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Abstract

This thesis studies resonant behavior in periodically driven ultracold quantum gases and optical
waveguide arrays. Motivated by resonance phenomena from classical mechanics and the wealth of
exotic physics that has been found in periodically driven systems, the goal of this thesis is to in-
vestigate intriguing resonance-induced behavior in these physical systems. In order to reach this
goal, each of the three main parts of this thesis discusses a different type of resonance in a suitable
physical model.
For the theoretical description of the time-periodic systems we use Floquet theory. In particular,
Floquet theory generalizes the concept of an eigenbasis to time-periodically driven Hamilton oper-
ators. Floquet eigenstates, which are also named Floquet steady states, have properties that are
tunable by the periodic drive.
In the first part we show with the methods of Floquet scattering theory that the periodic driving
of a short range potential between ultracold atoms induces Feshbach resonances. We develop the
Floquet-Feshbach resonance theory which is capable of calculating the properties of the driving-
induced Feshbach resonances. As a result, highly tunable resonance properties are found. The real
part of the scattering length can be adjusted to large positive and negative values, while the imag-
inary part of the scattering length, describing atom loss, stays relatively small. In an ultracold gas
experiment, a time-dependent interatomic potential can be achieved by modulating a magnetic field
in the vicinity of a magnetic Feshbach resonance. In this thesis, we model this case by a multi-
channel description of atom scattering with time-periodic parameters. We find that the periodic
drive both engineers the parameters of the magnetic Feshbach resonance, that already exists in the
static case, and induces new resonances. The Floquet-Feshbach resonance theory also predicts in
this model that the properties of the resonances can be tuned by the periodic drive.
The second part remains in the realm of ultracold quantum gases, and investigates resonant be-
havior in interacting quantum many-body systems. In such systems, nontrivial correlations are
present due to the interaction and entanglement between the particles. In one dimension, the
Tomonaga-Luttinger liquid serves as a universal low-energy description of a wide class of quan-
tum many-body systems. In this thesis, we formulate a Floquet-Bogoliubov theory which yields
Floquet steady states of time-periodic Hamiltonians that are quadratic in bosonic operators. The
Floquet-Bogoliubov theory can be applied to a plurality of physical models, in particular to the
periodically driven Tomonaga-Luttinger liquid. However, Floquet solutions turn out to only exist
in certain parameter regions. The absence of a Floquet solution is traced back to the phenomenon
of parametric resonance and is seen as a divergence in certain expectation values. A finite lifetime
in the Tomonaga-Luttinger description regularizes these divergences to peaks with finite maximum
and enables us to find a Floquet steady state of a periodically driven quantum many-body system.
Combining all the results, we predict a standing density-wave pattern for a one-dimensional Bose
gas subject to a time-periodic modulation of the interaction strength.
In the last part we stay in one dimension and introduce time-dependent dissipation as a direction-
dependent filter for a Hamiltonian quantum ratchet. Based on the details of a surface plasmon-
polariton waveguide array experiment, we investigate dynamic transport phenomena in a periodi-
cally driven Su-Schrieffer-Heeger ratchet model. Directed transport with the velocity of one unit
cell per driving period is found at certain resonant frequencies in this model. A Floquet-Bloch
analysis relates these transport properties to a nontrivial topology. However, the direction and the



magnitude of the current depends on the initial state. The direction-dependent filter circumvents
this issue by breaking the time-reversal symmetry. The filter absorbs states that move in a certain
direction while leaving the states moving in the other direction unimpaired. The properties of the
Filter are analyzed with a Floquet S-matrix theory, which we derive for the case of a non-hermitian,
time-periodic impurity operator and a time-periodic bulk. Our findings agree with the results of the
waveguide experiment.



Zusammenfassung

Diese Arbeit untersucht resonantes Verhalten in periodisch modulierten ultrakalten Quantengasen
und optischenWellenleitern. Motiviert durch bekannte Resonanzphänomene der klassischen Mechanik
und die Fülle von exotischer Physik, die in periodisch getriebenen Systemen gefunden wurde, ist
das Ziel dieser Arbeit faszinierende, durch Resonanzen induzierte Systemeigenschaften in diesen
physikalischen Systemen zu untersuchen. Um dieses Ziel zu erreichen diskutiert jeder Hauptteil eine
spezielle Art der Resonanz in einem geeigneten physikalischen Modell.
Periodisch modulierte Systeme werden mithilfe der Floquet-Theorie beschrieben. Das zentrale Ele-
ment ist hierbei, dass die Floquet-Theorie das Konzept der Eigenbasis auf zeitperiodische Hamilton-
operatoren verallgemeinert. Die Eigenschaften der Floquet-Eigenzustände sind durch das periodische
Treiben kontrollierbar.
In dem ersten Teil wird mithilfe der Floquet-Streutheorie gezeigt, dass das periodische Treiben
eines kurzreichweitigen Potentials zwischen ultrakalten Atomen Feshbach-Resonanzen erzeugt. Die
in dieser Arbeit entwickelte Floquet-Feshbach-Resonanztheorie ermöglicht das Berechnen der Eigen-
schaften dieser Resonanzen, mit dem Ergebnis, dass die Resonanzeigenschaften durch die periodische
Modulation stark verändert werden können. Der Realteil der Streulänge kann auf große positive und
negative Werte eingestellt werden, gleichzeitig ist der Imaginärteil der Streulänge, welcher Verlust
von Atomen beschreibt, vergleichsweise gering. Ein zeitabhängiges inter-atomares Potential kann
in ultrakalten Quantengasen durch ein zeitlich veränderliches Magnetfeld in der Nähe einer mag-
netischen Feshbach-Resonanz erzeugt werden. Hier wird dieser Fall durch ein Vielkanalmodell der
interatomaren Streuung mit periodisch modulierten Parametern beschrieben. Als Ergebnis erhalten
wir, dass die periodische Modulation sowohl die bereits existierende magnetische Feshbach-Resonanz
verändert, als auch neue Resonanzen induziert. Die Floquet-Feshbach-Resonanztheorie findet auch
in diesem Modell Resonanzeigenschaften, die durch die periodische Modulation verändert werden
können.
Der zweite Teil ist ebenfalls im Gebiet der ultrakalten Quantengase angesiedelt und betrachtet die
resonante Modulation eines wechselwirkenden Quanten-Vielteilchensystems. Diese Systeme haben
durch die Verschränkung und Wechselwirkung zwischen den Teilchen eine nichttriviale Korrela-
tion. Die niedrigenergetischen Zustände einer großen Klasse von eindimensionalen Vielteilchen-
systemen können durch ein universelles Modell, der Tomonaga-Luttinger Flüssigkeit, beschrieben
werden. In dieser Arbeit wird eine Floquet-Bogoliubov Theorie formuliert, mit welcher Floquet-
Eigenzustände von periodisch modulierten Hamiltonoperatoren, die quadratisch von bosonischen
Operatoren abhängen, berechnet werden können. Die Floquet-Bogoliubov Theorie kann auf eine
Vielzahl von physikalischen Modellen angewendet werden, im speziellen auch auf die periodisch
getriebene Tomonaga-Luttinger Flüssigkeit. Allerdings existieren diese Floquet-Lösungen nur in
einem bestimmten Parameterbereich, während deren Abwesenheit auf das Phänomen der parametri-
schen Resonanz zurückgeführt und durch eine Divergenz bestimmter Erwartungswerte angezeigt
wird. Die Einführung einer endlichen Lebensdauer in der Tomonaga-Luttinger Flüssigkeit regu-
larisiert diese Divergenzen zu Spitzen mit endlicher Höhe und ermöglicht es, einen Floquet Eigen-
zustand eines periodisch getriebenen Quanten-Vielteilchensystems zu finden. Mit der Kombina-
tion aller Ergebnisse kann die Aussage getroffen werden, dass eine periodisch modulierte Wechsel-
wirkungsstärke in einem eindimensionalen bosonischen Gas stehende Dichtewellen erzeugt.
Der letzte Teil bleibt in einer Dimension und untersucht, wie zeitabhängige Dissipation als rich-



tungsabhängiger Filter in einer hamiltonschen Ratsche agieren kann. Dazu werden zuerst dy-
namische Transportphänomene in einem periodisch moduliertem Su-Schrieffer-Heeger Ratschenmod-
ell, welches die Gegebenheiten eines Wellenleiterexperiments mit Oberflächen Plasmon-Polaritonen
beschreibt, betrachtet. Dieses Modell ermöglicht bei speziellen Resonanzfrequenzen gerichteten
Transport mit einer Geschwindigkeit von einer Einheitszelle pro Treibperiode. Eine Analyse mithilfe
der Floquet-Bloch-Theorie verknüpft die Eigenschaften des Teilchentransports mit einer nichttriv-
ialen Topologie. Nichtsdestotrotz hängt sowohl die Richtung als auch die Stärke des Teilchenstromes
von dem Anfangszustand ab. Der richtungsabhängige Filter unterdrückt diese Abhängigkeit vom
Anfangszustand durch das Brechen der Zeitumkehrinvarianz. Der Filter absorbiert Zustände, die
sich in eine bestimmte Richtung bewegen, während Zustände, die sich in die andere Richtung be-
wegen, unverändert den Filter passieren können. Die Eigenschaften des Filters werden mit einer
Floquet S-Matrix Theorie analysiert, welche speziell für den Fall einer nicht-hermitschen, zeitperi-
odischen Verunreinigung und einem zeitperiodischen Hauptteil des Systems hergeleitet wird. Die
Ergebnisse stimmen mit den Resultaten des Wellenleiterexperimentes überein.
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1. Introduction

Periodic driving can drastically change the behavior of a physical system. One important conse-
quence of an external drive is the phenomenon of resonance which can be seen in everyday life: If one
turns up the volume of a radio, the sound waves can make objects to vibrate resonantly. In science,
resonances have a prominent impact to various research topics. For example, in the construction
of bridges resonances typically have to be avoided in order to prevent a collapse, and in medicine
resonances are used in the commonly known magnetic resonance imagining method. The pattern
formation in a fluid by a shaken receptacle is explained by a resonance that is related with the
intrinsic properties of the fluid [1,2]. In this thesis, we specialize to investigate resonant behavior in
the realm of ultracold quantum gases and photonic waveguide arrays. Both systems offer a high tun-
ability and accessibility which is in favor of investigating the effects of periodic driving. In ultracold
gas experiments, atoms are cooled to very low temperatures such that their quantum nature is of
relevance. The atoms can be trapped in various geometries with the use of external fields, even the
interaction strength between the atoms is tunable. This makes ultracold gas experiments a seminal
way of simulating and probing a wealth of concepts of theoretical physics [3]. Photonic waveguide
arrays are used as a simulator of quantum wave mechanics. The fabrication process offers to create
arrays in various geometries which is for the benefit of experimentally realizing periodically driven
systems with intriguing properties [4].

In this thesis, we investigate the effect of periodic driving with the methods of theoretical physics.
Here, the silver bullet is to use Floquet theory since it is in particular capable of generalizing the
celebrated concept of an eigenbasis to time-periodic Hamilton operators. These Floquet eigenstates,
which are called Floquet steady states, can have fascinating properties that are tunable by the peri-
odic drive. The Floquet theory predicts that the nature of a periodically driven system significantly
depends on the frequency of the drive. One path of research considers driving frequencies that are
much larger than the natural energy scale of the system. Here, no resonances occur and the system
follows the dynamics of an effective model. For example, artificial gauge fields for ultracold neutral
atoms can emerge as a consequence of such a drive [5]. We, however, are especially interested in
what happens if the driving frequency matches with the energy scale of the system. In this case,
resonances emerge, that have intriguing physical consequences. For instance, in a resonantly driven
ultracold quantum gas standing density wave patterns [2, 6] and the collective emission of matter-
wave jets [7] have been observed. In order to get an impression on the influence of resonances on
periodically driven systems, the reader is introduced in Sec. 1.1 to resonant behavior in classical
mechanics. Section 1.2 gives an overview on ultracold quantum gases, while in Sec. 1.3 photonic
waveguide arrays are briefly discussed. Section 1.4 is devoted to an outline of the thesis.
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Figure 1.1.: (a) Sketch of an externally forced mathematical pendulum, (b) ampli-
tude c(ω) of the long-time behavior of the oscillator, that is induced by the external
drive, in dependence of the driving frequency with finite damping.

1.1. Resonances in Time-Periodically Driven Classical
Systems

Let us begin with one of the simplest systems possible: The harmonic oscillator subject to a time-
periodic force. As sketched in Fig. 1.1 (a), a possible setup consists of a pendulum with eigenfre-
quency ω0 that is periodically forced by an external drive with frequency ω. Since small but finite
friction is assumed, the transient motion decays in a finite time. In the long-time limit the system
oscillates with the frequency ω of the external drive. It is well-known from classical mechanics [8]
that the response of the oscillator shows a prominent peak that is centered around the eigenfrequency
ω0, which is exemplary shown in Fig. 1.1 (b). This is the prototypical example of a resonance, which
in general can be defined as an enhanced response induced by an external influence [9]. The fre-
quency, where the response is maximal, is called as resonance frequency. The resonance frequencies
are closely related to the eigenfrequencies of the system, as it can be seen in Fig. 1.1 (b) for the
driven harmonic oscillator. A small difference of the resonance frequency and the eigenfrequency ω0,
which is hard to see in Fig. 1.1, comes due to the finite damping. At last, we emphasize that the
resonance peak shown in Fig. 1.1 (b) is, in a good approximation, symmetric in the close vicinity of
the resonance frequency.

Next, we increase the complexity and consider two coupled harmonic oscillators as sketched in
Fig. 1.2 (a). Following Refs. [9, 10], both oscillators have a different eigenfrequency, as example we
consider the case of ω2 = 1.2 ω1, while solely oscillator 1 is subject to the external monochromatic
drive. Figures 1.2 (b), (c) display amplitudes of the long-time behavior of both oscillators as a
function of the driving frequency. The amplitude of oscillator 1 shows a broad resonance peak near

2
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Figure 1.2.: (a) Sketch of two harmonic oscillators which are coupled by a spring.
The external drive acts on oscillator 1, following Ref. [10]. (b), (c): Blue lines shown
the amplitudes ci(ω), i = 1, 2, of the long-time behavior induced by the external
monochromatic drive. The black dashed line marks the eigenfrequency ω2. (d) Plot
of the Fano formula σ = (x + q)2/(x2 + 1) with x = 2(ω − ω0)/Γ and q = 1 [9, 10].
Here, ω0 is the resonant frequency and Γ corresponds to the width of the resonance
state, for details see Ref. [9].

the eigenfrequency ω1 while the amplitude of oscillator 2 is enhanced near ω2 = 1.2 ω1. Again, the
lineshapes of those peaks are, in a good approximation, symmetric in the vicinity of the resonance
frequencies. Near ω2, however, the response of oscillator 1 differs from what we have learned so far,
since the near resonant maximum the response gets zero, which adds asymmetry in the shape of
this peak. It is the combination of the external forcing and the motion of the second oscillator that
forces the first oscillator to the zero amplitude [10]. This intriguing behavior is related to the so
called Fano resonances [9, 10] named after U. Fano, who derived a theory that explains asymmetric
lineshapes found in spectroscopy experiments. His seminal work [11] considered the photoionization
of an atom. He assumed that this process can be achieved via two paths: A direct process and a
process involving an autoionized state [9, 11]. U. Fano found that the interference of the two paths
leads to an asymmetric lineshape in a cross section [9,11–13], which is exemplarily shown in Fig. 1.2
(d). Fano’s theory further describes an asymmetric response near a resonance in a wide class of
physical systems [9,11,12], including nuclear physics [14], spectroscopy experiments [15,16], waveg-
uide arrays [9, 10,17] and atomic physics [18].
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Figure 1.3.: Sketch of a cut through a quadrupole ion trap, based on Ref. [20].
Bottom right is a coordinate system. On top and bottom the end-cap electrodes are
sketched in gray, left and right the hyperbolic ring in gray. A voltage U is applied
between ring and end caps. Black dots mark charged particles in the center of the
trap. The orange arrows exemplarily sketch the direction of the force on the particles
that is induced by the electric field. For the shown configuration the particles are
pushed outside the trap in radial direction, while the force acts towards the center in
z-direction. The periodic driving of the voltage U can lead to a configuration where
in average the particles are forced towards the center in all directions.

Now we discuss the quadrupole ion trap which hosts a third class of resonance that is of relevance
to this thesis. Since the trap has been invented by W. Paul it is also known as Paul trap. For the
invention of the trap W. Paul was awarded by the shared Physics Nobel prize of the year 1989 [19,20].
A possible setup of a Paul trap is sketched in Fig. 1.3. It consists of a hyperbolic ring combined with
two end-cap electrodes facing each other on bottom and top [20]. An electric potential is applied
between the ring and the end-cap electrodes, such that the motion of charged particles in the center
of the trap is generated by a quadratic electric potential [20]. As a consequence of Gauss law, this
potential either can be attractive in z-direction or in radial direction, but it cannot be attractive
in both directions at the same time [19, 20]. In the static case, the Paul trap does not work as a
trap, since charged particles are always pushed to the outside. This issue is resolved with the aid of
time-periodic driving. The voltage between ring and end-cap electrodes is varied sinusoidally around
an offset. As a result, the periodic drive stabilizes for carefully chosen parameters the motion of
charged particles such that they remain inside the trap. On a phenomenological level, the drive
induces an effective potential that acts on average attractive on the charged particles such that it
traps the particles in the center. Mathematically, this behavior can be understood by showing that
the Newton equations of motion for a charged particle in the time-dependent electric potential can
be mapped onto the dynamic equations of an undamped parametric oscillator [19].
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A parametric oscillator is a harmonic oscillator with a time-dependent eigenfrequency. In the
undriven case, this system oscillates with its eigenfrequency, but, at finite driving, a parametric
resonance can occur. If the undamped parametric oscillator is driven with twice its eigenfrequency,
its amplitude grows exponentially in time. This behavior can be made visible by the physics of a
swing, which serves as an everyday-life example of a parametric oscillator. Here, the case of para-
metric resonance occurs if a person swings and thus periodically imparts energy into the motion of
the swing. For driving frequencies away from the condition of a parametric resonance, the motion
remains bounded. If, for example, a swing is rocked with a too low frequency, the amplitude of the
oscillation stays at small values. The absence of parametric resonance is desired for a Paul trap,
since in this case the motion of charged particles is stable in all directions [19,20], as a result the par-
ticles remain in the center of the trap. This demonstrates that the Paul trap with a time-dependent
electric voltage is able to trap charged particles.

In a different configuration, the Paul trap operates as a mass spectrometer [19, 20]. Here, the
parametric resonance turns into an advantage, since it is used to selectively stabilize the motion
of particles in a certain mass interval, while the trajectories for particles with masses outside this
interval leave the trap. If the relative width of this interval is small, this can be used in order to
determine the mass of the particles with a good accuracy [20].

Each classical system that is discussed above gives host to a different type of resonance. These
resonances are of relevance to the main discussion of this thesis. In the following we give an intro-
duction to ultracold quantum gases and photonic waveguide arrays, which are the physical platforms
that are considered during this work.

1.2. Ultracold Quantum Gases

When atomic gases are cooled to ultracold temperatures, the quantum nature of matter becomes of
particular relevance. For bosonic particles a quantum-statistical phase transition to a Bose-Einstein
condensate occurs. The Bose-condensed phase is allocated with a macroscopic occupation of the
lowest energy state. In order to experimentally obtain a Bose-Einstein condensate in a dilute gas,
the gas has typically to be cooled to the micro- or nanokelvin regime by a combination of laser
cooling and evaporative cooling while it is trapped by magnetic or optical fields [18,21–23].

The theory of Bose-Einstein condensation goes back on a work of S. N. Bose from the year 1924 [24].
Based on this work, A. Einstein predicted the phase transition to a Bose-Einstein condensate in
1925 [25]. Although the theoretical discovery of Bose-Einstein condensation was in the 1920s, it
took until 1995 for its first observation in an experiment. This has been achieved by the team of
C. E. Wieman and E. A. Cornell with rubidium [26] and by the team of W. Ketterle with sodium
atoms [27]. The experimental realization was awarded by the Nobel prize in Physics of the year 2001.

A key feature of ultracold quantum gases is the possibility to tune the interaction strength via
a Feshbach resonance. This tunability is given by the fact that the interaction strength in ultracold
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gas systems is determined by atomic collisions. The scattering of atoms at ultracold temperatures
is fully characterized by the scattering length a which corresponds in a rough approximation to the
radius of the scattering cross sections of the atoms. The Born approximation of quantum scattering
finds that the scattering length is proportional to the interaction strength [28]. Using a magnetic
Feshbach resonance the scattering length, and thus the interaction strength, can be tuned to almost
arbitrary positive and negative values by controlling an external magnetic field [14,18,29]. Feshbach
resonances have a pronounced impact on the research with ultracold atoms: There are atomic species
where the intrinsic scattering length does not allow for the attainment of a Bose-Einstein conden-
sate, such as 85Rb, 133Cs and 39K [18,30]. Optimal conditions for the attainment of a Bose-Einstein
condensate are reached if the scattering length is positive and not too large or too small [18]. A Fes-
hbach resonance can tune the scattering length into the desired interval and thus enables to produce
a considerably large Bose-Einstein condensate at all [18, 31–33]. Furthermore, Feshbach resonances
are used to obtain noninteracting condensates [18,32], in which dipolar effects can be dominant [34].

A few years after the first experimental realizations of a Bose-Einstein condensate, the investigation of
degenerate Fermi gases gained interest [18,28,35–37]. Also in these systems the interaction is control-
lable by the use of Feshbach resonances. A major research topic in the area of degenerate Fermi gases
is the investigation of the crossover between the Bardeen-Cooper-Schrieffer superfluid of fermionic
atoms and Bose-Einstein condensate of fermionic molecules (BEC-BCS crossover) [28, 37–39]. The
Feshbach tuning of the scattering length is key for the experimental observation of the BEC-BCS
crossover [18,39].

One of the most prominent research directions in the field of ultracold quantum gases are the optical
lattices for ultracold atoms [3, 40]. These lattices are typically created by a standing wave pattern
of counter-propagating laser beams. Depending on the spatial configuration of these laser beams,
various types of lattice structures such as cubic, hexagonal and Kagome have been realized [41].
The combination of an optical lattice and a Feshbach resonance leads to a high controllability of the
ultracold gas system. Thus, these optical-lattice systems are predestinated for the investigation of
quantum many-body physics that is described by well-known theoretical models, such as the Bose-
Hubbard or the Fermi-Hubbard model [3]. In addition, ultracold gases are accessible due to powerful
detection techniques, for example the time-of-flight method [3,42]. In this method the quantum gas
is released from the trapping potential, such that it expands freely, provided that the interactions
between the atoms are negligible at this stage. After a finite time the density distribution is mea-
sured. Correlation functions of the quantum many-body state are obtained out of the experimental
data [3,42]. Further measurement techniques include single-atom detection, which is used to measure
density distributions and correlation functions [41, 43, 44]. A famous result of ultracold gas experi-
ments with optical lattices is the measurement of the quantum phase transition from a superfluid to
a Mott insulator for bosonic atoms [3,45–49]. In order to achieve this, Ref. [46] loaded ultracold 87Rb
atoms into a three-dimensional optical lattice. The above mentioned quantum phase transition has
been observed by ramping the depth of the lattice, which changes the hopping amplitude relative
to the interaction strength in the Bose-Hubbard model. Correlations have been measured using the
time-of-flight method. There is a plethora of further studies that involve an optical lattice, such as
optical lattice clocks [50], Talbot interferometry [51], the realization of the Hofstadter model [5], the
moving and merging of Dirac cones in a honeycomb lattice [52] and the experimental realization of a
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Mott insulator of fermionic atoms [53]. By a strong confinement in certain spatial directions one- and
two-dimensional systems can be realized. In the 1D case, the strongly correlated quantum physics,
that is predicted by the theoretical models, is observed [3, 40, 54–61]. These studies demonstrate
the impact of optical lattices to the understanding of quantum many-body systems and show their
ability to simulate a wide class of models that appear in condensed matter physics. For example,
the vision of Ref. [53] is to use the knowledge found in the ultracold gas experiment for the deeper
understanding of superconductivity at high temperatures.

The high tunability of ultracold quantum gases enables for time-periodic driving. A famous ef-
fect that is related to a periodic drive is called dynamic localization [62–64]. The periodic shaking of
an optical lattice with a driving frequency that is larger than the width of the quasienergy band can
be described by an effective time-independent model within the tight-binding approximation. The
time-periodic drive renormalizes the coupling strength of this effective model [63]. Ref. [64] shows
that the ballistic spreading of an ultracold atomic cloud follows the predictions of the effective model.
For carefully chosen driving parameters the effective coupling strength vanishes, such that the atom
cloud is localized due to the time-periodic driving of the lattice. Other seminal works continued
this idea and observed the quantum phase transition between a superfluid and a Mott insulator just
by tuning the parameters of the drive [65–67]. This is possible, since the renormalized coupling
constant can be tuned relative to the interaction strength of the particles by the periodic driving.
Further prominent examples of exotic Floquet effects are the photon-assisted tunneling [68,69], the
creation of artificial gauge fields for neutral atoms [5,70] and the realization of topologically nontriv-
ial phases [4, 71–74]. Time-periodic driving can also be used in order to induce resonant behavior.
Ref. [75] applies a time-dependent magnetic field in the vicinity of a Feshbach resonance and ob-
serves the excitation of collective modes of a Bose-Einstein condensate. Further, Faraday waves,
which are related to a parametric resonance, have been observed in ultracold gas experiments with
periodic driving [2, 76–78], and the collective emission of matter-wave jets of a periodically driven
Bose-Einstein condensate has been reported in Ref. [7]. Periodically driven interacting quantum
many-body systems suffer from heating at long timescales, since the periodic drive imparts energy
into the system [79–82]. Reference [83] found with the use of an exact space-time mapping that heat-
ing can be completely suppressed for driving parameters, at which the periodically driven system
can be mapped to a static one. The absence of heating is related to Fano resonances that appear in
the heating rate [83].

1.3. Photonic Waveguide Arrays

Another promising research direction is given by photonic waveguide arrays. Light can be guided
in optical fibers which then act as waveguides. If multiple photonic waveguides are arranged in
an array or a lattice structure, they allow for the investigation of various effects of fundamental
research. Prominent examples are the observation of Fano resonances [9] and the field of topolog-
ical photonics, where topological effects are harnessed in order to suppress unwanted scattering in
photonic structures [84]. In this thesis, we focus on the dielectric and plasmonic waveguide arrays
which either operate with light at an optical wavelength or surface plasmon polaritons, a collec-
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tive excitation of electromagnetic waves and conduction electrons at the interface of a metal and a
dielectric. Both system are highly accessible in an experiment and are used to simulate the dynam-
ics in Schrödinger wave mechanics with time-dependent Hamiltonians [85]. This is possible by the
quantum-optical analog, which relates the time-evolution of Schrödinger equation to the propagation
of light in the waveguides, which is governed by the paraxial Helmholtz equation. Time-periodic
Hamiltonians are realized by a periodic change of the waveguide geometry along the propagation
direction. These properties have led to the implementation of artificial gauge fields for photons by
a periodically bending of the waveguide center [86–88] as well as the observation of dynamic local-
ization in a waveguide system [88, 89]. Further, Floquet topological insulators have been realized
in waveguide arrays [4, 90] and the stability of edge states to time-periodic perturbations has been
tested [87,91,92]. In optics, an imaginary refractive index leads to a spatially decaying electric field,
a fact that is known as Beer-Lambert law. This effect implies that with optical waveguide arrays
non-hermitian dynamics can be implemented [93,94], with a plethora of interesting phenomena such
as exceptional points [95], the non-hermitian skin effect [96], non-hermitian transparency [97] and
the realization of a fast, dissipative Thouless pump [98].

1.4. Outline of the Thesis

The main part of the thesis is structured into three chapters. As prelude, Chapter 2 gives a compre-
hensive review of Floquet theory formulated in the language of quantum mechanics. This chapter
is at the heart of the thesis, since all three main chapters are based on the Floquet theory. The
review starts by introducing a time-dependent transformation to the Floquet frame that enables to
generalize the concept of eigenstates to time-periodically driven systems. In this course, Floquet
Engineering within the high-frequency approximation is discussed. At last, a full theory that allows
for the calculation and analysis of Floquet eigenstates is introduced.

Chapter 3 contains the Floquet-Feshbach resonance theory. In ultracold gas experiments, the scat-
tering length is highly tunable with the use of Feshbach resonances, which are closely related to the
concept of Fano resonance discussed in sec. 1.1 [9]. Since the scattering length dictates the interaction
strength in ultracold gas systems, this implies a high controllability of the inter-particle interaction.
A common way to achieve this in an experiment is the use of a magnetic Feshbach resonance, where
the scattering length is adjustable by an external static magnetic field. However, the properties of
a magnetic Feshbach resonance, such as position and width, are not variable. An optical Feshbach
resonance overcomes these limitations, in this method the resonances are highly tunable, but a large
atom loss limits their applicability. In this thesis, we consider an alternative approach proposed in
Ref. [99]. The idea is to apply a time-periodic magnetic field in the vicinity of a magnetic Feshbach
resonance. As a result, the periodic drive induces new resonances. In this chapter we derive the
Floquet-Feshbach resonance theory which relates these driving-induced scattering resonances to the
well-known concept of a Feshbach resonance. Furthermore, the theory yields an analytic formula
that describes the scattering length in the vicinity of a resonance. Results are found for the harmon-
ically driven pseudo potential, which serves as a simple model that captures all the relevant physics.
For this model, driving-induced scattering resonances tune the scattering length to arbitrary positive
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and negative values. The Floquet-Feshbach resonance theory finds that both position and width of
these resonances are controllable by the parameters of the periodic drive. Furthermore, our theory
proves that atom loss due to inelastic collisions is minimal, which is beneficial for an experimental re-
alization. The Floquet-Feshbach resonance theory generalizes to driving schemes that include higher
harmonics. In this case, resonant atom loss is present. However, the lineshape of the loss coefficient
is asymmetric. This asymmetry is connected to the Fano physics in the Floquet structure of the
Hilbert space and leads to a smaller atom loss as compared to an optical Feshbach resonance. The
last part contains a multi-channel model of a magnetic Feshbach resonance under the influence of a
time-periodic magnetic field. This model goes beyond the description of a simple pseudo potential
and allows for a more accurate description of a possible experimental realization. In this case, the
periodic drive influences the system in two ways: It induces new resonances with properties that
depend on the details of the drive and it engineers already existing Feshbach resonances. An analysis
of these resonances is performed with the use of the Floquet-Feshbach resonance theory. We report
that many of the advantageous resonance properties found for the driven contact potential are also
present in the multi-channel model.

Chapter 4 is devoted to the Floquet-Bogoliubov transformation. This theory generalizes the concept
of a Bogoliubov transformation to the periodically driven case. In order to find results for a concrete
physical model, we specialize to the Lieb-Liniger model that describes a bosonic gas in 1D with a
short range interatomic potential. Again, a time-periodic modulation of the interaction strength
is assumed. In contrast to investigation of Floquet-Feshbach resonances within scattering theory,
here the many-body nature of the system is of relevance. Due to the entanglement and interactions
between the particles nontrivial correlations can appear in a quantum many-body system. The
low-energy excitations of the Lieb-Liniger model are determined by the Tomonaga-Luttinger Liquid
theory which in turn can be solved via a Bogoliubov transformation. The Floquet steady state solu-
tion of the periodically driven model is found by introducing a Floquet-Bogoliubov transformation.
The Floquet-Bogoliubov transformation distinguishes two cases: In the stability regions this method
finds the quasienergy spectrum and the Floquet steady states of a time-periodic Hamiltonian that
is quadratic in bosonic operators. In the instability regions, however, no such Floquet solution is
possible. Instead, the periodic drive induces a parametric resonance, a concept that is introduced
in Sec. 1.1 with the Paul trap. Using the Floquet-Bogoliubov transformation, stability charts and
selected expectation values are discussed. As a central result we find that the average number of
excitations diverges in the instability regions, signaling the presence of a parametric resonance. By
introducing a finite lifetime of the bosons these divergences regularize to finite maxima. This knowl-
edge is finally applied to the periodically driven Tomonaga-Luttinger Liquid using which correlation
functions are calculated. The Floquet-Bogoliubov theory predicts that the periodic driving of the
interacting one-dimensional bosonic gas induces standing density wave patterns at a wavelength that
is determined by the condition of a parametric resonance.

A direction-dependent filter for a Hamiltonian quantum ratchet is discussed in Chapter 5, where
we remain in the case of one dimension and discuss dynamic transport phenomena in the ratchet
model as well as the scattering by a time-periodic, dissipative impurity. The details of the model
are designed to fit with the conditions of the experimental realization of the ratchet and the filter
within a surface plasmon-polariton waveguide experiment. The first part of the chapter contains
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a ratchet model that is based on a time-periodically driven Su-Schriffer-Heeger Hamiltonian. If
the driving frequency is on resonance with the sublattice oscillations that appear in this model,
directed transport with the velocity of one unit cell per driving period is possible. An analysis of
the quasienergy spectrum with the use of Floquet-Bloch theory finds out that maximal transport
is related to a nontrivial topology. Further, the rectification of transport by the ratchet scheme
is analyzed in detail using a symmetry analysis of the model. We find that both magnitude and
direction of the rectified current depend on the initial state. This is unfortunate for systems where
an experimentalist has little control over the initial state, since in this case a directed current might
not be observed. The direction-dependent filter is designed to circumvent this issue. The filter
absorbs states that move in a certain direction while the states that move in the other direction pass
the filter almost unimpaired. The working principle of the filter is elaborated. In the mathematical
description, this filter is introduced as a time-periodic, non-hermitian impurity operator. For calcu-
lating transmission coefficients, we derive a Floquet S-matrix theory in the case of a time-periodic,
non-hermitian impurity. Asymmetric transmission coefficients, that characterize the quality of the
filter, are a central result. Using the Floquet S-matrix method we analyze the properties of this filter
theoretically. Our findings agree with the results of the waveguide experiment.
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Floquet theory plays a central role in this thesis. It allows a structured analysis of the time-
dependent Schrödinger equation with a Hamiltonian periodic in time. In Sec. 2.1 we introduce
Floquet theory to quantum mechanics and show that Floquet theory generalizes the concept of
eigenstates to periodically driven systems. It is briefly mentioned how properties of a quantum
system can be tailored by time-periodic driving in the sense of "Floquet Engineering". Sec. 2.2 deals
with the Floquet equation which is an eigenvalue equation for finding the Floquet steady states of
the time-periodic Hamiltonian.

2.1. Introduction to Floquet Theory in Quantum Mechanics

The goal of the Floquet description of quantum systems is to analyze and solve the time-dependent
Schrödinger equation

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉, (2.1)
where the Hamiltonian H(t) is time-periodic with period T , obeying H(t) = H(t + T ). The corre-
sponding driving frequency is fixed via the relation ω = 2π/T . A quantum system with time-periodic
Hamiltonian H(t) is called Floquet system or periodically driven quantum system [63,100]. The peri-
odic driving of Hamiltonian H(t) introduces an energy scale given by ~ω named as drive quantum.

2.1.1. Transformation to Time-Independent Frame and Introduction of
Floquet States

Floquet theory was introduced by the French mathematician Gaston Floquet in the year 1883 as a
theory for solving systems of coupled linear ordinary differential equations with periodic coefficients
[101]. Floquet theory applied to Schrödinger equation (2.1) states the formal existence of a time-
periodic unitary transformation UP(t) = UP(t+ T ), that transforms equation (2.1) to a Schrödinger
equation with a time-independent Hamiltonian [63,102–104]

i~∂t|ψ̃(t)〉 = H̃eff |ψ̃(t)〉. (2.2)

Here the transformed state is given by |ψ̃(t)〉 = U †P(t)|ψ(t)〉, and the time-independent effective
Hamiltonian reads

H̃eff = U †P(t)H(t)UP(t)− i~U †P(t)
∂

∂t
UP(t). (2.3)
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Note, that these statements are proven for finite-dimensional Hilbert spaces, in case of an infinite-
dimensional space the transformation UP(t) might not exist [63,100,105]. If a transformation UP(t)
exists, it is not unique [63]. Indeed, if UP(t) is multiplied by a time-independent unitary matrix Q,
the corresponding unitary transformation U ′P(t) = UP(t)Q also transforms the Schrödinger equation
(2.1) to a time-independent frame |ψ̃′(t)〉 = U ′†P |ψ(t)〉 with the effective Hamiltonian

H̃ ′eff = U ′†P (t)H(t)U ′P(t)− i~U ′†P (t)
∂

∂t
U ′P(t) = Q†H̃effQ. (2.4)

The choice of Q solely alters the description in the Floquet frame. However, we will see that the
physics stays unchanged.

The time-independent effective Hamiltonian (2.3) allows to generalize the concept of eigenstates
to the time-dependent Floquet setting. Consider therefore the eigenvalue equation of the effective
Hamiltonian [63,104]

H̃eff |φ̃α〉 = εα|φ̃α〉. (2.5)

Here the quasienergy εα is introduced and labeled by the quantum number α. The so called Floquet
modes are defined by mapping the eigenstates of the effective Hamiltonian back to the original
frame [63,104]

|φα(t)〉 = UP(t)|φ̃α〉. (2.6)
The Floquet modes (2.6) are time-periodic with period T and form a basis at each time. Based on
the Floquet modes (2.6) the Floquet states are defined as [63,100,106]

|ψα(t)〉 = e−iεα(t−t0)/~|φα(t)〉. (2.7)

The Floquet states (2.7) solve the time-dependent Schrödinger equation (2.1) and are thus regarded
as the steady states of the time-dependent Hamiltonian H(t). Here, the above formalism is used
in order to define quasienergies and Floquet modes and not for calculating them explicitly. Ref-
erence [104] goes beyond this and finds a time-dependent transformation that enables to solve a
Floquet problem for quasienergies and Floquet modes (2.6). We present this transformation in Sub-
sec. 4.7.1.

It is important to mention that there is an ambiguity in defining the quasienergies εα and the
Floquet modes |φα(t)〉. The quasienergies can be shifted by an integer multiple of ~ω, while the
Floquet modes are multiplied by a corresponding factor

εα → εα,m = εα +m~ω, (2.8a)
|φα(t)〉 → |φα,m(t)〉 = eimωt|φα(t)〉. (2.8b)

with m ∈ Z [100]. Substitution (2.8) is chosen such that the factor m~ω cancels out in the defi-
nition of the Floquet states (2.7). We will see that also the time-evolution operator is unimpaired
by substitution (2.8). It follows that m can be chosen such that all quasienergies lie in an interval
of length ~ω, while the solutions for different m are physically equivalent. A common choice is
to locate the quasienergies in the so called first Floquet Brillouin zone [−~ω/2, ~ω/2[ by defining
εα,m=0 ∈ [−~ω/2, ~ω/2[. In order to keep the notation simple, in the following the indexm is dropped
for quantities in the first Floquet Brillouin zone, such as εα = εα,m=0.
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2.1.2. Time-Evolution Operator

The time-evolution operator of a Floquet system can be constructed by using the properties of
the Floquet modes (2.6): As the Floquet modes (2.6) form a basis at each time, any arbitrary
state |ψ〉 can be expanded into them |ψ〉 =

∑
α |φα(t0)〉〈φα(t0)|ψ〉. Thus, only the time-evolution

of the Floquet modes is important, which is easily found with the use of Eq. (2.7), yielding the
time-evolution operator in the form

U(t, t0) =
∑
α

e−iεα(t−t0)/~|φα(t)〉〈φα(t0)|. (2.9)

At first, note the conceptual similarity of Eq. (2.9) to the time-evolution operator of a time-
independent quantum system. Instead of eigenenergies, the quasienergies εα appear in Eq. (2.9)
as dynamical phase, instead of the eigenfunctions the Floquet modes (2.6) show up. In summary,
the time evolution of a time-periodic quantum system can be seen as a time-dependent coherent
superposition of its Floquet steady states, where the amplitude of each steady state is determined
at initial time. A more compact expression of the time-evolution operator (2.9) is found by

U(t, t0) = UP2(t, t0) exp

[
− i
~
Heff(t− t0)

]
, (2.10)

with the two-point micromotion operator UP2(t, t0) =
∑

α |φα(t)〉〈φα(t0)| = UP(t)U †P(t0) and the
effective Hamiltonian in the original frame Heff =

∑
α εα|φα(t0)〉〈φα(t0)| = UP(t0)H̃effU

†
P(t0) [63].

With Eq. (2.10) it directly follows that the time-evolution operator for a single period is fully
determined by the effective Hamiltonian

U(t0 + T, t0) = e−iHeffT/~. (2.11)

Equation (2.11) is of interest as it allows for calculating the quasienergies and Floquet modes at
initial time by solving the eigenvalue problem of the time evolution operator

U(t0 + T, t0)|φα(t0)〉 = e−iεαT/~|φα(t0)〉. (2.12)

If the time-evolution operator is known, Eq. (2.12) is a common method for finding the quasienergy
spectrum [72, 100, 107], but it only yields the Floquet modes at initial time and not the full time
dependence. However, with the knowledge of U(t0 + T, t0) the time-evolution operator at integer
multiples of the driving period T , i.e. the stroboscopic time evolution, can be found by

U(t0 + nT, t0) = U(t0 + T, t0)n, n ∈ N. (2.13)

This shows together with Eq. (2.11) the key result that the stroboscopic time evolution of a Floquet
system is fully determined by the effective Hamiltonian in the original frame Heff and emphasizes
the importance of Heff in Floquet physics [108].

A further expression of the time-evolution operator U(t, t0) that is found in common literature
[63,102,109] is given by:

U(t, t0) = UP(t) exp

[
− i
~
H̃eff(t− t0)

]
U †P(t0). (2.14)
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The merit of equation (2.14) is that it divides the time-evolution into three descriptive steps. At
initial time, the system undergoes a "kick" [102] described by the transformation matrix to the
Floquet frame U †P(t0). Afterwards it is evolved by the effective Hamiltonian H̃eff from initial to final
time while at final time a second kick UP(t) appears.

At last, note that the time-evolution operator of a Floquet system is independent on the choice
of the Floquet Brillouin zone. This is seen most easily with Eq. (2.9) where any additional factor
introduced by Eq. (2.8) cancels out. Also the choice of multiplying the transformation UP(t) by any
time-independent unitary matrix Q does not have an effect on the time-evolution, as with Eqns. (2.4)
and (2.14) is is directly verified that an additional unitary Q cancels out.

2.1.3. Floquet Engineering in the High-Frequency Limit

Equation (2.14) shows that the time-evolution of a Floquet system is fully determined by the effective
Hamiltonian H̃eff and the transformation UP(t). In short, the Floquet time-evolution Eq. (2.14)
allows to simulate the time evolution with the time-independent effective Hamiltonian (2.3). Here
the term "Floquet engineering" enters the game, where the key is to tailor the time-periodic drive of
H(t) in such a way that a desired effective Hamiltonian is achieved, which in turn can show features
that are not accessible without the drive [63]. Famous examples of Floquet engineering in quantum
systems are the dynamic localization of a matter wave [62,64], the creation of artificial gauge fields in
ultracold quantum gases [5,70] and the realization of Floquet topological phases [4,71–74]. Often, and
especially for quantum many body systems, it is demanding to calculate the effective Hamiltonian
exactly. In case when the drive quantum ~ω is larger than the energy scale of the system, H̃eff and
UP(t) can be approximated by a high-frequency expansion [63]

H̃eff = H(0) −
∞∑

n=−∞
n6=0

H(n)H(−n)

n~ω

+
∞∑

n=−∞
n6=0

 [H(n), [H(0), H(−n)]]

2(n~ω)2
+

∞∑
l=−∞
l 6=0,n

[H(l), [H(n−l), H(−n)]]

3nl(~ω)2

+O
[

1

(~ω)3

]
(2.15a)

UP(t) = eG(t), G(t) =
∞∑

n=−∞
n6=0

e−inωtH(n)

n~ω

+
∞∑

n=−∞
n6=0

e−inωt[H(0), H(n)]

(n~ω)2
+

∞∑
l=−∞
l 6=0,n

e−i(n−l)ωt[H(−l), H(n)]

2n(n− l)(~ω)2

+O
[

1

(~ω)3

]
. (2.15b)

Here H(n) = 1/T
∫ T

0
dt einωtH(t) are the Fourier components of the Hamiltonian H(t). Equa-

tion (2.15a) visualizes that in leading order the effects of the Floquet drive on the effective Hamilto-
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nian is induced by products and commutators of the Fourier components of the Hamilton operator.
Physically, these terms allow to engineer the effective Hamiltonian such that it has the properties
of interests, e.g. induces the aforementioned artificial gauge fields. Equation (2.15) allows for the
perturbation analysis of certain effects related to time-periodic driving. A more detailed overview
of Floquet engineering is found in Refs. [63, 102]. In this thesis we go beyond the high-frequency
approximation and present in the next section a method that is capable of finding quasienergies and
Floquet states at an arbitrary driving frequency ω.

2.2. Floquet Equation

In this section the Floquet equation is introduced, which serves as an complementary approach to the
unitary transformation introduced in Subsec. 2.1.1. The Floquet equation is an eigenvalue equation
that allows for the calculation of quasienergies and Floquet modes of almost arbitrary time-periodic
Hamiltonians and is derived by inserting the Floquet states (2.7) into the Schrödinger equation (2.1).
It reads

[H(t)− i~∂t]|φα,m(t)〉 = εα,m|φα,m(t)〉. (2.16)

Equation (2.16) is set up in the so called Floquet space F = R
⊗
T being the product of configura-

tion space R, i.e. the Hilbert space where H(t) acts on, and the space T of bounded time-periodic
functions with period T [108, 110, 111]. With the introduction of Floquet space, time t is promoted
from a parameter to a coordinate [111]. Since F is larger than configuration space R, the spectrum
of eigenvalue equation (2.16) contains all Floquet Brillouin zones, such state the eigenfunctions
|φα,m(t)〉 are labeled by both α and Floquet Brillouin zone index m. This statement can be shown
by the fact that if there is a solution of Eq. (2.16) for some certain m ∈ Z, it can be extended to all
other Floquet Brillouin zones with the aid of Eq. (2.8).

2.2.1. Floquet Equation as Time-Independent Eigenvalue Equation

The Floquet equation (2.16) can be written as a time-independent eigenvalue equation by introducing
the Fourier decomposition of Floquet modes and Hamiltonian

|φα,m(t)〉 =
∞∑

n=−∞

e−inωt|φ(n)
α,m〉, (2.17a)

H(t) =
∞∑

n=−∞

e−inωtH(n). (2.17b)

Inserting Eq. (2.17) into Eq. (2.16), the Floquet equation becomes a time-independent eigenvalue
equation for the Fourier-components |φ(n)

α,m〉 of the Floquet modes (2.6):
∞∑

l=−∞

(H(n−l) − l~ωδn,l)|φ(l)
α,m〉 = εα,m|φ(n)

α,m〉. (2.18)
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(a) (b)

Figure 2.1.: (a) Sketch of a physical system (blue) subject to a time-periodic drive
of different harmonics (green and orange). The configuration space R is depicted by
a grey sphere. (b) Corresponding picture in Fourier representation. Here infinitely
many copies of the original Hilbert space labeled by channel number n with an addi-
tional offset potential −n~ω are depicted. The periodic drive couples these distinct
Hilbert spaces, where H(1) couples neighbors and H(2) next-nearest neighbors, as
sketched by colored arrows.

Equation (2.18) is a major result of this section, since it formulates the Floquet equation in a time-
independent way and thus maps a time-dependent problem to a time-independent one. The price to
pay is the enhanced complexity of the Floquet Hilbert space in comparison to the original Hilbert
space R. This is incorporated in Equation (2.18) by an additional multi-channel structure labeled
by the Fourier index n. Eq. (2.18) can be seen as an eigenvalue equation of an infinite dimensional
matrix

H =


. . . . . . . . . . . . . . .
. . . H(0) − (n− 1)~ω H(−1) H(−2) . . .
. . . H(1) H(0) − n~ω H(−1) . . .
. . . H(2) H(1) H(0) − (n+ 1)~ω . . .
. . . . . . . . . . . . . . .

 . (2.19)

Figure 2.1 visualizes this representation. The Floquet matrix (2.19) is partitioned into multiple
subspaces labeled by the channel number n, where each channel has an energy offset −n~ω. From
a physical point of view, each channel is associated with a certain number of drive quanta ~ω. This
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is now visualized further. Consider an atom interacting with a monochromatic quantized field. The
Floquet description of this system treats the field classically. Nevertheless, the energy offset −n~ω
allows to associate the nth Floquet channel to contain states with N0−n photons in the field, where
N0 is a large natural number [109]. This means that the Fourier index n can be related to the
number of photons the atom has absorbed or emitted, or generally speaking to the number of drive
quanta the system absorbed or emitted. While the time-averaged part of the Hamiltonian H(0) acts
on each subspace, the dynamical part of the Hamiltonian H(n), n 6= 0, couples different channels.
The couplings introduced by H(n), n 6= 0 correspond to n-drive quanta processes, e.g. H(±1) couples
neighboring channels and corresponds to one drive quantum processes, H(±2) couples next nearest
neighbors by a two-drive quanta process and so on. At this point we again emphasize that there is
no time-dependence in Eq. (2.18), the above mentioned processes determine the Fourier coefficients
|φ(n)
α,m〉 of the Floquet steady states.

Equation (2.18) can be solved numerically. A numerical scheme, that will be commonly used within
this thesis, introduces a cutoff mc ∈ N in Eq. (2.18) such that |φ(n)

α,m〉 = 0, ∀|n| > mc. This is
equivalent to truncating the Floquet matrix (2.19) to a finite size. The resulting finite-dimensional
eigenvalue equation is then solved by exact diagonalisation. In order to ensure that the numerics
yield accurate results, the cutoff mc has to be chosen large enough to guarantee that the Floquet
modes in a single Floquet Brillouin zone have converged, i.e. the Fourier coefficients near the cutoff
are close to zero in a numerical sense |φ(n)

α,m〉 → 0 for |n| . mc.

