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Abstract

The computational potential of neural circuits arises from the interconnections and interactions be-

tween their elements. Feedback is a universal feature of neuronal organization and has been shown

to be a key element in neural signal processing. In biological neural circuits, delays arise from

finite axonal conduction speeds and at the synaptic level due to transmitter release dynamics. In

this work, the influence of temporal delay on neural network dynamics is investigated. The basic

feedback mechanisms involved in the regulation of neural activity consist of small circuits com-

posed of two to three neurons. We analyze a system of two interconnectedneurons and show that

finite delays can induce oscillations in the system. Employing a perturbative approach in combi-

nation with a resummation scheme, we evaluate the limit cycle dynamics of the system. We show

that synchronous oscillations can arise when the delays are asymmetric. Furthermore, distributed

delays can stabilize the system and lead to an increased range of parameters for which the system

converges to a stable fixed point. We next consider a delayed neural triad with a characteristic

topology commonly found in neural feedback circuits. We show that the system can be both robust

and sensitive in regard to small parameter changes and examine the significance of the different

projections. We then address the functional role of a particular feedback loop found in the visual

system of nonmammalian vertebrates. We show that the system can function asa ‘winner-take-all’

and novelty detector and examine the influence of temporal delays on the system’s performance.

Biological systems are subject to stochastic influences and display some degree of disorder. We

examine the role of noise and its effect on the stability of the synchronized state in a system of two

coupled active rotators. Finally, we show that disordering the driving forces in arrays of coupled

oscillators can lead to synchronization in these systems.

viii



Chapter 1

Introduction

The computational potential of neural circuits arises from the interconnections and interactions be-

tween their elements. Among the cells found in living organisms, neurons are remarkable in their

ability to generate electrical signals in response to chemical and other inputs,and transmitting them

to other cells. They achieve rapid signal propagation over large distances by generating characteris-

tic electrical pulses called action potentials or spikes, which travel down nerve fibers. Neurons are

nonlinear elements, which is evident from the fact that they have a threshold for producing spikes.

A weak stimulation may have no effect, while several weak stimuli together can produce an action

potential, and thus cause a dramatic change in the neuron’s membrane potential.

The nervous systems of higher animals are complex. These intricate networks of synaptic con-

nections among neurons of diverse phenotypes take incoming sensory data, encode them into var-

ious biophysical variables, and subsequently perform different operations on these variables to ex-

tract relevant features from the input. The outcome of some of these computations is stored for later

access and will, ultimately, control the motor output of the animal in various ways[1]. The remark-

able effectiveness of biological information processing depends on both the nonlinear response of

the neurons and the large connectivity among them [2].

The flow of information in neural circuits is not unidirectional. Rather, feedfoward connections,

which bring input to a given region from another region located at an earlier stage along a particular

processing pathway, are often paralleled by descending feedback connections. In fact, many neural

pathways are dominated by feedback [3]. Often pairs of reciprocally connected regions in the

nervous system are spatially separate. For instance, the primate corticothalamic feedback loop

1



Introduction

extends over a distance of approximately 100 mm. Thus, for a typical action potential speed of

1 m/s we expect a signal delay of 100 ms. In addition to the delays arising fromthe propagation

of action potentials, delays occur at the synaptic level due to transmitter release dynamics and due

to the integration time of post-synaptic potentials at the dendritic tree level wherepost-synaptic

potentials have a finite conduction speed to the soma [4]. It is well-known thattime delay can cause

an otherwise stable system to oscillate [5–7]. In particular, it has been shown that when signal

delays are larger than the neural response time, complex loop dynamics emerge [8–10]. Therefore,

finite delays are an essential property of any realistic model of a populationof neurons [11].

Nonlinear dynamics is a powerful analytical tool for understanding and predicting behaviors

of complex systems. In 1952, Hodgkin and Huxley developed the nonlineardifferential equations

that explain the generation of action potential in neurons [12]. Since then,dynamical modeling of

neural systems has had a history of success. For instance, features of neural rhythmic behavior have

been explained and predicted, and many interesting dynamical models of learning and memory have

been suggested. Often, the study of bifurcations in neural models and inin vitro experiments is a

keystone for understanding the dynamical origin of single-neuron and circuit phenomena involved

in neural information processing [13].

The equations that arise in the description of the dynamics of complex systems cannot usually

be solved in closed form. Fortunately, many different approximation techniques have been devel-

oped in order to treat systems that cannot be solved analytically. These methods can be roughly

classified into two different categories: numerical methods, which exploit the possibility to rapidly

execute calculations on a computer, and analytical approximation methods, where certain assump-

tions are made in order to simplify the original problem. Numerical methods have proven to be an

enormously powerful and successful tool to describe even the most complicated physical scenarios.

Nevertheless, the accuracy of numerical methods is not always superior to that of analytical ones,

and usually more insight into the underlying system is obtained by means of analytical approxima-

tion approaches.

In this work, analytical and computational methods are applied to examine the dynamical be-

havior of neural feedback loops. Special emphasis is given to the delays present in such systems.

Additionally, the effects of noise and disorder on systems of coupled oscillators are investigated.

This dissertation contains eight chapters based on the following papers published in scientific jour-

2
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nals, and manuscripts submitted for publication or in preparation:

• Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel,Variational calculation of the limit cycle

and its frequency in a two-neuron model with delay, Phys. Rev. E74, 036201/1-14 (2006).

• Chapter 3: S. F. Brandt, A. Pelster, and R. Wessel,Synchronization in a neuronal feedback

loop through asymmetric temporal delays, Europhys. Lett.79, 38001/1-5 (2007).

• Chapter 4: U. Meyer, J. Shao, S. Chakrabarty, S. F. Brandt, H. Luksch, and R. Wessel,Dis-

tributed delays stabilize neural feedback systems(submitted).

arXiv:0712.0036 [physics.bio-ph].

• Chapter 5: M. Caudill, S. F. Brandt, and R. Wessel,Dynamics of neural feedback triads with

delays(in preparation).

• Chapter 6: S. F. Brandt and R. Wessel,Winner-take-all selection in a neural system with

delayed feedback, Biol. Cybern.97, 221-228 (2007).

• Chapter 7: S. F. Brandt and R. Wessel,The isthmotectal feedback loop as a winner-take-all

and novelty detection circuit(in preparation).

• Chapter 8: S. F. Brandt, A. Pelster, and R. Wessel,Noise-dependent stability of the synchro-

nized state in a coupled system of active rotators(in preparation).

• Chapter 9: S. F. Brandt, B. K. Dellen, and R. Wessel,Synchronization from disordered driving

forces in arrays of coupled oscillators, Phys. Rev. Lett.96, 034104/1-4 (2006).1

Many anatomical, histochemical, and physiological observations show that neurons are incorporated

into functional circuits, or modular units [3, 14–16]. The basic feedbackmechanisms involved in

the regulation of neural activity arise from small neural circuits composedof 2 to 3 neurons [11],

which constitute the building blocks out of which larger modular units are constructed. In Chap. 2,

we consider a system of two neurons with delayed coupling, where the couplings are of opposite

signs. We show that the system of delay differential equations (DDE’s) that describes the dynamics

of our two-neuron model has a stable stationary point, as long as the sum ofthe delays does not

1A reprint of this publication has also been included in: B. K. Dellen,Computing Visual Context, Ph.D. thesis,
Washington University in St. Louis, 2006.
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exceed a critical value. Once the delays are increased beyond this value, the fixed point looses its

stability and a stable limit cycle emerges via supercritical Hopf bifurcation. We apply a perturbative

approach to evaluate the frequency and trajectory of these oscillations aspower series in the delay.

The perturbation expansions yield accurate results for delays close to thebifurcation. For delays far

away from the bifurcation, however, the perturbative results are useless. Therefore, we apply two

different resummation methods to the perturbation expansions in order to obtain results that hold

for larger delays. We first apply the Shohat expansion method [17], which allows us to evaluate

the frequency of the oscillations and the limit cycle trajectory for larger delays. However, with

increasing delays, the accuracy of the Shohat expansion worsens. In order to improve the accuracy

of our results, we then apply variational perturbation theory (VPT). Thismethod is based on a

variational approach due to Feynman and Kleinert [18], which has beensystematically extended to

the nonperturbative approximation scheme now called VPT. It is capable ofconverting divergent

weak-coupling into convergent strong-coupling expansions and has been successfully applied in

various quantum or statistical field theories [19–22]. A first application ofVPT in the field of

nonlinear dynamics is found in Ref. [23], while the publication reprinted in Chap. 2 extends the use

of VPT for the first time to a system described by DDE’s. After the variational resummation of our

perturbation expansions, we have very reliable results even in low orders and for large delays for

both the angular frequency and the limit cycle of the oscillations.

For simplicity, we take the delays to be equal for both legs of the feedback loop in our model

of Chap. 2. In real feedback systems this is not necessarily the case. Indeed, in the isthmotectal

feedback loop, a feedback structure in the visual system of nonmammalian vertebrates, which we

examine in Chaps. 4 to 7, the axons for the feedforward projection are relatively thin and unmyeli-

nated, whereas they are thick and myelinated for the feedback projection.Since the conduction

velocity along unmyelinated axons is 0.1–1.5 m/s, whereas it is 30–50 m/s in myelinated axons

[24], it can be expected that the action potential propagation delays for the two directions could dif-

fer significantly. Chapter 3 extends the two-neuron model considered in Chap. 2 to the case where

the delays are asymmetric. We show that for couplings of opposite signs, asymmetric delays lead to

synchronous oscillations in the feedback loop. Employing an approach similar to the procedure in

Chap. 2, we first evaluate the phase shift between the oscillations of the twoneurons perturbatively.

The accuracy of the results that we obtain is only good as long as the sum ofthe two delays in the

4
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feedback system is close to the bifurcation point, and we again apply VPT to resum our perturbation

expansion. The VPT results that we obtain are very accurate even in low orders and for large delays.

The optic tectum (TeO, mammalian homolog: superior colliculus, SC) is the primary visual

center in the midbrain of non-mammalian vertebrates. It is reciprocally connected to and strongly

affected by a smaller midbrain nucleus called the nucleus isthmi (NI) in nonmammalian and para-

bigeminal nucleus in mammalian vertebrates [25]. In the avian visual pathway,the NI consists of

three subnuclei: the nucleus pars parvocellularis (Ipc), the nucleus pars magnocellularis (Imc), and

the nucleus pars semilunaris [26, 27]. In both Ipc and Imc the projection from the tectum is topo-

graphically organized such that the retinotopic map is preserved in both nuclei, with the projection

to the Imc being somewhat coarser than for the Ipc. In contrast, the isthmic projections back to the

TeO are very different for Ipc and Imc. Ipc neurons project back tothe TeO in a precise homotopic

manner, i.e., the axons of each Ipc neuron terminate in that part of the optic tectum from which their

visual inputs come. Imc, on the other hand, has two populations of neurons. One of the populations

makes heterotopic projections onto the TeO whereas the other one projects heterotopically onto the

Ipc. Anatomical studies furthermore indicate that a given cell in the Imc doesnot project back to

the locus in the TeO, or to the corresponding locus in the Ipc, from which it receives input, whereas

it does project to all other locations [26, 27]. In this sense, the feedback from the Imc can be termed

‘antitopographic.’

Experimental results obtained by U. Meyer, J. Shao, H. Luksch, and R.Wessel for the delays

between the different components of the isthmotectal feedback loop are given in Chap. 4. These

results show that the delays in the isthmic system exhibit considerable variability. We therefore

extend our two-neuron model from Chaps. 2 and 3 to accommodate the caseof distributed delays

in Chap. 4. In this approach, the model can be considered to describe theinteractions between two

populations of neurons. We model the distribution of the delays with a Gamma distribution, which is

characterized by its mean and standard deviation. We show that the introduction of nonzero variance

in the delays leads to increased stability of the system, in the sense that the mean delay at which the

fixed point of the system looses its stability grows with increasing standard deviation of the delay

distribution. We demonstrate that this increased stability can be attributed to the contribution from

shorter delays in the Gamma distribution.

In Chap. 5, we consider a three-neuron system representing the feedback system between TeO,
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Ipc, and Imc. As pointed out above, this topology consists of two delayed feedback loops with an

asymmetric lateral connection between them. We observe that this feedback triad topology appears

to have evolved independently in different vertebrate neural feedback circuits. A simple model in

terms of finite difference equations of the feedback triad has five connection strength parameters.

We show that, under certain circumstances, the system dynamics depend only on two effective pa-

rameters that are given by algebraic combinations of subsets of the five original parameters. Thus,

equivalent system dynamics can be observed with widely differing parameter settings. When the

lateral connection between the two elements of the feedback loop is not present, one of the effective

parameters vanishes and geometrical convergence to a fixed point occurs for many choices of the

synaptic strengths. The parameter space of synaptic weights in the feedback triad has regions with

robustness towards parameter changes, where shifts in the weights do not lead to changes in the ac-

tivity state of the circuit. However, the parameter space also contains regions in which small changes

in synaptic strength lead to drastically different network activity. This is reminiscent, of neural cen-

tral pattern generators, which are small microcircuits capable of producing rhythmic outputs without

rhythmic sensory inputs [28, 29]. The activity states of these circuits can be changed by sensory

afferents and neuromodulators making the circuits multifunctional and dynamically plastic [30].

Chapter 6 contains a computational study of the isthmotectal feedback loop in regard to its func-

tioning as a ‘winner-take-all’ (WTA) network. In models of selective visual attention, the stimulus

is encoded in a ‘saliency map’ that topographically represents the conspicuity of the stimulus over

the visual scene. The most salient location is then chosen by a WTA network, i.e., by a neurally

implemented maximum detector [31]. The isthmotectal feedback loop has been conjectured to per-

form WTA selection by different authors [32, 33]. However, divergent views of which elements

in the isthmic system mediate excitation or inhibition were expressed. In Chap. 6 these different

scenarios are studied and their efficiency for WTA selection is evaluated.We show that the delays

in the feedback loop can be crucial, as they may induce WTA behavior to the circuit.

The investigation presented in Chap. 6 employs a model for the neuronal firing rates. In Chap. 7

we use a spiking-neuron model to further examine under what circumstances the isthmotectal feed-

back loop can function as a WTA system. Furthermore, recent results [34] that demonstrate the

sensitivity of the isthmic system to novel stimuli are taken into account. Our neural network model

contains a large number of free parameters. We restrict some of these parameters according to re-
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sults obtained in anatomical and electrophysiological experiments. The remaining free parameters

are then optimized by applying a genetic algorithm. Our algorithm uses the performance of the

network model in a WTA and novelty detection task as a fitness function for theoptimization proce-

dure. We show that for optimized parameter values the isthmotectal feedbacknetwork can perform

the specified WTA and novelty detection tasks almost perfectly. Examining the convergence of the

algorithm to certain regions of the parameter space, we demonstrate what relative combinations

of different parameters can be expected in the biological system. We compare these findings with

available experimental data.

A common feature of both biological and model neurons is that sufficiently strong input causes

them to fire periodically; the neuron displays oscillatory activity. For subthreshold inputs, on the

other hand, the neuron is quiescent. When a subthreshold input is combined with a noisy input,

however, the neuron will be pushed above threshold from time to time and firespikes in a stochastic

manner. In this regime, the neuron acts as an excitable element. The dynamics of such a system

can be described by the active rotator model developed by Kuramoto and coworkers [35, 36]. In

Chap. 8 we examine the influence of noise in a system of two coupled active rotators. Depending

on both the coupling strength and the noise, the two rotators can be in a synchronized or desyn-

chronized state. We distinguish between the two states by considering the probability density of

the system that we obtain as the stationary solution to the corresponding Fokker-Planck equation.

The synchronized state of the system is most stable for intermediate noise intensity in the sense

that the coupling strength required to desynchronize the system is maximal atthis noise level. We

evaluate the phase boundary between synchronized and desynchronized states through numerical

and analytical calculations.

Networks of coupled nonlinear oscillators provide useful model systems for the study of a vari-

ety of phenomena in physics and biology [37]. Among many others, examplesfrom physics include

solid-state lasers [38] and coupled Josephson junctions [39, 40]. In biology, the central nervous sys-

tem can be described as a complex network of oscillators [41], and cultured networks of heart cells

are examples of biological structures with strong nearest-neighbor coupling [42]. In particular, the

emergence of synchrony in such networks has received increased attention in recent years [43, 44].

Disorder and noise in physical systems tend to destroy spatial and temporalregularity. However, in

nonlinear systems, often the opposite effect is found and intrinsically noisyprocesses, such as ther-

7
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mal fluctuations or mechanically randomized scattering, lead to surprisingly ordered patterns [45].

In Chap. 9 we consider an array of coupled oscillators. When driven synchronously, i.e., all driving

forces have the same phase, the networks display chaotic dynamics. We show that random phases

in the driving forces result in regular, periodic network behavior. Intermediate phase disorder can

produce network synchrony. Specifically, there is an optimal amount of phase disorder, which can

induce the highest level of synchrony. These results demonstrate that the spatiotemporal structure

of external influences can control chaos and lead to synchronization innonlinear systems.
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Chapter 2

Variational calculation of the limit cycle

and its frequency in a two-neuron model

with delay

We consider a model system of two coupled Hopfield neurons, which is described by

delay differential equations taking into account the finite signal propagation and pro-

cessing times. When the delay exceeds a critical value, a limit cycle emerges viaa

supercritical Hopf bifurcation. First, we calculate its frequency and trajectory pertur-

batively by applying the Poincaré-Lindstedt method. Then, the perturbation series are

resummed by means of the Shohat expansion in good agreement with numerical values.

However, with increasing delay, the accuracy of the results from the Shohat expansion

worsens. We thus apply variational perturbation theory (VPT) to the perturbation ex-

pansions to obtain more accurate results, which moreover hold even in the limit of large

delays.

2.1 Introduction

Feedback in biological systems has received increased attention in recent years [1]. In particular,

the role of delayed recurrent loops in models of population dynamics, epidemiology, physiology,

immunology, neural networks, and cell kinetics has been studied extensively [2]. Neural network
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systems are complex and large-scale nonlinear dynamical systems, and the dynamics of a delayed

network are yet richer and more complicated [3]. Hopfield [4] proposeda simplified model of a

neural network in which each neuron is represented by a linear circuit consisting of a resistor and a

capacitor, coupled to other neurons via nonlinear sigmoidal activation functions. From this model,

he derived a system of first-order ordinary differential equations to describe the network dynam-

ics. Extending Hopfield’s model, Marcus and Westervelt [5] consideredthe effect of including a

temporal delay in the model to account for finite propagation and signal processing times.

In networks of real neurons, delays occur at the synaptic level due totransmitter release dynam-

ics and the integration time of post-synaptic potentials at the dendritic tree level where post-synaptic

potentials have a finite conduction speed to the soma, and in the axons due to thefinite axonal con-

duction speed of action potentials [6]. It is well-known that time delay can cause an otherwise

stable system to oscillate [7–9] and may lead to bifurcation scenarios resultingin chaotic dynamics

[10, 11]. On the other hand, delayed feedback permits the control of chaos [12], where it can be

used to stabilize unstable periodic orbits in chaotic attractors [13, 14]. Experimentally, time-delayed

chaos control was successfully applied, for instance, to electronic oscillators [15], mechanical pen-

dula [16], lasers [17], and chemical systems [18]. Furthermore, a recently proposed scheme for the

treatment of neurological disorders employs delayed feedback in orderto efficiently desynchronize

the activity of oscillatory neurons [19]. Therefore, finite delays are anessential property of any

realistic model of a neuron population [20].

In the vast majority of cases, information about a physical system can onlybe obtained by

means of numerical or analytical approximation methods. Numerical methods constitute a powerful

and effective tool to describe even extremely complicated physical scenarios. Nevertheless, their

accuracy is not always superior to that of analytical approximations, and usually more insight into

the physical principles that govern the system is obtained by pursuing an analytical approach. Often,

perturbation expansions are easily accessible, but they are usually divergent and need resummation.

A recently developed, powerful method to perform such a resummation is variational perturbation

theory (VPT), which has been successfully applied in various quantum or statistical field theories

[21–25]. A first application of VPT in the field of deterministic nonlinear dynamics is found in

Ref. [26], while the present work extends the use of VPT for the first timeto a system described by

delay differential equations (DDE’s).
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In Sect. 2.2, we introduce the two-neuron model and the system of DDE’s that we consider. The

results of a linear stability analysis of the model system are reported in Sect. 2.3, and it is shown that

a limit cycle emerges via a supercritical Hopf bifurcation when the delay exceeds a critical value.

In Sect. 2.4, the Poincaré-Lindstedt Method is applied to derive the perturbation expansions for the

delay-induced limit cycle and its angular frequency. In Sect. 2.5, we applythe Shohat expansion

to the perturbation series of the limit cycle and its angular frequency as a first crude resummation

approach. In Sect. 2.6, we resum the perturbation expansions using VPT, which allows us to improve

the quality of our results significantly and to obtain results which are reasonable even in the limit of

large delays.

2.2 Model

Neural circuits composed of two or three neurons form the basic feedback mechanisms involved

in the regulation of neural activity [20]. Many researchers have usedbifurcation analysis and nu-

merical simulations in order to analyze a system of two Hopfield-like neurons with discrete or

distributed time delays [27–35]. In this investigation, we apply analytical approximation methods

to a two-neuron system with delay, described by the coupled first-order DDE’s

du1(t)

dt
= −u1(t) + a1 tanh[u2(t − τ (2))]

du2(t)

dt
= −u2(t) + a2 tanh[u1(t − τ (1))] . (2.1)

Here,u1 andu2 denote the voltages of the Hopfield neurons andτ (1) andτ (2) are the signal propa-

gation or processing time delays, whilea1 anda2 describe the couplings between the two neurons.

2.3 Linear Stability Analysis

The system of DDE’s (2.1) has a trivial stationary point atu1 = u2 = 0 and we first analyze its

stability. Near the equilibrium point, linearizing the DDE system yields

u̇1(t) = −u1(t) + a1u2(t − τ (2)) ,

u̇2(t) = −u2(t) + a2u1(t − τ (1)) . (2.2)
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Setting

u(t) = eλt







c1

c2






(2.3)

in the last equation, whereλ is a complex number, andc1 andc2 are constants, we get a nontrivial

solution if and only if

(λ + 1)2 − a1a2e
−λ(τ (1)+τ (2)) = 0 . (2.4)

This equation has been analyzed in detail in Ref. [28]. Fora1a2 ≤ −2 the conditions of Theorem 2

in Ref. [28] are met. Definingτ = (τ (1) + τ (2))/2 and

τj ≡
1

2ω0

[

sin−1

(

− 2ω0

a1a2

)

+ 2jπ

]

, j = 0, 1, 2, · · · , (2.5)

whereω0 =
√

|a1a2| − 1, this theorem states that:

• If τ ∈ [0, τ0), then the zero solution of (2.1) is asymptotically stable.

• If τ > τ0, then the zero solution of (2.1) is unstable.

• τj , with j = 0, 1, 2 · · · , are Hopf bifurcation values of (2.1).

Furthermore, Theorem 3 in Ref. [28] states that the Hopf bifurcation atτ = τ0 is supercritical. Note

thatiω0 is the solution to (2.4) whenτ = τ0, and the period of the limit cycle at the Hopf bifurcation

is thusT0 = 2π/ω0.

2.4 Poincaŕe-Lindstedt Method

Figure 2.1 shows numerical solutions of the system of DDE’s (2.1) for the two cases in which the

delayτ is either smaller or greater than its critical value. Below the critical valueτ0 of the delayτ

no periodic solution exists, while aboveτ = τ0 there is such a solution. We now consider the case

τ (1) = τ (2) = τ , a1a2 ≤ −2 and seek to calculate the period and trajectory of the periodic solution

approximately. To this end, we apply the Poincaré-Lindstedt method [36]. Since a supercritical
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Figure 2.1: Numerical solutions of the system of DDE’s (2.1) witha1 = −1, a2 = 2 andτ (1) =
τ (2) = τ . For this choice of parameters, the critical value of the delay isτ0 = π/4 ≈ 0.7854 . . . .
In (a) the delay isτ = 0.7, and the origin is a stable fixed point. In(b) the delay exceeds the critical
value: τ = 0.8. In this case, the origin is unstable and the trajectory approaches a limit cycle. In
both cases the initial conditions areu1(t) = 0.2, u2(t) = 0 for t ∈ [−τ, 0].

Hopf bifurcation occurs atτ = τ0, we assume that the amplitude and frequency of the new periodic

states are analytic inǫ =
√

τ − τ0 and expand them as

u(t) = ǫU(t) = ǫ
[

U
(0)(t) + ǫU(1)(t) + · · ·

]

, (2.6)

ω(ǫ) = ω0 + ǫω1 + ǫ2ω2 + · · · . (2.7)

It is convenient to rescale the argument of these functions so that they become periodic with period

2π. We thus introduce the new independent variableξ according toξ = ω(ǫ)t, and we writeU(t) =

V(ξ), Applying the perturbation expansion (2.6) to the system of DDE’s (2.1) and performing this

change of variables, we obtain

ω(ǫ)
dV1(ξ)

dξ
= −V1(ξ) +

a1

ǫ
tanh {ǫV2[ξ − α(ǫ)]} ,

ω(ǫ)
dV2(ξ)

dξ
= −V2(ξ) +

a2

ǫ
tanh {ǫV1[ξ − α(ǫ)]} , (2.8)

in which

α(ǫ) = ω(ǫ)τ = ω(ǫ)(τ0 + ǫ2) = ω0τ0 + ǫω1τ0 + ǫ2(ω0 + ω2τ0) + · · · . (2.9)
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The delayed variableV1/2[ξ − α(ǫ)] is written as

V[ξ − α(ǫ)] = V
(0)(ξ, α) + ǫV(1)(ξ, α) + · · · , (2.10)

corresponding to the expansion in (2.6), which is equivalent to

V(ξ) = V
(0)(ξ) + ǫV(1)(ξ) + · · · . (2.11)

In order to take into account (2.9), each term in the expansion ofV(ξ − α) is expanded as a Taylor

series:

V
(j)(ξ, α) = V

(j)(ξ − ω0τ0) − ǫω1τ0
dV(j)(ξ′)

dξ′

∣

∣

∣

∣

∣

ξ′=ξ−ω0τ0

+ · · · . (2.12)

Applying the expansions forV(ξ) andV(ξ − α) to (2.8) we obtain to zeroth order inǫ

dV
(0)
1 (ξ)

dξ
= −V

(0)
1 (ξ)

ω0
+

a1

ω0
V

(0)
2 (ξ − ω0τ0) ,

dV
(0)
2 (ξ)

dξ
= −V

(0)
2 (ξ)

ω0
+

a2

ω0
V

(0)
1 (ξ − ω0τ0) . (2.13)

Imposing the initial conditionsV (0)
1 (0) = A0, V

(0)
2 (0) = B0 on the periodic solutionV(0)(ξ), we

find the general solution to the system of homogeneous differential equations (2.13) as

V
(0)
1 (ξ) = A0 cos ξ + B0a1 sin(ω0τ0) sin ξ ,

V
(0)
2 (ξ) = B0 cos ξ − A0

a1 sin(ω0τ0)
sin ξ . (2.14)

The periodic solutionV(ξ) to (2.8) can only be determined up to an arbitrary phase. Without loss of

generality we can thus chooseB0 = 0 in (2.14), which fixes the phase of the zeroth order solution,

at least up to a shift ofπ.

