation.

In (a) the logarithm of the relative deviation of the angular frequency as giyg2.83) from the
numerical value and itb) the logarithm of the error measure for the limit cycle as given by (2.35)
are shown versus the perturbation order. In b@athand (b) different symbols indicate different
values ofe (dots: e = 1.6; squarese = 2.0; triangles:e = 3.0; diamonds:e = 4.0, upside-down
triangles:e = 5.0).

the perturbation order are best as long as the delay is not too large. riexthsection, we thus use
a more efficient method to resum the perturbation series. It yields aceeratks already in low
orders, allows us to obtain more precise results, and its convergeneaddeless crucially on the

size of the delay parameter.

2.6 \Variational Perturbation Theory

In this section, we improve the resummation of the perturbation series of thiaafrgquency and
the limit cycle by applying VPT to the perturbation series (2.29) and (2.30%.mathod is based on
a variational approach due to Feynman and Kleinert [21], which has destematically extended

to the nonperturbative approximation scheme now called VPT [22-25].

2.6.1 Basic Principles

VPT is capable of converting divergent weak-coupling into convergiang-coupling expansions
and has been applied successfully in various fields, such as quanturames; quantum statistics,
condensed matter physics, and the theory of critical phenomena. Ithfachost accurate critical

exponents come from this theory [40], as verified by recent satelliteriexpets [41]. First appli-

24



Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

cations of VPT in the field of Markov processes and nonlinear dynamicand in Refs. [47, 48]
and Ref. [11], respectively.

The convergence of VPT has been analyzed up to very high ordettsefground-state energy
of the anharmonic oscillator

1
V(z) = 3 wrz? 4 gat (2.36)

and was found to be exponentially fast [42, 43]. This surprising résdtbeen confirmed later by
studying other physical systems and was proven to hold in general4p3F @rthermore, the expo-
nential convergence seems to be uniform with respect to other systeamgtars. The variational
resummation of perturbation series thus yields approximations which areig@lyereasonable
for all temperatures [44, 45], space and time coordinates [46—48], etiadield strengths [49],
coupling constants [26, 50, 51], spatial dimensions [52], etc.

VPT permits the evaluation of a divergent series of the form

N
fN9) =D ang" (2.37)
n=0

and yields a strong-coupling expansion of the generic form

M
Fg) = g7 bng2m/1. (2.38)

m=0

Here,p andq are real growth parameters and characterize the strong-couplingdeatroducing

a scaling parametey, which is afterwards set to one, Eq. (2.37) can be rewritten as

N
N _ g\"
[ = w3 an (%) (2.:39)
n= k=1
Applying Kleinert’'s square-root trick [23], i.e. setting
KQ__KQ
H:Kvl—i—gr, W|th T:gT (240)
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in (2.39), the variational parametér is introduced into the perturbation series:

FM(g) Za g"KP™"(] 4 gr)(Pmna)/2
n=0

(2.41)

k=1

The Taylor series ofl + gr)® with o = (p — ng)/2 reads

S n( ) ( — 1>k+0(gN_"+1) : (2.42)
k=0

where the generalized binomial coefficient is defined by

a\ MNa+1)
<k> T+ D) (a—k+1)° (2.43)

(1+gr)”®

The series (2.42) is truncated afier= N — n since the original functiorf (M) (g) is only known
up to orderg™. As a result of this truncation, the functigfi’)(¢g) becomes dependent on the

variational parametek’:

Zang"Kp ng Z ( —ng /2> <K2 _ 1>k _ (2.44)

The influence of the variational parameter is then optimized according frithaple of minimal
sensitivity[53], i.e., one evaluates the function (2.44) at that value of the variatmaraimeters’

for which it has an extremum or turning point. In the following, we get <2 in (2.29) and (2.30).

2.6.2 Resummation of the Angular Frequency

We now apply VPT to obtain an improved resummation of the angular frequgn2z9). VPT
is applicable when the physical quantity in question has a strong-couplpansion of the form
(2.38) [23, 24]. Therefore, we first consider our numerical datéhf® angular frequency in the case
of large delays and determine the growth paramgetendq in (2.38). To this end, we a analyze
our numerical data in two steps. First, in Fig. 2.5(a), we plot our numegsallts forln w versus

Ing = In(7 — 79). Fitting our data to a function of the form

f(lng) =p/qlng+1Inby, (2.45)
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Figure 2.5: Angular frequency for large delayg®(— 7o € [50, 100]). In (a) the logarithm of
the angular frequency is shown versus the logarithm of the delay paragmédtemerical data are
represented by dots; the solid line represents a fit of the data to a funttimform (2.45). In(b)
the product of the delay parameter and the angular frequency is sleraumswthe inverse square of
the delay parameter. Numerical data are represented by dots; the soliddiesents a fit of the
data to a function of the form (2.46).

we findp/q = —0.9997 andby, = 1.565. We expect the growth parameters to be integers and thus
setp/q = —1. For large delays, the leading asymptotic behaviap &f thus given byv ~ g=1. In
order to determine not only the ratio pfto ¢ but the individual values of the growth parameters,

we then fit our data fogw to a function of the form

flg™) =bo+brg~?/7, (2.46)

which is shown in Fig. 2.5(b). The numerical results from the fit agg= 1.571, by = —2.7,
andq = 1.993. Thus, we assume = 2 and from our previous result we then hgve= —2. In
order to determiné, andb; numerically with better accuracy, we can now perform a hierarchy of

approximations to ordet/ by fitting gw to functions of the form

M
g => bmg™. (2.47)

m=0
From this procedure we obtain the more precise humerical vajues1.57081 andb; = —2.66.

Now, we can introduce the variational parameiéto the perturbation series (2.29) according to
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(2.44) withp = —2,q = 2:

~ ((p—nq)/2 ’
wVPT 9, K sz gt KPT™ < ) <K2 — 1) . (2.48)

k=0

To first order we obtain

(1) (24 m)(2K?—1)—4g 2 49
wypp(9, K) = K2 +7) ) (2.49)
which has a minimum at
KO = J14-29 (2.50)
247
Evaluating (2.49) at the optimized value of the variational parameter then yields
o) Wy _2+7 2,51
wypr (9, ) g+2+7 (2.51)
In the limit of large delaysy — oo, we thus have
WPl KDY ~ bi0g 7 4 50g 72, (2.52)
with
2
bt = QTT” ~1.28540 and BV = —(2;;) ~ —1.6522. (2.53)
To second order, Eq. (2.48) yields
108 (2 — 3K? 4(341 + 108
W (g, K) = 27 (3K* —3K2 +1) +¢ ( ) | 341+ 108m) (2.54)

97K 2+ RN GRS

Since this has no real extremum in the variational paramitewe look for roots of the second
derivative.
In general, in order to optimize the influence of the variational parametefjrstdook for

minima or maxima oty{,]pT(g, K), and if those do not exist, for positive roots of higher derivatives.
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In each orderV, the optimized variational paramet&iV) is thus determined from the condition

N N
dw\ipr(9, K) _ dw\pr(9, K) o
s =0 or I =0, . (2.55)
K=K{) K=K(®)

In cases where a certain derivative has several positive rootshease the one which is closest
to the optimized value from the previous ordéf¥ —1). The Nth order VPT approximation of the
angular frequency is then obtained by evaluating (2.48) for the valuesafptimized variational

parameter:
W\ (9) = wiph(g, KN). (2.56)

Returning to (2.54), we find that for

2 24 4+ 12 2
§3( + 7)[24 4+ 12w + 5,/35(2 + 7)] ~ 14756 (2.57)

g 587 — 14dr

w%)pT(g, K) has two positive turning points:

70 _ /60 + 157(4 + ) +60(2 + 7)g & 21
) =

3(2+7) ’ (2.58)

with the abbreviation

n=+(2+m)[92+7)3+72(2+ )29 — (587 — 1447)g?]. (2.59)

Comparing (2.58) to (2.50), we find that'> is closer tok (") and thus evaluate (2.54) fdf =

K to obtain

@) (g k) = 27(2 4 m)?
152+ 7)(2 + 7 +4g) — 213

(24 m)[L17(2 + )2 + 936(2 + )29 + 4(1061 + 46877)92]} . (2.60)

{4772 — 422+ 1) (2 + 7 + 4g)y

However, for delay parameters exceeding the valug gif’en in (2.57), we cannot us[éf) since
in this casey becomes imaginary. Thus, if we want to consider the limit of large delays, v&¢ mu

optimize the variational parameter by considering the third derivativeﬂ?étf(g, K), which turns
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out to have two positive roots for all positive

O _ /180 + 457 (4 + ) + 180(2 + m)g £ p
= 3v2(2 + ) ’

with the abbreviation

PV (2 4+ m)[513(2 + )3 + 4104(2 + 7)2g + 16(5137 — 724)g2] .

(2)

Again, K% is closer to the first-order solution, and we #&8) = K| to obtain

54(2 + )?
[45(24+7)(2+ 7+ 4g) — p]?

Wi (g, K@) {p2 — 7224 7)(2+ 7+ 49)p

(2.61)

(2.62)

(2.63)

+(24 7)[1323(2 4 7)% + 10584(2 4 )29 + 16(2771 + 132377)92]} .

Expanding the last result igr !, we obtain
alo, K~ W+,

with

272+ 7 [2047 + 18367 — 721/(2 + 1) (5137 — 724)}
by = . ~ 1.23174
2 [90 + 457 — /(2 + 1) (5137 — 724)]

243(2 5 2
P = 2+ ) 4{63213,/513“;24“6%
8 [90 + 457 — /(2 + 7)(5137 — 724)} ™=
247
437y " g9
x[37 53— 724 °

(2.64)

(2.65)

(2.66)

+426+/(2 + 7)(5137 — 724) — 16193} ~ —1.1229.

It thus turns out that the second order approximation for the leading @idasling large-delay

coefficient is actually worse than the first order one. However, thdtsei higher orders turn

out to be improved approximations. For fixed values of the coupling cangtenprocedure in

higher orders is analogous to the first and second order, wheredtseafcthe first, second, or third
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Figure 2.6: Angular frequency and limit cycle from VPT.(m) the angular frequency as given by
(2.56) is shown as a function effor the ordersV = 1, 2, 8 of VPT (orders three through seven
would lie very close to the curve fa¥ = 8). Dots represent numerical values. The inset shows a
magnification of the interval.8 < ¢ < 5. In (b) the limit cycle is shown foe = 2. Dashed lines
represent the results from VPT as given by (2.70). The numerioalt isshown by the solid line.

derivative ofw%)T(g, K') have to be determined numerically. Furthermore, in order to obtain the
coefficientsb(()N) and b(lN), we expand the derivatives of%)T(g, K) in g~! and the variational

parameterk as
KN — K(()N)gl/Q + KfN)g—lﬁ 4+ (2.67)

in order to carry out the optimization procedure.

Fig. 2.6(a) shows our VPT results for the angular frequency vergsuddlay parameter. The
first order result is already in good agreement with the numerical resulgs\Wide range of delays
and is far superior to the first order result from the Shohat expaijswnpare Fig. 2.3(a)). Figure
2.7(a) shows the convergence of our VPT results for five differalutes of the delay. The accuracy
of our VPT results improves with increasing order; however, not asladyg as in the case of the
Shohat expansion for small delays. Figure 2.8(a) shows a compafigba eighth order results
obtained from Shohat resummation and VPT. In particular, for largeesalfithe delay, the results
from VPT are far superior to the ones from Shohat resummation. Tabksh2\8s our results for
the leading large-delay coefficiertig and the subleading coefficiebit; again, the convergence is

not monotonic, but we do observe a general trend towards improveltsreshigher orders.
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Figure 2.7: Convergence of the angular frequency and the limit cycleraRemmation with VPT.

In (a) the logarithm of the relative deviation of the angular frequency as giyg2.56) from the
numerical values and ifb) the logarithm of the error measure for the limit cycle as given by (2.35)
are shown versus the perturbation order. In b@thand (b) different symbols indicate different
values ofe (dots: e = 1.6; squarese = 2.0; triangles:e = 3.0; diamonds:e = 4.0, upside-down
triangles:e = 5.0).

2.6.3 Resummation of the Limit Cycle

We now proceed to perform a variational resummation of the limit cycle followlegapproach
of Ref. [54]. To this end, we consider the perturbation series of eaefficient in the Fourier

expansion oV () as given by (2.16)

Ny _
A1/2,k = Za1/2kg’

Ny _
Bl/2k = Z b1/2 9" (2.68)
We introduce the variational paramet&rinto the perturbation series foﬁtg/;k andBi/2 ,in the

same way as for the angular frequency, and obtain by applying (2.44¢ tBdtirier expansions

(2.68)

N— N—n
A(N) K) = 2n) n prp—ng - nq L 1 ‘
1/2,k:,VPT(g’ ) = Z ay /2,19 K2 ’

- k
(V) _ (20) o pepn (p—mng)/2\ (1
Bl/Q,k,VPT(Q,K) = E b1/2 L9 KT ( i el 1) . (2.69)
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Figure 2.8: Comparison of the eighth order results(f9rthe angular frequency ar(®) the limit
cycle obtained from the Shohat expansion and VPT. The relative degatiche analytical results
from the corresponding numerical values are shown versus the dmlampter (Shohat expansion:
squares; VPT: circles).

Instead of optimizing (2.69) according to the principle of minimal sensitivity, b&io our VPT
result for the limit cycle more easily by evaluating all Fourier expansionficosfts for that value
of the variational parametdk’ which was determined through the optimization procedure of the

frequency, i.e., our VPT result for the limit cycle reads:

N o) N _ N 3
Vl(’V%DT © - Z Ag,k?va(g? K 1)) cos k& + B§,k,)VPT (9, KW 1)) sin k&
N N B . - ,
‘/2(,V%’T (5) k=1 Ag,k?VPT(g’ K(N 1)) Bé,k,)VPT (g’ K(N 1))
(2.70)

where K (V-1 js determined from the condition (2.55) and we g€’ — Y instead ofK (M), since
the Nth term in the series fov (¢) is a correction of ordeg™ —!.
As an example, we consider the lowest order in which we can performPier¥summation of

the limit cycle. To ordey our solution forV (&) reads

4cosé 5v/3(116 + 337) cos & 2v/3 ) 9
Vi(§) 32+ 1) - { 81(2 + 7)7/2 27(2+W)3/2[c053§—7s1n3§]}+(’)(g ),
~ 4V2sin¢ V/6(436 + 937) sin ¢ 21/6 _ 5
Va(§) ST - { S12 )2 TR )i [5cos3§—sm3§]}+(’)(g ).

(2.71)
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N 1 2 3 4 5 6 7 8 Numerical

béN) 1.2854  1.23174  1.56495 1.59507 1.61990 1.61806 1.61139  1.54478 1.57081

M —165 —1.12 —272 -279  —305  —3.03 -298  —221 —2.66

Table 2.3: Leading and subleading coefficients for the large-delaylmsludithe angular frequency.

Introducing the variational paramet&raccording to (2.69), we obtain

4(2K?% — 1) cos&

V&BPT(& JK) =

K4/3(2+7)
BB ey s rana).
Vyvpr (&, K) 4(2;2 —32?:@
—é{m sin¢ — 27(22;/;3/2[5 cos 3¢ — Sin3£]}. (2.72)

The optimal value of the variational parameter for the angular frequenfiisst@rder is given by

(2.50). Inserting this value into (2.72), we find the following VPT resulttfa limit cycle:

2) 1 2
V. = 108(2 +
1ver(é) o7 3(2+7r)(2+7r—|—4g)2{ (24 7)%cos&

+9[(1148 + 6997) cos § — 6(2 + m)(cos 3¢ — Tsin3¢)] },

Vz(,%;PT(g) = 5 {108(2 + 7)?sin¢

2
2762+ m)(2+ 7+ 4g)

+9((1292 + 7717) sin € + 6(2 + m)(5 cos 3¢ — sin3¢)] } . (2.73)

The procedure in higher order is analogous. Figure 2.6(b) showgRliresults for the limit cycle
for e = 2 up to the eighth order. Figure 2.7(b) shows the logarithm of the error mee&2185)

for the VPT limit cycle versus the ordeY for different values ok. In Fig. 2.8(b) the accuracy
of the eighth order results from the Shohat expansion and VPT are cethp&gain, we find that

our VPT results are more reliable than those from the Shohat expanspmtially for larger delays.
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2.7 Summary

We have performed a perturbative calculation of the limit cycle and its fregum a two-neuron

model with delay. A Shohat resummation of the respective perturbatiomsixpe yields results
which are in good agreement with numerical values but whose accueacgates drastically with
larger values of the delay parameter. Resumming the perturbation series Mitlyiglds more

uniformly converging results, which are reliable even in low orders, anidhérmore permits the
extraction of the leading large-delay behavior with sufficient accuratye present work consti-
tutes the first application of VPT to a system of DDE’s. Moreover, it estaddisa method for the

variational resummation of perturbatively calculated limit cycles in nonlineaadhcal systems.
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Appendix: Elimination of Secular Terms

We now demonstrate how the conditions (2.18), (2.19) are obtained bydedng the Fourier
decompositions of the periodic solution and the inhomogeneity. Inserting @tg2.17) into the
system of equations (2.15) and comparing coefficientso& andcos k€ in both components, we

obtain the following system of four equations:

(n) (n) (n)
a aia arb
0 CUO WO
(n) (n) (n)
b a1b aia
lek — k;af]z _ 2k cos(kwoo) — 2. sin(kwoTo) — ﬁﬁ) = 0, (2.79)
0 wo wo
(n) (n) (n)
a asb
2k kbénlz _ 20k cos(kwoTo) + 2Lk sin(kwoTy) — aéﬁz = 0, (2.76)
0 wo wo
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(n) (n)

b(n) a b asa
fjf’k B aé%) by cos(kwom) — 20y sin(kwoTo) — 55”]3 = 0. (2.77)
0 wo wo

It turns out that fork > 1 the coefficientSal;"), b,(c") can be uniquely determined for any inhomo-

geneity, i.e., for arbitraryx,(c”), ﬂ,i”). Fork > 1 the solution of the system (2.74) — (2.77) is

aj’) = 1 {(aﬁ’fﬁ kwoBy) (wo + k2wd) — arwd sin(kwomo) (2kad) — (1+ k2)wo)
+ajwo cos(k:ono)(Qozg?k) - kaoﬁgbk) + (1= K)wp é;ﬁ)
+(wo + wd) [sin(2kw07'0)(6§?,3 - kwoa%) + cos(2kwoTo) (v g ,2 + kwoﬂl k )] }
0 = 5 + b Do + ) — v sinhr) 2S5 + (1 + Koo )
+ajwy cos(kono)(Qﬁé?k) + 2/~cw0a§n,3 + (1 — kz)wgﬁéﬁg)
+(wo +w8)[<:os(zkworo)<ﬁ§ ") — kwoaly) — sin(2kwom) () +/~€w05§’33>]}7
o) =5 { (08 — b)) o+ F2) + (oo ) [ 2 sin(kemo) 2kal?) — (1 +K)5)
- cos(k:ono)(2oz§n,2 — kaoﬂ(n) + (1= kQ)woaﬁnzz)
+sin(2kworo) (85 — kwoayy) + cos(Zkwoo) (a7 + kwol3y )} }
)= L+ Ronf o+ ) + (o -+ ) [ <2 sinChro) 28617 + (1 + K)ol
— cos(kono)(2ﬁ§n) + kaoa(n) +(1—k)w gﬁﬁlk))
(

)

_ sin(2k:w07'0)(oz2733 + kwoﬁ;k) + COS(Qk?WQTQ)(ﬁglk) - k:woozgf]z)} } , (2.78)
where

D = 2+2w5(1+k*) +wi(l+EY

+(wp + wd) [2(1 - k?w?) cos(2wog) /wo — 4k sin(2kTowo)] - (2.79)

Note thatD vanishes folk = 1. We must thus reconsider the system (2.74) — (2.77) for the case
k = 1 and it turns out thabzg"), §"> must satisfy certain conditions for a solution to exist. For
k =1, we addas sin(wyy) x (2.74) to (2.77) and subtract) x (2.76) fromas cos(wog) X (2.75).
Using the identitieg;as = — (w3 + 1) andwy = cot(wyTy), We obtain the two conditions (2.18),

(2.19) that must be satisfied by the inhomogengity(¢). Imposing (2.18), (2.19) ofi™ (¢), we
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obtain the following solution to the system of equations (2.74) — (2.773 ferl:

(n) (n) agnf aénf

n — n ) . 2.
b1 cos(woTo) [a2 cos(woTo)ry § + a3 | azsin(worg) (2.80)
(n) _ . (n) _ (n) . (n) .2

byi = a sin(woTo) ajj —oqq sin(woTo) cos(woTo) | + vy { COS (woTo) - (2.81)

Here, the coeﬁicientagﬁ), ag’ff are undetermined and follow from the initial conditions. We set

aﬁ) =A, andagfl) = 0.
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Chapter 3

Synchronization in a neuronal feedback
loop through asymmetric temporal

delays

We consider the effect of asymmetric temporal delays in a system of twdezbHpp-
field neurons. For couplings of opposite signs, a limit cycle emerges vigexdit-
ical Hopf bifurcation when the sum of the delays reaches a critical vale.show
that the angular frequency of the limit cycle is independent of an asymmethein
delays. However, the delay asymmetry determines the phase differetwosehehe
periodic activities of the two components. Specifically, when the conneciithrmeg-
ative coupling has a delay much larger than the delay for the positive cguptia
system approaches in-phase synchrony between the two componmapisyig vari-
ational perturbation theory (VPT), we achieve an approximate analytiahlation of

the phase shift, in good agreement with numerical results.