If the quasienergies and Floquet modes are found by solving the Floquet equation, the time-evolution
operator can be constructed with Eq. (2.9), so the whole information of our Floquet system is encoded
in the quasienergies and Floquet modes. This motivates the importance of the Floquet equation for
solving and analyzing time-periodic quantum systems.

2.2.2. Floquet Theory in Floquet Hilbert Space

The findings of the above subsection can be further formalized. In the following we provide a
rigorous theory of the eigenvalue equations (2.16) and (2.18) in Floquet space. The introduction
of this theory offers benefits which are used later in this thesis. For example, the theory helps for
a better understanding of the structure of Floquet space and allows to express theories in Floquet
space in a concise but complete way. We follow the considerations of Ref. [110]. At first, the following
scalar products on the different Hilbert spaces are defined [108]:

〈f, g〉 =

∫
dx f ∗(x)g(x), f(x), g(x) ∈ R, (2.20a)

(f, g) =
1

T

∫ T

0

dt f ∗(t)g(t), f(t), g(t) ∈ T , (2.20b)

〈〈f, g〉〉 =
1

T

∫ T

0

dt 〈f(t), g(t)〉, f(x, t), g(x, t) ∈ F . (2.20c)
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In Eq. (2.20a) we assumed that configuration space R is the space of square-integrate functions. Of
course, instead of position x the coordinate of the configuration space can also be assumed to be
a spin quantum number, number of lattice site, or others. Equation (2.20a) must then be changed
accordingly.

Let us now focus on a subtle point: It is desired to express the functions in T in a bra-ket no-
tation. Similar to the introduction of the basis |x〉 of position space [112], the basis states |t) with
t ∈ [0, T [ are introduced [110]. The |t) states are spanning the space T and obey the orthonormality
relation

(t′|t) = Tδ(t− t′), (2.21)

where δ(x) denotes the Dirac delta function. The completeness relation reads

IT =
1

T

∫ T

0

dt |t)(t|. (2.22)

Here and elsewhere IY denotes the identity on Hilbert space Y . With this new basis of T , time-
periodic wave functions |φ(t)〉 ∈ R are defined in Floquet space by [110]

|φ〉〉 =
1

T

∫ T

0

dt|φ(t)〉|t). (2.23)

Equation (2.23) is similar to expressing a wave function in the position basis |ψ〉 =
∫
dx ψ(x)|x〉

and manifests the role of the time t as a coordinate of the Floquet Hilbert space. The double-ket
notation |φ〉〉 is used in this thesis to denote states of the Floquet space F . Conversely to (2.23),
the time-dependent wave function can be obtained by performing with Eq. (2.21) the projection

(t|φ〉〉 = |φ(t)〉. (2.24)

A time-dependent operator A(t) obeying A(t+ T ) = A(t), such as the Hamiltonian H(t), is defined
in Floquet space similar to Eq. (2.23) as

Â =
1

T

∫ T

0

dt|t)A(t)(t|. (2.25)

Here and elsewhere the hat marks that Â is acting on Floquet space. The action of Â on an element
|φ〉〉 of Floquet space is given by Â|φ〉〉 = 1/T

∫ T
0
dt A(t)|φ(t)〉|t), i.e. as expected, at each time t the

operator A(t) acts on state |φ(t)〉. In contrast, the time-derivative operator does not follow definition
(2.25), since it acts nontrivially on the space T . It is defined via its action on an element of Floquet
space:

∂̂t|φ〉〉 =
1

T

∫ T

0

dt [∂t|φ(t)〉]|t). (2.26)

Due to the periodic boundary conditions of elements of T the operator i∂̂t is hermitian. With
Eqns. (2.25) and (2.26) there is everything together in order to write down Floquet equation (2.16)
in Floquet space

Ĥ|φα,m〉〉 = εα,m|φα,m〉〉, (2.27)
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with the so called Floquet Hamiltonian

Ĥ = Ĥ − i~∂̂t. (2.28)

Like in Eq. (2.16), the eigenfunctions of (2.27) are labeled by α and m. The Floquet Hamiltonian
(2.28) inherits hermiticity from H(t). Equation (2.27) is an important result, since it allows a short-
hand notation and reads like a time-independent Schrödinger equation in the Floquet Hilbert space.

But how to include the Floquet matrix (2.19) into this theory? This is done by introducing a
Fourier basis |n) with n ∈ Z by a temporal Fourier transform of the |t) states [110]

|n) =
1

T

∫ T

0

dt e−inωt|t), n ∈ Z. (2.29)

Note that Eq. (2.29) is similar to introducing a momentum basis in common quantum mechanics
[112]. By projecting on (t| the temporal form of the Fourier basis states is revealed to be

(t|n) = e−inωt, (2.30)

which is a monochromatic complex exponential function being commonly used for Fourier transfor-
mation. The Fourier basis is orthonormal (n|m) = δn,m and complete [110]

IT =
∞∑

n=−∞

|n)(n|. (2.31)

The introduction of the Fourier states |n) allows to express an abstract Floquet state |φ〉〉 ∈ F in
different representations. The definition (2.23) can be interpreted as a "time-representation" of an
state |φ〉〉. Similarly, a Fourier representation of |φ〉〉 can be found with the use of Eq. (2.31) by

|φ〉〉 =
∞∑

n=−∞

|φ(n)〉|n). (2.32)

Here the Fourier components

|φ(n)〉 =
1

T

∫ T

0

dt einωt|φ(t)〉 (2.33)

are introduced, Eq. (2.33) fits with the definition of the inverse transformation (2.17a). A Fourier
representation of an operator Â, which is defined via Eq. (2.25), is found with

Â =
∞∑

n,m=−∞

|n)A(n−m)(m|, (2.34)

where the Fourier components read

A(n) =
1

T

∫ T

0

dt einωtA(t). (2.35)
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Also Eq. (2.35) fits with the inverse transformation (2.17b). The Fourier representation of the time-
derivative operator (2.26) is found using the definition of the Fourier basis (2.29) and the Fourier
components Eq. (2.33) by its action on a state

∂̂t|φ〉〉 =
∞∑

n=−∞

(−inω)|φ(n)〉|n). (2.36)

Thus, the time-derivative operator reads in the Fourier basis

∂̂t = IR ⊗
∞∑

n=−∞

(−inω)|n)(n|. (2.37)

This gives us the possibility to write the Floquet Hamiltonian in Fourier representation

Ĥ =
∞∑

n,m=−∞

[
|n)(H(n−m) − δn,mn~ω)(m|

]
. (2.38)

Equation (2.38) is an elegant shorthand notation of the Floquet matrix (2.19), the eigenvalue problem
of (2.38) is equivalent to Eq. (2.18). This demonstrates that Eqns. (2.16) and (2.18) are "time" and
Fourier representations of an abstract Floquet equation (2.27).

2.2.3. Properties of Floquet Modes and Expectation Values

In this subsection the orthonormality and completeness conditions of the Floquet modes are pre-
sented and expectation values on Floquet space are defined. As eigenfunctions of a hermitian oper-
ator the Floquet modes form a basis and fulfill the orthonormality relation [108]

〈〈φα,n|φβ,m〉〉 = δα,βδn,m. (2.39)

Note that solutions of different Floquet Brillouin zones are orthogonal to each other. With Eqns. (2.8)
and (2.39) the Fourier components of solutions in different Floquet Brillouin zones are related by

|φ(n)
α,m〉 = |φ(n+m)

α,0 〉. (2.40)

With (2.40) it follows that the Floquet modes from one Floquet Brillouin zone are orthogonal at
each time

〈φα,0(t)|φβ,0(t)〉 = δα,β. (2.41)

The completeness relation in Floquet space reads [108]

IF =
∑
α,m

|φα,m〉〉〈〈φα,m|, (2.42)

where the sum in Eq. (2.42) includes all Floquet Brillouin zones. With the identity δ(x) = 1
2π

∑
m e

imx

a completeness relation on R is extracted from Eq. (2.42):

IR =
∑
α

|φα,0(t)〉〈φα,0(t)|. (2.43)
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Here the summation runs only within one Floquet Brillouin zone.

At last, we provide a short hand notation for a time-averaged expectation value of a time-periodic
operator A(t), if the system is in a Floquet state

〈〈Â〉〉α,m = 〈〈φα,m|Â|φα,m〉〉. (2.44)

If it is clear in which state the system is, the indices α,m are often dropped and it is simply written
as 〈〈Â〉〉. In the time- and Fourier representation the expectation value reads

〈〈Â〉〉α,m =
1

T

∫ T

0

dt〈φα,m(t)|A(t)|φα,m〉 =
∞∑

n,s=−∞

〈φ(n+s)
α,m |A(s)|φ(n)

α,m〉. (2.45)

The time-representation of 〈〈Â〉〉α,m in Eq. (2.45) shows why we use the term "time-averaged expec-
tation value". Equation (2.45) is further useful to generalize observables from the time-independent
to the Floquet case.

2.2.4. Calculation of Transformation and Effective Hamiltonian

Here we connect to Subsec. 2.1.1 and give formulas for the unitary transformation UP(t) and the effec-
tive Hamiltonian H̃eff in terms of quasienergies εα,m and Floquet modes |φα,m(t)〉. If the quasienergies
and Floquet modes are known, e.g. by the solving of the Floquet equation Eq. (2.27), these formulas
can be used to calculate UP(t) and H̃eff explicitly. As a prerequisite, we need a time-independent,
orthonormal basis |α〉 of the configuration space R. For example, the Floquet modes at any time,
with indices out of the first Floquet Brillouin zone, |φα,0(t)〉 are such a basis, see Eqns. (2.41) and
(2.43). With the basis |α〉 and Eq. 2.6 a unitary transformation to a Floquet picture is found by

UP(t) =
∑
α

|φα,m〉〈α|, (2.46)

while with Eq. 2.5 the effective Hamiltonian reads

H̃eff =
∑
α

εα,0|α〉〈α|. (2.47)

Note, that the choice of the basis |α〉 is equivalent to multiplying UP(t) by a time-independent,
unitary matrix Q as discussed in Eq. (2.4) and that the |α〉 states correspond to the |φ̃α〉 states
defined in Subsec. 2.1.1.
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The study of ultracold quantum gases generated knowledge on a wealth of phenomena that are
related to quantum many-body physics. Famous examples are the crossover between the Bardeen-
Cooper-Schrieffer superfluid of fermionic atoms and Bose-Einstein condensate of fermionic molecules
[28, 37–39] and the observation of the quantum phase transition between a superfluid and a Mott-
insulating state [3, 45–49]. For all of these studies, the high tunability and accessibility of ultracold
gas experiments is the key. One of the quantities over which the experimentalist have control is the
interaction strength between the atoms. Using a Feshbach resonance, the interaction strength can
be tuned to almost arbitrary positive or negative values. Feshbach resonances are a concept from
scattering theory [113,114] and allow for a tuning of the scattering length. The scattering length in
turn determines the interaction strength, which are linearly related in the Born approximation [28].
A common way to realize such a tuning of the scattering length in an ultracold gas experiment is to
use a magnetic Feshbach resonance [18]. In this method, the scattering length can be adjusted to
almost arbitrary positive and negative values by choosing the strength of a magnetic field. Magnetic
Feshbach resonances only exist at predetermined magnetic field strengths for given atomic species
while also the width is preset, which means that magnetic Feshbach resonances are not intrinsically
tunable. These limitations can be overcome by optical Feshbach resonances. In this method a ground
state atom is coupled to an excited electronic state by a laser beam [115], as a result a Feshbach res-
onance is induced. The benefit of the optical Feshbach resonance is the tunability of both resonance
frequency and width by the optical drive. However, optical Feshbach resonances suffer from a strong
drawback: Typically, the excited electronic state that the laser couples to, has a finite lifetime due
to the spontaneous emission of photons. As a result, both the range of tunability of the scattering
length is limited to finite values and inelastic collisions are enhanced. This is commonly not of favor
for ultracold gas experiments, since the inelastic collisions introduce a decay into the dynamics of
the ultracold gas.

A promising proposal that resolves this issue has been made in Ref. [99], which investigates the
periodic modulation of a magnetic field in the vicinity of a Feshbach resonance. As a result, the
drive induces new scattering resonances that tune the scattering length to almost arbitrary positive
and negative values, while resonance position and width depend on the parameters of the drive.
What is really remarkable is that in combination with this high tunability the inelastic collisions
are relatively low [116]. This makes this method more favorable compared to optical Feshbach res-
onances. An interesting point from the theory side is that the description of these driving-induced
scattering resonances includes the case of strong driving, such that the use of Floquet theory is nec-
essary. However, the relation of these recently found driving-induced resonances to the well-known
concept of Feshbach resonances is still unclear. While Ref. [116] states that such a relation would
only hold at weak driving, Ref. [117] qualitatively found a connection between these new resonances
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and Fano-Feshbach physics in the Floquet picture. However, a full theory that rigorously provides
this connection and systematically calculates parameters such as resonance position and width is
still lacking. In this chapter, we will resolve this issue and derive a theory of Feshbach resonances in
the Floquet Hilbert space. A remarkable thing is that this theory enables a full qualitative under-
standing of the physics of these driving-induced Floquet-Feshbach resonances in a relatively simple
picture. Further, we are able to quantitatively calculate both resonance position and width in the
whole parameter range. As a major result will find out that these resonance properties are highly
tunable by the parameters of the periodic drive. In the following, we give an outline of this chapter.

In Sec. 3.1 a relation between the scattering length and the interaction strength in the ultracold
gas description, that is of central importance to this chapter, is provided Section 3.2 introduces the
reader into the theory of quantum scattering. Here we define the pseudo potential which is singu-
lar at the origin, and resembles the scattering properties of an actual inter-atomic potential in the
limit of low energies. At the same time, the mathematical description of the scattering by a pseudo
potential is kept simple. Section 3.3 is devoted to the theory of Feshbach resonances. It starts with
a brief introduction and provides a simple but nontrivial theoretical model of a Feshbach resonance.
In Sec. 3.4, commonly used realizations of Feshbach resonances in ultracold gases are discussed.
We continue with our Feshbach resonance model by applying it to a multi-channel description of
a magnetic Feshbach resonance. A brief summary of the Floquet scattering theory is presented in
Sec. 3.5.

The scattering properties of the sinusoidally driven pseudo potential are calculated in Sec. 3.6.
This model is explicitly suited in order to describe the scattering of ultracold atoms. The Floquet
equation is solved with continued fractions, as a result driving-induced Floquet-Feshbach resonances
are reported.

Motivated by these findings, we formulate the Floquet-Feshbach resonance theory in Sec. 3.7. As
an ultimate goal we derive a simple formula that describes the scattering length of a resonance.
Further, the theory gives mathematical expressions for the position and the width of the resonance,
which allows for quantitative predictions. A systematic analysis of both position and width found
by the Floquet-Feshbach resonance theory is performed. The section is rounded off by showing that
inelastic scattering is not resonantly enhanced for these resonances. Section 3.8 introduces higher
harmonics into the drive. Also, for this case a Floquet-Feshbach resonance theory is derived that ap-
proximates the actual scattering length accurately. We discuss the influence of this higher harmonic
drive on the Floquet-Feshbach resonances, as a key result we find that resonant inelastic scattering
is induced which is asymmetric around the resonance. This asymmetry is related to the special
structure of the Floquet Hilbert space. Section 3.9 gives actual values of length and frequency scales
that are relevant to an experimental application of this theory.

The pseudo potential describes resonant scattering in the vicinity of a magnetic Feshbach reso-
nance. However, there are magnetic Feshbach resonances where this approximation is only valid in
a small magnetic field range. In Sec. 3.10 we overcome this limitation and bring in periodic driving
in the multi-channel description of a magnetic Feshbach resonance, which yields for an investigation
of Floquet-Feshbach resonances on a much wider magnetic field range. For a simple mathematical
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description that still captures the relevant physics we come back to the multi-channel Feshbach
model that is introduced in Sec. 3.3, but this time we assume time-periodic parameters. The scat-
tering length is extracted from the numerical Floquet scattering solution of the periodically driven
multi-channel model. As a result, the periodic drive both induces new resonances and engineers
already existing ones. The Floquet-Feshbach resonance theory provides a detailed analysis how
these resonances are influenced by the drive. We propose to realize this model in low-field magnetic
Feshbach resonances. This has the advantage, that lower driving frequencies and smaller magnetic
field amplitudes can be used in order to reach the strongly driven limit. We specialize our model to
the broad magnetic Feshbach resonance of 133Cs at a magnetic field strength of 30 G that is reported
in Ref. [30]. Here, effects that are related to the strong Floquet driving are clearly visible. We point
out that the multi-channel model obtains more accurate results compared to the plain periodically
driven pseudo potential.

We conclude with Sec. 3.11.

3.1. Relation of Interaction Strength and Scattering Length
in Ultracold Quantum Gases

The goal of this section is to relate scattering theory to the many-body physics of ultracold quantum
gases. Here, a connection of the two areas of physics is exemplary shown for the well-known Gross-
Pitaevskii mean-field description of a Bose-Einstein condensate. In this theory the relevant quantity
is the order parameter of the condensate ψ(r, t) which is for low enough temperatures and a dilute
gas connected to the condensate density by n(r, t) = |ψ(r, t)|2. In this regime the dynamics of the
order parameter is given by the well-known Gross-Pitaevskii equation [21,28]

i~
∂

∂t
ψ(r, t) =

[
−~2∆

2m
+ V (r, t) + g|ψ(r, t)|2

]
ψ(r, t). (3.1)

In Eq. (3.1), ∆ is the Laplace operator, m the boson mass, V (r, t) an external potential and g the
interaction strength. The Gross-Pitaevskii equation (3.1) has the form of a Schrödinger equation
with an additional non-linear term that comes in due to inter-particle interactions. In Eq. (3.1)
short range interactions are assumed. In the so called Born-Oppenheimer approximation the actual
inter-atomic potential is approximated by the scattering length. The scattering length in turn, is
accessible via the scattering theory and gives, in a rough approximation, the radius of the cross
section of the atoms. Within the Born-Oppenheimer approximation the interaction strength g is
found to be proportional to the scattering length a [28]:

g =
4π~2a

m
. (3.2)

Equation (3.2) is of central relevance to this thesis, since it connects the interaction strength to
the scattering length which can be calculated with the use of scattering theory. In Sec. 1.2 we
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3. Floquet-Feshbach Resonance Theory

discussed that the tuning of the scattering length with the use of a Feshbach resonance lead to
various breakthroughs in the field of ultracold quantum gases. In the following sections Feshbach
resonances are introduced in a rigorous way, as a starting point we review scattering theory in the
next section.

3.2. Theory of Quantum Scattering

Scattering theory is the cornerstone to investigate the scattering of particles and waves in a vast
amount of physical scenarios. Traditionally, the theory has been used in order to calculate cross
sections which could be compared to the outcome of a scattering experiment [113]. Here, the
interest in scattering theory comes due to its importance for ultracold quantum gases, where we saw
in Eq. (3.2) that the scattering length is proportional to the interaction strength in the quantum
many-body description. We give in Subsec. 3.2.1 a brief introduction to the most relevant concepts of
scattering theory, which is based on the knowledge of Refs. [113,118,119]. Subsection 3.2.2 contains
the partial wave expansion which is a method that is used later for finding the scattering properties of
given model systems. In Subsec. 3.2.3 the scattering length is introduced. Subsection 3.2.4 discusses
the short-range pseudo potential, that is of central relevance to this chapter.

3.2.1. The Key Concepts of Quantum Scattering Theory

Here we give an introduction to prominent definitions of the scattering theory of quantum particles.
For the sake of simplicity we assume here two particles with no internal structure. The Hamiltonian
describing this process in the center-of-mass frame of reference reads

H(r) = − ~2

2µ
∆ + V (r). (3.3)

In Eq. (3.3) µ = (m1m2)/(m1 + m2) denotes the reduced mass, which depends on the individual
masses mi of the two particles, ∆ represents the Laplace operator in three dimensions and V (r) is
the inter-particle potential depending solely on the particle separation r. For the following theory
to work it is assumed that the potential V (r) converges faster to zero than 1/r2 [113], where r is
the modulus of r. For example, the commonly known Lennard-Jones potential or the hard sphere
potential fulfill this condition. Although a realistic scattering process is always time-dependent, a
time-independent analysis of (3.3) allows accurate predictions of measurable quantities [113]. Here
a plane wave with momentum k along the z-direction and energy E = ~2k2/(2µ) is assumed. At
asymptotically large distances r → ∞ the wave function that describes the scattering process can
be written as a sum of the plane wave and an outgoing spherical wave [113,119]

ψ(r) = eikr + f(Ω)
eikr

r
, for r →∞. (3.4)

The outgoing spherical wave is induced by the scattering process while the scattering amplitude
f(Ω) characterizes the strength of this scattering process. The scattering amplitude depends on the
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3.2. Theory of Quantum Scattering

solid angle Ω and is related to the differential cross section dσ
dΩ
, a quantity that can be measured

in an experiment. Note that the solid angle Ω = (θ, φ) is characterized by the polar angle θ and
the azimuthal angle φ. The differential cross section is defined as the flux of the scattered wave
probability current jscattdA through an infinitesimal area dA = r2dΩ at asymptotically large r,
divided by dΩ and incident current density jin [113]

|jin|
dσ

dΩ
dΩ = jscatterr

2dΩ. (3.5)

Here er is the unit vector pointing in radial direction. With the probability current density for a
given wave function j = ~[ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)]/(2iµ) it holds with Eq. (3.4) that jin = ~k/µ,
while the current density of the scattered wave is given by jscatt = ~k|f(Ω)|2er/(µr

2)+O(1/r3). Thus
the differential cross section is simply given by the modulus squared of the scattering amplitude

dσ

dΩ
= |f(Ω)|2. (3.6)

The total cross section is defined as the integral of Eq. (3.6) over the full solid angle

σ =

∫
Ω

dΩ|f(Ω)|2 (3.7)

and characterizes the total amount of scattered particle flux. At last, we present the optical theorem
[113,119]

σ =
4π

k2
imagf(θ = 0, φ), (3.8)

which comes from the fact that the interference of the plane and the spherical wave in forward
direction θ = 0 is related to the total amount of scattered probability current [113,119].

3.2.2. Partial Wave Expansion

If the scattering potential is radial symmetric, i.e. V (r) = V (r), the partial wave expansion can be
used in order to analyze and solve the scattering problem. As a starting point we note that V (r)
commutes with the angular momentum operator L = −i~r ×∇, so that the wave function can be
expanded in spherical harmonics Yl,m(Ω), which are the eigenfunctions of L2 and Lz [112]. Here
l denotes the angular momentum quantum number and m the magnetic quantum number. For a
wave-vector of the incoming plane wave that points in z-direction k = kez the problem becomes
cylindrical symmetric around the z-axis. It is thus sufficient to expand the wave function in solutions
with m = 0, which are proportional to the Legendre-polynomials Pl(x) [120]. Thus the partial wave
expansion of the wave function reads

ψ(r, θ, φ) =
∞∑
l=0

Rl(r)Pl(cos(θ)). (3.9)

Here Rl(r) is called radial wave function, l denotes the angular momentum quantum number. The
wave function with l = 0 is called the s-wave part, l = 1 the p-wave part and so on. Inserting
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3. Floquet-Feshbach Resonance Theory

(3.9) into the Schrödinger equation and separating the different l, the radial Schrödinger equation
is derived

[∆r + k2 − veff ]Rl(r) = 0. (3.10)

Here ∆r = r−2∂rr
2∂r is the radial Laplacian, and veff(r) = V (r)2µ/~2 + l(l + 1)/r2 is the effective

potential involving a centrifugal term. Note that in Eq. (3.10) we divided by ~2/(2µ) such that the
energy of the scattered wave is encoded by the term k2. In order to characterize the influence of
the scattering potential on the radial wave function, Eq. (3.10) is first solved in the absence of the
potential V (r) = 0. In this case Eq. (3.10) corresponds to the Schrödinger equation of a free particle
in three dimensions. For each angular momentum l two linear independent solutions are found

Rreg
l (r) = jl(kr), R

irr
l (r) = yl(kr), (3.11)

where jl(x) and yl(x) are the spherical Bessel functions of first and second kind, respectively. Their
explicit expressions are given by [120]

jl(x) = (−x)l
(

1

x

d

dx

)l
sin(x)

x
, yl(x) = −(−x)l

(
1

x

d

dx

)l
cos(x)

x
. (3.12)

The superscript "reg" denotes the fact that Rreg
l (r) remains regular as r → 0, while Rirr

l (r) becomes
irregular in this limit. This behavior is easily verified using Eq. (3.12). The plane wave can be
expanded into spherical waves by [113,119]

eikr = eikr cos(θ) =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos(θ)). (3.13)

This shows that without the presence of a scattering potential, only the regular solutions jl(kr)
are present. Now we take a look at the situation for a non-vanishing scattering potential V (r).
At low radii, where V (r) has a notable impact, the actual form of the radial wave function Rl(r)
can become quite complex and has to found for each problem separately. But at large radii, we can
make a statement that is generic for all admissible potentials V (r). In order to do so, the asymptotic
behavior of of the spherical Bessel functions is of importance [113]

jl(x) ≈
sin(x− lπ

2
)

x
, yl(x) ≈

cos(x− lπ
2
)

x
, as x→∞. (3.14)

Any solution of the scattering problem with non-vanishing V (r) can be written at large radii by a
superposition of the asymptotic forms (3.14) [18,113,119]:

Rl(r) ∝
sin(kr − lπ

2
+ δl(k))

kr
, (3.15)

where the mixing of the two solutions is parameterized by the momentum-dependent scattering
phase shift δl(k). Eq. (3.15) is the key result of this subsection, since it shows that the influence of
the scattering process can be described by a single quantity for each l, namly the scattering phase
shift δl(k). As indicated by the name "scattering phase shift", the potential V (r) shifts the phase of
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3.2. Theory of Quantum Scattering

the wave function at large distances by the amount of δl(k) compared to the case of V (r) = 0. The
knowledge of the δl allows to calculate the scattering amplitude

f(θ) =
∞∑
l=0

f(l)Pl[cos(θ)], with f(l) =
2l + 1

k
eiδl(k) sin(δl(k)), (3.16)

where f(l) are called partial-wave scattering amplitudes [113]. Eq. (3.16) is found by comparing
Eq. (3.4) to Eqns. (3.13) and (3.15) [119]. The total cross section is found with the properties of the
Legendre polynomials to be [113,118,119,121]

σ =
∞∑
l=0

σ(l), with σ(l) =
4π

k2
(2l + 1) sin2(δl(k)). (3.17)

Note that the scattering cross section can be calculated if all scattering phase shifts are known. This
demonstrates the importance of the scattering phase shifts: They allow for an intuitive introduction
on the level of the radial wave function and enable for calculating important scattering quantities
such as the total cross section (3.17). The scattering phase shifts in turn have to be determined by
the actual solution of each scattering problem.

For indistinguishable particles the overall scattering wave function has to be symmetrized in the
case of bosons and antisymmetrized in the case of fermions. This implies that the cross section for
each partial wave is multiplied by a factor gl [18, 115,119]:

σ(l) = gl
4π

k2
(2l + 1) sin2(δl(k)), (3.18)

where gl = (1 ± (−1)l), with the plus sign standing for bosons and the minus sign standing for
fermions. As a result, bosons only scatter in partial wave with even l, while fermions scattering is
restricted to odd l. For the case of s-wave scattering, which is of central relevance to this thesis,
we have g0 = 2 for bosons and g0 = 0 for fermions, such that the cross section for bosons is
doubled compared to the case of distinguishable particles, while the s-wave cross section for fermions
vanishes.

3.2.3. Scattering Length

In the limit of vanishing energy E → 0 the description of scattering becomes very simple. In order
to perform the limit E, k → 0 the following expression of the scattering amplitude Eq. (3.16) is of
importance

− 1

f(l)

=
1

2l + 1

(
− k

tan[δl(k)]
+ ik

)
. (3.19)

In the limit k → 0 the tangent of the scattering length depends in the form of a power law on the
momentum tan(δl(k)) ∝ k2l+1 With Eq. (3.19) it follows that the terms with small l dominate the
scattering physics in this limit [113, 118]. For the case of s-wave scattering, which is most relevant
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3. Floquet-Feshbach Resonance Theory

to this thesis, the scattering length ascatt is defined as the proportionality factor of this power law
behavior [113,118]

− lim
k→0

k−1 tan(δ0(k)) = ascatt. (3.20)

The s-wave scattering length Eq. (3.20) does not depend on the angles θ, φ. Thus, s-wave scattering is
isotropic and the total cross section reads σ0 = 4π|ascatt|2. Note that the scattering length Eq. (3.20)
does not depend on the momentum k. The interesting point is that all scattering properties, such
as differential and total cross section, are determined by the scattering length ascatt, if only s-wave
scattering is of relevance. This case readily applies to the scattering of bosons in an ultracold gas
experiment.

It is useful to generalize the scattering length to finite energies E by introducing the energy-dependent
scattering length aE as [122]:

aE(k) = −tan(δ0(k))

k
. (3.21)

With Eq. (3.19) we have −f−1
(0) = a−1

E + ik. The true scattering length (3.20) is then found by
lim
k→0

aE(k) = ascatt.

3.2.4. The Pseudo Potential

For realistic scattering potentials the calculation of the scattering amplitudes may be involved.
In this subsection the so called pseudo potential is introduced, which allows to find all scattering
properties within a simple calculation. The pseudo potential is defined by the operator

V pseudo
a (r) = lim

s→0+

~2

2µ

a

s2
δ(r − s) ∂

∂r
r, (3.22)

and its strength is parameterized by the length a [123,124]. The operator ∂rr acts on a radial wave
function that is to the right of the potential. In a later part of this thesis matrix elements of the
pseudo potential have to be calculated. In this case Eq. (3.22) is genrealized, such that ∂rr acts to
wave functions that are both to the left and to the right of the potential [123,124]:

V pseudo
a (r) = lim

s→0+

~2

2µ

a

s2
δ(r − s)

←→
∂

∂r
r, (3.23)

The double arrow notation that is defined by the action of the pseudo potential on the radial wave
functions ψ(r), φ(r):

ψ(r)

[
lim
s→0+

~2

2µ

a

s2
δ(r − s)

←→
∂

∂r
r

]
φ(r) = lim

s→0+

[
∂

∂r
rψ(r)

]
~2

2µ

a

s2
δ(r − s)

[
∂

∂r
rφ(r)

]
, (3.24)

i.e as already discussed, the operator ∂
∂r
r acts on both the radial wave function to the left ψ(r) and

the right φ(r). In the case that ψ(r) = 1 Eq. (3.22) is recovered. In the forms (3.22) and (3.23) the
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3.2. Theory of Quantum Scattering

pseudo potential is restricted to s-wave scattering at low energies. For a higher partial wave index l
and finite energies E extensions of Eq. (3.23) exist [123,124], which are not of relevance to this thesis.

In order to understand the physical meaning of the pseudo potential, we give a brief introduction. A
detailed derivation is found in Refs. [117,121]. Initially, the pseudo potential was designed to absorb
a hard sphere potential, i.e. the boundary condition R(r) = 0, ∀r < a0, with a0 as an arbitrary
length, onto a boundary condition for the radial wave function at the origin [124, 125]. In order to
do so, the wave function outside the potential r > a0 is extended to regions inside. For small k, the
s-wave scattering phase shift of the hard sphere is given by δ0 ≈ −ka0, while the pseudo potential
with a = a0 leads to identically the same behavior. This is the main point: If we are interested
in describing the scattering phase shift we can replace the actual potential by the pseudo potential
with the length parameter a given by the appropriate s-wave scattering length. This approximation
is valid, if the wavelength λ = 2π/k is longer than the range of the actual potential.

Before the scattering properties of the pseudo potential are calculated, the pseudo potential is
compared to a bare delta function. Consider therefore the regular and irregular solution of the
free radial Schrödinger equation in the case of s-wave scattering: Rreg(r) = sin(kr)/(kr) and
Rirr(r) = cos(kr)/(kr). We perform the following integrals

∫∞
0
dr r2 lims→0+

δ(r−s)
s2

Rreg(r) = 1,

∫ ∞
0

dr r2 lim
s→0+

δ(r − s)
s2

Rirr(r)→∞, (3.25a)∫∞
0
dr r2vpseudo

a (r)Rreg(r) = a,

∫ ∞
0

dr r2vpseudo
a (r)Rirr(r) = 0, (3.25b)

with vpseudo
a (r) = V pseudo

a (r)2µ/~2. The divergence appearing when evaluating the bare Dirac delta
function is turning to zero when we are dealing with the pseudo potential. The result for the regular
solution remains, however, unchanged. Thus, the radial derivative inside the pseudo potential is
used for regularization issues since it projects the 1/r divergences out which come in by evaluating
the pseudo potential with the irregular solution Rirr(r) at the origin. Since a general radial wave
function can always be written as a superposition of regular and irregular solution, no divergences of
the type of Eq. (3.25) appear when we consider the pseudo potential instead of a bare delta function.

We are now able to calculate scattering properties of the pseudo potential, for example the scattering
amplitude f . An ansatz is chosen to be

R(r) =
sin(kr)

kr
+ f

eikr

r
, (3.26)

where the first term stems from the s-wave part of the partial wave expansion of the plane wave
(3.13). For calculating the scattering amplitude f the radial Schrödinger equation (3.10) is integrated
on a sphere of radius rε with center r = 0 [117]. There are two relevant steps for this calculation.
The integral over the kinetic energy is evaluated using the divergence theorem [117]

1

4π

∫
Brε (0)

d3r ∆R(r) = r2 ∂

∂r
R(r)|r=rε , (3.27)
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while R(r) is assumed to be a function with zero angular momentum obeying ∆R(r) = ∆rR(r).
The other relevant part is the integral over the pseudo potential, which leads to

1

4π

∫
Brε (0)

drr2dΩ vpseudo
a (r)R(r) = a

∂

∂r
u(r)|r=rε , (3.28)

with the notation R(r) = u(r)/r. By taking the limit rε → 0 the scattering amplitude reads

f =
−1

1
a

+ ik
. (3.29)

This shows that here the scattering length is of canonical form (3.19) with an energy-dependent
scattering length of aE(k) = − tan(δ0)/k = a. In addition to scattering states also bound states can
be present. For a > 0 the pseudo potential possesses a bound state with the wave function

R(r) = C
e−κr

r
. (3.30)

Inserting (3.30) into the radial Schrödinger equation and performing the integration techniques
discussed in Eqns. (3.27) and (3.28) determines the decay rate as κ = 1/a. The bound state energy
is thus E = −ED with the so called dimer energy

ED =
~2

2µ

1

a2
. (3.31)

The name dimer energy stems from the fact that state Eq. (3.30) is associated with a weakly bound
dimer in ultracold gas experiments [18,99].

3.3. Feshbach Resonances

In this section we introduce the reader into Feshbach resonances. While Subsec. 3.3.1 is devoted to a
general overview, a simple model that describes the essential of a Feshbach resonance is introduced
in Subsec. 3.3.2.

3.3.1. Introduction into Feshbach Resonances

A resonance in quantum mechanical scattering can be interpreted as an almost bound state [113,117].
As the state is not truly bound, it can couple to a continuum of scattering states and induce a rapid
jump of the scattering phase shift δl(k) [113]. Two prominent types of scattering resonances are
distinguished [113, 117]. A shape resonances occurs if a state trapped behind a barrier potential is
able to decay to a continuum outside the potential. The second type, Feshbach resonances occur in
multichannel systems, where a bound state in closed channels is coupled by inter-channel coupling
to continua in open channels [14, 18, 113, 114]. A rigorous theory of resonant scattering originates
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Figure 3.1.: (a) Sketch of a Feshbach resonance. A scattering state of energy E is
assumed in the open channel whose potential is displayed in blue, while the potential
of the closed channel marked in red possesses a bound state with energy E0. The
channel thresholds are drawn by dotted colored lines. If the channels are coupled, a
Feshbach resonance occurs if the energy of the scattering state E matches with the
energy of the bound state E0. (b) resonant phase shift Eq. (3.34) over normalized
energy, the resonance position is marked by a dashed line.

from Feshbach [14, 114] and Fano [11–13], who independently derived a theory of resonances using
different methods [18]. In the following we introduce the concept of Feshbach resonances in quantum
mechanical scattering, based on Refs. [18,113]. A model including two channels is assumed, for which
the radial Schrödinger equation reads

− ~2

2µ
∆rψν(r) +

∑
η

Vν,η(r)ψη(r) = Eψν(r), ν = 1, 2. (3.32)

In Eq. (3.32) s-wave scattering is assumed. Compared to single channel scattering the wave function
in Eq. (3.32) has an additional channel index ν, which is related to internal degrees of freedom, as it
will be thoroughly discussed in Subsec. 3.4.1 for the case of a magnetic Feshbach resonance. Further,
the radial potential Vν,η(r) has a matrix form. It is assumed that at asymptotically large distances
the channels decouple

lim
r→∞

Vν,η(r) = Eνδν,η. (3.33)

The quantity Eν is named as channel threshold. The channel ν = 1 is assumed to be open, which
means that E1 < E such that free solutions are possible for given energy E in this channel. Channel
ν = 2 is closed, that implies the condition E < E2 such that a solution with energy E remains
bound. If an open channel contains an incoming plane wave it is named as entrance channel [18].
This configuration implies E1 < E < E2. In the uncoupled case, i.e. Vν,η 6=ν(r) = 0 the closed
channel possesses (at least) one bound state, whose eigenenergy is denoted by E0. A Feshbach

33



3. Floquet-Feshbach Resonance Theory

resonance occurs if the energy E of the scattering state is tuned to the vicinity of the bound state
E0, see Fig. 3.1 (a). In this case the scattering phase shift is the sum of a background scattering
phase shift δbg induced by the potential of the open channel V1,1(r) and a resonant phase δres given
by [11,14,18,113]

tan δres(E) = − Γ/2

E − ER

. (3.34)

Here ER = E0 + δE is the position of the resonance which equals the energy of the bound state plus
an additional shift δE, see Ref. [113]. The width of the resonance is described by the parameter
Γ. In Fig. (3.1) (b) the resonant scattering phase shift Eq. (3.34) is displayed, where the scattering
resonance is seen as a sudden jump of the phase shift of π.

3.3.2. Short-Range Model of a Feshbach Resonance

After the brief introduction, in the following a deeper understanding of Feshbach resonances is
provided. In order to grasp the underlying physics while keeping the math simple we choose, following
Ref. [117], the concrete form of the multi-channel potential to be the short range pseudo potential
given by Eq. (3.23):

vν,η(r) = vpseudo
aν,η (r) + δν,ηδν,2E2. (3.35a)

Note that in Eq. (3.35a) and further throughout this subsection we measure all energies in the units
of a squared inverse length, as described by the rescaling E → E 2µ/~2. The threshold of the second
channel is given by the parameter E2, while the one for the first is set to zero. The strength of the
multi-channel version of the pseudo potential is parameterized by the matrix-valued length aν,η. In
order to sustain hermiticity, the aν,η matrix must be symmetric. As the pseudo potential vanishes
for r 6= 0, the ansatz for the wave function reads

ψ1(r) =
sin(kr)

kr
+ f

eikr

r
, (3.36a)

ψ2(r) = f2
eik2r

r
, (3.36b)

where f is the scattering amplitude. The dispersion relation is given by E = k2. If the second
channel is closed, the wave vector k2 =

√
E − E2 is purely imaginary. By performing the integration

technique from Eqns. (3.27) and (3.28) the following equations are derived:

(1 + a1,1ik)f + a1,2ik2f2 = −a1,1, (3.37a)
(1 + a2,2ik2)f2 + a2,1ikf = −a2,1. (3.37b)

Equation (3.37) can be solved for f and f2. Let us first discuss the uncoupled case where a1,2 = a2,1 =
0. Here the scatting amplitude is given by the potential strength of the open channel−f−1 = a−1

1,1+ik,
while the second channel possesses a bound state with energy E0 = E2−1/a2

2,2. No resonances occur
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Figure 3.2.: (a) Scattering phase shift in dependence on the energy for E2×a2
1,1 = 1.

(b) Scattering length in dependence on the channel threshold E2, the black dashed
line at y = 0. Both plots use the parameters a2,2 = a1,1 and a1,2 = a2,1 = 0.2a1,1.
The position of the resonance is indicated by a blue dashed line.

in this limit. With finite coupling the states in the channels mix and the scattering amplitude reads
−f−1 = a−1

E + ik with the energy-dependent scattering length

aE(k) = a1,1 −
a1,2a2,1ik2

1 + ik2a2,2

. (3.38)

As displayed in Fig. 3.2 (a), the scattering phase shift described by Eq. (3.38) shows a phase jump of
π which is a typical feature of a Feshbach resonance as shown in Fig. 3.1. In fact, for the parameters
used in Fig. 3.2 (a), the bound state energy is E0 = 1 × a2

1,1, and coincides with the location of a
Feshbach resonance. This demonstrates the basic principle of a Feshbach resonance: The interaction
of a bound state with a scattering state leads to resonant behavior in the scattering phase shift at
energies near the energy of the bound state E0. Note that there is no shift δE in this case as the
jump in δ0(E) appears directly at E0.

We have just investigated a Feshbach resonance while tuning the energy E, but we could also
alter the bound state energy E0 in order to observe resonant features. For ultracold quantum gases,
as described in later sections, it is due to the low temperatures common to consider inter-atomic
collisions at vanishing energy [18]. In this case the central quantity is the s-wave scattering length
ascatt. The bound state energy E0 can be tuned by changing the channel threshold E2, the resulting
scattering length ascatt is shown in Fig. 3.2 (b). The resonance appears as a pole in the scattering
length. The position of the resonance E(0)

2 can be found by setting denominator in Eq. (3.38) to
zero:

E
(0)
2 =

1

a2
2,2

+ E, (3.39)
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This again shows that a Feshbach resonance appears if the energy of the bound state equals the
energy of the scattering state.

Equation (3.38) can be brought to a simple form the is known in common literature [18, 126, 127].
Starting point is to expand the wave vector −ik2 = κ =

√
E2 − E around the resonance position√

E2 − E =
1

a2,2

+
a2,2

2
(E2 − E(0)

2 ) +O[(E2 − E(0)
2 )2]. (3.40)

Inserting the first order expansion into the scattering amplitude (3.38), the scattering length can be
approximated by the formula [117]

ascatt = abg

[
1− ∆

E2 − E(0)
2

]
. (3.41)

Besides the resonance position E
(0)
2 the parameters in Eq. (3.41) are the background scattering

length

abg = a1,1

(
1− a1,2a2,1

a1,1a2,2

)
(3.42)

and the resonance width
∆ =

2a1,2a2,1

a3
2,2abg

. (3.43)

Equation (3.41) is a generic form parameterizing a Feshbach resonance [18, 122], that will show up
many times in this chapter. As already said, at resonance position E

(0)
2 the scattering length has

a pole, while the background scattering length abg determines the value of the scattering length
away from the resonance. Here abg consists of the bare scattering length of the first channel plus
a dressing stemming from the interaction with the closed channel. The parameter ∆ determines
the width of the resonance. The larger ∆, the broader the resonance appears. This is supported
by the fact that ascatt has a zero at E2 = E

(0)
2 + ∆, the width ∆ is exactly the difference between

the zero and the pole of the resonant scattering length (3.41). The width ∆ grows with increasing
coupling of the channels, it further depends on the parameter a2,2 and the background scattering
length abg. Note, that the pole in Eq. (3.41) only appears in the limit E = 0. In any experiment,
the energy E of the colliding particles is finite, such that due to −f−1

(0) = a−1
E + ik a structure with

finite amplitude, that depends of E, is seen instead of a true pole. After having understood the
concept of Feshbach resonances in a simple case, the next subsection is about Feshbach resonances
in ultracold quantum gases, where the model of Subsec. 3.3.2 is explicitly applied for describing a
magnetic Feshbach resonance.

3.4. Feshbach Resonances in Ultracold Gases

The tuning of the interaction strength in ultracold quantum gases by the use of Feshbach resonances
is of importance to the field [18]. Prominent findings related to Feshbach tuned interactions are
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the controlled collapse of a condensate at negative ascatt [18, 128, 129] as well as the creation of
noninteracting condensates using the zero crossing of ascatt near a Feshbach resonance [18, 32, 130],
which can show dipolar effects [34, 131]. Furthermore the investigation of many-body systems that
have been realized with optical lattices, strongly benefits from the adaptable interactions [3]. This
high tunability of the interaction strength allows for the experimental realization of a plethora of
well-known models of condensed matter theory, as mentioned in Sec. 1. In the following common
methods of creating Feshbach resonances in ultracold quantum gases are introduced. Subsection 3.4.1
contains the magnetic Feshbach resonances. We introduce a model of a magnetic Feshbach resonance
that is based on the considerations of Subsec. 3.3.2 and will be of further relevance to this chapter.
Optical Feshbach resonances are introduced in Subsec. 3.4.2, while Subsec. 3.4.3 is devoted to radio-
frequency and microwave Feshbach resonances. In Subsec. 3.4.4 we introduce the driving-induced
Feshbach resonances, which can be realized by applying a time-periodic magnetic field in the vicinity
of a Feshbach resonance [99]. The further part of this chapter is devoted to research on these driving-
induced Feshbach resonances.

3.4.1. Magnetic Feshbach Resonances

After the first experimental realization of a magnetic Feshbach resonance in the year 1998 [29,132],
they became a common tool for tuning the interaction strength in ultracold quantum gases [18].
In order to understand the physical origin of a magnetic Feshbach resonance, we briefly recap the
internal structure of atoms in ultracold gas experiments. Typically, for these atoms the electron
orbital angular momentum Li is coupled with the electron total spin Si to the angular momentum
ji, and ji couples with the nuclear spin Ii to the total angular momentum of one atom fi [18, 133].
Here i = 1, 2 labels the two colliding atoms. Good quantum numbers are in this case the total angular
momentum fi and its projection to the z-axis mi. At the presence of a finite magnetic field B the
quantity mi remains a good quantum number, while states with different fi mix [18]. Nevertheless,
a state at finite B can be labeled by that fi to which it is adiabatically connected when lowering the
B field up to B = 0, for details see Ref. [18]. Due to this rich internal structure the scattering of two
atoms becomes a multi-channel problem with the channel multiindex α = (f1,m1, f2,m2, l,ml) [18],
where l and ml are the quantum numbers of the angular motion of the colliding atoms. At short
distances those channels are coupled by a non-vanishing inter channel potential [18]. The scattering
state and the bound state that are involved in the Feshbach resonance reside in different channels
with different quantum numbers fi,mi, such that the magnetic moments of the colliding atoms µatoms

and the bound state µbound differ. By varying the magnetic field strength B the difference of the
Zeeman energies can be tuned. This results in a change of the bound state energy of the closed
channel relative to the energy E of the scattering state [18]

E0 = δµ(B −Bc), (3.44)

where δµ = µatoms − µbound and Bc is a critical field strength. If both energies E and E0 are tuned
close to each other by the magnetic field, a Feshbach resonance occurs. In the zero energy limit
of Eq. (3.34) the scattering length for fields around the magnetic Feshbach resonance is found to
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be [18,29,126,127]

ascatt = abg

(
1− ∆B

B −B0

)
. (3.45)

Here ∆B = limk→0 Γ/(2abgkδµ) and B0 = Bc − δE/δµ with Γ and δE as defined in Eq. (3.34) [18].
Formula (3.45) is of the same form as Eq. (3.42): Here, the resonance position is given by B0, while
∆B denotes its width. The effect of the background scattering is parameterized by the background
scattering length abg. As a divergence appears in Eq. (3.45), the scattering length can theoretically
be tuned to arbitrary positive and negative values by changing the magnetic field strength B, only
a finite scattering energy E restricts to finite values. This leads with Eq. (3.2) to a highly tunable
interaction strength for ultracold gas systems. However, the value of the parameters B0 and ∆B
cannot be tuned by the magnetic field B and are fixed to values that are preset by the properties of
the respective atoms. There are Feshbach resonances with considerably large ∆B, which are called
broad Feshbach resonances, and narrow resonances with relatively small ∆B [18]. If one is interested
in tuning the interaction strength by the Feshbach resonance in an experiment, it is of favor to have
a broad one.