In general, to orderǫn, we have to solve the system of differential equations

dV
(n)
1 (ξ)

dξ
= −V

(n)
1 (ξ)

ω0
+

a1

ω0
V

(n)
2 (ξ − ω0τ0) + f

(n)
1 (ξ) ,
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dV
(n)
2 (ξ)

dξ
= −V

(n)
2 (ξ)

ω0
+

a2

ω0
V

(n)
1 (ξ − ω0τ0) + f

(n)
2 (ξ) , (2.15)

where the inhomogeneityf (n)(ξ) is determined by the solutions to previous orders. Since we require

that the solutionV(n)(ξ) be periodic inξ with period2π, we can impose certain conditions on the

inhomogeneityf (n)(ξ). Namely, we demand thatf (n)(ξ) not contain terms that would lead to non-

periodic solutions forV(n)(ξ), i.e., f (n)(ξ) must not contain secular terms. In order to identify the

conditions that must be satisfied byf
(n)(ξ), we expandV(n)(ξ) andf

(n)(ξ) as Fourier series:







V
(n)
1 (ξ)

V
(n)
2 (ξ)






=

∞
∑

k=1













a
(n)
1,k

a
(n)
2,k






cos kξ +







b
(n)
1,k

b
(n)
2,k






sin kξ






, (2.16)







f
(n)
1 (ξ)

f
(n)
2 (ξ)






=

∞
∑

k=1













α
(n)
1,k

α
(n)
2,k






cos kξ +







β
(n)
1,k

β
(n)
2,k






sin kξ






. (2.17)

By inserting the expansions (2.16), (2.17) into the systems of equations (2.15), we find that the

coefficient of the the terms withk = 1 in the inhomogeneityf (n)(ξ) must satisfy the conditions

a2 sin(ω0τ0)α
(n)
1,1 + β

(n)
2,1 = 0 , (2.18)

α
(n)
2,1 − a2 sin(ω0τ0)β

(n)
1,1 = 0 . (2.19)

The derivation of these two conditions is demonstrated in the appendix.

After this general result, we now consider the first-order expansion ofthe system (2.8). Taking

into account the result (2.14) and the choiceB0 = 0, we obtain the inhomogeneityf (1) to be given

by

f
(1)
1 (ξ) = A0ω1

(

τ0 cos ξ +
1 + τ0

ω0
sin ξ

)

(2.20)

and

f
(1)
2 (ξ) = −A0ω1

[a2(1 + τ0)

ω0
sin(ω0τ0) cos ξ +

τ0

a1 sin(ω0τ0)
sin ξ

]

. (2.21)
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Thus, according to the conditions (2.18), (2.19), we must demand

− 2A0ω1τ0

a1 sin2(ω0τ0)
= 0 and − 4A0ω1(1 + τ0)

a1 sin(2ω0τ0)
= 0 . (2.22)

We must thus have eitherA0 = 0 or ω1 = 0. If we chooseA0 = 0, we only obtain the trivial

solution. Thus, we chooseω1 = 0, and the coefficientA0 is yet to be determined. The solution for

V
(1)(ξ) is then simply given by the solution to the homogeneous system:

V
(1)
1 (ξ) = A1 cos ξ ,

V
(1)
2 (ξ) = − A1

a1 sin(ω0τ0)
sin ξ , (2.23)

whereA1 is to be determined in higher orders.

Expanding (2.8) up to orderǫ2 while taking into account the zeroth- and first-order result, we

obtain the inhomogeneityf (2)(ξ) as given by the expansion (2.17). For the first component we have

α
(2)
1,1 = −A3

0(1 + ω2
0)

4a2
1ω0

+ A0(ω0 + τ0ω2) ,

β
(2)
1,1 =

A3
0(1 + ω2

0)

4a2
1

+
A0(1 + τ0)ω2

ω0
+ A0 ,

α
(2)
1,3 =

A3
0(3ω2

0 − 1)

12a2
1

,

β
(2)
1,3 =

A3
0(3 − ω2

0)

12a2
1

. (2.24)

And for the second component we have

α
(2)
2,1 = −a2 sin(ω0τ0)

[

A3
0

4
+

A0(1 + τ0)ω2

ω0
+ A0

]

,

β
(2)
2,1 = −a2 sin(ω0τ0)

[

A3
0

4ω0
+ A0(ω0 + τ0ω2)

]

,

α
(2)
2,3 = −a2 sin(ω0τ0)

A3
0

12
[2 cos(2ω0τ0) − 1] ,

β
(2)
2,3 = −a2 sin(ω0τ0)

A3
0

12ω0
[2 cos(2ω0τ0) + 1] , (2.25)

while all other coefficients vanish. Imposing the conditions (2.18), (2.19) on the inhomogeneity
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n ωn

2 − 4

2 + π

4
4(341 + 108π)

27(2 + π)3

6 −8(73843 + 40773π + 5832π2)

729(2 + π)5

8
1440729464 + 3π(359606308 + 92814567π + 8398080π2)

98415(2 + π)7

10 −2(1885638326848+9π(193375795408+3π(22966214893+4π(952738307+62985600π))))

13286025(2+π)9

12 (48294520193761504 + 3π(17432699637100336 + 3π(2577825095210584

+π(596088219927028 + 72959354094441π + 3809369088000π2))))/(8370195750(2 + π)11)

14 −(137083613818976067424 + 3π(56352224911533618320 + 3π(9835626348748269040

+3π(949130678879606440 + 3π(54285350368574420

+π(5287281140608997 + 228562145280000π))))))/(1129976426250(2 + π)13)

16 (290578164278923471719089408 + 9π(44452665928743252091582336

+3π(8868376426577693217600640 + 3π(1013305929108995195501920+

9π(24272564564656648301080 + π(3331148075811324207916 + π(270489187825118497343

+9983594505830400000π)))))))/(111054083171850000(2 + π)15)

Table 2.1: Expansion coefficients for the angular frequency of the limit cycle fora1 = −1, a2 = 2
up to orderǫ16.

f
(2)(ξ), we obtain the system of equations

A2
0(1 + a2

1 + ω2
0) − 8a2

1ω0(ω0 + ω2τ0) = 0 ,

A2
0ω0(1 + a2

1 + ω2
0) + 8a2

1ω0 + 8a2
1(1 + τ0)ω2 = 0 . (2.26)

Its solutions read

ω2 = − ω0 + ω3
0

1 + τ0 + τ0ω2
0

and A0 = ±
√

8a2
1ω

2
0

(1 + a2
1 + ω2

0)(1 + τ0 + ω2
0τ0)

. (2.27)

Choosing the sign ofA0 to be positive fixes the phase of our zeroth order solution definitively.
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a
(n)
1,k k = 1 k = 3 b

(n)
1,k k = 1 k = 3

n = 0
4

√

3(2 + π)
0 n = 0 0 0

n = 2 −5
√

3(116 + 33π)

81(2 + π)5/2
− 2

√
3

27(2 + π)3/2
n = 2 0

14
√

3

27(2 + π)3/2

a
(n)
2,k k = 1 k = 3 b

(n)
2,k k = 1 k = 3

n = 0 0 0 n = 0
4
√

2
√

3(2 + π)
0

n = 2 0
10
√

6

27(2 + π)3/2
n = 2 −

√
6(436 + 93π)

81(2 + π)5/2
− 2

√
6

27(2 + π)3/2

Table 2.2: Fourier expansion coefficients of the limit cycle fora1 = −1, a2 = 2 up to the second
order inǫ.

This procedure can easily be carried to higher orders, where only even orders lead to nonzero terms

for both the corrections to the angular frequencyωn and the expansion of the limit cycleV(n)(ξ).

Expanding (2.8) to orderǫ2n, we find the coefficientA2(n−1) and the correctionω2n from the con-

ditions (2.18), (2.19).

From here on, we consider the choice of parametersa1 = −1, a2 = 2. These parameter values

lead toω0 = 1, τ0 = π/4 and the solution (2.27) reduces to

ω2 = − 4

2 + π
and A0 =

4
√

3(2 + π)
. (2.28)

Table 2.1 shows the first eight nonvanishing corrections to the angular frequency. Note that the signs

of the expansion coefficientsωn alternate and that their absolute value grows rapidly. This indicates

that the perturbation series forω is a divergent Borel series. Table 2.2 shows the expansion coef-

ficients of the first two nonvanishing orders of the Fourier expansion ofthe limit cycle as given by

(2.16). Figure 2.2(a) shows the first eight orders of the perturbatively calculated angular frequency

ω(N),

ω(N) =
N
∑

n=0

ω2nǫ2n , (2.29)
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Figure 2.2: Perturbative results for the angular frequencyω and the limit cycle{u1(t), u2(t)}. In
(a) the angular frequency is shown as a function ofǫ. The dashed lines represent the perturbative
results as given by (2.29) and Tab. 2.1. Numerical results are shown bydots. In(b) the limit cycle
{u1(t), u2(t)} is shown forǫ = 1. Dashed lines represent perturbative results according to (2.30);
the numerical result is shown by the solid line.

as a function ofǫ. Note that odd and even perturbation orders yield results which are respectively

smaller and larger than the numerical values. For small values of the delay, the perturbative solu-

tion is in good agreement with the numerical data. However, asǫ grows, the perturbative solution

becomes unacceptable. Figure 2.2(b) shows an example of the perturbatively calculated limit cycle

given by

u
(N)(t) = ǫ

N−1
∑

n=0

V
(2n)(ξ/ω)ǫ2n , (2.30)

where we count the orderN of our perturbation expansion such that in theN th order we obtain the

N th nonvanishing correctionsω2N andV
(2(N−1))(ξ). For the valueǫ = 1 chosen in Fig. 2.2(b),

the limit cycle can still be obtained with good precision from the perturbation series (2.30) and as

in the case of the angular frequency we observe that the perturbative approximations approach the

numerical result in an alternating manner. However, asǫ increases, the perturbative solution (2.30)

becomes useless as in the case of the angular frequency. Thus, if we want to obtain analytical results

for larger values of the temporal delayτ , we must resum our perturbation series. In the next section,

we apply a Shohat transformation to the perturbative results for both the angular frequencyω(N)

and the limit cycleu(N)(t).

21



Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

2.5 Shohat Expansion

Now, we resum our perturbative results by performing a Shohat expansion. This method was first

introduced for calculating the period of a Van der Pol oscillator in Ref. [37] and it has been conjec-

tured that the expansion yields results which are valid for all values of the perturbation parameter

[37, 38]. Furthermore, it has been stated that the Shohat expansion is successful when the periodic

solution to the differential equation in question is of softening type, i.e., the angular frequencyω

decreases withǫ [39], which is the case for our system as is evident from Fig. 2.2(a).

The basic idea of the Shohat expansion is to map the perturbation parameterǫ ∈ [0, ∞) to a new

parameterµ ∈ [0, 1). In order to perform the resummation of the angular frequency, we introduce

the new expansion parameterµ according to the transformation suggested by Shohat in Ref. [37]

and thus set

µ =
ǫ2

1 + ǫ2
, (2.31)

where we explicitly take into account that the perturbation series for the angular frequency depends

only on even powers ofǫ. Inverting (2.31), we have

ǫ2 =
µ

1 − µ
. (2.32)

We now obtain the Shohat expansion of our perturbative result by replacing ǫ2 in (2.29) according

to the last identity and re-expanding the series inµ up to orderµN . The Shohat expansion of the

angular frequency is thus given by

ω
(N)
S =

N
∑

n=0

µn
n
∑

k=0

(

n − 1

k

)

ω2(n−k) . (2.33)

The resummation of the limit cycle (2.30) is performed in a similar manner and we obtain

u
(N)
S (t) = ǫ

N−1
∑

n=0

µn
n
∑

k=0

(

n − 1

k

)

V
(2(n−k))(t) . (2.34)

Finally, in order to evaluate the resummed angular frequency and limit cycle for a certain value of
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Figure 2.3: Angular frequency and limit cycle after Shohat resummation. In(a) the angular fre-
quency is shown as a function ofǫ. Results from the Shohat expansion as given by (2.33) are shown
by dashed lines. Numerical results are shown by dots. The inset shows amagnification of the inter-
val 4 ≤ ǫ ≤ 5. In (b) the limit cycle is shown forǫ = 2. Dashed lines represent results from the
Shohat expansion as given by (2.34); the numerical result is shown bythe solid line.

ǫ, we replaceµ in (2.33) and (2.34) according to (2.31).

Figure 2.3(a) shows the angular frequency after Shohat resummation asa function of the delay

parameterǫ. We find that, if we go to sufficiently high orders, the resummed expansion yields

reasonably good results for all values ofǫ. Figure 2.3(b) shows an example of the limit cycle after

resummation. Note that for the value of the delay parameter in Fig. 2.3(b) the perturbative result

prior to resummation would be completely useless.

Figure 2.4(a) shows the convergence of the angular frequency obtained from the Shohat expan-

sion versus the perturbation orderN for different values of the temporal delay. For small values of

the delay, the convergence seems to be exponentially fast, at least up to theeighth order. For larger

delays, the convergence appears to be less regular. In order to examine the convergence of the limit

cycle results, we consider the error measure

δ(N) =

∫ T0+T
T0

dt
∥

∥u(t) − u
(N)(t)

∥

∥

2
∫ T0+T
T0

dt ‖u(t)‖2

, (2.35)

where we rescale the argument of our analytic solution so that its period is identical to the period

of the numerical solution and shift the phase of the analytic solution according to the phase of the

numerical solution. Figure 2.4(b) shows the convergence of the results for the limit cycle. As in

the case of the angular frequency, the results from the Shohat expansion and their convergence with
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Figure 2.4: Convergence of the angular frequency and the limit cycle after Shohat resummation.
In (a) the logarithm of the relative deviation of the angular frequency as given by (2.33) from the
numerical value and in(b) the logarithm of the error measure for the limit cycle as given by (2.35)
are shown versus the perturbation order. In both(a) and (b) different symbols indicate different
values ofǫ (dots: ǫ = 1.6; squares:ǫ = 2.0; triangles:ǫ = 3.0; diamonds:ǫ = 4.0, upside-down
triangles:ǫ = 5.0).

the perturbation order are best as long as the delay is not too large. In thenext section, we thus use

a more efficient method to resum the perturbation series. It yields accurateresults already in low

orders, allows us to obtain more precise results, and its convergence depends less crucially on the

size of the delay parameter.

2.6 Variational Perturbation Theory

In this section, we improve the resummation of the perturbation series of the angular frequency and

the limit cycle by applying VPT to the perturbation series (2.29) and (2.30). This method is based on

a variational approach due to Feynman and Kleinert [21], which has been systematically extended

to the nonperturbative approximation scheme now called VPT [22–25].

2.6.1 Basic Principles

VPT is capable of converting divergent weak-coupling into convergent strong-coupling expansions

and has been applied successfully in various fields, such as quantum mechanics, quantum statistics,

condensed matter physics, and the theory of critical phenomena. In fact,the most accurate critical

exponents come from this theory [40], as verified by recent satellite experiments [41]. First appli-
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cations of VPT in the field of Markov processes and nonlinear dynamics are found in Refs. [47, 48]

and Ref. [11], respectively.

The convergence of VPT has been analyzed up to very high orders for the ground-state energy

of the anharmonic oscillator

V (x) =
1

2
ω2x2 + gx4 (2.36)

and was found to be exponentially fast [42, 43]. This surprising resulthas been confirmed later by

studying other physical systems and was proven to hold in general [23, 24]. Furthermore, the expo-

nential convergence seems to be uniform with respect to other system parameters. The variational

resummation of perturbation series thus yields approximations which are generically reasonable

for all temperatures [44, 45], space and time coordinates [46–48], magnetic field strengths [49],

coupling constants [26, 50, 51], spatial dimensions [52], etc.

VPT permits the evaluation of a divergent series of the form

f (N)(g) =
N
∑

n=0

angn (2.37)

and yields a strong-coupling expansion of the generic form

f(g) = gp/q
M
∑

m=0

bmg−2m/q . (2.38)

Here,p andq are real growth parameters and characterize the strong-coupling behavior. Introducing

a scaling parameterκ, which is afterwards set to one, Eq. (2.37) can be rewritten as

f (N)(g) = κp
N
∑

n=0

an

( g

κq

)n
∣

∣

∣

∣

∣

κ=1

. (2.39)

Applying Kleinert’s square-root trick [23], i.e. setting

κ = K
√

1 + gr , with r =
κ2 − K2

gK2
(2.40)
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in (2.39), the variational parameterK is introduced into the perturbation series:

f (N)(g) =

N
∑

n=0

angnKp−nq(1 + gr)(p−nq)/2
∣

∣

∣

κ=1
. (2.41)

The Taylor series of(1 + gr)α with α ≡ (p − nq)/2 reads

(1 + gr)α
∣

∣

∣

κ=1
=

N−n
∑

k=0

(

α

k

)(

1

K2
− 1

)k

+ O
(

gN−n+1
)

, (2.42)

where the generalized binomial coefficient is defined by

(

α

k

)

≡ Γ(α + 1)

Γ(k + 1)Γ(α − k + 1)
. (2.43)

The series (2.42) is truncated afterk = N − n since the original functionf (N)(g) is only known

up to ordergN . As a result of this truncation, the functionf (N)(g) becomes dependent on the

variational parameterK:

f (N)(g, K) =
N
∑

n=0

angnKp−nq
N−n
∑

k=0

(

(p − nq)/2

k

)(

1

K2
− 1

)k

. (2.44)

The influence of the variational parameter is then optimized according to theprinciple of minimal

sensitivity[53], i.e., one evaluates the function (2.44) at that value of the variationalparameterK

for which it has an extremum or turning point. In the following, we setg = ǫ2 in (2.29) and (2.30).

2.6.2 Resummation of the Angular Frequency

We now apply VPT to obtain an improved resummation of the angular frequency(2.29). VPT

is applicable when the physical quantity in question has a strong-coupling expansion of the form

(2.38) [23, 24]. Therefore, we first consider our numerical data for the angular frequency in the case

of large delays and determine the growth parameterp andq in (2.38). To this end, we a analyze

our numerical data in two steps. First, in Fig. 2.5(a), we plot our numerical results forlnω versus

ln g = ln(τ − τ0). Fitting our data to a function of the form

f(ln g) = p/q ln g + ln b0 , (2.45)
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Figure 2.5: Angular frequency for large delays (
√

τ − τ0 ∈ [50, 100]). In (a) the logarithm of
the angular frequency is shown versus the logarithm of the delay parameter g. Numerical data are
represented by dots; the solid line represents a fit of the data to a function of the form (2.45). In(b)
the product of the delay parameter and the angular frequency is shown versus the inverse square of
the delay parameter. Numerical data are represented by dots; the solid line represents a fit of the
data to a function of the form (2.46).

we findp/q = −0.9997 andb0 = 1.565. We expect the growth parameters to be integers and thus

setp/q = −1. For large delays, the leading asymptotic behavior ofω is thus given byω ∼ g−1. In

order to determine not only the ratio ofp to q but the individual values of the growth parameters,

we then fit our data forgω to a function of the form

f(g−2) = b0 + b1g
−2/q , (2.46)

which is shown in Fig. 2.5(b). The numerical results from the fit are:b0 = 1.571, b1 = −2.7,

andq = 1.993. Thus, we assumeq = 2 and from our previous result we then havep = −2. In

order to determineb0 andb1 numerically with better accuracy, we can now perform a hierarchy of

approximations to orderM by fitting gω to functions of the form

f(g−1) =

M
∑

m=0

bmg−m . (2.47)

From this procedure we obtain the more precise numerical valuesb0 = 1.57081 andb1 = −2.66.

Now, we can introduce the variational parameterK to the perturbation series (2.29) according to
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(2.44) withp = −2, q = 2:

ω
(N)
VPT(g, K) =

N
∑

n=0

ω2ngnKp−nq
N−n
∑

k=0

(

(p − nq)/2

k

)(

1

K2
− 1

)k

. (2.48)

To first order we obtain

ω
(1)
VPT(g, K) =

(2 + π)(2K2 − 1) − 4g

K4(2 + π)
, (2.49)

which has a minimum at

K(1) =

√

1 +
4g

2 + π
. (2.50)

Evaluating (2.49) at the optimized value of the variational parameter then yields

ω
(1)
VPT(g, K(1)) =

2 + π

4g + 2 + π
. (2.51)

In the limit of large delays,g → ∞, we thus have

ω
(1)
VPT(g, K(1)) ∼ b

(1)
0 g−1 + b

(1)
1 g−2 , (2.52)

with

b
(1)
0 =

2 + π

4
≈ 1.28540 and b

(1)
1 = −(2 + π)2

16
≈ −1.6522 . (2.53)

To second order, Eq. (2.48) yields

ω
(2)
VPT(g, K) =

1

27K6

[

27
(

3K4 − 3K2 + 1
)

+ g
108

(

2 − 3K2
)

2 + π
+ g2 4(341 + 108π)

(2 + π)3

]

. (2.54)

Since this has no real extremum in the variational parameterK, we look for roots of the second

derivative.

In general, in order to optimize the influence of the variational parameter, wefirst look for

minima or maxima ofω(N)
VPT(g, K), and if those do not exist, for positive roots of higher derivatives.
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In each orderN , the optimized variational parameterK(N) is thus determined from the condition

dω
(N)
VPT(g, K)

dK

∣

∣

∣

∣

∣

K=K(N)

= 0 or
d2ω

(N)
VPT(g, K)

d2K

∣

∣

∣

∣

∣

K=K(N)

= 0 , · · · . (2.55)

In cases where a certain derivative has several positive roots, we choose the one which is closest

to the optimized value from the previous orderK(N−1). TheN th order VPT approximation of the

angular frequency is then obtained by evaluating (2.48) for the value of the optimized variational

parameter:

ω
(N)
VPT(g) = ω

(N)
VPT(g, K(N)) . (2.56)

Returning to (2.54), we find that for

g ≤ 3(2 + π)[24 + 12π + 5
√

35(2 + π)]

587 − 144π
≈ 14.756 (2.57)

ω
(2)
VPT(g, K) has two positive turning points:

K̃
(2)
± =

√

60 + 15π(4 + π) + 60(2 + π)g ± 2η

3(2 + π)
, (2.58)

with the abbreviation

η =
√

(2 + π)[9(2 + π)3 + 72(2 + π)2g − (587 − 144π)g2] . (2.59)

Comparing (2.58) to (2.50), we find that̃K
(2)
− is closer toK(1) and thus evaluate (2.54) forK =

K̃
(2)
− to obtain

ω
(2)
VPT(g, K̃

(2)
− ) =

27(2 + π)2

[15(2 + π)(2 + π + 4g) − 2η]3

{

4η2 − 42(2 + π)(2 + π + 4g)η

+(2 + π)[117(2 + π)3 + 936(2 + π)2g + 4(1061 + 468π)g2]
}

. (2.60)

However, for delay parameters exceeding the value ofg given in (2.57), we cannot usẽK(2)
± since

in this caseη becomes imaginary. Thus, if we want to consider the limit of large delays, we must

optimize the variational parameter by considering the third derivative ofω
(2)
VPT(g, K), which turns
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out to have two positive roots for all positiveg:

K
(2)
± =

√

180 + 45π(4 + π) + 180(2 + π)g ± ρ

3
√

2(2 + π)
, (2.61)

with the abbreviation

ρ
√

(2 + π)[513(2 + π)3 + 4104(2 + π)2g + 16(513π − 724)g2] . (2.62)

Again,K(2)
− is closer to the first-order solution, and we setK(2) = K

(2)
− , to obtain

ω
(2)
VPT(g, K(2)) =

54(2 + π)2

[45(2 + π)(2 + π + 4g) − ρ]3

{

ρ2 − 72(2 + π)(2 + π + 4g)ρ (2.63)

+(2 + π)[1323(2 + π)3 + 10584(2 + π)2g + 16(2771 + 1323π)g2]
}

.

Expanding the last result ing−1, we obtain

ω
(2)
VPT(g, K(2)) ∼ b

(2)
0 g−1 + b

(2)
1 g−2 , (2.64)

with

b
(2)
0 =

27(2 + π)3
[

2047 + 1836π − 72
√

(2 + π)(513π − 724)
]

2
[

90 + 45π −
√

(2 + π)(513π − 724)
]3 ≈ 1.23174 (2.65)

and

b
(2)
1 =

243(2 + π)5

8
[

90 + 45π −
√

(2 + π)(513π − 724)
]4

{

63213

√

2 + π

513π − 724
+ 162π (2.66)

×
[

437

√

2 + π

513π − 724
− 82

]

+ 426
√

(2 + π)(513π − 724) − 16193

}

≈ −1.1229 .