Synchronization phenomena among coupled systems are abundant i [dat2. The coupling
is often not instantaneous; rather finite time delays exist. In general, timesdedaycause an
otherwise stable system to oscillate [3-5] and may lead to bifurcation scemnesigiting in chaotic
dynamics [6, 7]. For example, delay-induced oscillations have beemtegpimr neural networks

[8], genetic regulatory networks [9], and models of population dynanii@tp name just a few.
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The delays for the different coupling mechanisms in such networks doew®it to be uniform,
which may have an important effect on the system dynamics. For instamees iieen shown that
distributed delays can stabilize a dynamical system [11], and the infludrdedayed inhibitory
feedback has been studied [12]. In regard to network synchroeygubstion arises under what
conditions this special form of network behavior can be maintained whetethgoral delays are
nonuniform.

Asymmetric time delays in the visual pathway can be a pathological conditioreyaarth asso-
ciated with many diseases [13]. However, when feedback loops in bialogyistems have evolved
to feature different latencies for feed-forward and feedback ptiojes, this might provide a hint
that asymmetric delays can also be beneficial to a system’s functioning. dwitirevisual system,
the optic tectum is reciprocally coupled with the nucleus pars parvocellulpdys & subnucleus of
the nucleus isthmi [14]. The coupled systems, tectum and Ipc, respong@ymithronized oscilla-
tory bursts to visual stimulation [15]. Remarkably, the Ipc axons projectinigedectum are thick
and myelinated (fast action potential propagation), whereas tectalmsepirojecting to the Ipc pos-
sess comparatively thin axons and are unmyelinated (slow action poteotiggation) [14]. The
Ipc-to-tectum delay may thus be as short as a fraction of a millisecondeashéne delay for the
tectum-to-Ipc projection can be expected to be of the order of tens of millidecadlt therefore
seems natural to conjecture that the asymmetry in the delays may play a fuhcileria the feed-
back system.

To explore this conjecture we investigate a model system of two coupledettbp&urons [16]

with asymmetric delays, described by the coupled first-order delay diffatequations (DDE’s)

du;;t) = —ui(t) + aq tanhfus(t — )],
du;t(t) = —ug(t) + a tanhfui (t — 71)]. &4

Here,u; andus denote the voltages of the Hopfield neurons anandr are the signal propagation
or processing time delays, whitg andasy describe the couplings between the two neurons. The
system of DDE’s (3.1) has a trivial stationary pointat= uy = 0, the stability of which has been
analyzed in detail, e.g., in ref. [17]. Fafaz < —1 the fixed point at the origin is asymptotically

stable as long as the mean of the time detays (m; + 72)/2 does not exceed the critical value
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Figure 3.1: Numerical solutions to the system of DDE’s (3.1) for the chdipa@metera; = —1
anda, = 2 and for different values of the time delayg 7 (transients not shown). Solutions for
the caser; = 7 are represented by solid lines. Dashed and dotted lines representrsofigtio

the cases; = 0 andm» = 0, respectively. For each set of lines the value of the delay parameter
e = /T — 79 increases from the innermost limit cycle & 0.1) to the outermost limit cycle

(e = 1.0) in increments ofAe = 0.1.

70 = sin~![—2wo/(ara2)]/(2wo), Wherewy = +/laiaz| — 1. When the sum of the delays is
increased, the origin becomes unstable and a limit cycle emerges via argigadtdopf bifurcation
atT = 79. Note that the characteristic equation for the system (3.1), which deterthmesndition
for a periodic solution to exist, only depends on the sum of the two delayseArlstability analysis
can thus provide no insight toward a possible role of asymmetry in the délasthermore, standard
methods for bifurcation analysis, as described, e.g., in refs. [6, &8y suitable for examining
the nonlinear dynamical system in the immediate neighborhood of the bifurcdtiarontrast to
that, in this letter we aim at obtaining results that also hold for large delaysare@awhy from the
bifurcation.

We first investigate the effect of asymmetric time delays through numerical sionda For
a subsequent perturbation expansion we define the expansion parametgr — 7y. Figure 3.1
shows numerical solutions of the system of DDE’s (3.1) for differeties of the time delays;
andr,; and for the choice of parameters = —1, as = 2. The amplitude of the limit cycle is only
determined by the value efand thus remains unchanged when the temporal delays are chosen to
be different. However, we observe that the phase between the peaawilities ofu, () andus(t)

does depend on the asymmetry of the delays. In order to quantify this giffesence, we consider
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2.81
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0 1.4 2.8

1

Figure 3.2: (Color) Plot of the phase shift betwegiit) andus(t). Numerical results for the scalar
productg as given by (3.2) are color coded for combinations;cdndr, with 0 < 7, 5 < 2.8. Red
and blue indicate negative and positive valueg pfespectively. In the black region, no periodic
solution exists.

the normalized scalar product

To+T gy 0 (Vs (1
- To+T fTO uTl( )Tug( : 12" (3.2)
UTOOJr dt u(t)us (1) T0°+ dt ug(t)usa(t)

Numerical results for this quantity are shown in Fig. 3.2. We find that for timi@ydevhich are
equal or at least not too asymmetric the scalar produstapproximately zero, which corresponds
to a phase shift of /2 betweenu, (t) andus(t), assuming that they can be described by sinusoidal
functions. However, when the delays are asymmetric, the scalar prothecomes larger in magni-
tude, being negative far > m and positive forn > 7. Specifically, forr; = 0 the scalar product
approaches unity for a growing delay, corresponding to in-phase synchronization between the
the two components.

We now aim at achieving an approximate analytical calculatiaoh dfo this end, we first derive
the perturbation series for the periodic solutigt) and its angular frequency of the system (3.1)
by applying the PoincérLindstedt method [19]. Since a supercritical Hopf bifurcation ocatirs
T = 79, We assume that the amplitude and frequency of the new periodic statesadytcan e
and expand them ag(t) = €U(t) = ¢ [UO () + UM () +...], w(e) = wo + ews + 2w + . . ..

Furthermore, for convenience we introduce the rescaled indepevatiaitle = w(e)t and write
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Figure 3.3: (Color) Perturbative results for the phase shift betwegh andus(t). The color-coded
plots show the difference between the numerical result from Fig. 3.2 anukttturbative results up
to orderg?.

U(t) = V(). The expansion then proceeds in a way very similar to the approach if20f.
where the frequency of the limit cycle is calculated perturbatively for m&irey mean of time
delays. However, we introduce an additional paramgtewhich is defined as the -value of the
intersection point in the, -5 plane between the line that marks the boundary between the regions in
which a periodic solution does or does not exist, and a line perpendiculgistboundary through

a given point(r;, 72). To nth order ine, we have to solve a system of differential equations of the

form
A R A B TR S
e = w0 @0 2 0470 1 1 )
dv(”) V(n) n ~ n
0 B By )+ a0, (3.3)

where the inhomogeneiff™ (¢) is determined by the solutions to previous orders. Since we require
that the solutiorv (™) (&) be periodic in¢ with period2x, we can impose certain conditions on the
inhomogeneityf(™) (¢). Namely, we demand th&t™ (£) not contain terms that would lead to non-
periodic solutions foV (") (¢), i.e.,f(") (¢) must not contain secular terms. These conditions, which
can be derived by expanding both i order limit cycle solutiorV (") (¢) and the inhomogeneity

£(")(¢) into a Fourier series, read

a9 sin(ngo)ag?l) + 0‘571) sinfwo (10 — 71)] + 55?1) coslwo(mo —71)] = 0,

agfl) cos|wo (10 — 71)] — ﬂgll) sinfwo (10 — 71)] — a2 sin(ono)ﬁﬁ) = 0. (3.4)
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Herea!")

1/2,1 andﬁin) denote the coefficients of the cosine and sine terms in the Fourier expansion

/2,1
ofthe inhomogeneit)fl(’]g (&), respectively. Imposing these conditions on the inhomogeneity in (3.3)
allows us to determine the angular frequency correatigrand the Fourier expansion coefficients

for V(»=2)(¢). To second order iawe find

2
“o

(3.5)

w2 =  woTo + cos(woTp) sin(woTp)

while w; vanishes. This value is identical to the one found in ref. [20] dependihgan wy and

7o but not on7; or 7». Since this observation holds to all orders, we thus find that the period of
the oscillations is independent of any asymmetry in the time delays. Furthenveofied that only
even perturbative orders lead to nonvanishing contributions for botimiinglar frequency and the

limit cycle V (¢); we therefore define the new expansion paramgtere2. Denoting the expansion

to orderg? of the quantity (3.2) byy(¥), we find

cos|wo (219 — T1)] — wo sinfwo (279 — 71)]

¢ .
sign(a1)+/1 + w?
(10 — 71 )w? {sin[wo (270 — 71)]+ wo coswo (270 — 71)]}>
+g - _ 5373 (3.6)
sign(a1)[sin(2wo o) + 2woTo] (1 + wd)3/
Focusing on the choice of parameters = —1, as = 2, which leads tavy = 1, 70 = 7/4,

we can determine the expansion coefficients#8Y¥) up to the third order. Figure 3.3 shows a
comparison of our perturbative results and the numerical result fron8FAgFor small time delays,
the accuracy of the results from the perturbation expansion is good amdviespwith increasing
order. However, ag increases, the perturbative results cease to converge and no longietep
an acceptable approximation. As is typical for perturbative methods, proach has yielded a
divergent series. In order to improve the quality of our results, we rerfopm a resummation of
the perturbative expansion employing variational perturbation theory VP

VPT is a nonperturbative approximation scheme based on a variatiormalaappdue to Feyn-
man and Kleinert [21], which has been systematically developed over tHiedagears, establishing
its applicability in various fields of physics [20, 22—-26]. VPT permits the eatédn of a divergent
series of the formf(N) (g) = Zf:fzo ang™ and yields a strong-coupling expansion of the generic

form f(g) = g?/4 Z%:o bmg 2™/, Here,p andq are real growth parameters characterizing the
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Figure 3.4: (Color) VPT results for the phase shift betweeft) anduz(t). The first color-coded
plot shows the first-order-VPT result as given by (3.8). The threergitots show the difference
between the numerical result and the results from the first three ord&BTinFor clarity, this
difference has been augmented by a factor®ond 100 in the results for the first and for both the
second and third order, respectively

strong-coupling behavior. The convergence of the series aftenraation is exponentially fast and
uniform with respect to other system parameters such as temperatyskngamonstants, spatial di-
mensions, etc. [27].

In order to perform the resummation, one introduces a variational panafieia the pertur-
bation series according to Kleinert's square-root trick [23]. The sasiehus transformed to the

expression

N N—n . k
$. 1) = Yo ir Y (PTI) ( 1) &)
n=0 k=0

derived in detail in ref. [20]. The influence of the variational paraméters then optimized
according to the principle of minimal sensitivity [28]; i.e., the optimized vali€Y) is deter-
mined by solving for the roots of the first or higher derivativesf&¥) (g, K') with respect tok.
The Nth order VPT approximation is then obtained by evaluating (3.7) at this optimiakst:v
f\(,]\rf)T(g) = fWM)(g, KM). This variational result generally holds for all values of the coupling
constanty. Furthermore, by considering the limit of largeit allows the extraction of the strong-
coupling coefficients$,,,.

In our case of the perturbation series §otthe values of the growth parameterandq turn out

to be the same as those that we determined in ref. [20] for the angulaefregmamely = —2,
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g = 2. Our first-order result after resummation then reads

(1) (24 m)(1 —2cos 7y sinTy)
ver(9) = NG

[(2 + 7)(cos 7| — sin7y) 4 g(m — 471)](cos 71 +sin71)] L. (3.8)

The first color-coded plot in Fig. 3.4 shows a graphical representafitiiis result. The agreement
with the numerical result from Fig. 3.2 is excellent. While the second VP Trgnaierides a signifi-
cant improvement when compared with the first order result, third ordattseare slightly superior
to those of second order.

In conclusion, our investigation of a neuronal model system shows $yatraetric temporal
delays can control the phase in a feedback loop and lead to synckrosdillations. Specifically,
in-phase and anti-phase synchrony arises when the delays are maxisyaiiyatric. Furthermore,
after a variational resummation of the perturbation serieg fare have a very accurate approximate
result for this quantity even in low orders and throughout thesfult, plane.
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Chapter 4

Distributed delays stabilize neural

feedback systems

We consider the effect of distributed delays in neural feedback systdims avian
optic tectum is reciprocally connected with the nucleus isthmi. Extracellular stimula-
tion combined with intracellular recordings reveal a range of signal délags4 to 9

ms between isthmotectal elements. This observation together with prior mathematical
analysis concerning the influence of a delay distribution on system dynsaises the
guestion whether a broad delay distribution can impact the dynamics of feeathack
loops. For a system of reciprocally connected model neurons, we thandistributed
delays enhance system stability in the following sense. With increased distnild
delays, the system converges faster to a fixed point and converges stovard a limit
cycle. Further, the introduction of distributed delays leads to an increaseg of

the average delay value for which the system’s equilibrium point is stable. efh
hancement of stability with increasing delay distribution is caused by the inttiodu

of smaller delays rather than the distribution per se.

4.1 Introduction

The signal flow in the brain is not just feedforward; rather, feedlmimkinates most neural path-

ways [1]. Often pairs of reciprocally connected neurons are spatepigrate by several millimeters.
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For instance, the primate corticothalamic feedback loop extends over acgisihapproximately
100 mm. Thus, for a typical action potential speed of 1 mm/ms we expect a diglaglof 100 ms.
When signal delays are larger than the neural response time, completyloamics emerge [2—4].

For reciprocally connected populations of neurons, large delays tadirce another dimen-
sion, namely the distribution of delay times. Such a distribution could be an empteon in the
evolution of larger brains, or it could be of adaptive significance. Vilarkn applied mathematics
states an influence of the distribution of delay times on system dynamics [3aft@jued by the lat-
ter possibility, we asked two questions: What is the distribution of delay timesex@erimentally
accessible neural feedback system? What is the impact of distributed delaymathematically
tractable neural model feedback system?

We measured the distribution of delay times in the isthmotectal feedback systémdef
[Fig. 4.1(a)] [11, 12]. The avian isthmic nuclei (parabigeminal nucleusammals) receive a topo-
graphically organized projection from the tectum (superior colliculus in mamntalsvhich they
project back and have been conjectured to mediate spatiotemporal attem@mia@nisms [13—-15].
The isthmic nuclei in birds consist of three substructures: pars pdlwiaeis (Ipc), pars magno-
cellularis (Imc), and pars semilunaris (SLu) that are spatially separaigdtfre tectum [16, 17].
In response to visual stimulation, the Ipc neurons undergo a transitionguiescence to rhythmic
firing [15, 18]. Delays can drive a neural feedback loop over ailgiaboundary resulting in os-
cillatory behavior [19-24]. To elucidate the impact of a delay distribution ersgtstem dynamics,
we investigated, through numerical simulations and mathematical analysis, aahoetdprocally

coupled neurons with distributed delays.

4.2 Measured distribution of delays

To measure the signal delays between pairs of isthmotectal elements, wesdbtanacellular

whole-cell recordings from identified neurons in a midbrain slice prejparand stimulated groups
of presynaptic neurons or axons with brief electrical pulses delivexgdcellularly [Fig. 4.1(b)].

Neurons were identified by their location within the midbrain slice preparatidrf@ra subset of
recorded neurons we obtained additional identification via intracellular f#is17].

A subpopulation of tectal layer 10 (L10) neurons project to both the ipsilligc and Imc in
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Figure 4.1: (Color) Schematic of the isthmotectal circuitry and represeatabponse to electrical
stimulation. (a) Schematic of the isthmotectal circuitry. RGC axons (black arrows) entergarup
tectal layers. A subpopulation of tectal L10 neurons (red) projects tahddpc. The Imc nucleus
consists of two populations of neurons (blue); one projecting broadll tzalower tectal layers
and one projecting broadly to the Ipc nucleus. Ipc neurons (greef@gbback to the tectum with
axons reaching into upper tectal layefs) Intracellular recording from an Ipc neuron in response
to electrical stimulation in tectal L2-4.

a topographic fashion [16, 17, 25-28]. Their apical dendrite ceussmight up to layer 2 with
few ramifications, and basal dendrites reach down to the border of18y&etinal axon terminals
overlap with the apical dendrite in tectal layers 2 to 7 [29, 30]. We placdinalsis electrode in
layer 2 to 4 (L2-4) and recorded from L10 neurons with whole-celbréings in response to L2-4
stimulation. The delays from the beginning of the stimulus pulse to the onset bitheesponse
ranged from 4 to 15 ms with a mean delay of 6.9 ms and a standard deviatioro{3[3 ms
(n = 15 cells) [Fig. 4.2(a)]. Tectal L10 neurons are a heterogeneous pgapu[d7]. Therefore,
only filled L10 neurons with axons originating from the dendrite were inauidethis analysis.
Since L10 neuron dendrites can reach up to L2, the possibility of unwalimect electrical, rather
than synaptic, stimulation of L10 neuron dendritic endings arises. At thefemtecording session,
we evaluated the nature of stimulation by blocking chemical synaptic transmigaitime block of

Ca-channels by replacing €ain the saline with Mg*.
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Figure 4.2: (Color) Measured distribution of signal delays between istlutabtelements and plot
of the corresponding gamma distribution [red curveganthrough(d)] with the same mean and
standard deviation(a) L2-4 to L10. (b) L2-4 to Ipc.(c) L2-4 to Imc. (d) Imc to Ipc. (e) Ipc to L10.
() Imc to L10.