In Fig. 3.3 the scattering length of a magnetic Feshbach resonance is shown for the case of a model
that will be derived in subsection 3.4.1. A pole in the scattering length is clearly visible, and the
approximation with Eq. (3.45) works well in the vicinity of the resonance. In Fig. 3.3 also the
binding energy Eb of the bound state that induces the resonance in the coupled channel descrip-
tion is shown. The value of Eb grows linearly with the slope δµ away from the resonance, while it
reaches the threshold of the entrance channel at B0. Near the position of the Feshbach resonance
this bound state becomes a weakly bound molecular state [18]. In this regime the wave-functions of
both channels mix and the bound state energy is given by [18,126]

Eb =
~2

2µ

1

a2
scatt(B)

. (3.46)

This behavior is clearly visible in Fig. 3.3 (b), since ascatt ∝ (B − B0)−1 in the vicinity of the
resonance, here the bound state depends quadratically on B − B0. The range of magnetic field
strengths where Eb depends quadratically on B − B0 has universal properties, here bound state
and resonance scattering can be described by the pseudo potential V pseudo

ascatt(B)(r) [18]. In Fig. 3.3
(a) this range of universal behavior is too small to be observed. Depending on the size of the
universal region Feshbach resonances can be classified in entrance channel dominated or closed
channel dominated resonances [18, 134]. In entrance channel dominated resonances, bound states
and threshold scattering are determined to a high degree by the properties of the entrance channel,
the area of universal behavior extends a vast range of the interval B0 + [−∆B,∆B], as seen in
Fig. 3.3 (b) [134]. In closed channel dominated resonances the physics of the Feshbach resonance is
determined by the closed channels, the region with universal behavior is tiny [134]. Figure 3.3 (a)
displays such a case. Here a coupled channel description is necessary in order to grasp the relevant
physics of the resonance [18].
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Two-Channel Model of a Magnetic Feshbach Resonance

After the general introduction to magnetic Feshbach resonances we introduce a model that will be
relevant in a later section. The derivation is motivated by the considerations of Refs. [126, 127]. A
scattering process with two relevant channels is assumed. This is achieved for example with alkali
atoms, which possess a 2S1/2 ground state [18]. In this situation the physics is mainly determined by
the spins Si of the valence electrons. At first, we assume a magnetic field B large enough in order to
neglect the interaction of the electron spins with the nuclear magnetic moment Ii. In this case the
spins Si can couple with either triplet or singlet configuration. In the triplet configuration the two
valence electrons act as indistinguishable particles, which lowers the probability that the atoms are
close to each other. In the singlet case the two electrons are in principle allowed to be on the same
position in space. This is leading to a Born-Oppenheimer potential for the singlets that is much
deeper than the triplet one [18,126]. For realistic magnetic fields the hyperfine interaction VHF is not
negligible and is able to flip an electronic spin such that the system can perform transitions between
triplet and singlet configuration [127]. Following Ref. [126], we describe the scattering physics of
such a system by the following two-channel model[

−∆R +

(
v1(r) C
C v2(r) + δ

)](
R1(r)
R2(r)

)
= E

(
R1(r)
R2(r)

)
, (3.47)

where C = VHF 2µ/~2 is the coupling of triplet and singlet channel induced by the hyperfine inter-
action VHF, v1(r) / v2(r) is the potential in triplet / singlet channel, and

δ = δµ B 2µ/~2 (3.48)

describes the relative detuning of the channel thresholds by the magnetic field B, with δµ as the
difference of the magnetic moments of triplet and singlet channel [126]. In order to differentiate the
channel detuning δ from the scattering phase shift δl(k), note, that we always write the scattering
phase shift as an either momentum or energy dependent function, while the detuning is in all cases
given without an argument. Further, we have rescaled in Eq. (3.47) and throughout this calculation
all energies by E → E 2µ/~2. In the following the pseudo potential is assumed as concrete form of
both triplet and single channel potential:

v1(r) = vpseudo
ae

(r), v2(r) = vpseudo
ac

(r), (3.49)

with ae / ac as a channel dependent scattering length. Here, the "e" stands for entrance channel, the
"c" for closed channel, since in the uncoupled case C = 0 the first channel is the entrance channel
and the second is closed. The form (3.49) allows for a simple calculation without loosing the essential
physics. In the following it is assumed that δ > 0. In model (3.47) the channels are not decoupled at
large radii r as demanded by Eq. (3.33). The first step is thus to restore Eq. (3.33) by diagonalizing
the internal Hamiltonian

Hint =

(
0 C
C δ

)
. (3.50)
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Figure 3.3.: Magnetic Feshbach resonance of model (3.47). Left axis: Scattering
length in blue. Right axis: Binding energy Eb that is calculated by Eq. (3.57) in
green. (a) with parameters ae = 0.5 ac, C×a2

c = 0.2, (b) with parameters ae = −4ac,
C × a2

c = 0.2.

This is achived by the transformation Q†HintQ = Eint, with

Q =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, tan(2θ) =

2C

δ
, (3.51a)

Eint =

(
E− 0
0 E+

)
, E± =

δ

2
±

√(
δ

2

)2

+ C2. (3.51b)

Physically the transformation Q changes the triplet/singlet channels to become hyperfine channels
[126], which are asymptotically decoupled. Measuring all energies relative to the threshold of the first
channel E−, Eq. (3.47) transforms to a potential of the form (3.35a) with matrix valued scattering
length

a = Q†
(
ae 0
0 ac

)
Q (3.52)

and closed channel threshold E2 = E+ − E−. The hyperfine channel with the lower energy is the
entrance channel, in our case this is the first channel. The second channel is closed. Thus we are
exactly in the situation of Subsec. 3.3.2, where with formula (3.38) the energy-dependent scattering
length is found.

Since it is aimed to describe ultracold collisions, we again restrict to low energy scattering that
is described by the limit E → 0. Figure 3.3 shows the resulting scattering length at zero energy
and is serving as a prototype example of a magnetic Feshbach resonance. A pole is visible near
δ ≈ 1/a2

c, where the energy of bound state and scattering state are on resonance. We can go even
further and calculate position and width with the deliberations of Sec. 3.3.2. The resonance position
δ(0) is calculated by applying condition (3.39) to the δ dependent parameters of the model (3.47).
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Figure 3.4.: (a) Resonance position, (b) product of resonance width and back-
ground scattering length over the coupling strength C. In blue numerically calcu-
lated quantities using Eq (3.53) and a generalization of Eq. (3.43), in red analytic
approximations Eqns. (3.54) and (3.55). Both plots are made with ae = ac/2.

Using sin2(arctan(x/2)) = (
√
x2 + 1− 1)/2, cos2(arctan(x/2)) = [(x2 + 1)−1/2 + 1]/2, and x = 2C/δ,

Eq. (3.39) reads in case of the magnetic Feshbach resonance model as

δ
√

1 + x2 =
1[

ae

(√
x2+1−1

2

)
+ ac

2

(
1√
x2+1

+ 1
)]2 . (3.53)

Equation (3.53) can be solved numerically for general parameters, in the following a perturbative
result is derived for small x. With (a+ x)b = ab + bxab−1 + (b− 1)bx2ab−2/2 +O(x3) the resonance
position is calculated up to second order in x to be

δ(0) =
1

a2
c

− 2aeacC
2. (3.54)

In the limit of vanishing coupling C the resonance position is indeed given by that detuning δ where
bound state and scattering state are at resonance. For finite C both channels mix, which results in a
shift of the resonance position as indicated by Eq. (3.54) and shown in Fig. 3.4 (a). Eq. (3.54) states
that the direction of the shift to either positive or negative δ depends on the sign of ae. For small
C, the deviation of the resonance position from the uncoupled limit depends quadratically on C.
In fact, for the examined parameter range there is a good agreement between numeric and analytic
results. The width of the resonance can be calculated with the method of Subsec. 3.3.2. Since in
this case all parameters are δ dependent, the derivation is more involved compared to the derivation
of Eq. (3.41). Performing again an expansion up to second order in C one arrives at

abg∆ = 2ac(ae − ac)
2C2. (3.55)

Here and in Fig. 3.4 (b) the product abg∆ is investigated. This is done, as due to the δ dependence
of the system parameters the background scattering length calculated by the theory as in Eq. (3.42)
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can differ from the naively assumed background scattering length given by abg = limδ→∞ ascatt(δ).
Similar considerations are discussed in Ref. [122] in detail. In order to calculate the resonances width
∆ as in Eq. (3.42) one has to know or define a value of abg. However, our theory is able to predict
an unique value for the product of background scattering length and width. This can be seen in
Eq. (3.43), where it is divided by abg, but this is only done in order to be able to factor out abg

in Eq. (3.41). In order to avoid ambiguities we therefore choose to investigate the unique quantity
abg∆ which is shown in Fig. 3.4 (b). For small C the resonance width is narrow, while it increases
quadratically in C. This behavior is considered as typical for a Feshbach resonance [11, 18], but in
fact only holds for small couplings C. The deviation of the numerically calculated resonance width
from the quadratic behavior is explained by the non-linearities of the cosine and sine functions that
appear in the transformed inter-channel potential.

In addition to the scattering solutions of Eq. (3.47) also bound state solutions of the full cou-
pled channel equations exist, which are calculated in the following. These solutions should not be
confused with the bound states in the closed channels. The wave function is found by the ansatz(

R1(r)
R2(r)

)
= Q

(
D1e

−κ1r/(κ1r)
D2e

−κ2r/(κ2r)

)
. (3.56)

The dispersion relation reads κ1 =
√
−Eb and κ2 =

√
E+ − E− − Eb, where Eb is the binding energy

of the bound state. Integrating around the origin with Eqns. (3.27) and (3.28) yields[(
1/κ1 0

0 1/κ2

)
−Q†

(
ae 0
0 ac

)
Q

](
D1

D2

)
= 0. (3.57)

As the coefficients Di, i = 1, 2, should not vanish, the determinant of the matrix must be zero. The
resulting equation can be solved numerically for the binding energy Eb. As seen in Fig. 3.3 it turns
out that for ae > 0 the region of universal behavior is narrow, while for ae < 0 the universal region
is clearly visible.

3.4.2. Optical Feshbach Resonances

Optical Feshbach resonances are achieved by coupling the colliding atoms with a bound state in an
exited electronic level [18,115,135]. This can induce a resonance in the scattering length, which can
be parameterized by the form [18]

ascatt = abg

[
1 +

Γ0(I)

~[ω − ωv − δω(I)] + iγ/2

]
. (3.58)

Here Γ0(I) is the resonance width, ωv is the frequency of the unshifted transition, δω(I) is the optical
induced shift and γ the decay rate of the bound state e.g. due to spontaneous transmission. The
resonance position ω0(I) = ωv + δω(I) and resonance width Γ(I) of an optical Feshbach resonance
can be tuned by the intensity of the laser [18]. This tunability of the resonance parameters is a great
advantage compared to magnetic Feshbach resonances, where the properties of the resonance such
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Figure 3.5.: Real (blue) and imaginary (red) part of an optical Feshbach resonance
for γ = 0.05Γ0.

as position and width cannot be controlled by external parameters. The large drawback of optical
Feshbach resonances is the presence of a finite decay parameter γ. This implies that the scattering
length becomes a complex number. The real part

Re ascatt = abg

(
1 +

Γ0(I)~[ω − ωv − δω(I)]

~2[ω − ωv − δω(I)]2 + γ2/4

)
(3.59)

quantifies the elastic scattering, while the imaginary part

Im ascatt = − abgΓ0(I)γ/2

~2[ω − ωv − δω(I)]2 + γ2/4
(3.60)

is related to atom loss by a relation with the inelastic rate coefficient Kinel = −4πIm ascatt/µ. As
shown in Fig. 3.5 the maximum of the real part of the scattering length is finite, reducing the
tunability of the resonance. In addition, loss is present that is often undesired. The loss can be
minimized in the case of γ � Γ0(I) with a large detuning from the actual resonance position [18]. In
addition to the scheme described above various extensions of optical Feshbach resonances have been
created. For example Ref. [136] adds additional laser fields in order to achieve a situation similar
to a Raman-transition, Ref. [137] realizes an optical Feshbach resonance coupling to a Rydberg
molecule.

3.4.3. Radio-Frequency and Microwave Feshbach Resonances

In Refs. [138–145] it has been shown that Feshbach resonances can be influenced and induced by
radio frequency (rf) or microwave (mw) fields. The fields couple the scattering state to a bound
state [138, 141, 142], allowing for a high controllability of the resonance parameters by the external
field. The width of the resonance is determined by the magnetic dipole element. Although the
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magnetic dipole coupling is generically weaker than the electric one, which is used in the case of
optical Feshbach resonances, there can be no particle loss induced by spontaneous emission when
working with rf or mv fields [141]. Alternatively the properties of an existing magnetic Feshbach
resonance can be influenced by mw or rf fields [142,143,145]. Ref. [145] proposed a combination of a
magnetic Feshbach resonance and a rf drive in order to provide independent control of the scattering
lengths in a multi-component ultracold gas.

3.4.4. Floquet-Feshbach Resonances

This chapter is devoted to the so called Floquet-Feshbach resonances. Here, the idea is to induce
Feshbach resonances by a time-periodic modulation of the inter-atomic potential, i.e. by periodically
changing the depth of a potential well. The term "Floquet-Feshbach resonance" is motivated by the
case of strong driving, where Floquet physics becomes relevant.

Reference [99] suggests to realize a time dependent inter-atomic potential by a sinusoidal driving
of a magnetic field, that is polarized along the spin-quantization axis, in the vicinity of a magnetic
Feshbach resonance. In this case, atom scattering is described by a pseudo potential with peri-
odically driven interaction strength [18, 99]. Reference [99] found out that this procedure induces
a resonance at magnetic fields away from the location of the undriven Feshbach resonance, which
the author named as "Modulated Magnetic Feshbach Resonance". Both position and width of this
resonance can be tuned by the drive. This resonance is created by coupling the scattering state to
the dimer molecule of the Feshbach resonance, where much lower driving frequencies and larger drive
amplitudes are possible compared to rf- or mw resonances. Ref. [116] performed a more detailed
analysis of this effect and emphasized that due to the possible large driving amplitudes Floquet
physics becomes relevant in this case.

In this thesis we develop the field by relating this driving-induced resonances to Feshbach resonances
in Floquet space in a rigorous way. This strengthens our choice of the name "Floquet-Feshbach res-
onance". In Sec. 3.7 we will derive a theory that qualitatively predicts both the resonance position
and the width of the Floquet-Feshbach resonances. As a prerequisite, a short wrap up of Floquet
scattering theory is done in the next section.

3.5. Floquet Scattering Theory

This chapter introduces basic concepts of Floquet scattering theory, a theory which generalizes the
scattering theory to time-periodically driven systems. At first, in Sec. 3.5.1 the basic ideas of Floquet
scattering are introduced, while Sec. 3.5.2 summarizes the Floquet partial wave expansion.
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3.5.1. General Properties of Floquet Scattering

This section deals with the scattering of two quantum particles by a time-periodic potential in three
spatial dimensions. This process can be described in the center-of-mass frame of reference by the
Hamiltonian

H(r, t) = − ~2

2µ
∆ + V (r, t), (3.61)

where V (r, t) describes the time-periodic interaction potential depending on the position r relative
to the center-of-mass, µ = (m1m2)/(m1 +m2) denotes the reduced mass and ∆ the Laplace operator
in three dimensions. Similar to the time-independent case described in Sec. 3.2, the potential V (r, t)
is assumed to drop off faster than 1/r2 for large radii. As the Hamiltonian (3.61) is periodic in time,
we can write down Floquet equation (2.16) using the Floquet modes φε(r, t). The Floquet equation
is expressed using the Fourier components of the Floquet modes (2.33) and scattering potential
(2.35)

∞∑
m=−∞

[
− ~2

2µ
∆ + V (n−m)(r)− n~ωδn,m

]
φ(m)
ε (r) = εφ(n)

ε (r). (3.62)

Like in chapter 2, the originally time-dependent problem is transformed into a static multi-channel
problem, where each channel is labeled by the Fourier index n. This is an important result, since
for a static multi-channel scattering problem various solution methods exist [113]. We name the
channels emerging due to the structure of the Floquet Hilbert space as "Floquet channels". At this
point we compare to a time-independent multi-channel model, such as Eq. (3.47). There the chan-
nels correspond to internal degrees of freedom, such as different hyperfine states of ultracold atoms,
and the model contains a finite number of channels. In Eq. (3.62) an infinite number of channels
is present, which have a special structure that is governed by the structure of Floquet theory. In
the Floquet channel with index n the Fourier component φ(n)

ε (r) of the wave function resides, which
has the a dynamic phase of e−i(ε/~+nω)t. This visualizes that each Floquet channel contains a wave
function with a different energy [116].

In the Floquet induced multi-channel problem (3.62), it is natural to assume an incoming plane
wave to be localized solely in a single Floquet channel. The dynamic part of the potential induces
scattering to other channels, so outgoing spherical waves appear in all Floquet channels. These
arguments can be formulated mathematically: In analogy to static scattering theory it can be shown
that in the limit of large r eq. (3.62) has the asymptotic solution

φε,n(r) = eikrδn,0 + fn(Ω)
eiknr

r
. (3.63)

Without loss of generality, the incoming plane wave is assumed in the Floquet channel with channel
index n = 0. The scattering amplitudes fn(Ω) depend in general on the solid angle Ω. At asymptotic
large distances r the scattering potential vanishes, implying that the dispersion relation is given by

~2

2µ
k2
n = ε+ n~ω. (3.64)

We denote k = k0. Evaluating Eq. (3.64) at n = 0 determines the quasienergy as the energy of the
incoming plane wave ε = ~2k2/(2µ). As typical for a scattering problem, we can choose ε to be any
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positive real number, which determines the energy of the incoming particles. For given ε, Eq. (3.64)
is then used in order to calculate the momenta kn in all Floquet channels. As previously discussed,
the Floquet channel with index n host a wave functions with an energy of ε + n~ω. There exists
a critical index nc =

⌈
− ε

~ω

⌉
where kn is real if n ≥ nc while for n < nc the wave vectors kn are

purely imaginary. Note that dxe denotes the ceiling of a real valued x [120]. A real wave vector
corresponds to a scattering state with the ability to propagate a finite probability current, so the
channels with n ≥ nc are called open. A spherical wave with purely imaginary wave vector has a
vanishing probability current, so the channels with n < nc are closed channels. This structure is
important for the calculation of observables, where we assume that the measuring process is faster
than the driving frequency, such that a time average can be taken. The time-averaged differential
cross section is given by [117]

〈〈dσ
dω
〉〉 =

∑
n≥nc

dσn
dΩ

,
dσn
dΩ

= |fn|2
kn
k0

, (3.65)

where dσn
dΩ

denotes the differential cross section in the nth Floquet channel. Note that the sum in
Eq. (3.65) only extends over the open Floquet channels. In order to derive Eq. (3.65) one basically
follows the idea of Sec. 3.2 with a time-dependent probability current, while the factor kn/k0 comes
from the different group velocities in the Floquet channels. The time-averaged total cross section is
found by integration over the solid angle

〈〈σ〉〉 =
∑
n≥nc

σn, σn

∫
Ω

dΩ|fn(Ω)|2kn
k0

. (3.66)

The elastic cross section is defined as the cross section in the channel n = 0 containing the incoming
wave 〈〈σel〉〉 = σ0, while the elastic scattering amplitude is given by f0. Scattering inside the n = 0
Floquet channel is considered as elastic, since the outgoing wave has the same energy as the incoming.
Things are different if transitions between channels occur. In this case the energy of an outgoing
wave is En = ~2k2

n/(2µ) = ε+n~ω, where n "quanta" from the drive have been emitted or absorbed.
Thus scatting to Floquet channels with n 6= 0 is inelastic. We name the Floquet channels with
n ≥ nc, n 6= 0 inelastic Floquet channels. The magnitude of inelastic scattering can be characterized
by the inelastic rate coefficient [18],

Kinel =
~k
µ
〈〈σinel〉〉, 〈〈σinel〉〉 =

∑
n≥nc
n 6=0

σn, (3.67)

being defined as velocity v = ~k/µ times inelastic cross section 〈〈σinel〉〉. Similar to time-independent
scattering there exists a Floquet optical theorem

〈〈σ〉〉 = 4π
Im f0(θ = 0)

k0

, (3.68)

that relates the time-averaged total cross section to the imaginary part of f0 in forward direction
θ = 0 [116,117].
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3.5. Floquet Scattering Theory

3.5.2. Floquet Partial Wave Expansion

Like in the time-independent case a partial wave expansion can be performed if a spherical symmetric
potential V (r, t) is assumed. The following section provides a brief summary, while details are found
in Ref. [117]. The partial wave expansion of the Fourier-components of the Floquet modes reads

φε,n(r) =
∞∑
l=0

Rl,n(r)Pl(cos θ), (3.69)

where l denotes the total angular momentum quantum number and Pl(cos θ) the lth Legendre
polynomial depending on the polar angle θ. We assume k = kez. Similar to the time-independent
case Eq. (3.10) the radial Floquet equation can be derived [117][

∆r + k2
n −

l(l + 1)

r2

]
Rl,n(r)−

∞∑
m=−∞

vm(r)Rl,n−m(r) = 0, (3.70)

where the Fourier components of the potential are given by vn(r) = 2µ
~2T

∫ T
0
dteinωtV (r, t). An asymp-

totic solution for large r of the Floquet partial wave equation (3.70) can be found by [117]

Rl,n(r) =
2l + 1

2
ilδn,0i

e−i(knr−
π
2
l)

knr
−Bl,ni

ei(knr−
π
2
l)

knr
. (3.71)

The mathematical structure stems from the large argument limit of the spherical Hankel functions
h±l (x), which are related to the spherical Bessel functions by h±l (x) = jl(x) ± iyl(x) [146]. The
coefficients in front of the incoming waves are determined by the partial wave expansion of the plane
wave (3.13), for details see Ref. [117]. The Bl,n coefficients determine the strength of the scattering:
Unlike to the static single channel calculation they do not only differ by a phase from the coefficients
of the incoming wave, but they can also differ in magnitude. Thus they are related to a complex
scattering phase shift δ(l,n) according to Bl,n = 2l+1

2
ile2iδ(l,n) [117]. The Bl,n coefficients are used to

calculate the scattering amplitudes by [117]

fn =
∞∑
l=0

fl,nPl(cos(θ)), fl,n =
(−i)l+1

kn

[
Bl,n −

2l + 1

2
ilδn,0

]
. (3.72)

With Eq. (3.72) other observables such as the cross section can be calculated. In the case of s-wave
scattering a Floquet-scattering length in the nth channel aFl

n is defined as aFl
n = − lim

ε→0
fn [117], while

the effective scattering length is given by [99]

ascatt = aFl
n=0. (3.73)

Like in the time-independent case the scattering length ascatt does neither depend on energy ε nor
on the angles θ and φ. Thus Floquet s-wave scattering at low energies is isotropic. With Eq. (3.73)
the elastic cross section reduces to [116]

〈〈σel〉〉 = 4π|ascatt|2, (3.74)
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3. Floquet-Feshbach Resonance Theory

which is similar to the result of the time-independent case. Using Eqs. (3.65) and (3.68) for ε → 0
under the assumption that ascatt is regular, the imaginary part of ascatt can be related to inelastic
scattering in Floquet channels with n 6= 0 according to Im ascatt = −

∑
n≥nc, n6=0 |aFl

n |2kn. First, this
shows that the imaginary part Im ascatt is always negative. Second, the inelastic rate coefficient
Eq. (3.67) is related to the imaginary part of the scattering length by

Kinel = −4π~ Im ascatt/µ. (3.75)

The condition Im ascatt ≤ 0 gives rise to a positive Kinel describing the loss of particles. Microscop-
ically, the particles leave the entrance channel by the Floquet scattering to the inelastic channels.

3.6. Scattering Resonances in a Harmonically Driven Pseudo
Potential

In this section we discuss the driving-induced Floquet-Feshbach resonances in a harmonically driven
pseudo potential. The pseudo potential describes the resonant scattering in the vicinity of a magnetic
Feshbach resonance in the limit of low energy collisions [18] and thus explicitly describes scattering
in an ultracold quantum gas. A time-periodic drive of the magnetic field in the vicinity of the
Feshbach resonance leads to a time-periodic scattering length in the pseudo potential description.
This is possible, since a low enough temperature of the ultracold atoms leads to wavelengths in the
scattering solution which are much longer than the range of the actual inter-atomic potential. In this
case, the range of the potential is negligible and the pseudo potential is a valid model for describing
the inter-atomic scattering [18, 116, 117]. This is remarkable, since in combination with the simple
mathematical structure of the pseudo potential we will be able to find interesting physics without
an overhead of notation from scattering theory. The considered radial Hamiltonian reads

H(r, t) = −∆R + lim
s→0+

a(t)

s2
δ(r − s)

←→
∂

∂r
r, (3.76)

with ∆R = 1
r2

∂
∂r
r2 ∂

∂r
as the radial Laplacian and the harmonically driven scattering length

a(t) = ā+ 2a1 cos(ωt). (3.77)

Equation (3.77) involves the driving frequency ω, the average scattering length ā and the driving
strength a1, which is formulated in terms of Fourier components. With this the total amplitude
of the AC-part of the drive is given by aAC = 2a1. Note that in Eq. (3.76) we already divided
by ~2/(2µ), where µ is the reduced mass. Further, in Eq. (3.76) the case of s-wave scattering is
considered where no angular momenta with l > 0 are involved.

We start in Subsec. 3.6.1 by mapping the Floquet scattering problem to a recursion relation in
the Fourier index. This recursion is solved analytically with the continued fraction method in Sub-
sec. 3.6.2. As a result, driving-induced resonances are reported in Subsec. 3.6.3. These resonances
tune the real part of the scattering length to arbitrary positive and negative values while losses due
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3.6. Scattering Resonances in a Harmonically Driven Pseudo Potential

to inelastic collisions are not resonantly enhanced. It is indicated that both position and width of
these resonances depend on the parameters of the periodic drive.

At this place we point out the different solution strategies of Eq. (3.76), that will be discussed
in the following. In this section we introduce exact solution methods, which are a continued fraction
approach and a numerical method, that truncates the Floquet scattering equations to a finite linear
system. It will turn out that these exact methods are rather hard to interpret physically. The
Floquet-Feshbach resonance theory, that will be derived in Sec. 3.7, yields, as a second method,
an approximate solution of Eq. (3.76). However, the Floquet-Feshbach resonance theory makes a
physical interpretation and a detailed analysis of the resonance parameters possible.

3.6.1. Recursion Relation for Floquet Scattering States

We aim to solve the radial Floquet equation[
H(r, t)− i~ ∂

∂t

]
R(r, t) = εR(r, t) (3.78)

with the Hamiltonian (3.76) and the Floquet mode

R(r, t) =
∑
n

e−inωtRn(r) (3.79)

with quasienergy ε. We are interested in the scattering problem, for which we can write down the
radial wave function explicitly. We can always choose to write the wave function in terms of spherical
Hankel functions [117]

Rn(r) =
i

2
δn,0

e−iknr

knr
−Dni

eiknr

knr
, (3.80)

where the coefficients Dn are yet unknown. Ansatz (3.80) solves Eq. (3.78) trivially at each r 6= 0
with the dispersion relation Eq. (3.64). Again, we identify the quasienergy ε as the energy of the
incoming particle, which is assumed to be in the n = 0 channel. Since we are generally interested in
low-energy scattering the condition ε < ω is assumed. This leads to evanescent waves with k2

n < 0
for all n < 0, which do not contribute to the scattering. All channels with n ≥ 0 have free solutions
with k2

n ≥ 0 that lead to outgoing spherical waves. With Eq. (3.72) the corresponding scattering
amplitudes can be calculated by the Dn coefficients with

fn = − i

kn

(
Dn −

1

2
δn,0

)
. (3.81)

A recursion relation for the Dn coefficients is derived by integrating Eq. (3.78) with Hamiltonian
Eq. (3.76) on a sphere with radius rε that is centered at the origin. Using Eqns. (3.27) and (3.28)
we arrive at the following recursion relation [117]:(

i

kn
− ā
)
Dn − a1 (Dn+1 +Dn−1) = hn, (3.82)
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with the right-hand side

hn =

(
i

kn
+ ā

)
δn,0
2

+ a1

(
δn+1,0

2
+
δn−1,0

2

)
. (3.83)

In order to be able to normalize the Floquet scattering state, the Dn coefficients should converge to
zero fast enough at large absolute values of n [116]. This results in the following boundary condition
for the coefficients

lim
n→±∞

Dn = 0. (3.84)

Before solving recursion (3.82), we discuss two important issues. First, note that the recursion
relation has a scale invariance such that we can measure all lengths and momenta in units of |ā|:

ã1 =
a1

|ā|
, k̃n = kn|ā|. (3.85)

This implies that all energies, which appear inside kn =
√

(ε+ n~ω)2µ/~2 are measured in units of
the so called dimer energy ED = ~2/(2µā2):

ε̃ =
ε

ED

, ω̃ =
~ω
ED

. (3.86)

The physical relevance of the dimer energy is motivated by the static limit of a1 = 0, where the
Hamiltonian (3.76) possesses a bound state with an energy of −ED in the case of positive ā, see
Eq. (3.31). In dimensionless units the recursion relation Eq. (3.82) reads(

i

k̃n
− sign(ā)

)
Dn − ã1 (Dn+1 +Dn−1) = h̃n, (3.87)

with the inhomogeneity

h̃n =

(
i

k̃n
+ sign(ā)

)
δn,0
2

+ ã1

(
δn+1,0

2
+
δn−1,0

2

)
. (3.88)

Second, if one would like to find a solution of the recursion (3.82) for the relevant case of ε = 0, one
would have to divide by zero in order to calculate the n = 0 scattering amplitude (3.81). We will see
that this subtlety can be circumvented with our analytical solution found in the next subsection, but
if the Dn are calculated numerically, this issue gets problematic. In this case it is favorable to insert
Eq. (3.81) into recursion (3.87) and (3.88) and write down the recursion in terms of the scattering
amplitudes [116,117]

− (1 + k̃n)f̃n − iã1(k̃n+1f̃n+1 + k̃n−1f̃n−1) = δn,0 + ã1(δn,1 + δn,−1), (3.89)

where f̃n = fn/|ā|. For solving Eq. (3.89) numerically, one first needs to introduce a cutoff m with
f̃n = 0 for |n| > m. For the resulting finite scattering amplitudes f̃n, −m ≤ n ≤ m the recursion
(3.89) transforms to a linear system which is uniquely solvable with common numerical methods.
The cutoff m has to be chosen large enough such that f̃n is numerically small for indices near −m
and m. Instead of following this common numerical solution method [99, 117], we go beyond and
derive an analytical solution of recursion (3.82) via continued fractions.
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3.6. Scattering Resonances in a Harmonically Driven Pseudo Potential

3.6.2. Continued Fraction Solution

In the following we derive an analytic solution of the scattering amplitude with the use of continued
fractions. As a starting point we look at the recursion relation Eq. (3.87) for indices n where the
homogeneity h̃n is nonzero, where we make the definition Ln = ã1/(i/k̃n − sign(ā)):

D±1 − L±1(D0 +D±2) =
L±1

2
, (3.90a)(

i

k̃0

− sign(ā)

)
D0 − ã1(D1 +D−1) =

1

2

(
i

k̃0

+ sign(ā)

)
. (3.90b)

Eqns. (3.90) would be a solvable, closed set of equations, if the ratio of D±2/D±1 is explicitly known.
At this point the continued fractions become relevant [147, 148]. With the ratio of neighboring
recursion coefficients

q±n =
D±(n−1)

D±n
, (3.91)

recursion (3.87) can be rewritten for the remaining indices with |n| ≥ 2 to

q±n =
1

L±n
− 1

q±n+1

. (3.92)

For calculating the desired (q±2 )−1 = D±2/D±1, we can now apply Eq. (3.92) recursively. It is shown
in Appendix A that the procedure of recursively inserting the q±n into each other is equivalent to
express q±2 by a continued fraction

q±2 =
1

L±2

− 1
1

L±3
− 1

1
L±4
− 1

...

=
1

L±2

− L±3

1− L±3L±4

1−L±4L±5

...

. (3.93)

The identity of the last two expressions is found by an equivalence transformation [149], i.e by
expanding each fraction line of the continued fraction by L±n such that they cancel out the 1/L±n
terms. Inserting the result (3.93) into Eq. (3.90a) we can relate D0 and D±1 by

D±1 = L±1

(
D0 +

1

2

)
cf± (3.94)

with the continued fraction
cf± =

1

1− L±1L±2

1−L±2L±3

...

. (3.95)

This expressesD0 and the elastic scattering amplitude f̃0 = −i/k̃0(D0−1/2) by an analytic formula

f̃0 =
−1

1
ãε

+ ik̃0

, (3.96)

where the energy-dependent scattering length is expressed analytically with the use of continued
fractions

ãε = sign(ā) + ã1L1cf+ + ã1L−1cf−. (3.97)
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Eq. (3.96) is a remarkable result, as it allows us to express the elastic scattering amplitude f0

of a Floquet problem in an analytical expression and even has the same mathematical structure
as the solution of the corresponding static problem [117]. In the limit of vanishing energy, the
experimentally relevant Floquet s-wave scattering length is given by

ãscatt = lim
ε→0

ãε. (3.98)

From Eq. (3.97) we can see that there are three contributions to the Floquet s-wave scattering length.
First, there is the bare static scattering length, which equals sign(ā) in normalized units. Second,
there is the contribution of the open Floquet channels which involves the continued fraction cf+.
Although the closed channels do not appear explicitly in formulas for the scattering cross section
etc., they contribute in a third term involving cf− to the scattering amplitude. In Sec. 3.7 we find
out that it is exactly this term that induces the scattering resonances.

Before the scattering resonances are discussed in Subsec. 3.6.3, we now take a look at the con-
vergence of recursion coefficients (3.82). For doing so it is instructive to write down the recursion
(3.82) in the limit of large |n|:

sign(ā)Dn − ã1(Dn+1 +Dn−1) = 0. (3.99)

Equation (3.99) is solved by Dn = Λ
|n|
± with

Λ± =
−sign(ā)±

√
1− 4ã2

1

2ã1

. (3.100)

It holds that Λ+Λ− = 1 and Λsign(a) < 1 if ã1 < 1/2. For 1/2 ≥ ã1 we get |Λ±| = 1. This im-
plies, that if the AC-part of the drive is smaller than the modulus of the average scattering length
aAC = 2a1 < |ā|, the recursion converges to zero for large |n| since one solution Λ± is smaller than
one. In this case condition (3.84) can be fulfilled. In the other case, where ãAC = 2ã1 ≥ 1, the
recursion does not converge, as both solutions Λ± are of modulus one. Hence recursion coefficients
Dn and thus the Fourier components of the wave function Rn(r) with arbitrary large index n have
a non-zero value. This implies that neither the steady state wave-function is normalizable nor its
energy expectation value exists. Thus, the steady state is unphysical and cannot be reached experi-
mentally in a finite time [116]. Due to this reasons we restrict in the following to the case ã1 < 1/2.

In the following the limits of high and low driving frequency are investigated, in each the scat-
tering length is of a simple form. In the limit of an infinitely high driving frequency ω̃ →∞ it holds
that k̃n → ∞ for |n| ≤ 1. Thus, the scattering length is given by a regular continued fraction with
constant partial numerators

ãscatt(ω →∞) = sign(ā)(1 + 2
ã2

1

1− ã2
1

1− ã1

...

). (3.101)

Eq. (3.101) can be explicitly evaluated using the relation [150]

ã2
1

1− ã2
1

1− ã1

...

=

√
1

4
− ã2

1 −
1

2
. (3.102)
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Finally we find a simple equation for the scattering length at infinite large driving frequency

ãscatt(ω →∞) = sign(ā)
√

1− 4ã2
1. (3.103)

This is remarkable, since Eq. (3.103) shows that still at infinite high frequencies ω̃ the scattering
length is influenced by the driving strength ã1, and does not equal the average ā as expected from
a naive application of a high-frequency expansion, such as Eq. (2.15a). Mathematically this comes
from the non-linear operations when calculating the effective scattering length (3.97) and shows that
despite the high driving frequencies nontrivial Floquet scattering is possible. We further emphasize
that Eq. (3.103) has no imaginary part.

In the opposite limit of low driving frequencies ~ω/ED � 1 Eq. (3.89) reduces for vanishing en-
ergy to

− lim
ε→0

f̃n = δn,0 + ã1(δn,1 + δn,−1) (3.104)

As a result we find that the Floquet scattering length adiabatically follows the course of a(t) in this
limit.

In the next subsection we do not restrict to either high or low driving frequencies and observe
the occurrence of scattering resonances.

3.6.3. Tunability of the Scattering Length by the Drive

In the common description of ultracold quantum gases with a Gross-Pitaevskii mean field equation
the inter-particle interaction is proportional to the s-wave scattering length ascatt, c.f. Eq. (3.2). Here
we are interested to analyze this case and investigate the effective s-wave scattering length Eq. (3.98)
at zero energy of the model Eq. (3.76). The absolute value of the real part of the effective scattering
Re ãscatt length characterizes the strength of the inter-particle interaction while its sign determines
if the interaction is attractive or repulsive [18]. The imaginary part Im ãscatt is negative and char-
acterizes particle loss from the Bose-Einstein condensate which is often wanted to be minimal [18].
In terms of the Floquet scattering theory, the absolute value of ãscatt corresponds to the magnitude
of the elastic cross section 〈〈σel〉〉 = 4π|ascatt|2, while the imaginary part is associated with inelas-
tic scattering to higher Floquet channels with n > 0, c.f. the inelastic rate coefficient Eq. (3.75).
In summary, it is often desired to control the real part Re ãscatt while keeping the imaginary part
Im ãscatt small.

Figure 3.6 shows both real and imaginary part of the scattering length ascatt of model (3.76). We
clearly see resonances in the real part of the Floquet scattering length ãscatt while the imaginary
part is kept relatively small. This enables to tune the scattering length ãscatt to arbitrary positive
and negative values by choosing a desired driving frequency ω̃ at a given driving strength ã1. Since
the resonances are induced by the time-periodic drive the are named as driving-induced scattering
resonances [117]. It turns out that for each ã1 < 1/2 all resonances lie below a certain driving
frequency ω. This allows us to label the resonances from high to low resonant frequencies, where the
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Figure 3.6.: Real part (a) and imaginary part (b) of the Floquet s-wave scattering
length ãscatt for ã1 = 0.1 (blue) and ã1 = 0.2 (red) for positive ā. The resonance
positions are marked with dashed lines in (a).

highest frequency corresponds to the first resonance. There are infinitely many resonances [117] and
the smaller the frequency ω, at which a resonance appears, the narrower it is. Furthermore the reso-
nance parameters are highly tunable. Both position and width change in dependence on the driving
strength ã1. As it is seen in Fig. 3.6 (a), the resonance positions shift to higher frequencies ω̃ if the
driving strength ã1 increases while the resonances get wider for larger ã1. This allows one to choose
the coveted resonance position and width by adjusting the driving strength ã1. The imaginary part
of ãscatt is roughly two orders of magnitude smaller than the average scattering length ā and does
not peak near a resonance as it is usual for optical Feshbach resonances. Thus we find that for the
driving-induced scattering resonance the losses are comparably small.

Fig. 3.7 (a) shows how the scattering length can also be tuned in the high-frequency limit as described
by Eq. (3.103). Here no resonances are seen, but the periodic drive lowers the Floquet scattering
length ãscatt below the corresponding static value ā. The scattering length even reaches zero for
the case of maximal 2ã1 = ãAC = 1. In Fig. 3.7 we show the Floquet scattering length ãscatt for
negative ā in the same frequency range as in Fig. 3.6. Here clearly no resonances are visible, an exam-
ination of a wider parameter range shows that in general no resonances are found for negative ā [117].

In this subsection we reported driving-induced scattering resonances in the sinusoidally driven pseudo
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Figure 3.7.: (a): Floquet scattering length ãscatt over the driving strength ã1 in the
limit of ω̃ →∞, (b): real (blue) and imaginary (red) part of the Floquet scattering
length ãscatt for ã1 = 0.2 and ā < 0.

potential. However, the physical origin of these resonances is still elusive. In order to resolve this,
the Floquet-Feshbach resonance theory is introduced in the next section. Further, using the Floquet-
Feshbach resonance theory we calculate the resonance properties. This especially allows to discuss
the limit 2ã1 → 1, where we expect with Eq. (3.100) that a large number of Floquet channels become
relevant.

3.7. Floquet-Feshbach Resonance Theory for a Harmonically
Driven Pseudo Potential

This section is the heart of this chapter. It gives host to the Floquet-Feshbach resonance theory
which yields a quantitative understanding of the driving-induced scattering resonances. In order
to have an elegant theory without loosing the essential train of thought we directly formulate the
Floquet-Feshbach resonance theory for the case of the driven contact interaction in Subsec. 3.7.1.
The Floquet-Feshbach resonance theory can be seen as a further solution method of Eq. (3.76) to the
exact solutions found in Subsec. 3.6. As a prerequisite of the discussion of the resonance properties,
Floquet bound states are calculated in Subsec. 3.7.2. Subsection. 3.7.3 contains the discussion
of resonance position and width using the Floquet-Feshbach resonance theory. This discussion
includes both numerical and analytical calculations of the resonance parameters. In Subsec. 3.7.4
recursion coefficients that characterize the Floquet bound state wave functions are presented, while
Subsec. 3.7.5 is devoted to the inelastic scattering.
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3.7.1. Floquet-Feshbach Resonance Theory

In this subsection the Floquet-Feshbach resonance theory is derived. The heart of the theory lies
in the description of the scattering process in the Floquet Hilbert space, in which the time-periodic
problem can be formulated as a static multi-channel scattering problem, c.f. Eq. (3.62). As discussed
in Sec. 3.5, in Floquet space there are open and closed channels which are coupled by the periodic
drive. This setting is similar to the one of a Feshbach resonance [14, 18, 113, 114]. As discussed in
Sec. 3.3, a coupling of an open and closed channel induces a Feshbach resonance if the energy of a
bound state in the closed channel equals the energy of a scattering state in the open channel. In our
case we have instead of one channel infinitely many closed Floquet channels hosting possible bound
states. Since these closed channels are coupled with each other by the periodic drive, possible bound
states are expected to reside in multiple closed channels. These bound states couple with scattering
states in the elastic Floquet channel (n = 0) and thus induce resonances in the elastic scattering
amplitude as seen in the previous section. Compared to the static case discussed in Sec. 3.3 the
Floquet scattering is more involved, since the elastic Floquet channel is also coupled to the inelastic
channels with n > 0, which can influence the whole scattering problem. However, as seen in Fig. 3.6
(b) by the relatively small Im ãscatt, it will turn out with Eqns. (3.67) and (3.75) that the effect of
the inelastic channels is rather small.

With these thoughts in mind we begin the derivation of the Floquet-Feshbach resonance theory by
writing down the Floquet Hamiltonian H = H(t) − i~∂t in Fourier space, see Subsec. 2.2.2 for the
notation:

Hn,n = − ~2

2µ
∆R − n~ω + lim

s→0+

~2

2µ

ā

s2
δ(r − s)

←→
∂

∂r
r, (3.105a)

Hn,n±1 =
~2

2µ

a1

s2
δ(r − s)

←→
∂

∂r
r, (3.105b)

where all other Hn,m = (n|Ĥ|m) are zero. In Eq. (3.105) the diagonal part involves the radial Lapla-
cian ∆R, the threshold for each Floquet channel −n~ω and the static part of the pseudo potential.
The off-diagonal part of the tridiagonal matrix Hn,m is given by the AC-part of the driven interac-
tion. For the following discussion it is of central relevance to separate into the elastic channel n = 0,
the inelastic channels n > 0 and closed channels n < 0. This configuration implies ε < ~ω, which is
valid in our range of interest ε→ 0.

Similar to Feshbach’s theory [14,113,114] we assume that there are bound states |φαB〉〉 in the closed
channels, if the closed channels are decoupled from the open ones. As already discussed in Sec. 3.3.1,
the energies of these bound states determine the position of the Feshbach resonance. Since we inter-
ested in finding the resonance position and further resonance properties, the bound states have to
be discussed first. In the following, the index α labels different bound state solutions. The bound
states fulfill the eigenvalue equation

Hn<0,n<0|φαB〉〉 = Eα|φαB〉〉, (3.106)
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where Eα denotes their energy, and the notation from Subsec. 2.2.2 is used. The bound states are
an element of Floquet space, where the bound state wave functions are defined by (n|φαB〉〉 = |φαn,B〉
and 〈r|φαn,B〉 = φαn,B(r). In order to be bound states, they have to fulfill in addition to Eq. (3.106)
the boundary condition

lim
r→∞

φαn,B(r) = 0, ∀n. (3.107)

For the explicit form of the bound state wave functions we can always choose

φαn,B(r) = −Dα
n

e−κ̃nr

κ̃nr
, (3.108)

with κ̃αn =
√
−Ẽα − nω̃. We insert Eq. (3.108) into Eq. (3.106). Using Eqns. (3.27) and (3.28) a

recursion relation is derived(
1

κ̃αn
− sign(ā)

)
Dα
n − ã1(Dα

n−1 +Dα
n+1) = 0,∀n < 0, (3.109)

with the boundary conditions
Dα

0 = 0, lim
n→−∞

Dα
n = 0. (3.110)

Furthermore we require the bound states to be normalized to one in Floquet space 〈〈φαB|φαB〉〉 = 1
which reads in terms of the coefficients

1 =
∑
n<0

|Dα
n |2

2(κ̃αn)3
. (3.111)

Since besides of Dα
n also the energy Eα has to be determined, Eqns. (3.109) and (3.111) are consid-

ered as a set of non-linear equations and will be solved in Subsec. 3.7.2. Here it is assumed that all
solutions Dα

n and Eα are known.

The next step in this derivation is to calculate the influence of the bound states defined in Eq. (3.106)
on the scattering amplitude f̃0. For doing so we introduce the full radial wave function in Floquet
space |R〉〉. For an accessible mathematical description we define the notation |Rn=0〉〉 for the n = 0
Fourier component (n = 0|R〉〉 = |Rn=0〉〉, and |Rn<0〉〉 for all Fourier components in the closed
channels |Rn<0〉〉 =

∑
n<0(n|R〉〉|n), and so on. We aim to solve the Floquet equation

H|R〉〉 = ε|R〉〉, (3.112)

with H as defined in (3.105). The wave function in the n = 0 is given by

R0(r) =
sin(kr)

kr
+ f0

eikr

r
. (3.113)

In Eq. (3.113) the first term is the s-wave part of the incoming plane wave, while the second denotes
an outgoing spherical wave with elastic scattering amplitude f0. The quasienergy ε is related to
momentum by ε = ~2k2/(2µ) and thus denotes the energy of the incoming particle. Reference [117]
found that f0 = i/k and fn = 0 ∀n > 0 holds at the resonance position. This implies for recursion
(3.87) that the n = 0 part and the closed channels decouple. As a result Eq. (3.109) holds for the
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n < 0 part of the solution of the full recursion (3.87) in this case [117]. This is of relevance to our
theory, since it implies that exactly at resonance the wave function in the closed channels is equal
to one bound state wave function fulfilling Eq. (3.109). This consideration further strengthens the
argument of Sec. 3.3.1 and Refs. [14, 113], that we can approximate the wave function in the closed
channels by a superposition of the Floquet bound states found with Eq. 3.106:

|Rn<0〉〉 ≈
∑
α

Aα|φαB〉〉. (3.114)

In Eq. (3.114), the coefficients Aα have to be determined.

Having the final goal of finding an closed formula for f̃0, the Floquet equation (3.112) is now evaluated
for the closed channels. Using the eigenvalue equation (3.106) we find∑

α

(EαAα|φαB〉〉) +Hn<0,0|R0〉〉 = ε
∑
α

Aα|φαB〉〉. (3.115)

Projecting with 〈〈φβB| and using the orthonormality 〈〈φβB|φαB〉〉 = δα,β yields

(Eβ − ε)Aβ = −〈〈φβB|Hn<0,0|R0〉〉 = −〈φβ−1,B|H−1,0|R0〉. (3.116)

For the last equality we use the tridiagonal structure of Floquet Hamiltonian (3.105). The matrix
element can be explicitely evaluated with the expression of the Hamiltonian (3.105) and both wave-
functions (3.108) and (3.113) to

(Ẽβ − ε̃)Aβ = −Dβ
−1ã1(1 + ik̃f̃0). (3.117)

This equation relates the Aβ coefficients to the elastic scattering amplitude f̃0. Now we turn to the
inelastic channels n > 0. Here we assume the wave function |Rn>0〉〉 is given by the ansatz (3.80).
For n = 1 we obtain by an integration around the origin using (3.27) and (3.28) the equation

− i

k̃1

D1 + sign(ā)D1 + ã1(1 + ik̃f̃0) + ã1D2 = 0. (3.118)

Recursion (3.87) holds for n ≥ 2, such that we can relate D1 = q+
2 D2 where q+

2 is given by the
continued fraction (3.93). Inserting D1 = q+

2 D2 into (3.118) relates D1 with the scattering amplitude
f̃0.

D1 = L1cf+(1 + ik̃f̃0), (3.119)

where cf+ is given by Eq. (3.95). At last we look for an equation for n = 0 with the common
integration of the Floquet equation around the origin

(1 + i sign(a)k̃)f̃0 + sign(a) + ã1

∑
α

Dα
−1Aα + ã1D1 = 0. (3.120)

Now we do the last step by solving Eq. (3.117) forAα, insert the result and Eq. (3.119) into Eq. (3.120)
and finally solve Eq. (3.120) for the elastic scattering amplitude f̃0. The scattering amplitude has
the form

f̃0 =
−1

1
ãε

+ ik̃
, (3.121)
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where the energy-dependent scattering length is given by

ãε = sign(ā) + ãεres + ãεinel. (3.122)

Similar to Eq. (3.97), which we found by the direct continued fraction solution of the Floquet
scattering problem Eq. (3.78), the energy-dependent scattering length consists of three terms: The
bare scattering length ā, the resonant term given by

ãεres = −
∑
α

ã2
1|Dα

−1|2

Ẽα − ε
. (3.123)

and the inelastic scattering length
ãεinel = ã1L1cf+. (3.124)

The pronounced difference of Eq. (3.122) to (3.97) lies in the contribution of the closed channels. In
this respect (3.123) yields a better physical interpretation as compared to (3.97), since it enables us
to explain the driving-induced scattering resonance by a Feshbach theory in Floquet space. Equa-
tion (3.123) says that the contribution of the closed channels can be split into single terms, where
each term is related to a single bound state and its contribution leads to a divergence the Floquet
scattering length if the corresponding bound state energy Ẽα is on resonance with the energy ε̃ of the
scattering state. Thus we finally reached our goal of a rigorous understanding of the driving-induced
scattering resonances: Our theory relates them to Feshbach physics in the Floquet Hilbert space.
Based on this knowledge we name the driving-induced scattering resonances found in Subsec. 3.6.3
as Floquet-Feshbach resonances. Compared to the static model of a Feshbach resonance that is
discussed in subsec. (3.3.2), the bound states in the Floquet-Feshbach resonance theory can be influ-
enced by the time-periodic drive. Thus, Ẽα is interpreted as the energy of a state that is dressed by
the periodic driving, in comparison to Subsec. (3.3.2) where no such dressing is possible. This leads
to the interpretation that a Floquet-Feshbach resonance is as a Feshbach resonance that couples to
the bound state being dressed by the periodic drive. Further, it is remarkable that the contributions
of the inelastic channels can be elegantly solved by means of a continued fraction. We will see that
for more complicated models such a simple continued fraction solution is no more possible.