It thus turns out that the second order approximation for the leading and subleading large-delay

coefficient is actually worse than the first order one. However, the results in higher orders turn

out to be improved approximations. For fixed values of the coupling constant, the procedure in

higher orders is analogous to the first and second order, where the roots of the first, second, or third

30



Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

     

ω

0.065

0.058
ǫ4.8 5

N = 5

?

N = 6

?

N = 7

?

N = 4

6

N = 3

6

N = 8
6

a)

ω

1.0

0.8

0.6

0.4

0.2

0

ǫ
0 1 2 3 4 5

N = 1
���

N = 2
���

N = 8

6

 

 

 

 

      

b)

u2(t)

u1(t)

−1.5

−1

−0.5

0

0.5

1

1.5

−0.8 −0.4 0 0.4 0.8

N = 2
@@I

N = 3
Q

QQk

N = 4
�

���

N = 5
@

@
@@R

N = 6
HHHHHHHj

N = 7
�

�
��	

N = 8
�

�
�

�
��/

Figure 2.6: Angular frequency and limit cycle from VPT. In(a) the angular frequency as given by
(2.56) is shown as a function ofǫ for the ordersN = 1, 2, 8 of VPT (orders three through seven
would lie very close to the curve forN = 8). Dots represent numerical values. The inset shows a
magnification of the interval4.8 ≤ ǫ ≤ 5. In (b) the limit cycle is shown forǫ = 2. Dashed lines
represent the results from VPT as given by (2.70). The numerical result is shown by the solid line.

derivative ofω(N)
VPT(g, K) have to be determined numerically. Furthermore, in order to obtain the

coefficientsb(N)
0 and b

(N)
1 , we expand the derivatives ofω(N)

VPT(g, K) in g−1 and the variational

parameterK as

K(N) = K
(N)
0 g1/2 + K

(N)
1 g−1/2 + · · · (2.67)

in order to carry out the optimization procedure.

Fig. 2.6(a) shows our VPT results for the angular frequency versus the delay parameterǫ. The

first order result is already in good agreement with the numerical results for a wide range of delays

and is far superior to the first order result from the Shohat expansion(compare Fig. 2.3(a)). Figure

2.7(a) shows the convergence of our VPT results for five different values of the delay. The accuracy

of our VPT results improves with increasing order; however, not as regularly as in the case of the

Shohat expansion for small delays. Figure 2.8(a) shows a comparison of the eighth order results

obtained from Shohat resummation and VPT. In particular, for larger values of the delay, the results

from VPT are far superior to the ones from Shohat resummation. Table 2.3shows our results for

the leading large-delay coefficientsb0 and the subleading coefficientb1; again, the convergence is

not monotonic, but we do observe a general trend towards improved results in higher orders.
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Figure 2.7: Convergence of the angular frequency and the limit cycle after resummation with VPT.
In (a) the logarithm of the relative deviation of the angular frequency as given by (2.56) from the
numerical values and in(b) the logarithm of the error measure for the limit cycle as given by (2.35)
are shown versus the perturbation order. In both(a) and (b) different symbols indicate different
values ofǫ (dots: ǫ = 1.6; squares:ǫ = 2.0; triangles:ǫ = 3.0; diamonds:ǫ = 4.0, upside-down
triangles:ǫ = 5.0).

2.6.3 Resummation of the Limit Cycle

We now proceed to perform a variational resummation of the limit cycle followingthe approach

of Ref. [54]. To this end, we consider the perturbation series of each coefficient in the Fourier

expansion ofV(ξ) as given by (2.16)

A
(N)
1/2,k =

N−1
∑

n=0

a
(2n)
1/2,kg

n ,

B
(N)
1/2,k =

N−1
∑

n=0

b
(2n)
1/2,kg

n . (2.68)

We introduce the variational parameterK into the perturbation series forA(N)
1/2,k andB

(N)
1/2,k in the

same way as for the angular frequency, and obtain by applying (2.44) to the Fourier expansions

(2.68)

A
(N)
1/2,k,VPT(g, K) =

N−1
∑

n=0

a
(2n)
1/2,kg

nKp−nq
N−n
∑

k=0

(

(p − nq)/2

k

)(

1

K2
− 1

)k

,

B
(N)
1/2,k,VPT(g, K) =

N−1
∑

n=0

b
(2n)
1/2,kg

nKp−nq
N−n
∑

k=0

(

(p − nq)/2

k

)(

1

K2
− 1

)k

. (2.69)
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Figure 2.8: Comparison of the eighth order results for(a) the angular frequency and(b) the limit
cycle obtained from the Shohat expansion and VPT. The relative deviations of the analytical results
from the corresponding numerical values are shown versus the delay parameter (Shohat expansion:
squares; VPT: circles).

Instead of optimizing (2.69) according to the principle of minimal sensitivity, we obtain our VPT

result for the limit cycle more easily by evaluating all Fourier expansion coefficients for that value

of the variational parameterK which was determined through the optimization procedure of the

frequency, i.e., our VPT result for the limit cycle reads:







V
(N)
1,VPT(ξ)

V
(N)
2,VPT(ξ)






=

∞
∑

k=1

[







A
(N)
1,k,VPT(g, K(N−1))

A
(N)
2,k,VPT(g, K(N−1))






cos kξ +







B
(N)
1,k,VPT(g, K(N−1))

B
(N)
2,k,VPT(g, K(N−1))






sin kξ

]

,

(2.70)

whereK(N−1) is determined from the condition (2.55) and we useK(N−1) instead ofK(N), since

theN th term in the series forV(ξ) is a correction of ordergN−1.

As an example, we consider the lowest order in which we can perform the VPT resummation of

the limit cycle. To orderg our solution forV(ξ) reads

V1(ξ) =
4 cos ξ

√

3(2 + π)
− g

{

5
√

3(116 + 33π) cos ξ

81(2 + π)5/2
+

2
√

3

27(2 + π)3/2
[cos 3ξ − 7 sin 3ξ]

}

+ O(g2),

V2(ξ) =
4
√

2 sin ξ
√

3(2 + π)
− g

{
√

6(436 + 93π) sin ξ

81(2 + π)5/2
− 2

√
6

27(2 + π)3/2
[5 cos 3ξ − sin 3ξ]

}

+ O(g2) .

(2.71)
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N 1 2 3 4 5 6 7 8 Numerical

b
(N)
0 1.2854 1.23174 1.56495 1.59507 1.61990 1.61806 1.61139 1.54478 1.57081

b
(N)
1 −1.65 −1.12 −2.72 −2.79 −3.05 −3.03 −2.98 −2.21 −2.66

Table 2.3: Leading and subleading coefficients for the large-delay behavior of the angular frequency.

Introducing the variational parameterK according to (2.69), we obtain

V
(2)
1,VPT(ξ, K) =

4(2K2 − 1) cos ξ

K4
√

3(2 + π)

− g

K4

{

5
√

3(116 + 33π)

81(2 + π)5/2
cos ξ +

2
√

3

27(2 + π)3/2
[cos 3ξ − 7 sin 3ξ]

}

,

V
(2)
2,VPT(ξ, K) =

4(2K2 − 1)
√

2 sin ξ

K4
√

3(2 + π)

− g

K4

{
√

6(436 + 93π)

81(2 + π)5/2
sin ξ − 2

√
6

27(2 + π)3/2
[5 cos 3ξ − sin 3ξ]

}

. (2.72)

The optimal value of the variational parameter for the angular frequency tofirst order is given by

(2.50). Inserting this value into (2.72), we find the following VPT result forthe limit cycle:

V
(2)
1,VPT(ξ) =

1

27
√

3(2 + π)(2 + π + 4g)2

{

108(2 + π)2 cos ξ

+g [(1148 + 699π) cos ξ − 6(2 + π)(cos 3ξ − 7 sin 3ξ)]
}

,

V
(2)
2,VPT(ξ) =

2

27
√

6(2 + π)(2 + π + 4g)2

{

108(2 + π)2 sin ξ

+g [(1292 + 771π) sin ξ + 6(2 + π)(5 cos 3ξ − sin 3ξ)]
}

. (2.73)

The procedure in higher order is analogous. Figure 2.6(b) shows ourVPT results for the limit cycle

for ǫ = 2 up to the eighth order. Figure 2.7(b) shows the logarithm of the error measure (2.35)

for the VPT limit cycle versus the orderN for different values ofǫ. In Fig. 2.8(b) the accuracy

of the eighth order results from the Shohat expansion and VPT are compared. Again, we find that

our VPT results are more reliable than those from the Shohat expansion, especially for larger delays.
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2.7 Summary

We have performed a perturbative calculation of the limit cycle and its frequency in a two-neuron

model with delay. A Shohat resummation of the respective perturbation expansions yields results

which are in good agreement with numerical values but whose accuracy decreases drastically with

larger values of the delay parameter. Resumming the perturbation series with VPT yields more

uniformly converging results, which are reliable even in low orders, and furthermore permits the

extraction of the leading large-delay behavior with sufficient accuracy.The present work consti-

tutes the first application of VPT to a system of DDE’s. Moreover, it establishes a method for the

variational resummation of perturbatively calculated limit cycles in nonlinear dynamical systems.
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Appendix: Elimination of Secular Terms

We now demonstrate how the conditions (2.18), (2.19) are obtained by considering the Fourier

decompositions of the periodic solution and the inhomogeneity. Inserting (2.16) and (2.17) into the

system of equations (2.15) and comparing coefficients ofsin kξ andcos kξ in both components, we

obtain the following system of four equations:

a
(n)
1,k

ω0
+ kb

(n)
1,k −

a1a
(n)
2,k

ω0
cos(kω0τ0) +

a1b
(n)
2,k

ω0
sin(kω0τ0) − α

(n)
1,k = 0 , (2.74)

b
(n)
1,k

ω0
− ka

(n)
1,k −

a1b
(n)
2,k

ω0
cos(kω0τ0) −

a1a
(n)
2,k

ω0
sin(kω0τ0) − β

(n)
1,k = 0 , (2.75)

a
(n)
2,k

ω0
+ kb

(n)
2,k −

a2a
(n)
1,k

ω0
cos(kω0τ0) +

a2b
(n)
1,k

ω0
sin(kω0τ0) − α

(n)
2,k = 0 , (2.76)
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b
(n)
2,k

ω0
− ka

(n)
2,k −

a2b
(n)
1,k

ω0
cos(kω0τ0) −

a2a
(n)
1,k

ω0
sin(kω0τ0) − β

(n)
2,k = 0 . (2.77)

It turns out that fork > 1 the coefficientsa(n)
k , b

(n)
k can be uniquely determined for any inhomo-

geneity, i.e., for arbitraryα(n)
k , β

(n)
k . Fork > 1 the solution of the system (2.74) – (2.77) is

a
(n)
1,k =

1

D

{

(α
(n)
1,k − kω0β

(n)
1,k )(ω0 + k2ω3

0) − a1ω
2
0 sin(kω0τ0)(2kα

(n)
2,k − (1 + k2)ω0β

(n)
2,k )

+a1ω0 cos(kω0τ0)(2α
(n)
2,k − 2kω0β

(n)
2,k + (1 − k2)ω2

0α
(n)
2,k)

+(ω0 + ω3
0)
[

sin(2kω0τ0)(β
(n)
1,k − kω0α

(n)
1,k ) + cos(2kω0τ0)(α

(n)
1,k + kω0β

(n)
1,k )
]}

,

b
(n)
1,k =

1

D

{

(β
(n)
1,k + kω0α

(n)
1,k )(ω0 + k2ω3

0) − a1ω
2
0 sin(kω0τ0)(2kβ

(n)
2,k + (1 + k2)ω0α

(n)
2,k )

+a1ω0 cos(kω0τ0)(2β
(n)
2,k + 2kω0α

(n)
2,k + (1 − k2)ω2

0β
(n)
2,k )

+(ω0 + ω3
0)
[

cos(2kω0τ0)(β
(n)
1,k − kω0α

(n)
1,k ) − sin(2kω0τ0)(α

(n)
1,k + kω0β

(n)
1,k )
]}

,

a
(n)
2,k =

1

D

{

(α
(n)
2,k − kω0β

(n)
2,k )(ω0 + k2ω3

0) + (ω0 + ω3
0)
[ω0

a1
sin(kω0τ0)(2kα

(n)
1,k − ω0(1 + k2)β

(n)
1,k )

− cos(kω0τ0)(2α
(n)
1,k − 2kω0β

(n)
1,k + (1 − k2)ω2

0α
(n)
1,k )

+ sin(2kω0τ0)(β
(n)
2,k − kω0α

(n)
2,k ) + cos(2kω0τ0)(α

(n)
2,k + kω0β

(n)
2,k )
]}

,

b
(n)
2,k =

1

D

{

(β
(n)
2,k + kω0α

(n)
2,k )(ω0 + k2ω3

0) + (ω0 + ω3
0)
[ω0

a1
sin(kω0τ0)(2kβ

(n)
1,k + ω0(1 + k2)α

(n)
1,k )

− cos(kω0τ0)(2β
(n)
1,k + 2kω0α

(n)
1,k + (1 − k2)ω2

0β
(n)
1,k )

− sin(2kω0τ0)(α
(n)
2,k + kω0β

(n)
2,k ) + cos(2kω0τ0)(β

(n)
2,k − kω0α

(n)
2,k )
]}

, (2.78)

where

D = 2 + 2ω2
0(1 + k2) + ω4

0(1 + k4)

+(ω0 + ω3
0)
[

2(1 − k2ω2
0) cos(2ω0τ0)/ω0 − 4k sin(2kτ0ω0)

]

. (2.79)

Note thatD vanishes fork = 1. We must thus reconsider the system (2.74) – (2.77) for the case

k = 1 and it turns out thatα(n)
1 , β

(n)
1 must satisfy certain conditions for a solution to exist. For

k = 1, we adda2 sin(ω0τ0) × (2.74) to (2.77) and subtractω0 × (2.76) froma2 cos(ω0τ0) × (2.75).

Using the identitiesa1a2 = −(ω2
0 + 1) andω0 = cot(ω0τ0), we obtain the two conditions (2.18),

(2.19) that must be satisfied by the inhomogeneityf
(n)(ξ). Imposing (2.18), (2.19) onf (n)(ξ), we

36



Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

obtain the following solution to the system of equations (2.74) – (2.77) fork = 1:

b
(n)
1,1 = cos(ω0τ0)

[

a2 cos(ω0τ0)α
(n)
1,1 +

α
(n)
2,1

a2

]

a
(n)
2,1

a2 sin(ω0τ0)
, (2.80)

b
(n)
2,1 = a2 sin(ω0τ0)

[

a
(n)
1,1 − α

(n)
1,1 sin(ω0τ0) cos(ω0τ0)

]

+ α
(n)
2,1 cos2(ω0τ0) . (2.81)

Here, the coefficientsa(n)
1,1 , a

(n)
2,1 are undetermined and follow from the initial conditions. We set

a
(n)
1,1 = An anda

(n)
2,1 = 0.
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Chapter 3

Synchronization in a neuronal feedback

loop through asymmetric temporal

delays

We consider the effect of asymmetric temporal delays in a system of two coupled Hop-

field neurons. For couplings of opposite signs, a limit cycle emerges via a supercrit-

ical Hopf bifurcation when the sum of the delays reaches a critical value.We show

that the angular frequency of the limit cycle is independent of an asymmetry inthe

delays. However, the delay asymmetry determines the phase difference between the

periodic activities of the two components. Specifically, when the connection with neg-

ative coupling has a delay much larger than the delay for the positive coupling, the

system approaches in-phase synchrony between the two components. Employing vari-

ational perturbation theory (VPT), we achieve an approximate analytical evaluation of

the phase shift, in good agreement with numerical results.

Synchronization phenomena among coupled systems are abundant in nature [1, 2]. The coupling

is often not instantaneous; rather finite time delays exist. In general, time delays can cause an

otherwise stable system to oscillate [3–5] and may lead to bifurcation scenarios resulting in chaotic

dynamics [6, 7]. For example, delay-induced oscillations have been reported for neural networks

[8], genetic regulatory networks [9], and models of population dynamics [10] to name just a few.
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The delays for the different coupling mechanisms in such networks do notneed to be uniform,

which may have an important effect on the system dynamics. For instance, ithas been shown that

distributed delays can stabilize a dynamical system [11], and the influence of delayed inhibitory

feedback has been studied [12]. In regard to network synchrony, the question arises under what

conditions this special form of network behavior can be maintained when thetemporal delays are

nonuniform.

Asymmetric time delays in the visual pathway can be a pathological condition, as they are asso-

ciated with many diseases [13]. However, when feedback loops in biological systems have evolved

to feature different latencies for feed-forward and feedback projections, this might provide a hint

that asymmetric delays can also be beneficial to a system’s functioning. In theavian visual system,

the optic tectum is reciprocally coupled with the nucleus pars parvocellularis (Ipc), a subnucleus of

the nucleus isthmi [14]. The coupled systems, tectum and Ipc, respond withsynchronized oscilla-

tory bursts to visual stimulation [15]. Remarkably, the Ipc axons projecting tothe tectum are thick

and myelinated (fast action potential propagation), whereas tectal neurons projecting to the Ipc pos-

sess comparatively thin axons and are unmyelinated (slow action potential propagation) [14]. The

Ipc-to-tectum delay may thus be as short as a fraction of a millisecond, whereas the delay for the

tectum-to-Ipc projection can be expected to be of the order of tens of milliseconds. It therefore

seems natural to conjecture that the asymmetry in the delays may play a functional role in the feed-

back system.

To explore this conjecture we investigate a model system of two coupled Hopfield neurons [16]

with asymmetric delays, described by the coupled first-order delay differential equations (DDE’s)

du1(t)

dt
= −u1(t) + a1 tanh[u2(t − τ2)] ,

du2(t)

dt
= −u2(t) + a2 tanh[u1(t − τ1)] . (3.1)

Here,u1 andu2 denote the voltages of the Hopfield neurons andτ1 andτ2 are the signal propagation

or processing time delays, whilea1 anda2 describe the couplings between the two neurons. The

system of DDE’s (3.1) has a trivial stationary point atu1 = u2 = 0, the stability of which has been

analyzed in detail, e.g., in ref. [17]. Fora1a2 < −1 the fixed point at the origin is asymptotically

stable as long as the mean of the time delaysτ ≡ (τ1 + τ2)/2 does not exceed the critical value
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Figure 3.1: Numerical solutions to the system of DDE’s (3.1) for the choice of parametersa1 = −1
anda2 = 2 and for different values of the time delaysτ1, τ2 (transients not shown). Solutions for
the caseτ1 = τ2 are represented by solid lines. Dashed and dotted lines represent solutions for
the casesτ1 = 0 andτ2 = 0, respectively. For each set of lines the value of the delay parameter
ǫ =

√
τ − τ0 increases from the innermost limit cycle (ǫ = 0.1) to the outermost limit cycle

(ǫ = 1.0) in increments of∆ǫ = 0.1.

τ0 ≡ sin−1[−2ω0/(a1a2)]/(2ω0), whereω0 =
√

|a1a2| − 1. When the sum of the delays is

increased, the origin becomes unstable and a limit cycle emerges via a supercritical Hopf bifurcation

atτ = τ0. Note that the characteristic equation for the system (3.1), which determinesthe condition

for a periodic solution to exist, only depends on the sum of the two delays. A linear stability analysis

can thus provide no insight toward a possible role of asymmetry in the delays.Furthermore, standard

methods for bifurcation analysis, as described, e.g., in refs. [6, 18] are only suitable for examining

the nonlinear dynamical system in the immediate neighborhood of the bifurcation. In contrast to

that, in this letter we aim at obtaining results that also hold for large delays, i.e., far away from the

bifurcation.

We first investigate the effect of asymmetric time delays through numerical simulations. For

a subsequent perturbation expansion we define the expansion parameter ǫ =
√

τ − τ0. Figure 3.1

shows numerical solutions of the system of DDE’s (3.1) for different values of the time delaysτ1

andτ2 and for the choice of parametersa1 = −1, a2 = 2. The amplitude of the limit cycle is only

determined by the value ofǫ and thus remains unchanged when the temporal delays are chosen to

be different. However, we observe that the phase between the periodicactivities ofu1(t) andu2(t)

does depend on the asymmetry of the delays. In order to quantify this phasedifference, we consider
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Figure 3.2: (Color) Plot of the phase shift betweenu1(t) andu2(t). Numerical results for the scalar
productφ as given by (3.2) are color coded for combinations ofτ1 andτ2 with 0 ≤ τ1/2 ≤ 2.8. Red
and blue indicate negative and positive values ofφ, respectively. In the black region, no periodic
solution exists.

the normalized scalar product

φ =

∫ T0+T
T0

dt u1(t)u2(t)
[

∫ T0+T
T0

dt u1(t)u1(t)
∫ T0+T
T0

dt u2(t)u2(t)
]1/2

. (3.2)

Numerical results for this quantity are shown in Fig. 3.2. We find that for time delays which are

equal or at least not too asymmetric the scalar productφ is approximately zero, which corresponds

to a phase shift ofπ/2 betweenu1(t) andu2(t), assuming that they can be described by sinusoidal

functions. However, when the delays are asymmetric, the scalar productφ becomes larger in magni-

tude, being negative forτ1 > τ2 and positive forτ2 > τ1. Specifically, forτ1 = 0 the scalar product

approaches unity for a growing delayτ2, corresponding to in-phase synchronization between the

the two components.

We now aim at achieving an approximate analytical calculation ofφ. To this end, we first derive

the perturbation series for the periodic solutionu(t) and its angular frequencyω of the system (3.1)

by applying the Poincaré-Lindstedt method [19]. Since a supercritical Hopf bifurcation occursat

τ = τ0, we assume that the amplitude and frequency of the new periodic states are analytic in ǫ

and expand them asu(t) = ǫU(t) = ǫ
[

U
(0)(t) + ǫU(1)(t) + . . .

]

, ω(ǫ) = ω0 + ǫω1 + ǫ2ω2 + . . ..

Furthermore, for convenience we introduce the rescaled independentvariableξ = ω(ǫ)t and write
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Figure 3.3: (Color) Perturbative results for the phase shift betweenu1(t) andu2(t). The color-coded
plots show the difference between the numerical result from Fig. 3.2 and the perturbative results up
to orderg3.

U(t) = V(ξ). The expansion then proceeds in a way very similar to the approach in ref.[20],

where the frequency of the limit cycle is calculated perturbatively for increasing mean of time

delays. However, we introduce an additional parameterτ̃1, which is defined as theτ1-value of the

intersection point in theτ1-τ2 plane between the line that marks the boundary between the regions in

which a periodic solution does or does not exist, and a line perpendicular tothis boundary through

a given point(τ1, τ2). To nth order inǫ, we have to solve a system of differential equations of the

form

dV
(n)
1 (ξ)

dξ
= −V

(n)
1 (ξ)

ω0
+

a1

ω0
V

(n)
2 [ξ − ω0(2τ0 − τ̃1)] + f

(n)
1 (ξ) ,

dV
(n)
2 (ξ)

dξ
= −V

(n)
2 (ξ)

ω0
+

a2

ω0
V

(n)
2 (ξ − ω0τ̃1) + f

(n)
2 (ξ) , (3.3)

where the inhomogeneityf (n)(ξ) is determined by the solutions to previous orders. Since we require

that the solutionV(n)(ξ) be periodic inξ with period2π, we can impose certain conditions on the

inhomogeneityf (n)(ξ). Namely, we demand thatf (n)(ξ) not contain terms that would lead to non-

periodic solutions forV(n)(ξ), i.e.,f (n)(ξ) must not contain secular terms. These conditions, which

can be derived by expanding both thenth order limit cycle solutionV(n)(ξ) and the inhomogeneity

f
(n)(ξ) into a Fourier series, read

a2 sin(ω0τ0)α
(n)
1,1 + α

(n)
2,1 sin[ω0(τ0 − τ̃1)] + β

(n)
2,1 cos[ω0(τ0 − τ̃1)] = 0 ,

α
(n)
2,1 cos[ω0(τ0 − τ̃1)] − β

(n)
2,1 sin[ω0(τ0 − τ̃1)] − a2 sin(ω0τ0)β

(n)
1,1 = 0 . (3.4)
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Hereα
(n)
1/2,1 andβ

(n)
1/2,1 denote the coefficients of the cosine and sine terms in the Fourier expansion

of the inhomogeneityf (n)
1/2(ξ), respectively. Imposing these conditions on the inhomogeneity in (3.3)

allows us to determine the angular frequency correctionωn and the Fourier expansion coefficients

for V
(n−2)(ξ). To second order inǫ we find

ω2 = − ω2
0

ω0τ0 + cos(ω0τ0) sin(ω0τ0)
, (3.5)

while ω1 vanishes. This value is identical to the one found in ref. [20] depending only on ω0 and

τ0 but not onτ1 or τ2. Since this observation holds to all orders, we thus find that the period of

the oscillations is independent of any asymmetry in the time delays. Furthermore,we find that only

even perturbative orders lead to nonvanishing contributions for both theangular frequencyω and the

limit cycle V(ξ); we therefore define the new expansion parameterg = ǫ2. Denoting the expansion

to ordergN of the quantity (3.2) byφ(N), we find

φ(1) =
cos[ω0(2τ0 − τ̃1)] − ω0 sin[ω0(2τ0 − τ̃1)]

sign(a1)
√

1 + ω2
0

+g
2(τ0 − τ̃1)ω

2
0 {sin[ω0(2τ0 − τ̃1)]+ ω0 cos[ω0(2τ0 − τ̃1)]}3

sign(a1)[sin(2ω0τ0) + 2ω0τ0](1 + ω2
0)

3/2
. (3.6)

Focusing on the choice of parametersa1 = −1, a2 = 2, which leads toω0 = 1, τ0 = π/4,

we can determine the expansion coefficients forφ(N) up to the third order. Figure 3.3 shows a

comparison of our perturbative results and the numerical result from Fig. 3.2. For small time delays,

the accuracy of the results from the perturbation expansion is good and improves with increasing

order. However, asg increases, the perturbative results cease to converge and no longer provide

an acceptable approximation. As is typical for perturbative methods, our approach has yielded a

divergent series. In order to improve the quality of our results, we now perform a resummation of

the perturbative expansion employing variational perturbation theory (VPT).