We measured signal delays between optic tectum and individual Ipc meui@ RGC axon
stimulation or L10 neuron dendrite stimulation, with a stimulus electrode placed ih t@eta In
the first case, the group of stimulated RGC axons stimulates a population afdut®ns, which
in turn stimulates a large number of Ipc neurons. In the second case,dutns are stimulated
directly. This stimulus paradigm provided a high chance of recording faonipc neuron that
received tectal synaptic inputs. The delays from the beginning of the s8rpulse to the onset of
the Ipc neuron response ranged from 5 to 19 ms=(17 cells) [Fig. 4.2(b)]. As expected from the
stimulus paradigm, the distribution of delays is bimodal. We suspect that thbuirgi (5 to 9 ms
range) is dominated by direct L10 dendrite stimulation (mono-synaptic patb@@ypc); whereas
the second bump (11 to 19 ms range) is dominated by RGC axon stimulation, witigteithe
bi-synaptic pathway RGC-L10-Ipc. From the first bump in the histograrestienate a mean delay
of 6.5 ms and a SD of 1.4 ms for the mono-synaptic pathway L10-Ipc. Simoeelpron axons can
reach up to L2 [17], the possibility of unwanted direct electrical stimulatidpofixons arises. At
the end of a recording session, we evaluated the nature of stimulation lyng@hemical synaptic
transmission via replacing €ain the saline with Mg+.

Using a stimulus paradigm similar to the one described above, we measurabidstays be-

tween L10 and individual Imc neurons. We placed a stimulus electrode #hfo2-stimulation of
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RGC axons or L10 neuron dendrites and recorded from Imc neurithswvole-cell recordings in
response to L2-4 stimulation. The signal delays ranged from 4 to 1%ms (7 cells) and the
distribution was bimodal [Fig. 4.2(c)]. As described above, the first bislikely to be dominated
by the mono-synaptic pathway (L10-Imc), whereas the second bump is likbly dominated by
the bi-synaptic pathway (RGC-L10-Imc). The first bump in the histograhdgiea mean delay of
5.2 ms and a SD of 0.9 ms. Since Imc axons terminate in tectal layers 10 to 1Tl @hssibility
of direct Imc axon stimulation via stimulus electrodes in L2-4 does not arise.

The Imc nucleus consists of two cell types, one of which projects to theugeuns with a broad
and dense projection of axonal arbors [16, 31, 32]. We position¢idhalss electrode in the Imc
nucleus and recorded from Ipc neurons with whole-cell recordingssponse to Imc stimulation.
The signal delays ranged from 3 to 8 ms with a mean delay of 4.3 ms and a SDrogi = 12
cells) [Fig. 4.2(d)]. Care had to be taken about the interpretation of thetimalation experiments.
The stimulus electrode in the Imc nucleus stimulates 4 elements: L10 neuron Bponsuron ax-
ons passing through the Imc nucleus, and two populations of Imc neunoagrojecting to tectum
and the other projecting to Ipc. To filter out the Imc to Ipc synaptic connecivenstimulated in
an area of the Imc nucleus that did not correspond to the topographtolocd the recorded Ipc
neuron, thus avoiding both antidromic stimulation of the axon from the reddpseneuron as well
as avoiding orthodromic stimulation of the L10 axons passing through the lofeusuon their way
to the same location in the Ipc nucleus. At the end of a recording sessi@pplied bicuculline to
verify that the synaptic inputs to the recorded Ipc neuron were indeedtfre stimulated GABAer-
gic Imc neurons (GABA: gamma-aminobutyric acid). The responses disapp when 10@:M
bicuculline was added to the bath (data not shown) thus (i) indicating thaegpemses were of
synaptic origin (rather than antidromic Ipc or L10 axon stimulation) and (iifiooimg that GABA
is the transmitter as had been suggested by anatomical studies [16].

The Ipc nucleus has topographical reciprocal connections with theniddft, 26, 27, 33, 34].
The efferents from Ipc have large calibre axons and terminate in a columaraner ranging from
layers 2 to 12 [Fig. 4.1(a)] [17, 25-27, 31, 32]. We applied local exdtalar electrical stimulation
of a group of Ipc neurons with a stimulus electrode placed in the Ipc nuckush extracellular
electrical stimulation also stimulates L10 axons antidromically. The fast L10oneamtidromic

responses were distinguishable from the much slower and long-lastiagt8&ymesponses. The
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additional direct activation of Imc axons in the Ipc nucleus does not erewith this experiment,
since the population of Imc neurons projecting to the Ipc nucleus is différem the population
of Imc neurons projecting to the tectum. The yield for finding Ipc to L10 stinapsponses turned
out to be very low. For the few cases we found, the delays ranged@rtmm8 ms ¢ = 5 cells)
[Fig. 4.2(e)].

The projection from individual Imc neurons to tectal layers 10 to 13 isdeoal sparse [16].
We positioned a stimulus electrode in the Imc nucleus and recorded fromdut®ms with whole-
cell recordings in response to Imc stimulation. The yield for finding Imc to lyl@ptic responses
turned out to be very low. For the two connected pairs we found, theldigiteys were 3 and 6
ms (» = 2 cells) [Fig. 4.2(f)]. The low yield and the interpretation of these experimesysire
some explanation. As mentioned above, a stimulus electrode in the Imc nuclesimillate
four elements. To filter out the Imc to L10 synaptic connection, we stimulated area of the
Imc nucleus that did not correspond to the topographic location of thededd.10 neuron, thus
avoiding both antidromic stimulation of the axon from the recorded L10 neasowell as avoiding
orthodromic stimulation of the Ipc axons passing through the Imc nucleus omneto the same
location of the tectum. At the end of a recording session, we applied bicuetdinverify that
the synaptic inputs to the recorded L10 neuron were indeed from the stich@&BAergic Imc
neurons. For the two neurons, the responses disappeared wheilii@uculline was added to
the bath (data not shown) thus indicating that the responses were gftisyodgin; rather than
antidromic L10 or orthodromic Ipc axon stimulation.

In summary, these data show that the signal delays between isthmotectaltslareefistributed

ranging from 4 to 9 ms.

4.3 Distributed delays and the dynamics of neural feedback systems

What is the impact of distributed delays on a mathematically tractable neural feedblack sys-
tem? To interpret the potential impact of the measured distribution of delayseodytilamics

of neural feedback systems, we investigated a model system of two doHplefield neurons
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Figure 4.3: (Color) Mean delays and attractdes, (b) Dynamics of the two-neuron model system
for gamma distributions with mean delay valuegof= 0.7 [(a), fixed point] and (b), limit cycle],
respectively. For both cases, the standard deviation is 0% (blue), RB%k), and 50% (red) of
the mean delay. The initial condition ig () = 0.30 andus(t) = —0.28 for —7 < ¢ < 0. (c)
Gamma distribution for a mean delay valuelof= 0.7 and a standard deviation of 0% (blue), 25%
(black), and 50% (red) of the mean deldgl) Critical mean delay],, where the Hopf bifurcation
takes place, plotted against variange), (f) Time constant for reaching the attractor for= 0.7
(fixed point) andT” = 2.0 (limit cycle), respectively, plotted against the variance of the gamma
distribution.

[20, 22, 23, 35], described by the first-order delay differentiabtigns

du;t(t) = —u (t) + a1 tanh[UQ(t - 72)] )
du;t(t) = —ux(t) + ag tanhfuy (t — 71)]. @4

Here,u;(t) anduy(t) denote the voltages of the model neurons andndr are the temporal de-
lays, whilea; anda, describe the coupling strength between the two neurons. In this analgsis, th
time variable is dimensionless. Translation to real time can be made by multiplying thesitime
less time variable with a membrane time const@itt, The system of delay differential equations

has a trivial stationary point at the origin; = ue = 0 [Fig. 4.3(a)]. Fora;as < —1, the fixed
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point at the origin is asymptotically stable as long as the mean of the time delaysr)/2 does

not exceed a critical valug) [22, 36]:

1 + T2 1 . 1 2\/|a1a2|—1 (42)

<1=————-5in
2 2 \a1a2] -1 |a1a2|

The critical valuer is determined by combinations of the product of the couplings alone [Eq].(4.2
For couplings of opposite signs (e.gs,a2 < —1) and when the delays are increased, the origin
becomes unstable and a limit cycle emerges via a supercritical Hopf bifuredtio + 2)/2 = 7y
[Fig. 4.3(b)]. The critical valuer, , decreases with decreasing value of the product of the couplings
aias below —1. In other words, oscillations can be achieved by either increasing thgsdaidy
increasing the absolute value of the coupling strengths of opposite signs.

For a distribution of delays we replace the coupling term in (4.1) with a weigbued over

similar terms but with different delays

duallt(t) = —ui(t) + a1 /OOO dr€(7) tanh[ua(t — 7)),
du;t(t) — —U2(t) + ag /OOO de(T) tanh[ul(t — 7‘)] . (43)

The delay kernek(7) is normalized to satisf)joOO dr¢(r) = 1. For simplicity, we chose the
delay kernels to be identical for both legs of the loop. We chose the detaglke be a gamma
distribution,
£(r) = <1§</Tu§ji/)gw/yleﬂ/y’ 4.4)

whereT is the mean delay; is the variance of the gamma distribution, and the gamma function is
defined ad’(x) = [;°t* ‘e 'dt. The gamma distribution was chosen because it has the biologi-
cally plausible feature to vanish for delays approactiifjgig. 4.3(c)]. For the coupling strengths
we chosear; = —2 anday = 1 for all simulations.

The parameters to vary are the mean delgyand the variance;, of the gamma distribution.
As these parameters are changed, the fixed point at the origin chaogea &table fixed point to

an unstable fixed point surrounded by a stable limit cycle and vice-veligaf pifurcation). This

57



Distributed delays stabilize neural feedback systems

04 0 04 0 40 80
u, Time

Figure 4.4: (Color) Dynamics of the two-neuron model system with discedtyd.(a) Dynamics
of the system with two fixed delays of 0.1 and 0.7 (green); one fixed dél@ylqred); and one
fixed delay of 0.7 (black)(b) DistanceD(t) = +/u?(t) + u3(t) from (O, 0) vs. time for the above
cases.

transition takes place when the roots pf the characteristic equation for the system (4.3),

272 /v
A”) —0, (4.5)

)\2+2/\+1—a1a2 <1—|—T

are purely imaginary. The characteristic equation is obtained by demandirtgétrsolution to (4.3)
behaves as; (t) = AeM, us(t) = BeM near the fixed point. Substituting= iw, wherew is real,
we have

wv

—272% /v
—w? 4+ 2iw+1 —ajay <1 + T) =0. (4.6)

Separating real and imaginary parts, we get two equations from whichrmvewnerically eliminate
w. However, there are multiple solutions for this. For a given variancie solution with the
minimum positive mean del&¥/, determines the critical mean deléy at which the fixed point at
the origin loses its stability and a stable limit cycle emerges. Our analysis shawrssirtroduction
of distributed delays (increasing variance) leads to a smaller limit cycle [B@). Furthermore,
the critical mean dela¥y increases with increasing variance [Fig. 4.3(d)].

To estimate the time constant for reaching an attractor, we calculated the digafig =
Va3 (t) +ud(t) from the origin along a given polar angkein the u;-u; space. Assuming an
exponential dependence, a fit of an exponential function to the simul¢éd values provided
the time constant for that polar angle. We repeated the procedure fgp@@&0angles in 1-deg

increments and took the final time constant to be the mean of the 360 time consinengolar
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angles. This analysis shows that increasing variance makes the cemeetg the fixed points faster
[Fig. 4.3(e)] and the convergence to limit cycles slower [Fig. 4.3(f)].

In summary, distributed delays increase the parameter region with fixetipatiavior and
accelerate the convergence to the fixed point.

The enhanced fixed-point stability with distributed delays actually comestfieraontribution
of the smaller delays, rather than the distribution per se. To illustrate this ingightpmpare the
dynamics of three systems with delays given by one or two superimposeeddgitbutions with
peaks at: (i)r = 0.7, (ii) both 7 = 0.1 andT = 0.7, and (iii) = = 0.1 (Fig. 4.4). The distributed
system (ii) converges faster than system (i), but the distributed systenoiierges slower than
system (iii). In other words, adding a longer delayrof= 0.7 to ther = 0.1 system slows the
convergence, whereas adding a shorter delay ef 0.1 to ther = 0.7 system accelerates the
convergence. Thus, it is not the distribution of delays per se, but thtgilnation of shorter delays

in the distribution that enhances fixed-point stability.

4.4 Discussion

For large brains with finite signal propagation velocities, delays are eofdde. In some feed-
forward pathways, such as the vertebrate optic nerve, delays caebifisto the retinal ganglion
cell type thus leading to differences of arrival time for different retiggresentations of the visual
stimulus [37—-40]. In other feedforward sensory pathways, sucheaavian nucleus laminaris, de-
lays are used explicitly to evaluate interaural time differences [41]. Délefgedback loops play a
fundamentally different role, as they can determine the dynamical behatioe system [42, 43].
Specifically, for delays smaller than a critical value a neural feedbastkisymay converge toward
a steady-state, whereas for delays larger than the critical value thensystg oscillate [44, 45].
In nonlinear systems, the distribution of a system parameter can haveegtexeffects on the
systems dynamics [46—48]. Consequently, if delay is a relevant paraimeteural feedback sys-
tems, as stated above, it is important to investigate the impact of delay distribatidhe system
dynamics.

Parameters in biological system are usually distributed over some rangeefdite, these sys-

tems must be robust in the sense that the parameter variability should notttethinlogical sys-
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tem from functioning correctly. Moreover, a system architecture in wttielparameter variability
actually enhances the system’s performance would be particularly desihalhis study, we have
guantified the distribution of delays in the avian isthmotectal feedback logthdfmore, by inves-
tigating a mathematical model of coupled neurons with distributed delays, veedesmonstrated
that distributed delays enhance the stability of the system, where the stabilfeogagises from
the contribution of smaller delays introduced through the delay distributiorceSire functional
role of the isthmotectal feedback loop remains mostly unclear to date, it is vioushwhether this
stabilizing effect is beneficial to the system’s functioning. Further unaeding of the neuronal

processes in the isthmotectal feedback loop will be necessary to anssvgudistion.

4.5 Experimental methods

White Leghorn chick hatchlings (Gallus gallus) of less than 3 days of agewsed in this study. All
procedures used in this study were approved by the local authoritiesoaform to the guidelines
of the National Institutes of Health on the Care and Use of Laboratory Aninfatsmals were
injected with ketamine (40 mg per kg, i.m.). Brain slices of the midbrain were prdgaliowing
published protocols [49-53]. Briefly, preparations were done €, oxygenated, and sucrose-
substituted saline (240 mM sucrose, 3 mM KCI, 5 mM Mg@.5 mM CaCl}, 1.2 mM Nak,POy,
23 mM NaHCQ, and 11 mM D-glucose). After decapitation, the brains were removed tinem
skull, and the forebrain, cerebellum, and medulla oblongata were discakdmidsagittal cut was
used to separate the tectal hemispheres. The tectal hemispheres wiereedestt 500um on a
tissue slicer (Vibroslice, Camden and VF-200, Precisionary Instrumamtsjher the transverse
or the horizontal plane. Slices were collected in oxygenated saline (120 a®, 8 mM KCI,

1 mM MgCl,, 2 mM CaCi, 1.2 mM NaKPQy, 23 mM NaHCQ, and 11 mM D-glucose) and
kept submerged in a chamber that was bubbled continuously with carf@sf#noxygen, 5% C¢)
at room temperature. The slice was then transferred to a recording ehdRB-26G, Warner
Instruments) mounted on a fixed stage upright microscope equipped witlo@i€s (BX-51WI,
Olympus). The slice was held gently to the bottom of the chamber with an anthgloa threads,
and the chamber was perfused continuously with oxygenated salinenateowperature. The cells

in L10, Imc, and Ipc are visible with DIC optics.
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Local electrostimulation was achieved by inserting bipolar tungsten elesturdier visual con-
trol into either the upper tectal retinorecipient layers (2 to 4), layer 5theisthmic nuclei Ipc or
Imc with a three-axis micromanipulator (U-31CF, Narishige). Electrodeg westom-built from
50-um diameter, insulated tungsten wires (California Fine Wire) that were gluesthiegwith
cyanoacrylate and mounted in glass microcapillaries for stabilization. The piotruded several
hundred m from the capillaries, and the tips were cut at an angle. Stimulatiso(Isolated Pulse
Stimulator 2100, AM Systems) generated biphasic current pulses (202000 uS).

Whole-cell recordings were obtained with glass micropipettes pulled fromsbicate glass
(1.5 mm OD, 0.86 mm ID, AM Systems) on a horizontal puller (P-97, Sutterunmstnts and
DMZ Universal Puller, Zeitz Instruments) and were filled with a solution doirig 100 mM K-
Gluconate, 40 mM KCI, 10 mM HEPES, 0.1 mM CaCR mM MgClk, 1.1 mM EGTA, 2 mM
Mg-ATP, pH adjusted to 7.2 with KOH. Electrodes were advanced througkighue under visual
guidance with a motorized micromanipulator (MP-285, Sutter Instruments) wdrilstant positive
pressure was applied and the electrode resistance was monitored bygugient pulses. Once
the electrode had attached to a membrane and formed a seal, access tosblewssoachieved
by brief suction. Whole-cell recordings were performed with the amplifleo¢lamp 2B, Axon
Instruments and SEC-05L, npi-electronic) in the bridge mode (curremipdlal he series resistance
was estimated by toggling between the bridge and the DCC (discontinuoesicalamp) mode.
The series resistance was compensated with the bridge balance. Analegeda low-pass filtered
(4-pole Butterworth) at 1 kHz, digitized at 5 kHz, stored, and analyzed BC equipped with an
PCI-MIO-16E-4 and LabView software (both National Instruments).

Labeling of a subset of recorded neurons was carried out asilueg@reviously [50-52, 54].
In brief, whole-cell patch recordings were obtained as describegealdalditionally, the electrode
solution contained 0.5% Biocytin (w/v) to label the recorded neuronsyithail cells were filled
intracellularly with 2 nA of positive current over 3 minutes. After recordargl labeling, slices
were kept in oxygenated ACSF for an additional 30 minutes and suhstgtired by immersion
in 4% paraformaldehyde in PB for at least 4 hours. Slices were thenediastphosphate buffer
(PB, 0.1 M, pH 7.4) for at least 4 hours, immersed in 15% sucrose in PRtftgast 4 hours
and then immersed in 30% sucrose in PB for 12 hours, and resection@duat 6n a freezing

microtome. The sections were collected in PB and the endogenous pesokidaked by a 15-
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minute immersion in 0.6% hydrogen peroxide in methanol. The tissue was waslerdlgimes

in PB, and then incubated in the avidin-biotin complex solution (AB(@e kit, Vector Labs) and

the reaction product visualized with a heavy-metal intensified DAB protoEollowing several
washes in PB, the 60m-thick sections were mounted on gelatin-coated slides, dried, dehydrated,
and coverslipped. Sections were inspected for labeled neuronsnndada from cells that could
unequivocally be classified according to published criteria [16, 17¢uaden for further analysis.
Cells were reconstructed at medium magnification (10x to 20x) with a camedalan a Leica

microscope and projected onto the 2D plane.
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Chapter 5

Dynamics of neural feedback triads

We observe that a number of vertebrate neural feedback circuits faltdvaracteristic
feedback triad topology. This topology consists of two delayed feedlwagls with
an asymmetric lateral connection between them. A model of the feedback &$ad h
five connection strength parameters. We show that because of the asigratetal
connection between the two loops, the system dynamics depend upon twoeaadge
combinations of subsets of the five parameters. Thus qualitatively equivsaistem
dynamics can be observed with widely differing parameter settings. Welatsothat
without the asymmetric lateral connection one of the algebraic combinatiorshean
and the system effectively reduces to one delayed feedback loopar@lysis thus
highlights the significance of the asymmetric lateral connection in the feedbadk
topology that appears to have evolved independently in vertebratd feeothack cir-

cuits.