Apart from this qualitative understanding, the Floquet-Feshbach resonance theory enables us to
precisely define and calculate resonance positions and widths. For doing so we investigate how the
scattering length ãscatt at vanishing energy ε depends on the driving frequent ω. Performing the
limit ε̃→ 0 in Eq. (3.122) yields

ãscatt(ω) = sign(ā)−
∑
α

ã2
1|Dα

−1|2

Ẽα
+ ãinel. (3.125)

with ãinel = limε→0 ã
ε
inel. At first, we are interested if Eq. (3.125) recovers the known formula (3.103)

for ω → ∞. In this case the channel thresholds −n~ω are the largest energy scale in the Floquet
Hamiltonian (3.105) for given ã1. This determines that the quasienergies Eα tend to infinity as
ω →∞. With this result the limit of infinite large frequencies follows as

ãscatt(ω →∞) = sign(ā)

(
1

2
+

√
1

4
− ã2

1

)
, (3.126)
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which obviously differs from the previous result Eq. (3.103). This demonstrates that the Floquet-
Feshbach resonance theory does not yield the correct value of the scattering length away from the
resonances. In the following we resolve this issue by renormalizing the scattering length, which is
based on the subsequent argumentation. In Eq. (3.114) we assumed that the wave function in the
closed channels is a superposition of bound states and neglected the contribution of the free states
in the closed channels

|φfree
n<0〉〉 =

∫ ∞
ω

dẼAẼ|φ
Ẽ
n<0〉〉. (3.127)

The states |φẼn<0〉〉 are eigenstates of Eq. (3.106) which do not fulfill the boundary condition (3.107)
and thus form the continuous spectrum of Hn<0,n<0. Since the minimal threshold of all closed
channels is ω̃, free states must have energies above this value. The states |φẼn<0〉〉 are an orthogonal
set in Floquet space and are also orthogonal to the bound states |φαn,B〉〉. The exact wave-function
in the closed channels with corrections reads |Rn<0〉〉 =

∑
αAα|φαB〉〉+ |φfree

n<0〉〉. Performing the steps
(3.115)–(3.117) with |φfree

n<0〉〉 leads to a new term afree−corr in the scattering length

ãε = sign(ā) + ãεres + ãεinel + ãfree−corr. (3.128)

The calculation of the AẼ is not necessary, since we will see in the next section that it is an excellent
approximation if we use the term ãfree−corr in order to renormalize the non-resonant scattering length
such that it fits to the limit (3.103). This renormalization is introduced by

sign(ā) + ãεinel + ãfree−corr ≈ ãbg + ãnon−res, (3.129)

where we define the background scattering length to fit to Eq. (3.103) by

ãbg = lim
ω→∞

ãscatt = sign(ā)
√

1− 4ã2
1. (3.130)

The non-resonant part of the scattering length is defined to have a vanishing limit ω →∞:

ãnon−res = ãinel − lim
ω→∞

ãinel. (3.131)

In order to further simplify Eq. (3.125), we note that the quasienergies of the bound states de-
pend on the system parameters Eα = Eα(ω, ã1). It will turn out that each energy has a single zero
which is named ω̃α

Ẽα(ω̃α(ã1), ã1) = 0, (3.132)

and depends in turn on the driving strength ã1. For parameters near ω̃α the resonant contribution
of the α-th term in Eq. (3.125) dominates, otherwise its contribution is minimal. Thus we truncate
the full functional form of Ẽα(ω̃α, ã1) by a first-order Taylor expansion

Ẽα(ω̃α, ã1) ≈ ∂Ẽα
∂ω̃
|ω̃=ω̃α × (ω̃ − ω̃α). (3.133)

With this we arrive at the final result

ãscatt(ω̃) = ãres + ãnon−res, (3.134)
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with the resonant part of the scattering length given by

ãres = ãbg

(
1−

∑
α

∆̃α

ω̃ − ω̃α

)
. (3.135)

Here the resonant frequencies ω̃α are defined by (3.132) and the widths are given by

∆̃α =
ã2

1|Dα
−1|2

ãbg
∂Ẽα
∂ω̃
|ω̃=ω̃α

. (3.136)

Equation (3.135) is the main result of this investigation. It does not only allow to qualitatively
understand the origin of the driving-induced scattering resonances as Feshbach resonances in Floquet
space, in combination with equations (3.132) and (3.136) we are even able to quantitatively calculate
the resonance properties such as position and width. This result goes beyond recent the literature
[99,116,117]. In particular, our theory exceeds the work of those references by the rigorous connection
of the driving-induced scattering resonances to the physics of a Feshbach resonance. In contrast to
Ref. [117], we are not restricted to a fitting procedure, since our theory proves with Eqns. (3.134)
and (3.135) that the shape of a Floquet-Feshbach resonance is described by a simple formula and
gives with Eqns. (3.132) and (3.136) expressions for calculating both position and width of the
resonances. In particular, the resonant part Eq. (3.135) of a Floquet-Feshbach resonance is given by
a similar formula as the scattering length of a magnetic Feshbach resonance Eq. (3.45). However, in
Eq. (3.134) an additional non-resonant contribution stemming from inelastic scattering is present.
As seen in Fig. 3.6 it turns out that effect of this non-resonant term is rather small as compared
to the resonant enhancement of Re ãscatt. In particular, this shows that the imaginary part of the
scattering length and thus atom loss is comparably small. In the next subsections we will use this
theory in order to calculate how both position and width of the Floquet-Feshbach resonances depend
on the driving strength ã1. As a prerequisite, we calculate the Floquet bound states in the next
subsection.

3.7.2. Solving the Bound State Equations

In this subsection we find the energies and the wave functions of the eigenvalue equation (3.106) in
the closed channels. Concretely, this subsection is about to solve the non-linear eigenvalue equation
(3.109) together with the normalization condition (3.111). In the following we provide a full numeri-
cal solution in combination with analytical results for small and large driving strength ã1. With the
resulting energies and wave functions of the Floquet bound states we can finally calculate position
and width of the Floquet-Feshbach resonances in Subsec. 3.7.3.

Solving the Non-Linear System Numerically

For general ã1, the bound state energies and wave functions are calculated numerically by solving a
non-linear set of equations, which we aim to write down in the general form

F(q) = 0. (3.137)
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Figure 3.8.: (a-c): Bound state energies Ẽα (red), scattering length ãscatt at ε = 0
(blue), for the parameter ã1 = 0.1 (a), ã1 = 0.3 (b) and ã1 = 0.45 (c). Black dashed
lines defined by equations Ẽ = 0 and Ẽ = ω̃. The resonance position is marked
by a blue dashed line. (d-f): Absolute value of recursion coefficients |Dn| for the
parameters ã1 = 0.1, ω̃ = 1.071 (d) and ã1 = 0.3, ω̃ = 2.083 (e) and ã1 = 0.45,
ω̃ = 13.72 (f). The frequencies correspond to the larges zero of a bound state energy
in the corresponding panel. In all panels we used as cutoff nc = 60.

In order to make the vector function F finite dimensional, a cutoff in the Fourier index nc is intro-
duced. The cutoff has to be chosen such that the absolute value of the numerical solution is below
a numerically small threshold for indices near nc . For example, in Fig. 3.8 the absolute value of the
coefficients Dα

n converged to a small value even for indices below the chosen nc = 60. We emphasize
that our numerical procedure automatically checks if nc is large enough. With this the recursion
relation (3.109) can be written as a homogeneous linear system

A(λ)D = 0, (3.138)

where An,n = 1/
√
−λ+ nω̃ and An,n±1 = ã1 while all other matrix elements are zero. For a solution

of Eq. (3.138) it holds that Dn = Dα
−n and λ = Ẽα. The normalisation condition (3.111) is written

as

DTV (λ)D− 1 = 0, (3.139)
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where Vn,n = 1/[2(−λ+ nω̃)3/2] is a diagonal matrix. With this at hand we define the vector

q =

(
D
λ

)
(3.140)

and the function

F(q) =

(
A(λ)D

DTV (λ)x− 1

)
(3.141)

in order to write our equation in the form (3.137). The non-linear equation is solved numerically.

In Fig. 3.8 (a-c) the numerically calculated bound state energies Ẽα are shown in red. One sees that
there are multiple ones which increase in energy for larger driving frequencies ω̃. The larger the
driving strength, the more curvature the lines Eα(ω̃) have. As predicted by the Floquet-Feshbach
resonance theory, we see in Fig. 3.8 that the zeros of the bound state energies Ẽα coincide with the
locations of the resonances, i.e. the frequency at which the scattering amplitude diverges. Thus we
label the bound states similar to the resonances from right to left along the frequency line, such
that the first bound state causes the resonance with the largest resonant frequency, and so on. In
Fig. 3.8 (a-c) the parameters are chosen such that the first resonance is always shown on the right.
With larger driving strength the bound state energies Ẽα shift to negative values such that the zeros
of the bound states Ẽα(ω̃) and thus the resonance positions move to the right. This shift is solely
due to the periodic drive and thus a manifestation of Floquet physics. In Fig. 3.8 (d-f) we plot the
recursion coefficients Dα

n of solutions of Eq. (3.109) over the absolute value of the index |n| at the
position of the first resonance. We see that with increasing driving strength more indices |n| get
populated, starting from about 5 at ã1 = 0.1 up to about 30 at ã1 = 0.45. This is indicating, that at
large driving the coupling between the Floquet channels dominates, leading to a broad distribution
of the recursion coefficient Dα

n . With the full numerical solution at hand we provide in the following
analytical solutions for weak and strong driving.

Expansion with respect to the Driving Strength

In the case of weak driving, i.e. small ã1, we perform a perturbative analysis of Eqns. (3.109) and
(3.111) by expanding both bound state energies and recursion coefficients in orders of ã1

Dα
n =

∞∑
l=0

D(l),α
n , (3.142a)

Ẽα =
∞∑
l=0

Ẽ(l)
α . (3.142b)

In Eq. (3.142), each coefficient indexed by l is assumed to be of order ãl1. For the further analysis of
Eqns. (3.109) and (3.111), the Taylor expansion of κ−sn with s = 1, s = 3 is important

1

(
√
a+ x)s

=
1

(
√
a)s
− sx

2a(s+2)/2
+
s(s+ 1)x2

8a(s+4)/2
+O(x3/a(s+6)/2). (3.143)
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Applied to our case we have a = −Ẽ(0)
α + |n|ω̃ and x =

∑
l>0E

(l)
α . Expanding Eq. (3.109) in zeroth

order ã1 we find the unperturbed bound states by the equation 1√
−Ẽ(0)

α + |n|ω̃
− sign(ā)

D(0),α
n = 0. (3.144)

In the case of ā > 0 there are infinitely many solutions of Eq. (3.144) labeled by α ∈ N

D(0),α
n = Nαδ−α,n. (3.145)

The energies of these bound states are given by

Ẽ(0)
α = −1 + αω̃. (3.146)

Equation (3.146) is an analytic formula for the bound state energies in the limit of small driving
strength ã1. In this limit a Floquet-Feshbach resonance occurs if Ẽ(0)

α is equal to the energy of the
incoming particle ε. With Eq. (3.146) we interpret that in the case of small ã1 resonances occur if the
bound dimer state of the pseudo potential with energy −ẼD = −1 is brought to energetic resonance
with the scattering state at energy ε̃ by α quanta of the drive. At last, note, that the normalization
of the bound state recursion coefficients is given in the zeroth order of ã1 with Eq. (3.111) by

D
(0),α
−α =

√
2. (3.147)

As seen in Eq. (3.136), the correctly normalized recursion coefficients are important for calculating
the resonance width.

In the case of negative ā Eq. (3.144) has no solutions. We conclude that no bound states are
present in this case. Physically, this result comes from the fact that the static pseudo potential hosts
no bound state in the case of negative ā. Since there is no bound state to couple to, no resonances
occur in this case. Due to this we restrict ourselves to ā > 0 in the following.

We continue with O(ã1). Due to the structure of the recursion only the nearest neighbors of a
solution Eq. (3.144) with quantum number α ≥ 2 are unequal from one. The recursion relation
Eq. (3.109) implies the following equations

−α :
Ẽ

(1)
α

2
D

(0),α
−α = ã1

∑
±

D
(0),α
−α±1, (3.148a)

−α± 1 :

(
1√

1± ω̃
− 1

)
D

(1),α
−α±1 = ã1D

(0),α
−α . (3.148b)

With (3.148a) it follows Ẽ(1)
α = 0 and with (3.148b) one gets

D
(1),α
−α±1 =

√
2

ã1

1√
1±ω̃ − 1

. (3.149)
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The O(ã1)-part of the normalization equation (3.111) yields∑
n<0

D
(0),α
n D

(1),α
n

(−Ẽ(0)
α + |n|ω̃)3/2

+
|D(0),α

n |2

2

3Ẽ
(1)
α

2(−Ẽ(0)
α + |n|ω̃)5/2

= 0. (3.150)

Inserting the known values from the recursion relation into Eq. (3.150), we get D(0),α
−α D

(1),α
−α /2 = 0

which implies D(1),α
−α = 0. For α + n with |n| > 1 it holds that D(1),α

−α+n = 0, since only the nearest
neighbors of α are coupled to D(0),α

−α at this stage.

We now elaborate O(ã2
1), assuming α ≥ 3. The parts of the recursion relation (3.109) contain-

ing a second order of ã1 are

−α :
Ẽ

(2)
α

2
D

(0),α
−α = ã1

∑
±

D
(α),1
−α±1, (3.151a)

−α± 1 :

(
1√

1± ω̃
− 1

)
D

(2),α
−α±1 = ã1D

(1),α
−α , (3.151b)

−α± 2 :

(
1√

1± 2ω̃
− 1

)
D

(2),α
−α±2 = ã1D

(1),α
−α±1. (3.151c)

The second order energy correction calculates with Eqns. (3.147), (3.149) and (3.151a)

Ẽ(2)
α = 2ã2

1

∑
±

1
1√

1±ω̃ − 1
, (3.152)

which is smaller than zero. Note that Eq. (3.152) also holds for α = 2, while for α = 1 only the
"+"-term appears. Eq. (3.151b) implies D(2),α

−α±1 = 0 and (3.151c) yields

D
(2),α
−α±2 =

ã1

1√
1±2ω̃

− 1
D

(1),α
−α±1. (3.153)

This result can be generalized by a recursive argument to higher orders of ã1 for the outermost
non-vanishing coefficient D(n),α

−α±n:

D
(n),α
−α±n =

√
2

ãn1

Πn
j=1

(
1√

1±jω̃ − 1
) , (3.154)

while D(j),α
−α±n = 0 ∀j < n. For the energies Ẽ(n)

α no such recursive argument is possible. These results
are enough to calculate position and width of the resonances in Subsec. 3.7.3. In the following we
discuss the Floquet bound states in the case of large driving strength ã1.

Continuum Theory for Large Driving Amplitudes

Fig. 3.8 (d-f) shows that the distribution of the Dα
n indices gets broad for large ã1. Due to this

observation we assume that it might be fruitful to derive a theory by performing a continuum limit
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for the recursion coefficients Dα
n for strong driving. As seen in Fig. 3.8 (a-c), the resonant frequency

shifts to larger values if the driving strength increases. Therefore we construct the continuum limit
in the case of ω̃ →∞. Following Ref. [116], a unitary transformation in Floquet space is done

Dn = (−1)nD−n, (3.155)

which flips the sign in the ã1 term and changes the sign in the index n. This is necessary in order to
have an attractive potential in the continuum theory. At second, we define the continuous variable
x = n/ω̃. With this it follows that κ̃n =

√
nω̃ − Ẽα =

√
x− yαω̃ with the dimensionless energy yα

defined by Ẽα = yαω
2. Using these definitions, the normalization equation (3.111) reads∑

n>0

∆n
|Dxω|2

2(x− y3/2
α )ω̃3

= 1, (3.156)

with dx = ∆n/ω̃, ∆n = 1 and the definition of the continuous field

D(x) =
Dxω
ω̃
. (3.157)

Definition (3.157) is such that the normalization becomes independent of the driving frequency∫ ∞
0

dx
|D(x)|2

2(x− yα)3/2
= 1. (3.158)

From recursion relation (3.109) an equation for the field D(x) can be derived by multiplying with
1/ã1 and using 0 = 2Dn − 2Dn:

1

ã1

(
1√

x− yω̃
− 1

)
D(x) +D(x+ 1

ω
)ω +D(x− 1

ω
)ω − 2Dxω + 2Dxω = 0. (3.159)

With dx = 1/ω a second derivative with respect to x is introduced by

D(x+ 1
ω

)ω +D(x− 1
ω

)ω − 2Dxω =
1

ω

∂2

∂x2
D(x). (3.160)

Now we arrive at the continuous version of the recursion relation(
− ω̃

ã1

√
x− yα

− ∂2

∂x2

)
D(x) = 2ω2

(
1− 1

2ã1

)
D(x). (3.161)

This relation can be mapped to a one-dimensional Schrödinger equation of an attractive inverse
square root potential (

− 1

A

1√
x− y

− ∂2

∂x2

)
φ(x) = Eφ(x), (3.162)

if we set
A = ã1/ω̃ > 0, E = 2ω̃2(1− 1/(2ã1)), y = yα and φ(x) = D(x). (3.163)

In order to have a non-singular potential, yα ≤ 0 is assumed. Ref. [116] finds a similar result having
y = 0, where a solution in terms of confluent-hypergeometric functions can be found [151]. Here we
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go beyond and find a quasi-analytic formula for the eigenenergy E of Eq. (3.162) at general y ≤ 0.
We therefore apply the transformation x = cz and y = cz0 to Eq. (3.162) and choose c such that in
Eq. (3.162) the same coefficients stand in front of both potential and kinetic term. The transformed
equation reads (

− 1

A
√
c

1√
z − z0

− 1

c2

∂2

∂z2

)
φ̃(z) = Eφ̃(z), (3.164)

where φ̃(z) = φ(cz). Both terms have the same prefactor A4/3, provided that c = A2/3. Multiplying
by A4/3 we have factored out the A dependence and absorb it into the definition of the eigenenergies(

−1√
z − z0

− ∂2

∂z2

)
φ̃(z) = E•φ̃(z), (3.165)

where E• = A4/3E. With this result a quasi-analytic expression for the eigenenergies is derived

E(z0, A) = E•(z0)A−4/3. (3.166)

It is termed quasi-analytic, since only the dependence on A can be expressed analytically, while the
z0 dependence E•(z0) has to be calculated numerically. The different solutions of Eq. (3.165) are in
the following labeled by the index α. It is know that the attractive inverse square root potential hosts
countable many bound states [151], which are labeled with ascending energy starting at the ground
state with α = 1. This definition relates these labels with the labeling of the Floquet-Feshbach
resonances.

The quasienergies Ẽα for the Floquet bound states are finally calculated by looking at Eq. (3.166),
while assuming A(ã1, ω̃) = ã1/ω and E(ã1, ω̃) = 2ω2(1− 1/(2ã1)) for our concrete physical problem.
Using y = A2/3z0, Eq. (3.166) is solved for y by the inverse function of E•α, which we denote as
gα = E•−1

α and obeys gα(E•α(z0)) = z0:

y = yα = A(ã1, ω̃)2/3gα[A(ã1, ω̃)4/3E(ã1, ω̃)]. (3.167)

Using Ẽα = ω̃2yα we can express the quasienergy as

Ẽα = ω̃2A(ã1, ω̃)2/3gα[A(ã1, ω̃)4/3E(ã1, ω̃)]. (3.168)

We will use Eq. (3.168) and the further results found in this subsection in order to calculate the
position and width of the Floquet-Feshbach resonances with the use of Eqns. (3.132) and (3.136)
found within the Floquet-Feshbach resonance theory.

3.7.3. Position and Width of Floquet-Feshbach Resonances

In this subsection position and width of the resonances are calculated, based on equations (3.132)
and (3.136). We combine an full numerical solution with analytical approximations found for small
and large driving strength.
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Figure 3.9.: Real part of the effective scattering length ãscatt in dependence on the
driving frequency ω̃ for ã1 = 0.3. Blue solid the exact solution of the full Floquet
scattering problem Eq. (3.87) with ε = 0, red dashed the results of the Floquet-
Feshbach resonance theory Eq. (3.134). The resonance positions are marked with
dashed lines.

The following calculation of position and width is based on the knowledge of the bound state wave
functions and energies, that is gained in the previous subsection. Again, we are interested in the
limit of vanishing energy ε → 0, which is relevant for ultracold quantum gases. With our numer-
ical method we are able to calculate the bound state energies Ẽα(ω̃) and numerically determine
its zero and the coefficients Dα

n at the zero. In fact, it turns out that it is computationally much
faster to directly calculate the resonant frequencies by setting ε = 0 in the recursion (3.109) and the
normalization condition (3.111), and solving a non-linear system similar to Eq. (3.141) with

F(q) =

(
A(λ = 0, ω̃)D

DTV (λ = 0, ω̃)D− 1.

)
(3.169)

Here q = (DT , ω̃)T and V , A as defined for (3.141). In Fig. 3.9 we compare the Floquet-Feshbach
resonance theory (3.134) against the full solution of the Floquet scattering equation Eq. (3.87) for
ε̃ = 0 and ã1 = 0.3. Both curves have a good agreement, especially in the vicinity of a resonance.
For example, at ω̃ = 1.5 the two curves have a relative deviation of ≈ 4%. As indicated by the
overlapping vertical lines, the Floquet-Feshbach resonance theory excellently predicts the position
of the driving-induced scattering resonances. All in all, the Floquet-Feshbach resonance theory
does not only explain the physical origin of the Floquet-Feshbach resonances, but also predicts the
course of the effective scattering length with a quite high accuracy, even for a relatively large driving
strength of ã1 = 0.3. With this at hand we now calculate resonance position and width using the
Floquet-Feshbach resonance theory. Our numerical solution provides us directly with the resonance
frequencies ω̃α for a given ã1 , the corresponding recursion coefficients Dα

n and the numerical deriva-
tive ∂Ẽα

∂ω̃
|ω̃=ω̃α , with which the resonance width ∆̃α can be calculated according to Eq. (3.136).

In Fig. 3.10 we show the numerically calculated position and width of the first eight resonances by
colored lines. One recognizes that all resonances shift to higher frequencies as the driving strength
increases, while simultaneously the width increases. Another feature is that with higher resonance
number α the resonance width decreases which fits to the interpretation of higher resonances as a
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Figure 3.10.: (a) Resonance position ω̃α of the first eight resonances α = 1, ..., 8
from top to bottom (solid lines), addition and subtraction of position and width
ω̃α ± ∆̃α (dashed lines), approximation of the resonance frequency in second order
ã1 with Eq. (3.171a) (black dotted lines). (b) resonance width ∆̃α of the first eight
resonances α = 1, .., 8 from top to bottom (solid lines), approximation of the width
with Eq. (3.172), (3.172) resp. (black dashed lines).

multi-photon process. Figure 3.10 displays the central result of this section. It demonstrates how
both position and width can be tuned by the driving strength ã1. In combination with the shape of
a Floquet-Feshbach resonance given by Eq. (3.135), Fig. 3.10 contains all the relevant information
that one needs in order to tune the scattering length to any desired value. In particular, it is worth
to mention that the width of the Floquet-Feshbach resonances can be influenced by the periodic
drive, while in contrast the width of a magnetic Feshbach resonance is fixed to a predetermined
value. This feature of the Floquet-Feshbach resonances might be of interest for the experimental
realization, where a large resonance width is often desired.

In addition to the numerical analysis we gain additional qualitative knowledge about the resonances
with the analytic solutions of the bound state equations found in subsection 3.7.2. Using them we
are able to write down explicit formulas for position ω̃α and width ∆̃α in the case of weak and strong
driving. For infinitely small ã1, Eq. (3.132) is solved with the expression for the bound state energies
in zeroth order ã1, Eq. (3.146), to

ω̃α =
1

α
. (3.170)

This can be spotted at the y-axis in Fig. 3.10. Equation (3.170) indicates the known result that
for an infinitesimally small driving the resonant frequency ω̃α has to fit α times into the energetic
difference of the scattering state at zero energy ε̃ = 0 and the energy of the bound dimer state
−ED. This result further indicates that there are infinitely many Floquet-Feshbach resonances. For
the next order O(ã2

1) the ansatz ω̃ = 1/α + δω̃α is inserted into the second-order expansion of Ẽα,
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Eq. (3.152). Solving Eq. (3.152) up to order ã2
1 yields

δω̃1 = 2ã2
1(2 +

√
2), α = 1, (3.171a)

δω̃α =
2

α

∑
±

ã2
1

1− 1√
1± 1

α

, α > 1. (3.171b)

These results are shown as black dotted lines in Fig. 3.10 which agree with the numerical results
for small ã1, as expected. Since the bound state energies are shifted to below for increasing driving
strength ã1, also the second order frequency shift (3.171a) is positive. The larger the resonant number
α, the smaller both the resonant frequency ω̃α ∝ 1/α and the shift δω̃ ∝ 1/α get. The shift of the res-
onant frequencies with ã1 is interpreted as a dressing of the bound state energy by the periodic drive.

Now we come to the perturbative calculation of the resonance width. For the first resonance one
gets in zeroth order ã1 that Dα

−1 =
√

2. With ãbg = 1 + O(ã2
1), and ∂Ẽ

(0)
α

∂ω
(ωα) ≈ 1 it follows with

Eq. (3.136) that
∆̃1 = 2ã2

1 +O(ã4
1). (3.172)

In order to get a non-vanishing result for the resonance width ∆̃α, we have to use that order in ã1

which is leading first to a non-zero coupling to the scattering states. The zeroth order approximation
of the bound state energies Ẽα = −1 + αω̃ is sufficient, it leads to ∂̃Eα

∂ω
(ω̃α) = α. But for the states,

Eq. (3.154) has to be used, which gives selected, but relevant, recursion coefficients in αth order.
The width of the αth resonance is calculated with Eq. (3.136) to

∆̃α = Cαã
2α
1 +O(ã2α+1

1 ), (3.173)

where Cα is a constant given by

Cα =
2

α× Π
(α−1)
j=1

(
1√

1−jω̃α − 1
)2 . (3.174)

Fig. 3.10 shows a good agreement between Eq. (3.173) and the numerical calculation and yields that
the widths are given by a characteristic power law in ã1. The interpretation of the decrease of the
width ∆̃α with the resonance number α as multi-photon resonances is emphasized by the α depen-
dence of the power law Eq. (3.173) and by the fact that we have to use α couplings of neighboring
Floquet channels in order to obtain Eq. (3.154).

After discussing the result for small driving we now focus on an analytic approximation of posi-
tion and width in the case of strong driving, i.e. ãAC = 2ã1 ≈ 1. The case ε̃ = 0 is given within the
continuum theory for large driving amplitudes by y = 0, so we can write Eq. (3.166) with definitions
(3.163) to [116]

2ω̃2
α

(
1− 1

2ã1

)
= E = E•α(z0 = 0)A−4/3 = E•α(z0 = 0)

(
ã1

ω̃α

)−4/3

. (3.175)

The quantity E•α(z0 = 0) is found numerically by solving the inverse square root potential (3.165) with
unit strength. Each eigenvalue E•α(z0 = 0) = E•α found by the numerics corresponds to a different
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Figure 3.11.: Numerically calculated position (a) and width (b) of first (blue) and
second (red) resonance, perturbative results for small ã1 (black dotted), perturbative
results for large ω̃ (black dashed).

resonance ω̃α, if (3.175) is solved for ω̃α. The five smallest values of E•α correspond to the five
first resonances and read E•α = −0.4380,−0.2632,−0.1976,−0.1617,−0.1386. Finally, Eq. (3.175) is
solved for ω̃α:

ω̃α =
|E•α|3/2

22/3ã2
1

∣∣∣∣1− 1

2ã1

∣∣∣∣−3/2

. (3.176)

Equation (3.176) gives an approximation for the resonance frequency in the limit of large driving.
Fig. 3.11 shows for the first two resonances that Eq. (3.176) coincides with the analytic solution for
ã1 larger than 0.2. In combination with the expansion for small ã1 in Eq. (3.171a) we can find in
the whole ω̃-ã1 plane an approximate analytic formula which describes the course of the resonant
frequencies. This is an remarkable result. Another prominent feature of Eq. (3.176) is that it finally
shows that the resonant frequencies diverge for 2ã1 → 1. Its asymptotic behavior is given by a power
law x−3/2, where x = |1− 1/(2ã1)| is the difference of the inverted AC-part of the scattering length
ãAC = 2ã1 and its minimal value (1/aAC)min = 1. The divergence of ω̃α for 2ã1 → 1 shows that
physically the strength of the dressing of the Flouqet bound states approaches infinity in this limit.
Thus, the physics is governed by the coupling of the Floquet channels leading to the large shift of
bound state energy and thus the driving frequency.

Now we come to an analytic formula approximating the resonance width ∆̃α in the limit of strong
driving. In Eq. (3.136) only the quantities Dα

−1 and ∂Ẽα
∂ω̃
|∂ω̃=ω̃α are unknown, so we have to find a

formula for them. Following a consideration described in Ref. [116], we find Dα
−1 without explicitly

solving the high-frequency continuum limit Eq. (3.161). We start by performing a partial derivative of
the Schrödinger equation with the inverse square root potential Eq. (3.162) with y = 0. Multiplying

71



3. Floquet-Feshbach Resonance Theory

this result with the complex conjugate of the field φ∗(x) yields

1

A

∫ ∞
0

dx
|φ(x)|2

2x3/2
=

∫ ∞
0

dxφ∗(x)φ′′′(x) +

∫ ∞
0

dx

(
1

A
√
x
− E

)
φ∗(x)φ′(x), (3.177)

where ′ denotes the derivative with respect to x. Using the normalization equation (3.158), it can
be shown that the integral on the left side of the equal sign equals 1. Using two times an integration
by parts with the boundary conditions φ(0) = 0 and limx→∞ φ(x) = 0 one finds that∫ ∞

0

dxφ∗(x)φ′′′(x) = −|φ′(x)|2|∞0 −
∫ ∞

0

dxφ∗′′(x)φ′(x). (3.178)

With limx→∞ φ(x) = 0 and limx→∞ φ
′(x) = 0 the intermediate step

1

A
= |φ′(x)|2|x=0 +

∫ ∞
0

dx

[
−
(
−1

A
√
x
− ∂2

∂x2

)
φ∗(x)− Eφ∗(x)

]
φ′(x) (3.179)

is derived. Since also φ∗(x) fulfills Eq. (3.162), the integral in Eq. (3.179) vanishes and we are left
with the simple result

1

A
= |φ′(x)|2|x=0. (3.180)

But how does that relate to |Dα
−1|2? First, note that with the special case A = ã1/ω and E =

ω2(2− 1/ã1) it holds that Dα(x) = φ(x). Second, the boundary condition Dα
0 = 0 implies

Dα
−1 −Dα

0 = −Dα1 −Dα0 = − 1

ω

Dαxω −Dα0ω
1
ω

. (3.181)

Inserting the continuum theory for large frequencies Dαxω = ωDα(x) and performing the limit ω →∞
in the numerical derivative yields

Dα
−1 = −∂D

α

∂x
(x)|x=0. (3.182)

In summary, we conclude that

|Dα
−1|2 =

ω̃

ã1

. (3.183)

Now ∂Ẽα
∂ω̃

is calculated by performing a partial derivative with respect to ω̃ on the bound state
energies derived from the high-frequency theory in Eq. (3.168). As we want to get the expression at
ε = 0, we set z0 = 0:

∂Ẽα
∂ω̃
|z0=0 =

∂

∂ω̃
(ω̃2A2/3)gα(E•(z0))|z0=0 + ω̃2A2/3 ∂gα

∂E•α
|z0=0

∂

∂ω̃
(E(ã1, ω̃)A(ã1, ω̃

4/3)|ω̃=ω̃α . (3.184)

Since it holds that g(E•α(z0)) = z0, the first term in Eq. (3.184) vanishes at z0 = 0. In the second term
of Eq. (3.184) we substituted E•α(z0) = E(ã1, ω̃)A(ã1, ω̃)4/3 in the inner derivative, whose derivative
can be exactly evaluated. The derivative gα

∂E•α
|z0=0 is found by numerically calculating the derivative

of E•α with respect to z0:

Fα =
∂gα
∂E•α
|z0=0 =

(
∂E•α
∂z0

|z0=0

)−1

. (3.185)
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The first five values read Fα = −7.087,−23.89,−47.96,−78.28,−114.25. In summary we find an
analytic formula for the partial derivative

∂Ẽα
∂ω̃

=
4

3
ã2

1Fα

(
1− 1

2ã1

)
ω̃α. (3.186)

Using that ãbg =
√

1− 4ã2
1 = 2ã1

√
[1/(2ã1) + 1][1/(2ã1)− 1] and by inserting all necessary expres-

sions into the definition of the width (3.136) we finally arrive at an approximate formula of the width
with our high frequency theory

∆̃α =
3

8ã2
1|Fα|

√
1

2ã1
+ 1

∣∣∣∣1− 1

2ã1

∣∣∣∣−3/2

. (3.187)

Equation (3.187) is the central result of this calculation, since it is an analytic formula for the
resonance width at large driving strength ã1. Equation (3.187) shows that the width diverges by
a power law if the driving strength converges to its maximum value 2ã1 = aAC → 1. In Fig. 3.11
(b) one sees that the high-frequency approximation of the width (3.187) converges at large driving
strengths ã1 to the numerically calculated values. The ratio of resonant position and width

ω̃α

∆̃α

=
27/3

3
|E•α||Fα|

√
1

2ã1

+ 1 (3.188)

turns out to be always larger than one for the first five resonances. This means that the resonance
can be always resolved, since its width is smaller than the physically available frequency range. The
fact, that the width is smaller than the resonant frequency can be seen with Eq. (3.188), since it
holds E ′αFα > 1 for the first five resonances and the remaining part of Eq. (3.188) is also larger than
one. For the first five resonances the ratio (3.188) increases with α, so we extrapolate that this ratio
is larger than one for general α.

3.7.4. Recursion Coefficients at Resonance Positions

The absolute value of the numerically found recursion coefficients Dα
n is shown in Fig. 3.12. For

small ã1 each resonance is located at a single index n, namely the one which corresponds to the
resonance number, as predicted by Eq. (3.145). The first coefficient Dα

−1, which enters the equation
for the width Eq. (3.136), increases with the driving strength. This explains the ascent of the width
with ã1. Also with rising ã1 more recursion coefficients gain a relevant weight and, thus, indicate
that Floquet physics becomes more relevant for larger ã1. The smearing out of the coefficients over
a vast range of indices further shows that by performing the continuum limit we can describe the
physics in the case of strong driving in an accurate way. The general increase of the coefficient
values for large indices is related to the normalization (3.111) of the recursion coefficients. Further,
an interesting feature is that the higher-order resonances show knots of a low value of |Dα

n | in the
density profile, corresponding to the order of resonance. With larger ã1 the knots wander to larger
indices |n|, but the number remains constant. At last, note that the numerics adaptively chooses a
cutoff in Floquet space. The white regions mark the indices which are above this cutoff and are set
to zero when plotting this Fig. 3.12. Note, that the cutoff is always chosen large enough in order to
cover the relevant physics, in order to show the relevant behavior we restricted to values |n| < 40.
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(a) (b) (c)

Figure 3.12.: In color code the decade logarithm of the absolute value of the re-
cursion coefficients log10 |Dα

n | for the indices |n| ≤ 40 over the driving strength ã1

for: (a) first resonance, (b) second resonance, (c) third resonance.

3.7.5. Inelastic Scattering

As we discussed in Subsec. 3.7.3, the real part of the effective scattering length Eq. (3.134) shows in-
teresting resonant behavior which is described by the Floquet-Feshbach resonance theory. But in the
derivation of Eq. (3.134) also a non-resonant contribution appears, giving rise to an imaginary part
in the effective scattering length. As previously discussed, this imaginary part describes the inelastic
scattering to Floquet channels with positive index. In our full continued fraction solution Eq. (3.97)
it turns out that only the "+"-part stemming from the inelastic Floquet channels is responsible
for the imaginary part. In the effective scattering length of our Floquet-Feshbach resonance theory
Eq. (3.134), exactly the same term enters through the inelastic scattering length (3.124). Thus the
imaginary part of the full continued fraction solution (3.97) and the Floquet-Feshbach resonance
theory (3.134) are the same, showing that inelastic scattering is correctly incorporated in the reso-
nance theory.

In Fig. 3.13 the imaginary part of the effective scattering length Im ãscatt, which is negative in
the whole parameter range, is shown in the ω̃-ã1 plane. This reflects the fact, that due to inelastic
scattering only losses and no gain can be induced. But its maximum value is found to be 17 % of
the average scattering length ā, such that inelastic processes can be much weaker than elastic scat-
tering, which is resonantly enhanced by the Floquet-Feshbach resonances. For small ã1 the inelastic
scattering is much weaker than for large ones. At fixed ã1 the imaginary part first increases up to
ω̃ ≈ 1, while it then decreases down to zero at infinite ω̃.
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Figure 3.13.: Negative imaginary part of the effective scattering length ãscatt in
dependence on the driving strength ã1 and driving frequency ω̃.

3.8. Floquet-Feshbach Resonances for the Pseudo Potential
with a Higher Harmonic Drive

The harmonically driven contact interaction is the simplest model where Floquet-Feshbach reso-
nances occur. The next complicated setup is to assume a general time-periodic drive of the form

a(t) =
∞∑

n=−∞

e−inωtan, (3.189)

with a∗−n = an to ensure a real valued a(t). We will see that a drive of the form (3.189) induces
resonances that have different properties as in the harmonically driven case. The Hamiltonian in
Floquet space reads

Hn,m =

(
− ~2

2µ
∆R − n~ω

)
δn,m + lim

s→0+
an−m

~2

2µ

δ(r − s)
s2

←→
∂

∂r
r. (3.190)

The harmonic driving of a magnetic field B(t) = B1 + BAC cos(ωt) that is close to the position
B0 of a magnetic Feshbach resonance in fact induces such higher harmonics in the drive, since the
scattering length is a non-linear function of the magnetic field

a(t) = aBG

[
1− ∆B

B(t)−B0

]
. (3.191)

In the region of universal behavior close to B0 the scattering is described by a contact interaction
with Eq. (3.191) as time-dependent interaction strength. Equation (3.191) corresponds to a driving
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scheme involving higher harmonics an 6= 0 for all n ∈ Z.

This section is structured as follows. In Subsec. 3.8.1 the scattering length is extracted from the
Floquet scattering solution. The Floquet-Feshbach resonance theory for a driven pseudo potential
including higher harmonics is discussed in Subsec. 3.8.2. We emphasize in Subsec. 3.8.3 that the
higher harmonic drive induces a peak in the imaginary part of the scattering length that has an
asymmetric lineshape. This asymmetry is related to the Floquet structure of the Hilbert space.
An analysis of the resonance properties using the Floquet-Feshbach resonance theory is provided in
Subsec. 3.8.4.

3.8.1. Numerical Calculation of the Floquet Scattering Problem

For calculating the scattering amplitude, ansatz (3.80) still holds in the case that a(t) is of the general
form (3.189). Like in the harmonically driven case, we measure in the following all length scales by
|a0| and energy scales by ED = ~2/(2µ|a0|2) by denoting ã = a/|a0|, Ẽ = E/ED and ω̃ = ~ω/ED. A
recursion relation similar to Eq. (3.82) is derived:

∞∑
m=−∞

(
i

k̃m
δn,m − ãn−m

)
Dm =

i

2k̃n
δn,0 +

ãn
2
. (3.192)

Equation (3.192) can also be expressed in terms of the scattering amplitudes (3.81):

∞∑
m=−∞

(δn,m + ik̃mãn−m)f̃m = −ãn. (3.193)

Equation (3.193) is solved numerically by truncating the sum to indices smaller than a cutoff, i.e. |n|, |m| ≤
mc, the resulting finite linear system is inverted numerically in an efficient manner. The scattering
length is extracted according to ãscatt = −f̃0(k̃ = 0). Also here, the goal is to further understand the
Floquet-Feshbach resonances by introducing a Feshbach theory in Floquet space, which is worked
out in the next subsection.

3.8.2. Floquet-Feshbach Resonance Theory

A Floquet-Feshbach resonance theory is derived in case of a driven pseudo potential including higher
harmonics. Low-energy scattering is assumed, i.e. we have ε̃ < ω̃, where the channels with n < 0 are
closed. The wave function of the scattering state that solves the Floquet equation (3.112) is given
in analogy to Subsec. 3.7.1. In the closed channels a superposition of bound states according to
Eq. (3.114) is assumed, where the radial wave function of the bound states is given by Eq. (3.108).
In the n = 0 channel we assume Eq. (3.113), for the channels with n > 0 we use the ansatz
Eq. (3.80). The eigenvalue equation for the bound states H̃n<0,n<0|φαB〉〉 = Ẽα|φαB〉〉 reads in terms of
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the coefficients ∑
m<0

(
1

κ̃αm
δn,m − ãn−m

)
Dα
m = 0, for n < 0, (3.194)

where κ̃αn =
√
−Ẽα − nω̃. Equation (3.194) shows that the higher harmonic drive induces higher-

order couplings between the bound state recursion coefficients Dα
n . The normalization condition

(3.111) still holds. We solve Eqns. (3.194) and (3.111) numerically for the bound state energies
Ẽα and recursion coefficients Dα

n . These quantities are needed for calculating the properties of the
resonant scattering amplitude. Evaluating the Floquet equation (3.112) for the closed channels and
projecting by 〈〈φαB| we arrive at

(Ẽα − ε̃)Aα = −〈〈φαB|H̃<,0|R0〉〉 − 〈〈φαB|H̃<,>|Rn>0〉〉, (3.195)

while we use the notation of Subsec. 2.2.2. Inserting the actual form of the wave functions and
evaluating the pseudo potential, Eq. (3.195) transforms to

(Ẽα − ε̃)Aα = −
∑
n<0

Dα
n ãn(1 + ik̃f̃0)−

∑
n<0
m>0

Dα
n ãn−mDm. (3.196)

In comparison to the result for the harmonically driven case (3.117), additional couplings to the
inelastic channels with n > 0 arise. By the integration techniques Eqns. (3.27) and (3.28) we obtain
the equations for n = 0

ã0 + (1 + ikã0)f̃0 +
∑
n>0

ã−nDn +
∑
n<0

ã−nDn = 0 (3.197)

and n > 0

− i

k̃n
Dn +

∑
m>0

ãn−mDm + ãn(1 + ik̃f̃0) +
∑
m<0

ãn−mDm = 0. (3.198)

The above equations are written such that they separate processes which couple the three different
sectors of the Floquet space. Like in discussion of the harmonically driven potential in Sec. 3.7, these
sectors are: The closed channels incorporating the bound states, the the entrance channel, and the
channels with indices n > 0 introducing the inelastic processes.

In the following, we aim to find a formula for the scattering length which is similar to Eq. (3.135).
The starting point is to solve Eq. (3.198) for the coefficients Dn

Dn =
∑
m>0

Λn,m

[
ãm(1 + ik̃f̃0) +

∑
m′<0

ãm−m′Dm′

]
, (3.199)

where the the matrix Λn,m, which is in general complex while the indices are restricted to strictly
positive values n,m > 0, is uniquely defined by∑

l>0

Λn,l

(
i

k̃l
δl,m − ãl−m

)
= δn,m. (3.200)
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Using the Λn,m matrix the prefactors before the coefficients Dm in (3.198) are inverted. The matrix
Λn,m describes the scattering within the inelastic channels. In the case that there is a low amplitude
in the n > 0 channels, the scattering between those channels can be neglected. A condition for that
to occur is |ãn| � 1 for |n| ≥ 1. The Λn,m matrix in this case is of a simple diagonal form

Λn,m ≈ δn,m
1

i
k̃n
− ã0

, n,m > 0. (3.201)

Now result (3.199) is inserted into Eq. (3.196) while assuming that close to resonance α in the sum
Dn<0 ≈

∑
αAαD

α
n<0 only the αth coefficient is important. This yields

(Ẽα − ε̃+ δẼα + iγ̃α)Aα = −wα(1 + ik̃f̃0), (3.202)

with

δẼα + iγ̃α =
∑
n<0
m>0
m′>0
m′′<0

Dα
n ãn−mΛm,m′ ãm′−m′′D

α
m′′ , δẼα, γ̃α ∈ R, (3.203a)

wα =

∑
n<0

Dα
n ãn +

∑
n<0
m>0
m′>0

Dα
n ãn−mΛm,m′ ãm′

 . (3.203b)

In contrast to the harmonically driven pseudo potential, here the resonances shift in energy by
δẼα, while losses are introduced by a non-vanishing γ̃α. Both quantities describe the real and
the imaginary part of Eq. (3.203a), which describes the following process: A bound state scatters
into the inelastic channels, then possibly involves multiple scattering processes within the inelastic
channels, and finally comes back to the bound state. The parameter wα determines the strength
of the effective coupling of the bound states to the elastic channel n = 0. It consists of the direct
coupling of closed channels and elastic channel, which is also present in the harmonically driven case
as given by Eq. (3.117), and an additional term involving a coupling of closed channels and the elastic
channel via the inelastic channels. Equation (3.202) is inserted together with Dn<0 ≈

∑
αAαD

α
n into

Eq. (3.198) which is used for solving (3.197). Using Dn<0 ≈
∑

αAαD
α
n in Eqns. (3.198) and (3.197),

an explicit form of the scattering amplitude is found by −f−1
0 = ã−1

E + ik, with

ãE = ã0 + ãnon−res −
∑
α

∑
n>0
m>0
m′<0

ã−nΛn,mãm−m′D
α
m′ +

∑
n<0

ã−nD
α
n

 wα

Ẽα + δẼα − ε̃+ iγ̃α
(3.204)

and
ãnon−res =

∑
n>0
m>0

ã−nΛn,mãm. (3.205)

Let us discuss Eq. (3.204). The first term describes the background scattering length ã0, while the
second is a non-resonant part given by Eq. (3.205). The third term is the most relevant, since it
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shows a resonant peak provided that the energies of the scattering state and the Floquet bound state
plus additional energy shift match: ε̃ = Ẽα + δẼα. In comparison to the theory of the sinusoidally
driven pseudo potential Eq. (3.122), an imaginary part γ̃α is present in Eq. (3.204). Further, the
width of the resonance will involve terms that include the matrix Λn,m that describes the scattering
in the inelastic channels.

Again, we are interested in the case of low-energy scattering that is relevant for ultracold gases
and assume in the following ε̃ → 0. In particular, the dependence of the scattering length ãscatt on
the driving frequency ω̃ is of interest. The resonance frequency ω̃α is defined as the frequency where
the real part of the denominator in Eq. W(3.204) vanishes

Ẽα(ω̃α) + δẼα(ω̃α) = 0. (3.206)

Similar to the harmonic case Eq. (3.132), only a single resonance per quantum number α occurs.
But in Eq. (3.206) there is an energy shift δẼα, which additional alters the position of the resonance.
As described by Eq. (3.203a), this energy shift stems from the coupling of the bound state to the
inelastic channels with n > 0.

The three variables ω̃α and Dα
n and Ẽα at resonance condition (3.206) are found by numerically

solving simultaneously Eqns. (3.111), (3.194) and (3.206). For finding the resonance width ∆̃α we
renormalize the background scattering length by demanding ãbg = limω→∞ ãscatt, where ãscatt is cal-
culated by solving Eq. (3.193) numerically, and perform in analogy to Eq. (3.133) the approximation
Eα(ω̃) + δẼα(ω̃) ≈ [∂ω̃Eα(ω̃) + ∂ω̃δẼα(ω̃)]ω=ωα × (ω̃ − ω̃α). The resulting scattering length reads

ãscatt = ãbg

(
1−

∑
α

∆̃α

ω̃ − ω̃α + iγ̃α

)
+ ãnon−res(ε̃ = 0), (3.207)

while the resonance width is given by

∆̃α =

∑
n<0

Dα
n ãn +

∑
n<0
m>0
m′>0

Dα
n ãn−mΛm,m′ ãm′



×

∑
n>0
m>0
m′<0

ã−nΛn,mãm−m′D
α
m′ +

∑
n<0

ã−nD
α
n

 1

ãbg[∂ω̃Eα(ω̃) + ∂ω̃δẼα(ω̃)]ω=ωα

.

(3.208)

Equation (3.207) looks similar to Eq. (3.134), that has been derived for the harmonically driven
case. However, there are two mayor differences. First, the coupling to the inelastic channels by the
higher harmonics of the drive induces an imaginary part γ̃α given by Eq. (3.203a), which leads to a
finite maximum of the real part of ãscatt and a resonant imaginary part of ãscatt. Second, Eq. (3.208)
shows that the width has, in addition to a contribution form a direct coupling of the bound states
to the scattering state in the elastic n = 0 channel, a contribution involving scattering from the
closed channels over inelastic channels to the elastic channel. These additional terms involve the
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Figure 3.14.: Real part (blue solid) and imaginary part (red solid) of the scattering
length ãscatt calculated numerically with Eq. (3.193). Real part (yellow dashed) and
imaginary part (purple dashed) of the scattering length calculated by the Floquet-
Feshbach resonance theory with Eq. (3.207). The parameters are ã0 = 1, ã1 =
0.3, ã2 = 0.1. (a) Overview plot of the resonances α = 1, ..., 4 (from right to left),
(b) zoom of (a), highlighting the 2nd resonance.

matrix Λn,m. For a vanishing higher harmonic driving, ãn = 0, n > 1, Eq. (3.136) valid for a
sinusoidal driving is recovered. This is visible, since all terms involving a Λn,m as well as the term
∂ω̃δẼα(ω̃)|ω=ωα vanish. Since the matrix Λn,m is complex, the resonance width Eq. (3.208) becomes
complex in the presence of a higher-harmonic driving. This induces interesting behavior which is
discussed in the next subsection.