VPT is a nonperturbative approximation scheme based on a variational approach due to Feyn-

man and Kleinert [21], which has been systematically developed over the last few years, establishing

its applicability in various fields of physics [20, 22–26]. VPT permits the evaluation of a divergent

series of the formf (N)(g) =
∑N

n=0 angn and yields a strong-coupling expansion of the generic

form f(g) = gp/q
∑M

m=0 bmg−2m/q. Here,p andq are real growth parameters characterizing the
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Figure 3.4: (Color) VPT results for the phase shift betweenu1(t) andu2(t). The first color-coded
plot shows the first-order-VPT result as given by (3.8). The three other plots show the difference
between the numerical result and the results from the first three orders inVPT. For clarity, this
difference has been augmented by a factor of10 and100 in the results for the first and for both the
second and third order, respectively

strong-coupling behavior. The convergence of the series after resummation is exponentially fast and

uniform with respect to other system parameters such as temperature, coupling constants, spatial di-

mensions, etc. [27].

In order to perform the resummation, one introduces a variational parameter K for the pertur-

bation series according to Kleinert’s square-root trick [23]. The series is thus transformed to the

expression

f (N)(g, K) =
N
∑

n=0

angnKp−nq
N−n
∑

k=0

(

(p − nq)/2

k

)(

1

K2
− 1

)k

, (3.7)

derived in detail in ref. [20]. The influence of the variational parameterK is then optimized

according to the principle of minimal sensitivity [28]; i.e., the optimized valueK(N) is deter-

mined by solving for the roots of the first or higher derivatives off (N)(g, K) with respect toK.

The N th order VPT approximation is then obtained by evaluating (3.7) at this optimized value:

f
(N)
VPT(g) = f (N)(g, K(N)). This variational result generally holds for all values of the coupling

constantg. Furthermore, by considering the limit of largeg, it allows the extraction of the strong-

coupling coefficientsbm.

In our case of the perturbation series forφ, the values of the growth parametersp andq turn out

to be the same as those that we determined in ref. [20] for the angular frequency, namelyp = −2,

46



Synchronization in a neuronal feedback loop through asymmetric temporal delays

q = 2. Our first-order result after resummation then reads

φ
(1)
VPT(g) =

(2 + π)(1 − 2 cos τ̃1 sin τ̃1)√
2

[(2 + π)(cos τ̃1 − sin τ̃1) + g(π − 4τ̃1)](cos τ̃1 + sin τ̃1)]
−1 . (3.8)

The first color-coded plot in Fig. 3.4 shows a graphical representationof this result. The agreement

with the numerical result from Fig. 3.2 is excellent. While the second VPT order provides a signifi-

cant improvement when compared with the first order result, third order results are slightly superior

to those of second order.

In conclusion, our investigation of a neuronal model system shows that asymmetric temporal

delays can control the phase in a feedback loop and lead to synchronous oscillations. Specifically,

in-phase and anti-phase synchrony arises when the delays are maximally asymmetric. Furthermore,

after a variational resummation of the perturbation series forφ, we have a very accurate approximate

result for this quantity even in low orders and throughout the fullτ1-τ2 plane.
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Chapter 4

Distributed delays stabilize neural

feedback systems

We consider the effect of distributed delays in neural feedback systems. The avian

optic tectum is reciprocally connected with the nucleus isthmi. Extracellular stimula-

tion combined with intracellular recordings reveal a range of signal delaysfrom 4 to 9

ms between isthmotectal elements. This observation together with prior mathematical

analysis concerning the influence of a delay distribution on system dynamicsraises the

question whether a broad delay distribution can impact the dynamics of neural feedback

loops. For a system of reciprocally connected model neurons, we found that distributed

delays enhance system stability in the following sense. With increased distribution of

delays, the system converges faster to a fixed point and converges slower toward a limit

cycle. Further, the introduction of distributed delays leads to an increasedrange of

the average delay value for which the system’s equilibrium point is stable. The en-

hancement of stability with increasing delay distribution is caused by the introduction

of smaller delays rather than the distribution per se.

4.1 Introduction

The signal flow in the brain is not just feedforward; rather, feedbackdominates most neural path-

ways [1]. Often pairs of reciprocally connected neurons are spatially separate by several millimeters.

50



Distributed delays stabilize neural feedback systems

For instance, the primate corticothalamic feedback loop extends over a distance of approximately

100 mm. Thus, for a typical action potential speed of 1 mm/ms we expect a signaldelay of 100 ms.

When signal delays are larger than the neural response time, complex loopdynamics emerge [2–4].

For reciprocally connected populations of neurons, large delays can introduce another dimen-

sion, namely the distribution of delay times. Such a distribution could be an epiphenomenon in the

evolution of larger brains, or it could be of adaptive significance. Workfrom applied mathematics

states an influence of the distribution of delay times on system dynamics [5–10]. Intrigued by the lat-

ter possibility, we asked two questions: What is the distribution of delay times in anexperimentally

accessible neural feedback system? What is the impact of distributed delays on a mathematically

tractable neural model feedback system?

We measured the distribution of delay times in the isthmotectal feedback system ofbirds

[Fig. 4.1(a)] [11, 12]. The avian isthmic nuclei (parabigeminal nucleus inmammals) receive a topo-

graphically organized projection from the tectum (superior colliculus in mammals), to which they

project back and have been conjectured to mediate spatiotemporal attentional mechanisms [13–15].

The isthmic nuclei in birds consist of three substructures: pars parvocellularis (Ipc), pars magno-

cellularis (Imc), and pars semilunaris (SLu) that are spatially separated from the tectum [16, 17].

In response to visual stimulation, the Ipc neurons undergo a transition from quiescence to rhythmic

firing [15, 18]. Delays can drive a neural feedback loop over a stability boundary resulting in os-

cillatory behavior [19–24]. To elucidate the impact of a delay distribution on the system dynamics,

we investigated, through numerical simulations and mathematical analysis, a model of reciprocally

coupled neurons with distributed delays.

4.2 Measured distribution of delays

To measure the signal delays between pairs of isthmotectal elements, we obtained intracellular

whole-cell recordings from identified neurons in a midbrain slice preparation and stimulated groups

of presynaptic neurons or axons with brief electrical pulses deliveredextracellularly [Fig. 4.1(b)].

Neurons were identified by their location within the midbrain slice preparation and for a subset of

recorded neurons we obtained additional identification via intracellular fills [16, 17].

A subpopulation of tectal layer 10 (L10) neurons project to both the ipsilateral Ipc and Imc in
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Figure 4.1: (Color) Schematic of the isthmotectal circuitry and representative response to electrical
stimulation. (a) Schematic of the isthmotectal circuitry. RGC axons (black arrows) enter in upper
tectal layers. A subpopulation of tectal L10 neurons (red) projects to Imcand Ipc. The Imc nucleus
consists of two populations of neurons (blue); one projecting broadly back to lower tectal layers
and one projecting broadly to the Ipc nucleus. Ipc neurons (green) project back to the tectum with
axons reaching into upper tectal layers.(b) Intracellular recording from an Ipc neuron in response
to electrical stimulation in tectal L2-4.

a topographic fashion [16, 17, 25–28]. Their apical dendrite courses straight up to layer 2 with

few ramifications, and basal dendrites reach down to the border of layer13. Retinal axon terminals

overlap with the apical dendrite in tectal layers 2 to 7 [29, 30]. We placed a stimulus electrode in

layer 2 to 4 (L2-4) and recorded from L10 neurons with whole-cell recordings in response to L2-4

stimulation. The delays from the beginning of the stimulus pulse to the onset of theL10 response

ranged from 4 to 15 ms with a mean delay of 6.9 ms and a standard deviation (SD)of 1.3 ms

(n = 15 cells) [Fig. 4.2(a)]. Tectal L10 neurons are a heterogeneous population [17]. Therefore,

only filled L10 neurons with axons originating from the dendrite were included in this analysis.

Since L10 neuron dendrites can reach up to L2, the possibility of unwanteddirect electrical, rather

than synaptic, stimulation of L10 neuron dendritic endings arises. At the endof a recording session,

we evaluated the nature of stimulation by blocking chemical synaptic transmissionvia the block of

Ca-channels by replacing Ca2+ in the saline with Mg2+.
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Figure 4.2: (Color) Measured distribution of signal delays between isthmotectal elements and plot
of the corresponding gamma distribution [red curves in(a) through(d)] with the same mean and
standard deviation.(a) L2-4 to L10. (b) L2-4 to Ipc. (c) L2-4 to Imc. (d) Imc to Ipc. (e) Ipc to L10.
(f) Imc to L10.

We measured signal delays between optic tectum and individual Ipc neurons via RGC axon

stimulation or L10 neuron dendrite stimulation, with a stimulus electrode placed in tectal L2-4. In

the first case, the group of stimulated RGC axons stimulates a population of L10neurons, which

in turn stimulates a large number of Ipc neurons. In the second case, L10 neurons are stimulated

directly. This stimulus paradigm provided a high chance of recording froman Ipc neuron that

received tectal synaptic inputs. The delays from the beginning of the stimulus pulse to the onset of

the Ipc neuron response ranged from 5 to 19 ms (n = 17 cells) [Fig. 4.2(b)]. As expected from the

stimulus paradigm, the distribution of delays is bimodal. We suspect that the firstbump (5 to 9 ms

range) is dominated by direct L10 dendrite stimulation (mono-synaptic pathwayL10-Ipc); whereas

the second bump (11 to 19 ms range) is dominated by RGC axon stimulation, which initiates the

bi-synaptic pathway RGC-L10-Ipc. From the first bump in the histogram weestimate a mean delay

of 6.5 ms and a SD of 1.4 ms for the mono-synaptic pathway L10-Ipc. Since Ipc neuron axons can

reach up to L2 [17], the possibility of unwanted direct electrical stimulation ofIpc axons arises. At

the end of a recording session, we evaluated the nature of stimulation by blocking chemical synaptic

transmission via replacing Ca2+ in the saline with Mg2+.

Using a stimulus paradigm similar to the one described above, we measured signal delays be-

tween L10 and individual Imc neurons. We placed a stimulus electrode in L2-4 for stimulation of
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RGC axons or L10 neuron dendrites and recorded from Imc neurons with whole-cell recordings in

response to L2-4 stimulation. The signal delays ranged from 4 to 19 ms (n = 17 cells) and the

distribution was bimodal [Fig. 4.2(c)]. As described above, the first bumpis likely to be dominated

by the mono-synaptic pathway (L10-Imc), whereas the second bump is likelyto be dominated by

the bi-synaptic pathway (RGC-L10-Imc). The first bump in the histogram yielded a mean delay of

5.2 ms and a SD of 0.9 ms. Since Imc axons terminate in tectal layers 10 to 13 [16],the possibility

of direct Imc axon stimulation via stimulus electrodes in L2-4 does not arise.

The Imc nucleus consists of two cell types, one of which projects to the Ipc nucleus with a broad

and dense projection of axonal arbors [16, 31, 32]. We positioned a stimulus electrode in the Imc

nucleus and recorded from Ipc neurons with whole-cell recordings inresponse to Imc stimulation.

The signal delays ranged from 3 to 8 ms with a mean delay of 4.3 ms and a SD of 1.1 ms (n = 12

cells) [Fig. 4.2(d)]. Care had to be taken about the interpretation of the Imcstimulation experiments.

The stimulus electrode in the Imc nucleus stimulates 4 elements: L10 neuron axons, Ipc neuron ax-

ons passing through the Imc nucleus, and two populations of Imc neurons;one projecting to tectum

and the other projecting to Ipc. To filter out the Imc to Ipc synaptic connection, we stimulated in

an area of the Imc nucleus that did not correspond to the topographic location of the recorded Ipc

neuron, thus avoiding both antidromic stimulation of the axon from the recorded Ipc neuron as well

as avoiding orthodromic stimulation of the L10 axons passing through the Imc nucleus on their way

to the same location in the Ipc nucleus. At the end of a recording session, weapplied bicuculline to

verify that the synaptic inputs to the recorded Ipc neuron were indeed from the stimulated GABAer-

gic Imc neurons (GABA: gamma-aminobutyric acid). The responses disappeared when 100µM

bicuculline was added to the bath (data not shown) thus (i) indicating that the responses were of

synaptic origin (rather than antidromic Ipc or L10 axon stimulation) and (ii) confirming that GABA

is the transmitter as had been suggested by anatomical studies [16].

The Ipc nucleus has topographical reciprocal connections with the tectum [17, 26, 27, 33, 34].

The efferents from Ipc have large calibre axons and terminate in a columnar manner ranging from

layers 2 to 12 [Fig. 4.1(a)] [17, 25–27, 31, 32]. We applied local extracellular electrical stimulation

of a group of Ipc neurons with a stimulus electrode placed in the Ipc nucleus. Such extracellular

electrical stimulation also stimulates L10 axons antidromically. The fast L10 neuron antidromic

responses were distinguishable from the much slower and long-lasting synaptic responses. The
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additional direct activation of Imc axons in the Ipc nucleus does not interfere with this experiment,

since the population of Imc neurons projecting to the Ipc nucleus is different from the population

of Imc neurons projecting to the tectum. The yield for finding Ipc to L10 synaptic responses turned

out to be very low. For the few cases we found, the delays ranged from6 to 8 ms (n = 5 cells)

[Fig. 4.2(e)].

The projection from individual Imc neurons to tectal layers 10 to 13 is broad and sparse [16].

We positioned a stimulus electrode in the Imc nucleus and recorded from L10 neurons with whole-

cell recordings in response to Imc stimulation. The yield for finding Imc to L10 synaptic responses

turned out to be very low. For the two connected pairs we found, the signal delays were 3 and 6

ms (n = 2 cells) [Fig. 4.2(f)]. The low yield and the interpretation of these experimentsrequire

some explanation. As mentioned above, a stimulus electrode in the Imc nucleus willstimulate

four elements. To filter out the Imc to L10 synaptic connection, we stimulated in anarea of the

Imc nucleus that did not correspond to the topographic location of the recorded L10 neuron, thus

avoiding both antidromic stimulation of the axon from the recorded L10 neuronas well as avoiding

orthodromic stimulation of the Ipc axons passing through the Imc nucleus on their way to the same

location of the tectum. At the end of a recording session, we applied bicuculline to verify that

the synaptic inputs to the recorded L10 neuron were indeed from the stimulated GABAergic Imc

neurons. For the two neurons, the responses disappeared when 100µM bicuculline was added to

the bath (data not shown) thus indicating that the responses were of synaptic origin; rather than

antidromic L10 or orthodromic Ipc axon stimulation.

In summary, these data show that the signal delays between isthmotectal elements are distributed

ranging from 4 to 9 ms.

4.3 Distributed delays and the dynamics of neural feedback systems

What is the impact of distributed delays on a mathematically tractable neural modelfeedback sys-

tem? To interpret the potential impact of the measured distribution of delays on the dynamics

of neural feedback systems, we investigated a model system of two coupled Hopfield neurons

55



Distributed delays stabilize neural feedback systems

Figure 4.3: (Color) Mean delays and attractors.(a), (b) Dynamics of the two-neuron model system
for gamma distributions with mean delay values ofT = 0.7 [(a), fixed point] and [(b), limit cycle],
respectively. For both cases, the standard deviation is 0% (blue), 25% (black), and 50% (red) of
the mean delay. The initial condition isu1(t) = 0.30 andu2(t) = −0.28 for −τ ≤ t ≤ 0. (c)
Gamma distribution for a mean delay value ofT = 0.7 and a standard deviation of 0% (blue), 25%
(black), and 50% (red) of the mean delay.(d) Critical mean delay,T0, where the Hopf bifurcation
takes place, plotted against variance.(e), (f) Time constant for reaching the attractor forT = 0.7
(fixed point) andT = 2.0 (limit cycle), respectively, plotted against the variance of the gamma
distribution.

[20, 22, 23, 35], described by the first-order delay differential equations

du1(t)

dt
= −u1(t) + a1 tanh[u2(t − τ2)] ,

du2(t)

dt
= −u2(t) + a2 tanh[u1(t − τ1)] . (4.1)

Here,u1(t) andu2(t) denote the voltages of the model neurons andτ1 andτ2 are the temporal de-

lays, whilea1 anda2 describe the coupling strength between the two neurons. In this analysis, the

time variable is dimensionless. Translation to real time can be made by multiplying the dimension-

less time variable with a membrane time constant,RC. The system of delay differential equations

has a trivial stationary point at the origin,u1 = u2 = 0 [Fig. 4.3(a)]. Fora1a2 ≤ −1, the fixed
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point at the origin is asymptotically stable as long as the mean of the time delays(τ1 + τ2)/2 does

not exceed a critical valueτ0 [22, 36]:

τ1 + τ2

2
< τ0 =

1

2
√

|a1a2| − 1
sin−1 2

√

|a1a2| − 1

|a1a2|
. (4.2)

The critical valueτ0 is determined by combinations of the product of the couplings alone [Eq. (4.2)].

For couplings of opposite signs (e.g.,a1a2 ≤ −1) and when the delays are increased, the origin

becomes unstable and a limit cycle emerges via a supercritical Hopf bifurcation at(τ1 + τ2)/2 = τ0

[Fig. 4.3(b)]. The critical value,τ0 , decreases with decreasing value of the product of the couplings

a1a2 below−1. In other words, oscillations can be achieved by either increasing the delays or by

increasing the absolute value of the coupling strengths of opposite signs.

For a distribution of delays we replace the coupling term in (4.1) with a weightedsum over

similar terms but with different delays

du1(t)

dt
= −u1(t) + a1

∫ ∞

0
dτξ(τ) tanh[u2(t − τ)] ,

du2(t)

dt
= −u2(t) + a2

∫ ∞

0
dτξ(τ) tanh[u1(t − τ)] . (4.3)

The delay kernelξ(τ) is normalized to satisfy
∫∞
0 dτξ(τ) = 1 . For simplicity, we chose the

delay kernels to be identical for both legs of the loop. We chose the delay kernel to be a gamma

distribution,

ξ(τ) =
(T/ν)T 2/ν

Γ(T 2/ν)
τT 2/ν−1e−Tτ/ν , (4.4)

whereT is the mean delay,ν is the variance of the gamma distribution, and the gamma function is

defined asΓ(x) =
∫∞
0 tx−1e−tdt. The gamma distribution was chosen because it has the biologi-

cally plausible feature to vanish for delays approaching0 [Fig. 4.3(c)]. For the coupling strengths

we chosea1 = −2 anda2 = 1 for all simulations.

The parameters to vary are the mean delay,T , and the variance,ν, of the gamma distribution.

As these parameters are changed, the fixed point at the origin changes from a stable fixed point to

an unstable fixed point surrounded by a stable limit cycle and vice-versa (Hopf bifurcation). This
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Figure 4.4: (Color) Dynamics of the two-neuron model system with discrete delays.(a) Dynamics
of the system with two fixed delays of 0.1 and 0.7 (green); one fixed delay of 0.1 (red); and one
fixed delay of 0.7 (black).(b) DistanceD(t) =

√

u2
1(t) + u2

2(t) from (0, 0) vs. time for the above
cases.

transition takes place when the roots,λ, of the characteristic equation for the system (4.3),

λ2 + 2λ + 1 − a1a2

(

1 +
λν

T

)2T 2/ν

= 0 , (4.5)

are purely imaginary. The characteristic equation is obtained by demanding that the solution to (4.3)

behaves asu1(t) = Aeλt, u2(t) = Beλt near the fixed point. Substitutingλ = iω, whereω is real,

we have

−ω2 + 2iω + 1 − a1a2

(

1 +
iων

T

)−2T 2/ν

= 0 . (4.6)

Separating real and imaginary parts, we get two equations from which we can numerically eliminate

ω. However, there are multiple solutions for this. For a given varianceν, the solution with the

minimum positive mean delayT , determines the critical mean delayT0 at which the fixed point at

the origin loses its stability and a stable limit cycle emerges. Our analysis shows that the introduction

of distributed delays (increasing variance) leads to a smaller limit cycle [Fig. 4.3(b)]. Furthermore,

the critical mean delayT0 increases with increasing variance [Fig. 4.3(d)].

To estimate the time constant for reaching an attractor, we calculated the distance Dθ(t) =
√

u2
1(t) + u2

2(t) from the origin along a given polar angleθ in the u1-u2 space. Assuming an

exponential dependence, a fit of an exponential function to the simulatedDθ(t) values provided

the time constant for that polar angle. We repeated the procedure for 360polar angles in 1-deg

increments and took the final time constant to be the mean of the 360 time constants at given polar
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angles. This analysis shows that increasing variance makes the convergence to the fixed points faster

[Fig. 4.3(e)] and the convergence to limit cycles slower [Fig. 4.3(f)].

In summary, distributed delays increase the parameter region with fixed-point behavior and

accelerate the convergence to the fixed point.

The enhanced fixed-point stability with distributed delays actually comes fromthe contribution

of the smaller delays, rather than the distribution per se. To illustrate this insight,we compare the

dynamics of three systems with delays given by one or two superimposed delta-distributions with

peaks at: (i)τ = 0.7, (ii) both τ = 0.1 andτ = 0.7, and (iii) τ = 0.1 (Fig. 4.4). The distributed

system (ii) converges faster than system (i), but the distributed system (ii)converges slower than

system (iii). In other words, adding a longer delay ofτ = 0.7 to theτ = 0.1 system slows the

convergence, whereas adding a shorter delay ofτ = 0.1 to the τ = 0.7 system accelerates the

convergence. Thus, it is not the distribution of delays per se, but the contribution of shorter delays

in the distribution that enhances fixed-point stability.

4.4 Discussion

For large brains with finite signal propagation velocities, delays are a factof life. In some feed-

forward pathways, such as the vertebrate optic nerve, delays can be specific to the retinal ganglion

cell type thus leading to differences of arrival time for different retinalrepresentations of the visual

stimulus [37–40]. In other feedforward sensory pathways, such as the avian nucleus laminaris, de-

lays are used explicitly to evaluate interaural time differences [41]. Delaysin feedback loops play a

fundamentally different role, as they can determine the dynamical behaviorof the system [42, 43].

Specifically, for delays smaller than a critical value a neural feedback system may converge toward

a steady-state, whereas for delays larger than the critical value the system may oscillate [44, 45].

In nonlinear systems, the distribution of a system parameter can have unexpected effects on the

systems dynamics [46–48]. Consequently, if delay is a relevant parameterin neural feedback sys-

tems, as stated above, it is important to investigate the impact of delay distributionson the system

dynamics.

Parameters in biological system are usually distributed over some range. Therefore, these sys-

tems must be robust in the sense that the parameter variability should not detainthe biological sys-
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tem from functioning correctly. Moreover, a system architecture in whichthe parameter variability

actually enhances the system’s performance would be particularly desirable. In this study, we have

quantified the distribution of delays in the avian isthmotectal feedback loop. Furthermore, by inves-

tigating a mathematical model of coupled neurons with distributed delays, we have demonstrated

that distributed delays enhance the stability of the system, where the stabilizing effect arises from

the contribution of smaller delays introduced through the delay distribution. Since the functional

role of the isthmotectal feedback loop remains mostly unclear to date, it is not obvious whether this

stabilizing effect is beneficial to the system’s functioning. Further understanding of the neuronal

processes in the isthmotectal feedback loop will be necessary to answer this question.

4.5 Experimental methods

White Leghorn chick hatchlings (Gallus gallus) of less than 3 days of age were used in this study. All

procedures used in this study were approved by the local authorities andconform to the guidelines

of the National Institutes of Health on the Care and Use of Laboratory Animals. Animals were

injected with ketamine (40 mg per kg, i.m.). Brain slices of the midbrain were prepared following

published protocols [49–53]. Briefly, preparations were done in0 °C, oxygenated, and sucrose-

substituted saline (240 mM sucrose, 3 mM KCl, 5 mM MgCl2, 0.5 mM CaCl2, 1.2 mM NaH2PO4,

23 mM NaHCO3, and 11 mM D-glucose). After decapitation, the brains were removed fromthe

skull, and the forebrain, cerebellum, and medulla oblongata were discarded. A midsagittal cut was

used to separate the tectal hemispheres. The tectal hemispheres were sectioned at 500µm on a

tissue slicer (Vibroslice, Camden and VF-200, Precisionary Instruments)in either the transverse

or the horizontal plane. Slices were collected in oxygenated saline (120 mM NaCl, 3 mM KCl,

1 mM MgCl2, 2 mM CaCl2, 1.2 mM NaH2PO4, 23 mM NaHCO3, and 11 mM D-glucose) and

kept submerged in a chamber that was bubbled continuously with carbogen(95% oxygen, 5% CO2)

at room temperature. The slice was then transferred to a recording chamber (RC-26G, Warner

Instruments) mounted on a fixed stage upright microscope equipped with DICoptics (BX-51WI,

Olympus). The slice was held gently to the bottom of the chamber with an anchor of nylon threads,

and the chamber was perfused continuously with oxygenated saline at room temperature. The cells

in L10, Imc, and Ipc are visible with DIC optics.

60



Distributed delays stabilize neural feedback systems

Local electrostimulation was achieved by inserting bipolar tungsten electrodes under visual con-

trol into either the upper tectal retinorecipient layers (2 to 4), layer 5b, orthe isthmic nuclei Ipc or

Imc with a three-axis micromanipulator (U-31CF, Narishige). Electrodes were custom-built from

50-µm diameter, insulated tungsten wires (California Fine Wire) that were glued together with

cyanoacrylate and mounted in glass microcapillaries for stabilization. The wires protruded several

hundred m from the capillaries, and the tips were cut at an angle. Stimulus isolators (Isolated Pulse

Stimulator 2100, AM Systems) generated biphasic current pulses (20 - 200µA, 500µs).