Biological neural networks are the result of billions of years of evolytwimich works by random
changes and the survival of organisms with advantageous netwgoknties [1]. Therefore, the
networks emerging from the evolutionary process are, to some degeendent on temporal se-
guences of chance and can be laden with detail that seem to requiral sigscription in every
case. However, because of the enhanced survival of organismadvi#imtageous networks dur-
ing the evolutionary process, in biological networks we expect to findacheristic sets of circuit

elements that obey general design principles [2]. Here, we presdnhasstigate one such de-

65



Dynamics of neural feedback triads

(a) T arca 17 (b) (c)

I and 111 TeO L

Figure 5.1: (Color) Feedback triad circuitry with asymmetrical lateral cotores between the
feedback loops(a) Corticothalamic feedback triad of the cat features projections from thalater
geniculate nucleus (LGN) to both the perigeniculate nucleus (PGN) andlwstex (V1), but re-
ceives topologically different feedback from these nucléi In the avian isthmotectal feedback
triad, the optic tectum projects to both the Imc and Ipc nuclei of the isthmi, but likedh re-
ceives topologically different feedback from those nucl@) Model of feedback triad circuitry
with asymmetry between the two feedback loops. Feed-forward synapiiections are given by
Latin graphemes and feedback connections are given by Greekegnagh

sign principle, the neural feedback triad, which consists of two delagedbiack loops with an
asymmetric lateral connection between them.

Feedback dominates neural networks of brains [3] and has been imglicate number of
signal processing tasks [4-9]. Here, we observe that two indeptyna@solved feedback systems,
the mammalian corticothalamic [Fig. 5.1(a)] [10] and the avian isthmotectal loags 3F.(b)]
[11, 12], follow a characteristic feedback triad topology [Fig. 5.1(€}]is topology consists of two
delayed feedback loops with an asymmetric lateral connection between themammals, retinal
ganglion cell axons project to the thalamic lateral geniculate nucleus (Tté)TH in turn projects
to the thalamic reticular nucleus (RE) and the cortical layer 6 neurons @oth, RE and CX,
feed back to TH. The two feedback loops are different in their spattahéxThe CX feedback is
broad, whereas the RE feedback is more local. In addition, the CX algectgd@o RE. In birds,
retinal ganglion cell axons project to the optic tectum (TeO). The TeO indugjects to the nucleus
isthmi pars parvocellularis (Ipc) and to the nucleus isthmi pars magnocél(iiac). Both Ipc and
Imc feed back to the TeO. The two feedback loops are different in thatiadgxtent. The Imc
feedback is broad, whereas the Ipc feedback is more local. In addh®imc also projects to Ipc.

In summary, the two independently evolved feedback systems, the mammatiantbatamic and
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the avian isthmotectal system, converged onto the same feedback triad toffeipds.1(c)] that
consists of a global and a local feedback loop with a lateral connectiamtfie global to the local
loop.

In this study, we present a point model using finite difference equati@tgsake into account
both the synaptic weights and the synaptic and transmission delays amongripenemts of the
isthmic circuitry. We show that the parameter space of synaptic weights in teusuisthmi
circuitry has regions with robustness towards parameter changes gindsr¢hat are extremely
sensitive to parameter changes. First, we develop a set of finite dfeeguations and show that
under certain synaptic weight conditions the output firing rate of the sydte® not depend upon
the individual synaptic weights but upon combinations of them. Next, we exatinéntectal output
dynamics as a function of the effective weight parameters and finallyevieda stability condition
that confines the stable nonzero fixed points to a region within the pararpats and show that
the tectal output converges to the fixed points geometrically.

To model the nucleus isthmi feedback loop we consider three neuronsywiptic connections
that reflect the topology established by anatomical studies of the avian isthal@iecuit [11, 12]
[see Fig. 5.1(c)]. To investigate the dynamics of the circuitry we use a reanlifinite difference
map that outputs a graded potential at discrete time steps. The use of firtent# equations
leads to a tractable computational model that has been used to study noniicsagircuits in
electrical engineering [13].

Spatial separation between the different neurons in the circuit resultsignal transmission
delay. As a simplification we consider the case in which all delays in the cireiégual. This
delayr along with the corresponding synaptic weights gives the following setmifmesar discrete

equations
3
CCZ(t) =0 Zwijxj(t—ﬂ + h; |, (5.1
j=1

wherezxy, xo andzg are the firing rates of the tectal, Ipc, and Imc neurons, respectivelyy an

denotes an input-output transfer function. The synaptic weightsand the external input; are

67



Dynamics of neural feedback triads

given as

Oaﬂ hl
w=|b 0 ¢ |, h=|o0 |- (5.2)
a 00 0

For the transfer functiod, we make the choic&(s) = max(s, 0). This nonlinear activation function
immediately imposes certain constraints on the synaptic weights if the output is dotrvial. For

the circuit to function as a three-neuron circuit, the synaptic connectitmtba Imc neuron must
be positive,a > 0. In addition, experimental evidence suggests that the synaptic polaritg of th
connections b and c are similarly positive [14]. With these synaptic contstridie model can be
reduced from a 5 dimensional weight parameter space to a two dimensieigatwarameter space.

The tectal output firing rate;;, in terms of previous tectal firing rates is given as

l’1(t):5[h1(t—7’)+77$1(t—27’)+§$1(t—37‘)] , (5.3)

where the constantsandé are the following combinations of the synaptic weights,

n = 0b+ aa, & = Bac. (5.4)

With a constant external input; (¢) = hq, the activity of the tectal neurons given by 5.3 displays
a rich variety of firing rate patterns. At different values of the synapgaits the tectal neurons’
firing rate can converge, diverge, oscillate, or exhibit aperiodicitys T¥pe of microcircuit is sim-
ilar to central pattern generator (CPG) circuits. Central pattern gemgt® small microcircuits
capable of producing rhythmic outputs without rhythmic sensory inputslfdb, They are common

in motor systems [17] and have many similarities to circuits found in the brain (I8FBe activity
states of these circuits can be changed by sensory afferents aondweeutators making the circuit
multifunctional and dynamically plastic [21]. To investigate how changes inythaggic weights
by neuromodulators could alter the state of the isthmotectal circuit, we numesgtalljated firing
rate trajectories for various combinations of the synaptic weights andwaasethether the trajec-

tory converged, diverged or oscillated. The parameter space shokig.ib.2 displays the tectal
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Figure 5.2: (Color) Different forms of dynamics in the feedback triad aAmation of the connec-
tions strengths. The effective parameter spacg amnd¢ is shown, and the dynamics that result
for the corresponding combinations of coupling strengths are colodcdde delayr is one time
unit, and trajectories were evaluated for 500 time units. The white regioespmnds to convergent
trajectories, whereas the black region corresponds to divergingttyégs: The cyan region corre-
sponds to aperiodic time traces as shown in Fig. 5.3. All of the other regichg icolormap are
oscillatory trajectories with periods as indicated by the colorbar.

neuron firing rate behavior as a function of the effective weight patensie and &, incremented
in steps of .001 units. The simulation was run for 500 time steps with the excefbtiba purple
region, in which it was run for 15,000 time steps. The white region corredsgpto parameter combi-
nations that lead to stable fixed points for tectal firing rates. The shadetootbetween 0 and 500
in the color-map indicate periodic firing rates with the color representing thedoef oscillation.
In addition, oscillatory behavior that occurs after a significant transferiod of up to 15,000 time
steps is colored in purple. The black region represent diverging fiategpatterns. The remaining
pink region consist of aperiodic trajectories that exhibit irregular oscitiatido determine if these
irregular oscillations were actually regular but on a very long time scale wegpuoted the Fourier
transform of these time series and found that the oscillations are indegdlame Next, we con-
sidered whether these aperiodic trajectories could be chaotic. Sinctécdnajectories would be
exponentially sensitive to initial conditions, we numerically simulated the trajestatiéive dif-

ferent initial conditions. Figure 5.3 shows that the aperiodic trajectoreeaarchaotic but exhibit
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Figure 5.3: (Color) Aperiodic time traces for different initial conditions. 8merturbations from
the zero initial condition do not diverge away as would be expected fdraatc system. The
system exhibits multi-stability as changing the initial conditions brings the systemdighboring
attractor.

different firing rate trajectories based on the initial conditions. This switch ddferent attractor

based on the initial conditions is called multi-stability [22] and is commonly found i@ Cikrcuits.

By examining the weight parameter space, it is immediately apparent that gedans have
highly stable network activity since shifts in the weights as may be inducedlrpmedulators, do
not lead to changes in the activity state of the circuit. However, other regioow dynamic shifts
in network activity with very small changes to the effective weightsd¢. This dynamic shifting
could allow the circuit to transform its activity state making the circuit dynamicdlgtic.

The nonlinearity of the finite difference equations lends a complicated steuctthe parameter
space. In particular, the rectifying transfer function allows for inhibitoeyworks to oscillate given
a positive external input stimulus. For oscillations of low period, a table listiaditing rate shows
how the periodic trajectories are influenced by the rectification. For examghe region; < —1

and¢ < —1, a table of the firing rates given by 5.3 shows immediate periodicity (cf. TaD, 5

Tme|1/2|3/4|5|6|7[8|9|10]|11
hy (1221|2121 }1|1]|1
zx |[O0(1|1|1/(0/0|0O|21f2 1|0

Table 5.1: Cyclic behavior in the feedback triad. The firing rgtéhat results for coupling strengths
n < —1and{ < —1 is shown for the first eleven time units. The cyclic behaviorpfs caused by
the by the rectification of the firing rates.
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however tabling of higher period oscillations becomes intractable.
The fixed points of the system, shown as white in the parameter spacet{emmaided by (5.3).
Since only positive fixed points are considered we can neglect thedrdosattions and obtain the

following fixed points.
1

p p—

*

7] (5.5)

The linen 4+ ¢ = 1 bounds the region where stable fixed points exist. In addition, unstabte fixe
points above this line diverge monotonically whereas unstable fixed poiluiw bas line diverge
non-monotonically as a result of the input-output transfer funciiotn addition, the convergent
trajectories converge to the fixed points geometrically. This geometricabogence can be seen in
the time traces or by looking at the table values of the firing rates. Thus, gkgdidints given in

(7) represent the sum of the geometric seriegifor £| < 1

o0

PRI (5.6)

n=1

The convergence of the firing rates to a fixed point has interesting apptiseto the three-
neuron system with an asymmetrical lateral connection between the féddbps. If the lateral
connection in this three neuron model were not present, then the weigimeire would vanish.
Along the line = 0 in the parameter space many values of the remaining weight paramietet
to converging firing rates, which is inconsistent with experiments that sisoilaiory activity in
the tectum [23]. Thus, the asymmetrical lateral connection is crucial foltatery behavior of the
units within the three-neuron circuit.

The delayed three-neuron feedback circuit with an asymmetrical latarakction between the
feedback loops is common in vertebrate neural circuits. Using constrditits synaptic strengths
observed in the avian feedback triad circuit, we have shown that thetfemgsh connection pa-
rameters can be reduced to two effective strength parameters. With thiis ttes parameter space
over the two free synaptic strength parameters exhibits steady, diveagiagodic, and oscillating
activity states. We have observed that the aperiodic states are not dhatatather exhibit multi-
stability. In addition, a fixed point analysis has shown that the conveagtinity states are confined

by a stability condition and that the convergent trajectories converge gecatlg to the fixed point.
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When the lateral connection between the two elements of the feedback loojpgeesent, one of
the effective parameters vanishes and geometrical convergence &dgobint occurs for many
choices of the synaptic strengths. In addition, the parameter space exagidas where quali-
tatively equivalent system dynamics occurs for widely differing synagitiength parameters and
regions in which small changes in synaptic strength lead to drastically diffastwork activity.
In mammals the TH has feed-forward connections to both the CX and the RECXtand the RE
are connected via an asymmetrical lateral connection with the CX and thedviipg feedback
to the TH. The feedback triad model presented here highlights the impoatioe asymmetrical

connection from the CX to the RE in terms of generating oscillatory behavioeiii thneurons.
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Chapter 6

Winner-take-all selection in a neural

system with delayed feedback

We consider the effects of temporal delay in a neural feedback sysittnexeitation
and inhibition. The topology of our model system reflects the anatomy of tae &th-
mic circuitry, a feedback structure found in all classes of vertebratesshatv that the
system is capable of performing a ‘winner-take-all’ selection rule falagecombina-
tions of excitatory and inhibitory feedback. In particular, we show thagmthe time
delays are sufficiently large a system with local inhibition and global excitation
function as a ‘winner-take-all’ network and exhibit oscillatory dynamice d&mon-
strate how the origin of the oscillations can be attributed to the finite delays tihieug

linear stability analysis.

6.1 Introduction

In order to identify and react to behaviorally relevant objects in their Vismaronment, animals
must be able to rapidly locate the positions of these objects in visual spaisealiility to select
and orient towards the most salient part in a visual scene that may beediwtéh other, for the
animal’s survival less relevant objects, has evolutionary significaadt permits the organism
to detect quickly possible prey, predators, and mates [1]. In standadelsof selective visual

attention, the stimulus is encoded in a ‘saliency map’ that topographicallyseamtethe conspicuity
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of the stimulus over the visual scene. The most salient location is then chpsetwinner-take-
all' (WTA) network, i.e., by a neurally implemented maximum detector [2]. In paal network
models, these WTA networks are often realized as networks with lateraitinhilj3—5], global

inhibition [6], or local excitation and long distance inhibition [7]. After the mastive location,
i.e., the ‘winner’, in the saliency map has been chosen, attention shouldawggyér, continue to
be focused onto it. One way of allowing attention to shift, is to transiently inhihitores in the
saliency map that correspond to the currently attended location, a strategw las ‘inhibition of

return’ [8].

The homolog of the mammalian superior colliculus in non-mammalian vertebrates iptibe o
tectum (TeO). It is critically involved in localizing visual objects and in the pragion of orienting
responses towards these objects [9, 10]. In all classes of vertehitadeTeO is reciprocally con-
nected with the nucleus isthmi (NI), which is homologous to the parabigemiokdusiin mammals
[11]. In the avian visual pathway, the NI consists of three subnuclenulbkus pars parvocellularis
(Ipc), the nucleus pars magnocellularis (Imc), and the nucleus pars sansl({SLu) [12, 13]. In
both Ipc and Imc the projection from the tectum is topographically organizeld that the retino-
topic map is preserved in both nuclei, with the projection to the Imc being someadiater than for
the Ipc [12]. In contrast, the isthmic projections back to the TeO are vegrelift for Ipc and Imc.
Ipc neurons project back to the TeO in a highly precise homotopic mannetheeaxons of each
Ipc neuron terminate in that part of the optic tectum from which their visuaitsypome [13]. Imc,
on the other hand, has two populations of neurons, which both make togierprojections but
only to the TeO or Ipc, respectively [12]. The three-nuclei circuitrgsisting of TeO, Ipc, and Imc
is shown in Fig. 6.1 [14]. Due to latencies arising from synaptic procesgstemspatial separation
of the nuclei, the coupling between TeO and NI cannot be consideredtastnus. Rather, finite
temporal delays exist [12, 13]. Furthermore, delays can arise fromhytiemical properties of the
systems involved. For instance, the authors of Ref. [15] report stindgpsndent onset latency of
recurrent inhibition in the cat hippocampus, and these findings were iqikaimed in Ref. [16]. It
has been known for some time that temporal delays can cause an otheéabieesgstem to oscillate
[17-19] and may lead to bifurcation scenarios resulting in chaotic dyna@@;fl]. Therefore,
finite delays are an essential property of any realistic model of a newmuation [22].

The synaptic effect of the recurrent projections from the Ipc and kefls onto their target cells
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retinal input tectum

Figure 6.1: Diagram of the isthmotectal feedback loop. The Ipc is re@fiyoconnected with the
TeO in a precise homotopic manner. Tectal neurons project topogriphizdhe Ipc, and Ipc
neurons project back to the corresponding tectal loci. Imc receivearaer topographic projection
and projects back to the TeO and Ipc via widely ramifying terminal fields. Biepkesents visually
activated neural elements. Reprinted with permission from Ref. [14].

is less well understood than their anatomical organization. The availableneéduggests that Ipc
neurons are cholinergic, whereas Imc neurons have been showpreEsgxgamma-aminobutyric
acid (GABA) as their main neurotransmitter. Thus, according to the usleabf@acetylcholine and
GABA, one might speculate that Ipc and Imc neurons mediate excitation aittioi onto their
target cells, respectively. The authors of Ref. [14] posit that “theetmuclei circuitry [...] may
constitute a winner-take-all network [2] in which local visual inputs to thedpe augmented by
the re-entrant loop among tectal and Ipc neurons, combined with broguitio of the rest of the
Ipc by Imc neurons.” This argument seems immediately plausible, howdgetraphysiological
experiments [23-25] suggest that the synaptic effects of Ipc and lenacinally converse to this
scenario and that the Ipc mediates inhibition whereas the Imc has an exceafiemty Given the
anatomical organization of the recurrent projections from Ipc and Iriscndt fully intuitive how the
system could function as a WTA network when Imc is excitatory and Ipc inlibitdevertheless,
the author of Ref. [26] considers this possibility: “The positive and tiegifeedback loops formed
between the tectum and NI may work together in a winner-take-all networthat the positive

feedback loop could provide a powerful augmentation of activated ldtievhe negative feedback
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optic tectum nucleus isthmi pars nucleus isthmi pars

parvocellularis magnocellularis
TeO Ipc Imc
a B Y
1...N N+1...2N 2N +1

Table 6.1: Components of the isthmotectal feedback loops and abbreviatmsise the Greek
indicesa, 3, and~ to denote TeO, Ipc, and Imc, respectively. Furthermore, neuronsuanbered
such that indiceg throughN refer to the TeO/N + 1 through2N refer to the Ipc, and the index
2N + 1 refers to the Imc.

loop may strongly suppress the others [...]. For example, Imc could enttaesual responses of
tectal cells to target locations or stimulus features, while Ipc may suppress tihother locations
or features in the visual field.” The aim of this work is to investigate possiblehar@sms for WTA
selection in the isthmotectal feedback loop through a computational model. leothtisxt, we do
not refer to the term WTA in its most strict sense, which would imply that only #agon with
the strongest input exhibits a nonzero firing rate; rather, we speakiéfb&havior when the firing
rates of neurons with weaker inputs are suppressed relative to thosgtitlyer input.

In Sect. 6.2, we introduce our model of the isthmic system, and we analyzsptnge dynam-
ics for different temporal delays and different combinations of excitatimhinhibition in Sect. 6.3.
In Sect. 6.4, we compare the efficiency of WTA selection for these combigatia Sect. 6.5, we
employ a linear stability analysis to show how the oscillatory dynamics that arise s8y#ftem can

be attributed to the increasing delays. In Sect. 6.6, we summarize our results.