3.8.3. Losses and Asymmetries as an Influence of a Higher Harmonic
Drive

We now evaluate the scattering length Eq. (3.207) found with the Floquet-Feshbach resonance theory
and discuss the relevant features. In Fig. 3.14 the result of the Floquet-Feshbach resonance theory
Eq. (3.207) is compared with the the numerically calculated scattering length and a good agreement
is found. This shows that the theory incorporates the relevant physics. Similar to the sinusoidally
driven case displayed in Fig. 3.9, multiple resonances occur, which are labeled from high to low driv-
ing frequencies starting at α = 1 at the highest frequency. In difference to the harmonically driven
case, the resonances in Fig. 3.14 have a real part with finite extrema. In addition, the imaginary part
peaks at the resonance position. This shows that the resonances have losses, as with Eq. (3.75) the
imaginary part of the scattering length is associated with loss into inelastic channels. These losses
originate from the direct coupling of the bound states to the inelastic channels, through which the
bound states can decay into the inelastic channels. In Fig. 3.14 (b) a zoomed plot of the resonance
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α = 2 is shown, where an asymmetry in the imaginary part of the scattering length can be observed.
The outstanding effect of this asymmetry is to shape a minimum of |Im ãres| which suppresses the
losses to a minimal value. It allows a tuning of the elastic scattering while keeping the losses small,
a setup that is often desired in ultracold gas experiments [18].

For the further understanding of the aforementioned features, we discuss the mathematical properties
of the resonant part of Eq. (3.207), which reads

ãres = ãbg

(
1− ∆̃

x̃+ iγ

)
, (3.209)

with x̃ = ω̃ − ω̃α. It can be split in real and imaginary part by

Re ãres = ãbg

(
1− ∆̃0x̃+ τ̃ γ̃

x̃2 + γ̃2

)
, (3.210a)

Im ãres = ãbg
τ̃ x̃− γ̃∆̃0

x̃2 + γ̃2
, (3.210b)

where ∆̃ = ∆̃0 + iτ̃ . The imaginary part of the width τ̃ mixes the the original behavior of real and
imaginary part of the scattering length. While for τ̃ = 0 the imaginary part is of Lorentzian form,
a non-vanishing τ̃ adds an additional dispersive behavior. A finite τ̃ adds a Lorentzian behavior to

the real part. The extremal values of Re ãres are x̃Re
± = γ̃τ̃ /∆̃0±|γ̃|

√
1 + (τ̃ /∆̃0)2. These correspond

to the maximum and the minimum the function Re ares has in the vicinity of the resonance. For
τ̃ = 0 we find x̃Re

± = ±|γ̃| and Re ãres(x̃
Re
± ) = abg(1± ∆̃0/(2γ̃)). This shows that in the presence of a

finite decay rate γ̃ the maximal enhancement of the real part Re ãres is finite, and it decreases with
increasing γ̃. The imaginary part has two extrema at

x̃Im
± =

γ̃∆̃0

τ̃
± |γ̃|

√
1 +

∆̃2
0

τ̃ 2
. (3.211)

The quantity xIm
sign(γ̃∆̃0/τ̃)∓ corresponds to the central peak of Im ares. In the limit of τ̃ → 0 the approx-

imation xIm
sign(γ̃∆̃0/τ̃)∓ ≈ 0 holds and we find that Im ares(x̃ = 0) ≈ −ãbg∆̃0/γ̃. Thus the maximum

of the imaginary part also diverges with Im ãres(x
Im
sign(γ̃∆̃0/τ̃)∓) ∝ −1/γ̃ for vanishing γ̃. The other

extremum xIm
sign(γ̃∆̃0/τ̃)± corresponds to the maximum of the imaginary part, i.e. the position where it

is closest to zero. In the limit τ̃ → 0 the location of this extremum diverges to xIm
sign(γ̃∆̃0/τ̃)± → ±∞.

Thus the presence of a non-vanishing τ̃ is related to a finite value of xIm
sign(γ̃∆̃0/τ̃)±, which can lie to

the left or to the right the resonance position, depending on the value of sign(γ̃∆̃0/τ̃). The closer
xIm

sign(γ̃∆̃0/τ̃)± is to the resonance position xIm
sign(γ̃∆̃0/τ̃)∓, the more asymmetric the resonance shape

becomes. Therefore we can take the value of xIm
sign(γ̃∆̃0/τ̃)∓ as a measure for the asymmetry of the

resonance.

The minimum of the imaginary part reached at xIm
sign(γ̃∆̃0/τ̃)± can be of practical importance if one

81



3. Floquet-Feshbach Resonance Theory

-0.5 0 0.5
-15

-10

-5

0

5

10

15

(a)

-0.5 0 0.5
-1

-0.8

-0.6

-0.4

-0.2

0

(b)

-0.5 0 0.5
10

0

10
1

10
2

10
3

(c)

Figure 3.15.: The quantity ãscatt = ãres +anon−res is shown exemplarily with ãres as
in Eq. (3.209) and anon−res(ω̃) = const = −0.12ãbg. The parameters are γ̃ = −10−3

and τ̃ = 0 for the blue solid curves, γ̃ = −10−3, τ̃ = 2 × 10−2 for the red dashed
curves. The left black dashed line marks x̃ = 0, the right dashed line the position
of minimal |Im ãres|. In (a) the real part is shown, in (b) the imaginary part. (c)
displays the ratio Re ãscatt/Im ãscatt.

is interested in maximizing the real part of ãscatt, which controls e.g. the interaction strength in an
ultracold gas experiment, while keeping the atom loss at a minimum. Fig. 3.15 exemplarily shows
two resonant curves, one with τ̃ = 0 and the other with τ̃ = 2× 10−2. While the real part is barely
influenced by a finite τ̃ , the imaginary parts of the two configurations notably differ and the asym-
metry of the plot for τ̃ = 2×10−2 is clearly visible. The minimum of |Im ãscatt| lies on the left side of
the resonance. As shown in Fig. 3.15 (c), this results in an enlarged ratio of Re ãscatt/Im ãscatt near
the position of minimal |Im ãscatt|, compared to the case with vanishing τ̃ , which is for example given
in case of an optical Feshbach resonance [18,115]. This enhancement of the ratio Re ãscatt/Im ãscatt

is an advantage of the Floquet-Feshbach resonances compared to optical ones.

We interpret the physical origin of this asymmetry as a Fano resonance suppressing the popula-
tion of the inelastic channels, similar to the results of U. Fano in Ref. [11]. There, the author
considered the decay of a bound state into a continuum in the presence of an autoionization level.
The bound state can do a direct transition to the continuum or decay via the autoionization level
into the continuum. It turns out that both paths interfere, enabling the possibility that the matrix
element for the transition vanishes [11]. In our case we conjecture that similar processes happen for
the inelastic channels. The Floquet scattering theory ensures by Im ascatt = −

∑
n≥nc, n 6=0 |aFl

n |2kn
that the imaginary part of the scattering length is related to the population of the inelastic channels.
In the following we make it visible that the minimum population of the inelastic channels may come
from a Fano resonance. Here the two interfering paths are the following: One is the direct excitation
of inelastic channels via the higher Fourier components, e.g. with ã2 from n = −1 to n = 1, the
other is the sequenced hopping to the next higher channel with ã1, e.g. from n = −1 over n = 0 to
n = 1. Since the driving frequency ω̃ enters into the parameters of the Floquet-Feshbach resonance
theory, it also depends on the driving frequency how these paths interfere. This explains that the
minimal |Im ãscatt| can be reached while tuning ω̃. The Floquet Hilbert space contains more com-
plexity than the aforementioned prototype process of a Fano resonance. This makes it visible that
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in most cases there is no complete destructive interference and thus no complete suppression of losses.

Mathematically we can make the statement that without the direct coupling of closed to inelas-
tic Floquet channels there is a vanishing loss parameter γ̃α and a vanishing imaginary part of the
width τ̃α. Refs. [122, 152, 153] found that the presence of inelastic scattering induces a formula for
the scattering length of a similar shape as Eq. (3.209). With this we conclude that the asymmetry
of the imaginary part is related to inelastic multi-channel scattering. In our case these channels are
the Floquet channels, therefore the asymmetry is an effect that is related to Floquet physics. This
is a remarkable result, since it allows to directly proof the presence of Floquet physics by measuring
asymmetries in the imaginary part Im ãscatt, that are tunable by the parameters of the drive. In an
ultracold gas experiment, this may be achieved by measuring the two-body losses with inelastic loss
spectroscopy [18,29].

3.8.4. Results of the Floquet-Feshbach Resonance Theory for a Higher
Harmonic Drive

After having discussed the central properties of the Floquet-Feshbach resonances in case of a higher
harmonic drive, we analyze the behavior of the resonance parameters in dependence on the driving
strength ãn. In Fig. 3.16 several parameters of the Floquet-Feshbach resonance formula Eq. (3.207)
are shown for ã0 = 1, ã1 = 0.25 with ãn = ã−n for |n| ≤ 2 and ãn = 0 for |n| > 2. This means we
start at a given harmonic driving scheme and increase the second Fourier component ã2.

As seen in Fig. 3.16 (a), all resonant frequencies ω̃α shift to lower values for small ã2 while they
increase for larger ã2. In addition, the resonance width shows an interesting behavior. While the
width of the first resonance drops and the width of the third resonance stagnates, the second reso-
nance gets broader. This behavior becomes clear if one thinks of the interpolation between a drive
with ã1 6= 0, ã2 = 0 and ã1 = 0, ã2 6= 0, rather than a pure increase of ã2. In the case ã2 = 0 the
pseudo potential is harmonically driven and resonances occur for each α ∈ N. If ã1 = 0, the drive is
as well harmonic, but with frequency 2ω̃. Odd and even Floquet channels are decoupled from each
other, thus only the resonances with even α appear in this case. The odd resonances disappear, which
means that their width becomes zero. The road towards this scenario is exactly what is displayed
in Fig. 3.16 (b), while Fig. 3.16 (c) shows that the imaginary parts of ∆α increase with ã2. The
behavior of the loss parameter γ̃α shown in Fig. 3.16 (d) can be explained similarly to discussion of
Fig. 3.16 (b). The loss parameters for the first and third resonance increase, while γ̃α=2 stagnates at
large ã2. In this parameter region the resonances α = 1, 3 are stronger damped than the resonance
α = 2. Overall the first resonance suffers substantially more loss than the others, since a mayor
population of the bound state is directly coupled with ã2 to the inelastic channels. For small ã2 it
holds the smaller the resonance number α, the smaller the loss parameter γ̃α. In Fig. 3.16 (e) the
maximal enhancement of the real part of the scattering length is shown. For small ã2 values larger
than 104 are possible, while for the first and second resonance it decreases permanently. For the
second resonance there is after the initial decrease an additional increase, which can be understood
with the interpolation argument from the discussion above. Fig. 3.16 (f) displays the position of the
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Figure 3.16.: Resonance parameters for resonances with numbers α = 1 (blue),
α = 2 (red), α = 3 (yellow) with ã0 = 1 and ã1 = ã−1 = 0.25 in dependence on
ã2 = ã−2. max real ãscatt in (e) is calculated with max real ãscatt = ãres(ω̃α+ x̃Re

− )+
ãnon−res(ω̃α + x̃Re

− ), x̃Im
α in panel (f) is calculated by x̃Im

α = xIm
sign(γ̃∆̃0/τ̃)∓.

minimal imaginary part, which represents our measure for the asymmetry of the resonance curves.
For small ã2 the value of xIm

sign(γ̃∆̃0/τ̃)∓ is close to zero due to the fact that γ̃α is smaller than the
imaginary part of the width. Indeed, the resonance shapes show for small ã2 the most prominent
asymmetry. With increasing ã2 there is a rise of xIm

sign(γ̃∆̃0/τ̃)∓, thus the resonance curves appear more
symmetric. The slope of the increase is slower, the larger the resonance number is.

In summary, we conclude that a higher-harmonic drive induces losses to the Floquet-Feshbach res-
onances that come in due to the presence of inelastic scattering, which is unfortunate to most
applications in ultracold quantum gases. However, we find that for certain parameters these losses
are highly asymmetric. This allows, in comparison to optical Feshbach resonances, for a larger ratio
of real to imaginary part.

As an outlook we mention that by tuning the relative phase of the first and second harmonic the
imaginary part γ̃α can be reduced. A further calculation might quantify this argument.

84



3.9. Frequency Scales of the Model

3.9. Frequency Scales of the Model

In this section we give the frequency scales that are of relevance for the experimental realization
of a Floquet-Feshbach resonance. We refer to the proposal of Ref. [99] of applying a time-periodic
magnetic field in the vicinity of a magnetic Feshbach resonance. We assume to be in the range
of universal behavior close to the position of the magnetic Feshbach resonance, such that resonant
scattering is described by the pseudo potential. The relevant energy scale for this is the dimer energy
Eq. (3.46) with scattering length Eq. (3.45). With this the dependence of the dimer energy on the
magnetic field is given by

ED = hfD

(
B −B0

B −B0 −∆

)2

≈ hfD

(
B −B0

∆

)2

, (3.212)

where the maximal dimer frequency

fD =
~

4πµ

1

a2
bg

(3.213)

yields the relevant frequency scale. In Eq. (3.212), the approximation holds for |B − B0| < |∆|.
As described by Eq. (3.213), the dimer frequency depends on the reduced mass of the atom and
the background scattering length of the magnetic Feshbach resonance around which the periodic
magnetic field is applied.

The other relevant frequency scale is related to the range of the actual potential. Following Ref. [18]
we assume a van der Waals potential for the scattering of ultracold atoms, whose length scale is
given by the quantity rvdW, which can explicitely calculated with the properties of each inter-atomic
potential. The approximation of the actual van der Walls potential by the pseudo potential is valid
if the condition rvdWk1 � 1 holds [116,117]. This can also be expressed as

f � fvdW (3.214)

with the van der Waals frequency given by

fvdW =
~

4πµ

1

r2
vdW

. (3.215)

In Table 3.1 numbers are shown for selected isotopes and Feshbach resonances. All frequencies lie
in the kHz and MHz regime. For all cases shown, the dimer frequency is smaller than the van
der Waals frequency. This is signaling that condition (3.214) is valid for all relevant magnetic field
strengths. Note, that by choosing the time-averaged magnetic field to be close to the field strength
of the magnetic Feshbach resonance, the frequency scale of the actual dimer energy can be decreased
by orders of magnitude.

At last, we present the Fourier coefficients that correspond to a sinusoidal drive of the magnetic
field. The time-dependent scattering length is given by Eq. (3.191) with a time-periodic magnetic
field of the form B(t) = B1 + BAC cos(ωt). With the residue theorem the Fourier components are
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Table 3.1.: Table showing the dimer frequency fD and the van der Waals frequency
fvdW for different isotopes at a Feshbach resonance with magnetic field strength B0.
The values are taken from [18]. Here, aBohr = 5.29 × 10−11 m denotes the Bohr
radius.

Isotope B0 abg fD fvdW
6Li 843 G −1405 aBohr 304 kHz 641 MHz

87Rb 1007.4 G 443 aBohr 4.15 MHz 6.07 MHz
133Cs 800 G 1940 aBohr 7.21 kHz 2.66 MHz

found under the assuption that |BAC| < |B1 −B0| to be [117]

an = aBG

δn,0 − ∆

(B1 −B0)
√

1− y2

(√
1− y2 − 1

y

)|n| , (3.216)

where y = BAC/(B1 − B0). Using Eq. (3.216) the Fourier coefficients of a(t) can be calculated for
any desired situation. For the opposite case |BAC| > |B1 − B0| the Fourier coefficients Eq. (3.216)
do not converge. In this case a Floquet solution is not possible. Note, that for driving the magnetic
field by a driving scheme including higher harmonics, the Fourier components an can be tuned to
values other than Eq. (3.216).

3.10. Multi-Channel Model of a Feshbach Resonance with
Periodically Driven Parameters

Reference [99] found that the periodic driving of a magnetic field in the vicinity of a Feshbach
resonance induces new resonances. If the strength of the applied magnetic field lies in the range
of universal behavior, a pseudo potential with a time-dependent strength describes the scattering
physics. This situation is thoroughly discussed in Secs. 3.6 - 3.8. However, this description has
several limitations. First, there are Feshbach resonances where this range of universal behavior is
narrow, as discussed in Subsec. 3.4.1. Thus, it is of high interest to find a theory that exceeds this
limited range. Second, if the AC-part of the magnetic field is larger than the difference of the average
magnetic field to the position of the magnetic Feshbach resonance, the Floquet solution of the driven
pseudo potential does not converge, c.f. Eq. (3.216). However, both above mentioned cases can be
reached in an experimental setup. These limitations motivate us to find a model that is capable of
describing the effects of a time-periodic magnetic field on the scattering properties for a much wider
parameter range.

The multi-channel description of a Feshbach resonance, introduced in Subsec. 3.4, resolves the above
raised issues. Since we like to keep the mathematical description simple, we specialize to the two-
channel magnetic Feshbach resonance model Eq. (3.47) with a pseudo potential as inter-particle
interaction. A periodic modulation of the magnetic field leads to time-dependent parameters in this
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model. Using the multi-channel model we are able to analyze the Floquet-Feshbach resonances for
a vast range of magnetic field strengths. In particular, this discussion includes the above mentioned
cases where the simple pseudo potential model fails for a description of the Floquet-Feshbach reso-
nances.

The periodically driven multi-channel model is introduced in Subsec. 3.10.1. In order to under-
stand the Floquet scattering solution, it is key to discuss the Floquet modes of a time-periodically
driven two-level system, which is done in Subsec. 3.10.2. The numerical Floquet scattering solution
is derived in Subsec. 3.10.3. We report in Subsec. 3.10.4 that the periodic drive both induces new
resonances and engineers Feshbach resonances that already exist in the static case. Subsec. 3.10.5 is
devoted to the analysis of these resonances using a combination of the Floquet-Feshbach resonance
theory and analytical approximations of the Floquet scattering problem. In Subsec. 3.10.6 we apply
the model to a low-field magnetic Feshbach resonance with experimentally inspired parameters.

3.10.1. Periodically Driven Multi-Channel Model

The goal of this subsection is to find a Floquet scattering solution of the two-channel model Eq. (3.47)
with time-periodic parameters C(t) = C(t+ T ), δ(t) = δ(t+ T ):

H = −∆r +

(
0 C(t)

C(t) δ(t)

)
+

(
ae 0
0 ac

)
lim
s→0+

δ(r − s)
s2

←→
∂

∂r
r. (3.217)

In Eq. (3.217), ∆r denotes the radial Laplacian while the multi-channel structure is encoded in
the matrix-valued potentials. The upper component corresponds to the the entrance channel, the
lower will host a bound state that is needed for the Feshbach resonance. The scattering potential
is assumed to be a matrix valued pseudo potential, with ae / ac parametrizing the strength. Both
the detuning of the channel thresholds δ(t) and the coupling C(t) between the channels are time
periodic, as it is discussed later. These quantities are expressed in a general Fourier series

C(t) =
∑
n

e−inωtCn, (3.218a)

δ(t) =
∑
n

e−inωtδn. (3.218b)

Let us discuss the parameters of Eq. (3.217) for the case of a magnetic Feshbach resonance. As
described in Sec. 3.4, the nature of the two channels is determined for alkali atoms by the spins of
the valence electron, which can be either in triplet or in singlet configuration. The coupling between
those channels is given by the hyperfine interaction C = VHF 2µ/~2 while the detuning describes
a Zeeman term δ = δµ B 2µ/~2. A time-periodic magnetic field along the quantization direction
can thus be modeled with a time-dependent detuning δ(t) [99, 144]. In addition, a time-dependent
coupling constant C(t) may be induced by a time-dependent electromagnetic field that allows for
electric or magnetic dipole (multipole) transitions in the electronic states that serve as definitions
for the channels [138, 141, 144]. For example, a magnetic field polarized perpendicular to the quan-
tization axis can in principle induce such couplings [99, 138, 143]. In the static case, a Feshbach
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resonance occurs if the energy of the scattering state is near a bound state of the van-der Waals
potential in a closed channel. Here we reduce the complexity of finding these bound states drasti-
cally by assuming a pseudo potential in the closed channel. In this case is holds that this channel
posses a bound state for ac > 0 and the energy of this bound state is known explicitly by Eq. (3.31).
Since we are interested in describing scattering in ultracold quantum gases, the low-energy limit is of
relevance. In this limit it will be a good approximation to substitute the actual scattering potential
in the entrance channel by the pseudo potential with the interaction strength parameterized by the
scattering length ae, as done in model (3.217).

If a two-channel model with realistic inter-atomic potentials is given, we can at least qualitatively
describe the physics with the pseudo potential model Eq. (3.217) by the following considerations.
We can choose ae to equal the background scattering length in the entrance channel, while ac is
chosen such that the energy of the bound state in the pseudo potential model coincides with the
value of the realistic potential. The coupling C can be determined with the results of Fig. (3.4) (b),
if the width of the actual Feshbach resonance is known.

In order to find the Floquet scattering solution, Hamiltonian (3.217) is expressed in the notation of
Floquet Hilbert space, c.f. sec. 2.2.2. The Floquet equation reads(

−∆r + Ĥint + Â lim
s→0+

δ(r − s)
s2

∂

∂r
r

)
|φ〉〉 = ε|φ〉〉. (3.219)

Here Â = A⊗ IT , with

A =

(
ae 0
0 ac

)
, (3.220)

and ⊗ as the Kronecker product and IT the identity matrix in the space of time-periodic functions.
Note that in Eq. (3.219) we divided by ~2/(2µ). We will measure in this section all energies in units
of a squared inverse length, based on the rescaling ε→ ε 2µ/~2. The internal Hamiltonian in Floquet
space Ĥint is given by

(m|Ĥint|n) =

(
0 Cm−n

Cm−n δm−n

)
− δn,mn~ω

(
1 0
0 1

)
. (3.221)

Similar to the static calculation described in Sec. 3.4, the first step of finding the scattering solution
is to determine the asymptotic channels by diagonalizing Hamiltonian (3.221) in Floquet space

Ĥint|µ,m〉〉 = Eµ,m|µ,m〉〉. (3.222)

Here µ = 1, 2 labels the two eigenstates within one Floquet Brillouin zone andm denotes the Floquet
Brillouin zone in which the solution resides. It holds that Eµ,m = Eµ,0 +m~ω.

In order to clarify the discussion of the following subsections, we will point out the three solu-
tion methods of the Floquet scattering equations (3.219) that are used during this section. We
can always solve the Floquet scattering equations (3.219) numerically. This method yields exact
results, however, it is not descriptive for a physical interpretation. As a second approach we will
perform rotating-wave approximations, which yield an analytical discussion of the physics for certain
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parameter values. The rotating-wave approximations are especially valid for weak driving. Since
the numerical solution shows effects that are beyond the rotating-wave approximations, we apply
as a third approach the Floquet-Feshbach resonance theory to the periodically driven multi-channel
model. The Floquet-Feshbach resonance theory allows for a deeper understanding of the resonances
compared to above two methods, and with it we are able to calculate the resonance parameters for
a wide range of system parameters, including the case of strong driving.

Due to the relevance to all above mentioned methods, we will discuss the physics of the period-
ically driven two-level system Eq. (3.221) in the following subsection.

3.10.2. Investigation of the Periodically Driven Two-Level System

In order to understand the Floquet scattering solution of Eq. (3.219), it is key to know about the
physics of the periodically driven two-level system Eq. (3.222). We discuss the numerical solution of
the periodically driven two-level system, and further explain the results within rotating-wave approx-
imations. Of mayor interest is the dependence of the parameters on the static part of the detuning
δ0, since this case describes the dependence on the magnetic field, which is typically investigated in
magnetic Feshbach resonances.

In order to solve Eq. (3.222) numerically, we truncate it in Floquet space to a matrix of finite
size, as described in Subsec. 2.2.1. In order to find an accurate Floquet solution, the cutoff mco must
fulfill the condition δ0 < mco~ω such that the Floquet Brillouin zone containing the solution of the
corresponding time-independent system can be reached with the numerical solution. We verified that
this condition is always fulfilled in our calculations. In Fig. 3.17 the quasienergies Eµ,m are shown in
the case of a sinusoidally driven coupling constant C(t). The quasienergies undergo multiple avoided
crossings. The avoided crossing near δ0 = 0 is largest for the chosen parameters and also present
in the static two-level solution, as shown by Eq. (3.51). The avoided crossings near δ0/(~ω) = ±1
correspond to the case where the driving frequency ω matches the level spacing δ0, such that the two
levels are resonantly coupled. Near δ0/(~ω) = ±2,±3, ... higher-order resonances occur. However,
they are so weak that no avoided crossing is directly visible on the scales used in Fig. 3.17 (a). In
Fig. 3.17 (b) the coupling strength is reduced as compared to panel (a), here each avoided crossing
is isolated from the others.

In order to get an even better understanding of the physics, we will discuss in the following how each
avoided crossing can be described by a rotating wave approximation. Further, we will later find that
with these rotating wave approximations we can get an effective description of the Floquet scattering
problem Eq. (3.219). Near δ0 = 0, we neglect any time-dependence of C(t) and use Eq. (3.51) in
order to describe the physics. Near δ0/(~ω) = ±1 only the term oscillating with e∓iωt is of relevance,
in the rotating wave approximation all other terms are considered as rotating too fast and are thus
neglected. As a result, a system driven by C(t) = C0 + 2C1 cos(ωt) is approximately described for
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(a) (b)

Figure 3.17.: Quasienergies of the time periodically driven two-level system
Eq. (3.222). (a) drive of the form δ(t) = δ0, C(t)/(~ω) = 0.2 + 0.1 × cos(ωt),
(b) drive of the form δ(t) = δ0, C(t)/(~ω) = 0.04 +0.02× cos(ωt). Black the numer-
ical solution of the Floquet equation, blue / red the rotating wave approximation
with zero / one drive quantum.

δ0 ≈ ±~ω by the following static Hamiltonian

HRWA−C
int =

(
0 C1

C1 δ0 ∓ ω

)
. (3.223)

Figure 3.17 (b) shows that for weak coupling the rotating wave approximation fits well to the actual
Floquet solution.

In the case of a sinusoidal modulation of the detuning δ(t) = δ0 + 2δ1 cos(ωt), a rotating wave
approximation includes a gauge transformation that leads to nontrivial Floquet effects, as discussed
below. In Fig. 3.18 (a) the quasienergies of the two-level system Eq. (3.222) with sinusoidally driven
δ(t) are shown, also here avoided crossings are present. Assuming that all resonances are well enough
isolated from each other we aim to find an approximate Floquet solution near δ0 ≈ −nrwa~ω, with
nrwa as an integer number. For doing so, we start with writing down the Schrödinger equation of
the time-dependent internal Hamiltonian (3.221):

i~∂tc1 = C0c2, (3.224a)
i~∂tc2 = C0c1 + [δ0 + 2δ1 cos(ωt)]c2 (3.224b)

Here it is directly visible that the drive acts as a time-dependent on-site potential on the level 2. In
order to get a better description it is useful to perform a gauge transformation that is quite common
in Floquet physics [63]: c1 = c̃1, c2 = c̃2 exp[−i2δ1 sin(ωt)/(~ω)]. This brings Eq. (3.224) to the
form

i~∂tc̃1 = C0 exp[−i2δ0 sin(ωt)/(~ω)]c̃2, (3.225a)
i~∂tc̃2 = δ0c̃2 + C0 exp[i2δ0 sin(ωt)/(~ω)]c̃1 (3.225b)
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(a) (b)

Figure 3.18.: Quasienergies of the time-periodically driven two-level system
Eq. (3.222) with a drive of the form δ(t) = δ0 + 0.25/(~ω) cos(ωt), C(t)/(~ω) = 0.1
(a),(b): Black the numerical solution of the Floquet equation. (b): blue / red the
Floquet-gauge rotating wave approximation with zero / one drive quantum.

In order to perform a rotating-wave approximation the Jacobi-Anger expansion [120]

exp[iz sin(θ)] =
∞∑

n=−∞

Jn(z)einθ, (3.226)

with Jn(x) denoting the Bessel functions of the first kind, is used in order to express the time-
dependent coupling constants of Eq. (3.225) in a Fourier series. Now the transformation c̃1 =
c̄1, c̃2 = einrwaωtc̄2 is introduced, where nrwa ∈ Z represents the number of drive quanta that is
involved in the considered avoided crossing. The label of nrwa suggest that we perform a rotating
wave approximation while assuming δ0 ≈ −nrwa~ω. In this case all terms oscillating with e±iωt or
corresponding higher harmonics are assumed to oscillate so fast that their contribution averages to
zero. In this rotating-wave approximation the dynamics of the coefficients c̄i, i = 1, 2, is given by
the time-independent Hamiltonian

HRWA−∆
int =

(
0 C0Jnrwa(2δ1/(~ω))

C0Jnrwa(2δ1/(~ω)) δ0 + nrwa~ω

)
. (3.227)

Although we performed a rotating-wave approximation, Eq. (3.227) still shows nontrivial Floquet
behavior, which is indicated by the appearance of the Bessel functions. Since these Bessel functions
enter into Eq. (3.227) by a gauge transformation, we name this method "Floquet-gauge rotating
wave approximation". The quasienergies found by solving Eq. (3.227) are shown with blue / red
dashed lines for nrwa = 0 / nrwa = 1 in Fig. 3.18 (b), so we conclude that Eq. (3.227) provides a
good description of the involved avoided crossings.

Note that a finite coupling in Eq. (3.227) is only possible if both static coupling C0 and AC-drive
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δ1 are non-vanishing. In contrast, if the coupling C(t) itself is harmonically modulated, avoided
crossings are also possible if C0 = 0.

In this section we discussed the solution methods for the periodically driven two-level model Eq. (3.222).
A numerical solution with the methods of Subsec. 2.2.1 is always possible. However, we also find
analytical solutions by using a combination of gauge transformation and rotating wave approxima-
tion. Using both the numerical result and the rotating-wave approximation, we are able to discuss
the physics of the periodically driven two-level system.

3.10.3. Numerical Floquet Scattering Solution of the Driven
Multi-Channel Model

With the numerical solution of the periodically driven two-level Hamiltonian Eq. (3.221), we can
find a numerical solution of the Floquet-scattering problem Eq. (3.219). The Floquet states |µ,m〉〉
are found by numerically solving the Floquet equation of the two-level Hamiltonian Eq. (3.221) as
described in Subsec. 2.2.1 and define Floquet channels that are decoupled at asymptotically large
distances r →∞. Due to this it is beneficial to express the Floquet mode in the basis of the |µ,m〉〉
states:

〈r|φ〉〉 =
∑
µ,m

|µ,m〉〉φµ,m(r), (3.228)

where φµ,m(r) is the wave function in the Floquet channel with label (µ,m). In order to understand
Eq. (3.228) further, it is useful to compare it to the reasoning of Sec. 3.5, where no internal multi-
channel structure is present. We therefor refer to the setting of Sec. 3.5 as single-channel Floquet
scattering and name Eq. (3.76) as periodically driven single-channel channel pseudo potential. In
this case, the Floquet channels are introduced by a simple Fourier transform, which can be expressed
in Floquet space by 〈r|φ〉〉 =

∑
n |n)φn(r) with |n) as defined in Eq. (2.29). For the periodically

driven multi-channel model Eq. (3.219), such a simple Fourier transform would not lead to decoupled
channels at asymptotic distances r →∞, since it does not account for the nontrivial structure of the
internal Hamiltonian. Thus, it is necessary to use the Floquet modes of the internal Hamiltonian
(3.222) in order to find the correct asymptotically decoupled channels and an equation for the wave
function as in Eq. (3.228).

In order to solve the Floquet scattering problem, we insert Floquet mode (3.228) into (3.219) and
project with 〈〈σ, n|. As a result, Eq. (3.219) is expressed in the |µ,m〉〉 basis

(−∆r + Eσ,n)φσ,n(r) +
∑
µ,m

〈〈σ, n|Â|µ,m〉〉 lim
s→0+

δ(r − s)
s2

∂

∂r
rφµ,m(r) = εφσ,n(r). (3.229)

Since the pseudo potential only acts at the origin r = 0, the following ansatz can always be assumed

φσ,n(r) = δσ,σ0δn,n0

sin(kσ,nr)

kσ,nr
+ fσ,n

eikσ,nr

r
. (3.230)
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Here (σ0, n0) denotes the entrance channel in which an incoming s-wave part of a plane wave is
located. The scattering amplitude in the channel (σ, n) is given by fσ,n. In the following we describe
how the multi-index (σ0, n0) of the entrance channel is determined. In the static case of Eq. (3.47),
the atoms are assumed to be initially in the internal state with the minimal energy, i.e. the lowest
hyperfine state. In the Floquet calculation, such an argument cannot be made, since the Floquet
spectrum does not allow to define a state with lowest quasienergy, c.f. Eq. (2.8). Here, we instead
calculate the overlap of the two Floquet states in the first Floquet Brillouin zone at initial time
and the two eigenstates of the corresponding static problem Eq. (3.51). The Floquet state with the
higher overlap to the static ground state is considered to define the entrance channel of the Floquet
scattering problem. We label this channel with (σ0, n0) = (1, 0).

For the further calculation a shift of the quasienergies by −Eσ0,n0 is provided, since this results
in a vanishing threshold for the entrance channel. By inserting Eq. (3.230) into Eq. (3.219) at r 6= 0
the dispersion relation is found to be

k2
σ,n + Eσ,n − Eσ0,n0 = ε. (3.231)

For the entrance channel we have k2
σ0,n0

= ε, thus ε denotes the energy of the incoming particle
relative to the threshold Eσ0,n0 .

A linear system for the scattering amplitudes fσ,n is found by inserting Eq. (3.230) into Eq. (3.219)
and by integrating around the origin with Eqns. (3.27) and (3.28):

fσ,n +
∑
µ,m

〈〈σ, n|A|µ,m〉〉fµ,mikµ,m = −〈〈σ, n|A|σ0, n0〉〉. (3.232)

In order to write down Eq. (3.232) in a compact form, we define the unitary matrix in Floquet space
Q̂ =

(
(|µ,m〉〉)(µ,m)

)
, where each column consist of an Floquet mode |µ,m〉〉, the diagonal matrix K̂

with K̂(µ,m),(µ,m) = kµ,m and the vector f = (fµ,m)(µ,m). With these definitions Eq. (3.232) can be
written as

(Î + Q̂†ÂQ̂iK̂)f = −Q̂†Â|σ0, n0〉〉. (3.233)

Equation (3.233) is a key result since it enables to write down a linear system that determines the
Floquet scattering amplitudes in a concise form and is used in order to calculate the exact results
using the numerics. In order to obtain the scattering amplitudes, Eq. (3.233) is first truncated to a
finite size and then solved numerically. The cutoff is chosen large enough such that the solution has
converged.

3.10.4. Floquet-Feshbach Resonances

We also find in the periodically driven two-channel model Floquet-Feshbach resonances. Similar to
the calculation in Sec. 3.6 we are primarily interested in the time-averaged scattering length in the
entrance channel

ascatt = − lim
k→0

fσ0,n0(k). (3.234)
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Figure 3.19.: Axis on the left: Real (blue) and imaginary (red) part of the scat-
tering length ascatt with time-periodic driving, yellow the scattering length for the
corresponding time-independent model Eq. (3.47). Axis on the right: Energy of
the bound state (green) calculated with Eq. (3.57), black dashed lines at −~ω and
−2~ω. The parameters are ae = ac/

√
1.5, C(t) × a2

c = 0.15 + 0.075 × cos(ωt),
δ(t) = δ0, ~ω×a2

c = 0.2 and ε = 0. The corresponding time-independent model uses
C × a2

c = 0.15.

Following Ref. [126], the scattering length as defined in Eq. (3.234) is related to the inter-atomic
interaction g. The elastic cross section is given by 〈〈σel〉〉 = 4π|ascatt|2, while the inelastic rate
coefficient reads Kinel = −4π~Im ascatt/µ for multi-channel Floquet scattering [18, 115]. Since the
quasienergies Eσ,n have the Floquet sideband structure given by Eq. (2.8), Eq. (3.231) dictates that
there are open channels with k2

σ,n ≥ 0 and closed channels with k2
σ,n < 0. The structure of these

channels is discussed later. The important point is that the closed channels can host Floquet bound
states that are able to induce Floquet-Feshbach resonances.

In Fig. 3.19 the scattering length is shown in dependence on the time-average of the detuning δ0 for
a sinusoidal driving of the coupling constant C(t). In order to understand the results of the Floquet
scattering calculation it is important to know the corresponding static model. The position of the
static resonance is shifted to a value below δ0 × a2

c = 1, as described by Eq. (3.54). For δ0 smaller
than the position of the resonance there exists a bound state in the coupled channel description that
is calculated by Eq. (3.57) and shown in green in Fig. 3.19. The bound state energy has a linear
dependence on δ0 in a large parameter region. Near the resonance there is a strong hybridization of
the two channels and the bound state follows an universal behavior given by Eq. (3.46). However,
this region of universal behavior is too small to be visible on the parameter scale of Fig. 3.19.

In the periodically driven multi channel model Eq. (3.217) the time-periodic driving is able to
engineer already existing Feshbach resonances and to induce new ones. This is seen in Fig. 3.19,
where the time-periodic drive is shifts the static resonance to a lower value of δ0. The resonances at
δ0× a2

c < 0.9 are induced by the time-periodic driving and do not exist in the static case. In a good
approximation, the position of these resonances is given by

Eb + α~ω = 0, α ∈ N, (3.235)

94



3.10. Multi-Channel Model of a Feshbach Resonance with Periodically Driven Parameters

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
-5

0

5

-2

-1

0

1

2

Figure 3.20.: Axis on the left: Real (blue) and imaginary (red) part of the scat-
tering length ascatt with time-periodic driving, yellow the scattering length for the
corresponding time-independent model Eq. (3.47). Axis on the right: Energy of the
bound state (green) calculated with Eq. (3.57), black dashed lines at −~ω and −2~ω.
The parameters are ae = ac/

√
1.5, C(t) × a2

c = 0.15, δ(t) = δ0 + 0.12 cos(ωt)/a2
c ,

~ω × a2
c = 0.15 and ε = 0. The corresponding time-independent model uses

C × a2
c = 0.15.

where the bound state energy Eb is determined by Eq. (3.57) and α is an integer number. For the
parameters of Fig. 3.19, the resonance near δ0 × a2

c ≈ 0.75 corresponds to α = 1, the one near
δ0 × a2

c = 0.52 to α = 2. Equation (3.235) provides the interpretation that the drive induces reso-
nances if the scattering state with energy ε = 0 is coupled to the bound state of the coupled channel
description by α drive quanta. A similar condition is found by Eq. (3.146) for the periodically driven
single channel pseudo potential. By looking closely to Fig. 3.19 it is visible that these resonances
are slightly shifted away from condition (3.235). This effect is interpreted as a Floquet dressing of
the bound state which is able to shift the quasienergy compared to the static case, in analogy to the
results of Sec. 3.7. The resonances for δ0× a2

c < 0.9 allow for a tuning of the real part of the scatter-
ing length to large positive and negative values. At the same time losses due to a finite imaginary
part are present, but they do not dominate the physics. At δ0 × a2

c ≈ 1.18 a resonance with strong
damping is visible. This resonance does not allow to tune the real part of the scattering length far
from its background value, while the losses given by the imaginary part are comparably large. Thus
this resonance is not useful for a tuning of the scattering length. It turns out, that this resonance
is induced by coupling to a state that intrinsically decays to the open channels which is giving this
state a comparably short lifetime. At last, note that there are small kinks in the scattering length
near δ0 × a2

c ≈ 0.73 and δ0 × a2
c ≈ 0.52. It turns out that these kinks are related to a change of the

entrance channel due to avoided crossings in the quasienergies of the periodically driven two-level
system.

In Fig. 3.20 the scattering length is shown for the case that the detuning δ is modulated sinu-
soidally. Here, a similar picture as in Fig. 3.19 emerges, the periodic drive engineers existing and to
induces new resonances. However, there is one key difference: The drive only weakly shifts the posi-
tion of the resonance that also exist in the static case. Further, the location of the Floquet-Feshbach
resonances is with a high accuracy given by Eq. (3.235) also in the case of stronger driving.
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We have now seen that the time-periodic driving of the parameters of the two-channel model (3.217)
induces and engineers resonances in the scattering length. In the next subsection we systematically
analyze these resonances by a Floquet-Feshbach resonance theory for the time-periodically driven
multi-channel model.

3.10.5. Analysis with the Floquet-Feshbach Resonance Theory

We apply the Floquet-Feshbach resonance theory to the periodically driven multi-channel model
in order to analyze the properties of the Floquet-Feshbach resonances. Due to the mathematical
complexity of this theory, the resonance parameters can only be calculated numerically. If possible,
we therefore compare the results of the Floquet-Feshbach resonance theory to analytical findings
within a rotating-wave approximation.

The Floquet-Feshbach resonance theory of the driven multi-channel model is derived similar to
the case of the pseudo potential with a time-periodic drive that involves higher harmonics, c.f. Sub-
sec. 3.8.2. We therefore skip this derivation here, and present it in App. B. The theory finds the
following scattering length, which is defined in the multi-channel description according to Eq. (3.234),
in the vicinity of a resonance:

ascatt = abg

(
1− ∆α

δ0 − δres
α + iγα

)
+ anon−res. (3.236)

Equation (3.236) is an important finding, the formula has the same mathematical structure as
Eq. (3.207) that is found for the single-channel pseudo potential with higher harmonic drive. In the
following we will explain all quantities involved in Eq. (3.236). First, α is used in order to label
different resonances, a labeling of ascatt as in Eq. (3.236) with α is implicitly assumed. As visible
in Fig. 3.23 (a) the resonance that corresponds to the static Feshbach resonance is labeled with
α = 0 while resonances that are located at larger detuning δ0 than the static resonance are labeled
with negative integer, the ones with a lower are labeled by a positive integer. As introduced in
Eq. (3.218b), δ0 denotes the time-average of the time dependent δ(t). The position of the resonance
is denoted by δα, while ∆α ∈ C represents the resonance width and γα stands for the strength of
possible losses. Also in Eq. (3.236) a non-resonant part of the scattering length anon−res appears
which shows no singularities. The mathematical expressions used for calculating the parameters
of Eq. (3.236) are found in Appendix B. In the following we give a heuristic understanding of the
involved physics.

Similar to Eq. (3.206), the resonance position is found by the condition that the dressed energy
of a Floquet bound state has to be equal to the energy of the scattering state. The resonance width
∆α is mainly determined by the coupling of the closed channels to the entrance channel. Even if Q̂
is of tridiagonal form in Floquet space, the matrix Q̂†ÂQ̂, that induces the coupling in Eq. (3.233),
couples channels that are next-nearest neighbors. Similar to Eq. (3.208), the resonance width also
contains a part that stems from this higher harmonic coupling to the inelastic channels. As a result
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the width can become complex ∆α ∈ C. Due to similar reasons as discussed below Eq. (3.55), we
can here only calculate the product abg∆α with our theory. The decay rate γα is determined by the
direct coupling of closed and inelastic channels.

Formula (3.236) gives the form of the Floquet-Feshbach resonances in the periodically driven multi-
channel model, which is the same form that is found for the single-channel pseudo potential including
a higher-harmonic drive in Subsec. (3.8.2). We thus point out the analogies and the differences of
single-channel and multi-channel Floquet-Feshbach resonances. In both cases we couple a scatter-
ing state to a bound state that resides in the closed channels and whose energy can be tuned by
the periodic drive. We find in both cases a Feshbach resonance if the energies of scattering state
and bound state are close to each other. Further general features are that the coupling of closed
channels and the entrance channel determines the size of the width ∆α, while resonant losses, that
are described by the parameter γα, are induced by coupling the closed to the inelastic channels. We
emphasize that in both theories the width can become complex. These analogies show, that the on a
qualitative level the Floquet-Feshbach resonances in both single- and multi-channel model are given
by the same physics. Differences come in, when looking quantitatively on the two theories, since
the resonance parameters of Eq. (3.207) and Eq. (3.236) are given by different formulas. This is
visualized by the fact that for the static single-channel calculation the bound state lies in the same
channel as in the scattering state, but in the static multi-channel model Eq. (3.57) the bound state
can also reside in both channels. A further difference is that Eq. (3.207) depends on the driving
frequency, while Eq. (3.236) depends on the static detuning δ0.

The parameters of Eq. (3.236) are found for each resonance by a numerical method that works similar
to the one discussed in Sec. 3.7. In Fig. 3.21 the results of the Floquet-Feshbach resonance theory
is compared to the numerical solution of Eq. (3.233), where an excellent agreement between both
curves can be spotted. This shows the strength of the Floquet-Feshbach resonance theory. We see in
Fig. 3.21 (b-d) a zoomed plot into three resonances of Fig. 3.21 (a), which show a behavior, that is well
described by Eq. (3.236). The real part of the scattering length shows a dispersive behavior, while
the imaginary part peaks in the vicinity of the resonance. This imaginary part is unfortunate for ex-
periments, where atom loss, which is induced by an imaginary scattering length, is often desired to be
minimal. In order to still get a relatively large real part in combination with a small imaginary part,
one has to go slightly away from the resonance position. The widths of the resonances α = 1, 0,−1
are abg∆α × a2

c/ae ≈ 5.4× 10−4 + i 5.2× 10−8, 3.4× 10−3 + i 6.2× 10−7, 5.4× 10−4 + i 4.6× 10−7.
This shows that the width of the α = 0 resonance is largest, as it is seen in Fig. 3.21 (a). The
imaginary part of the width is orders of magnitudes smaller as compared to the real part. The decay
rate γα is given for these resonances by −γα × a2

c ≈ 3.9× 10−6, 1.3× 10−4, 9.8 × 10−4. This shows
that the α = 1 resonance has the lowest decay rate, while the α = −1 resonance is strongest damped.

In order to understand this behavior further using the multi-channel Floquet-Feshbach resonance
theory, it is important to understand which channels are open and which are closed. Equation (3.231)
implies that a channel with label (µ = 1, n) is closed if ε < n~ω. Thus, in the limit of ε→ 0 we can
consider all channels (µ = 1, n > 0) to be closed. In order to find a rough estimate for the channels
with µ = 2, the case of weak coupling |C| � δ is considered. Here, the static solution of the two-level
system Eq. (3.51b) suggests the approximation Eµ=2,n−Eµ=1,n ≈ δ0. This approximation finds that

97



3. Floquet-Feshbach Resonance Theory

0.6 0.7 0.8 0.9 1 1.1 1.2

-2

-1

0

1

2

(a)

0.776 0.778 0.78 0.782 0.784
-10

-5

0

5

10

(b)

0.885 0.89 0.895 0.9 0.905
-10

-5

0

5

10

(c)

0.995 1 1.005 1.01

-2

-1

0

1

2

(d)

Figure 3.21.: (a) Real (blue) and imaginary part (red) of the scattering length found
with the numeric solution of Eq. (3.233). Real (black dashed) and imaginary part
(black dotted) found by the Floquet-Feshbach resonance theory. The parameters
are ae = ac/

√
1.5, C(t) × a2

c = 0.25, δ(t) = δ0 + 0.8~ω cos(ωt), ~ω × a2
c = 0.1 and

ε = 0. (b,c,d): Zoomed Plots from the data of (a).
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Figure 3.22.: Sketch of the channel structure of the Floquet multi-channel model
in the case of ω < δ0. The left column shows the channels with µ = 1, the right
column the ones with µ = 2. Each pair of approximately equal height corresponds
to one Floquet-Brillouin zone index n. The light blue rectangle includes the open
channels, all other displayed channels are closed. The entrance channel is marked
by a pink circle. In the static case only the channels with the same index n zone are
coupled, these couplings are indicated by green arrows. The Floquet drive allows
to couple channels with different n, a coupling of neighboring channels in Floquet
space is drawn by orange arrows.

a channel (µ = 2, n) is closed if the condition ε− δ0 < n~ω holds. Here, an additional shift by −δ0

is present as compared to the µ = 1 channels. Thus, for ε = 0 all channels with −n~ω < δ0 are
closed. For ~ω � δ0, all channels n = O(1) are closed. This situation is visualized in Fig. 3.22,
where the channel (µ = 1, n = 1) is closed, the same hold for the channels (µ = 2, n = 0,±1). All
other channels in Fig. 3.22 are open. This situation motivates the following rule of thumb: For Flo-
quet indices n > 0, both channels (µ = 1, 2 , n) are closed while for n ≤ 0 at least one channel is open.

The position of the resonances in the limit of vanishing driving amplitude can be found by cal-
culating the energies of possible Floquet bound states in the closed channels, in analogy to the
considerations of Sec. 3.7.2. For the multichannel problem, this can be done by solving an equation
that similar to Eq. (3.57). Unfortunately, there is no accessible solution of Eq. (3.57). In order to
still get an analytic understanding of the physics, we perform the approximation k2

µ=2,n≥0 ≈ −1/a2
c,

which is valid in the weakly driven limit C0 → 0. Using the dispersion relation Eq. (3.231) an
approximate formula of the bound state energy is found by Eα = −1/a2

c + δ0 +α~ω, where we again
made the approximation Eµ=2,0 − Eµ=1,0 ≈ δ0. At low energies ε → 0 a resonance occurs if Eα = 0
is fulfilled, yielding an approximation of the resonance position according to

δres
α ≈

1

a2
c

− α~ω. (3.237)

Equation (3.237) connects the resonances, as shown in Figs. 3.19 and 3.20, to the structure of the
Floquet space by making the statement that the resonance with number α is induced by a bound
state that resides in a closed channel with Floquet index n = α. Note, that in the weak coupling
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Figure 3.23.: Parameters of Eq. (3.236) for ae = ac/
√

1.5 and a drive of the form
C(t) = C0 + 2C1 cos(ωt), δ(t) = δ0 with C0 × a2

c = 0.15 and ~ω × a2
c = 0.2. In

color the results of the Floquet-Feshbach Resonance theory, blue for α = −1, red
for α = 0 and yellow for α = 1. (a) Resonance position δα, (b) Resonance width
Re ∆α, (c) loss parameter γα. Black dashed line fit with the curve y = a + b C2

1 ,
black dotted line fit with y = b C2

1 and black dash-dotted line fit with y = c C4
1 .