Whole-cell recordings were obtained with glass micropipettes pulled from borosilicate glass

(1.5 mm OD, 0.86 mm ID, AM Systems) on a horizontal puller (P-97, Sutter Instruments and

DMZ Universal Puller, Zeitz Instruments) and were filled with a solution containing 100 mM K-

Gluconate, 40 mM KCl, 10 mM HEPES, 0.1 mM CaCl2, 2 mM MgCl2, 1.1 mM EGTA, 2 mM

Mg-ATP, pH adjusted to 7.2 with KOH. Electrodes were advanced through the tissue under visual

guidance with a motorized micromanipulator (MP-285, Sutter Instruments) while constant positive

pressure was applied and the electrode resistance was monitored by short current pulses. Once

the electrode had attached to a membrane and formed a seal, access to the cytosol was achieved

by brief suction. Whole-cell recordings were performed with the amplifier (Axoclamp 2B, Axon

Instruments and SEC-05L, npi-electronic) in the bridge mode (current clamp). The series resistance

was estimated by toggling between the bridge and the DCC (discontinuous current clamp) mode.

The series resistance was compensated with the bridge balance. Analog data were low-pass filtered

(4-pole Butterworth) at 1 kHz, digitized at 5 kHz, stored, and analyzed on a PC equipped with an

PCI-MIO-16E-4 and LabView software (both National Instruments).

Labeling of a subset of recorded neurons was carried out as described previously [50–52, 54].

In brief, whole-cell patch recordings were obtained as described above. Additionally, the electrode

solution contained 0.5% Biocytin (w/v) to label the recorded neurons. Individual cells were filled

intracellularly with 2 nA of positive current over 3 minutes. After recordingand labeling, slices

were kept in oxygenated ACSF for an additional 30 minutes and subsequently fixed by immersion

in 4% paraformaldehyde in PB for at least 4 hours. Slices were then washed in phosphate buffer

(PB, 0.1 M, pH 7.4) for at least 4 hours, immersed in 15% sucrose in PB forat least 4 hours

and then immersed in 30% sucrose in PB for 12 hours, and resectioned at 60 µm on a freezing

microtome. The sections were collected in PB and the endogenous peroxidase blocked by a 15-
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minute immersion in 0.6% hydrogen peroxide in methanol. The tissue was washed several times

in PB, and then incubated in the avidin-biotin complex solution (ABCElite kit, Vector Labs) and

the reaction product visualized with a heavy-metal intensified DAB protocol.Following several

washes in PB, the 60µm-thick sections were mounted on gelatin-coated slides, dried, dehydrated,

and coverslipped. Sections were inspected for labeled neurons, and only data from cells that could

unequivocally be classified according to published criteria [16, 17] were taken for further analysis.

Cells were reconstructed at medium magnification (10x to 20x) with a camera lucida on a Leica

microscope and projected onto the 2D plane.
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Chapter 5

Dynamics of neural feedback triads

We observe that a number of vertebrate neural feedback circuits followa characteristic

feedback triad topology. This topology consists of two delayed feedbackloops with

an asymmetric lateral connection between them. A model of the feedback triad has

five connection strength parameters. We show that because of the asymmetric lateral

connection between the two loops, the system dynamics depend upon two algebraic

combinations of subsets of the five parameters. Thus qualitatively equivalent system

dynamics can be observed with widely differing parameter settings. We also show that

without the asymmetric lateral connection one of the algebraic combinations vanishes

and the system effectively reduces to one delayed feedback loop. Ouranalysis thus

highlights the significance of the asymmetric lateral connection in the feedbacktriad

topology that appears to have evolved independently in vertebrate neural feedback cir-

cuits.

Biological neural networks are the result of billions of years of evolution, which works by random

changes and the survival of organisms with advantageous network properties [1]. Therefore, the

networks emerging from the evolutionary process are, to some degree, dependent on temporal se-

quences of chance and can be laden with detail that seem to require special description in every

case. However, because of the enhanced survival of organisms withadvantageous networks dur-

ing the evolutionary process, in biological networks we expect to find characteristic sets of circuit

elements that obey general design principles [2]. Here, we present and investigate one such de-
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c

αβ

x1

x2 x3

ab

h1(a) (b) (c)

Figure 5.1: (Color) Feedback triad circuitry with asymmetrical lateral connections between the
feedback loops.(a) Corticothalamic feedback triad of the cat features projections from the lateral
geniculate nucleus (LGN) to both the perigeniculate nucleus (PGN) and visual cortex (V1), but re-
ceives topologically different feedback from these nuclei.(b) In the avian isthmotectal feedback
triad, the optic tectum projects to both the Imc and Ipc nuclei of the isthmi, but like the cat re-
ceives topologically different feedback from those nuclei.(c) Model of feedback triad circuitry
with asymmetry between the two feedback loops. Feed-forward synaptic connections are given by
Latin graphemes and feedback connections are given by Greek graphemes.

sign principle, the neural feedback triad, which consists of two delayed feedback loops with an

asymmetric lateral connection between them.

Feedback dominates neural networks of brains [3] and has been implicated in a number of

signal processing tasks [4–9]. Here, we observe that two independently evolved feedback systems,

the mammalian corticothalamic [Fig. 5.1(a)] [10] and the avian isthmotectal loops [Fig. 5.1(b)]

[11, 12], follow a characteristic feedback triad topology [Fig. 5.1(c)].This topology consists of two

delayed feedback loops with an asymmetric lateral connection between them. In mammals, retinal

ganglion cell axons project to the thalamic lateral geniculate nucleus (TH). The TH in turn projects

to the thalamic reticular nucleus (RE) and the cortical layer 6 neurons (CX).Both, RE and CX,

feed back to TH. The two feedback loops are different in their spatial extent. The CX feedback is

broad, whereas the RE feedback is more local. In addition, the CX also projects to RE. In birds,

retinal ganglion cell axons project to the optic tectum (TeO). The TeO in turnprojects to the nucleus

isthmi pars parvocellularis (Ipc) and to the nucleus isthmi pars magnocellularis (Imc). Both Ipc and

Imc feed back to the TeO. The two feedback loops are different in their spatial extent. The Imc

feedback is broad, whereas the Ipc feedback is more local. In addition,the Imc also projects to Ipc.

In summary, the two independently evolved feedback systems, the mammalian corticothalamic and
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the avian isthmotectal system, converged onto the same feedback triad topology [Fig. 5.1(c)] that

consists of a global and a local feedback loop with a lateral connection from the global to the local

loop.

In this study, we present a point model using finite difference equations that take into account

both the synaptic weights and the synaptic and transmission delays among the components of the

isthmic circuitry. We show that the parameter space of synaptic weights in the nucleus isthmi

circuitry has regions with robustness towards parameter changes and regions that are extremely

sensitive to parameter changes. First, we develop a set of finite difference equations and show that

under certain synaptic weight conditions the output firing rate of the systemdoes not depend upon

the individual synaptic weights but upon combinations of them. Next, we examine the tectal output

dynamics as a function of the effective weight parameters and finally, we derive a stability condition

that confines the stable nonzero fixed points to a region within the parameter space and show that

the tectal output converges to the fixed points geometrically.

To model the nucleus isthmi feedback loop we consider three neurons with synaptic connections

that reflect the topology established by anatomical studies of the avian isthmotectal circuit [11, 12]

[see Fig. 5.1(c)]. To investigate the dynamics of the circuitry we use a nonlinear finite difference

map that outputs a graded potential at discrete time steps. The use of finite difference equations

leads to a tractable computational model that has been used to study nonlinearmicrocircuits in

electrical engineering [13].

Spatial separation between the different neurons in the circuit results in asignal transmission

delay. As a simplification we consider the case in which all delays in the circuit are equal. This

delayτ along with the corresponding synaptic weights gives the following set of nonlinear discrete

equations

xi(t) = δ





3
∑

j=1

wijxj(t − τ) + hi



 , (5.1)

wherex1, x2 andx3 are the firing rates of the tectal, Ipc, and Imc neurons, respectively, and δ

denotes an input-output transfer function. The synaptic weightswij and the external inputhi are
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given as

w =













0 α β

b 0 c

a 0 0













, h =













h1

0

0













. (5.2)

For the transfer functionδ, we make the choiceδ(s) = max(s, 0). This nonlinear activation function

immediately imposes certain constraints on the synaptic weights if the output is to be nontrivial. For

the circuit to function as a three-neuron circuit, the synaptic connection onto the Imc neuron must

be positive,a > 0. In addition, experimental evidence suggests that the synaptic polarity of the

connections b and c are similarly positive [14]. With these synaptic constraints the model can be

reduced from a 5 dimensional weight parameter space to a two dimensional weight parameter space.

The tectal output firing rate,x1, in terms of previous tectal firing rates is given as

x1(t) = δ [h1(t − τ) + ηx1(t − 2τ) + ξx1(t − 3τ)] , (5.3)

where the constantsη andξ are the following combinations of the synaptic weights,

η = βb + αa, ξ = βac. (5.4)

With a constant external input,h1(t) = h1, the activity of the tectal neurons given by 5.3 displays

a rich variety of firing rate patterns. At different values of the synaptic weights the tectal neurons’

firing rate can converge, diverge, oscillate, or exhibit aperiodicity. This type of microcircuit is sim-

ilar to central pattern generator (CPG) circuits. Central pattern generators are small microcircuits

capable of producing rhythmic outputs without rhythmic sensory inputs [15,16]. They are common

in motor systems [17] and have many similarities to circuits found in the brain [18–20]. The activity

states of these circuits can be changed by sensory afferents and neuromodulators making the circuit

multifunctional and dynamically plastic [21]. To investigate how changes in the synaptic weights

by neuromodulators could alter the state of the isthmotectal circuit, we numericallysimulated firing

rate trajectories for various combinations of the synaptic weights and observed whether the trajec-

tory converged, diverged or oscillated. The parameter space shown inFig. 5.2 displays the tectal
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Figure 5.2: (Color) Different forms of dynamics in the feedback triad as afunction of the connec-
tions strengths. The effective parameter space inη andξ is shown, and the dynamics that result
for the corresponding combinations of coupling strengths are color coded. The delayτ is one time
unit, and trajectories were evaluated for 500 time units. The white region corresponds to convergent
trajectories, whereas the black region corresponds to diverging trajectories. The cyan region corre-
sponds to aperiodic time traces as shown in Fig. 5.3. All of the other regions inthe colormap are
oscillatory trajectories with periods as indicated by the colorbar.

neuron firing rate behavior as a function of the effective weight parametersη andξ, incremented

in steps of .001 units. The simulation was run for 500 time steps with the exception of the purple

region, in which it was run for 15,000 time steps. The white region corresponds to parameter combi-

nations that lead to stable fixed points for tectal firing rates. The shades ofcolor between 0 and 500

in the color-map indicate periodic firing rates with the color representing the period of oscillation.

In addition, oscillatory behavior that occurs after a significant transitoryperiod of up to 15,000 time

steps is colored in purple. The black region represent diverging firingrate patterns. The remaining

pink region consist of aperiodic trajectories that exhibit irregular oscillations. To determine if these

irregular oscillations were actually regular but on a very long time scale we computed the Fourier

transform of these time series and found that the oscillations are indeed irregular. Next, we con-

sidered whether these aperiodic trajectories could be chaotic. Since chaotic trajectories would be

exponentially sensitive to initial conditions, we numerically simulated the trajectories at five dif-

ferent initial conditions. Figure 5.3 shows that the aperiodic trajectories are not chaotic but exhibit
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Figure 5.3: (Color) Aperiodic time traces for different initial conditions. Small perturbations from
the zero initial condition do not diverge away as would be expected for a chaotic system. The
system exhibits multi-stability as changing the initial conditions brings the system to aneighboring
attractor.

different firing rate trajectories based on the initial conditions. This switch toa different attractor

based on the initial conditions is called multi-stability [22] and is commonly found in CPG circuits.

By examining the weight parameter space, it is immediately apparent that certainregions have

highly stable network activity since shifts in the weights as may be induced by neuromodulators, do

not lead to changes in the activity state of the circuit. However, other regions show dynamic shifts

in network activity with very small changes to the effective weightsη andξ. This dynamic shifting

could allow the circuit to transform its activity state making the circuit dynamically plastic.

The nonlinearity of the finite difference equations lends a complicated structure to the parameter

space. In particular, the rectifying transfer function allows for inhibitorynetworks to oscillate given

a positive external input stimulus. For oscillations of low period, a table listing the firing rate shows

how the periodic trajectories are influenced by the rectification. For examplein the regionη < −1

andξ < −1, a table of the firing rates given by 5.3 shows immediate periodicity (cf. Tab. 5.1),

Time 1 2 3 4 5 6 7 8 9 10 11
h1 1 1 1 1 1 1 1 1 1 1 1
x1 0 1 1 1 0 0 0 1 1 1 0

Table 5.1: Cyclic behavior in the feedback triad. The firing ratex1 that results for coupling strengths
η < −1 andξ < −1 is shown for the first eleven time units. The cyclic behavior ofx1 is caused by
the by the rectification of the firing rates.
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however tabling of higher period oscillations becomes intractable.

The fixed points of the system, shown as white in the parameter space, are determined by (5.3).

Since only positive fixed points are considered we can neglect the transfer functionδ and obtain the

following fixed points.

x∗
1 =

1

1 − η − ξ
. (5.5)

The lineη + ξ = 1 bounds the region where stable fixed points exist. In addition, unstable fixed

points above this line diverge monotonically whereas unstable fixed points below this line diverge

non-monotonically as a result of the input-output transfer functionδ. In addition, the convergent

trajectories converge to the fixed points geometrically. This geometrical convergence can be seen in

the time traces or by looking at the table values of the firing rates. Thus, the fixed points given in

(7) represent the sum of the geometric series for|η + ξ| < 1

∞
∑

n=1

(η + ξ)n. (5.6)

The convergence of the firing rates to a fixed point has interesting applications to the three-

neuron system with an asymmetrical lateral connection between the feedback loops. If the lateral

connection in this three neuron model were not present, then the weight parameterξ would vanish.

Along the lineξ = 0 in the parameter space many values of the remaining weight parameterη lead

to converging firing rates, which is inconsistent with experiments that show oscillatory activity in

the tectum [23]. Thus, the asymmetrical lateral connection is crucial for oscillatory behavior of the

units within the three-neuron circuit.

The delayed three-neuron feedback circuit with an asymmetrical lateral connection between the

feedback loops is common in vertebrate neural circuits. Using constraints of the synaptic strengths

observed in the avian feedback triad circuit, we have shown that the five strength connection pa-

rameters can be reduced to two effective strength parameters. With this result, the parameter space

over the two free synaptic strength parameters exhibits steady, diverging, aperiodic, and oscillating

activity states. We have observed that the aperiodic states are not chaoticbut rather exhibit multi-

stability. In addition, a fixed point analysis has shown that the convergentactivity states are confined

by a stability condition and that the convergent trajectories converge geometrically to the fixed point.
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When the lateral connection between the two elements of the feedback loop is not present, one of

the effective parameters vanishes and geometrical convergence to a fixed point occurs for many

choices of the synaptic strengths. In addition, the parameter space exhibitsregions where quali-

tatively equivalent system dynamics occurs for widely differing synapticstrength parameters and

regions in which small changes in synaptic strength lead to drastically different network activity.

In mammals the TH has feed-forward connections to both the CX and the RE. The CX and the RE

are connected via an asymmetrical lateral connection with the CX and the RE providing feedback

to the TH. The feedback triad model presented here highlights the importanceof the asymmetrical

connection from the CX to the RE in terms of generating oscillatory behavior in the TH neurons.
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Chapter 6

Winner-take-all selection in a neural

system with delayed feedback

We consider the effects of temporal delay in a neural feedback system with excitation

and inhibition. The topology of our model system reflects the anatomy of the avian isth-

mic circuitry, a feedback structure found in all classes of vertebrates. We show that the

system is capable of performing a ‘winner-take-all’ selection rule for certain combina-

tions of excitatory and inhibitory feedback. In particular, we show that when the time

delays are sufficiently large a system with local inhibition and global excitationcan

function as a ‘winner-take-all’ network and exhibit oscillatory dynamics. We demon-

strate how the origin of the oscillations can be attributed to the finite delays through a

linear stability analysis.

6.1 Introduction

In order to identify and react to behaviorally relevant objects in their visual environment, animals

must be able to rapidly locate the positions of these objects in visual space. This ability to select

and orient towards the most salient part in a visual scene that may be cluttered with other, for the

animal’s survival less relevant objects, has evolutionary significance,as it permits the organism

to detect quickly possible prey, predators, and mates [1]. In standard models of selective visual

attention, the stimulus is encoded in a ‘saliency map’ that topographically represents the conspicuity
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of the stimulus over the visual scene. The most salient location is then chosenby a ‘winner-take-

all’ (WTA) network, i.e., by a neurally implemented maximum detector [2]. In neuronal network

models, these WTA networks are often realized as networks with lateral inhibition [3–5], global

inhibition [6], or local excitation and long distance inhibition [7]. After the mostactive location,

i.e., the ‘winner’, in the saliency map has been chosen, attention should not, however, continue to

be focused onto it. One way of allowing attention to shift, is to transiently inhibit neurons in the

saliency map that correspond to the currently attended location, a strategy known as ‘inhibition of

return’ [8].

The homolog of the mammalian superior colliculus in non-mammalian vertebrates is the optic

tectum (TeO). It is critically involved in localizing visual objects and in the preparation of orienting

responses towards these objects [9, 10]. In all classes of vertebrates, the TeO is reciprocally con-

nected with the nucleus isthmi (NI), which is homologous to the parabigeminal nucleus in mammals

[11]. In the avian visual pathway, the NI consists of three subnuclei: thenucleus pars parvocellularis

(Ipc), the nucleus pars magnocellularis (Imc), and the nucleus pars semilunaris (SLu) [12, 13]. In

both Ipc and Imc the projection from the tectum is topographically organized such that the retino-

topic map is preserved in both nuclei, with the projection to the Imc being somewhatcoarser than for

the Ipc [12]. In contrast, the isthmic projections back to the TeO are very different for Ipc and Imc.

Ipc neurons project back to the TeO in a highly precise homotopic manner, i.e., the axons of each

Ipc neuron terminate in that part of the optic tectum from which their visual inputs come [13]. Imc,

on the other hand, has two populations of neurons, which both make heterotopic projections but

only to the TeO or Ipc, respectively [12]. The three-nuclei circuitry consisting of TeO, Ipc, and Imc

is shown in Fig. 6.1 [14]. Due to latencies arising from synaptic process and the spatial separation

of the nuclei, the coupling between TeO and NI cannot be considered instantaneous. Rather, finite

temporal delays exist [12, 13]. Furthermore, delays can arise from thedynamical properties of the

systems involved. For instance, the authors of Ref. [15] report stimulus-dependent onset latency of

recurrent inhibition in the cat hippocampus, and these findings were later explained in Ref. [16]. It

has been known for some time that temporal delays can cause an otherwise stable system to oscillate

[17–19] and may lead to bifurcation scenarios resulting in chaotic dynamics [20, 21]. Therefore,

finite delays are an essential property of any realistic model of a neuron population [22].

The synaptic effect of the recurrent projections from the Ipc and Imc cells onto their target cells
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Figure 6.1: Diagram of the isthmotectal feedback loop. The Ipc is reciprocally connected with the
TeO in a precise homotopic manner. Tectal neurons project topographically to the Ipc, and Ipc
neurons project back to the corresponding tectal loci. Imc receives a coarser topographic projection
and projects back to the TeO and Ipc via widely ramifying terminal fields. Blackrepresents visually
activated neural elements. Reprinted with permission from Ref. [14].

is less well understood than their anatomical organization. The available evidence suggests that Ipc

neurons are cholinergic, whereas Imc neurons have been shown to express gamma-aminobutyric

acid (GABA) as their main neurotransmitter. Thus, according to the usual role of acetylcholine and

GABA, one might speculate that Ipc and Imc neurons mediate excitation and inhibition onto their

target cells, respectively. The authors of Ref. [14] posit that “the three-nuclei circuitry [...] may

constitute a winner-take-all network [2] in which local visual inputs to the Ipc are augmented by

the re-entrant loop among tectal and Ipc neurons, combined with broad inhibition of the rest of the

Ipc by Imc neurons.” This argument seems immediately plausible, however, electrophysiological

experiments [23–25] suggest that the synaptic effects of Ipc and Imc are actually converse to this

scenario and that the Ipc mediates inhibition whereas the Imc has an excitatoryeffect. Given the

anatomical organization of the recurrent projections from Ipc and Imc, itis not fully intuitive how the

system could function as a WTA network when Imc is excitatory and Ipc inhibitory. Nevertheless,

the author of Ref. [26] considers this possibility: “The positive and negative feedback loops formed

between the tectum and NI may work together in a winner-take-all network, so that the positive

feedback loop could provide a powerful augmentation of activated loci, while the negative feedback

76



Winner-take-all selection in a neural system with delayed feedback

optic tectum nucleus isthmi pars nucleus isthmi pars
parvocellularis magnocellularis

TeO Ipc Imc
α β γ
1 . . . N N + 1 . . . 2N 2N + 1

Table 6.1: Components of the isthmotectal feedback loops and abbreviations. We use the Greek
indicesα, β, andγ to denote TeO, Ipc, and Imc, respectively. Furthermore, neurons arenumbered
such that indices1 throughN refer to the TeO,N + 1 through2N refer to the Ipc, and the index
2N + 1 refers to the Imc.

loop may strongly suppress the others [...]. For example, Imc could enhancethe visual responses of

tectal cells to target locations or stimulus features, while Ipc may suppress those to other locations

or features in the visual field.” The aim of this work is to investigate possible mechanisms for WTA

selection in the isthmotectal feedback loop through a computational model. In thiscontext, we do

not refer to the term WTA in its most strict sense, which would imply that only the neuron with

the strongest input exhibits a nonzero firing rate; rather, we speak of WTA behavior when the firing

rates of neurons with weaker inputs are suppressed relative to those withstronger input.

In Sect. 6.2, we introduce our model of the isthmic system, and we analyze its response dynam-

ics for different temporal delays and different combinations of excitationand inhibition in Sect. 6.3.

In Sect. 6.4, we compare the efficiency of WTA selection for these combinations. In Sect. 6.5, we

employ a linear stability analysis to show how the oscillatory dynamics that arise in the system can

be attributed to the increasing delays. In Sect. 6.6, we summarize our results.

6.2 Model

To explore the conjecture that the isthmotectal feedback loop functions as aWTA network, we

consider a model system of coupled Hopfield neurons with temporal delays[27, 28], as described in

Ref. [29]. In this model, the temporal evolution of the membrane potential of theith neuron (taken

from rest potential),Vi(t), is given by the first-order delay differential equation (DDE)

τ
(m)
i

dVi(t)

dt
= −Vi(t) +

∑

j

wijrj(t − τij) + Ii(t) . (6.1)
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...

...

TeO TeO TeO

Ipc Ipc Ipc

Imc

wγα

wβα

wαβ

wβγ

wαγ

I1 I2 IN

Figure 6.2: Diagrammatic representation of our model for the isthmotectal feedback loop. Neurons
in the TeO and Ipc, which project topographically, are modeled as individual units. Due to their
diffuse projections, Imc neurons are combined to form a feedback kernel.

Here, the membrane time constant for theith neuron is denoted byτ (m)
i , the synaptic connection

weights for the projection from thejth to theith neuron arewij , the temporal delay for this projec-

tion isτij , rj is the firing rate for thejth neuron and is linked to its voltage according to a nonlinear

firing rate function,

rj = Sj(Vj) , (6.2)

and Ii(t) denotes an external input to theith neuron. To model the isthmic system, we assume

that N tectal neurons are reciprocally coupled toN Ipc neurons and that the only neurons that

receive external input are those in the TeO. Furthermore, due to the broad and heterotopic nature of

the projections from Imc, we combine the Imc neurons to a feedback kernel,which then projects

globally to both TeO and Ipc. The topological structure of our model is depicted in Fig. 6.2. To

simplify our model, we make the following assumptions: The synaptic weights for the projections

TeO→Ipc, TeO→Imc, Ipc→TeO, Imc→TeO, Imc→Ipc, are the same for all neurons in each of

these groups, and we denote them bywβα, wγα, wαβ , wαγ , wβγ , respectively; all membrane time

constants are identical,τ (m)
i = τ (m) for all i, and we rescale time such thatτ (m) = 1; all delays

are identical,τij = τ ; all firing rate functions are identicalSj(Vj) = S(Vj). Furthermore, we

number our neurons such that the indicesi = 1, 2, . . . , N refer to tectal neurons, the indices

i = N +1, N +2, . . . , 2N refer to Ipc neurons, and the indexi = 2N +1 refers to the Imc kernel
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(cf. Tab. 6.1). Then, the dynamics of our system are described by the2N + 1 DDEs:

dVi(t)

dt
= −Vi(t) + wαβri+N (t − τ) + wαγr2N+1(t − τ) + Ii(t) , i = 1, 2, · · · , N ,

dVi(t)

dt
= −Vi(t) + wβαri−N (t − τ) + wβγr2N+1(t − τ) , i = N + 1, N + 2, . . . , 2N,

dV2N+1(t)

dt
= −V2N+1(t) + wγα

N
∑

i=1

ri(t − τ) . (6.3)

For the firing rate function we choose the piecewise linear function,

rj = S(Vj) =































0 for Vj < VT ,

a(Vj − VT ) for VT ≤ Vj ≤ VT + Smax/a,

Smax for Smax/a + VT < Vj .

(6.4)

Finally, we make the simplifying assumptions|wβα| = N |wγα| = |wαβ | = |wαγ | = |wβγ | = 1/a

andVT = 0. The signs of the synaptic weights determine whether a projection is excitatoryor

inhibitory and since the tectal cells mediate excitation, we havewβα, wγα > 0. The authors of both

Ref. [14] and Ref. [26] both discuss scenarios in which WTA behaviorarises from an interplay of

excitation and inhibition in the isthmotectal feedback loop, and we are therefore interested in the

cases where Ipc and Imc have adversary effects onto the TeO. Thus,four cases remain to be studied,

which can be characterized according to the signs of(wαβ , wαγ , wβγ) as (+,−,−), (+,−, +),

(−, +, +), and(−, +,−). In our model, the first two of these cases correspond to global inhibition

and local excitation of tectal cells through feedback, whereas the latter twocorrespond to global

excitation and local inhibition of the cells in the TeO.