6.2 Model

To explore the conjecture that the isthmotectal feedback loop functions/dBAanetwork, we
consider a model system of coupled Hopfield neurons with temporal delay28], as described in
Ref. [29]. In this model, the temporal evolution of the membrane potential otltheeuron (taken
from rest potential)V;(¢), is given by the first-order delay differential equation (DDE)

7 d‘gt(t) — Vi) + S wigri(t — 7i5) + Li(E). (6.1)
J
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Figure 6.2: Diagrammatic representation of our model for the isthmotectdldekdoop. Neurons
in the TeO and Ipc, which project topographically, are modeled as indi/ugiits. Due to their
diffuse projections, Imc neurons are combined to form a feedbaclekern

Here, the membrane time constant for theneuron is denoted boyi(m), the synaptic connection
weights for the projection from thgh to theith neuron arew;;, the temporal delay for this projec-
tion is 7;;, r; is the firing rate for thgth neuron and is linked to its voltage according to a nonlinear

firing rate function,
ri = S;i(V;), (6.2)

and I;(t) denotes an external input to tli#n neuron. To model the isthmic system, we assume
that N tectal neurons are reciprocally coupled¥olpc neurons and that the only neurons that
receive external input are those in the TeO. Furthermore, due to tad bra heterotopic nature of
the projections from Imc, we combine the Imc neurons to a feedback kevhilh then projects
globally to both TeO and Ipc. The topological structure of our model is degpim Fig. 6.2. To
simplify our model, we make the following assumptions: The synaptic weights éopribiections
TeO—lpc, TeO—Imc, Ipc—TeO, Imc—~TeO, Imc—Ipc, are the same for all neurons in each of
these groups, and we denote themuy,, w,a, Wag, Way, ws,, respectively; all membrane time
constants are identica#i(m) = 7(m) for all i, and we rescale time such thdt”) = 1; all delays
are identical,r;; = ; all firing rate functions are identicefl;(V;) = S(V;). Furthermore, we
number our neurons such that the indides- 1, 2, ..., N refer to tectal neurons, the indices

i=N+1, N+2, ..., 2N refer to Ipc neurons, and the index 2N + 1 refers to the Imc kernel
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(cf. Tab. 6.1). Then, the dynamics of our system are described B/\the 1 DDEs:

dVi(t .
‘jlt( ) = —V;(t)+U)a57'i+]\7(t—7')+waryT2N+1(t_T>+[i(t)7 1= 1727"' 7N7
dV;(t .
dt() = —Vi(t) +wgari-nN(t —7) +wgyrony1(t —7), i=N+1,N+2,...,2N,
N
dVani1(t)
T = —VY2N+1(t) + wf},a ZT‘Z(t - T) . (63)

i=1
For the firing rate function we choose the piecewise linear function,

;

0 for V; < Vrp,
rj =5(V;) = a(V; — V) for Vi < V; < Vi + Siax/a, (6.4)
Smax for Smax/a + Vr < V.

Finally, we make the simplifying assumptionsg,| = N |wya| = [wag| = |Way| = |wgy| = 1/a
andVy = 0. The signs of the synaptic weights determine whether a projection is excitatory
inhibitory and since the tectal cells mediate excitation, we hayg w,, > 0. The authors of both
Ref. [14] and Ref. [26] both discuss scenarios in which WTA behaatiizes from an interplay of
excitation and inhibition in the isthmotectal feedback loop, and we are thergftarested in the
cases where Ipc and Imc have adversary effects onto the TeO.fohusases remain to be studied,
which can be characterized according to the signsugfs, wa.,wsy) as(+,—, —), (+,—,+),
(—,+,+), and(—, +, —). In our model, the first two of these cases correspond to global inhibition
and local excitation of tectal cells through feedback, whereas the lattecdwespond to global

excitation and local inhibition of the cells in the TeO.

6.3 Response dynamics

In the following, we investigate the dynamical response behavior of a netvemsisting ofN =
200 (initially quiescent) neurons to a static stimulus. We choose an input consiéfing superim-
posed Gaussians with peaks at 20, 60, 100, 140, and180, and peak values @f.75, 0.5, 0.45,
0.4, and0.35, respectively. The (normalized) stimulus is shown, e.g., in Fig. 6.3(a)aiticplar,

we are interested in the firing rates of those neurons whose positiong&deoivith the peaks in the
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Figure 6.3: WTA behavior and network dynamics for the casg—, —), i.e., global inhibition and
local excitation. (a) and (b) are for the undelayed case,= 0, while in (c) and(d) the delay is

7 = 2. The dots in the snapshots(a) and(c) show the normalized response of tectal cells, i.e., the
quantityr; = r;(t)/rmax(t), wherery.x(t) denotes the maximum of all tectal firing rates at time
t, while the solid line shows the normalized input, i.e., the quatity,.x. In both(b) and(d),

the first plot shows the firing rate dynamics of the neuretisroughe in the TeO, the second plot
depicts the temporal evolution of the response contrast of tectal nduttomsighe when compared
with neurona, the third plot shows the activity of the Ipc neurons receiving input ftbemtectal
neuronsz throughe, and the fourth plot shows the firing rate of the Imc.

stimulus, and in order to abbreviate our notation we denote their indiee$as d, ande according

to descending strength of their respective inputs.

6.3.1 Global inhibition, local excitation

We first consider the casés-, —, —) and(+, —, +). In this situation, our network is similar to the
circuit considered in Ref. [6]. Therefore, we expect that it cafigper a reasonably accurate WTA
selection. Figure 6.3 shows the firing rate dynamics in response to the staiic Tiye undelayed

case is shown in Figs. 6.3(a) and (b), whereas Figs. 6.3(c) and dd) thle dynamics that result
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whenr = 2. To compare differences between firing rates of tectal neurons vedasrithe contrast

measure

Cij = m (6.5)
In particular, we are interested in the contrasts cqc, cqd, aNdc,e, Whose temporal dynamics are
depicted in the second plots of Figs. 6.3(b) and (d). From Fig. 6.3 we aemithe cas¢+, —, —)
the weakest inputs are suppressed efficiently, while the neuronsingc#ie strongest input are
driven towards maximum firing. Inputs of intermediate strength (e.g., theemed/ed by neuroh)
are not suppressed. Thus, in the configuratien—, —) the system can perform a WTA selection,
but not with very good ‘resolution’. Furthermore, by comparing Figs(&.8nd (b) with Figs. 6.3(c)
and (d), we see that the temporal delay in the system has only little effectaffidiency as a WTA
selector. The main effect of the delay is that it causes the system to evolvdooger time scale,
i.e., the steady state is not reached as fast as in the undelayed case.

For the cas¢+, —, +) it turns out that the inhibition in the system is insufficient to compensate

for the positive feedback in the recurrent coupling between TeO andalpd even neurons that

receive only weak inputs are driven towards maximum firing. Thus, indh&guration(+, —, +)

our model system does not function as a WTA network.

6.3.2 Global excitation, local inhibition

Now we consider the casg¢s-, 4, +) and(—, +, —), which correspond to global excitation of the
TeO through the Imc and local inhibition from the Ipc. They thus corredgorthe scenario de-
scribed in Ref. [26] and it does not seem immediately intuitive how WTA biehaould result

in this configuration. Indeed, for the ca&e, +, +), when there are no delays no WTA selection
occurs. The response dynamics for this case are shown in Figs. &%{(#)). The contrast in the
firing rate response of neurons receiving inputs of different strenig nearly identical to the con-
trast of the respective inputs during all phases of the system’s tempotatien. Thus, neither are
weaker inputs suppressed nor are stronger inputs augmented. Wiv@rnoglace delay into the sys-
tem, however, its behavior changes drastically. Figs. 6.4(c) and (d) tiigoresponse dynamics for

the caser = 2. Note that the neurons’ firing rates, as well as the contrasts betwgenees now
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Figure 6.4: WTA behavior and network dynamics for the daset+, +), i.e., global excitation and
local inhibition. Same as Fig. 6.3, but for inverted signsugh, wa-, andwg,.

exhibit oscillatory behavior. The system can perform a WTA selection wedisonable accuracy,
but only transiently, i.e., only during certain phases of its temporal evoluf\sra matter of fact,
a phase of best WTA selectivity is preceded and followed by phase®leresponse contrast is
even lower than that of the input.

Since standard models of selective attention usually require that the most sélieulus not
be a permanent ‘winner’, but rather that it be suppressed once attér@sobeen directed to it, the
dynamical evolution of the response is an important characteristic. Coerstly it may actually
be a desirable feature of a WTA network to only determine the ‘winner’ ieatly.

The casg —, +, —) leads to similar results as in the case, —,+). When Ipc neurons are
inhibited by the Imc, they cannot provide sufficient negative feedbatiietdeO in order to prevent
tectal neurons from being saturated through the positive feedbacked&e®eO and Imc. Thus, in

the configuratior{—, 4+, —) our model system does not function as a WTA network.
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Figure 6.5: Performance of the model system as a WTA network. The masesianse contrast
normalized to the input contrast is shown as a function of the dela@pen symbols are for the
case(+, —, —), and filled symbols are for the caée, +, +). The contrast’;; is shown fori = a
andj = b (circles),j = c (triangles),j = d (squares), ang = e (diamonds).

6.4 Comparison of WTA selectivity

In order to quantify the performance of our model system as a WTA nkfwee consider the
maximum in the response contrast between neufranslj, normalized to the contrast between the
(constant) inpuff to neuronsi and; during the first30 membrane time constants of the system'’s
temporal evolution:

I + I; o
i = max cjj .
YL — I o<e<30

(6.6)

This quantity is shown for the pairg, b), (a,c), (a,d), and(a,e) for the caseg+, —, —) and
(—,+,4+) and for different values of the time delay in Fig. 6.5. As we expect fromréiselts
presented in Sec. 6.3, in the case of global inhibition and local excitdtian;, —), the system’s
performance as a WTA network, measured by the valu€ gfdepends only little on the time
delay. Furthermore, we see that the system is efficient in suppressadginguts, whereas the
response contrast for inputs of intermediate strength is less enhanbedpefformance for the
case(—, +, +), on the other hand, depends strongly on the temporal delay. Furtherimematio
between the maximal response contrast and the input contrast is cotegaralyeak and inter-
mediate inputs. When the delay is sufficiently large, the model system thustexhletter WTA
‘resolution’ in the case of global excitation and local inhibition than for theiisg scenario, albeit

only transiently.
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We have also investigated the role of parametric disorder in the system drtidirit does not
change our results qualitatively. For instance, when the projection laseaedrawn randomly
from a normal distribution with mean at = 2 and standard deviation @2 and the synaptic
weights are disordered using normal distributions with means at the dedfdudisvand standard de-
viations of10% of these values, the maximum contrast as measurég ig comparable to the case
without disorder. Simulating ten different samplings of randomized delaysymaptic weights for
the casd—, +, +), we obtain the resultCyy, Cac, Cad, Cae) = (2.28 £0.25, 2.50 4+ 0.30, 2.06 +
0.13, 2.34 4+ 0.12) (results are meatt standard error of the mean), which is to be compared with

the values for the undisordered cdsg;,, Cyc, Cud, Cae) = (1.83, 1.89, 2.00, 2.06).

6.5 Linear Stability Analysis

We now aim to understand the origin of the delay-induced oscillatory dynamilee case of global
excitation and local inhibition through a stability analysis of the model system.iFertid, we make
the following ansatz, which, a posteriori, turns out to be correct. Wenasghat for the chosen
input the system of DDEs (6.3) possesses a stationary pgift= V; with 0 < V; < Syax/a for

1 <i < 2N + 1, and we can thus replace the voltages in the system (6.3) according to #e line

part of the firing rate functioty. The stationary point is then obtained by solving the equation
V=aWV+1. (6.7)

Here,V andI are2N + 1 column vectors (only the firs¥V entries ofl are nonvanishing) and W is

a(2N +1) x (2N + 1) matrix of the form

OnxN  Waplyxn Waydnxi
W =1 wgallnxkny  Onxy  wpydysa | - (6.8)

WryaLixn O1xn 0

We find that for the casé—, +, +), the matrixl — W is invertible and that the solution for the
stationary pointV = (1 — aW)~'I does indeed permit us to linearize the system (6.3). In the

case (+,-,-), however, it turns out that this solution yields values that ted=muof the linear regime
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of the firing rate function, and the linearization (6.7) is therefore not validxt, we analyze the
stability of the stationary point for the cage, +, +) by making the ansat¥ (t) = V + ce*,
which leads to the equatio[ue—”W — (14 XA)1] ¢ = 0. In order to determine the conditions
for a nontrivial solution to this equation to exist, we must solve the charatitegiguation for the

matrix M = ae~>W — 1, i.e., we have to solve
det(M — A1) = =0, (6.9)

where we have introduced the abbreviations

= —(1+ M) Lyxn awaﬁ’e—)\Tﬂ-NxN ’ (6.10)

awgae MAnxn  —(1+ N)Ayyn

—AT

aWa~e TN
Y ary X

u= <aw7ae TilllxN,leN> , v = . (6.11)
awg,ye_)‘T:I].le

Solving (6.9) is facilitated by applying the identity [30]
det(M) = —det(M) |1+ X — uM_lv} . (6.12)

The inverse of\/ is given by

S 1 (1 + /\)ﬂ-NxN awage’)‘T]].NxN (6 13)
- 2 _ 2 —2XT ’ '
(1+X)? — a®>wapwpae awgae M Ayun (1 + N yxn
and we thus obtain
det(M = ML) = NaPwiae ™7 [awapuigye ™ +wen (14 1)] (6.14)
< |(1+ /\)2 — a2w oV . 2 2 oV
aBWBaE (14+X) [(14+ X)) — a*wapwsae :
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Figure 6.6: Eigenvalues dff as a function of the delay. Real parts of eigenvalues are shown by
solid lines, imaginary parts by dashed lines. The upper panel showan@anaginary part oks,
and the lower panel shows real and imaginarypf and\,_.

For the casé—, +, +) the characteristic equation simplifies to
3\ 3 2\ 2 N
L+ e (1 4 0] [ (1402 =0, (6.15)
Its solutions, the eigenvalues bf, are given by

1 . 1
A+ =—1+ ;W(:ﬁ:we ), Aot =—1+ ;W 5 5

(1 + z\/§> TGT] , A3 =—1+ lVV(feTT).
T

Here, W (z) is the inverse function t&V ~!(z) = ze®, which is usually called the Lambel -

Function. Figure 6.6 shows the real and imaginary parts of the eigenw&iddsas a function of

the delayr. For all values ofr there is no eigenvalue with a positive real part and the fixed point

V is thus stable for arbitrary delays. However, the real parts of the eafjgs/tend to zero faster
than their respective imaginary parts as the delay is increased. Therefith increasing delay,
the relaxation time for the system’s return to the stationary point grows moiciyréigan the time
scale for oscillations. Thus, with increasing delay, the system will spirahrdhe fixed point,

explaining the observed oscillatory behavior.
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6.6 Summary and discussion

We have investigated the circumstances under which the isthmic system cdioriusis a WTA
network. We have constructed a rate-model of the isthmotectal feedbaglatal have analyzed
the temporal evolution of the model system in response to a static stimulus. Westhawn that
time delays can be crucial to the dynamical behavior of the system. In partidelay-induced
oscillations can lead to transient WTA selection in our model. Finally, we haferpeed a linear
stability analysis explaining the origin of the oscillatory behavior.

It has been conjectured for a long time that the isthmotectal feedback lostitotes a WTA
network. Our results show that the isthmic circuitry is indeed set up to meréoich a selection
rule. In the case where global inhibition and local excitation are presaheisystem, this result
is quite intuitive. However, a network with global excitation and local inhibitiontrhigot appear
to be well-suited as WTA selector. Yet, precisely such a scenario wassdetun the literature.
Temporal delays can be crucial for the behavior of a dynamical systamaa we have shown in our
investigation, they are particularly important for the case of global excitatiwhlocal inhibition,
as they induce transient WTA behavior in the network. Transmission amapsy delays for the
projections between Ipc and TeO are estimated to be around 15ms [3tkasheembrane time
constants in the Ipc may be as short as a few milliseconds [32], which is withiratige of typical
neuronal membrane time constants [33]. When the synaptic and transmisksigs are of the same
order of magnitude as the membrane time constants involved, the degree toowhictodel for
the isthmic system functions as a WTA network, can depend crucially on tagsdef. Fig. 6.5).
Therefore, temporal delays should not be neglected when the nédyaoranics of the isthmotectal

feedback loop are assessed and its potential for WTA selection is discuss
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Chapter 7

The isthmotectal feedback loop as a
winner-take-all and novelty detection

clrcuit

Recent experiments conducted in the avian isthmotectal feedback loop stea@that

this neural circuit can gate the ascending flow of visual information. Eurtbre, it
was shown that the system exhibits sensitivity to novel stimuli. In standardishofde
selective visual attention, the most salient stimulus in a visual scene is ciiweagh

a ‘winner-take-all’ selection mechanism, and attention can then be directedd®w

it. Taking into account known anatomical and electrophysiological ptigseof the
isthmotectal circuitry, we examine under which circumstances the systemmetioh

as a ‘winner-take all’ and novelty detection circuit. We optimize the parameters in
our network model through application of a genetic algorithm and consioksile

parameter combinations in the biological system.

7.1 Introduction

In their environment, animals are constantly confronted with a myriad of vigimalili. Among the
available stimuli, the animal must thus select certain ones for attention. Thisiselslould be

such that the selected stimulus or location is more likely to be important or retevlwetanimal [1].
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This ability to select and orient towards the most salient part in a visualemagnt has evolution-
ary significance, as it permits the organism to choose a possible prey debtd quickly predators
or mates [2]. Attentional selection can be goal-directed (top-down), ascturing reading when
the gaze is directed to the text locations, or mediated through autonomousnisethéottom up)
along the visual pathway. In models of bottom-up visual attention, the stimulux@ed in a
‘saliency map’ that topographically represents the conspicuity of the stimeiithe visual scene.
The most salient location is then chosen by a ‘winner-take-all’ (WTA) ndiwice., by a neurally
implemented maximum detector [3].