The fit parameters are presented in Table 3.2 (a).

regime Eq. (3.237) coincides with the heuristically found Eq. (3.235). After having now set the
stage, we will in the following use the Floquet-Feshbach resonance theory in order to analyze the
parameters of the resonances appearing in the periodically driven multi-channel model.

Sinusiodal Drive of the Coupling C

In Fig. 3.23 the parameters of Eq. (3.236) are shown for the case of a sinusoidally driven coupling
constant

C(t) = C0 + 2C1 cos(ωt). (3.238)

These parameters are calculated using the Floquet-Feshbach resonance theory that is discussed in
Appendix B. At C1 ≈ 0 Eq. (3.237) roughly predicts the position of the resonances, but in Fig. 3.23
there are notable deviations to this equation, which are related to two effects. One effect is that at
finite static coupling C0 the resonance position is shifted to lower values as described by Eq. (3.54).
For the parameters of Fig. 3.23 this effect fully explains the position of the α = 0 resonance. The
second effect is seen by the fact that the spacing of neighboring resonance is not exactly given by
~ω, c.f. table 3.2. This is related to small non-linearities of the δ0 dependence of the bound state
energy Eb that imply with Eq. (3.235) a shift in the resonance position δres

α from the naively expected
behavior.

Figures 3.23 (a) and (b) show that both position δres
α and width ∆α have a quadratic dependence on

the driving strength C1. For the resonances α = ±1, this can be qualitatively understood within the
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rotating-wave approximation, which approximates the internal Floquet Hamiltonian by the static
two-level system Eq. (3.223). In combination with Eqns. (3.54) and (3.55), we expect a quadratic
behavior

δres
α ≈ aα + bα C

2
1 (3.239)

and
∆α ≈ a0δα,0 + bα C

2
1 . (3.240)

The black lines in Figs. 3.23 (a) and (b) follow exactly such a power law that was fitted on the
numerical data. The results of the fitting procedure are shown in Table 3.2. The implication of
this is that a rotating-wave approximation describes the behavior of the resonances even at strong
driving amplitudes.

However, we still find physics that is beyond the rotating wave approximation. The width of the
resonance with α = 1 grows faster that the width of the α = −1 resonance, while a rotating wave ap-
proximation expects that both widths would be the same. Thus, we relate this effect to the Floquet
physics that is involved. We also find that the resonances have a finite loss parameter γα. As dis-
cussed in Sec. 3.5, this loss is given due to the presence of inelastic scattering. The Floquet-Feshbach
resonance theory predicts that the parameter γα grows quadradically with the coupling of a bound
state, that has its major weight in the channel (µα, nα), to the inelastic channels. An approximate
form is given by

γα ≈
∑

(µ,n), k2
µ,n>0

|〈〈µα, nα|Â|µ, n〉〉|2. (3.241)

In the following, we will derive with the use of Eq. (3.241) and Fig. 3.22 the correct power law
behavior of the parameter γα for the three resonances displayed in Fig.3.23. The bound state that
induces the resonance with α = −1 resides at low driving in the channel (µα=−1 = 2, nα=−1 = −1).
This channel is directly coupled to the inelastic channel (µ = 1, n = 1) with a static coupling
〈〈(µ = 1, n = −1)|Â|(µα=−1 = 2, nα=−1 = −1)〉〉, which corresponds to the green arrow in Fig. 3.22.
This implies strong losses, which result in a behavior of the form

γα=−1 = a+ b C2
1 , (3.242)

where we took into account that the next higher order scales with C2
1 , as it is suggested from the

discussion below. The resonance α = 0 is induced by the bound state in the (µα=0 = 2, nα=0 = 0)
channel. It is coupled by a dynamic coupling of first order 〈〈(µ = 2, n = 0)|Â|(µ = 1, n = −1)〉〉
to the inelastic channel, this displayed with orange lines in Fig. 3.22. With a perturbation theory
argument one can easily see that these dynamic couplings are proportional to the driving strength
〈〈(µ = 2, n = 0)|Â|(µ = 1, n = −1)〉〉 ∝ C1. With Eq. (3.241) it follows that

γα=0 ∝ C2
1 . (3.243)

For the resonance α = 1 either two dynamic couplings or a next-nearest neighbor coupling are
needed in order to connect the corresponding bound state to the inelastic channels, as it is sketched
in Fig. 3.22. As a result, the loss coefficient goes with

γα=1 ∝ C4
1 . (3.244)

101



3. Floquet-Feshbach Resonance Theory

0 1 2 3

0.996

0.997

0.998

0.999

1

(a)

0 1 2 3

1

2

3

4

5

10
-4

(b)

0.96 0.98 1 1.02 1.04
-5

0

5

(c)

Figure 3.24.: Parameters of Eq. (3.236) for ae = ac/
√

1.5 and a drive of the form
δ(t) = δ0 + 2δ1 cos(ωt), C(t) × a2

c = 0.04 and ~ω × a2
c = 3. In blue the results

of the Floquet-Feshbach resonance theory, black dashed Eqns. (3.246), respectively.
(a) resonance position, δres

0 (b) resonance width real ∆α, (c) scattering length in
dependence on the detuning δ0 for the above parameters and δ1 = 0 (red), δ1 =
1.212 ~ω (blue), which corresponds to the first zero of the Bessel function.

It is seen in Fig. 3.23 (c) that these power laws describe the actual course of the parameter γα
very well. It is important to emphasize, that a finite γα leads to a maximum value of Re ascatt ≈
abgRe ∆α/(2γα), while the imaginary part scales as Im ascatt ≈ abgRe ∆α/γα. If we insert the above
found power-law behaviors, we find that the α = −1 resonance is strongly damped Re ascatt ∝ C2

1 .
This corresponds to the findings of Fig. 3.19 and 3.21. For the α = 0 resonance the behavior of
Re ascatt is found by Re ascatt ≈ b + aC−2

1 . This shows that for C1 → 0 the maximal enhancement
of the scattering length goes to infinity, while at finite C1 it decays to a finite value. For the α = 1
resonance a behavior similar to α = 0 is found. This short calculation demonstrates that using the
α = 0, 1 resonances a large enhancement of Re ascatt is possible.

Sinusoidal Drive of the Detuning δ

A sinusoidal driving of the detuning

δ(t) = δ0 + 2δ1 cos(ωt) (3.245)

is considered in the following, while the coupling is assumed to be constant C(t) = C0. We start
in the limit of weak coupling C0 × a2

c � 1 and large driving frequencies δ0 � ~ω and aim for
the description of the resonance near δ0 × a2

c ≈ 1. In this case, the effective dynamics of the
internal Hamiltonian is found by the Floquet-Gauge rotating-wave approximation Eq. (3.227). As
a result, the resonance can be described with the static model (3.47), but with a renormalized
coupling constant C → C0J0[2δ1/(~ω)]. Since the limit of weak coupling C0 × a2

c � 1 is assumed,
Eqns. (3.54) and (3.55) can be used in order to describe resonance position and width. Adapted to
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the renormalized coupling strength, these equations read

δres
0 =

1

a2
c

− 2aeacC
2
0J 2

0 [2δ1/(~ω)], (3.246a)

abg∆0 = 2ac(ae − ac)
2C2

0J 2
0 [2δ1/(~ω)]. (3.246b)

Equation (3.246) is the key result of this part, since it shows in shorthand analytic formulas that the
sinusoidal high-frequency drive changes the position and the width of the resonance by effectively
renormalizing the coupling strength by a Bessel function. We saw in Subsec. 3.10.2 that this Bessel
function is related to a gauge transformation that is applied to the internal Hamiltonian and is
interpreted as an effect of Floquet physics. Since in Eqns. (3.54) and (3.55) the coupling strength
enters quadratically, Eq. (3.246) shows a quadratic dependence on the Bessel function.

In Fig. 3.24 (a,b) resonance position and width are displayed, here Eqns. (3.246) show an excel-
lent agreement with the results of the Floquet-Feshbach resonance theory. It can be seen that the
high frequency drive engineers the Feshbach resonance, since both position and width are tunable
by the drive. Figure 3.24 displays that it is possible to shift the position over wider distances com-
pared to its width. The course of both position and width is governed by the oscillating behavior
of the Bessel function J0(x). If the drive is tuned to a zero of the Bessel function, we can even let
the resonance disappear. This case is shown in Fig. 3.24 (c), where a Feshbach resonance, that is
present in the static case, is tuned to zero width by the periodic drive by choosing a driving strength
that corresponds to the first zero of a Bessel function. For the parameters of Fig. 3.24 we find that
γα × a2

c ≈ 10−6 and Im abg∆α × a2
c/ae ≈ 10−9, such that they only become relevant if the width is

close to zero.

In Fig. 3.25 the resonance parameters are shown at a lower driving frequency and stronger cou-
pling C0 sas compared to Fig. 3.24. Although we are not in the high frequency and weakly coupled
limit, the behavior of the resonance width can still be described by a Bessel function

abg∆α = aαJ 2
|α|[2bαδ1/(~ω)], (3.247)

which even holds for general resonances α = 0,±1, ... . Equation (3.247) shows that the appear-
ance of Bessel functions in the resonance width is quite universal for the two-channel model with
sinusoidally modulated detuning, as it is suggested by the Hamiltonian of the Floquet-gauge rotating-
wave approximation Eq. (3.227). The parameters aα and bα differ from the result of the rotating
wave approximation and are found via fitting Eq. (3.247) to the data found by the Floquet-Feshbach
resonance theory, see table. 3.2 (b). The fitting parameters describe a renormalization of the pa-
rameters in Eq. (3.246b) that is induced by strong couplings in the Floquet channel structure. For
example, bα=±1 is slightly below one, such that a higher driving strength δ1 is needed in order to
reach the maximum width as compared to Eq. (3.246b).

The sinusoidal driving of the detuning δ also induces a shift of the resonance position towards
lower values. The physics of the loss parameter γα for small values of δ1 is similar to the case of a
sinusoidal modulation of C(t). While the α = −1 resonance suffers strong losses γα=−1 = O(1), the
loss parameter for the α = 0 resonance follows γα=0 ∝ δ2

1 and for the α = 1 resonance we again have
γα=1 ∝ δ4

1. As seen in Fig. 3.25 (c), the loss parameters γα differ at large driving strength δ1 from
the power law behavior.
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Figure 3.25.: Parameters of Eq. (3.236) for ae = ac/
√

1.5 and a drive of the form
C(t) = C0, δ(t) = δ0 + 2δ1 cos(ωt) with C0 × a2

c = 0.15 and ~ω × a2
c = 0.2. In

color the results of the Floquet-Feshbach resonance theory, blue for α = −1, red for
α = 0 and yellow for α = 1. (a) Resonance position δα, (b) Resonance width Re ∆α,
(c) loss parameter γα. Black dashed lines fit with the curve y = aJ 2

1 [2bδ1/(~ω)],
black dotted line fits with y = aJ 2

0 [2δ1/(~ω)]. The fit parameters are presented in
table 3.2 (b).

Table 3.2.: (a) Parameters for the fit curves in Fig. 3.23. A dash marks a variable
that is not used for the fit of the corresponding quantity. (b) Parameters for the fit
curves used in Fig. 3.25. The curve α = 0 is found exactly with y = aJ 2

0 (2δ1/ω),
where a = ∆α=0(δ1 = 0).
Resonances in Fig. 3.23 Fit Formula a b c

(a), α = −1 y = a+ bC2
1 0.754 3.936 -

(a), α = 0 y = a+ bC2
1 0.963 3.288 -

(a), α = 1 y = a+ bC2
1 1.168 2.809 -

(b), α = −1 y = bC2
1 - 0.138 -

(b), α = 0 y = a+ bC2
1 1.5× 10−3 −0.02 -

(b), α = 1 y = bC2
1 - 0.03 -

(c), α = −1 y = cC4
1 - - −0.297

(c), α = 0 y = bC2
1 - −0.035 -

(c), α = 1 y = a+ bC2
1 −0.027 4.2× 10−4 -

(a)

Resonances in Fig. 3.25 Fit Formula a b
(b), α = −1 y = aJ 2

1 (2bδ1/(~ω)) 1.5× 10−3 0.938
(b), α = 0 (no fit) y = aJ 2

0 (2δ1/(~ω)) 0.019 -
(b), α = 1 y = aJ 2

1 (2bδ1/(~ω)) 1.5× 10−3 0.974

(b)
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Figure 3.26.: Axis on the left: Scattering length ascatt in blue, Axis on the right:
Bound state energy Eb in green for a time-independent model with the parameters
ae = −10ac, C0 × a2

c = 0.19 such that δstatic
0 × a2

c = 1.44. The model parameters
resemble the low-field resonance discussed in Ref. [30].

3.10.6. Periodic Driving of a Low-Field Magnetic Feshbach Resonance

After having discussed the resonances of the periodically driven two-channel model within the
Floquet-Feshbach resonance theory, we now go for model parameters that are motivated by an exper-
imentally observed Feshbach resonance. Typically, magnetic Feshbach resonances reside at magnetic
field strengths of several hundreds of Gauss, which corresponds to a frequency of f = µBB0/h in the
low Gigahertz regime. Here, µB denotes the Bohr magneton and h the Planck constant. In order
to observe the physics that is discussed in the previous section for such a magnetic resonance, the
magnetic field has to oscillate with frequencies in the Gigahertz regime. This, however, is hard to
realize in an experiment due to eddy currents in the coils that produce the time-dependent mag-
netic field [99, 154]. We therefore suggest to use a low-field magnetic Feshbach resonance in order
to probe the Floquet physics that is predicted by our theory and give in the following numbers
for low-field resonances that have been observed experimentally. Ref. [155] found Feshbach reso-
nances in Rb-Cs collisions at a magnetic field of B0 ≈ 0.5 G which corresponds to a frequency of
f ≈ 700 kHz. Ref. [156] observed Feshbach resonances in Dysprosium at B ≈ 10 G which leads
to f ≈ 14 MHz. Here, we specialize to the parameters of Ref. [30], who measured with 133Cs in
the F = 3,mF = 3 hyperfine state a Feshbach resonance at B0 = 30 G with a width of ∆ = 13
G. We choose model parameters that resemble the course of the magnetic Feshbach resonance, the
resulting scattering length is shown in Fig. 3.26. Here, the value δstatic

0 corresponds to the resonance
at B0 = δstatic

0 ~2/(2µδµ) = 30 G. The zero crossing is with our parameters at δ0 ≈ 0.54δstatic
0 , which

is close to the value of (B0 −∆)/B0 = 17/30 ≈ 0.56 found in the experiment.

The background scattering length of this Cesium hyperfine state is negative. This is known to
suppress the formation of a large condensate [18, 30]. Thus, a Feshbach tuning of the scattering
length to positive values is necessary in order to achieve a Bose-Einstein condensate with a consid-
erable large number of particles at all [30]. As seen in Fig. 3.26, the low-field magnetic Feshbach
resonance allows for a positive scattering length in a certain parameter range. If the magnetic field is
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varied sinusoidally with a frequency that is larger than the width, new Floquet-Feshbach resonances
appear that tune the scattering length to positive values. Thus, the periodic drive allows to attain
a condensate at a magnetic field strength where in the static case the scattering length is negative
and thus an attainment of a Bose-Einstein condensate would not be possible.

With a periodically driven low-field magnetic Feshbach resonance, the Floquet physics, that is dis-
cussed in the Subsec. 3.10.5, can be observed. Here we specialize to investigate the Floquet-Feshbach
resonances for low driving frequencies ~ω/δstatic

0 � 1. For this discussion it is important to note
that the bound state Eb obeys a quadratic behavior near the resonance position δstatic

0 , which can
clearly be seen in Fig. 3.26. The course of this bound state is directly related to the position on the
Floquet-Feshbach resonances by the resonance condition Eq. (3.235), see Fig. 3.27 (a) where a reso-
nance occurs if Eb matches with integer multiples of ~ω. As a key result, we find that the non-linear
behavior of Eb has the intriguing consequence that the difference of neighboring resonances is not
given by δres

α+1 − δres
α = ~ω, as naively expected, but is notably different to it. Note, that the course

of Eb as given by Fig. 3.26 is made with the model (3.217) and the assumption ae = −10ac, the
result of a realistic description of the Born-Oppenheimer potentials might result in a quantitatively
different course.

The Floquet-Feshbach resonances shown in Fig. 3.27 (a) tune the elastic scattering length Re ascatt

to large values without suffering too strong losses. For example, the resonance near δ0/δ
static
0 ≈ 0.8

in Fig. 3.27 (a) enhances the scattering length by a factor of max Re ascatt/abg ≈ 120. In order
to visualize the effect of the driving strength δ1 of the Floquet-Feshbach resonances, Fig. 3.27 (b)
shows the scattering length for a driving amplitude δ1 that is larger compared to one used in Fig. 3.27
(a). As expected, the width of the Floquet-Feshbach resonances increases with δ1. In addition, in
Fig. 3.27 (b) the resonances are shifted notably from condition Eq. (3.235). We interpret this as a
result of a dressing of the bound state by the time-periodic drive, in analogy to the discussion of
Sec. 3.7. In both Fig. 3.27 (a) and (b) it is seen that the drive induces a peak in the imaginary
part at the resonance frequency, as it is described by a finite γα in the Floquet Feshbach formula
Eq. (3.236). For the resonances with δα < δstatic

0 , however, the imaginary part is asymmetric due to
the presence of a complex resonance width. As discussed in Subsec. 3.8.3, this asymmetry has two
important consequences. First, as a remnant of the Floquet Hilbert space, it signals that Floquet
theory is needed in order to describe the physics. Second, an implication of this asymmetry is that
in a certain range of detuning δ0 the imaginary part of the scattering length and thus atom loss is
comparably small. As sketched in Fig. 3.15, this tunes the ratio of real to imaginary part of the
scattering length to a much higher value than it would be possible without this asymmetry.

At last, we qualitatively compare the multi-channel description with the single-channel calculation
of Sec. 3.6. In the region where the bound state energy Eb in the static two-channel model, which
is calculated with Eq. (3.57), obeys a quadratic behavior, the resonant scattering can be described
by a pseudo potential [18,99]. A time-dependent magnetic field leads to a time-dependent potential
strength, such that this case can be described with the results of Sec. 3.6, where we discussed the
single-channel Floquet scattering by a periodically driven pseudo potential. In order to compare
the results of the Floquet single-channel and the Floquet multi-channel calculation, we refer to the
limit of weak driving. In this case, the resonances of the driven multi-channel model are given by
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Figure 3.27.: Axis on the left: Real (blue) and imaginary (red) part of the scat-
tering length ascatt with time-periodic driving, yellow the scattering length for the
corresponding time-independent model Eq. (3.47). Axis on the right: Energy of the
bound state (green) calculated with Eq. (3.57), dimer energy (dashed, dark green),
black dashed lines at −n~ω. The parameters are ae = −10 ac, C(t) × a2

c = 0.19,
δ(t) = δ0 + 2δ1 cos(ωt) ~ω × a2

c = 0.02 and ε = 0, which implies δstatic
0 × a2

c = 1.44.
(a) δ1 = ~ω, (b) δ1 = 3~ω.
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Eq. (3.235), while in the driven single-channel calculation, resonances appear if the scattering state
is coupled via multiple drive quanta to the so-called dimer state. In order to investigate if both
approaches agree, the energy of the dimer state, which depends quadratically on the inverse of the
scattering length as given by Eq. (3.31), is compared in Fig. 3.27 to the value of the bound state
Eb of the static multi-channel calculation. For a detuning δ0 near δstatic

0 the dimer energy and the
multi-channel bound state energy Eb coincide. This is the region with universal properties where
we expect that the Floquet-Feshbach resonances are described by the findings of Sec. 3.7 and that
the periodically driven single- and multi-channel calculations agree. However, for the parameters
used in Fig. 3.27 the dimer energy and multi-channel bound state energy Eb notably differ at the
resonance positions. Thus, a Floquet single-channel calculation cannot find the correct position of
the Floquet-Feshbach resonances for the given driving frequency ω even at small driving strengths δ1.
This finding points out a significant advantage of the multi-channel description to the single-channel
model of a Feshbach resonance, the multi-channel model is considered as more realistic. At this
point we further emphasize that the engineering of the Feshbach resonance with α = 0 cannot be
predicted in the Floquet single-channel calculation. This is due to the fact that in this case the condi-
tion δ1 < |δ0−δstatic

0 | is not fulfilled, which is necessary in order to find a converging Floquet solution
in the single-channel Floquet scattering. In summary, this discussion demonstrates our motivation
for investigating the periodically driven multi-channel description of a Feshbach resonance.

3.11. Conclusion and Outlook

In this chapter, the time-periodic driving of a scattering potential is investigated. As a relevant
model that leads to interesting physics, the harmonically driven pseudo potential is chosen, where a
previously unknown solution of the Floquet equation with the use of continuous fractions is found.
As a key result, resonances in the s-wave scattering length are reported. These resonances tune the
scattering length to arbitrary positive and negative values while keeping the atom loss due to inelas-
tic collisions relatively small. Further, both position and width of these resonances are controllable
by the drive.

In this thesis we relate these driving-induced resonances to the concept of a Feshbach resonance
in Floquet Hilbert space. The Floquet-Feshbach resonance theory predicts a universal formula that
describes the scattering length of a resonance. Important parameters of this formula are the res-
onance position and width, where both numerical and analytical calculations show that they are
tunable by the drive. Finally, the combination of the Floquet-Feshbach resonance theory and the
continued fraction solution proofs the absence of resonantly enhanced inelastic collisions in the vicin-
ity of a resonance. This feature makes the Floquet-Feshbach resonance favorable compared to an
optical Feshbach resonance, which suffers from strong atom loss.

The Floquet-Feshbach resonance theory also describes resonances for a driving scheme involving
higher harmonics. In this case the Floquet-Feshbach resonances suffer from atom loss due to inelas-
tic collisions, which is often undesired in ultracold quantum gases. However, this atom loss turns into
an advantage since asymmetries appear in the resonant peak of the imaginary part of the scattering
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length for well-tuned driving parameters. These asymmetries are directly related to the structure of
the Floquet Hilbert space, and thus serve as a probe showing that Floquet physics emerges.

The Floquet-Feshbach resonances are proposed to be observed in an experiment by applying a
time-periodic magnetic field near a Feshbach resonance [99]. We introduce a multi-channel model of
a Feshbach resonance in order to analyze the influence of a periodically driven magnetic field for a
wide range of magnetic field strengths. The numerical solution of the Floquet scattering equations
of the multi-channel model predicts that the periodic drive induces new resonances, and in addition
is able to engineer the properties of resonances that already exist in the static case. However, such
a full numerical solution does not lead to a descriptive physical interpretation. Thus, we generalize
the Floquet-Feshbach resonance theory to the multi-channel model and again find a formula that de-
scribes the scattering length of a resonance. The Floquet-Feshbach resonance theory gives a deeper
understanding of the physics of the resonances. We find that position and width of these Floquet-
Feshbach resonances are tunable by the drive. The results of the Floquet-Feshbach resonance theory
are compared to analytical results found by calculations within a rotating-wave approximation. As a
prominent result we report that for a sinusoidal driving of the detuning δ(t) the dependence of both
position and width on the driving strength involves a Bessel function, which can be used to engineer
desired resonance properties. We propose to observe these effects at a low-field magnetic Feshbach
resonance, where all frequency scales are smaller than for common Feshbach resonances. Thus, the
case of strong driving, where the Floquet physics is expected, can be observed with comparably lower
driving frequencies and lower fields. We exemplarily show results for a low-field Feshbach resonance
for 133Rb at 30 G that is found in Ref. [30].

In summary, we found Floquet-Feshbach resonances in two distinct model systems and understood
that the physical origin is always the same: If we couple a scattering state to a bound state in the
closed Floquet channels, a Floquet-Feshbach resonance appears if the energy of the bound state
comes close to the energy of the scattering state. The bound state energy can be dressed by the
periodic drive which leads to tunable resonance properties. In the following we point out the advan-
tages of the Floquet-Feshbach resonances to common realizations of Feshbach resonances in ultracold
gases. Both magnetic and Floquet-Feshbach resonances tune the scattering length to almost arbi-
trary positive and negative values. Position and width of the Floquet-Feshbach resonances can be
adapted by the periodic drive. This is an advantage over a magnetic Feshbach resonance, where
the resonance parameters are in principle not tunable. In the case of a harmonically driven pseudo
potential, the Floquet-Feshbach resonances obtain a high tunability of the real part of the scattering
length while keeping the atom loss comparably small. This situation is often desired in ultracold
gas experiments and is showing that Floquet-Feshbach resonances are superior to optical Feshbach
resonances, where strong atom loss is present due to the optical decay of the bound state. The pe-
riodic driving of the multi-channel model induces resonances which always suffer from a small, but
finite loss rate which looks at first view similar to the one of optical Feshbach resonances. In fact, we
found that the imaginary part of a Floquet-Feshbach resonance can show a slight asymmetry. This
asymmetry in turn implies a larger ratio of real to imaginary part of the scattering length compared
to an optical Feshbach resonance.

The Floquet-Feshbach resonance theory can be easily formulated for general radial symmetric scat-
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Figure 3.28.: Transmission through a periodically driven impurity in one dimen-
sion. As model system a tight-binding lattice is used where at a single site the on-site
potential is periodically modulated, for details see Ref. [159].

tering potentials that are beyond a simple pseudo potential [157]. Also in this case, the theory is
introduced as a Feshbach resonance theory in Floquet space. Similar to Eq. (3.132), a resonance
occurs if the energy of a Floquet bound state is close to the energy of a scattering state. Since
the radial Floquet equation cannot be mapped to a simple recursion relation, the calculation of
the bound states will be much more involved as compared to the case of a pseudo potential. The
Floquet-Feshbach resonance theory predicts in the case of a general scattering potential a formula
of the resonant scattering length similar to the form of Eq. (3.134). The parameters of this formula
are, however, much more involved to calculate as compared to the case of pseudo potential. In order
to write down explicit equations for the parameters, a plethora of definitions from scattering theory
has to be known. This makes Floquet-Feshbach resonance theory for general radial symmetric po-
tential less accessible compared to the theory formulated for the pseudo potential. In the case of a
general scattering potential, the influence of the inelastic channels can only be treated perturbatively.

Future investigations may apply the Floquet-Feshbach resonance theory in order to get accurate
descriptions of the resonant scattering length in the case of a realistic interatomic potential such as
the van der Waals potential. In the periodically driven multi channel model we assumed a pseudo
potential as inter-atomic potential. This has the limitation, that the pseudo potential might over-
simplify nontrivial Franck-Condon factors of the bound state wave function and the scattering state.
Further, the pseudo potential allows for at most one bound state in each channel, while in realistic
potentials a multitude of states are expected [18]. In order to qualitatively compare to experiments,
it is useful to extend the multi-channel description to realistic interatomic potentials.

The Floquet-Feshbach resonance theory can be further generalized to dimensions other than three
[158]. Ref. [159] investigates the tunneling through a periodically modulated barrier in a one-
dimensional tight-binding lattice. The transmission coefficient T of this model is exemplarily shown
in Fig. 3.28. Here it can be seen that the transmission coefficient drops to zero at certain energy ε.
This intriguing behavior is linked to the Fano-Feshbach resonances we saw for the case of scattering
in three dimensions. Since for T = 0 the scattering is maximal, it turns out that an analogy of
the Floquet-Feshbach resonance theory can be formulated in 1D. Here, however, it would be rather
named Floquet-Fano resonance theory, since the outcome of this theory is a formula for the trans-
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mission coefficient that has a Fano-like line shape and is valid in the vicinity of a resonance. The
position of a resonance, i.e. the energy at which the transmission coefficients obtains a zero, is de-
termined by the properties of bound states which reside in a coupled channel description in Floquet
picture. Similar to the 3D case we find that a resonance occurs if the scattering state shares the same
energy as a bound state of the closed Floquet channels. In analogy, the resonance width is given
by an overlap of bound and scattering state. Ref. [160] discusses a periodically driven impurity in
a Fermi-Hubbard model. Fermion pairs are forming in this model for strong attractive interactions.
Since the pair tunneling obeys different laws than the single particle tunneling, the driven impurity
can be used to create a pair or a single particle filter [160]. It is of interest, if also in this quantum
many-body system resonances exist that can be related to the Fano-Feshbach physics of this thesis.
As ultimate goal we see a Floquet-Fano resonance theory for the tunneling in the quantum many-
body model with periodically driven impurity.

Optical Feshbach resonances change the real part of the scattering length only in a finite inter-
val, c.f. Eq. (3.59). This behavior is due to a finite lifetime of the bound state in a closed channel.
It is still an open question, if the time-periodic driving of an optical Feshbach resonance induces
new Floquet-Feshbach resonances, that tune the scattering length to higher values than the original
optical Feshbach resonance. One promising idea is to couple the scattering state to a bound state in
the Born-Oppenheimer potential of the entrance channel by a Raman-type transition via the bound
state in a closed channel [136]. This Ramam coupling can be implemented with the driven multi-
channel model Eq. (3.217). In Ref. [136] the multi-color Raman drive is experimentally realized by
an acusto-optical modulator. However, Ref. [136] found with a calculation within the rotating-wave
approximation that despite the Raman coupling the real part of the scattering length cannot be
enhanced to larger values compared to the case of the original optical Feshbach resonance. Thus, if
we want to get an enlarged real part of the scattering length, we have to search for effects in the
Floquet description that goes beyond the rotating-wave approximation. It is an interesting further
project if there exists a driving scheme which allows, in the presence of decay, for an enhancement
of the real part of the scattering length beyond what is possible with common optical Feshbach
resonances.

Further, the periodically driven multi-channel model Eq. (3.217) can be generalized to more than
two internal degrees of freedom. This includes more parameters and thus a large space for possibly
interesting physics. Such a model can be applied to the experiment described in Ref. [155], which
found a low-field magnetic Feshbach resonance in Rb-Cs scattering.

The multi-channel model Eq. (3.47) can give host to two bound states. Combined with periodic
driving, this can be used in order to investigate interesting phenomena, such as interfering reso-
nances [113,161].
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In the previous chapter it was investigated how a time-periodic modulation of the inter-particle
interaction leads to a renormalization of the effective scattering length for ultracold gas systems.
In detail, it is found out that by choosing a suitable driving strength and frequency, the effective
scattering length can be tuned to arbitrary positive and negative values, an effect that we fully
understood by introducing the Floquet-Feshbach resonance theory.

In this chapter we go beyond the two-body problem, as it is considered in scattering theory, and look
at the time-periodic modulation of an interacting quantum many-body system. Here, the Hilbert
space is much larger as compared to single or two-particle physics, such that due to the inter-particle
interaction and entanglement strong correlations can arise. The quantum phase transition from a
superfluid to a Mott insulator is a prominent example where quantum many-body physics is of rele-
vance [45,162]. This phase transition has been observed in ultracold gas experiments [46], which serve
as a highly tunable and accessible platform for investigating strongly correlated quantum many-body
physics [3], c.f. Sec. 1.2. This high tunability of ultracold gas experiments can be used to realize
one-dimensional quantum many-body systems [54, 56, 61], in which the effect of the inter-particle
interaction is in particular pronounced. This can be understood by the fact that particles in 1D are
confined to move on a line where they cannot avoid each other, which is notably different to the
higher dimensional case [163].

Since the effects of inter-particle interaction are strongest pronounced in 1D [56, 163], we aim to
investigate the resonant driving of a one-dimensional interacting quantum many-body system, while
having an experimental realization within an ultracold gas experiment in mind. For this task we
choose the Lieb-Liniger model [57, 58] describing a non-relativistic bosonic gas with a Dirac delta
function as inter-particle interaction. As we saw in Ch. 3, the short range interaction in the Lieb-
Liniger model serves a valid approximation for the inter-particle interaction in an ultracold gas
experiment. A periodic time-dependence can be introduced by modulating a magnetic field in the
vicinity of a Feshbach resonance [6, 7, 75]. Compared to the previous chapter, driving frequencies
which are much lower than the dimer energy given by Eq. (3.31) are considered. These frequencies
are typically in the regime of a few hundreds of Hz or at low kHz [6,75]. As suggested by Eq. (3.104)
and observed in Refs. [6, 7, 75] such a drive does not renormalize the effective scattering length,
but induces a time-dependent interaction strength in the quantum many-body Hamiltonian. This
chapter finds as a prominent result that the time-periodic drive of the Lieb-Liniger model induces
resonances that will completely change the physical behavior. These resonances will not be of the
Fano-Feshbach type as in the previous chapter, but they are connected to the phenomenon of para-
metric resonance, which we introduced by the Paul trap in Ch. 1. During this chapter we will find
out that resonant driving allows to parametrically excite density waves in the quantum many-body
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system.

The speciality of one-dimensional quantum many-body physics is that the low energy excitations
of a wide class of models is described by the Tomonaga-Luttinger liquid theory [56, 163, 164]. On
these grounds it is not the goal to find a Floquet solution of the Lieb-Liniger model in particular,
but to analyze the time-periodically driven Tomonaga-Luttinger liquid Hamiltonian. For a time-
dependent Tomonaga-Luttinger liquid the time-evolution of a given initial state has been studied in
Refs. [165–170]. In this thesis we go beyond simple time evolution and investigate the properties of
the possible Floquet steady state solutions of the periodically driven Tomonaga-Luttinger liquid. In
order to achieve this on a technical level, the Tomonaga-Luttinger Hamiltonian is written in terms of
bosonic operators where it acquires a quadratic form. In the static case such a Hamiltonian can be
solved by a Bogoliubov transformation [171–173] which was originally introduced by N. N. Bogoli-
ubov himself in order to analyze the behavior of superfluids [171,172]. In today’s physics, Bogoliubov
transformations are used for solving and analyzing a wide class of physical models. Prominent exam-
ples are the theories of superfluids and superconductors, where a Bogoliubov transformation allows
to define quasiparticles whose properties are connected to the superfluidity or a superconducting
phase [171, 172, 174]. Further, a Bogoliubov transformation finds a description of certain magnetic
excitations in antiferro- and ferrimagnets [175–177]. In the mean-field theory of Bose-Einstein con-
densates [21, 28] the speed of sound is predicted by a Bogoliubov dispersion [172, 178, 179]. The
transformation is even used in the field of astrophysics, for example by S. W. Hawkings paper of
"particle creation by black holes" [180]. Having this great impact of Bogoliubov transformations on
theoretical physics in mind, we generalize our goal even further and aim to find a Floquet version of
a Bogoliubov transformation.

This chapter is structured as follows: We start in Sec. 4.1 with the introduction of the Tomonaga-
Luttinger liquid theory, which we concretely apply to the Lieb-Liniger model. We further motivate in
detail how the Tomonaga-Luttinger Liquid theory is related to a Hamiltonian that can be solved via
a Bogoliubov transformation. In Sec. 4.2 the static Bogoliubov transformation is recapitulated while
Sec. 4.3 discusses the Floquet-Bogoliubov solution of a time-periodic Hamiltonian that is quadratic
in operators of a single bosonic mode. We derive an eigenvalue equation that is used in order to
find the quasienergies of the Floquet-Bogoliubov particles and the parameters of the transforma-
tion. Section 4.4 discusses a procedure for numerically solving the Floquet-Bogoliubov eigenvalue
equation. It turns our that there exist stability regions, where a Floquet solution is possible, and
instability regions with no solution. In Sec. 4.5 physically relevant expectation values are calculated
and stability charts for various system parameters are presented. We further relate the occurrence of
instability regions to the physics of a parametric resonance. Section 4.6 contains the regularization
of diverging excitation values by introducing a finite lifetime of the bosons. Finally, in Sec. 4.1 we
discuss the result in the context of the Tomonaga-Luttinger liquid description of a periodically driven
Lieb-Liniger model. It turns out that the parametric resonances lead to the pattern formation in
the Lieb-Liniger gas. Section 4.8 is devoted to concluding remarks and an outlook.

At this point we note that the results of the work of this chapter has been published in Ref. [104]. The
project was a collaboration with the authors of Ref. [104] and the bachelor student A. Becker [181].
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4.1. Introduction into the Tomonaga-Luttinger Liquid
Theory

The Tomonaga-Luttinger liquid model is an effective field theory that serves as a low energy de-
scription of a wide class of one-dimensional quantum systems [56, 163, 164]. In particular, following
Ref. [104], we are interested in the Lieb-Liniger model [57, 58], which falls in the class of models
where the Tomonaga-Luttinger liquid is applicable. The Hamiltonian of the Lieb-Liniger model
reads [57,58]:

H = − ~2

2m

n∑
i=1

∂2

∂x2
i

+ g
∑
i,j
i<j

δ(xi − xj). (4.1)

The model (4.1) describes interacting bosons with mass m and position xi in one dimension. The
inter-particle interaction is given by a Dirac delta function with g as interaction strength. The model
(4.1) can be realized with ultracold quantum gas experiments, where an effective one-dimensional
system is achieved by a cigar shaped harmonic trap with two directions strongly confined, so that
motion is possible in the remaining direction only [3,54,61,182,183]. In an ultracold gas experiment,
the interaction strength is given by [3, 56,184]

g =
2a0~2

ma⊥(a⊥ − 1.03 a0)
. (4.2)

Here, a0 is the three dimensional scattering length while a⊥ is called confinement length that is
related to the lateral confinement of the gas. Both a0 and a⊥ can be tuned in an experiment [3,56].

Hamiltonian (4.1) falls into the wide class of models whose low-energy excitations are described
by the Tomonaga-Luttinger liquid theory using the bosonization method [55, 56, 163, 164, 185–187].
For interacting one-dimensional systems, these low energy excitations are the collective excitations
of a multitude of particles [56,163,185]. These collective excitations are described by a density field
ρ(x, t) and a phase θ(x, t), using which a bosonic field operator ψ†(x, t) can be written as [188]

ψ†(x, t) = [ρ(x, t)]1/2e−iθ(x,t). (4.3)

Density and phase obey the canonic commutation relation [56]

[ρ(x, t), θ(x′, t)] = iδ(x− x′). (4.4)

For a translational invariant system the ground state has a constant density 〈ρ(x, t)〉 = ρ0, at small
excitation energies the system is expected to be close to this value [56]. Refs. [56,188] introduce the
smooth field φ(x, t) which approximately describes the density field by [56,163]

ρ(x, t) ≈ ρ0 −
1

π
∂xφ(x, t). (4.5)

Corrections to Eq. (4.5) in terms of a harmonic series in the variable πxρ0 − φ(x, t) are discussed in
Ref. [56]. Using the two fields φ(x, t) and θ(x, t), the low energy excitations can be described by the
Tomonaga-Luttinger liquid Hamiltonian [56,163,164,188]:

H =
~
2π

∫
dx
[
vK[∂xθ(x, t)]

2 +
v

K
[∂xφ(x, t)]2

]
. (4.6)
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Hamiltonian (4.6) solely depends on the two model parameters v and K, where K is known as
Luttinger-liquid parameter. The two parameters v and K in turn depend on the microscopic details
of each model and can be related to ground state properties [56]. Methods for calculating the
parameters v and K include the numerical or analytical solution of the underlying microscopic
model, an overview is given in Refs. [56, 188]. In the following we exemplarily show results in the
case of the Lieb-Liniger model, which can be solved by the Bethe ansatz [57,58]. The solution of the
Bethe ansatz determines the parameters v and K [56]. With vF = πρ0/m it holds that vF = vK and
K > 1 in the Lieb-Liniger model [104, 188]. The Luttinger-liquid parameter only depends on the
dimensionless interaction strength γ = mg/(~2ρ0) [104,188]. Ref. [188] found useful approximations
for v and K for γ � 1:

K ≈ π
√
γ

(
1−
√
γ

2π

)−1/2

,
v

K
≈ vF

( γ
π2

)(
1−
√
γ

2π

)
(4.7)

and for γ � 1

K ≈
(

1 +
4

γ

)
,
v

K
≈ vF

(
1− 8

γ

)
. (4.8)

Within the Tomonaga-Luttinger liquid theory various expectation values can be calculated. Refs. [56,
164] show for a ground state calculation with periodic boundary conditions and in the thermody-
namic limit that the asymptotic behavior of the correlation function for x→∞ yields

〈ψ†(x)ψ(0)〉 ≈ A0ρ0

(
1

ρ0|x|

) 1
2K

+O

[(
1

|x|

)2K
]
. (4.9)

Here A0 is a model dependent constant. Eq. (4.9) displays the famous result that the correlation
function in interacting 1D models at asymptotic distances |x| → ∞ is given by a power law with
an exponent that only depends on the Luttinger parameter K. The asymptotic density-density
correlation is given by [56,163,164]

〈ρ(x)ρ(0)〉 = ρ2
0

[
1− K

2π2

(
1

ρ0|x|

)2
]

+O

[(
1

|x|

)2K
]
. (4.10)

Here the Luttinger parameter appears as a prefactor and not in the exponent of the power law. At
finite distances the correlation functions (4.9) and (4.10) are corrected by terms oscillating with a
wavenumber of ρ0 or corresponding higher harmonics, for details see Ref. [56].

In order to relate the Tomonaga-Luttinger liquid Hamiltonian (4.6) to a Hamiltonian that is quadratic
in bosonic operators, the following definitions are useful [104,163]

vK = vF(1 + g4 − g2), (4.11a)
v

K
= vF(1 + g4 + g2). (4.11b)

In the Lieb-Liniger model it follows with vF = vK and Eq. (4.11) that g2 = g4 = (1/K2 − 1)/2 and
further −1/2 < g2 = g4 < 0. The auxiliary fields φL(x, t) = [φ(x, t) + θ(x, t)]/

√
2 and φR(x, t) =
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4.1. Introduction into the Tomonaga-Luttinger Liquid Theory

[θ(x, t)− φ(x, t)]/
√

2 are defined. They are expanded in bosonic operators

φL/R(x, t) ∝
∑
q>0

eαq/2
√
q

[e∓iqxbq,L/R + e±iqxb†q,L/R]. (4.12)

In Eq. (4.12) the upper sign stands for L while the lower is related to R. The operator bq,L is
related to a left moving density wave, bq,R to a right moving density wave, as it can be read of by
the plane wave exponents in Eq. (4.12). The operators bq,χ obey the bosonic commutation relations
[bq,χ, b

†
q′,χ′ ] = δq,q′δχ,χ′ , while all other canonic commutators are zero. The variable α is used as a

cutoff. The mode expansion (4.12) is similar to a Fourier expansion, but with the difference that
q is restricted to strictly positive values. With the mode expansion (4.12) the Tomonaga-Luttinger
liquid Hamiltonian (4.6) can be written as

H =
∑
q>0

Hq +H0, (4.13)

with
Hq = ~vFq(1 + g4)(b†q,Rbq,R + b†q,Lbq,L) + ~qvFg2(bq,Lbq,R + b†q,Lb

†
q,R) (4.14)

and H0 as energy offset that is not of relevance for the following discussion. We bring Hamiltonian
(4.14) to a even more generic form by the canonic transformation

bq,± =
1√
2

(bq,L ± bq,R) (4.15)

Thus, Hamiltonian (4.14) transforms to

Hq =
∑
±

[
Aqb

†
q,±bq,± ±

Bq

2
(bq,±bq,± + b†q,±b

†
q,±)

]
, (4.16)

with

Aq = ~vFq(1 + g4), (4.17a)
Bq = ~qvFg2. (4.17b)

In Eq. (4.16) the two bosonic modes are separated. This serves as a prototypical example of a
Hamiltonian that can be solved by a Bogoliubov transformation.

Time-periodic driving of the parameters of Hamiltonians (4.14) and (4.16) can be realized in an
ultracold gas experiment by the time-periodic modulation of the length scales a0 and a⊥. The
modulation of a magnetic field in the vicinity of a Feshbach resonance changes the three dimen-
sional scattering length a0 [6, 18, 75] while the confinement length a⊥ depends on the strength of
the potential that generates the transverse confinement [61]. The time periodic modulation of a0

and a⊥ leads to time-dependent parameters g2(t) = g4(t) in Hamiltonian (4.14). The time-periodic
drive of the parameters of the Tomonaga-Luttinger description of the Lieb-Liniger model recasts
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4. Floquet-Bogoliubov Steady States

into time dependent parameters Aq(t), Bq(t). For the discussion of this chapter is useful to express
the time-periodic parameters A(t), B(t) by a Fourier series

A(t) =
∞∑

n=−∞

e−inωtAn, (4.18a)

B(t) =
∞∑

n=−∞

e−inωtBn. (4.18b)

In the following sections we will derive a Floquet version of a Bogoliubov transformation for Hamil-
tonian that is quadratic in operators of a single bosonic mode. Before we actually write down this
time-dependent transformation, it is key to understand the corresponding static model.

4.2. Time-Independent Single Mode Bogoliubov
Transformation

In this section the relevant points of a time-independent Bogoliubov transformation are discussed.
Motivated by Eq. (4.16), we assume a generic Hamilton operator that is quadratic in bosonic creation
/ annihilation operators b / b†:

H = Ab†b+
B

2
(b†b† + bb), (4.19)

the coefficients A,B are chosen to be real such that H is hermitian. The bosonic operators obey the
canonic commutation relations [b, b†] = 1. We aim to solve Hamiltonian (4.19) by the Bogoliubov
transformation

β = ub+ vb†. (4.20)

The new operators should obey bosonic commutation relations [β, β†] = 1, which implies the condi-
tion

|u|2 − |v|2 = 1. (4.21)

With the Bogoliubov transformation (4.20) we are in the position to solve the Hamiltonian Eq. (4.19)
which will finally determines the coefficients u and v.

In this thesis we present an approach that finds the Bogoliubov transformation in Heisenberg pic-
ture. For a given operator A in Schrödinger picture, the corresponding operator in Heisenberg
picture reads AH(t) = U(t, t0)†AU(t, t0), where U(t, t0) is the time-evolution operator, t0 is an ar-
bitrary initial time [189]. In the Heisenberg picture, the time-evolution of the β operator is given
by

i~
d

dt
βH = [βH, HH], (4.22)

where the Hamiltonian in Heisenberg picture reads HH = Ab†HbH + B(b†Hb
†
H + bHbH)/2. In order to

find the spectrum of Eq. (4.19) by a Bogoliubov transformation, we require that the time evolution
of the new operator (4.20) is the one of a non-interacting quantum particle i~ d

dt
βH = εβH, where
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4.2. Time-Independent Single Mode Bogoliubov Transformation

ε is the energy of the Bogoliubov quasiparticle. The operators β† / β are interpreted as creation
/ annihilation operators for the Bogoliobov quasiparticles. Combining the trivial time evolution
i~ d

dt
βH = εβH together with Eq. (4.22) leads to a relation of the operators β which is valid in both

Heisenberg and Schrödinger picture
[H, β] = −εβ. (4.23)

Equation (4.23) can be evaluated by inserting the explicit form of Hamiltonian (4.19) and comparing
coefficients in front of b and b†. This gives an eigenvalue equation for the energy ε of the Bogoliubov
particles (

−A B
−B A

)(
u
v

)
= −ε

(
u
v

)
. (4.24)

Note, that due to the bosonic commutation relations the eigenvalue problem Eq. (4.24) is non-
hermitian. The eigenvalues of Eq. (4.24) are given by ε± = ±

√
A2 −B2. In the following we restrict

ourselves to the case |A| > |B|, such that ε± is real valued. The corresponding coefficients are
u+ = cosh(λ), v+ = sinh(λ) and u− = sinh(λ), v− = cosh(λ), respectively, with

tanh(2λ) =
B

A
. (4.25)

The parametrization of the coefficients is such that |u±|2 − |v±|2 = ±1. As we require the canonic
constraint Eq. (4.21) to be fulfilled, the solution labeled with minus is dropped. As as result the
coefficients in Eq. (4.20) are, up to a global phase, uniquely determined by u = cosh(λ), v = sinh(λ)
and the energy of a Bogoliubov quasiparticle reads

ε =
√
A2 −B2. (4.26)

The behavior of Eq. (4.26) in dependence of the ratio B/A is shown in Fig. 4.1 (a), the energy ε
drops in the form of a quadrant with increasing B/A. In total, the β† / β operators are now fully
determined and an expression for the energy of the Bogoliubov quasiparticles is found.

After having found the correct parameters of the transformation it is key to determine the eigen-
states of our system. Using the commutator (4.23) all eigenstates of Hamiltonian (4.19) can be
constructed inductively, based on the assumption that the vacuum state of the Bogoliubov particles
|0̃〉 exists [112]. The vacuum state of the Bogoliubov quasiparticles is defined by the equation

β|0̃〉 = 0. (4.27)

It can be shown that the state

|0̃〉 =
1√
|u|

exp
[
− v

2u
(b†)2

]
|0〉 (4.28)

solves Eq. (4.27) [190, 191], where |0〉 as the vacuum of the b operators obeying b|0〉 = 0. Using∑∞
n=0(z/4)n(2n)!/(n!)2 = 1/

√
1− z for |z| ≤ 1 [190] and Eq. (4.21) one can show that the state

(4.28) is normalized to one. The eigenstate containing n Bogoliubov particles is given by

|ñ〉 =
(β†)n√
n!
|0̃〉, n ∈ N0. (4.29)
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Figure 4.1.: (a) Energy ε of the Bogoliubov quasiparticles in dependence of the
ratio B/A, real part in blue, imaginary part in red. (b) Expectation value 〈n〉 of the
number of excitations in dependence of the ratio B/A.

In order to verify that the states Eq. (4.29) are eigenstates of Hamiltonian (4.19), we use the inverse
of the Bogoliubov transformation

b = uβ − vβ† (4.30)

in order to finally express the Hamiltonian (4.19) in terms of the β operators:

H = εβ†β +
ε− A

2
. (4.31)

Thus the state |ñ〉 is an eigenstate of Hamiltonian (4.19) with an eigenenergy of εn = nε+ (ε−A)/2.
As a result a complete set of eigenstates of Hamiltonian (4.19) is found.