6.3 Response dynamics

In the following, we investigate the dynamical response behavior of a network consisting ofN =

200 (initially quiescent) neurons to a static stimulus. We choose an input consisting of five superim-

posed Gaussians with peaks ati = 20, 60, 100, 140, and180, and peak values of0.75, 0.5, 0.45,

0.4, and0.35, respectively. The (normalized) stimulus is shown, e.g., in Fig. 6.3(a). In particular,

we are interested in the firing rates of those neurons whose positions coincide with the peaks in the
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Figure 6.3: WTA behavior and network dynamics for the case(+,−,−), i.e., global inhibition and
local excitation. (a) and (b) are for the undelayed case,τ = 0, while in (c) and (d) the delay is
τ = 2. The dots in the snapshots in(a) and(c) show the normalized response of tectal cells, i.e., the
quantity r̃i = ri(t)/rmax(t), wherermax(t) denotes the maximum of all tectal firing rates at time
t, while the solid line shows the normalized input, i.e., the quantityIi/Imax. In both (b) and(d),
the first plot shows the firing rate dynamics of the neuronsa throughe in the TeO, the second plot
depicts the temporal evolution of the response contrast of tectal neuronsb throughe when compared
with neurona, the third plot shows the activity of the Ipc neurons receiving input fromthe tectal
neuronsa throughe, and the fourth plot shows the firing rate of the Imc.

stimulus, and in order to abbreviate our notation we denote their indices asa, b, c, d, ande according

to descending strength of their respective inputs.

6.3.1 Global inhibition, local excitation

We first consider the cases(+,−,−) and(+,−, +). In this situation, our network is similar to the

circuit considered in Ref. [6]. Therefore, we expect that it can perform a reasonably accurate WTA

selection. Figure 6.3 shows the firing rate dynamics in response to the static input. The undelayed

case is shown in Figs. 6.3(a) and (b), whereas Figs. 6.3(c) and (d) show the dynamics that result
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whenτ = 2. To compare differences between firing rates of tectal neurons we consider the contrast

measure

cij =
|ri − rj |
ri + rj

. (6.5)

In particular, we are interested in the contrastscab, cac, cad, andcae, whose temporal dynamics are

depicted in the second plots of Figs. 6.3(b) and (d). From Fig. 6.3 we see that in the case(+,−,−)

the weakest inputs are suppressed efficiently, while the neurons receiving the strongest input are

driven towards maximum firing. Inputs of intermediate strength (e.g., the one received by neuronb)

are not suppressed. Thus, in the configuration(+,−,−) the system can perform a WTA selection,

but not with very good ‘resolution’. Furthermore, by comparing Figs. 6.3(a) and (b) with Figs. 6.3(c)

and (d), we see that the temporal delay in the system has only little effect on itsefficiency as a WTA

selector. The main effect of the delay is that it causes the system to evolve on a longer time scale,

i.e., the steady state is not reached as fast as in the undelayed case.

For the case(+,−, +) it turns out that the inhibition in the system is insufficient to compensate

for the positive feedback in the recurrent coupling between TeO and Ipc, and even neurons that

receive only weak inputs are driven towards maximum firing. Thus, in the configuration(+,−, +)

our model system does not function as a WTA network.

6.3.2 Global excitation, local inhibition

Now we consider the cases(−, +, +) and(−, +,−), which correspond to global excitation of the

TeO through the Imc and local inhibition from the Ipc. They thus correspond to the scenario de-

scribed in Ref. [26] and it does not seem immediately intuitive how WTA behavior could result

in this configuration. Indeed, for the case(−, +, +), when there are no delays no WTA selection

occurs. The response dynamics for this case are shown in Figs. 6.4(a)and (b). The contrast in the

firing rate response of neurons receiving inputs of different strengths is nearly identical to the con-

trast of the respective inputs during all phases of the system’s temporal evolution. Thus, neither are

weaker inputs suppressed nor are stronger inputs augmented. When weintroduce delay into the sys-

tem, however, its behavior changes drastically. Figs. 6.4(c) and (d) show the response dynamics for

the caseτ = 2. Note that the neurons’ firing rates, as well as the contrasts between responses now
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Figure 6.4: WTA behavior and network dynamics for the case(−, +, +), i.e., global excitation and
local inhibition. Same as Fig. 6.3, but for inverted signs ofwαβ , wαγ , andwβγ .

exhibit oscillatory behavior. The system can perform a WTA selection with reasonable accuracy,

but only transiently, i.e., only during certain phases of its temporal evolution.As a matter of fact,

a phase of best WTA selectivity is preceded and followed by phases where the response contrast is

even lower than that of the input.

Since standard models of selective attention usually require that the most salient stimulus not

be a permanent ‘winner’, but rather that it be suppressed once attention has been directed to it, the

dynamical evolution of the response is an important characteristic. Consequently, it may actually

be a desirable feature of a WTA network to only determine the ‘winner’ transiently.

The case(−, +,−) leads to similar results as in the case(+,−, +). When Ipc neurons are

inhibited by the Imc, they cannot provide sufficient negative feedback tothe TeO in order to prevent

tectal neurons from being saturated through the positive feedback between TeO and Imc. Thus, in

the configuration(−, +,−) our model system does not function as a WTA network.
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Figure 6.5: Performance of the model system as a WTA network. The maximalresponse contrast
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6.4 Comparison of WTA selectivity

In order to quantify the performance of our model system as a WTA network, we consider the

maximum in the response contrast between neuronsi andj, normalized to the contrast between the

(constant) inputI to neuronsi andj during the first30 membrane time constants of the system’s

temporal evolution:

Cij =
Ii + Ij

|Ii − Ij |
max

0≤t≤30
cij . (6.6)

This quantity is shown for the pairs(a, b), (a, c), (a, d), and(a, e) for the cases(+,−,−) and

(−, +, +) and for different values of the time delay in Fig. 6.5. As we expect from theresults

presented in Sec. 6.3, in the case of global inhibition and local excitation,(+,−,−), the system’s

performance as a WTA network, measured by the value ofCij depends only little on the time

delay. Furthermore, we see that the system is efficient in suppressing weak inputs, whereas the

response contrast for inputs of intermediate strength is less enhanced. The performance for the

case(−, +, +), on the other hand, depends strongly on the temporal delay. Furthermore, the ratio

between the maximal response contrast and the input contrast is comparable for weak and inter-

mediate inputs. When the delay is sufficiently large, the model system thus exhibits a better WTA

‘resolution’ in the case of global excitation and local inhibition than for the inverse scenario, albeit

only transiently.
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We have also investigated the role of parametric disorder in the system and find that it does not

change our results qualitatively. For instance, when the projection latencies are drawn randomly

from a normal distribution with mean atτ = 2 and standard deviation of0.2 and the synaptic

weights are disordered using normal distributions with means at the default values and standard de-

viations of10% of these values, the maximum contrast as measured byCij is comparable to the case

without disorder. Simulating ten different samplings of randomized delays and synaptic weights for

the case(−, +, +), we obtain the result(Cab, Cac, Cad, Cae) = (2.28± 0.25, 2.50± 0.30, 2.06±

0.13, 2.34 ± 0.12) (results are mean± standard error of the mean), which is to be compared with

the values for the undisordered case(Cab, Cac, Cad, Cae) = (1.83, 1.89, 2.00, 2.06).

6.5 Linear Stability Analysis

We now aim to understand the origin of the delay-induced oscillatory dynamicsin the case of global

excitation and local inhibition through a stability analysis of the model system. To this end, we make

the following ansatz, which, a posteriori, turns out to be correct. We assume that for the chosen

input the system of DDEs (6.3) possesses a stationary pointVi(t) = V̄i with 0 ≤ V̄i ≤ Smax/a for

1 ≤ i ≤ 2N + 1, and we can thus replace the voltages in the system (6.3) according to the linear

part of the firing rate functionS. The stationary point is then obtained by solving the equation

V̄ = aW V̄ + I . (6.7)

Here,V̄ andI are2N + 1 column vectors (only the firstN entries ofI are nonvanishing) and W is

a (2N + 1) × (2N + 1) matrix of the form

W =













0N×N wαβ11N×N wαγ11N×1

wβα11N×N 0N×N wβγ11N×1

wγα111×N 01×N 0













. (6.8)

We find that for the case(−, +, +), the matrix11 − aW is invertible and that the solution for the

stationary pointV̄ = (11 − aW )−1
I does indeed permit us to linearize the system (6.3). In the

case (+,-,-), however, it turns out that this solution yields values that lie outside of the linear regime
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of the firing rate function, and the linearization (6.7) is therefore not valid.Next, we analyze the

stability of the stationary point for the case(−, +, +) by making the ansatzV(t) = V̄ + ceλt,

which leads to the equation
[

ae−λτW − (1 + λ)11
]

c = 0. In order to determine the conditions

for a nontrivial solution to this equation to exist, we must solve the characteristic equation for the

matrixM = ae−λτW − 11, i.e., we have to solve

det(M − λ11) =

∣

∣

∣

∣

∣

∣

∣

M̃ v

u −(1 + λ)

∣

∣

∣

∣

∣

∣

∣

= 0 , (6.9)

where we have introduced the abbreviations

M̃ =







−(1 + λ)11N×N awαβe−λτ 11N×N

awβαe−λτ 11N×N −(1 + λ)11N×N






, (6.10)

u =
(

awγαe−λτ 111×N ,01×N

)

, v =







awαγe−λτ 11N×1

awβγe−λτ 11N×1






. (6.11)

Solving (6.9) is facilitated by applying the identity [30]

det(M) = −det(M̃)
[

1 + λ − uM̃−1
v

]

. (6.12)

The inverse ofM̃ is given by

M̃−1 = − 1

(1 + λ)2 − a2wαβwβαe−2λτ







(1 + λ)11N×N awαβe−λτ 11N×N

awβαe−λτ 11N×N (1 + λ)11N×N






, (6.13)

and we thus obtain

det(M − λ11) = Na2wγαe−2λτ
[

awαβwβγe−λτ + wαγ(1 + λ)
]

(6.14)

×
[

(1 + λ)2 − a2wαβwβαe−2λτ
]N−1

− (1 + λ)
[

(1 + λ)2 − a2wαβwβαe−2λτ
]N

.
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Figure 6.6: Eigenvalues ofM as a function of the delayτ . Real parts of eigenvalues are shown by
solid lines, imaginary parts by dashed lines. The upper panel shows realand imaginary part ofλ3,
and the lower panel shows real and imaginary ofλ1− andλ2−.

For the case(−, +, +) the characteristic equation simplifies to

[

1 + e3λτ (1 + λ)3
] [

e−2λτ + (1 + λ)2
]N

= 0 . (6.15)

Its solutions, the eigenvalues ofM , are given by

λ1± = −1 +
1

τ
W (±iτeτ ), λ2± = −1 +

1

τ
W

[(

1

2
± i

√
3

2

)

τeτ

]

, λ3 = −1 +
1

τ
W (−eττ).

(6.16)

Here,W (z) is the inverse function toW−1(z) = zez, which is usually called the LambertW -

Function. Figure 6.6 shows the real and imaginary parts of the eigenvaluesof M as a function of

the delayτ . For all values ofτ there is no eigenvalue with a positive real part and the fixed point

V̄ is thus stable for arbitrary delays. However, the real parts of the eigenvalues tend to zero faster

than their respective imaginary parts as the delay is increased. Therefore, with increasing delay,

the relaxation time for the system’s return to the stationary point grows more rapidly than the time

scale for oscillations. Thus, with increasing delay, the system will spiral toward the fixed point,

explaining the observed oscillatory behavior.
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6.6 Summary and discussion

We have investigated the circumstances under which the isthmic system can function as a WTA

network. We have constructed a rate-model of the isthmotectal feedback loop and have analyzed

the temporal evolution of the model system in response to a static stimulus. We have shown that

time delays can be crucial to the dynamical behavior of the system. In particular, delay-induced

oscillations can lead to transient WTA selection in our model. Finally, we have performed a linear

stability analysis explaining the origin of the oscillatory behavior.

It has been conjectured for a long time that the isthmotectal feedback loop constitutes a WTA

network. Our results show that the isthmic circuitry is indeed set up to perform such a selection

rule. In the case where global inhibition and local excitation are present inthe system, this result

is quite intuitive. However, a network with global excitation and local inhibition might not appear

to be well-suited as WTA selector. Yet, precisely such a scenario was discussed in the literature.

Temporal delays can be crucial for the behavior of a dynamical system, and, as we have shown in our

investigation, they are particularly important for the case of global excitationand local inhibition,

as they induce transient WTA behavior in the network. Transmission and synaptic delays for the

projections between Ipc and TeO are estimated to be around 15ms [31], whereas membrane time

constants in the Ipc may be as short as a few milliseconds [32], which is within the range of typical

neuronal membrane time constants [33]. When the synaptic and transmission delays are of the same

order of magnitude as the membrane time constants involved, the degree to whichour model for

the isthmic system functions as a WTA network, can depend crucially on the delays (cf. Fig. 6.5).

Therefore, temporal delays should not be neglected when the neuronal dynamics of the isthmotectal

feedback loop are assessed and its potential for WTA selection is discussed.
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Chapter 7

The isthmotectal feedback loop as a

winner-take-all and novelty detection

circuit

Recent experiments conducted in the avian isthmotectal feedback loop demonstrate that

this neural circuit can gate the ascending flow of visual information. Furthermore, it

was shown that the system exhibits sensitivity to novel stimuli. In standard models of

selective visual attention, the most salient stimulus in a visual scene is chosenthrough

a ‘winner-take-all’ selection mechanism, and attention can then be directed towards

it. Taking into account known anatomical and electrophysiological properties of the

isthmotectal circuitry, we examine under which circumstances the system can function

as a ‘winner-take all’ and novelty detection circuit. We optimize the parameters in

our network model through application of a genetic algorithm and consider possible

parameter combinations in the biological system.

7.1 Introduction

In their environment, animals are constantly confronted with a myriad of visualstimuli. Among the

available stimuli, the animal must thus select certain ones for attention. This selection should be

such that the selected stimulus or location is more likely to be important or relevantto the animal [1].
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This ability to select and orient towards the most salient part in a visual environment has evolution-

ary significance, as it permits the organism to choose a possible prey and todetect quickly predators

or mates [2]. Attentional selection can be goal-directed (top-down), suchas during reading when

the gaze is directed to the text locations, or mediated through autonomous mechanisms (bottom up)

along the visual pathway. In models of bottom-up visual attention, the stimulus is encoded in a

‘saliency map’ that topographically represents the conspicuity of the stimuli over the visual scene.

The most salient location is then chosen by a ‘winner-take-all’ (WTA) network, i.e., by a neurally

implemented maximum detector [3].

The optic tectum (TeO, mammalian homolog: superior colliculus, SC) is the primary visual cen-

ter in the midbrain of non-mammalian vertebrates. It has long been known to be critically involved

in localizing visual objects and in the preparation of orienting responses towards these objects [4–7].

Less well-known is the fact that the TeO/SC is reciprocally connected to andstrongly affected by a

smaller midbrain nucleus called the nucleus isthmi (NI) in nonmammalian and parabigeminal nu-

cleus in mammalian vertebrates [8]. In the avian visual pathway, the NI consists of three subnuclei:

the nucleus pars parvocellularis (Ipc), the nucleus pars magnocellularis(Imc), and the nucleus pars

semilunaris [9, 10]. In both Ipc and Imc the projection from the tectum is topographically orga-

nized such that the retinotopic map is preserved in both nuclei, with the projection to the Imc being

somewhat coarser than for the Ipc. In contrast, the isthmic projections back to the TeO are very

different for Ipc and Imc. Ipc neurons project back to the TeO in a precise homotopic manner, i.e.,

the axons of each Ipc neuron terminate in that part of the optic tectum from which their visual inputs

come. Imc, on the other hand, has two populations of neurons, which make heterotopic projections

but only to the TeO or Ipc, respectively. Anatomical studies furthermore indicate that a given cell

in the Imc does not project back to the locus in the TeO, or to the corresponding locus in the Ipc,

from which it receives input, whereas it does project to all other locations [9, 10]. In this sense,

the feedback from the Imc can be termed ‘antitopographic.’ The anatomy ofthe isthmotectal feed-

back loop is shown in Fig. 7.1. Ipc neurons are cholinergic, whereas Imcneurons have been shown

to express gamma-aminobutyric acid (GABA) as their main neurotransmitter. Thus, according to

the usual role of acetylcholine and GABA, one would assume that Ipc and Imc neurons mediate

excitation and inhibition onto their target cells, respectively. Taking into account the connectivity

between TeO, Ipc, and Imc, it then seems immediately plausible that “the three-nuclei circuitry [...]
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Figure 7.1: (Color) Diagram of the isthmotectal feedback loop and modulationof the ascending
flow of visual activity. The schematic illustrates the synaptic connectivity between NI and TeO.
Neurons in Ipc receive a topographically organized visual input fromtectal ‘shepherd’s crook’ neu-
rons and project back to the homotopic location via cholinergic paintbrush axon terminals. Imc
neurons receive a coarser projection from tectal neurons and sendwidely ramifying, GABAergic
terminal fields on most of the Ipc and the TeO. The densest paintbrush ramifications colocalize with
the retinal terminals and the dendritic bottlebrushes of type I tectal ganglion cells (TGC), whose
axons project to the nucleus rotundus. The recording traces show thatthe synchronized, visually
evoked bursting responses recorded at homotopic locations in Ipc and TeO are also synchronized to
extracellular activity recorded in the dorsal anterior division of the nucleus rotundus. OB, Oscilla-
tory bursting potential. Reprinted with permission from Ref. [8].

may constitute a winner-take-all network [3] in which local visual inputs to theIpc are augmented

by the re-entrant loop among tectal and Ipc neurons, combined with broadinhibition of the rest of

the Ipc by Imc neurons [11].”

Recent experiments in birds have revealed that the Ipc crucially modulates the ascending flow

of visual information from the TeO to the diencephalon by providing a gating mechanism for visual

stimuli [12]. In their investigation, the authors of Ref. [12] show that localinactivation of the Ipc

prevents visual responses in the nucleus rotundus, which constitutes thenext level in the avian

visual pathway, to objects moving in the corresponding region of visual space. Therefore, in order

for a visual stimulus to be further processed by the visual system, the corresponding location in the

Ipc must be active. Conversely, if the corresponding location in the Ipc isinactive, the stimulus is

discarded for further processing. Furthermore, the results presented in Ref. [12] demonstrate that the
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Ipc exhibits sensitivity to novel stimuli. Recording visually evoked activity in theIpc, the authors

of Ref. [12] find that when a second visual stimulus is presented, the response to a first stimulus

is suppressed. They then to demonstrate that this suppression is mediated bythe GABAergic Imc.

These findings provide further support to the concept of the isthmotectalfeedback loop as a WTA

selection circuit.

The anatomy of the isthmotectal feedback loop is known in great detail and themain neuro-

transmitters involved in the circuit have been identified [9, 10, 18–21]. Furthermore, certain single

cell properties, such as membrane time constants or resting potentials were determined in electro-

physiological experiments [22, 23], and the distributions of the transmissiondelays between the

components of the feedback loop have been measured [13]. On the otherhand, quantities that deter-

mine the network behavior of the system such as the strength of synaptic interactions are unknown.

In this work, based on the experimental findings described above, we study the circumstances under

which the isthmotectal feedback loop can function as a WTA and novelty detection (ND) circuit. In

Sect. 7.2 we describe our model for the isthmotectal feedback loop and discuss which parameters

we keep fixed and which are variable in our study. In Sect. 7.3 we reportwhat kind of simulations

we performed with the network model and how we evaluated its ability to function as a WTA and

ND circuit. We show how we optimized the system parameters for these tasks through a genetic

algorithm (GA) in Sect. 7.4. Section 7.5 contains a discussion of what parameters appear to be

crucial for the system’s performance and how the different parameter values might relate to each

other in the biological system. A summary concludes the paper in Sect. 7.6.

7.2 Model and Parameters

We consider a network model of integrate-and-fire neurons as described, e.g., in Ref. [24]. The

model neuron behaves like an electric circuit consisting of a resistor and acapacitor in parallel.

Furthermore, it is stipulated that an action potential occurs whenever the membrane potential of

the model neuron reaches a threshold valueVth. Subsequently, the membrane potential is reset to a

valueVr below the threshold potential,Vr < Vth. The temporal evolution of the membrane potential
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of theith neuron,Vi(t), is then determined by the differential equation

τm,i
dVi(t)

dt
= EL,i − Vi(t) +

Ii(t)

gm,iAi
(7.1)

and the update rule

Vi(t0,i+) = Vr,i if Vi(t0,i−) = Vth,i . (7.2)

Here,τm,i is the membrane time constant,gm,i the specific membrane conductance,EL,i the resting

potential,Ai the membrane surface area, andIi(t) an input current; furthermoret0,i denotes a firing

time of theith neuron, i.e., the neuron reaches firing threshold att0,i and emits an action potential.

In order to number the firing times of theith neuron, we introduce an additional indexk, such that

t
(k)
0,i is the time at which theith neuron emits itskth spike. The input currentIi(t) consists of an

external input, synaptic currents due to the coupling to other neurons in thenetwork, a spike-rate

adaptation current, and a stochastically varying current representing noise or background activity:

Ii(t) = Ie,i(t) + Isyn,i(t) + Isra,i(t) + ηi(t) . (7.3)

In the following, we briefly describe the four contributions to the input current in our model. The

external input currentIe,i(t) represents a stimulus and we assume that more salient stimuli give rise

to stronger currents. The saliency of an object does not necessarily correspond to single stimulus

features in a straightforward way. For instance, it has been reported that when confronted with two

possible preys, frogs choose the one located more rostrally, even whena more caudally located but

otherwise equal prey is at a much shorter distances [25]. The total synaptic current flowing into the

ith neuronIsyn,i(t), is obtained by summing over all currents resulting from projections onto theith

neuron:Isyn,i(t) =
∑

j Iij(t). HereIij(t) is the current due to a projection from thejth to theith

neuron in the network. It is given by

Iij(t) = −ḡijAiPj(t − τij)[Vi(t) − Es,j ] , (7.4)
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whereḡij is a specific conductance and represents the synaptic weight for the projection from thejth

to theith neuron. Furthermore,Es,j is the reversal potential for the corresponding synaptic current

andτij the transmission delay for the projection. The quantityPj(t) denotes a gating variable which

describes the degree to which the synaptic conductance from thejth to theith neuron is active. It is

given by the equation

Pj(t) = B
∑

k

{

exp[−(t − t
(k)
0,j )/τ1] − exp[−(t − t

(k)
0,j )/τ2]

}

, (7.5)

where the sum is over all spikes emitted by thejth neuron prior to timet. The constantB is a

normalization constant that assures that the peak value ofP during a single synaptic event is equal

to one. It is given by

B =

[

(

τ2

τ1

)τrise/τ1

−
(

τ2

τ1

)τrise/τ2
]−1

. (7.6)

The rise time of the synapse is determined byτrise = τ1τ2/(τ1 − τ2), while the fall time is set

by τ1. The spike-rate adaptation currentIsra is added to the model to include the possibility that

interspike intervals lengthen over time when a constant current is injected intothe cell. The spike-

rate adaptation current is given by

Isra,i(t) = gsra,i(t)Ai [Vi(t) − Esra,i] . (7.7)

Here,Esra,i denotes the reversal potential for the spike-rate adaptation current oftheith neuron, and

the specific conductancegsra,i(t) is modeled according to

dgsra,i(t)

dt
= −gsra,i(t)

τsra,i
(7.8)

and

gsra,i(t0,i+) = gsra,i(t0,i−) + ∆gsra,i . (7.9)

The stochastic currentsηi(t), finally, are modeled by Gaussian white noise, i.e.,
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...

...

...

Ipc

TeO TeO TeO

Ipc Ipc

ImcImc Imc

Figure 7.2: (Color) Diagrammatic representation of the synaptic connectionsin the isthmotectal
feedback loop model. Projections that, depending on the model parameters,may be relatively weak
are shown by broken lines. The black arrows indicate external input. Inthe Imc, the feedback
projections to the TeO and Ipc are only shown for one neuron.

〈ηi(t1)ηj(t2)〉 = 2σ2
i A

2
i δ(t1 − t2)δij . (7.10)

In our model, we allow for three different types of neurons: tectal neurons, Ipc neurons, and Imc

neurons. The total number of neurons isN = NTeO + NIpc + NImc. We number the neurons such

that indicesi with 1 ≤ i ≤ NTeO, NTeO + 1 ≤ i ≤ NTeO + NIpc, andNTeO + NIpc + 1 ≤ i ≤

NTeO + NIpc + NImc label tectal, Ipc, and Imc neurons, respectively. The model parametersmay

differ between the three groups of neurons. However, within each group we take the parameters to

be homogeneous. Furthermore, we assume an equal number of neuronsin each of the three groups.

For the synaptic weights̄gij , we make the following assumptions that are motivated by biological

and electrophysiological studies [22, 23]. We assume that a tectal neuron projects to one neuron

in the Ipc and one neuron in the Imc each. The feedback projections fromthe Ipc and the Imc

are chosen such that a projection from a neuron in the Ipc targets the tectal neuron from which

it receives its input, but also neighboring neurons with exponentially decreasing strength. For the

projection from Imc, we allow for the possibility that the tectal neuron which projects to the Imc

neuron receives weaker feedback than more distant tectal neurons.The topological organization of

our model network is depicted in Fig. 7.2, and the synaptic weights for the projections are given
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ḡij 1 ≤ j ≤ N1 N1 + 1 ≤ j ≤ N2 N2 + 1 ≤ j ≤ N

1 ≤ i ≤ N1 0 ḡIpc→TeO ḡImc→TeO

×e−(i−j+N1)2/w2
Ipc→TeO ×

h

1 − wImc→TeO e−(i−j+N2)2/w2
Imc

i

N1 + 1 ≤ i ≤ N2 ḡTeO→Ipc δi−N1,j 0 ḡImc→Ipc

×

h

1 − wImc→Ipc e−(i−j+N1)2/w2
Imc

i

N2 + 1 ≤ i ≤ N ḡTeO→Imc δi−N2,j 0 0

Table 7.1: Model connectivity and synaptic weights. The connections from tectal neurons to Ipc and
Imc neurons are assumed to be exactly topographic. The projection from the Ipc to the TeO is also
topographic but somewhat broader depending on the parameterwIpc→TeO. The projections from
Imc to Ipc and TeO are homogeneous or ‘antitopographic’ depending on the parameterswImc→TeO

andwImc→Ipc, respectively. For simplicity, the abbreviationsN1 = NTeO andN2 = NTeO + NIpc

were introduced.

in Tab. 7.1.