The optic tectum (TeO, mammalian homolog: superior colliculus, SC) is the pringarglhcen-
ter in the midbrain of non-mammalian vertebrates. It has long been known titibelly involved
in localizing visual objects and in the preparation of orienting responsesdswhese objects [4-7].
Less well-known is the fact that the TeO/SC is reciprocally connected tstamagly affected by a
smaller midbrain nucleus called the nucleus isthmi (NI) in nonmammalian and pangibig nu-
cleus in mammalian vertebrates [8]. In the avian visual pathway, the NI ¢s$ithree subnuclei:
the nucleus pars parvocellularis (Ipc), the nucleus pars magnocelififads and the nucleus pars
semilunaris [9, 10]. In both Ipc and Imc the projection from the tectum is taaigcally orga-
nized such that the retinotopic map is preserved in both nuclei, with the projectibe Imc being
somewhat coarser than for the Ipc. In contrast, the isthmic projectiohstbdabe TeO are very
different for Ipc and Imc. Ipc neurons project back to the TeO in @aipeechomotopic manner, i.e.,
the axons of each Ipc neuron terminate in that part of the optic tectum floomheir visual inputs
come. Imc, on the other hand, has two populations of neurons, which reémtopic projections
but only to the TeO or Ipc, respectively. Anatomical studies furthermatigate that a given cell
in the Imc does not project back to the locus in the TeO, or to the corresgpludtus in the Ipc,
from which it receives input, whereas it does project to all other locatjen10]. In this sense,
the feedback from the Imc can be termed ‘antitopographic.” The anatone ésthmotectal feed-
back loop is shown in Fig. 7.1. Ipc neurons are cholinergic, whereasémmns have been shown
to express gamma-aminobutyric acid (GABA) as their main neurotransmittes, &boording to
the usual role of acetylcholine and GABA, one would assume that Ipcraocheurons mediate
excitation and inhibition onto their target cells, respectively. Taking into @acthe connectivity

between TeO, Ipc, and Imc, it then seems immediately plausible that “the thoss-aircuitry [...]
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tectum tectal OBs

Ai;[>

Ipe bursts

retinal input

> AU

02s

rotundus

Figure 7.1: (Color) Diagram of the isthmotectal feedback loop and modulafidime ascending
flow of visual activity. The schematic illustrates the synaptic connectivity éetwNI and TeO.
Neurons in Ipc receive a topographically organized visual input textal ‘shepherd’s crook’ neu-
rons and project back to the homotopic location via cholinergic paintbrush #etrminals. Imc
neurons receive a coarser projection from tectal neurons andvadety ramifying, GABAergic
terminal fields on most of the Ipc and the TeO. The densest paintbrushaatioifis colocalize with
the retinal terminals and the dendritic bottlebrushes of type | tectal ganglitn(€&C), whose
axons project to the nucleus rotundus. The recording traces shothéhaynchronized, visually
evoked bursting responses recorded at homotopic locations in Ipcsghdr€ also synchronized to
extracellular activity recorded in the dorsal anterior division of the nugctetundus. OB, Oscilla-
tory bursting potential. Reprinted with permission from Ref. [8].

may constitute a winner-take-all network [3] in which local visual inputs tolpltseare augmented
by the re-entrant loop among tectal and Ipc neurons, combined with brbanition of the rest of
the Ipc by Imc neurons [11].”

Recent experiments in birds have revealed that the Ipc crucially modulatestkending flow
of visual information from the TeO to the diencephalon by providing a gatinghar@sm for visual
stimuli [12]. In their investigation, the authors of Ref. [12] show that ldnaktivation of the Ipc
prevents visual responses in the nucleus rotundus, which constitutesxhéevel in the avian
visual pathway, to objects moving in the corresponding region of visualespTherefore, in order
for a visual stimulus to be further processed by the visual system, thespomding location in the
Ipc must be active. Conversely, if the corresponding location in the lpaidive, the stimulus is

discarded for further processing. Furthermore, the results presariRef. [12] demonstrate that the
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Ipc exhibits sensitivity to novel stimuli. Recording visually evoked activity in lipeg the authors
of Ref. [12] find that when a second visual stimulus is presented, tipemse to a first stimulus
is suppressed. They then to demonstrate that this suppression is medigteddABAergic Imc.
These findings provide further support to the concept of the isthmofeetdback loop as a WTA
selection circuit.

The anatomy of the isthmotectal feedback loop is known in great detail anddheneuro-
transmitters involved in the circuit have been identified [9, 10, 18—-21}thEtmore, certain single
cell properties, such as membrane time constants or resting potentials wemaided in electro-
physiological experiments [22, 23], and the distributions of the transmiskiays between the
components of the feedback loop have been measured [13]. On théatitequantities that deter-
mine the network behavior of the system such as the strength of synaptacimes are unknown.
In this work, based on the experimental findings described above, gy thiel circumstances under
which the isthmotectal feedback loop can function as a WTA and noveltytaatéblD) circuit. In
Sect. 7.2 we describe our model for the isthmotectal feedback loop angsliatich parameters
we keep fixed and which are variable in our study. In Sect. 7.3 we regat kind of simulations
we performed with the network model and how we evaluated its ability to funcian\&TA and
ND circuit. We show how we optimized the system parameters for these taskgtha genetic
algorithm (GA) in Sect. 7.4. Section 7.5 contains a discussion of what pseesrappear to be
crucial for the system’s performance and how the different paramataes might relate to each

other in the biological system. A summary concludes the paper in Sect. 7.6.

7.2 Model and Parameters

We consider a network model of integrate-and-fire neurons as dedcrtg., in Ref. [24]. The
model neuron behaves like an electric circuit consisting of a resistor aagbacitor in parallel.
Furthermore, it is stipulated that an action potential occurs whenever the nareenpotential of
the model neuron reaches a threshold vafye Subsequently, the membrane potential is reset to a

valueV; below the threshold potentidl; < V4. The temporal evolution of the membrane potential
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of theith neuronV;(t), is then determined by the differential equation

dvi(t) I;(t)
Tmi— g = Er; —Vi(t) + A (7.1)
and the update rule
Vi(toi+) = Vi if Vi(toi—) = Vini - (7.2)

Here,r, ; is the membrane time constant, ; the specific membrane conductangg,; the resting
potential, A; the membrane surface area, dpd) an input current; furthermorg ; denotes a firing
time of theith neuron, i.e., the neuron reaches firing threshold aaind emits an action potential.
In order to number the firing times of thigh neuron, we introduce an additional indexsuch that
té’fi) is the time at which théth neuron emits itéth spike. The input curren;(¢) consists of an
external input, synaptic currents due to the coupling to other neurons methvrk, a spike-rate

adaptation current, and a stochastically varying current represerdisg or background activity:
Iz(t) = Ie,i(t) + Isyn,z’(t) + Isra,i(t) + nz(t) . (73)

In the following, we briefly describe the four contributions to the inputentin our model. The
external input currenk, ;(¢) represents a stimulus and we assume that more salient stimuli give rise
to stronger currents. The saliency of an object does not necessamigspond to single stimulus
features in a straightforward way. For instance, it has been repoded/itten confronted with two
possible preys, frogs choose the one located more rostrally, evenanhere caudally located but
otherwise equal prey is at a much shorter distances [25]. The totghtsycarrent flowing into the

ith neuronly,, ;(t), is obtained by summing over all currents resulting from projections ontitihe
neuron:lsyn ;(t) = >, I;;(t). Herel;;(t) is the current due to a projection from tlih to theith

neuron in the network. It is given by

Lij(t) = = Gij Ai P (t — 75) [Vi(t) — Es 5], (7.4)
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whereg;; is a specific conductance and represents the synaptic weight for feetjmo from thejth

to theith neuron. Furthermorey; ; is the reversal potential for the corresponding synaptic current
andr;; the transmission delay for the projection. The quarfi{t) denotes a gating variable which
describes the degree to which the synaptic conductance fropththe theith neuron is active. Itis

given by the equation
Pi(t) = B { exp[—(t — t{))/mi] — expl=(t = §:))/72] } (7.5)
k

where the sum is over all spikes emitted by fitle neuron prior to timg¢. The constan3 is a
normalization constant that assures that the peak valliedafring a single synaptic event is equal

to one. Itis given by
B =

7-risc/Tl Trisc/TQ -1
(”) - (”) ] . (7.6)
1 1

The rise time of the synapse is determinedray. = 7172/(71 — 72), while the fall time is set

by . The spike-rate adaptation currefyt, is added to the model to include the possibility that
interspike intervals lengthen over time when a constant current is injectethent®ll. The spike-

rate adaptation current is given by

Isra,i(t) = Usra,i (t)Az [‘/;(t) - Esra,i] . (77)

Here,Eq.. ; denotes the reversal potential for the spike-rate adaptation currtbwatitth neuron, and

the specific conductaneg;, ;(t) is modeled according to

dgsra,i (t) _ _gsra,i (t)
dt Tsra,i

(7.8)

and

Gsra,i (tO,i+) = Ysra,i (tO,i_) + Agsra,i . (79)

The stochastic currentg(¢), finally, are modeled by Gaussian white noise, i.e.,
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@

Figure 7.2: (Color) Diagrammatic representation of the synaptic connedtiathe isthmotectal
feedback loop model. Projections that, depending on the model parannesgrbe relatively weak
are shown by broken lines. The black arrows indicate external inputhdrmc, the feedback
projections to the TeO and Ipc are only shown for one neuron.

(ni(t1)nj(ta)) = 207 A7S(ty — t2)dy; - (7.10)

In our model, we allow for three different types of neurons: tectal eesiripc neurons, and Imc
neurons. The total number of neurons\is= Nteo + Nipec + Nime. We number the neurons such
that indicesi with 1 < i < Npeo, N1eco +1 <@ < N1eo + Nipe, @NdNTeo + Nipe +1 <7 <
Nteo + Nipe + Nimc label tectal, Ipc, and Imc neurons, respectively. The model paranmatgrs
differ between the three groups of neurons. However, within eaalpgne take the parameters to
be homogeneous. Furthermore, we assume an equal nhumber of neurank of the three groups.
For the synaptic weightg;;, we make the following assumptions that are motivated by biological
and electrophysiological studies [22, 23]. We assume that a tectalmpuogects to one neuron
in the Ipc and one neuron in the Imc each. The feedback projectionstfrertpc and the Imc
are chosen such that a projection from a neuron in the Ipc targets therteatan from which

it receives its input, but also neighboring neurons with exponentiallyedsang strength. For the
projection from Imc, we allow for the possibility that the tectal neuron whidjgats to the Imc
neuron receives weaker feedback than more distant tectal nedioas$opological organization of

our model network is depicted in Fig. 7.2, and the synaptic weights for ttjegbians are given
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Gis 1<j<N; Ni+1<j< N, Na4+1<j<N
1 S 7 S Nl 0 ngCHT&O gImCﬂTeO
xe’(i’HNl)Q/wIQPCHTeO X [1 — WImc—TeO e’”’”N”Z/W%mC]
N1 +1<i< Nz  greo—Ipc 0i—Ny,j 0 Jime—Ipc

. 2, 2
X [1 — Wime—1pe € TITND /whrw]

No+1<i<N JTeO—Imec 0i—Ns,j 0 0

Table 7.1: Model connectivity and synaptic weights. The connectionstectal neurons to Ipc and
Imc neurons are assumed to be exactly topographic. The projection feolpdho the TeO is also
topographic but somewhat broader depending on the paramgferr.o. The projections from
Imc to Ipc and TeO are homogeneous or ‘antitopographic’ dependingequettametersi,. 1.0
andwimc—1pe, respectively. For simplicity, the abbreviatiohs = Nt.o and N2 = Nteo + Nipe
were introduced.

in Tab. 7.1.

For our investigation of the system’s performance as a WTA and noveltgtdetave specify
those neuron parameters that have been estimated in single-cell elestobpiigal experiments.
For other parameters, we either choose standard values from the ligeoatkeep them variable
and study their influence on the system dynamics. For those parametessigre @ minimum and
maximum value, where we usually set the minimum to zero and determine the maxiroordiag
to physiological constraints.

We are especially interested in studying the synaptic connectivity of thédekdoop and
therefore keep the synaptic weights for the five different projectioriable. Also, the three space
constantSurpc—Te0, Wime—TeO, @aNdwime—1pc, Which determine to which degree the feedback from
Ipc is exactly topographic and the feedback from Imc is homogeneoastitopographic’, will be
variable parameters in our study. The spatial separation between theldmeants of the feedback
loop suggests that temporal delays may influence the circuits performegroporal delays can be
crucial for the dynamics of neural systems [14—16] and have beemnstwopotentially influence
the ability of the isthmotectal feedback loop to function as a WTA detector [Ifigrefore, they
will also be variable parameters. Since experiments indicate that the isthmeieteah responds
to novel stimuli, adaptation could be an important feature of the neurons irediaédck loop and
we model different degrees of adaptive firing by varying the param®tgr, within each of the

three groups of neurons. Finally, electrophysiological experimentsataltbat the nucleus isthmi
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parameter value/range
Tm,TeOs Tm,Ipc> Tm,Imc 100 ms, 25 ms, 35 ms
Erx* -60 mV
Vinx * -40 mV
Vix ™ -65 mV
gmx ™" 1 pS/mi?
ES,T607 ES,IpC7 Es,Imc, oOmvVv,0myV, -70 mV
TIX, T2, X 5ms, 0.3 ms
Esra,X = -70 mV
Tsra,X * 100 ms
WIme Nlmc/ﬁ
Agsra x 0 puS/mn? - - 0.5 uS/mn?
TIpc,Imc—TeOs TTeO,Imc—Ipc; TTeO—Imc 0.5ms--- 12.5ms
ox 0 nA/mn?® - -+ 671 nA/mn?
ngc,Imc—»TeOa gTeO,Imc—Jpca JTeO—Imc 0 /LS/I’T“’T'I2 o 4 ,uS/mm?
WIpc—TeO 0--- Nlpc/4
WImc—TeO,Ipc 0---1

Table 7.2: Constant and variable model parameters. The upper pag tdltle shows parame-
ters and their respective values that we kept fixed in the model. The l@aveshpows the variable
parameters and their allotted ranges. Parameters markedése determined according to exper-
imental data [22, 23], whereas the values of parameters mark&tvgre specified according to
standard values given in the literature [26]. The synaptic reversahtiaitefor projections from
tectal as well as Ipc neurons were chosen as 0 mV assuming that theseseediate excitation.
The GABAergic Imc was assumed to mediate inhibition and the correspondiagsad potential
was set to -70 mV. The space constanf,. was given a value comparable to the one found for
the space constant,._.t.o in the GA optimization (cf. Sect 7.4). The ranges for the variable
parameters were set such that the minimal parameter value correspondsrtaim limiting case
(e.9.,dmec—T1e0 = 0 signifies that there are no projections from Imc to Ipc), while maxima were
determined by inspection of the resulting network behavior and physiolagioatraints.

exhibits considerable spontaneous activity [23]. To explore whethentlisy or background ac-
tivity plays an important role, we take the standard deviation of the noisgmisrin (7.10) to be
variable, which gives us three more variable parameters. For all oth@mpters we either take
experimentally determined values or use standard numbers from the litef2@jireln total we

have thusl9 free parameters of the system. Table 7.2 shows the values and rangesixédnand

variable parameters, respectively. For each variable parameter, wetatigoossible values which
are indicated by a parameter index ranging from zero to nine, where uadiegs of zero and nine

correspond to the minimal and maximal parameter values respectively.
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7.3 Network Simulations and Performance Measures

The model has 19 free parameters with 10 allotted values each. Drawmgei@r combinations
randomly from thes@0'” possibilities, we simulated the dynamics that resulted for a network con-
sisting of N = 60 neurons, wWithNtco = Nipe = Nime = 20. We then evaluated whether a given
network could perform WTA selection and ND. To this end, we examined éiwark’s response

to a stimulus represented as an external input current to the tectal cefistifftulus consisted of
two superimposed Gaussiangi) andsy(z) and was given as. ;(t) = s1(i) f1(t) + s2(7) f2(t).

The two Gaussians, (i) and sq (i) describe the spatial structure of the stimulus, wifilé) and
f2(t) give the respective temporal structures of the two components. Fordhielgtructure of the
stimulus, we had

Ioe_Q(i_p1/2)2/NTeO for i < Nreo,
0 fori > Nrteo,

where the peaks of these Gaussian were set at 6 andp, = 13. We then specified the temporal
components of the stimulus to test for both WTA and ND behavior. In partictlartwo stimuli
were first presented simultaneously but with different amplitudes (WTA t&tprwards, the two
stimuli were presented sequentially but with equal amplitudes. The tempargloazeents of the
stimuli are shown at the top of Fig. 7.3. We assigned a WTA and ND score tethrks based
on the number of spikes emitted by the neurons in the Ipc that corresptmtiezllocation of the
peaks in the stimulus. Denoting as andns the number of spikes emitted by the neurons with
indicesi = p1 + Nr1eo, p1 + N1eo = 1 @andi = py + Nreo, p2 + N1eo £ 1 during the initial
simultaneous presentation of the two Gaussian stimuli, we defined the WTA a&6kgrs =

(n1 — n2)/(n1 + n2). Similarly, denotingn; andms as the number of spikes emitted by the same
groups of neurons but during the phase in which which both Gaussianlistene present with
equal amplitudes, we defined the ND scoresgg = (mo — m1)/(m1 + mg). The total score of
the network was then determined by taking the smaller of the two scores. Addlyiaestrictions

on the minimum and maximum firing rates realized in the networks were imposedeandrks
whose firing rates lay outside of this range were assigned a scoreoFxareach network, five runs
were simulated and the final network scérgvas determined by averaging the results from the five

runs. Initially, we simulated 1000 randomly generated networks. Figura)/sBows the response
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Figure 7.3: Raster plot of network output before and after GA optimizafibe.firing times of the
sixty neurons in the network are indicated by tickmarks. The input condisteocsuperimposed
Gaussians and the time courses for the two components are shown at tHehegdigures. The
position of the neurons in the TeO and the corresponding locations in tlentpkmc that coincide
with the peaks of the Gaussians are shown by dashed and dotted¢éipekows the output of the
best performing network among 1000 randomly generated netw@kshows the output of the
best performing network after optimization with the GA.

dynamics of the best performing network among these 1000 random tketvitceichieved a WTA
score ofSywra = 0.49 and a ND score afxp = 0.85. To examine what combinations of parameter
values would lead to improved WTA and ND behavior we optimized the netwarknpeance by

employing a GA.

7.4 Parameter Optimization via Genetic Algorithm

In order to optimize the performance of our model networks we used a Géatals for parameter
combinations that would lead to improved WTA and ND behavior. This optimizaticthadeis
inspired by evolutionary biology and is based on the principles of seledtibetitance, crossover,
and mutation [27, 28]. We ran the algorithm for twenty generations of 50arksreach, where
an individual network was characterized by its parameter indices forQheafable parameters
in the model. The performance of the network in the WTA and ND tasks wasewvednated as
described above. The scofewas used as a fitness value in order to assign a percentilerfank
to each network in the generation (selection). Here, the valug ioidicates what percentage of

networks received a score lower than that ofienetwork. The parameter values of the networks
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were then updated according to their rank (inheritance and crosséwea)ly, random changes in
the parameter indices were performed (mutation). In particular, we usddltwwing scheme in

order to update the parameter indices ofdenetwork from generation to generation:

 If r; < 0.5: All parameters of théth network were changed through crossover with either the
best-, second-best, or third-best performing network in the generagonamong the three
best performing networks one was randomly chosen and then usem$soger with théth
network. Each of the parameters of thie network was updated by either taking the value of
the network chosen for the crossover or by taking the arithmetic mean bretiaeeparameter
value of the ‘partner’ network and thith network. Both possibilities had probability 2.
After this crossover was completed, for every parameter of the updatedtwork a random
change (mutation) occurred with probability10. If a mutation occurred, the parameter

index was assigned a randomly chosen value bet@earm9.

* If 0.5 < r; < 0.7: Each parameter index of thith network was changed with probability
1/3 through crossover with the best performing network. If a changeroetithe parameter
index value was changed with probability2 to the value of the best performing network,
and with probabilityl /2 to the mean of the values of the best performing network andéthe
network. After this crossover, parameter indices were changed to hlbweigg value with

probability 1/10.

« If 0.7 < r; < 0.8: Same as foh.5 < r; < 0.7, except that the probability for a parameter

change through crossover with the best performing network was2gly.

* If 0.8 < r; < 0.9: Same as fof.5 < r; < 0.7, except that the probability for a parameter

change through crossover with the best performing network waslgnty.

* If 0.9 < r;: Same as fof.5 < r; < 0.7, except that the probability for a parameter change

through crossover with the best performing network was an80.

* Finally, the network with the best performance was transferred to thegaseration un-

changed.