At last, it is discussed why we above restricted ourselves to |A| > |B|. For the opposite case the
eigenenergy of the Bogoliubov particles becomes purely imaginary ε = ±i

√
B2 − A2, here the system

becomes dynamically unstable [192]. Mathematically, these imaginary eigenvalues come due to the
non-hermiticity of Eq. (4.24), that is related to the bosonic nature of the operators. For |A| < |B| it
holds that |u|2− |v|2 = |u|2[1− |A− ε|/(B)] = 0, such that |u| = |v|. It follows that the β operators
do not obey Bosonic commutation rules in this case while the norm of the vacuum state does not
converge [190]. As a result, the Bogoliubov transformation fails to diagonalize Hamiltonian (4.19)
for |A| < |B|. This is related to the fact that for |A| < |B| the Hamiltonian Eq. (4.19) is unbounded
from below. In order to see this argument we introduce artificial position and momentum operators
by b = (X + iP )/

√
2, using which Hamiltonian (4.19) reads H = P 2(A − B)/2 + X2(A + B)/2. If

|A| < |B|, either the quadratic dispersion or the parabolic potential is inverted, it is easily verified
that this leads to a Hamiltonian that is unbounded from below.

In order to understand this behavior even further the expectation value of the number of excitations
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4.3. Floquet Single Mode Bogoliubov Transformation

in the vacuum state of the Bogoliubov particles 〈n〉 = 〈0̃|b†b|0̃〉 is considered. With Eqns. (4.30) and
(4.25) it is calculated to

〈n〉 =
1−

√
1− (B/A)2

2
√

1− (B/A)2
. (4.32)

In Fig. 4.1 (b) this expectation value is shown. For B/A = 0 it yields 〈n〉 = 0. This is expected,
since in this case the Bogoliubov vacuum state |0̃〉 equals to the original vacuum state |0〉, which
of course contains no excitations. With increasing ratio B/A the value of 〈n〉 slightly increases
until it diverges for B/A → 1 with a power law 〈n〉 ≈ [1 − (B/A)2]−1/2. This is signaling the
breakdown of the Bogoliubov solution for B > A, since in the limit of B = A the ground state would
contain an infinite number of excitations. We will see that a similar behavior is also present in the
time-periodically driven case.

4.3. Floquet Single Mode Bogoliubov Transformation

In this section we derive a method that is able to find quasiparticle operators in the case of a
Hamiltonian that is quadratic in bosonic operators with time-periodic parameters A(t) = A(t+ T ),
B(t) = B(t+ T ):

H(t) = A(t)b†b+
B(t)

2
(b†b† + bb). (4.33)

Here H(t) = H(t+ T ), the corresponding driving frequency is fixed via ω = 2π/T . The parameters
A(t), B(t) are real valued for each time t. This section is structured as follows: In Subsec. 4.3.1
the Floquet Bogoliubov transformation is introduced in the Heisenberg picture. This method allows
to define Bogoliubov quasiparticles also for the time-periodically driven case. We note that the
basic thoughts of Subsec. 4.3.1 have been formulated in collaboration, especially with S. Fazzini and
A. Becker. In Subsec. 4.3.2 the results of the Floquet-Bogoliubov transformation are used in order
to find out the nature of possible Floquet steady states. Subsec. 4.3.3 gives an explicit form of the
vacuum state of the Floquet-Bogoliubov quasiparticles.

4.3.1. Floquet-Bogoliubov Transformation in Heisenberg Picture

The Floquet-Bogoliubov transformation aims to solve the time-periodic Hamiltonian (4.33), and is
introduced in analogy to the static case in Eq. (4.20), by

β(t) = u(t)b+ v(t)b†. (4.34)

In Eq. (4.34), however, the parameters u(t), v(t) are time-dependent. We derive the Floquet-
Bogoliubov theory in Heisenberg picture. This approach gains, in combination with the following
subsections, a complete understanding of the mathematical and physical structure of the Floquet-
Bogoliubov solution. The focus is on the Heisenberg equations of motion for the new operators

i~
d

dt
βH(t) = i~

∂βH(t)

∂t
+ [βH(t), HH(t)], (4.35)
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4. Floquet-Bogoliubov Steady States

with the transformation βH(t) = u(t)bH(t) + v(t)b†H(t) and Hamiltonian HH(t) = A(t)b†H(t)bH(t) +
B(t)

2
[b†H(t)b†H(t) + bH(t)bH(t)] in Heisenberg picture. In comparison to the static case, Eq. (4.35)

additionally contains a partial time-derivative of the βH operator. This partial derivative is defined
via the corresponding operator in the Schrödinger picture ∂βH(t)

∂t
= U(t, t0)∂β(t)

∂t
U †(t, t0) and reads

∂βH(t)

∂t
= u̇(t)bH(t) + v̇(t)b†H(t). (4.36)

In Eq. (4.36) the dot denotes the derivative with respect to time.

In the following we derive an eigenvalue equation similar to Eq. (4.23) for the time-dependent case.
For doing so the time-evolution of the Floquet-Bogoliubov operator is required to be of the form of an
operator describing a quasiparticle i~ d

dt
βH(t) = εβH(t). Here ε is the yet unknown quasienergy of the

possible Floquet-Bogoliubov quasiparticles. Combining the trivial time-evolution i~ d
dt
βH(t) = εβH(t)

with the Heisenberg equation Eq. (4.35), the following relation for the the operator βH is derived

[HH(t), βH]− i~∂βH(t)

∂t
= −εβH(t), (4.37)

which generalizes Eq. (4.23) to the time-dependent case. Equation (4.37) is explicitly evaluated with
the use of Eq. (4.36). Comparing the coefficients in front of the bH / b†H operators, an eigenvalue
equation is found [(

−A(t) B(t)
−B(t) A(t)

)
− i~ ∂

∂t

](
u(t)
v(t)

)
= −ε

(
u(t)
v(t)

)
. (4.38)

Equation (4.38) is a central to this chapter and serves as defining equation for the Floquet-Bogoliubov
transformation and the quasienergy ε. Since we assume time-periodic coefficients A(t) = A(t + T )
and B(t) = B(t+T ), Eq. (4.38) can be solved using Floquet theory [98,193]. Equation (4.38) is non-
hermitian, in analogy to Eq. (4.24), see App. C for a Floquet theory of non-hermitian Hamiltonians.
The Floquet solution yields time-periodic transformation parameters u(t) = u(t + T ) and v(t) =
v(t + T ) and in general complex quasienergies ε. The βH operators obey bosonic commuatation
relations [βH, β

†
H] = 1 if

|u(t)|2 − |v(t)|2 = 1 (4.39)

holds for all times t. We will show in Sec. 4.4 that the solutions of Eq. (4.38) can be split into two
classes: The stable solutions and the unstable ones. For a stable solution the quasienergies are real.
Since we deal with a 2×2 matrix, in each Floquet Brillouin zone there are two quasienergies ε±. The
corresponding solutions can be normalized to obey |u±(t)|2− |v±(t)|2 = ±1 for all times. We choose
the +-solution, that fulfills Eq. (4.39) with ε ∈ [0, ω[. This procedure determines the parameters u(t),
v(t), up to a global phase, and ε uniquely. In the unstable case the quasienergies become complex
and |u(t)|2 − |v(t)|2 = 0. Therefore, the βH operators do not fulfill bosonic commutation relations
and can not be interpreted as quasiparticles. We will see that in this case the Floquet-Bogoliubov
eigenstates do not exist.

At this point we note, that in the stability regions the βH operator have a time dependence of
the form βH(t) = e−iεt/~β

(0)
H , where β(0)

H a time independent operator that is determined at initial
time t0 = 0. The bH / b†H obey a nontrivial time dependence given by the inverse transformation

bH(t) = u∗(t)βH(t)− v(t)β†H(t), (4.40)
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4.3. Floquet Single Mode Bogoliubov Transformation

or the corresponding hermitian conjugate equation, respectively.

In the following, we deepen the argument that the βH(t) operators describe quasiparticles by re-
lating the quasienergy spectrum of Hamiltonian (4.33) to the one of a static harmonic oscillator in
Heisenberg picture. We assume to be in a stability region. Concretely, we ask the question if a
time-independent Hamiltonian H can be found that generates the Heisenberg equations of motion
in the following way

i~
d

dt
βH(t) = [βH(t),H]. (4.41)

The trivial time evolution of the Floquet-Bogoliubov operators βH(t) = e−iεt/~β
(0)
H leads to the

condition
[H, β(0)

H ] = −εβ(0)
H . (4.42)

Since the β(0)
H operators obey canonical commutation relations, artificial position and momentum

operators can be defined via

β
(0)
H =

1√
2

(X̂ + iP̂ ). (4.43)

The wave function 〈x|0̃〉 = (4π)−1/4 exp(−x2/4) fulfills the equation

β
(0)
H |0̃〉 = 0. (4.44)

Equations (4.42), (4.44) and the bosonic commutation relation [β
(0)
H , (β

(0)
H )†] = 1 are sufficient to

show that the states |ñ〉 = [(β
(0)
H )†]n|0̃〉/

√
n! exist which obey the eigenvalue equation

H|ñ〉 = (nε+ E0)|ñ〉. (4.45)

With these findings we are left with a harmonic oscillator and are able to write down an expression
for the time-independent Hamiltonian H by

H = ε(β
(0)
H )†β

(0)
H + E0. (4.46)

Here E0 is the quasienergy of the vacuum state of the Bogoliubov quasiparticles that is not yet
determined, but it is also not of relevance for calculating the expectation values in the Heisenberg
picture. Equation (4.46) finally shows that the time-independent Hamiltonian H has a diagonal
form in terms of the Floquet-Bogoliubov operators βH. This enables, similar to the static case, to
interpret |0̃〉 as the vacuum state of the Floquet-Bogoliubov particles, while the state |ñ〉 contains n
Floquet-Bogoliubov quasiparticles. We will see that these definitions allow to calculate expectation
values of Floquet-steady states within the Heisenberg picture.

In this subsection a Floquet-Bogoliubov transformation for a periodically driven Hamiltonian that
is quadratic in bosonic operators is found. The method is able to calculate the quasienergies and to
define states with a certain number of quasiparticles. In the next subsection the eigenstates of H
are connected to Floquet states in Schrödinger picture.
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4.3.2. Finding Floquet States with the Floquet-Bogoliubov
Transformation

In this subsection we discuss how the Floquet-Bogoliubov transformation generates the full basis of
Floquet steady states of the time-dependent Hamiltonian (4.33). In the following it is again assumed
to be in a stability region. Similar to the discussion of the quantum harmonic oscillator, an induction
argument finds the Floquet steady state basis [112].

For this induction argument the following relation is central [104]

[H(t)− i~ ∂
∂t
, β(t)] = −εβ(t). (4.47)

Equation (4.47) is derived from Eq. (4.37) while using that

[i~
∂

∂t
, β(t)]|ψ(t)〉 = i~

(
∂β(t)

∂t

)
|ψ(t)〉 (4.48)

holds for an arbitrary time-dependent state |ψ(t)〉. Equation (4.47) generalizes Eq. (4.23) to the
Floquet case and is formulated in Schrödinger picture. The operators β / β† inherit the canonic
commutation relations from the Heisenberg picture. In the following we will use Eq. (4.47) in order to
inductively generate the whole Floquet spectrum of Hamiltonian (4.33). As base case, it is assumed
that a Floquet mode |φ0(t)〉 exists, which solves the Floquet equation[

H(t)− i~ ∂
∂t

]
|φ0(t)〉 = E0|φ0(t)〉, (4.49)

with H(t) given by Eq. (4.33). The quasienergy of this state is denoted by E0. Further, it is assumed
that |φ0(t)〉 is the Floquet vacuum state of the Floquet-Bogoliubov particles obeying

β(t)|φ0(t)〉 = 0, ∀t. (4.50)

In Subsec. 4.3.3 we show that this state exists and give an explicit expression for both |φ0(t)〉 and
E0. In the following it is demonstrated that the state |φ1(t)〉 = β†(t)|φ0(t)〉 is also a Floquet solution
of Hamiltonian (4.33), provided that Eqns. (4.47) and (4.49) hold:[

H(t)− i~ ∂
∂t

]
β†(t)|φ(t)〉 = [H(t)− i~ ∂

∂t
, β†(t)]|φ(t)〉+ β†(t)

[
H(t)− i~ ∂

∂t

]
|φ(t)〉. (4.51)

Using Eqns. (4.47) and (4.49) we finally arrive at[
H(t)− i~ ∂

∂t

]
|φ1(t)〉 = (E0 + ε)|φ1(t)〉. (4.52)

Equation (4.52) indeed says that |φ1(t)〉 is a Floquet state with quasienergy ε1 = ε+E0. In App. D
it is shown via mathematical induction that the whole spectrum is given by the quasienergies

εn = nε+ E0, (4.53)
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while the corresponding Floquet modes read

|φn(t)〉 =
[β†(t)]n√

n!
|φ0(t)〉. (4.54)

The Floquet modes fulfill the orthonormality condition

〈φn(t)|φm(t)〉 = δn,m. (4.55)

In the following, the Floquet states (4.54) are mapped to the eigenstates |ñ〉 of the Hamiltonian
H defined in Heisenberg picture. In the Heisenberg picture, the states |ψH〉 are time independent
and related to a state |ψ(t)〉 in Schrödinger picture by |ψ(t)〉 = U(t, t0)|ψH〉, where U(t, t0) is the
time-evolution operator. This allows to relate the Floquet states corresponding to Eq. (4.54) to the
static eigenbasis |ñ〉 found in Heisenberg picture by

|ψn(t)〉 = U(t, t0)|ñ〉. (4.56)

As U(t0, t0) = I, with I as identity matrix, Eq. (4.56) directly implies that the Floquet modes
at initial time are related to the eigenstates found in Heisenberg picture |φn(t0)〉 = |ñ〉. Using
the definition |ñ〉 = [(β

(0)
H )†]n|0̃〉/

√
n!, and the relations U(t, t0)β

(0)
H U †(t, t0) = e−iε(t−t0)β(t) and

|ψ0(t)〉 = e−iE0(t−t0)|φ0(t)〉 = U(t, t0)|0̃〉 we can reexpress Eq. (4.56) by

|ψn(t)〉 = e−i(nε+E0)(t−t0)/~ [β†(t)]n√
n!
|φ0(t)〉. (4.57)

Equation (4.57) is consistent with Eq. (4.54), this verifies that Eq. (4.56) correctly relates the Flo-
quet states to the static eigenbasis |ñ〉 in Heisenberg picture. In a similar way the defining equation
of the Floquet vacuum state Eq. (4.50) can be related to Eq. (4.44).

With the knowledge of the Floquet states a family of transformations to the Floquet frame, as
introduced by Eq. (2.3), can be written down. Note, that there is the choice of multiplying a time-
independent unitary matrix Q to a given UP(t). The first choice of the unitary transformation, that
is considered in this subsection, is given by

U
(1)
P (t) =

∞∑
n=0

|φn(t)〉〈n|, (4.58)

where |n〉 is the eigenbasis given by |n〉 = (b†)n|0〉/
√
n!. Using Eq. (2.3), the effective Hamiltonian

in the transformed frame can be calculated. With Eq. (4.58) this calculation yields

H̃
(1)
eff =

∞∑
n=0

εn|n〉〈n|. (4.59)

An equation similar to Eq. (4.59) has been found in Ref. [104]. The Hamiltonian (4.59) is the one
of a single harmonic oscillator H̃(1)

eff = εb†b + E0. This result shows the advantage of the Floquet
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4. Floquet-Bogoliubov Steady States

description, since it maps a nontrivial time-dependent problem to a time-dependent diagonal one.

The second transformation to a Floquet frame, that is considered here, is given by

U
(2)
P (t) =

∞∑
n=0

|φn(t)〉〈φn(0)|, (4.60)

which leads with Eq. (4.59) to the following effective Hamiltonian

H̃
(2)
eff =

∞∑
n=0

εn|φn(0)〉〈φn(0)|. (4.61)

Defining the operator βeff = u(0)bS+v(0)b†S, Eq. (4.61) can be brought in combination with Eq. (4.54)
to the form

H̃
(2)
eff = εβ†effβeff + E0. (4.62)

With the relation |φn(t0)〉 = |ñ〉 and Eqns. (4.46) and (4.62) it follows that the β(0)
H operator in

Heisenberg picture equals the above defined effective quasiparticle annihilation operator

β
(0)
H = βeff . (4.63)

We furthermore are able to relate the effective Hamiltonian (4.61) to the static Hamiltonian H found
in Heisenberg picture

H̃
(2)
eff = H. (4.64)

This is a remarkable result, as it allows for a better interpretation of the quasiparticle eigenstates
in Heisenberg picture. With Eqns. (4.63) and (4.64) we can interpret them as quasiparticles eigen-
states of the effective Hamiltonian in a Floquet frame. This interesting fact comes due to the
relation of Schrödinger and Heisenberg picture by the time-evolution operator. Note that with the
time-evolution operator alone no transformation UP(t) to Floquet frame can be calculated.

We discussed the general structure of the Bogoliubov transformation in Floquet picture, but one
thing is still missing, namely to prove the existence of the Floquet vacuum state |φ0(t)〉. This proof
is shown in the following subsection.

4.3.3. Floquet Vacuum State

In the previous subsection it was shown that the whole quasienergy spectrum can be generated
inductively using the Floquet-Bogoliubov transformation, if the Floquet vacuum state is known as
a base case. However, the existence of such a Floquet vacuum state remained as open question. In
this section we proof that the Floquet vacuum state is given by the explicit wave function

|ψ0(t)〉 =
eiϕ(t)√
|u(t)|

exp

[
− v(t)

2u(t)
b†b†
]
|0〉. (4.65)
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4.3. Floquet Single Mode Bogoliubov Transformation

Here |0〉 is the vacuum of the b operators and ϕ(t) is a time-dependent phase that is not yet
determined. At first, it is shown that state (4.65) fulfills the condition of a vacuum state at each
time:

β(t)|ψ0(t)〉 = 0, ∀t. (4.66)

This can be done by writing the state (4.65) as

|ψ0(t)〉 =
eiϕ(t)√
|u(t)|

∞∑
n=0

[
− v(t)

2u(t)

]n √
2n!

n!
|2n〉, (4.67)

with |n〉 = (b†)n|0〉/
√
n!. Using Eq. (4.67), Eq. (4.66) is evaluated as

β(t)|ψ0(t)〉 =
eiϕ(t)√
|u(t)|

∞∑
n=0

[
− v(t)

2u(t)

]n √
2n!

n!

√
2n+ 1

[
− v(t)

2u(t)
2u(t) + v(t)

]
|2n+ 1〉. (4.68)

The bracket on the right in Eq. (4.68) vanishes trivially for each n ∈ N, it follows that Eq. (4.66)
holds for each time t. Thus, state Eq. (4.65) follows the definition of a time-dependent vacuum state.

Similar to the static case it can be shown that the Floquet vacuum state can be normalized to
one for each time 〈ψ0(t)|ψ0(t)〉 = 1, if condition Eq. (4.39) holds. In the instability regions, however,
it holds that |u(t)| = |v(t)|, where similar to the time-independent consideration the norm of the
state (4.65) diverges. In this case the vacuum state (4.65) does not exist and a solution with a
Floquet-Bogoliubov transformation is not possible. In the following we assume that state Eq. (4.65)
exists.

At this point it is left to show that state (4.65) solves the Schrödinger equation with respect to
Hamiltonian (4.33):

[H(t)− i~∂t]|ψ0(t)〉 = 0, (4.69)

and is of the form of a Floquet state given by Eq. (2.7). A necessary condition for this is that the
time-dependent phase is of the form

ϕ(t) = −E0t/~ + φ(t), (4.70)

where E0 denotes the quasienergy of the Floquet vacuum state and φ(t) is a time-periodic function
with the same period T as the Hamiltonian. With the explicit form of state (4.65) and Hamiltonian
(4.33), the Schrödinger equation (4.69) can be evaluated as{

−B(t)v(t)

2u(t)
+ ~ϕ̇(t) +

i~
4

[
u̇(t)

u(t)
+
u̇(t)∗

u(t)∗

]}
|ψ0(t)〉

+

[
i~
v̇(t)u(t)− u̇(t)v(t)

2u2(t)
− A(t)v(t)

u(t)
+
Bv2(t)

2u2(t)
+
B

2

]
b†b†|ψ0(t)〉 = 0,

(4.71)

where a dot denotes a derivative with respect to time. With the Floquet-Bogoliubov equation (4.38)
it can be directly shown that the bracket in the second line of Eq. (4.71) vanishes, which is a
requirement for the state (4.65) to solve the Schrödinger equation. Assuming that also the bracket
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in the first line of Eq. (4.71) vanishes, a condition for the time derivative of the phase ϕ(t) can be
found

− ϕ̇(t) =
ε− A(t)

2~
+

1

2

d

dt
Im log[u(t)] (4.72)

Using Eq. (4.70) the quasienergy is found by time averaging E0 = (~/T )
∫ T

0
dt (−ϕ̇(t)). With the

explicit expression (4.72) it reads

E0 =
ε− 1

T

∫ T
0
dt A(t)

2
+

~ω
2
Q, (4.73)

where the quantity Q gives a topological contribution to the quasienergy in the form of an integral
of the time-derivative of the complex phase θ(t) = Im log u(t):

Q =
1

2π

∫ T

0

dt
d

dt
θ(t). (4.74)

Note that there are similarities between Eq. (4.73) and the corresponding time-independent result
Eq. (4.31). Since u(t) is time periodic, it follows that θ(T ) = θ(0) + m2π with m ∈ Z. Thus Q is
integer valued. The time-periodic part φ(t) of the phase is found by

φ(t) =
A(t)

2~
+ Ξ(t) + φ0, (4.75)

where

A(t) =

∫ t

0

dt′ [A(t′)− (1/T )

∫ T

0

dt′′ A(t′′)], (4.76a)

Ξ(t) =

∫ t

0

dt′
[
Qω

2
− d

dt′
Im log u(t′)

2

]
(4.76b)

and φ0 is an arbitrary phase. Note that for each time t the phase φ(t) as defined in Eq. (4.75) is
real. Since Ξ(t) is defined such that it is time-periodic Ξ(T ) = Ξ(0) it is easily shown that also φ(t)
is time periodic. Further, Eqns. (4.73) and (4.75) remain invariant under the shift of the Floquet
Brillouin zone of the parameters of the Floquet-Bogoliubov equation according to ε → ε − m~ω,
u(t)→ u(t)eimωt, v(t)→ v(t)eimωt.

With this thoughts the proof is finished. We have indeed managed to find a state which simul-
taneously obeys the definition of a vacuum state given by Eq. (4.66) and solves the Floquet equation
with Hamiltonian (4.33). This is a key result, as it serves as the base case for the inductive genera-
tion of the quasienergy spectrum in sec. (4.3.2). If the Floquet vacuum state (4.65) exists, the whole
quasienergy spectrum can be found with the Floquet-Bogoliubov transformation.

4.4. Solution Method of the Floquet-Bogoliubov Equations:
Stability and Instability Regions

In this section a numerical procure for finding the parameters u(t), v(t) and the quasienergy ε of the
Bogoliubov quasiparticles is presented. At first, Eq. (4.38) is Fourier transformed. Like in chapter 2,
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Figure 4.2.: (a) Real part (solid) and imaginary part (dotted) of the quasienergies
ε calculated by Eq. (4.77). (b) Canonical condition |uun(0)|2 − |vun(0)|2 of the
unnormalized Bogoliubov parameters at initial time t = 0. Black dashed lines mark
the border of the instability regions. The blue solution obeys |uun(0)|2−|vun(0)|2 > 0
in the stability regions and Im ε > 0 in the instability regions, while the red solution
has correspondingly |uun(0)|2 − |vun(0)|2 < 0 and Im ε < 0. The parameters are
A(t) = A0 and B(t) = B0 + 2B1 cos(ωt) with B0 = B1 = 0.2 A0.

the Fourier transform of a time-periodic quantity x(t) is defined as x(n) = (1/T )
∫ T

0
dt einωtx(t), n ∈

Z. Using the Fourier transformation, Eq. (4.38) can be written as an eigenvalue equation of the
Floquet matrix, c.f. Eqns. (2.18) and (2.19):

∞∑
l=−∞

(
−A(n−l) B(n−l)

−B(n−l) A(n−l)

)(
u(l)

v(l)

)
− n~ω

(
u(n)

v(n)

)
= −ε

(
u(n)

v(n)

)
. (4.77)

The solution of Eq. (4.77) yields the Fourier coefficients of the parameters of the Floquet-Bogoliubov
transformation as well as the negative quasienergies of the Bogoliubov quasiparticles. For a numer-
ical solution, Eq. (4.77) is truncated in Fourier space following the general procedure described in
Subec. (2.2.1). Note that Eq. (4.77) describes a non-hermitian eigenvalue problem, a theory of non-
hermitian Floquet Hamiltonians is presented in Appendix C. For this setting it is important to note
that a Floquet solution of the form (2.7) is still possible in the most cases, but the quasienergies may
become complex. However, the Floquet Brillouin zone structure εα,m = εα + m~ω is still valid. As
Eq. (4.38) describes a two-level system, there are two quasienergies in each Floquet Brillouin zone.
We choose the interval [0, ω[ as first Floquet Brillouin zone.

In Fig. 4.2 (a) the quasienergies in the first Floquet Brillouin zone, found by the numeric solu-
tion of Eq. (4.77), are shown. There are regions where both quasienergies are real. In these regions
there are two solutions, one with a positive and one with a negative slope. A real quasienergy
yields Floquet states with a motion that is bounded for all times as |e−iεt/~| = 1. Thus a solution
with a real quasienergy is termed as stable solution, the parameter region with stable solutions is
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4. Floquet-Bogoliubov Steady States

called stability region. In the other parameter regions, the real part of both quasienergies equals
n~ω/2, n ∈ Z while the imaginary part is non-zero. There is one solution with positive and one
with negative imaginary part. The Floquet dynamics of these solutions is characterized by the
complex exponential function e−iεt/~ = e−iRe εt/~ × eIm εt/~. The solution with a quasienergy with
negative imaginary part corresponds to an exponentially decaying solution while the amplitude of
the solution with positive imaginary part increases exponentially. This exponential increase of the
amplitude over time corresponds to the behavior of an unstable solution [194, 195]. Thus, the re-
gions with complex quasienergies are termed as instability regions. Note that at the boundary of
stability and instability regions where the quasienergy equals an integer multiple of ~ω/2 solely one
periodic solution may exist, c.f. Ince’s theorem for the Mathieu equation [196,197]. Since these spe-
cial solutions only occur at a null set in parameter space, a detailed discussion is left to future works.

In order to choose which of the two solutions in the first Floquet Brillouin zone is used as pa-
rameters in the Floquet-Bogoliubov transformation, we calculate for both solutions the canon-
ical constraint |uun(0)|2 − |vun(0)|2 for the unnormalized Bogoliubov parameters at initial time.
These unnormalized parameters are called unnormalized, as |uun(0)|2 − |vun(0)|2 is not normal-
ized to plus or minus one. The numerical solution of Eq. (4.77) yields the unnormalized pa-
rameters as intrinsic result, since the numerical eigenvalue solver normalizes the states such that
(1/T )

∫ T
0
dt [|uun(t)|2 + |vun(t)|2] = 1. In Fig. 4.2 (b) the canonic constraint |uun(0)|2 − |vun(0)|2 of

the unnormalized Bogoliubov parameters at initial time is shown. In the stability region there exists
a solution with |uun(0)|2 − |vun(0)|2 > 0 and a solution with |uun(0)|2 − |vun(0)|2 < 0 while in the
instability region it holds that |uun(0)|2 − |vun(0)|2 = 0. Numeric values of |uun(0)|2 − |vun(0)|2 with
modulus below a certain threshold are treated as zero by the numerical procedure.

We first discuss the stability regions. In order to find parameters of the Floquet-Bogoliubov equation
that fulfill condition (4.39), the solution with |uun(0)|2 − |vun(0)|2 > 0 is chosen and the parameters
are normalized according to

u(t) = uun(t)/
√
|uun(0)|2 − |vun(0)|2, v(t) = vun(t)/

√
|uun(0)|2 − |vun(0)|2. (4.78)

The paramters in Eq. (4.78) obey |u(0)|2 − |v(0)|2 = 1, but is this condition fulfilled for all times as
required by Eq. (4.39)? In order to find out, the derivative d

dt
[|u(t)|2 − |v(t)|2] is calculated, which

yields with the use of Eq. (4.38) the following differential equation

d

dt
[|u(t)|2 − |v(t)|2] = 2

Im ε

~
[|u(t)|2 − |v(t)|2]. (4.79)

In the stability regions the imaginary part of the quasienergies vanishes Im ε = 0, such that with
Eq. (4.79) it follows that |u(t)|2− |v(t)|2 is constant in time. As a result Eq. (4.39) is fulfilled for all
times. We found a valid Floquet-Bogoliubov transformation in the stability regions and are able to
calculate properties of the Floquet-Bogoliubov eigenstates.

In the instability regions the situation is different. Here |u(0)|2 − |v(0)|2 = 0, with Eq. (4.79) it
follows with Eq. (4.79) that |u(t)|2 − |v(t)|2 = 0 for all times. Thus in the instability regions both
solutions do not fulfill Eq. (4.39). As a result the Bogoliubov operators defined by Eq. (4.34) do not
obey bosonic commutation relations and the vacuum state defined by Eq. (4.65) does not exist.
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In the next section physically relevant expectation values are calculated using the Floquet-Bogoliubov
transformation. In addition, we give physical insight in the occurrence of the instability regions.

4.5. Expectation Values and Stability Charts

In this subsection expectation values are calculated and stability charts are presented. In particular,
we are interested in the density of excited states of the Floquet vacuum state

n(t) = 〈φ0(t)|b†b|φ0(t)〉, (4.80)

with |φ0(t)〉 as in Eq. (4.65). Since our theory involved both Heisenberg and Schrödinger picture, in
the following we show that Eq. (4.80) can be evaluated in both pictures equally.

The first way starts with transforming Eq. (4.80) to Heisenberg picture

n(t) = 〈0̃|b†H(t)bH(t)|0̃〉. (4.81)

Equation (4.81) is evalutated further using Eq. (4.40) and the canonic commutation relation of the
βH / β†H operators. As result we get

n(t) = |v(t)|2. (4.82)

The second way evaluates Eq. (4.80) in Schödinger picture with the explicit form of the Floquet
vacuum state given by Eq. (4.65). With the definition F (t) = −v(t)/[2u(t)] and the fact that
[b†b, exp[−F (t)b†b†]] = −2F (t)b†b† exp[−F (t)b†b†], Eq. (4.80) becomes

n(t) =
1

|u(t)|
〈0| exp[−F ∗(t)bb][−2F (t)]b†b† exp[−F (t)b†b†]|0〉 (4.83)

Equation (4.83) is further simplified by noting that [−2F (t)]b†b† exp[−F (t)b†b†]
= 2F (t) ∂

∂F
exp[−F (t)b†b†]. With 〈0| exp[−F ∗(t)bb] exp[−F (t)b†b†]|0〉 = 1/

√
1− 4F ∗(t)F (t) it fol-

lows

n(t) =
2F (t)

|u(t)|
∂

∂F

(
1√

1− 4F (t)F ∗(t)

)
. (4.84)

By performing the derivative in Eq. (4.84), Eq. (4.82) is found as a result. This shows that the
expectation value (4.80) can be evaluated both in Heisenberg and Schrödinger picture and that the
two methods indeed yield the same result.

Another quantity of interest is the expectation value of the Hamiltonian

E(t) = 〈φ0(t)|H(t)|φ0(t)〉. (4.85)

The observable (4.85) measures the energy of the Floquet vacuum state. In comparison to the
quasienergy E0, which determines the linear phase evolution, the expectation value Eq. (4.85) mea-
sures the physical energy. Due to the time dependence in the system the energy expectation value

131



4. Floquet-Bogoliubov Steady States

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(a)

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.3.: (a) Time average of the density of excitations n̄, (b) Time average of
the energy expectation value of the Floquet vacuum state Ē. The parameters are
A(t) = A0 and B(t) = B0 + 2B1 cos(ωt) with B0 = B1 = 0.2 A0. Black dashed lines
mark the border of the instability regions, the red cross marks the static limits.

(4.85) is also time dependent. For finding an explicit formula, Eq. (4.85) is transformed into the
Heisenberg picture and evaluated using Eq. (4.40). This calculation yields

E(t) = A(t)|v(t)|2 − B(t)

2
[u(t)v∗(t) + v(t)u∗(t)]. (4.86)

In the following we denote time-averaged quantities by a bar x̄ = (1/T )
∫ T

0
dt x(t) and use the

Fourier coefficient notation of Eq. (4.18). In Fig. 4.3 the time-averaged quantities n̄ and Ē are
shown. At small A0/(~ω) the value of n̄ and Ē converges to the static limit. This is directly visible,
as the case A0/(~ω)→ 0 corresponds to the high frequency limit, in which the effective Hamiltonian
can be approximated by a high frequency expansion, such as Eq. (2.15a). With Eq. (2.15a) the
effective Hamiltonian is in zeroth order given by the zeroth Fourier component of the Hamiltonian
(4.33), which corresponds to the undriven part of Hamiltonian. Thus, the limit of A0/(~ω) → 0,
under the assumption that y = B0/A0 is constant as in Fig. 4.3, can be found with the static case:
The average number of excitation goes to n̄→ (1−

√
1− y2)/(2

√
1− y2) and the average energy is

given by Ē/A0 → (
√

1− y2−1)/2. Near the instability regions a totally different behavior is visible,
here both n̄ and Ē show divergences. This gives physical insight why the Floquet-Bogoliubov state
does not exist inside the instability regions: When approaching an instability region both average
density of excitations and average energy of the Floquet vacuum state diverges. In the ultimate
limit the Floquet vacuum state would thus correspond to a state of infinite energy, which is of course
not physically realizable. In addition, the average number of bosonic excitations diverges. We will
find that the instability regions are linked to the parametric excitation of pairs of bosons, which
is generated by the time-dependent b†b† term in the Hamiltonian. A possible Floquet state that is
describing this process would consist of an infinite amount of bosons, as indicated by the divergence
in n̄. This again signalizes that a Floquet solution is unphysical in the instability regions. However,
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Figure 4.4.: Time dependence of (a): n(t), (b): E(t) for A(t)/(~ω) = 0.8 and
B(t) = 0.2 A0 × (1 + 2 cos(ωt)).

it will be shown in Sec. 4.6 that with proper regularization it is possible to find the Floquet vacuum
state inside the instability regions.

Figure 4.4 depicts the time-dependent quantities n(t) and E(t). Note, that both expectation values
are time-periodic with the same period as the vacuum Floquet mode |φ0(t)〉, thus we restrict to
show the results for one period only. Both expectation values oscillate around their average, while
the largest contribution is given by the first harmonic. As both expectation values are given by a
non-linear function of the Bogoliubov parameters u(t) and v(t), also higher harmonics are visible in
Fig. 4.4. Note that the negative energies in Eq. (4.4) come in due to a negative ground state energy,
as in Eq. (4.31).

Figure 4.5 displays the quasienergy of the Floquet-Bogoliubov quasiparticles and the average density
of excited states n̄ in dependence of B0. The quasienergy shows a behavior similar to the ones of
the static Bogoliubov particles that is displayed in Fig. 4.1 (a), but the curve in the driven case is
fitted into the first Floquet Brillouin zone. In Fig. 4.5 two instability regions can be spotted. The
instability region near B0/A0 ≈ 0.6 is induced by the periodic drive, the region for B0/A0 >≈ 0.8
corresponds to the case B0/A0 > 1 in the static solution, where the Bogoliubov transformation
fails to diagonalize the Hamiltonian. This demonstrates that the periodic drive can also shift the
boundaries of instability regions.

In order to get a deeper physical understanding of the occurrence of the instability regions that
are induced by the time-periodic drive, we appeal to special parameters that allow to strictly relate
the physics of the instability regions to a parametric resonance occurring in the Mathieu equation.
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Figure 4.5.: (a): Real (blue) and imaginary (red) part of the quasienergy of the
Floquet-Bogoliubov particles, (b): time average of the density of excitations with
the parameters A(t) = A0, B(t) = B0 + 0.2 B0 cos(ωt) and ~ω = 0.8 A0. In the
instability regions the solution with positive imaginary part is chosen.

For this we assume that both A(t) and B(t) are driven sinusoidally with the same strength AAC:

A(t) = A0 + AAC cos(ωt), (4.87a)
B(t) = B0 + AAC cos(ωt). (4.87b)

Similar to Ref. [104], we introduce new transformation parameters ũ(t) = e−iεt/~u(t), ṽ(t) =
e−iεt/~v(t) that obey the following equations of motion

i~
d

dt
ũ(t) = −A(t)ũ(t) +B(t)ṽ(t), (4.88a)

i~
d

dt
ṽ(t) = A(t)ṽ(t)−B(t)ũ(t). (4.88b)

The variables f±(t) = ũ(t) + ṽ(t) are introduced. Due to the fact that A(t) − B(t) = A0 − B0 is
constant in time, the time-dependence of f−(t) is determined by a Mathieu equation

f̈−(t) +
E2

st

~2

[
1 +

2AAC

A0 +B0

cos(ωt)

]
f−(t) = 0, (4.89)

where Est =
√
A2

0 −B2
0 is the eigenenergy of the static Bogoliubov particles. The other variable

f+(t) is determined by i~ḟ−(t) = (A0 − B0)f+(t). An analytical Floquet solution can be generated
from Eq. (4.89) with a method developed by our collaborator S. Fazzini. The general solution of
Eq. (4.89) is given by [104]:

f−(t) = c1C(a, p, τ) + c2S(a, p, τ) (4.90)
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with the parameters

a =
4E2

st

~2ω2
, p = − 4AACE

2
st

~2ω2(A0 +B0)
, τ =

ωt

2
. (4.91)

In Eq. (4.90), C(a, p, τ) and S(a, p, τ) are even and odd Mathieu functions that are normalized
such that C(a, p, 0) = S(a, p, π) = 1 while c1, c2 are parameters that are completely determined
by requiring that the solution is of Floquet form (2.7) and the canonic condition Eq. (4.39) is
fulfilled [104]. The parameter ε is determined the formula [104]

ε = ~× arccos[C(a, p, π)]/T. (4.92)

Equation (4.92) allows for the analytic calculation of the quasienergies in the special case of the
driving scheme Eq. (4.87). This is an remarkable result, as we will see later that it can be used to
find an analytic solution of a periodically driven many-body problem [104].

In the following we focus on the stability of the solution. With Eq. (4.89) stability and insta-
bility regions are determined by the famous stability charts of the Mathieu equation [194,195]. This
is an important result, since it allows to relate the instability regions that are induced by the drive
to the well-known phenomenon of a parametric resonance in a mathematically concise way. Further
physical understanding can be gained in the case of weak driving where it is known that the Mathieu
equation shows a parametric resonance if the following condition holds [194]

Est

~ω
=
n

2
, n ∈ N. (4.93)

In the setting of Hamiltonian (4.33) condition (4.93) corresponds to the parametric excitation of a
pair of bosons by n quanta of the drive. This process is induced by a time-dependent parameter in
the off-diagonal term b†b† + bb.

In Fig. 4.6 (a) the stability chart is shown for the case of B0 = 0. Here it holds that Est = A0, for
small AAC/A0 the instability tongues reach the x axis at integer multiples of A0/(2~ω) as predicted
by Eq. (4.93). For increasing driving strength AAC the instability regions become broader such that
they dominate for large values of AAC/A0. However, in the high frequency limit A0/(~ω) � 1 the
system remains stable even for large AAC/A0. Figure 4.6 (b) shows the case of a non-vanishing B0

with a weak driving strength AAC. The condition of the parametric resonance Eq. (4.93) determines
a family of curves in the B0-A0 plane

B0

~ω
=

√(
A0

~ω

)2

− n2

4
, n ∈ N. (4.94)

The course of the instability regions in Fig. 4.6 (b) is for small B0/A0 in good agreement with the
curves defined in Eq. (4.94). For larger B0/A0 the curves lie for the resonances with n > 1 outside the
instability regions, but they are still together within a reasonable range. This visually demonstrates
that the physics of the instability regions is governed by the parametric excitation of pairs of bosons.
The small shift of instability regions and Eq. (4.94) for larger B0/A0 is interpreted as the dressing
of the boson energy in Eq. (4.93), in analogy to the Floquet-Feshbach resonance theory, where the
resonance position shifts due to a dressing of the bound state by the periodic drive. The broadening
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Figure 4.6.: Stability chart with parameters according to Eq. (4.87) calculated with
the numerical procedure described in Sec. 4.4. (a) B0 = 0, (b) AAC = 0.5 B0. With
areas mark stability regions, red areas mark the instability regions. Black dashed
lines mark the condition (4.93).

of the instability regions with increasing B0 is related to the fact that the driving strength AAC is
increases with B0. For increasing n the instability regions get thinner. This behavior is generic since
in general processes that involve a higher number of drive quanta are weaker than the corresponding
first order transitions. For values above B0/A0 = 1 also no Floquet-Bogoliubov solution exists. This
behavior corresponds to the static case Eq (4.19), where the same condition determines whether a
Bogoliubov solution exists or not.

Figure 4.7 shows stability charts for a general harmonic driving of the parameters A(t), B(t). In
Fig. 4.7 (a), the case where only B(t) is modulated sinusoidally, is displayed. We choose A(t) = A0

and B(t) = B0(1 + 2 cos(ωt)). This choice includes the case that is shown in Figs. 4.2 and 4.3.
At small fractions B0/A0 there are stable solutions for nearly all values of A0/(~ω). Tongues of
instability regions reach the A0-axis at integer multiples of A0/(2~ω) as predicted by Eq. (4.93).
For increasing ratio B0/A0 the instability regions broaden and are shifted to larger A0. At a large
B0/A0 the instability regions extend to a vast parameter region. Only in the high-frequency limit
A0/(~ω) → 0 the system remains stable if B0 < A0. In the opposite case A0 < B0 the system is
unstable for A0/(~ω)→ 0. This behavior is directly linked to that static case Eq. (4.19), where for
A0 < B0 that Bogoliubov transformation fails to diagonalize the Hamiltonian.

In Fig. 4.7 (b) A(t) is modulated time-periodically according to A(t) = A0 + 2A1 cos(ωt) while
B is kept constant at B(t) = 0.4 A0. Here a completely different structure of the instability regions
compared to Fig. 4.7 (a) is visible, which raises multiple questions. First one may ask why a para-
metric resonance is possible at all, since B(t) is not time-dependent. Second, it is of interest to find
an explanation of the location of the instability regions for the examined parameter range. Third it
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Figure 4.7.: Stability chart for (a) A(t) = A0, B(t) = B0[1 + 2 cos(ωt)], (b) A(t) =
A0+2A1 cos(ωt), B(t) = 0.4 A0 calculated with the numerical procedure described in
Sec. 4.4. Instability regions in red, stability regions in white. In black the condition
2Eeff = n~ω, n = 1, 2 is shown.

is not clear why there the instability regions do not look like tongues but rather as lines of islands.

In order to answer these questions we perform the time-dependent gauge transformation

Q(t) = exp[−iA1 sin(ωt)(b†b+ bb†)], (4.95)

which rotates Hamiltonian (4.33) to a frame in which the time-dependence of A(t) is removed. In
appendix E it is shown that Eq. (4.95) leads to the transformed Hamiltonian

H̃ = A0b
†b+

B0

2

(
∞∑

n=−∞

Jn[4A1/(~ω)]einωtb†b† + h.c.

)
− 2A1 cos(ωt)

2
, (4.96)

where h.c. denotes the hermitian conjugate and Jn(x) the Bessel functions of the first kind. With
the Eq. (4.96) we are able to answer all above questions. In the rotating frame it can be seen
directly that the sinusoidal drive of A(t) induces a time dependence in the off-diagonal part b†b†+ bb
provided that B0 6= 0. Since the parametric excitation is traced back to a time-dependence in B(t),
this allows to explain why instability regions can be seen in Fig. 4.7 (b) at all. Further, the course of
the instability regions can be made visible with Eq. (4.96). Performing the high-frequency expansion
Eq. (2.15a) in zeroth order the drive renormalizes the energy of a Bogoliubov quasiparticle to

Eeff =
√
A2

0 −B2
0J 2

0 [4A1/(~ω)]. (4.97)

The black lines in Fig. (4.7) corresponds to the parametric excitation of bosons with the renormalized
energy 2Eeff = n~ω, n = 1, 2 and resemble quite accurate the actual course of the instability regions.
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Figure 4.8.: Bessel functions of first kind Jn(x) in dependence of x: J0(x) blue,
J1(x) red, J2(x) yellow, J3(x) purple, J4(x) green. A black dashed line marks
y = 0.

It is remarkable that even for parameters where the instability regions contract to a single point
Eq. (4.97) serves as a good description. The fact that for large A1/A0 the instability islands are
centered at 2A0/(~ω) = n, n ∈ N can be explained with the behavior of the Bessel function J0(x) for
large arguments. As shown in Fig. 4.8 the overall amplitude of the Bessel functions decays, while the
ultimate limit x→∞ the Bessel function J0(x) converges to zero. Thus, for large A1/A0 Eq. (4.97)
converges to Eeff ≈ A0, such that the parametric resonance occurs at 2A0/(~ω) = n, n ∈ N. Last
but not least, the contraction of the instability regions to a single point can also be explained with
the behavior of the Bessel functions. As shown in Fig. 4.8, the Bessel functions obey an oscillatory
behavior that allows for the existence of zeros. For example, the location of the contraction point
of the instability regions for the parametric resonance with n = 1 can be predicted by the zero
of the first Bessel function J1[4A1/(~ω)] = 0. This implies with J1(x) = 0 ⇔ x = 0,±3.83, ... a
value of A1/A0 ≈ 1.91 which fits quite well to Fig. 4.7 (b). For the discussion of other contraction
points it might be necessary to further include the higher harmonics in Eq. (4.96). Having all these
points in mind we conclude that Fig. 4.7 (b) contains rich Floquet physics, since the drive both
induces parametric resonances and renormalizes the parameters such as the effective energy of the
Bogoliubov particles Eq. (4.97) in the sense of Floquet engineering.

4.6. Regularization of Diverging Expectation Values by a
Finite Lifetime

In the previous section it is found that the average density of excitations diverges in the instability
regions. Here we discuss how these divergences can be regularized by introducing a finite lifetime
of the original bosons. This lifetime τ0 is introduced into Hamiltonian (4.33) as a time-independent
imaginary part of A(t):

Im A(t) = − ~
τ0

. (4.98)
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Figure 4.9.: Real part (solid) and imaginary part (dotted) of the quasienergies
ε calculated by Eq. (4.77) with finite imaginary part ~τ0A0 = 102. (b) Canonic
condition |uun(0)|2− |vun(0)|2 of the unnormalized Bogoliubov parameters at initial
time t = 0. The blue / red solution obey |uun(0)|2 − |vun(0)|2 > 0 / < 0. The
parameters are A(t) = A0 − i~/τ0, B(t) = 0.2 A0 + 0.4 A0 cos(ωt).

In the limit of τ0 → ∞ the case that is discussed in the previous section is recovered. A finite
lifetime τ0 implies that Hamiltonian (4.33) becomes non-hermitian. Since it is involved to find a
general solution of the non-hermitian problem and only expectation values of the Floquet vacuum
state are of interest, we will here specialize on the Floquet vacuum state Eq. (4.65). It is easily
verified that with finite τ0 the Floquet vacuum state |φ0(t)〉 is still given by Eq. (4.65) and solves the
Floquet equation [H(t)− i~∂t]|φ0(t)〉 = E0|φ0(t)〉 with the quasienergy given by Eq. (4.73) and the
phase given by Eq. (4.75), provided that the parameters u(t), v(t) obey Eq. (4.38) with a complex
A(t) with imaginary part given by Eq. (4.98). Condition Eq. (4.66) is unaffected at finite lifetime
τ0.

For the further discussion, the behavior of Eq. (4.38) is of relevance. In Fig. 4.9 (a) the quasienergies
ε, that are found by the numerical solution of Eq. (4.77), are shown. A solution with positive slope of
the real part and a solution with a negative exists. In the stability regions the finite lifetime has little
effect, but in the instability regions it unpins the real part of ε from the value n~ω/2, n ∈ Z while
the imaginary part of ε still shows finite values. The value of |uun(0)|2 − |vun(0)|2, i.e. the canonical
constraint with parameters before the numerical normalization procedure, is displayed in Fig. 4.9
(b). Here a new behavior is present: Instead of having |uun(0)|2 − |vun(0)|2 = 0 in the instability
regions, the numerical investigation reveals that the value of |uun(0)|2 − |vun(0)|2 never vanishes for
any finite τ0. This is the key result, since it allows to normalize u(t) and v(t) for each parameter
value such that we now find a solution also in the instability regions. In the following the solution
with |uun(0)|2 − |vun(0)|2 > 0 is chosen and the parameters are normalized according to Eq. (4.78).
This finally normalizes the Floquet vacuum state such that 〈φ0(t0)|φ0(t0)〉 = 1 where t0 denotes the
initial time. Note that due to the non-hermiticity of the Hamiltonian H(t) the norm of the Floquet

139



4. Floquet-Bogoliubov Steady States

0.5 1 1.5 2
0

2

4

6

8

(a)

0.5 1 1.5 2
0

1000

2000

3000

4000

5000

(b)

Figure 4.10.: Time-averaged number of excited states n̄ with the parameters A(t) =
A0 − i~/τ0, B(t) = 0.2 A0 + 0.4 A0 cos(ωt) with (a) ~/τ0 = 10−2A0 and (b) ~/τ0 =
10−5A0.

vacuum state may be time-dependent [193,198]. Let us here summarize the important points: Since
the condition |u(t)|2 − |v(t)|2 6= 0 holds for all parameter values with finite τ0, we find that the Flo-
quet vacuum state exists in both the stability and the instability regions. This is remarkable, as it
enables to calculate expectation values of the Floquet vacuum state for general parameters. We will
see that this procedure allows to define a Floquet steady state for the driven Tomonaga-Luttinger
liquid at all. A more detailed analysis of the non-hermitian problem using biorthogonal quantum
mechanics will be useful [98, 193], but exceeds the scope of this thesis.