For our investigation of the system’s performance as a WTA and novelty detector, we specify

those neuron parameters that have been estimated in single-cell electrophysiological experiments.

For other parameters, we either choose standard values from the literature or keep them variable

and study their influence on the system dynamics. For those parameters we assign a minimum and

maximum value, where we usually set the minimum to zero and determine the maximum according

to physiological constraints.

We are especially interested in studying the synaptic connectivity of the feedback loop and

therefore keep the synaptic weights for the five different projections variable. Also, the three space

constantswIpc→TeO, wImc→TeO, andwImc→Ipc, which determine to which degree the feedback from

Ipc is exactly topographic and the feedback from Imc is homogeneous or ‘antitopographic’, will be

variable parameters in our study. The spatial separation between the threeelements of the feedback

loop suggests that temporal delays may influence the circuits performance.Temporal delays can be

crucial for the dynamics of neural systems [14–16] and have been shown to potentially influence

the ability of the isthmotectal feedback loop to function as a WTA detector [17].Therefore, they

will also be variable parameters. Since experiments indicate that the isthmotectalsystem responds

to novel stimuli, adaptation could be an important feature of the neurons in the feedback loop and

we model different degrees of adaptive firing by varying the parameter∆gsra within each of the

three groups of neurons. Finally, electrophysiological experiments indicate that the nucleus isthmi
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parameter value/range

τm,TeO, τm,Ipc, τm,Imc
∗ 100 ms, 25 ms, 35 ms

EL,X
∗ -60 mV

Vth,X
∗ -40 mV

Vr,X
∗ -65 mV

gm,X
∗∗ 1 µS/mm2

Es,TeO, Es,Ipc, Es,Imc, 0 mV, 0 mV, -70 mV
τ1,X, τ2,X

∗∗ 5 ms, 0.3 ms
Esra,X

∗∗ -70 mV
τsra,X

∗∗ 100 ms
wImc NImc/6

∆gsra,X 0 µS/mm2 · · · 0.5µS/mm2

τIpc,Imc→TeO, τTeO,Imc→Ipc, τTeO→Imc 0.5 ms· · · 12.5 ms
σX 0 nA/mm2 · · · 671 nA/mm2

ḡIpc,Imc→TeO, ḡTeO,Imc→Ipc, ḡTeO→Imc 0 µS/mm2 · · · 4 µS/mm2

wIpc→TeO 0 · · · NIpc/4

wImc→TeO,Ipc 0 · · · 1

Table 7.2: Constant and variable model parameters. The upper part of the table shows parame-
ters and their respective values that we kept fixed in the model. The lower part shows the variable
parameters and their allotted ranges. Parameters marked by∗ were determined according to exper-
imental data [22, 23], whereas the values of parameters marked by∗∗ were specified according to
standard values given in the literature [26]. The synaptic reversal potentials for projections from
tectal as well as Ipc neurons were chosen as 0 mV assuming that these neurons mediate excitation.
The GABAergic Imc was assumed to mediate inhibition and the corresponding reversal potential
was set to -70 mV. The space constantwImc was given a value comparable to the one found for
the space constantwIpc→TeO in the GA optimization (cf. Sect 7.4). The ranges for the variable
parameters were set such that the minimal parameter value corresponds to acertain limiting case
(e.g., ḡImc→TeO = 0 signifies that there are no projections from Imc to Ipc), while maxima were
determined by inspection of the resulting network behavior and physiological constraints.

exhibits considerable spontaneous activity [23]. To explore whether thisnoisy or background ac-

tivity plays an important role, we take the standard deviation of the noisy currents in (7.10) to be

variable, which gives us three more variable parameters. For all other parameters we either take

experimentally determined values or use standard numbers from the literature[26]. In total we

have thus19 free parameters of the system. Table 7.2 shows the values and ranges of the fixed and

variable parameters, respectively. For each variable parameter, we allow ten possible values which

are indicated by a parameter index ranging from zero to nine, where indexvalues of zero and nine

correspond to the minimal and maximal parameter values respectively.
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7.3 Network Simulations and Performance Measures

The model has 19 free parameters with 10 allotted values each. Drawing parameter combinations

randomly from these1019 possibilities, we simulated the dynamics that resulted for a network con-

sisting ofN = 60 neurons, withNTeO = NIpc = NImc = 20. We then evaluated whether a given

network could perform WTA selection and ND. To this end, we examined the network’s response

to a stimulus represented as an external input current to the tectal cells. The stimulus consisted of

two superimposed Gaussianss1(i) ands2(i) and was given asIe,i(t) = s1(i)f1(t) + s2(i)f2(t).

The two Gaussianss1(i) ands2(i) describe the spatial structure of the stimulus, whilef1(t) and

f2(t) give the respective temporal structures of the two components. For the spatial structure of the

stimulus, we had

s1/2(i) =















I0e
−2(i−p1/2)2/NTeO for i ≤ NTeO,

0 for i > NTeO,

(7.11)

where the peaks of these Gaussian were set atp1 = 6 andp2 = 13. We then specified the temporal

components of the stimulus to test for both WTA and ND behavior. In particular, the two stimuli

were first presented simultaneously but with different amplitudes (WTA test). Afterwards, the two

stimuli were presented sequentially but with equal amplitudes. The temporal components of the

stimuli are shown at the top of Fig. 7.3. We assigned a WTA and ND score to thenetworks based

on the number of spikes emitted by the neurons in the Ipc that correspondedto the location of the

peaks in the stimulus. Denoting asn1 andn2 the number of spikes emitted by the neurons with

indicesi = p1 + NTeO, p1 + NTeO ± 1 and i = p2 + NTeO, p2 + NTeO ± 1 during the initial

simultaneous presentation of the two Gaussian stimuli, we defined the WTA scoreasSWTA =

(n1 − n2)/(n1 + n2). Similarly, denotingm1 andm2 as the number of spikes emitted by the same

groups of neurons but during the phase in which which both Gaussian stimuli were present with

equal amplitudes, we defined the ND score asSND = (m2 − m1)/(m1 + m2). The total score of

the network was then determined by taking the smaller of the two scores. Additionally, restrictions

on the minimum and maximum firing rates realized in the networks were imposed, andnetworks

whose firing rates lay outside of this range were assigned a score of zero. For each network, five runs

were simulated and the final network scoreS was determined by averaging the results from the five

runs. Initially, we simulated 1000 randomly generated networks. Figure 7.3(a) shows the response
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Figure 7.3: Raster plot of network output before and after GA optimization.The firing times of the
sixty neurons in the network are indicated by tickmarks. The input consists of two superimposed
Gaussians and the time courses for the two components are shown at the top of the figures. The
position of the neurons in the TeO and the corresponding locations in the Ipcand Imc that coincide
with the peaks of the Gaussians are shown by dashed and dotted lines.(a) shows the output of the
best performing network among 1000 randomly generated networks.(b) shows the output of the
best performing network after optimization with the GA.

dynamics of the best performing network among these 1000 random networks; it achieved a WTA

score ofSWTA = 0.49 and a ND score ofSND = 0.85. To examine what combinations of parameter

values would lead to improved WTA and ND behavior we optimized the network performance by

employing a GA.

7.4 Parameter Optimization via Genetic Algorithm

In order to optimize the performance of our model networks we used a GA to search for parameter

combinations that would lead to improved WTA and ND behavior. This optimization method is

inspired by evolutionary biology and is based on the principles of selection,inheritance, crossover,

and mutation [27, 28]. We ran the algorithm for twenty generations of 50 networks each, where

an individual network was characterized by its parameter indices for the 19 variable parameters

in the model. The performance of the network in the WTA and ND tasks was thenevaluated as

described above. The scoreS was used as a fitness value in order to assign a percentile rankri

to each network in the generation (selection). Here, the value ofri indicates what percentage of

networks received a score lower than that of theith network. The parameter values of the networks
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were then updated according to their rank (inheritance and crossover). Finally, random changes in

the parameter indices were performed (mutation). In particular, we used thefollowing scheme in

order to update the parameter indices of theith network from generation to generation:

• If ri ≤ 0.5: All parameters of theith network were changed through crossover with either the

best-, second-best, or third-best performing network in the generation, i.e., among the three

best performing networks one was randomly chosen and then used for crossover with theith

network. Each of the parameters of theith network was updated by either taking the value of

the network chosen for the crossover or by taking the arithmetic mean between the parameter

value of the ‘partner’ network and theith network. Both possibilities had probability1/2.

After this crossover was completed, for every parameter of the updatedith network a random

change (mutation) occurred with probability1/10. If a mutation occurred, the parameter

index was assigned a randomly chosen value between0 and9.

• If 0.5 < ri ≤ 0.7: Each parameter index of theith network was changed with probability

1/3 through crossover with the best performing network. If a change occurred, the parameter

index value was changed with probability1/2 to the value of the best performing network,

and with probability1/2 to the mean of the values of the best performing network and theith

network. After this crossover, parameter indices were changed to a neighboring value with

probability1/10.

• If 0.7 < ri ≤ 0.8: Same as for0.5 < ri ≤ 0.7, except that the probability for a parameter

change through crossover with the best performing network was only2/15.

• If 0.8 < ri ≤ 0.9: Same as for0.5 < ri ≤ 0.7, except that the probability for a parameter

change through crossover with the best performing network was only1/15.

• If 0.9 < ri: Same as for0.5 < ri ≤ 0.7, except that the probability for a parameter change

through crossover with the best performing network was only1/30.

• Finally, the network with the best performance was transferred to the next generation un-

changed.

Figure 7.3(b) shows the response dynamics of the best performing network after 20 generations of

GA optimization. The network achieved a WTA score ofSWTA = 1 and a ND score ofSND = 0.96.
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Figure 7.4: Convergence of the GA. The scoreS of the best three networks is shown versus the
generation number. Open and filled dots depict results from two runs with different randomly
chosen starting generations.

The network thus performed the assigned task almost perfectly. Figure 7.4shows the score of the

three best performing networks as a function of the generation in the GA. The algorithm converges

quickly to very high performance scores. To test how sensitive the convergence of the GA would be

to the randomly chosen starting generation of networks, we performed a second run with a different

starting generation and obtained similar convergence behavior.

7.5 Network Parameters for WTA Selection and Novelty Detection

Applying the GA to optimize the performance of the feedback loop model in regard to WTA se-

lection and ND yielded networks that accomplished the assigned task almost perfectly. In order to

examine whether certain values of the variable parameters were preferred for these networks, we

plot color coded histograms of parameter index value distributions vs. the generation number in the

GA for each of the 19 variable parameters in Fig. 7.5. The histograms in Fig. 7.5 were obtained

from networks with percentile rankr > 0.5 and results from two runs with different randomly

generated starting generations are shown. Initially, all histograms are broad, which shows that the

random search for networks with good performance did not yield any preferred parameter values.

For most parameters, the distributions soon became narrower indicating thatthe GA converges to a

specific region within the parameter space. However, the convergence behavior to a specific param-

eter value exhibits considerable variability for the individual parameters in Fig. 7.5. For instance,
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Figure 7.5: (Color) Parameter distributions and GA optimization. The distributionof parameter
indices for the 19 variable parameters obtained from the 25 best performing networks in each gen-
eration is color coded and its evolution during 20 generations of the GA is shown. (a) and(b) are
two runs with different randomly chosen starting generations.

the histogram for the parameterḡTeO→Ipc becomes narrow very soon with the peak lying at iden-

tical parameter index values for both runs shown in Fig. 7.5. On the other hand, the histogram for

the space constantwImc→TeO remains relatively broad throughout the GA optimization procedure.

The two runs of the GA that we performed do not allow definite conclusions about what values of

the parameters give rise to WTA and ND behavior. However, certain trends for preferred parameter

values are apparent in Fig. 7.5. Assuming that a narrow histogram peaked at comparable parameter

values for both runs in Fig. 7.5 indicates a preferred value for this parameter, we make the following

conjectures on the cellular and connection properties of the isthmotectal feedback loop, supposing

that the system is to perform WTA selection and ND: The synaptic weights arestrongest for the

projection TeO→ Ipc, while the weakest projection is the one from Imc to Ipc. Other synaptic

weights are of intermediate strength. The shortest latency in the system is the one for the projection

Imc → Ipc, while the delay for the projection TeO to Ipc is considerably longer. The projections

Imc → TeO and TeO→ Imc are also fairly short. These results are consistent with measurements

of the delay distributions in the isthmotectal feedback loop as comparison with Tab. 7.3 shows. The

strength of the noise in the system seems not to be crucial, i.e., there is no preference for either

high or low noise levels. The feedback projection from the Ipc to the TeO has a certain interme-
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projection Ipc→ TeO Imc→ TeO TeO→ Ipc Imc→ Ipc TeO→ Imc

mean of measured
delay distribution 7 ms 4.5 ms 6.5 ms 4.3 ms 5.2 ms

Table 7.3: Measured delays in the isthmotectal feedback loop. The distributions of the delays for
the different projections between the elements of the isthmotectal feedback loop were measured
through extracellular combined with intracellular recordings [13]. The tableshows the means of the
measured delay distributions.

diate width; it is not broad but it may target cells within a certain range. The projection from the

Imc to both the TeO and the Ipc is not necessarily ‘antitopographic;’ however, it appears that less

pronounced feedback to the location from which Imc cells receive their input is beneficial. There is

some degree of spike rate adaptation in the system, with adaptation being weaker in Imc cells than

in tectal or Ipc cells.

7.6 Summary

We have investigated the circumstances under which the isthmic system can function as a ‘winner-

take-all’ and novelty detection network. We have simulated the dynamics of networks with ran-

domly generated parameters. The network parameters were then optimized in regard to ‘winner-

take-all’ selection and novelty detection by applying a genetic algorithm. We have shown that the

topology of the isthmotectal feedback loop allows the system to perform both tasks almost per-

fectly when the parameter values in the model are optimized. We have examined the evolution of

the parameter distribution histograms over the optimization process and have drawn conclusions on

probable parameter combinations in the biological feedback system.
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Chapter 8

Noise-dependent stability of the

synchronized state in a coupled system

of active rotators

We consider a Kuramoto model for the dynamics of an excitable system consisting of

two coupled active rotators. Depending on both the coupling strength and the noise, the

two rotators can be in a synchronized or desynchronized state. The synchronized state

of the system is most stable for intermediate noise intensity in the sense that the cou-

pling strength required to desynchronize the system is maximal at this noise level. We

evaluate the phase boundary between synchronized and desynchronized states through

numerical and analytical calculations.

8.1 Introduction

Networks of coupled nonlinear oscillators provide useful model systems for the study of a variety of

phenomena in physics and biology [1]. Among many others, examples from physics include solid-

state lasers [2] and coupled Josephson junctions [3, 4]. In biology, thecentral nervous system can be

described as a complex network of oscillators [5], and cultured networksof heart cells are examples

of biological structures with strong nearest-neighbor coupling [6]. In particular, the emergence of

synchrony in such networks [7, 8] has received increased attention inrecent years.
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Disorder and noise in physical systems usually tend to destroy spatial and temporal regularity.

However, in nonlinear systems, often the opposite effect is found and intrinsically noisy processes,

such as thermal fluctuations or mechanically randomized scattering, lead to surprisingly ordered

patterns [9]. For instance, arrays of coupled oscillators can be synchronized by randomizing the

phases of their driving forces [10, 11]. Synchronization in these systems is caused by the interac-

tions between the elements and results in the emergence of collective modes. Ithas been shown to be

a fundamental mechanism of self-organization and structure formation in systems of coupled oscil-

lators [12]. Biological systems of neurons are subject to different sources of noise, such as synaptic

noise [15] or channel noise [13]. In particular, sensory neurons are notoriously noisy. Therefore, the

question arises how stochastic influences affect the functioning of biological systems. Especially

interesting are scenarios in which noise enhances performance. In the case of stochastic resonance

[14], e.g., noise can improve the ability of a system to transfer information reliably, and the pres-

ence of this phenomenon in neural systems has been investigated [16, 17]. Furthermore, numerous

studies have addressed the effect of noise on the dynamics of limit cycle systems [12, 18–23].

Small neural circuits composed of two or three neurons form the basic feedback mechanisms

involved in the regulation of neural activity [24]. They can display oscillatory activity [25, 26] and

serve as central pattern generators involved in motor control [27]. Here, we consider a system of

two limit cycle oscillators with repulsive coupling. We investigate the influence ofthe noise and

the coupling strength on the dynamics of the system. We distinguish between two different classes

of dynamics, a synchronized state, in which the joint probability density of theoscillator phases is

characterized by a single-hump shape, and a desynchronized state. The single-hump shaped distri-

bution of the oscillator phases has been modeled by a Gaussian distribution [12, 28], and systems

consisting of a large number of oscillators were analyzed by examining the resulting dynamics for

the mean of the oscillator phases [20]. In contrast, the simplicity of our two oscillator system allows

us to obtain the stationary probability density function for the full system both numerically and

analytically. We show that the probability distribution of the oscillator phases has the single-hump

shape only for weak coupling, whereas it deviates from this shape for strong coupling. We evaluate

the coupling strength at which the transition between the two forms of the probability distribution

occurs as a function of the noise intensity.

In Sect. 8.2, we introduce the Kuramoto model for excitable systems. Under the influence of
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noise, the dynamics of the limit cycle oscillators are described by a stochastic differential equation

(SDE), and we state the Fokker-Planck equation for the system. In Sect. 8.3, we consider a single

active rotator driven by noise and derive its mean angular frequency from the stationary solution

to the Fokker-Planck equation. We compare our analytical results with Monte-Carlo simulations of

the corresponding SDE. In Sect. 8.4, we consider two coupled deterministicrotators and perform a

bifurcation analysis of the system. We show that the system possesses a fixed point that is stable for

small coupling strengths but looses its stability when the coupling is increased.For some range of

the coupling strength, the stable fixed point and a stable limit cycle coexist. In Sect. 8.5, we con-

sider two coupled active rotators under uncorrelated stochastic influences. In Sect. 8.5.1, we solve

the Fokker-Planck equation of the system numerically and show that the shape of the probability

distribution undergoes a characteristic change, corresponding to the transition from a synchronized

to a desynchronized state, as coupling is increased. We evaluate the boundary between the syn-

chronous and the asynchronous regime through a Fourier expansion approach in Sect. 8.5.2. A

summary concludes the paper in Sect. 8.6.

8.2 Excitable Systems and the Kuramoto Model

Neurons can display a wide range of behavior to different stimuli and numerous models exist to

describe neuronal dynamics. A common feature of both biological and model neurons is that suf-

ficiently strong input causes them to fire periodically; the neuron displays oscillatory activity. For

subthreshold inputs, on the other hand, the neuron is quiescent. When a subthreshold input is com-

bined with a noisy input, however, the neuron will be pushed above threshold from time to time

and fire spikes in a stochastic manner. In this regime, the neuron acts as an excitable element. In

general, an excitable system possesses a stable equilibrium point from which it can temporarily de-

part by a large excursion through its phase space when it receives a stimulus of sufficient strength

[22]. Besides neurons, chemical reactions, lasers, models of blood clotting, and cardiac tissues all

display excitable dynamics [29–33]. Pulse propagation, spiral waves, spatial and temporal chaos,

and synchronization have been studied in these systems [34–37].

The phase dynamics of an active rotator without interaction and random forces can be described
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by the model developed by Kuramoto and coworkers [38, 39]:

φ̇(t) = ω − a sinφ(t) . (8.1)

To obtain the case of the excitable system with one stationary point, one chooses the parameter

a > ω. When we haven coupled identical oscillators, subject to stochastic influences, the model is

described by the Langevin equation [23]

φ̇i(t) = ω − a sinφi(t) −
n
∑

j=1

Wij(φj − φi) + ηi(t) . (8.2)

Here, we take theηi to be uncorrelated Gaussian white noise, i.e.,〈ηi(t1)ηj(t2)〉 = 2σδ(t1 − t2)δij .

We will concentrate on the simplest case, namely that the coupling functionsWij aresin-functions

multiplied by a coupling constantwij , i.e.,Wij(φ) = wij sinφ. Then, the dynamical evolution of

the system’s probability density functionP (φ, t) is described by the Fokker-Planck equation

∂

∂t
P (φ, t) = −

n
∑

i=1

∂

∂φi
[Di(φ)P (φ, t)] +

n
∑

i=1

n
∑

j=1

∂2

∂φi∂φj
[Dij(φ)P (φ, t)] , (8.3)

where in our case the drift terms read

Di(φ) = ω − a sinφi −
n
∑

j=1

wij sin(φj − φi) (8.4)

and the diffusion terms are given by

Dij(φ) = δijσ . (8.5)

Since the angle variablesφi describe the phases of the oscillators, the probability density function

must satisfy the periodic boundary conditions

P (φ1, · · · , φi = 0, · · · , φn, t) = P (φ1, · · · , φi = 2π, · · · , φn, t) , i = 1, · · · , n . (8.6)
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Furthermore, the normalization condition for the probability density reads

∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφnP (φ, t) = 1 . (8.7)

8.3 Single-Rotator System

We first exam a single rotator subject to a noisy input and, following Ref. [40], calculate the mean

frequency of oscillations as a function of the noise level. In this case, the Fokker-Planck equation

(8.3) reads

∂

∂t
P (φ, t) = − ∂

∂φ
[D(φ)P (φ, t)] + σ

∂2

∂φ2
P (φ, t) , (8.8)

with

D(φ) = ω − a sinφ . (8.9)

We can thus write the drift term as the negative gradient of a potential,D = −∂V/∂φ, with the

potential given by

V (φ) = ωφ + a cos φ + c . (8.10)

Introducing the probability current

S(φ, t) = D(φ)P (φ, t) − σ
∂

∂φ
P (φ, t) , (8.11)

the Fokker-Planck equation takes the form of a continuity equation,

∂

∂t
P (φ, t) +

∂

∂φ
S(φ, t) = 0 . (8.12)

We now look for a stationary solution of the formP (φ, t) = P (φ), S(φ, t) = S(φ). In this case,

we conclude from (8.12) that the derivative of the probability current with respect toφ must vanish,

110



Noise-dependent stability of the synchronized state in a coupled system of active rotators

and we have to solve

S = D(φ)P (φ) − σ
∂

∂φ
P (φ) . (8.13)

The constant probability currentS is related to the mean drift velocity, i.e., the mean angular fre-

quency of the active rotator system according toω̄ = 2πS. The solution to the ordinary differential

equation (8.13) is given by

P (φ) = Ce−
V (φ)

σ − S

σ

∫ φ

0
dφ′e

V (φ′)−V (φ)
σ . (8.14)

The integration constant in (8.10) can thus be absorbed into the constantC in (8.14), and the two

free constantsS andC are determined by the periodicity and normalization conditions (8.6) and

(8.7). These two conditions can be written in matrix form as













∫ 2π
0 dφ e−

V (φ)
σ

∫ 2π
0 dφ

∫ φ
0 dφ′e

V (φ′)−V (φ)
σ

e−
V (2π)

σ − e−
V (0)

σ

∫ 2π
0 dφ e

V (φ)−V (2π)
σ

























C

−S
σ













=













1

0













. (8.15)

Denoting the determinant of the2 × 2 matrix in the last expression asdet, the constantsC andS

are given by

C =
e−

V (2π)
σ

det

∫ 2π

0
dφ e

V (φ)
σ , (8.16)

S =
σ

det

[

e−
V (2π)

σ − e−
V (0)

σ

]

. (8.17)

Specializing to the potential of the active rotator (8.10), we obtain

ω̄ =
2πσ

(

1 − e−
2πω

σ

)

∫ 2π
0 dφ′ e−

ω
σ

φ′
∫ 2π
0 dφ e

a
σ

[cos(φ+φ′)−cos φ]
. (8.18)

Note that in the limitσ → ∞ the integrand in the denominator approaches one, andω̄ converges

to ω. To obtain the leading order behavior ofω̄ in the limit of small noise, we approximate the

denominator using Laplace’s method described in Ref. [41]. According toLaplace’s method the
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asymptotic behavior of the integral

I(x) =

∫ b

a
dtf(t)exg(t) (8.19)

asx → ∞ is given by

I(x) ∼
√

2πf(c)exg(c)

√

−xg′′(c)
. (8.20)

Here, it is assumed thatg(t) has a maximum att = c with a ≤ c ≤ b and thatf(c) 6= 0 and

g′′(c) < 0. We first apply Laplace’s method to the inner integral in the denominator of (8.18),

which we denote asI(σ). The functiona[cos(φ + φ′) − cos φ] has a maximum inside the interval

0 ≤ φ ≤ 2π at

φ0 = π + arctan
sin φ′

1 − cos φ′ . (8.21)

Using (8.20) we thus obtain forσ → 0

I(σ) ∼
√

2πσ

a

∫ 2π

0
dφ′ e

a
σ

[cos(φ0+φ′)−cos φ0]−ω
σ

φ′

√

cos(φ0 + φ′) − cos φ0

. (8.22)

The argument of the exponential function in the last identity can be simplified to

(a − cos φ′)
√

sin2 φ′

2

− ωφ′ , (8.23)

whose maximum within the interval0 ≤ φ′ ≤ 2π is at

φ′
0 = 2 arccos

ω

a
. (8.24)

Using this and applying (8.20) to the intermediate result (8.22), we obtain

I(σ) ∼ 2πσ√
a2 − ω2

e
2
σ (

√
a2−ω2−ω arccos ω

a ) , σ → 0 . (8.25)
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Figure 8.1: Average angular frequency of the single active rotator as afunction of the noise intensity.
The solid line shows the result (8.18). The dots represent results from Monte-Carlo simulations
(mean± standard error of the mean) of the Langevin equation (8.2). For each value of the noise
intensity, forty runs where simulated up toT = 400. The first inset shows a comparison between the
asymptotic expansion (8.26, dashed line) and numerical evaluations of the expression (8.18, solid
lines) for small noise. The diamonds in the second inset show the logarithm ofthe relative deviation
between the result (8.18) and its asymptotic approximation (8.26). Parametersare:ω = 1, a = 1.2.