Figure 7.3(b) shows the response dynamics of the best performingnkediter 20 generations of

GA optimization. The network achieved a WTA scoreSgfra = 1 and a ND score o$np = 0.96.
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Figure 7.4: Convergence of the GA. The scéref the best three networks is shown versus the
generation number. Open and filled dots depict results from two runs wikretit randomly
chosen starting generations.

The network thus performed the assigned task almost perfectly. Figushdwb the score of the
three best performing networks as a function of the generation in the B&alforithm converges
quickly to very high performance scores. To test how sensitive theecgemce of the GA would be
to the randomly chosen starting generation of networks, we performesbadseun with a different

starting generation and obtained similar convergence behavior.

7.5 Network Parameters for WTA Selection and Novelty Detection

Applying the GA to optimize the performance of the feedback loop model inrdeigaWTA se-
lection and ND vyielded networks that accomplished the assigned task alnfesttiye In order to
examine whether certain values of the variable parameters were pdefernhese networks, we
plot color coded histograms of parameter index value distributions vs. tteraen number in the
GA for each of the 19 variable parameters in Fig. 7.5. The histograms in Eigvéte obtained
from networks with percentile rank > 0.5 and results from two runs with different randomly
generated starting generations are shown. Initially, all histograms aad,batnich shows that the
random search for networks with good performance did not yield agfeped parameter values.
For most parameters, the distributions soon became narrower indicatingei@#a converges to a
specific region within the parameter space. However, the convergehegibr to a specific param-

eter value exhibits considerable variability for the individual parametersgin//. For instance,
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Figure 7.5: (Color) Parameter distributions and GA optimization. The distribatiggarameter
indices for the 19 variable parameters obtained from the 25 best perfprmatworks in each gen-
eration is color coded and its evolution during 20 generations of the GA srsh@) and(b) are
two runs with different randomly chosen starting generations.

the histogram for the parametgf.o—1,. becomes narrow very soon with the peak lying at iden-
tical parameter index values for both runs shown in Fig. 7.5. On the otinel, tize histogram for
the space constanty,,. 1.0 remains relatively broad throughout the GA optimization procedure.
The two runs of the GA that we performed do not allow definite conclusibnstavhat values of
the parameters give rise to WTA and ND behavior. However, certaingriemgbreferred parameter
values are apparent in Fig. 7.5. Assuming that a narrow histogramgaakemparable parameter
values for both runs in Fig. 7.5 indicates a preferred value for this paeaymee make the following
conjectures on the cellular and connection properties of the isthmoteatalfeeloop, supposing
that the system is to perform WTA selection and ND: The synaptic weightsteregest for the
projection TeO— Ipc, while the weakest projection is the one from Imc to Ipc. Other synaptic
weights are of intermediate strength. The shortest latency in the system isetlfier the projection
Imc — Ipc, while the delay for the projection TeO to Ipc is considerably longeke pitojections
Imc — TeO and TeO— Imc are also fairly short. These results are consistent with measurements
of the delay distributions in the isthmotectal feedback loop as comparison vty Bashows. The
strength of the noise in the system seems not to be crucial, i.e., there is reeposf for either

high or low noise levels. The feedback projection from the Ipc to the TeQahzertain interme-
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projection Ipc— TeO Imc— TeO TeO—lIpc Imc— Ipc TeO— Imc

mean of measured
delay distribution 7ms 4.5ms 6.5 ms 4.3 ms 5.2ms

Table 7.3: Measured delays in the isthmotectal feedback loop. The distributfdhe delays for

the different projections between the elements of the isthmotectal feedb@Thkviere measured
through extracellular combined with intracellular recordings [13]. The tstidsvs the means of the
measured delay distributions.

diate width; it is not broad but it may target cells within a certain range. Tbgtion from the
Imc to both the TeO and the Ipc is not necessarily ‘antitopographic;’ hawiappears that less
pronounced feedback to the location from which Imc cells receive thait ispeneficial. There is
some degree of spike rate adaptation in the system, with adaptation being inelake cells than

in tectal or Ipc cells.

7.6 Summary

We have investigated the circumstances under which the isthmic system c#orilas a ‘winner-
take-all’ and novelty detection network. We have simulated the dynamics obrietwvith ran-

domly generated parameters. The network parameters were then optimizggid to ‘winner-
take-all’ selection and novelty detection by applying a genetic algorithm. We $faown that the
topology of the isthmotectal feedback loop allows the system to perform bsitk &most per-
fectly when the parameter values in the model are optimized. We have exam@edbttition of

the parameter distribution histograms over the optimization process and laawe cynclusions on

probable parameter combinations in the biological feedback system.
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Chapter 8

Noise-dependent stability of the
synchronized state in a coupled system

of active rotators

We consider a Kuramoto model for the dynamics of an excitable system tog®é

two coupled active rotators. Depending on both the coupling strength ambibe, the

two rotators can be in a synchronized or desynchronized state. Thiereyized state

of the system is most stable for intermediate noise intensity in the sense thatthe co
pling strength required to desynchronize the system is maximal at this nogde ey
evaluate the phase boundary between synchronized and desyiretrstates through

numerical and analytical calculations.

8.1 Introduction

Networks of coupled nonlinear oscillators provide useful model systenthé study of a variety of
phenomena in physics and biology [1]. Among many others, examples fnggigs include solid-
state lasers [2] and coupled Josephson junctions [3, 4]. In biologgetiteal nervous system can be
described as a complex network of oscillators [5], and cultured netvadtksart cells are examples
of biological structures with strong nearest-neighbor coupling [6]. drtipular, the emergence of

synchrony in such networks [7, 8] has received increased attentiecemt years.
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Disorder and noise in physical systems usually tend to destroy spatialrapdra regularity.
However, in nonlinear systems, often the opposite effect is found andsiagilly noisy processes,
such as thermal fluctuations or mechanically randomized scattering, leadptsisgly ordered
patterns [9]. For instance, arrays of coupled oscillators can be symigbd by randomizing the
phases of their driving forces [10, 11]. Synchronization in thesterysis caused by the interac-
tions between the elements and results in the emergence of collective mddeshdien shown to be
a fundamental mechanism of self-organization and structure formatiostersyg of coupled oscil-
lators [12]. Biological systems of neurons are subject to differenicesuof noise, such as synaptic
noise [15] or channel noise [13]. In particular, sensory neuromaatoriously noisy. Therefore, the
question arises how stochastic influences affect the functioning of lizalogystems. Especially
interesting are scenarios in which noise enhances performance. lash®fstochastic resonance
[14], e.g., noise can improve the ability of a system to transfer informatiorbfgliand the pres-
ence of this phenomenon in neural systems has been investigated [1Buftfiermore, numerous
studies have addressed the effect of noise on the dynamics of limit cyatensy[12, 18-23].

Small neural circuits composed of two or three neurons form the basibdek mechanisms
involved in the regulation of neural activity [24]. They can display oscithatctivity [25, 26] and
serve as central pattern generators involved in motor control [27]e,Kex consider a system of
two limit cycle oscillators with repulsive coupling. We investigate the influencthefnoise and
the coupling strength on the dynamics of the system. We distinguish betweeiffeverd classes
of dynamics, a synchronized state, in which the joint probability density obsicdlator phases is
characterized by a single-hump shape, and a desynchronized stateingle-hump shaped distri-
bution of the oscillator phases has been modeled by a Gaussian distrib@jd8]1and systems
consisting of a large number of oscillators were analyzed by examining $b#ing dynamics for
the mean of the oscillator phases [20]. In contrast, the simplicity of our twibadec system allows
us to obtain the stationary probability density function for the full system batharically and
analytically. We show that the probability distribution of the oscillator phaseshesingle-hump
shape only for weak coupling, whereas it deviates from this shapérémgscoupling. We evaluate
the coupling strength at which the transition between the two forms of the Itipaistribution
occurs as a function of the noise intensity.

In Sect. 8.2, we introduce the Kuramoto model for excitable systems. Unelénfthence of
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noise, the dynamics of the limit cycle oscillators are described by a stoch#éfgrewtial equation
(SDE), and we state the Fokker-Planck equation for the system. In Sgctvé@consider a single
active rotator driven by noise and derive its mean angular frequenay the stationary solution
to the Fokker-Planck equation. We compare our analytical results with Moaute simulations of
the corresponding SDE. In Sect. 8.4, we consider two coupled determnoigtiors and perform a
bifurcation analysis of the system. We show that the system possessed jpdirt that is stable for
small coupling strengths but looses its stability when the coupling is incre&sedome range of
the coupling strength, the stable fixed point and a stable limit cycle coexisiedn &5, we con-
sider two coupled active rotators under uncorrelated stochastic infleseht Sect. 8.5.1, we solve
the Fokker-Planck equation of the system numerically and show that tpe siidghe probability
distribution undergoes a characteristic change, corresponding to tiséitra from a synchronized
to a desynchronized state, as coupling is increased. We evaluate thdabpbetween the syn-
chronous and the asynchronous regime through a Fourier expamgomaah in Sect. 8.5.2. A

summary concludes the paper in Sect. 8.6.

8.2 Excitable Systems and the Kuramoto Model

Neurons can display a wide range of behavior to different stimuli and rmumenodels exist to
describe neuronal dynamics. A common feature of both biological andlmedeons is that suf-
ficiently strong input causes them to fire periodically; the neuron displsgiflatory activity. For
subthreshold inputs, on the other hand, the neuron is quiescent. Whbtheeshold input is com-
bined with a noisy input, however, the neuron will be pushed above thice$tom time to time
and fire spikes in a stochastic manner. In this regime, the neuron acts asitable element. In
general, an excitable system possesses a stable equilibrium point friomitvdan temporarily de-
part by a large excursion through its phase space when it receiviesudus of sufficient strength
[22]. Besides neurons, chemical reactions, lasers, models of blotithg/@and cardiac tissues all
display excitable dynamics [29—-33]. Pulse propagation, spiral wapatiasand temporal chaos,
and synchronization have been studied in these systems [34-37].

The phase dynamics of an active rotator without interaction and randoesfoan be described
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by the model developed by Kuramoto and coworkers [38, 39]:

d(t) = w —asin(t). (8.1)

To obtain the case of the excitable system with one stationary point, oneeshthes parameter
a > w. When we havex coupled identical oscillators, subject to stochastic influences, the model is

described by the Langevin equation [23]

n

$i(t) = w — asingi(t) — Y Wij(d; — ¢i) + mi(t) . (8.2)
j=1
Here, we take the; to be uncorrelated Gaussian white noise, {%(t1)n;(t2)) = 20(t1 — t2)d;;.
We will concentrate on the simplest case, namely that the coupling fundlignaresin-functions
multiplied by a coupling constant;;, i.e., W;;(¢) = w;; sin ¢. Then, the dynamical evolution of

the system’s probability density functidi(¢, ¢) is described by the Fokker-Planck equation

2 P(o. Z} P(g.1) +Z;]§; G Du@P@.0]. (63
where in our case the drift terms read
Di(¢) = w — asing; — szg sin(¢; — ¢i) (8.4)
j=1
and the diffusion terms are given by
Dij(¢) = dijo . (8.5)

Since the angle variables describe the phases of the oscillators, the probability density function

must satisfy the periodic boundary conditions

P(¢1aa¢Z:0))¢n7t):P(¢1v7¢Z:27T7)¢n7t)7 Zzlvvn (86)
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Furthermore, the normalization condition for the probability density reads
2T 2
| o [ oo -1 (8.7)
0 0

8.3 Single-Rotator System

We first exam a single rotator subject to a noisy input and, following R, [calculate the mean

frequency of oscillations as a function of the noise level. In this case,dkkeF-Planck equation

(8.3) reads
0 0 0?
ap((bat) = _% [D<¢)P(¢7tﬂ + UWP(Qsat) ’ (88)
with
D(¢) =w —asing. (8.9)

We can thus write the drift term as the negative gradient of a poteitiak —0V/d¢, with the

potential given by
V(p) =wo+acoso+c. (8.10)

Introducing the probability current

0

S(d)v t) = D(¢>P(¢7 t) - U%P((ba t) ) (811)

the Fokker-Planck equation takes the form of a continuity equation,
ﬁP(q& t) + ES((;ﬁ t)=0 (8.12)
ot ’ oo~ '

We now look for a stationary solution of the forf¢,t) = P(¢), S(¢,t) = S(¢). In this case,

we conclude from (8.12) that the derivative of the probability curretit vespect tap must vanish,
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and we have to solve

S = D($)P(¢) - a;; ). (8.13)

The constant probability curretst is related to the mean drift velocity, i.e., the mean angular fre-
guency of the active rotator system accordingte: 27.S. The solution to the ordinary differential
equation (8.13) is given by

¢ -
P(g) = ce 2 - 2 / dgle” e (8.14)
0

g

The integration constant in (8.10) can thus be absorbed into the constan(B.14), and the two
free constant$ and C' are determined by the periodicity and normalization conditions (8.6) and

(8.7). These two conditions can be written in matrix form as

s _V() (¢) V(e)
2Tdpe o g [0 ddle C 1
- . (8.15)
o V(jﬂ) _ 6_@ d<Z5 V(e)— V(27T> _g 0

Denoting the determinant of tiiex 2 matrix in the last expression dst, the constant§’ and.S

are given by
e V()
c = ot /O dpe =, (8.16)
5 = é[e*@—e*@]. 8.17)

Specializing to the potential of the active rotator (8.10), we obtain

2Tw
2o (1 — 6_7)

JETd! e=59 [27 dg e leon(otd)—cosd] |

w =

(8.18)

Note that in the limito — oo the integrand in the denominator approaches one cacdnverges
to w. To obtain the leading order behavior ®@fin the limit of small noise, we approximate the

denominator using Laplace’s method described in Ref. [41]. Accordingpiace’s method the
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asymptotic behavior of the integral

b
I(z) = / dtf(t)e™t) (8.19)
asx — oo is given by
JQgAJV@%f@”EAQ (8.20)
zg"(c)

Here, it is assumed that(¢t) has a maximum at = ¢ with a < ¢ < b and thatf(c¢) # 0 and
g"(c) < 0. We first apply Laplace’s method to the inner integral in the denominator.®8)8
which we denote a$(o). The functiona[cos(¢ + ¢') — cos ¢] has a maximum inside the interval

0<¢<2rat

s /
¢o = T + arctan 1&% . (8.21)
— CcoS ¢

Using (8.20) we thus obtain for — 0
\/% 2 ea[COS do+¢’)—cos o] -2 ¢ ©.22)
/ V/cos(¢o + ¢') — cos g '

The argument of the exponential function in the last identity can be simplified to

(a —cos @)
\/sin? %l

whose maximum within the interval< ¢’ < 27 is at

—wg', (8.23)

by =2 arccos% . (8.24)

Using this and applying (8.20) to the intermediate result (8.22), we obtain

2 w
I(o’) ~ ﬁe%(vﬁ—uﬁ—w arccos ;) : o—0. (8.25)
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Figure 8.1: Average angular frequency of the single active rotatofuasction of the noise intensity.
The solid line shows the result (8.18). The dots represent results fromeMCarlo simulations
(mean=+ standard error of the mean) of the Langevin equation (8.2). For edgb ghthe noise
intensity, forty runs where simulated upfo= 400. The firstinset shows a comparison between the
asymptotic expansion (8.26, dashed line) and numerical evaluations ofghession (8.18, solid
lines) for small noise. The diamonds in the second inset show the logarittiva célative deviation
between the result (8.18) and its asymptotic approximation (8.26). Parameters—= 1, a = 1.2.

The leading asymptotic behavior @fasc — 0 is then given by

Dasy = \/a2 _ WQe—%(\/aQ—wQ—warccos %) . (826)

Figure 8.1 shows the mean angular frequen@&s a function of the noise level The evaluation of
the analytical expression (8.18) yields results that are in good agre@rntieMonte-Carlo simula-
tions of the Langevin equation (8.2). Furthermore, the asymptotic expat&R8) is in excellent

agreement with numerical evaluations of (8.18) for small noise.

8.4 Deterministic Two-Rotator System

We next turn to a system of two coupled active rotators, where we firstider the deterministic
case, i.eg = 0. In particular, we are interested in rotators with repulsive coupling, i.ecomsider

the casev;2, wo1 > 0. Introducing the center of mass and difference coordinates(¢; + ¢2)/2
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andA = (¢1 — ¢2)/2, the set of equations (8.2) takes the form

d(t) = w—asin®(t)cos A(t) + (wia — wor) sin A(t) cos A(t),

A(t) = —acos®(t)sin A(t) + (wia + way) sin A(t) cos A(t) . (8.27)

The system has a trivial stationary pointdatt) = ®, = sin~!(w/a), A(t) = 0, whose stability
we analyze by linearizing the system (8.27). Writig) = & + ea(t), A(t) = ea(t) we obtain

to first order

d € (t) —Va? — w? Wi — Wal € (t)
s - . (828

ealt) 0 w12 + w1 — Va? — w? ealt)

The real parts of the eigenvalues of thex 2 matrix on the right-hand side of the last identity
determine the stability of the fixed poif®g, 0). Under the assumptiom > w the first eigenvalue
A = —Va? — w? is always real and negative. The second eigenvajue w1 + wo — Va2 — w?

is also always real; for small coupling it is negative, but when the sumeottiupling strengths
w12 + wop INCreases it becomes positive and the fixed pEint 0) looses its stability in, as it turns
out, a subcritical pitchfork bifurcation. Further fixed points of the systeim be determined and
turn out to be unstable for all values of the coupling strengths. In thewcgse w,; = w they are

given by

1 4
d; = —sin~! (?) , Ay =cos ! ( d ) . (8.29)

2 asin ®4

Figure 8.2(a) shows a bifurcation diagram of the system. For small cougtiiaggth, the system
does not display oscillatory behavior. When the coupling strength is isedegbove a critical value,
a stable limit cycle emerges from a homoclinic orbit. For a small range of couglirggths, the
stable fixed point coexists with the stable limit cycle. In this case, it depentieanitial conditions

whether the system will converge toward the fixed p@ibg, 0) or the limit cycle. Figure 8.2(b)
shows the attractors for fixed point and limit cycle dynamics in(theA)-plane forw,s = we; =

0.308. In the strong-coupling limit, the minimum and maximumfin Fig. 8.2(a) both converge
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Figure 8.2: Stable and unstable fixed points and oscillations in the deterministiotator system.

(a) shows the bifurcation diagram with stable (solid lines) and unstable (désks}ifixed points of

the system (8.27) for the choice of parameters 1, a« = 1.2, w12 = we; = w. Dots indicate the
minimum and maximum values of oscillations in the value\atat result for the initial conditions

¢ = 0, A = /2. (b) depicts forw = 0.308 the boundaries between the regions in the space of
initial conditions for which the system converges to the limit cycle or the stal#d fioint.

towardr /2. Thus, the system approaches antisynchronous oscillatory dynanhiesed¢y and ¢

are phase shifted by while their sum increases constantly.

8.5 Stochastic Two-Rotator System

We now consider the coupled two-rotator system in the case where bdttrsoteceive uncorrelated
stochastic driving. The temporal evolution of the probability density of thesesy is given by the
Fokker-Planck equation (8.3) with the drift and diffusion coefficientd)(&nd (8.5).

8.5.1 Numerical Results

First, we investigate the stationary solution to the Fokker-Planck equationrimatthe To this end,
we numerically solve the partial differential equation (8.3) under the piertmalindary conditions
(8.6) for the homogeneous initial conditid(¢;, ¢2,t = 0) = 1/472 and observe that the solution
converges to the stationary solution after some time. Figure 8.3 shows theatasotution in the
coordinateshP and A for two different values of the coupling strength. We find that, depending
the strength of the noise and coupling, two different characteristic fofrtfeecstationary solution

exist. In the case shown in Fig. 8.3(a) the probability density is peakeddtba stable fixed point
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Figure 8.3: Synchronized and desynchronized modes in the stochastrotator system. The
stationary solution to the Fokker-Planck equation (8.3) is shown for difteralues of the coupling
strength. In both(a) and(b), we havews = w91 = wandw = 1,a = 1.2, 0 = 0.4. In (a)
the coupling strength i&» = 0.3 and the rotators are in a synchronized statéb)rthe coupling is
increased tav = 0.4 and the two rotators desynchronize.

of the deterministic two-rotator systef®,,0). In Fig. 8.3(b), the peak at the fixed poif, 0)
is much less pronounced. Furthermore, if we consider the probability distnibfor A = +7/2,
i.e., at the edge of the region shown in Fig. 8.3, we see that the probabilitpdiitn is not given
by one central hump anymore. In order to distinguish between the twoadiiffscenarios in a

quantitative way, we consider the marginal stationary probability density

Do+
P(A) = / dPP(D, A). (8.30)

do—7

Figure 8.4 shows this quantity for one level of the noise intensignd for different coupling
strengths. For weak coupling(A) has a pronounced maximumat= 0. For increasing coupling
strengths, this maximum decreases and eventually turns into a minimum. We catessify the
system dynamics as synchronized or desynchronized according tignhaf $he second derivative
of P(A) at the origin and can label thew plane accordingly. In the next section, we calculate the
phase boundary between the synchronized and desynchroniie tbgough a Fourier expansion

approach.
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03f
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Figure 8.4: Marginal probability density for different values of the doupstrengthw = wis =
wo1. The coupling strength for the curve with the highest valué at 0 (solid line) isw = 0.1 and
increases from curve to curve in incrementsief = 0.2 to the maximum valuev = 1.1 (dotted
line). Other parameters are:= 1,0 = 0.4,a = 1.2.

8.5.2 Fourier Expansion Results

The probability density?(¢1, ¢2) is periodic ing; andg,, so we expand it as

P(¢1,¢2) = Y Clky, ky)e'Frérthada). (8.31)
K1,k

Inserting this approach into the right-hand side of (8.3) yields together &ih and (8.5)

0 = Z C(ky, kg)ei(k1¢1+k2¢2){a(cos ¢1 + cos ¢2) — (w12 + wa1) cos(p2 — ¢1) (8.32)
k1, k2

—tkiw — asin g1 — wiasin(pa — P1)] — ike[w — asin g2 — woy sin(p; — ¢2)] — O'k% — Jkg} .

The term inside the curly brackets on the right-hand-side of the last identigei§periodic ing,

andg¢, and can also be expanded as a Fourier series

{}: > Clln ke, lp, ky)el 191 H02) (8.33)

[11]<1,]l2]<1
Here, the coefficienté(ll, ly) read

C(0,k1,0,ks) = —iw(ky + ko) — o (k? + 0k3),
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~ a

C(£1,k1,0,ks) = 2(1ik1),
C(0, k1, +1, k) = 3(1 + k),
~ 1+k 1—k
C(laklv_]-ak;Q) = - 2 1w12_ 2 211)21,
~ 1—k 1+k
C(—1,k1,1,k2) = — 5 Ly — —; 2wy
C(£1, k1, £1,ky) = 0. (8.34)
We can then rewrite (8.32) as
0= eWortho  N" Ok — Iy, ky — 1)C (I, by — 1, Do,k — 1) (8.35)

k1,k2 I11]<1,|l2]<1

Setting the inner sum to zero, we obtain an infinite system of algebraic eguatioorder to obtain
the Nth Fourier order approximation we truncate the outer sum such that W& 3ét, k2) = 0 for
|k1] > N or|ks| > N. Then, we have to solve a system(®fV +1)2—1 algebraic equations in order
to obtain the expansion coefficientsitah orderCy (k1, k2), where the additional indeX indicates
the approximation order. Finally, the coefficiefity(0,0) is determined from the normalization
condition asC (0,0) = 1/472.

As an illustrative example we now consider the first order in the Fouriearesipn for the case

wi2 = wo1 = w. The system of algebraic equations we need to solve then reads

a[C1(0,—1) + C1(—1,0)] — 4(0 — iw)Ci(~1,~1) = 0,
4m?(2(0 — iw)Cy(—1,0) + wC1(0,-1)] = a,

2% {a[C1(~1,0) + C1(0,1)] — 40C1(—1,1)} = w,
4% [wC(—1,0) + 2(0 — iw)C1(0,—1)] = a,

47 (2(0 + iw)C1(0,1) + wCi(1,0)] = a,

272 {a[C1(0, —1) + C1(1,0)] — 40Cy(1,-1)]} = w,
47*(2(0 + iw)C1(1,0) + wC1(0,1)] = a,

alC1(0,1) + C1(1,0)] — 4(0 + iw)Cy(1,1) = 0. (8.36)
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From this we obtain the first order approximation

Pi(¢1,¢2)= 4—;2 + af2aBy0(cos ¢y + cos ¢o) + daBow(sin ¢y + sin ¢o) + (a*yo? — 2a*0w?)

x cos(¢1 + ¢p2) + [GQﬁ’y — wﬁ('yQ + 4w2)] cos(¢p1 — ¢2) + GQO'(IUW + dow) sin(é1 + ¢2)}, (8.37)

with the abbreviations

1 2 2
= = = 20 . 8.38
o 172082 + 42’ B=0"+w", vy=w+ 20 ( )

Substituting the coordinate’s and¢, according tap; = ¢ + A andg, = & — A and integrating

with respect tab we obtain the marginal probability density

P (A) = % 4 2raB(a®y — wy? — 4ww?) cos(2A) . (8.39)

Setting its second derivative to zero, we obtain the equation
a?(w + 20) — w[(w + 20)? + 40| =0, (8.40)

which we can solve inv or in 0. Eventually, we want to obtain as a function ot>. However,
since we have a cubic equatioriinand only a quadratic equationdn for convenience we express
o as a function otu:

a? — 2w? + Va* — 16w3w?

4w

g =

(8.41)

This procedure can easily be generalized to higher orders. Figurdn®us ghe resulting phase
diagram obtained from solving the Fokker-Planck equation numericallyfrand the Fourier ex-
pansion. The accuracy of the Fourier expansion results improves witlaging strength of the
noise. This can be seen, for instance, in the second inset of Fig. 8 when the first expansion
order yields very accurate results for strong noise. In general, redatively low orders in the ex-
pansion give a good estimate for the phase boundary for a wide ramgésefstrengths, as can be

seen from the results for the fourth expansion order in Fig. 8.5. Hawirevery small noise levels
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0.45

0.4}

Figure 8.5: Regimes of synchronized and desynchronized dynamiephise boundary between
the synchronized and desynchronized regimes is shown as a functiommdise strength. Areas
below the curves correspond to the synchronized, areas above riree touthe desynchronized
regime. The solid lines show the results of the first four Fourier ordezgjdks represent numerical
results. The diamond represents the coupling strengths for which thepoiatl(®,,0) of the
deterministic system becomes unstable; the square indicates the vala which the stable limit
cycle is first observed. The insets show results for small and for larige nin the first inset (small
noise) the results from the fourth and tenth Fourier orders are shdvensdcond inset (large noise)
shows the results from the first (solid line) and second (dashed linejeFouders. Parameters are
w=1,a=1.2.

the Fourier expansion diverges, as is exemplified in the first inset in FdoBthe fourth and tenth
expansion orders. Considering the first inset in Fig. 8.5, we concludérntthe limitc — 0 the
results from the Fourier expansion approach a value of the couplinggstréor which the stable
fixed point coexists with the limit cycle in the deterministic system. Therefore,ardltle existence

of the stable limit cycle nor the stability of the fixed point can be used exclygivaletermine the
zero-noise limit of the phase transition between the synchronized andateepized states. Strong
noise has a desynchronizing effect on the system, as the minimal couplidgdgnchronization
vanishes in the limit o — oco. If the noise is weak, however, it stabilizes the synchronized state,
as is indicated by the initially upward slope of the phase boundary in Fig. 8.8oriclusion, the

synchronized state of the system is most stable for intermediate noise.

8.6 Summary

We have investigated the transition from synchronized to desynchrob&ealior in a system of

two-coupled active rotators under stochastic influences. The two regiraalistinguished by the
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sign of the second derivative of the marginal probability density at vargsphase difference.
We have evaluated the phase boundary between the two states in the @at@gth) - (noise
intensity) plane. We have shown that the synchronized state is most stathie, sSense that the

coupling strength required to desynchronize the system is maximal foani@ng noise intensity.
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Chapter 9

Synchronization from disordered
driving forces in arrays of coupled

oscillators

The effects of disorder in external forces on the dynamical behaf/mupled nonlin-
ear oscillator networks are studied. When driven synchronously, li.drj\ang forces
have the same phase, the networks display chaotic dynamics. We shoarttiainr
phases in the driving forces result in regular, periodic network hehaintermedi-
ate phase disorder can produce network synchrony. Specificallg iha@n optimal
amount of phase disorder, which can induce the highest level of symghThese re-
sults demonstrate that the spatiotemporal structure of external influemicestrol

chaos and lead to synchronization in nonlinear systems.

Networks of coupled nonlinear oscillators provide useful model systenibé study of a variety of
phenomena in physics and biology [1]. Among many others, examples fngsigs include solid
state lasers [2] and coupled Josephson junctions [3, 4]. In biologgetiteal nervous system can be
described as a complex network of oscillators [5], and cultured netveditksart cells are examples
of biological structures with strong nearest-neighbor coupling [6]. drtipular, the emergence
of synchrony in such networks [7, 8] and the control of chaos in nealirsystems [9—11] have

received increased attention in recent years.
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Synchronization from disordered driving forces in arrays of coupled oscillators

Disorder and noise in physical systems usually tend to destroy spatial rmpdra regular-
ity. However, in nonlinear systems, often the opposite effect is foundrdaridsically disordered
processes, such as thermal fluctuations or mechanically randomizedisgatead to surprisingly
ordered patterns [12]. For instance, in the phenomenon of stochasiitarece the presence of noise
can improve the ability of a system to transfer information reliably [13]. Some tgoe Braiman
et al. studied one- (1D) and two-dimensional (2D) coupled arraysrogth damped, nonlinear
pendula [14]. They found that when a certain amount of disorder wesdinced by randomizing
the lengths of the pendula the dynamics of the array ceased to be chasteadnthey observed
complex, yet regular, spatiotemporal patterns. Further studies of thesyateen showed that chaos
in the array of oscillators can also be tamed by impurities [15] and that rastioncuts between
the pendula lead to synchronization of the array [16].

Here, we introduce disorder by modifying the driving forces of the ogoitathrough phase
differences. We observe the emergence of regular, phase-logkathits. Moreover, for interme-
diate spreads of the phase angles in the driving forces, we find thas¢hiations become largely
synchronous.

We focus our numerical analysis on arrays of forced, damped, nanlpendula. The 1D array

(chain) is described by the equation of motion

ml%0, + ~0, = —mglsinb, + 7' + 7sin (wt 4+ ¢n) + £(Ons1 + On_1 — 20,), (9.2)

n=12,...N.

In order to consider a 2D lattice, we introduce an additional indgx> 0, ;,, 7, m =1,2,... N
and modify the coupling term accordingly(6,,+1+6,—1 —26,) — K(0n+1.m+0n—1,m+0nm+1+
0nm—1 — 46,m). For both the 1D and 2D case, we choose free boundary conditiong)i.e-,
01, 0n = Ont1 andbom = O1my ONm = ONt1my Ono = On1, Onn = O n11, respectively.
The parameter values used are the same as in previous studies [14kd &fiaFs of the pendulum
bob ism = 1, the lengthl = 1, the acceleration due to gravity= 1, the dampingy = 0.75, the
d.c. torquer’ = 0.7155, the a.c. torque = 0.4, the angular frequenay = 0.25, and the coupling
strengthx = 0.5. For this choice of parameter values, each isolated pendulum displaggccha

behavior characterized by a positive Lyapunov exponent [14].
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Synchronization from disordered driving forces in arrays of coupled oscillators

Oin = —1.16 O = 3.24

time

k=0 k=0.18 k=0.24

Figure 9.1: Spatiotemporal angular velocity plots for chaotic and regulaardics in an array of
N = 50 coupled oscillators. The chain of pendula is shown from left to right. Timeeages
continuously from bottom to top. Grayscales indicate the angular velocitibg aiscillators. Light
gray shades represent negative, dark tones positive velocities.

A particularly easy and intuitive way to visualize the global spatiotemporawehof a chain

(or lattice) of oscillators is to consider the average velocity

1.,
() = 3 2 On(iT) (9-2)

n=1

at times that are integer multiples of the forcing period- 27 /w [15]. Considering this measure
for an isolated pendulum, Gavrielides et al. performed a bifurcation dsaljth respect to the
pendulum lengtf and found that an uncoupled pendulum is chaotic for valued + 0.002 [17].

If the length of an isolated pendulum is increased te 1.002, it performs a ‘libration,’ in which
the combined d.c. and a.c. torque are insufficient to overcome the penduharéased rotational
inertia. On the other hand, if the pendulum’s length is decreaséd<t00.998, the pendulum
performs a ‘rotation,” an overturning motion where the torques combinedterthe pendulum over

the top.
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Synchronization from disordered driving forces in arrays of coupled oscillators

Figure 9.2: Chaotic and regular dynamics as a function of the degreeafldis The average
angular velocity at = 607, 617, ..., 80T is shown for each value of the disorder paraméter
(a) 1D array of N = 50 oscillators.(b) 2D lattice of16 x 16 oscillators.

In our study, we do not alter any parameters that would affect the dysamhian isolated
pendulum and keep the coupling strength at its default value. Insteamhtnwduce disorder by
randomly varying the phase angles of the driving forces in Eq. (9.1). In the case wherg= 0
for all driving forces, we observe chaotic dynamics in the array (FiD.ii agreement with previous
studies [14]. However, when we disorder the driving forces byearig choosing the phase angles
©n, uniformly from the interval—km, +k7|, we observe that for sufficiently lardethe oscillations
become regular.

Figure 9.2 shows the average angular velogit) att = 607, 617, ..., 80T for a 1D array
of N = 50 and a 2D lattice ofi6 x 16 oscillators. The presence of chaos for small disorder in
both the 1D and 2D array becomes manifest in a dispersed distribution ofehaga velocities
o(60T), o(61T), ..., o(80T). For larger disorder, however, we observe periodic patterns in the
form of 17-, 2T, 3T, ... ‘attractors, where the average velocity of the oscillator array repeats its
value after 1, 2, 3,.. forcing periods. Ultimately, ak is increased further, HI" periodic pattern is
reached.

In general, the value df for which a transition from chaotic to regular dynamics first occurs

depends on the particular distribution of the random phases. We thugleotis®e average over
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Figure 9.3: ProbabilityP? of chaotic dynamics (solid line) and different forms of regular behav-
ior (dashed lines) vs. the disorder paramétén an array of N = 50 coupled oscillators. The
probabilities were determined by averaging oied different samplings of the phases.

several different samplings of uniform distributions in order to analyeeodturrence of different
forms of periodic behavior. Figure 9.3 shows the probability for a 1Dyawdave reached HI'-,
2T-, 3T-, or 4T-attractor aftet = 607" as a function of the disorder parameterFor very small
disorder, i.e.k < 0.02, we observe only chaotic dynamics, butkapasses this threshold, the first
periodic patterns start to appear. Foe> 0.1, we observe thatT-, 27-, 3T-, 4T-, ... attractors
coexist with chaotic behavior. Fa@r02 < k < 0.13 the 27T -attractor is the dominant form of
dynamics if an attractor has been reached. #or 0.28, the array undergoes regular oscillations
with period17 in the vast majority of cases.

Furthermore, in addition to the transition from chaotic to regular behavioghserve that the
oscillations become largely synchronous, i.e., the phases of the oscillatibosly lock but tend
to assume equal values, for intermediate valuds ¢ order to quantify the presence of synchrony

in the array, we consider the averaged cross correlation

2
C= m Zcz’j ) (9.3)

i<j
wherec;; denotes the correlation between thieand;th oscillator:

ST dt 6,66, (t)

(9.4)

Cij =

. . 1/2°
{ Jro e 2ty [0 dt 0?(75)] /
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Figure 9.4: Synchronization in 1D (dots) and 2D (squares) arraysaflators vs. the disorder
parametek. Error bars show one standard error of the mean. Filled dots comégpdV = 16,
open dots taV = 50. Averaging was performed over 200 (1D) and 10 (2D) different dexgp of
the phasesg,,.

Figure 9.4 show¢’ as a function of: for two 1D and one 2D arrays. Disordering the driving forces
results in less synchronized oscillations of the array if the disorder péeamevery small. The
minimum of synchrony is reached fbr~ 0.03. Note that the location of this minimum corresponds
approximately to the first appearance of regular dynamics in Fig. 9.3. Wieesxternal forces are
disordered further, synchronization in the array increases antigeacpeak value for intermediate
disorder. In the 1D case, the maximum is reachedkfee 0.3 and its value i .« ~ 0.72 for
N = 50andCp.x ~ 0.78 for N = 16 oscillators. In the case of the 2D array, the synchronization is
even stronger. Here, the peak valu€if,, ~ 0.95 is reached fok ~ 0.2. We attribute the stronger
synchronization in the 2D array to the fact that the number of couplingsgudtator is higher than
in the 1D case. Furthermore, smaller arrays show a higher degreerafyadecross correlation
than larger arrays. This is because oscillators that are nearest oesigtow the highest degree
of synchronization, and the ratio of cross-correlation coefficientsirddafrom direct neighbors
to all cross-correlation coefficients contributing to the averaged cuarsslationC' decreases with
increasing size of the array lik@(1/N).

To summarize, we have shown that disorder leads to transitions from ctamgular behavior
in arrays of coupled oscillators when disorder is introduced in the pludisles driving forces [18].
In this investigation, each pendulum was in a regime where it behaves aiyotiben uncoupled,

in contrast to previous studies in which parameters were altered that #feedynamics of an
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isolated oscillator [14, 15]. In particular, Braiman et al. introduced disoby randomly varying
the lengths of the pendula [14]. Since an isolated pendulum only behbheesiaally when its
length lies within a narrow range, only 2% of the oscillators remained in theatich@egime in this
approach, and the transition from chaotic to regular spatiotemporal pategrorted in Ref. [14] can
be attributed to the dominance of the majority of regular pendula over the feaimang chaotic
ones [15]. Our results show that disorder in the model system desdrib&d. (9.1) results in
regular dynamics of the array even if all individual elements are chaotice®er, we find that for
intermediate disorder, the oscillations show a high degree of synchromizatio

Stimulus-induced synchronization of neural activity in central nervggsems has intrigued
neuroscientists for decades [19, 20]. Furthermore, in many applicasiods as in coupled Joseph-
son junctions, or in the case of atrial or ventricular fibrillation, one seekggtore periodic or
steady-state behavior from chaos. It is in regard to these day-toidaynstances that control and
synchronization of chaotic dynamics have become one of the central wipienlinear science
[21, 22]. In most situations the components of a system themselves canatieted, so it is de-
sirable to establish methods by which chaos can be tamed without changamggpers intrinsic to
the system. We thus believe that our proposed mechanism of controlling ct@aexternal forces
has potential applications in these fields.
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