The leading asymptotic behavior ofω̄ asσ → 0 is then given by

ω̄asy =
√

a2 − ω2e−
2
σ (

√
a2−ω2−ω arccos ω

a ) . (8.26)

Figure 8.1 shows the mean angular frequencyω̄ as a function of the noise levelσ. The evaluation of

the analytical expression (8.18) yields results that are in good agreementwith Monte-Carlo simula-

tions of the Langevin equation (8.2). Furthermore, the asymptotic expansion(8.26) is in excellent

agreement with numerical evaluations of (8.18) for small noise.

8.4 Deterministic Two-Rotator System

We next turn to a system of two coupled active rotators, where we first consider the deterministic

case, i.e,σ = 0. In particular, we are interested in rotators with repulsive coupling, i.e., weconsider

the casew12, w21 > 0. Introducing the center of mass and difference coordinatesΦ = (φ1 +φ2)/2
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and∆ = (φ1 − φ2)/2, the set of equations (8.2) takes the form

Φ̇(t) = ω − a sinΦ(t) cos ∆(t) + (w12 − w21) sin∆(t) cos ∆(t) ,

∆̇(t) = −a cos Φ(t) sin ∆(t) + (w12 + w21) sin∆(t) cos ∆(t) . (8.27)

The system has a trivial stationary point atΦ(t) = Φ0 = sin−1(ω/a), ∆(t) = 0, whose stability

we analyze by linearizing the system (8.27). WritingΦ(t) = Φ0 + ǫΦ(t), ∆(t) = ǫ∆(t) we obtain

to first order

d

dt













ǫΦ(t)

ǫ∆(t)













=













−
√

a2 − ω2 w12 − w21

0 w12 + w21 −
√

a2 − ω2

























ǫΦ(t)

ǫ∆(t)













. (8.28)

The real parts of the eigenvalues of the2 × 2 matrix on the right-hand side of the last identity

determine the stability of the fixed point(Φ0, 0). Under the assumptiona > ω the first eigenvalue

λ1 = −
√

a2 − ω2 is always real and negative. The second eigenvalueλ2 = w12 +w21 −
√

a2 − ω2

is also always real; for small coupling it is negative, but when the sum of the coupling strengths

w12 + w21 increases it becomes positive and the fixed point(Φ0, 0) looses its stability in, as it turns

out, a subcritical pitchfork bifurcation. Further fixed points of the systemcan be determined and

turn out to be unstable for all values of the coupling strengths. In the casew12 = w21 = w they are

given by

Φ1 =
1

2
sin−1

(

4ωw

a2

)

, ∆1 = cos−1

(

ω

a sinΦ1

)

. (8.29)

Figure 8.2(a) shows a bifurcation diagram of the system. For small couplingstrength, the system

does not display oscillatory behavior. When the coupling strength is increased above a critical value,

a stable limit cycle emerges from a homoclinic orbit. For a small range of couplingstrengths, the

stable fixed point coexists with the stable limit cycle. In this case, it depends onthe initial conditions

whether the system will converge toward the fixed point(Φ0, 0) or the limit cycle. Figure 8.2(b)

shows the attractors for fixed point and limit cycle dynamics in the(Φ, ∆)-plane forw12 = w21 =

0.308. In the strong-coupling limit, the minimum and maximum of∆ in Fig. 8.2(a) both converge
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Figure 8.2: Stable and unstable fixed points and oscillations in the deterministic two-rotator system.
(a) shows the bifurcation diagram with stable (solid lines) and unstable (dashedlines) fixed points of
the system (8.27) for the choice of parametersω = 1, a = 1.2, w12 = w21 = w. Dots indicate the
minimum and maximum values of oscillations in the value of∆ that result for the initial conditions
Φ = 0, ∆ = π/2. (b) depicts forw = 0.308 the boundaries between the regions in the space of
initial conditions for which the system converges to the limit cycle or the stable fixed point.

towardπ/2. Thus, the system approaches antisynchronous oscillatory dynamics, whereφ1 andφ2

are phase shifted byπ while their sum increases constantly.

8.5 Stochastic Two-Rotator System

We now consider the coupled two-rotator system in the case where both rotators receive uncorrelated

stochastic driving. The temporal evolution of the probability density of this system is given by the

Fokker-Planck equation (8.3) with the drift and diffusion coefficients (8.4) and (8.5).

8.5.1 Numerical Results

First, we investigate the stationary solution to the Fokker-Planck equation numerically. To this end,

we numerically solve the partial differential equation (8.3) under the periodic boundary conditions

(8.6) for the homogeneous initial conditionP (φ1, φ2, t = 0) = 1/4π2 and observe that the solution

converges to the stationary solution after some time. Figure 8.3 shows the stationary solution in the

coordinatesΦ and∆ for two different values of the coupling strength. We find that, dependingon

the strength of the noise and coupling, two different characteristic forms of the stationary solution

exist. In the case shown in Fig. 8.3(a) the probability density is peaked around the stable fixed point
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Figure 8.3: Synchronized and desynchronized modes in the stochastic two-rotator system. The
stationary solution to the Fokker-Planck equation (8.3) is shown for different values of the coupling
strength. In both(a) and (b), we havew12 = w21 = w andω = 1, a = 1.2, σ = 0.4. In (a)
the coupling strength isw = 0.3 and the rotators are in a synchronized state; in(b) the coupling is
increased tow = 0.4 and the two rotators desynchronize.

of the deterministic two-rotator system(Φ0, 0). In Fig. 8.3(b), the peak at the fixed point(Φ0, 0)

is much less pronounced. Furthermore, if we consider the probability distribution for ∆ = ±π/2,

i.e., at the edge of the region shown in Fig. 8.3, we see that the probability distribution is not given

by one central hump anymore. In order to distinguish between the two different scenarios in a

quantitative way, we consider the marginal stationary probability density

P̄ (∆) =

∫ Φ0+π

Φ0−π
dΦP (Φ, ∆) . (8.30)

Figure 8.4 shows this quantity for one level of the noise intensityσ and for different coupling

strengths. For weak coupling,̄P (∆) has a pronounced maximum at∆ = 0. For increasing coupling

strengths, this maximum decreases and eventually turns into a minimum. We can thusclassify the

system dynamics as synchronized or desynchronized according to the sign of the second derivative

of P̄ (∆) at the origin and can label theσ-w plane accordingly. In the next section, we calculate the

phase boundary between the synchronized and desynchronized regime through a Fourier expansion

approach.
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increases from curve to curve in increments ofδw = 0.2 to the maximum valuew = 1.1 (dotted
line). Other parameters are:ω = 1, σ = 0.4, a = 1.2.

8.5.2 Fourier Expansion Results

The probability densityP (φ1, φ2) is periodic inφ1 andφ2, so we expand it as

P (φ1, φ2) =
∑

k1,k2

C(k1, k2)e
i(k1φ1+k2φ2) . (8.31)

Inserting this approach into the right-hand side of (8.3) yields together with (8.4) and (8.5)

0 =
∑

k1,k2

C(k1, k2)e
i(k1φ1+k2φ2)

{

a(cos φ1 + cos φ2) − (w12 + w21) cos(φ2 − φ1) (8.32)

−ik1[ω − a sinφ1 − w12 sin(φ2 − φ1)] − ik2[ω − a sinφ2 − w21 sin(φ1 − φ2)] − σk2
1 − σk2

2

}

.

The term inside the curly brackets on the right-hand-side of the last identity isitself periodic inφ1

andφ2 and can also be expanded as a Fourier series

{

· · ·
}

=
∑

|l1|≤1,|l2|≤1

C̃(l1, k1, l2, k2)e
i(l1φ1+l2φ2) . (8.33)

Here, the coefficients̃C(l1, l2) read

C̃(0, k1, 0, k2) = −iω(k1 + k2) − σ(k2
1 + σk2

2) ,
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C̃(±1, k1, 0, k2) =
a

2
(1 ± k1) ,

C̃(0, k1,±1, k2) =
a

2
(1 ± k2) ,

C̃(1, k1,−1, k2) = −1 + k1

2
w12 −

1 − k2

2
w21 ,

C̃(−1, k1, 1, k2) = −1 − k1

2
w12 −

1 + k2

2
w21 ,

C̃(±1, k1,±1, k2) = 0 . (8.34)

We can then rewrite (8.32) as

0 =
∑

k1,k2

ei(k1φ1+k2φ2)
∑

|l1|<1,|l2|<1

C(k1 − l1, k2 − l2)C̃(l1, k1 − l1, l2, k2 − l2) . (8.35)

Setting the inner sum to zero, we obtain an infinite system of algebraic equations. In order to obtain

theN th Fourier order approximation we truncate the outer sum such that we setCN (k1, k2) = 0 for

|k1| > N or |k2| > N . Then, we have to solve a system of(2N+1)2−1 algebraic equations in order

to obtain the expansion coefficients toN th orderCN (k1, k2), where the additional indexN indicates

the approximation order. Finally, the coefficientCN (0, 0) is determined from the normalization

condition asCN (0, 0) = 1/4π2.

As an illustrative example we now consider the first order in the Fourier expansion for the case

w12 = w21 = w. The system of algebraic equations we need to solve then reads

a[C1(0,−1) + C1(−1, 0)] − 4(σ − iω)C1(−1,−1) = 0 ,

4π2[2(σ − iω)C1(−1, 0) + wC1(0,−1)] = a ,

2π2 {a[C1(−1, 0) + C1(0, 1)] − 4σC1(−1, 1)} = w ,

4π2[wC1(−1, 0) + 2(σ − iω)C1(0,−1)] = a ,

4π2[2(σ + iω)C1(0, 1) + wC1(1, 0)] = a ,

2π2 {a[C1(0,−1) + C1(1, 0)] − 4σC1(1,−1)]} = w ,

4π2[2(σ + iω)C1(1, 0) + wC1(0, 1)] = a ,

a[C1(0, 1) + C1(1, 0)] − 4(σ + iω)C1(1, 1) = 0 . (8.36)
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From this we obtain the first order approximation

P1(φ1, φ2)=
1

4π2
+ α{2aβγσ(cos φ1 + cos φ2) + 4aβσω(sin φ1 + sinφ2) + (a2γσ2 − 2a2σω2)

×cos(φ1 + φ2) + [a2βγ − wβ(γ2 + 4ω2)] cos(φ1 −φ2) + a2σ(wω + 4σω) sin(φ1 + φ2)}, (8.37)

with the abbreviations

α =
1

4π2σβ(γ2 + 4ω2)
, β = σ2 + ω2 , γ = w + 2σ . (8.38)

Substituting the coordinatesφ1 andφ2 according toφ1 = Φ + ∆ andφ2 = Φ − ∆ and integrating

with respect toΦ we obtain the marginal probability density

P̄1(∆) =
1

2π
+ 2παβ(a2γ − wγ2 − 4wω2) cos(2∆) . (8.39)

Setting its second derivative to zero, we obtain the equation

a2(w + 2σ) − w[(w + 2σ)2 + 4ω2] = 0 , (8.40)

which we can solve inw or in σ. Eventually, we want to obtainw as a function ofσ. However,

since we have a cubic equation inw and only a quadratic equation inσ, for convenience we express

σ as a function ofω:

σ =
a2 − 2w2 ±

√
a4 − 16w2ω2

4w
. (8.41)

This procedure can easily be generalized to higher orders. Figure 8.5 shows the resulting phase

diagram obtained from solving the Fokker-Planck equation numerically andfrom the Fourier ex-

pansion. The accuracy of the Fourier expansion results improves with increasing strength of the

noise. This can be seen, for instance, in the second inset of Fig. 8.5, where even the first expansion

order yields very accurate results for strong noise. In general, evenrelatively low orders in the ex-

pansion give a good estimate for the phase boundary for a wide range ofnoise strengths, as can be

seen from the results for the fourth expansion order in Fig. 8.5. However, for very small noise levels
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Figure 8.5: Regimes of synchronized and desynchronized dynamics. The phase boundary between
the synchronized and desynchronized regimes is shown as a function ofthe noise strengthσ. Areas
below the curves correspond to the synchronized, areas above the curve to the desynchronized
regime. The solid lines show the results of the first four Fourier orders, the dots represent numerical
results. The diamond represents the coupling strengths for which the fixedpoint (Φ0, 0) of the
deterministic system becomes unstable; the square indicates the value ofw at which the stable limit
cycle is first observed. The insets show results for small and for large noise. In the first inset (small
noise) the results from the fourth and tenth Fourier orders are shown. The second inset (large noise)
shows the results from the first (solid line) and second (dashed line) Fourier orders. Parameters are
ω = 1, a = 1.2.

the Fourier expansion diverges, as is exemplified in the first inset in Fig. 8.5 for the fourth and tenth

expansion orders. Considering the first inset in Fig. 8.5, we conclude that in the limitσ → 0 the

results from the Fourier expansion approach a value of the coupling strength for which the stable

fixed point coexists with the limit cycle in the deterministic system. Therefore, neither the existence

of the stable limit cycle nor the stability of the fixed point can be used exclusively to determine the

zero-noise limit of the phase transition between the synchronized and desynchronized states. Strong

noise has a desynchronizing effect on the system, as the minimal coupling for desynchronization

vanishes in the limit ofσ → ∞. If the noise is weak, however, it stabilizes the synchronized state,

as is indicated by the initially upward slope of the phase boundary in Fig. 8.5. In conclusion, the

synchronized state of the system is most stable for intermediate noise.

8.6 Summary

We have investigated the transition from synchronized to desynchronizedbehavior in a system of

two-coupled active rotators under stochastic influences. The two regimesare distinguished by the
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sign of the second derivative of the marginal probability density at vanishing phase difference.

We have evaluated the phase boundary between the two states in the (coupling strength) - (noise

intensity) plane. We have shown that the synchronized state is most stable, inthe sense that the

coupling strength required to desynchronize the system is maximal for nonvanishing noise intensity.
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[11] R. Chaćcon and P. J. Martı́nez, Phys. Rev. Lett.98, 224102 (2007).

[12] M. A. Zaks, A. B. Neiman, S. Feistel, and L. Schimansky-Geier, Phys. Rev. E68, 066206
(2003).

[13] J. A. White, J. T. Rubinstein, and A. R. Kay, Trends Neurosci.23, 131 (2000).
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Chapter 9

Synchronization from disordered

driving forces in arrays of coupled

oscillators

The effects of disorder in external forces on the dynamical behavior of coupled nonlin-

ear oscillator networks are studied. When driven synchronously, i.e., all driving forces

have the same phase, the networks display chaotic dynamics. We show that random

phases in the driving forces result in regular, periodic network behavior. Intermedi-

ate phase disorder can produce network synchrony. Specifically, there is an optimal

amount of phase disorder, which can induce the highest level of synchrony. These re-

sults demonstrate that the spatiotemporal structure of external influences can control

chaos and lead to synchronization in nonlinear systems.

Networks of coupled nonlinear oscillators provide useful model systems for the study of a variety of

phenomena in physics and biology [1]. Among many others, examples from physics include solid

state lasers [2] and coupled Josephson junctions [3, 4]. In biology, thecentral nervous system can be

described as a complex network of oscillators [5], and cultured networksof heart cells are examples

of biological structures with strong nearest-neighbor coupling [6]. In particular, the emergence

of synchrony in such networks [7, 8] and the control of chaos in nonlinear systems [9–11] have

received increased attention in recent years.
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Disorder and noise in physical systems usually tend to destroy spatial and temporal regular-

ity. However, in nonlinear systems, often the opposite effect is found andintrinsically disordered

processes, such as thermal fluctuations or mechanically randomized scattering, lead to surprisingly

ordered patterns [12]. For instance, in the phenomenon of stochastic resonance the presence of noise

can improve the ability of a system to transfer information reliably [13]. Some time ago, Braiman

et al. studied one- (1D) and two-dimensional (2D) coupled arrays of forced, damped, nonlinear

pendula [14]. They found that when a certain amount of disorder was introduced by randomizing

the lengths of the pendula the dynamics of the array ceased to be chaotic. Instead, they observed

complex, yet regular, spatiotemporal patterns. Further studies of the samesystem showed that chaos

in the array of oscillators can also be tamed by impurities [15] and that randomshortcuts between

the pendula lead to synchronization of the array [16].

Here, we introduce disorder by modifying the driving forces of the oscillators through phase

differences. We observe the emergence of regular, phase-locked dynamics. Moreover, for interme-

diate spreads of the phase angles in the driving forces, we find that the oscillations become largely

synchronous.

We focus our numerical analysis on arrays of forced, damped, nonlinear pendula. The 1D array

(chain) is described by the equation of motion

ml2θ̈n + γθ̇n = −mgl sin θn + τ ′ + τ sin (ωt + ϕn) + κ(θn+1 + θn−1 − 2θn) , (9.1)

n = 1, 2, . . . N .

In order to consider a 2D lattice, we introduce an additional index,θn → θn,m, n, m = 1, 2, . . . N

and modify the coupling term accordingly:κ(θn+1+θn−1−2θn) → κ(θn+1,m+θn−1,m+θn,m+1+

θn,m−1 − 4θn,m). For both the 1D and 2D case, we choose free boundary conditions, i.e.,θ0 =

θ1, θN = θN+1 andθ0,m = θ1,m, θN,m = θN+1,m, θn,0 = θn,1, θn,N = θn,N+1, respectively.

The parameter values used are the same as in previous studies [14–16]: The mass of the pendulum

bob ism = 1, the lengthl = 1, the acceleration due to gravityg = 1, the dampingγ = 0.75, the

d.c. torqueτ ′ = 0.7155, the a.c. torqueτ = 0.4, the angular frequencyω = 0.25, and the coupling

strengthκ = 0.5. For this choice of parameter values, each isolated pendulum displays chaotic

behavior characterized by a positive Lyapunov exponent [14].
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Figure 9.1: Spatiotemporal angular velocity plots for chaotic and regular dynamics in an array of
N = 50 coupled oscillators. The chain of pendula is shown from left to right. Time increases
continuously from bottom to top. Grayscales indicate the angular velocities ofthe oscillators. Light
gray shades represent negative, dark tones positive velocities.

A particularly easy and intuitive way to visualize the global spatiotemporal behavior of a chain

(or lattice) of oscillators is to consider the average velocity

σ(jT ) =
1

N

N
∑

n=1

θ̇n(jT ) (9.2)

at times that are integer multiples of the forcing periodT = 2π/ω [15]. Considering this measure

for an isolated pendulum, Gavrielides et al. performed a bifurcation analysis with respect to the

pendulum lengthl and found that an uncoupled pendulum is chaotic for valuesl = 1 ± 0.002 [17].

If the length of an isolated pendulum is increased tol > 1.002, it performs a ‘libration,’ in which

the combined d.c. and a.c. torque are insufficient to overcome the pendulum’s increased rotational

inertia. On the other hand, if the pendulum’s length is decreased tol < 0.998, the pendulum

performs a ‘rotation,’ an overturning motion where the torques combine to rotate the pendulum over

the top.
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Figure 9.2: Chaotic and regular dynamics as a function of the degree of disorder. The average
angular velocity att = 60T, 61T, . . . , 80T is shown for each value of the disorder parameterk.
(a) 1D array ofN = 50 oscillators.(b) 2D lattice of16 × 16 oscillators.

In our study, we do not alter any parameters that would affect the dynamics of an isolated

pendulum and keep the coupling strength at its default value. Instead, weintroduce disorder by

randomly varying the phase anglesϕn of the driving forces in Eq. (9.1). In the case whereϕn = 0

for all driving forces, we observe chaotic dynamics in the array (Fig. 9.1) in agreement with previous

studies [14]. However, when we disorder the driving forces by randomly choosing the phase angles

ϕn uniformly from the interval[−kπ,+kπ], we observe that for sufficiently largek the oscillations

become regular.

Figure 9.2 shows the average angular velocityσ(t) at t = 60T, 61T, . . . , 80T for a 1D array

of N = 50 and a 2D lattice of16 × 16 oscillators. The presence of chaos for small disorder in

both the 1D and 2D array becomes manifest in a dispersed distribution of the average velocities

σ(60T ), σ(61T ), . . . , σ(80T ). For larger disorder, however, we observe periodic patterns in the

form of 1T -, 2T -, 3T -, . . . ‘attractors,’ where the average velocity of the oscillator array repeats its

value after 1, 2, 3,. . . forcing periods. Ultimately, ask is increased further, a1T periodic pattern is

reached.

In general, the value ofk for which a transition from chaotic to regular dynamics first occurs

depends on the particular distribution of the random phases. We thus consider the average over

126



Synchronization from disordered driving forces in arrays of coupled oscillators

 

 

 

 

 

 

       

1T

@
@@R

A
A
A
AAU

B
B
B
B
B
BN4T

3T

2T

0 0.1 0.2 0.3
k

P

1

0.8

0.6

0.4

0.2

0

Figure 9.3: ProbabilityP of chaotic dynamics (solid line) and different forms of regular behav-
ior (dashed lines) vs. the disorder parameterk in an array ofN = 50 coupled oscillators. The
probabilities were determined by averaging over100 different samplings of the phasesϕn.

several different samplings of uniform distributions in order to analyze the occurrence of different

forms of periodic behavior. Figure 9.3 shows the probability for a 1D array to have reached a1T -,

2T -, 3T -, or 4T -attractor aftert = 60T as a function of the disorder parameterk. For very small

disorder, i.e.,k < 0.02, we observe only chaotic dynamics, but ask passes this threshold, the first

periodic patterns start to appear. Fork ≥ 0.1, we observe that1T -, 2T -, 3T -, 4T -, . . . attractors

coexist with chaotic behavior. For0.02 ≤ k ≤ 0.13 the 2T -attractor is the dominant form of

dynamics if an attractor has been reached. Fork > 0.28, the array undergoes regular oscillations

with period1T in the vast majority of cases.

Furthermore, in addition to the transition from chaotic to regular behavior, weobserve that the

oscillations become largely synchronous, i.e., the phases of the oscillations not only lock but tend

to assume equal values, for intermediate values ofk. In order to quantify the presence of synchrony

in the array, we consider the averaged cross correlation

C =
2

N(N − 1)

∑

i<j

cij , (9.3)

wherecij denotes the correlation between theith andjth oscillator:

cij =

∫ T0+T
T0

dt θ̇i(t)θ̇j(t)
[

∫ T0+T
T0

dt θ̇2
i (t)

∫ T0+T
T0

dt θ̇2
j (t)

]1/2
. (9.4)
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Figure 9.4: Synchronization in 1D (dots) and 2D (squares) arrays of oscillators vs. the disorder
parameterk. Error bars show one standard error of the mean. Filled dots correspond toN = 16,
open dots toN = 50. Averaging was performed over 200 (1D) and 10 (2D) different samplings of
the phasesϕn.

Figure 9.4 showsC as a function ofk for two 1D and one 2D arrays. Disordering the driving forces

results in less synchronized oscillations of the array if the disorder parameter is very small. The

minimum of synchrony is reached fork ≈ 0.03. Note that the location of this minimum corresponds

approximately to the first appearance of regular dynamics in Fig. 9.3. Whenthe external forces are

disordered further, synchronization in the array increases and reaches a peak value for intermediate

disorder. In the 1D case, the maximum is reached fork ≈ 0.3 and its value isCmax ≈ 0.72 for

N = 50 andCmax ≈ 0.78 for N = 16 oscillators. In the case of the 2D array, the synchronization is

even stronger. Here, the peak value ofCmax ≈ 0.95 is reached fork ≈ 0.2. We attribute the stronger

synchronization in the 2D array to the fact that the number of couplings peroscillator is higher than

in the 1D case. Furthermore, smaller arrays show a higher degree of averaged cross correlation

than larger arrays. This is because oscillators that are nearest neighbors show the highest degree

of synchronization, and the ratio of cross-correlation coefficients obtained from direct neighbors

to all cross-correlation coefficients contributing to the averaged cross correlationC decreases with

increasing size of the array likeO(1/N).

To summarize, we have shown that disorder leads to transitions from chaoticto regular behavior

in arrays of coupled oscillators when disorder is introduced in the phasesof the driving forces [18].

In this investigation, each pendulum was in a regime where it behaves chaotically when uncoupled,

in contrast to previous studies in which parameters were altered that affect the dynamics of an
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isolated oscillator [14, 15]. In particular, Braiman et al. introduced disorder by randomly varying

the lengths of the pendula [14]. Since an isolated pendulum only behaves chaotically when its

length lies within a narrow range, only 2% of the oscillators remained in their chaotic regime in this

approach, and the transition from chaotic to regular spatiotemporal patterns reported in Ref. [14] can

be attributed to the dominance of the majority of regular pendula over the few remaining chaotic

ones [15]. Our results show that disorder in the model system describedby Eq. (9.1) results in

regular dynamics of the array even if all individual elements are chaotic. Moreover, we find that for

intermediate disorder, the oscillations show a high degree of synchronization.

Stimulus-induced synchronization of neural activity in central nervous systems has intrigued

neuroscientists for decades [19, 20]. Furthermore, in many applications, such as in coupled Joseph-

son junctions, or in the case of atrial or ventricular fibrillation, one seeks torestore periodic or

steady-state behavior from chaos. It is in regard to these day-to-day circumstances that control and

synchronization of chaotic dynamics have become one of the central topicsof nonlinear science

[21, 22]. In most situations the components of a system themselves cannot be altered, so it is de-

sirable to establish methods by which chaos can be tamed without changing parameters intrinsic to

the system. We thus believe that our proposed mechanism of controlling chaos via external forces

has potential applications in these fields.
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