The time average of the density of excitations is calculated with the use of Eq. (4.80) while the
results are shown in Fig. 4.10. The divergences appearing for n̄ in the undamped case turn here into
large maxima. This shows that the Floquet vacuum state contains a finite number of excitations such
that we are able to regularize the infinities occurring in the undamped case τ0 =∞. As a key result
we can now calculate expectation values in the whole parameter range. The height of the maxima
in n̄ increases with the lifetime τ0 of the particles. In the limit of an infinite long lifetime τ0 → ∞
the height of the maxima diverges. The maximum with lowest A0/(~ω) dominates all others, since
it corresponds to the parametric excitation of pairs of bosons with one drive quantum. The more
drive quanta are involved into a parametric resonance, the weaker is the response of the system. The
finite height of the maximum of n̄ is physically interpreted as an interplay of parametric excitation
due to the drive and the losses induced by a finite boson lifetime which make the occupation of a
highly excited state unfavorable.

In Fig. 4.11 the height of the first maximum, i.e. the one with the lowest value of A0/(~ω), is
shown for a driving scheme of the form A(t) = A0 − i~/τ0, B(t) = B1[1 + 2 cos(ωt)] with different
parameter values in dependence of B1τ0/~. For a vast parameter range a linear dependence of the
height of the first maximum on the variable B1τ0/~ is visible. This demonstrates that the height
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Figure 4.11.: Height of the first maximum plotted in dependence of B1τ0/~ given
by black dots. With a numerical method the height of the first maxima is found for
the driving scheme A(t) = A0− i~/τ0, B(t) = B1[1 + 2 cos(ωt)]. The value of ~τ0A0

is chosen between 101 and 105, the value of B1/A0 between 0 and 0.7. The method
uses an grid with adaptive step size such that the maxima are correctly resolved.
The red line shows a fit with the function y = 0.4707×B1τ0/~.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Figure 4.12.: Real (blue) and imaginary (red) part of the quasienergy E0 of the
Floquet vacuum state for the parameters of Fig. 4.9.

of the maximum can be tuned with the product of driving strength B1 and boson lifetime τ0 while
both larger lifetime τ0 and larger driving B1 leads to a larger value of the maximum. In the first
case the damping is minimized while the second case more energy is imparted into the system. Note
that for small values of B1τ0/~ the system deviates from the linear dependence.

Up to now we calculated the time-average of the expectation value (4.80) using the time-periodic
Floquet modes. As seen in Fig. 4.12, the quasienergy E0 of the Floquet vacuum state becomes
complex. The negative imaginary part of E0 leads to an overall exponential decay of the wave
function. This decay can be understood with Eq. (4.98), which implies that the dynamic phase
e−inRe(A0)t/~e−nt/τ0 of the states |n〉 = (b†)n|0〉/

√
n! acquires an additional exponential decay with a

lifetime given by nτ0. Thus, higher excited states are damped out fast. Such a situation assumes
that the wave function leaves the considered harmonic oscillator mode and decays into a bath.
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(a) (b)

Figure 4.13.: Density of excitations nψ(t) in dependence of A0 with the parameters
A(t) = A0−i~/τ0, B(t) = A0(0.2+0.4 cos(ωt)). (a) shows nψ(t) for ~/τ0 = 10−2 A0,
(b) shows log10 nψ(t) for ~/τ0 = 10−5 A0. The color axis in (b) is limited to values
of 1 ≤ log10 nψ(t).

In the following we take such a situation into account in our theory and calculate the expectation
value of the Floquet vacuum state |ψ0(t)〉 = e−iE0t/~|φ0(t)〉:

nψ(t) = 〈ψ0(t)|b†b|ψ0(t)〉 = e2Im E0t/~〈φ0(t)|b†b|φ0(t)〉. (4.99)

The results of Eq. (4.99) are compared to a time-evolution of the non-hermitian Schrödinger equa-
tion. Finally, we construct from the results an interpretation in which the norm of the wave function
does not decay and relate it to the results of Eq. (4.80).

Values for nψ(t) are shown in Fig. 4.13 for two different boson lifetimes. At t = 0 there are large
maxima as displayed in Fig. 4.10. As time evolves, these maxima decay, since the imaginary part of
the quasienergy E0 has a pronounced modulus in the instability regions. At late times, the values of
nψ(t) for parameters that lie at the border of the instability regions dominate. These solutions have
little decay due to an almost vanishing imaginary part of the quasienergy E0 while the expectation
value nψ(t) is still large. This result is clearly visible in Fig. 4.13 (b) where the density of excitations
in the bulk of the instability regions decays in about 10 driving periods while at the border of the
instability regions nψ(t) remains high after even 100 periods.

At this point, we give a deeper interpretation how the finite lifetime as introduced in Eq. (4.98)
influences the physics. For this task it is useful investigate the time-evolution of a quantum state
and relate it to the Floquet steady states. We prepare the system at initial time in the vacuum
state |ψ(t = 0)〉 = |0〉 of the b operator and calculate the time evolution by solving the Schrödinger
equation numerically. In order to do so, the boson Hilbert space is cut off, such that (b†)100 = 0. The
parameters are chosen to lie inside an instability region. Figure 4.14 (a) shows the time evolution
of the number of excitations |〈n|ψ(t)〉|2, with |n〉 = (b†)n|0〉/

√
n!. Having the full probability at
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Figure 4.14.: Time evolution of the state |ψ(t)〉 with initial condition |ψ(0)〉 = |0〉,
where b|0〉 = 0, for the parameters A(t) = A0 − i~/τ0, B(t) = A0(0.2 + 0.4 cos(ωt))
with A0 = 0.5~ω and ~/τ0 = 10−2 A0. This configuration lies in the first instability
region, c.f. Fig. 4.9 (a). (a) shows the time evolution of the number of excitations
|〈n|ψ(t)〉|2 in color code, (b) the time-dependent expectation value of the number of
excitations, (c) norm of the time-evolved state, (d) expectation value divided by the
norm.

n = 0 at initial time, for small times the next higher states are excited. This process can be seen
as the parametric excitation of boson pairs, since only states with odd n are populated. As time
evolves, states with higher number n are occupied. This is reflected in the time-dependence of the
expectation value 〈ψ(t)|b†b|ψ(t)〉 as shown in Fig. 4.14 (b), which drastically increases in the first
few periods. At this point the finite lifetime τ0 enters the game: The damping factor of state |n〉 is
given by nγ, such that the higher excited states are damped out fast. This is seen in the decrease
of the norm in Fig. 4.14 (c). As a result, also the expectation value of the number of excitations
decreases in time and follows an exponential decay that is superimposed by a periodic modulation.
This is exactly the behavior that is also seen for the expectation value in Floquet vacuum state in
Fig. 4.13. We thus conclude that the Floquet vacuum state describes the decrease of the density due
to the finite lifetime of the particles. For larger lifetime τ0 the maximum of the expectation value
〈ψ(t)|b†b|ψ(t)〉 increases and is reached at later times.

143



4. Floquet-Bogoliubov Steady States

It is of interest to also discuss the case where instead of the wave function, the number of excitations
decays. In order to achieve this in our model, we divide in a plain calculation the expectation value
by the norm of the state at each time ñ(t) = 〈ψ(t)|b†b|ψ(t)〉/〈ψ(t)|ψ(t)〉 [199]. This corresponds to
a redefinition of the quantum mechanical probability distribution at each time, such that effectively
the norm of the state stays constant. A more sophisticated result is expected to be found within the
formalism of biorthogonal quantum mechanics [193] or a microscopic description of the decay, that
might also inculcate stochastic terms which especially become relevant for short lifetimes τ0 [199].
However, for long lifetimes τ0, the system is well-described by a non-hermitian Hamiltonian for rel-
atively long timescales [199–201]. Before results are shown, we motivate why dividing by the norm
in ñ(t) describes exactly a decay of the excitation. We calculate the normalized expectation value
〈Ã〉 = 〈ψ(t)|A|ψ(t)〉/〈ψ(t)|ψ(t)〉 of an operator A with the wave function

|ψ(t)〉 = e−iE0ta0|0〉+ e−i(E0+nε)te−nγtan|n〉. (4.100)

The calculation yields

〈Ã〉 =
〈0|A|0〉|a0|2 + 〈n|A|n〉|an|2e−2nγt + e−nγt2Re (〈n|A|0〉a∗na0e

inεt)

|a0|2 + |an|2e−2nγt
. (4.101)

Assuming |a0|2 + |an|2 = 1, Eq. (4.101) decays from 〈Ã〉(t = 0) = 〈0|A|0〉|a0|2 + 〈n|A|n〉|an|2 +
2Re (〈n|A|0〉a∗na0) at t = 0 to limt→∞〈Ã〉(t) = 〈0|A|0〉. This shows, that in the long-time limit all
excitations decay and the expectation value of the vacuum state is recovered, while the quantum
probability is at each time normalized to one. In Fig. 4.14 (d) the expectation value ñ(t), found with
the results displayed in Fig. 4.14 (a-c), is shown. At late times ñ(t) has a time-periodic behavior.
This is expected for the expectation value of a Floquet-steady state, c.f. Fig. 4.4. We emphasize that
this is an interesting result, since it shows that the combination of decay and parametric driving
results in a time-periodic expectation value that oscillates around a finite value. The average value
of the expectation value is roughly given by the value that is expected from the Floquet-Bogoliubov
calculation, see Fig. 4.10 (a). This gives the interpretation that the expectation value of the Floquet
mode Eq. (4.80), without taking the damping by the complex quasienergy into account, describes
the average number of excitations that are reached in a model where the number of excitations, and
not the wave function itself, are damped.

As an overall result, this consideration results in the statement that a finite particle lifetime in-
duces finite amount of excitations in the instability regions that is seen in large but finite maxima
in the expectation value of the density of excited states.

4.7. Floquet-Steady States of the Tomonaga-Luttinger
Liquid

After having introduced the Floquet-Bogoliubov transformation for a single bosonic mode, we are go-
ing to use this result for the discussion of the steady states of the time-periodically driven Tomonaga-
Luttinger liquid, following Ref. [104]. In Subsec. 4.7.1 the Floquet-Bogoliubov transformation is
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written in the notation of the Tomonaga-Luttinger liquid theory and the unitary transformation
found in Ref. [104] is presented. Subsection 4.7.2 contains the implications of the periodic driving
on the physics of the Tomonaga-Luttinger liquid. As prominent result the formation of a standing-
wave pattern is reported. We contextualize our result with the current literature and point out the
implications for ultracold gas experiments.

4.7.1. Floquet-Bogoliubov Solution and Transformation to Floquet Frame

The results of the Floquet-Bogoliubov transformation are used in order to characterize Floquet
steady state solutions in the periodically driven Tomonaga-Luttinger Liquid with parameters chosen
to describe the Lieb-Liniger model. In this setting, the coefficients A and B are proportional to
a wavenumber q as given by Eq. (4.17). Periodic time-dependence is described by time-periodic
parameters g2(t) and g4(t), as discussed in Sec. 4.1. Following Ref. [104] it is assumed that the
system is driven such that g2(t) = g4(t) varied sinusoidally

2g2(t) = 2g4(t) = ρ̄+ ρ cos(ωt). (4.102)

Note that −1/2 < g2(t) = g4(t) < 0 for the Lieb-Liniger model. Together with Eq. (4.17) this
constraint implies that A0 > 0 while A1 < 0, B(t) < 0. Since this case cannot be recasted with
the above shown figures, we will in the following show results for the periodically driven Tomonaga-
Luttinger liquid as a special case. Based on the knowledge of the previous sections, a Floquet-
Bogoliubov transformation for Hamiltonian (4.16) is found by

βq,±(t) = uq(t)bq,± ± vq(t)b†q,±, (4.103)

where uq,±(t) and vq,±(t) solve the Floquet-Bogoliubov equation (4.38) with A = Aq and B = ±Bq

as defined in Eq. (4.17). For both βq,± we find the same quasienergy εq. This allows to rotate the
basis

βq,L =
1√
2

(βq,+ + βq,−), βq,R =
1√
2

(βq,+ − βq,−). (4.104)

Using Eq. (4.15), the βq,L/R operators can be expressed in the form that is also found in Ref. [104]:

βq,L/R(t) = uq(t)bq,L/R + vq(t)b
†
q,R/L. (4.105)

The Floquet vacuum state of the mode q of Hamiltonian (4.14) can be calculated by |φq,0(t)〉 =
|φq,0,+(t)〉|φq,0,−(t)〉, where |φq,0,±(t)〉 is the vacuum state with respect to the βq,±(t) operators as
defined in Eq. (4.65). With this, the vacuum state reads

|φq,0(t)〉 =
eiAq(t)/~
uq(t)

exp

[
−vq(t)
uq(t)

b†q,Lb
†
q,R

]
|0〉, (4.106)

with bq,L|0〉 = bq,R|0〉 = 0 andAq(t) =
∫ t

0
dt′ [Aq(t

′)−(1/T )
∫ T

0
dt′′ Aq(t

′′)], and obeys βq,L/R|φq,0(t)〉 =
0. The corresponding quasienergy reads

E0 = ε− 1

T

∫ T

0

dt A(t). (4.107)
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For parameter regions where the Floquet vacuum state (4.106) exists, the whole spectrum is given
by the Floquet modes

|φq,n,m(t)〉 =
1√
n!m!

[
β†q,L(t)

]n [
β†q,R(t)

]m
|φq,0(t)〉, (4.108)

while the quasienergies are found by

εn,m = (n+m)ε+ E0, n,m ∈ N0. (4.109)

This shows that the Floquet-Bogoliubov transformation enables us to find steady state solutions in
a quantum many body setting.

This full solution of the Floquet-Bogoliubov transformation even allows to explicitly find a time-
dependent unitary transformation Uq,P(t) that transforms Hamiltonian (4.14) to the Floquet frame
in the sense of Eq. (2.3). A detailed discussion of the far-from trivial derivation of Uq,P(t) is given in
Refs. [104, 202], in the following we present the major results of this calculation. As a prerequisite
for writing down Uq,P(t), we give the Hamilton operator in terms of the generators of a SU(1,1)
algebra

Hq = ~vFq(1 + g4)2Jq,0 + ~vFg2q(Jq,+ + Jq,−), (4.110)

where an additional time-dependent constant is dropped in Eq. (4.110). The explicit form of the
generators of the SU(1,1) algebra is given by 2Jq,0 = b†q,Lbq,L + bq,Rb

†
q,R and Jq,+ = J†q,− = b†q,Lb

†
q,R

[203–205]. The transformation Uq,P(t) leads to an effective Hamiltonian in diagonal form

H̃q,eff = εq2Jq,0, (4.111)

which is a remarkable step [104, 202]. The explicit form of Uq,P(t) that achieves all of this is given
by [104]

Uq,P(t) = eiθq(r)Jq,0erq(t)(Jq,+−Jq,−)e−iφq(t)Jq,0 . (4.112)

The parameters θ(t), r(t), φ(t) of the transformation (4.112) are determined by the results of the
Floquet-Bogoliubov transformation [104,202]

uq(t) = ei[θq(t)−φq(t)]/2 cosh[rq(t)], (4.113a)
vq(t) = ei[φq(t)+θq(t)]/2 sinh[rq(t)]. (4.113b)

In combination with the analytic approach of Eq. (4.90) that is valid for the driving scheme eq.(4.102),
one is now able to find an analytical expression of the time-dependent transformation to Floquet
frame Uq,P(t) in a quantum many-body system. This is a key result, since it is far from trivial to
obtain such a transformation at all. We further emphasize that the deviation of Eq. (4.112) can be
done without going to the Floquet space [202]. Note that Uq,P(t) has not to be confused with the
time-evolution operator U(t, t′).

4.7.2. Results of the Floquet Analysis

Using the Floquet-Bogoliubov transformation we are able to analyze the possible Floquet steady
states of the time-periodically driven Tomonaga-Luttinger liquid. Figure 4.15 (a) shows the quasi-
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Figure 4.15.: (a) Real (blue) and imaginary (red) part of the quasienergy of the
Floquet-Bogoliubov particles for ρ̄ = −0.4 and ρ = 0.3. (b) Stability chart for
ρ̄ = −0.4, red areas mark the instability regions, white the stability regions.

energy of the Floquet-Bogoliubov particles in dependence of the dimensionless momenta vFq/(~ω).
The behavior is similar to Fig. 4.2. The quasienergy is real and shows an almost linear slope until it
reaches a instability region where it acquires a non-vanishing imaginary part. This shows that also
in the Floquet steady state solution of the periodically driven Luttinger Liquid instability regions
exist. In Fig. 4.15 (b) the stability chart of the harmonically driven Lieb Liniger model is shown
for ρ̄ = 0.4. Also here instability tongues run parallel to the y-axis, the thickness of each instability
region increases with ρ. This corresponds to the argument that the larger the driving strength the
more energy is introduced to the system which shows up in a stronger instability. The values where
the instability regions reach the x-axis are determined by condition (4.93). Applied to the concrete
setting of a periodically driven Tomonaga-Luttinger liquid this condition is written as

2
vFqn
ω

√
1 + ρ̄ = n, n ∈ N. (4.114)

Similar to the discussion of Eq. (4.93), Eq. (4.114) corresponds to the physical process of the para-
metric excitations of two bosons with energy ~vFq

√
1 + ρ̄. Here, both right and left movers are

excited. Eq. 4.114 allows to define the resonant wave vectors, at which the parametric resonance
occurs

qn = nω/(2vF

√
1 + ρ̄), (4.115)

Equation (4.115) shows that the resonant wave vector is proportional to the ratio of driving fre-
quency and Fermi velocity.

A more general driving scheme leads to similar results. For example, we consider a driving with the
second harmonic

2g2(t) = 2g4(t) = ρ̄+ ρ cos(ωt) + ρ2 cos(2ωt). (4.116)
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Figure 4.16.: (a) Real (blue) and imaginary (red) part of the quasienergy of the
Floquet-Bogoliubov particles for ρ̄ = −0.4, ρ = 0.3 and ρ2 = 0.1 (b) Stability chart
for ρ̄ = −0.4 and ρ2 = ρ/3, red areas mark the instability regions, white the stability
regions.

The quasienergies are shown in Fig. 4.16 (a), the behavior is similar to the harmonically driven case.
In Fig. 4.16 (b) the stability chart for ρ̄ = −0.4 and ρ2 = ρ/3 is displayed. Also here instability
regions are visible. This behavior is expected, since the occurrence of a parametric resonance in a
Floquet system is in analogy to the occurrence of a band gap in a band structure calculation [104].
Ref. [100] finds the band structure of a 1D cosine lattice in terms of Mathieu functions, in analogy
to the analytic solution for a special case of the Floquet Bogoliubov transformation. As for generic
space-periodic potentials band gaps are expected to occur, it is self-evident that the occurrence of
the instability regions in the Floquet-Bogoliubov transformation is also generic.

Next, we are interested in calculating the number of excitations by the expectation value

nq(t) = 〈φq,0(t)|b†q,L/Rbq,L/R|φq,0(t)〉. (4.117)

In Fig. 4.17 (a) the time average n̄q is shown for different values of the driving strength ρ. For
vFq/ω → 0 the corresponding static limit is recovered. Similar to Fig. 4.3, the expectation value
n̄q diverges in the instability regions. This is showing that the average number of excitations in the
Floquet steady state increases when approaching the instability regions. As shown in Sec. 4.6, a
finite lifetime of the original bosonic operators turns a divergence appearing in the average number of
excitations to an overwhelming maximum. In the Tomonaga-Luttinger liquid theory a finite lifetime
of the bosonic operators is related to damping due to additional higher order terms of the bosonic
operators [104,163]. These higher order terms can come in due to a more detailed description of the
underlying physical model that goes beyond Eq. (4.6). Thus the lifetime depends on microscopic
details of the considered model. Here, we do not account for all the microscopic details and introduce
in a pioneering calculation the lifetime similar to Eq. (4.98) as an imaginary part Im Aq = −i~/τq
that leads to a decay of the excitations, while τq is assumed to be inverse proportional to vFq. Further
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Figure 4.17.: Time-averaged number of excited states n̄q for ρ̄ = −0.4 with (a)
infinite boson lifetime, (b) with an finite lifetime of ~/τ0 = 105 vFq. The blue curve
corresponds to ρ = 0.05, the red to ρ = 0.15, the yellow to ρ = 0.25 and the purple
to ρ = 0.35.

calculations might take possible non-linearities of the theory into account [165,185] or elaborate the
microscopic description of the coupling to a reservoir [199]. In Fig. 4.17 (b) the results are shown
for a finite damping of ~/τq = 105 ~vFq. As expected, the divergences turn into dominating but
finite maxima. The results of section 4.6 directly apply to this case showing that the height of the
maxima can be tuned by the product ρτ0. We emphasize that by this we have managed to calculate
a Floquet steady state in an interacting quantum many-body system, which is a remarkable result.

In order to discuss the physical behavior of the driven Tomonaga-Luttinger Liquid it is important to
note that the description of the correlation by Hamiltonian (4.14) breaks down for large q [104]. This
motivates to define a cutoff qc, below which the correlations are given by the Tomonaga-Luttinger
Liquid [188]. Using a Fermi velocity that is rescaled by

√
1 + ρ̄ it is estimated in our case to

qc ≈ vFm
√

1 + ρ̄/2 [104,188].

For large driving frequencies all resonant wave vectors (4.115) lie above the cut-off qc, such that
in the physical relevant region of momentum space no parametric resonances occur. Since for q → 0
the static case is recovered within the Floquet-Bogoliubov approach, the famous asymptotic power
law correlations Eqns. (4.9) and (4.10) are again found. At finite distances, the Floquet-Bogoliubov
result differs from the static one, which will lead to corrections of the correlation functions.

If the driving frequency is lowered, multiple resonant wave vectors qn might lie below qc. In this case
the time-periodic drive leads to the parametric excitation of modes with resonant wave vectors qn.
The resonant wave vectors dominate the density-density correlation function, which shows a long

149



4. Floquet-Bogoliubov Steady States

range order of the form [104,202]

〈ρ(x)ρ(y)〉 ∝ cos[qn(x− y)]. (4.118)

This signals that the time-periodic drive induces standing density waves with resonant wave vectors
qn. This is a notably different behavior compared to the static case. The occurrence of a density
wave is a key result of this investigation since it demonstrates the effects of resonances in Floquet
physics and can be measurable in an ultracold gas experiment. In order to give actual numbers
the parameters of a one-dimensional 87Rb gas from Ref. [183] are considered, following Ref. [104].
With a density of ρ0 = 6.2 × 106/m, γ = mg/(~2ρ0) ≈ 0.6 and by driving the confinement with a
frequency of ω = 2 × π 500 Hz it follows that the wavelength of the standing wave corresponding
to the first resonant wave vector is λ1 = 2π/q1 ≈ 14 µm. Note that this physics is below the cutoff
of ωc = vF

√
1 + ρ̄qc ≈ 2π × 1.4 kHz. The standing density wave can be observed with common

experimental techniques [3].

We found that the time-periodic drive induces a standing density-wave pattern with wave vec-
tors that are determined by the condition of a parametric resonance. At this place we make an
insertion and discuss the literature on parametrical pattern formation in fluids. A special group of
a surface wave excitations of a fluid are the so called Faraday waves. The name goes back to an
analysis of M. Faraday himself in which a fluid in a receptacle is shaken in vertical direction [1]. As
a result, standing wave patterns that arise from parametric resonance have been observed on the
surface of the fluid. At this place we emphasize that the properties of a Faraday wave and a para-
metrically excited pattern in general, mainly depend on the properties of the fluid and the external
drive [6,206,207], while the density pattern oscillates with half the driving frequency [2,6,206–209].
This distinguishes the parametrically excited standing waves from resonantly excited eigenmodes,
e.g. the modes of a membrane, which oscillate with the same frequency as the drive. The wave
vector a of Faraday wave is determined by a condition of parametric resonance in the hydrodynamic
description of fluids [2, 6, 206, 208] and depends on the driving frequency. The pattern formation,
and especially the formation of Faraday waves, in a parametrically driven Bose-Einstein condensate
has been discussed in Refs. [76–78, 206] within the Gross-Pitaevskii mean field description. The
time dependence can be either introduced by a time-dependent potential or by making the inter-
particle interaction, that enters the the mean field description by a non-linear term, time dependent.
Ref. [206] discusses Faraday waves in a periodically modulated Bose-Einstein condensate by relating
the dynamics to a Mathieu-type equation, the wave vector of the density pattern is given by the
strongest instability. Ref. [2] observed the occurrence of Faraday waves in an ultracold gas exper-
iment with a Bose-Einstein condensate of 87Rb atoms. It was found that both the time-periodic
modulation of the transverse confinement and the oscillation of the transverse breathing mode leads
to the pattern formation in the longitudinal direction. Ref. [2] measured that the wavelength of the
pattern depends on the driving frequency.

In our research standing density waves are predicted if the driving frequency is below the cutoff
ωc. In accordance to the literature we find that the wavelength of these resonant waves is inverse
proportional to the driving frequency λ ∝ ω−1 and the generation of these density waves is related
to a parametric resonance that occurs in the instability regions. Thus, the standing density wave
patterns that we found in the driven Tomonaga-Luttinger Liquid have properties that are also found
for Faraday waves, see the discussion above. What makes our research special is the fact that the
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density wave pattern are induced intrinsically by the periodic modulation of interaction strength,
and no vibration of a receptacle is needed, as it is done for example in Faraday’s experiment [1].
Further, our result goes beyond the mean field descriptions, such as in Ref. [76], since we analyze
the density wave patterns in the Tomonaga-Luttinger liquid model, a field theory that is capable of
describing strongly correlated one-dimensional quantum many-body systems. Thus we are able to
analyze the parametric density wave excitations in strongly correlated quantum systems. This paves
the way for further investigations. Ref. [6] observed Faraday wave patterns in a one-dimensional ul-
tracold quantum gas with periodic modulation. If the frequency is lowered, the ultracold gas shows a
granulated density that cannot be described by a mean field theory. In our theory multiple resonant
wave vectors emerge if the frequency is lowered. A future analysis would clarify if the resulting real
space density distribution of our model fits to the grains observed in Ref. [6].

When lowering the driving frequency even further, more and more resonant wave vectors enter the
area in which the Tomonaga-Luttinger liquid describes the physics of the model. Ref. [210] found
parametric instabilities in a time-periodically driven Bose-Hubbard model and interprets them as
the initial stage of heating. Since in our model the parametric instabilities dominate the physics
for low driving frequencies, we predict that in this case the system will heat up and show a large
number of excitations.

Note that a trapping potential does not alter the physics much as long as the local density ap-
proximation is valid [104]. One prediction of the local density approximation is that the density
ρ0(x, t) decreases when leaving the center of the trapping potential [183,211]. As the Fermi velocity
vF = πρ0/m is proportional to the density and gives the characteristic energy scale of our system
we are able to reach the different regimes that are discussed above within a experimental setup. As
one goes nearer to the center of the trap, the lower is the rescaled driving frequency and the larger
the wavelength of a possible parametrically excited density wave.

4.8. Conclusion and Outlook

In this chapter we generalized the concept of the Bogoliubov transformation to periodically driven
Hamiltonians that are quadratic in bosonic operators. This is achieved by introducing time-dependent
parameters in the Bogoliubov transformation, which results in operators that describe Floquet-
Bogoliubov quasiparticles. Similar to the static case we are able to calculate the quasienergies of
these quasiparticles and the parameters of the transformation by an eigenvalue equation. It turns out
that two cases are distinguished: In the stability regions the quasienergy of the Floquet-Bogoliubov
particle is real and the full spectrum can be generated using the transformation. In the instability
regions the quasienergies become complex while the real part is pinned to integer multiples of half
the driving frequency. In this case no Floquet-Bogoliubov solution is possible. This fact is made
more visible when calculating the average number of excitations which diverges in the instability
regions and relates the instabilities to the parametric generation of pairs of bosons. This is the key
result, since it shows that the parametric resonance has a major implication to the physical behavior
of the system. Introducing a finite lifetime for the bosons, we are still able to find a Floquet vac-
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uum state and the above discussed divergences are regularized to finite but dominating peaks. This
is a remarkable result, it shows that a damped system has a finite response to the time-periodic drive.

When applying the theory to actual physical systems, it is of further research interest to discuss
an accurate microscopic description of the mechanisms that introduce the damping. Ref. [210] found
that in a periodically driven Bose-Hubbard system parametric resonances can be suppressed when
coupling it to a reservoir, such that a stable steady state can be reached. The coupling of a time-
independent Tomonaga-Luttinger liquid to a reservoir is discussed in Ref. [212]. It is of further
interest how the interplay between the periodic drive and the dissipative dynamics influences the
occurrence of parametric resonances and thus the properties of possible steady states of the Floquet
system in detail. Such a calculation must take into account fluctuating terms that come in due to
the microscopic description of the dissipation, such that the mathematical description might be-
come more involved. On the other hand, non-linearities in the description of the considered physical
system could also stabilize the motion [165]. A numerical investigation reveals that the solutions
of the classical Mathieu equation can be stabilized by introducing non-linear terms. Also in the
Tomonaga-Luttinger liquid theory higher order terms may appear which could stabilize the system.
In the Tomonaga-Luttinger liquid theory these non-linearities couple modes with different wavenum-
ber which makes the solution of a Hamiltonian including higher order terms much more involved
compared to the solution of a Hamiltonian that is quadratic in bosonic operators.

In Fig. 4.7 (b) we found that for a special driving scheme the instability regions contract to a
single point at a finite driving strength. There we expect the parametric resonances to be strongly,
or even completely, suppressed. It would be of interest to relate this results to the results of Ref. [83],
where with the use of an exact space-time mapping the complete suppression of heating in a peri-
odically driven quantum many-body system with a thoroughly chosen driving scheme is found.

Another way of future research is to generalize the Floquet-Bogoliubov transformation to a finite
number of bosonic modes and to find a similar transformation in the fermionic case. For fermions
we expect avoided crossings instead of parametric resonances. With a fermionic version of the
Floquet-Bogoliubov transformation the steady states of a periodically driven superconductor can be
investigated. Interesting physics, such as the Floquet engineering of a p-wave superconductor [213]
and topologically protected Floquet Majorana edge modes [214, 215] has been observed in these
models.

In order to demonstrate the physical properties of the Floquet steady state solutions, we applied
the Floquet-Bogoliubov transformation to a periodically driven Tomonaga-Luttinger liquid using
which the low energy excitations of a Lieb-Liniger model can be described. A finite lifetime in the
Tomonaga-Luttinger description enables us to find a Floquet steady state solution in a periodically
driven quantum many-body system, which is a remarkable result.

It turns out that the physical behavior of the periodically driven Lieb-Liniger model depends on
the proportion of the driving frequency and a cutoff frequency. The cutoff frequency defines an
energy scale below which the system can be described by the Tomonage-Luttinger Liquid theory. If
the driving frequency is larger than the cutoff, no parametric resonances occur and the asymptotic
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limit of the correlation functions is given by the corresponding static case. If the driving frequency
is lower than the cutoff, parametric resonances occur. In this regime the correlation functions are
given by standing density waves with resonant wave vectors that are determined by the condition
of a parametric resonance. This is the key result of this chapter, since the occurrence of the density
wave is directly related to the results of the Floquet analysis. This result indeed shows that the
parametric resonances have a intriguing implication on the physics of the system.
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5. Dissipation Engineered
Direction-Dependent Filter for
Hamiltonian Quantum Ratchets

In this chapter we combine the one-dimensional setting from Ch. 4 with a scattering problem, as
discussed for the 3D case in Ch. 3. The goal is to design a time-dependent, dissipative impurity that
acts as a direction-dependent filter. The special feature of the model of this chapter is that the bulk
part of the system is not static, as in Ch. 3, but is a Hamiltonian ratchet that is driven with the
same frequency as the impurity.

The ratchet effect enables to convert an unbiased fluctuating force into directed motion [216–220].
A basis for the ratchet effect to occur is the breaking of certain space- and time-reversal symme-
tries [219, 221–224]. A commonplace example of this effect is the ratchet and pawl. As sketched
in Fig. 5.1, the pawl allows to rotate a gear in forward, i.e. mathematical positive, direction but
prevents rotary motion in backward direction. The asymmetric shape of the gear and the mounting
of the pawl breaks the relevant symmetries. The discussion of the ratchet effect goes back to the
work of Smoluchowski [225] and was later popularized by Feynman [226]. In recent literature, the
ratchet effect has been proposed at the nanoscale as e.g. Brownian motors or nanomachines and has
been observed in various experimental settings: A prominent example is the biological cell motion,
where Ref. [227] demonstrates the rectification of motion by asymmetrically shaped micropatterns.
Light-induced unidirectional rotation of molecules was discussed in Ref. [228]. Other realizations
of ratchets are made in semiconductor heterostructures [229], terahertz irradiated graphene [217],
waveguide arrays [98,230,231] and ultracold quantum gases [219,224,232].

There is a differentiation between classical and quantum ratchets [218,233,234]. A prominent effect
appearing in quantum ratchets is the reversal of the directed current due to quantum tunneling [233].
Another differentiation is made in dissipative and Hamiltonian ratchets. Dissipative ratchets operate
with thermal fluctuations or quantum fluctuations or frictional force [106, 218, 221, 234]. In dissipa-
tive quantum ratchets the fluctuations are introduced by coupling the system to a bath [218, 234].
In contrast, Hamiltonian ratchets work in the absence of any dissipative or stochastic force [219,235]
and rely on the coherence of quantum transport. An example of an Hamiltonian ratchet is the Thou-
less pump [236], where a the parameters of a special lattice Hamiltonian are driven adiabatically
on a cycle. The drive breaks the relevant space-time symmetries and leads to a quantized current
which is related to a nontrivial topological structure. In contrast, there are Hamiltonian ratchets
which operate at non-adiabatic driving frequencies, where the Hamiltonian preserves all relevant
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Figure 5.1.: Sketch of ratchet and pawl. A gear (black) is mounted on a base
(grey). The pawl (green) is spring-loaded (orange) and only allows the rotation of
the gear in forward direction (indicated by a red arrow).

symmetries and, in principle, allows for transport in both directions [219, 222, 223, 232, 234]. In this
case, directed transport depends sensitively on the initial state. If the state is chosen such that
mostly Bloch states with positive or negative group velocity are excited, a finite current is possible
in this systems.

Our research, which is presented in Ref. [216], focuses on a Hamiltonian quantum ratchet that
is inspired by the conditions of a waveguide experiment. Thus, at first an introduction to waveguide
experiments is done in Sec. 5.1. In Sec. 5.2 the ratchet scheme, which is mathematically described by
a Su-Schrieffer-Heeger model with time-periodic coupling constants, is introduced. The band struc-
ture of the model and its transport properties are investigated in collaboration with Z. Fedorova from
the University of Bonn. In contrast to Thouless pumping, in our ratchet model quantized transport
is possible at non-adiabatic conditions, i.e. at a finite driving period, which is much easier to realize
in an experiment [216]. We will find out that the driving frequencies at which quantized transport
is possible, are given by a resonance condition. This will demonstrate the importance of resonances
to this chapter. Ref. [98] observed directed transport at non-adiabatic driving frequencies in a setup
that is described by a non-hermitian ratchet model. However, the non-hermiticity introduces damp-
ing, such that the particle transport decays after a few driving periods. In our Hamiltonian ratchet
model no damping is present. This leads to transport over longer distances compared to Ref. [98].
But also our Hamiltonian ratchet model suffers from a disadvantage: The directed transport strongly
depends on the initial state. If it is not possible to choose the initial state, directed transport might
not be observed. In order to circumvent this issue a direction-dependent filter, which is based on the
properties of the waveguide experiment of Z. Fedorova from the University of Bonn, is introduced.
The filter is realized as a dissipative, time-dependent impurity that damps out particles moving in
one direction while it does not affect the current in the other direction. Section 5.3 is devoted to
the introduction of the direction-dependent filter. The theoretical investigation is made with the
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Floquet S-matrix theory, which is formulated in Sec. 5.4 for the relevant case of a non-hermitian,
time-periodic impurity operator. The analysis of the direction-dependent filter is provided in Sec. 5.5.
At last, the results of the waveguide experiment, conducted by Z. Fedorova from the university of
Bonn, are presented in Sec. 5.6. The experiment successfully proves the working principle of both
ratchet and direction-dependent filter.

5.1. Introduction to Waveguide Experiments

The introduction to waveguide experiments is placed at first, since the conditions of such an ex-
periment motivate the choice of the lattice model of a ratchet that will be investigated throughout
this chapter. Subsec. 5.1.1 describes how Schrödinger wave mechanics is simulated with optical
waveguide arrays. The central result is an equation that relates the electric field distribution in the
arrays to a tight-binding description, a well-know concept of solid state physics. In Subsec. 5.1.2 the
experimental realization of the Hamiltonian ratchet and the direction-dependent filter in coupled
dielectric-loaded surface plasmon-polariton waveguide array (DLSPPWs) is presented. A more de-
tailed discussion is found in Ref. [237]. The experiment was conducted and analyzed by Z. Fedorova
from the University of Bonn.

5.1.1. Simulation of Schrödinger Equation with Waveguide Arrays

The reader is introduced in the working principle of waveguide arrays as a simulator for the time-
dependent Schrödinger equation. A waveguide is a structure that guides electromagnetic waves along
a designated direction. For the sake of simplicity we focus on dielectric waveguides which operate
at optical frequencies. As sketched in Fig. 5.2, they are made up of a core with a material having
a higher refractive index than the material surrounding it [85]. This choice of the refractive indices
induces total reflection on the interface, as a result the light is guided inside the waveguide along
propagation direction, which corresponds to z direction in Fig. 5.2. The transversal profile of the
waveguide lays in the x− y plane. Light propagation along z direction is described by the paraxial
Helmholtz equation [85,86,238]

i
∂ψ(x, y, z)

∂z
= − 1

2keff

[(
∂2

∂x2
+

∂2

∂y2

)
+ k2

eff

n2(x, y)− n2
eff

n2
eff

]
ψ(x, y, z). (5.1)

Here n(x, y) is the refractive index profile of the waveguide and ψ(x, y, t) is the envelope of the electric
field distribution E(x, y, z, t) = ψ(x, y, z)ei(keffz−ωt) propagating in the waveguide. The material
surrounding the waveguide has a refractive index of n0, so that propagation inside the waveguide
is with a wave vector of keff = k0neff , where the effective refractive index neff obeys n0 < neff , for
details see Ref. [85]. Here k0 denotes the wave vector in vacuum. The paraxial Helmholtz equation
(5.1) is in close analogy to the Schrödinger equation of a single particle

i
∂

∂t
ψ(x, y, z) =

[
− 1

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y)

]
ψ(x, y, z). (5.2)
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Figure 5.2.: Left: Sketch of the transverse profile of a waveguide. The core mate-
rial has the refractive index nwg while its surrounding is made up of a material with
refractive index n0. In the lower right corner a coordinate system is shown, the z
direction points into the paper plane. Top right: Array of three coupled waveguides
operating in the single mode regime. Bottom right: Tight-binding model corre-
sponding to this configuration. The mode profile is sketched by black curves, each
mode populated with the amplitude ai. The non-vanishing overlap of the modes can
induce nearest-neighbor coupling J in the tight-binding description.

The propagation distance z in a waveguide experiment corresponds to time in the Schrödinger
equation, the mass is given by m = keff and the single particle potential corresponds to

V (x, y) =
keff

2

n2
eff − n(x, y)2

n2
eff

. (5.3)

For example, the potential corresponding to Fig. 5.2 is a box potential that has the value of
V (x, y) = keff

2

n2
0−n2

wg

n2
0

inside the waveguide profile while it is zero outside. Now we come to the
important point to make: The analogy between Schrödinger equation (5.2) and paraxial Helmholtz
equation (5.1) allows to simulate single particle quantum dynamics with waveguides. This is seen
by the fact that the propagation of light along the z direction corresponds to the time-evolution of
a quantum state. In analogy to eigenstates in quantum mechanics, the eigenmodes of the waveg-
uide consist of a field distribution that is up to a linear phase evolution constant along the z direction.

More interesting than a single waveguide is an array of coupled waveguides, as sketched in Fig. 5.2.
In the following each waveguide is assumed to operate in the single mode regime, where aj denotes
the amplitude of the mode in the jth waveguide. Similar to the tight-binding method in solid state
physics a lattice Schrödinger equation for the aj can be derived [85,237]:

i
daj
dz

= Jj,j−1aj−1 + Jj,j+1aj+1 + Vjaj (5.4)

In Eq. (5.4) Jj,l denotes the coupling constant between the waveguides j and l, where Jj,l = J∗l,j.
The coupling constants are determined by the size of the overlap of the eigenmodes in the two neigh-
boring waveguides and the strength of the coupling constants decreases with the distance between
two waveguides [85, 237]. In Eq. (5.4) we assumed that only the nearest neighbor coupling is non
vanishing. On each waveguide there can be an additional local potential Vj, which can be tuned by
the value of the refractive index of the waveguide core and the cross section of the waveguide [85].
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Figure 5.3.: Figure created by Z. Fedorova from the University of Bonn and pub-
lished in [216]. (a) sketch of a plasmon-polariton waveguide array with the dissipative
impurity on the central waveguides. Relevant parameters are visualized, the direc-
tion with high transmission is marked by a green array, the one with low by a red
arrow. (b) scanning electron micrograph of a sample. Input A and B are marked
by red boxes, blue dotted lines mark the dissipative region. The top right corner
provides a magnified view on the chromium stripe that induces dissipation in the
experiment.

Floquet systems can be realized by changing the configuration of the waveguides periodically in
propagation distance z [85, 216]. For example the location of the waveguides can be shifted sinu-
soidally along z direction. A periodic z dependence of the waveguide configuration leads in Eq. (5.4)
to model parameters that depend periodically on z, Jj,l → Jj,l(z), Vj → Vj(z) that induce Floquet
dynamics.

5.1.2. Surface Plasmon-Polariton Waveguide Array Experiment

Surface plasmon polaritons are the collective oscillatory excitation of electromagnetic field and con-
ducting electrons at the interface of a dielectric and a metal [237]. As sketched in Fig. 5.3, plasmon
polaritons can be guided in waveguide structures. The samples fabricated by Z. Fedorova from the
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University of Bonn consist of a glass substrate with a silver layer on top. The waveguides are made
up of the dielectric material poly-methyl-methylacrylate and have a higher refractive index than the
surrounding air. This leads to a confinement of the surface plasmon polaritons to the waveguides
similar to the case of dielectric waveguides discussed above [237]. The waveguides are designed
such that they operate in the single mode regime [216, 237]. An array of such plasmon-polariton
waveguides simulates a tight-binding lattice as in Eq. (5.4) [216]. As a measurement technique a
method called leakage radiation microscopy is applied [237]. It obtains the full intensity distribution
of the surface plasmon polaritons in real or momentum space, for details see Refs. [216, 237]. In
addition, the output intensity of surface plasmon polaritons that traveled through the sample can
be measured [216].

5.2. Hamiltonian Quantum Ratchet

Based on the experimental conditions that are discussed above, we introduce a Hamiltonian quan-
tum ratchet that is given by a periodically driven Su-Schrieffer-Heeger model (SSH model) in Sub-
sec. 5.2.1. It is examined how a time-periodic modulation of the coupling constants induces directed
motion. Since the time-dependence of the coupling constants, that are given by the conditions of
the waveguide experiment, leads to a rather involved theoretical discussion, we introduce a second
driving scheme that is much simpler to handle mathematically, but still grasps the relevant physics.
We first stick to this second driving scheme, for which we find a resonance condition that calculates
the driving frequencies at which ratchet transport with the velocity of one unit cell per driving
period is possible. In Subsec. 5.2.2 the Floquet-Bloch theory is introduced, using which quasienergy
band structures are calculated in order to further characterize the transport properties of the ratchet
model. A symmetry discussion is done in Subsec. 5.2.3. With the knowledge of the Floquet-Bloch
theory and the symmetry discussion the transport rectification is analyzed in Subsec. 5.2.4, where we
report that transport with the velocity of one unit cell per driving period is related to the closing of
the bulk gap. Subsec. 5.2.5 finds a condition for the closing of the bulk gap that is valid for a whole
class of driving schemes of the coupling constants. In particular, this condition proves that transport
with the velocity of one unit cell per driving period is also possible in the experimentally motivated
driving scheme. The closed bulk gap is further related to a nontrivial topology. In Subsec. 5.2.6 we
apply all this knowledge to the discussion of the ratchet model with the experimentally motivated
driving scheme of the coupling constants.

5.2.1. Lattice Model

The aim is to motivate a lattice model that describes the conditions of the experimental sample shown
in Fig. 5.3, where the waveguides are periodically curved in z. This periodic modulation mimics
Floquet dynamics, since the nearest neighbor coupling constants of the surface plasmon-polariton
waveguide experiment behave as

J(z) ∝ e−ad(z), (5.5)
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Figure 5.4.: (a) Sketch of the SSH model with time-periodic coupling constants
Ji(t), i = 1, 2, the unit cells are labeled by j. (b) Coupling constants J1(t) (green)
and J2(t) (purple) for the disconnected dimer model (dashed) and the experimentally
motivated scheme (solid) with the parameters J = J0, t1 = 0.15 T , δt = 0.2 T and
λ = 2.11.

where d(z) is the z dependent center-to-center distance of neighboring waveguides [237] and a is a
constant. As sketched in Fig. 5.3, neighboring waveguides are modulated out of phase. As a result,
the configuration of Fig. 5.3 is described by a lattice model with a bipartite unit cell and staggered
coupling constants between the lattice sites, which is known as SSH-model. The model is visualized
in Fig. 5.4 (a) and described by the following Hamiltonian [239]:

Hbulk(t) =
∑
j

J1(t)c†j,Acj,B + J2(t)c†j,Bcj+1,A + h.c. . (5.6)

In Eq. (5.6), c†j,γ / cj,γ, γ = A,B are the creation / annihilation operators for site γ in unit cell j
and h.c. denotes the hermitian conjugate. Further, the z-dependence is replaced in Eq. (5.6) by a
time-dependence due to the analogy between Schrödinger equation (5.2) and the paraxial Helmholtz
equation (5.1).

The antipodal variation of the waveguides changes the center-to-center distance d(z) sinusoidally.
This leads in combination with Eq. (5.5) to the concrete form of the coupling constants that describes
the waveguide experiment

J1(t) = J0e
−λ[1−sin(ωt)], J2(t) = J1(t− T/2). (5.7)

The variable J0 quantifies the maximum while the parameter λ = 2.11 is determined experimen-
tally [216]. The hopping amplitudes Ji(t), i = 1, 2 are time-periodic with period T = 2π/ω. As
shown in Fig. 5.4 (b), it holds that J1(t) > J2(t) in the first half period, while the situation is
inverted in the second half. Note, that there is no additional on site potential Vj in spite of the
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periodic bending of the waveguides [216].

Throughout this chapter, the experimentally motivated driving scheme Eq. (5.7) will lead to equa-
tions that cannot be solved analytically. This is due to the rather involved mathematical expression
in Eq. (5.7). The goal is therefore to investigate Hamiltonian (5.6) with coupling constants that
have a much simpler time-dependence. This is achieved by assuming a step-function-like behavior
which leads to the disconnected dimer driving scheme

J1(t) =

{
J, t ∈ ∪n∈Z[t1, t1 + δt[+nT

0, otherwise
, (5.8a)

J2(t) =

{
J, t ∈ ∪n∈Z[t1, t1 + δt[+T/2 + nT

0, otherwise
. (5.8b)

Here, J parameterizes the strength of the coupling, the other parameters require δt > 0 and
t1 + δt < T/2. The coupling constants defined via Eq. (5.8) are visualized by the dashed lines in
Fig. 5.4 (b) which is showing their step-function like behavior that mimics the dynamics of Eq. (5.7).
In the first half of the period there is a time interval where J1(t) differs from zero, while in the second
half J2(t) is non zero for a certain time period. As the name "disconnected dimer model" suggests,
the driving scheme (5.8) couples maximally two lattice sites at once, such that the lattice is made up
of either uncoupled single sites or disconnected dimers. Note that the coupling constants as defined
in Eq. (5.8) are time-periodic with period T .

Both driving schemes Eq. (5.7) and (5.8) are designed to construct a Hamiltonian ratchet. In the
following, we introduce the working principle of the ratchet model based on a discussion in the discon-
nected dimer scheme (5.8). For a single particle wave function |ψ(t)〉 =

∑
j(ψ

A
j (t)c†j,A +ψB

j (t)c†j,B)|0〉
the Schrödinger equation reads

i~∂tψA
j (t) = J1(t)ψB

j (t) + J2(t)ψB
j−1(t), (5.9a)

i~∂tψB
j (t) = J1(t)ψA

j (t) + J2(t)ψA
j+1(t). (5.9b)

As initial condition for the ratchet a single site of sublattice A is excited

ψγj (t = 0) = δγ,Aδj,l, (5.10)

with l ∈ Z. This configuration can be reached in the waveguide experiment, where a single waveguide
is excited by shining a laser beam onto a grating coupler, for details see Ref. [216]. Now we take a
look on the dynamics. For 0 < t < t1 nothing happens, as there is no coupling between the sites. If
t1 < t < t1 + δt, the site labeled by (l,A) couples via J1(t) to site (l,B). The Schrödinger equation
(5.9) reads for t1 < t < t1 + δt:

i~∂tψA
j (t) = JψB

j (t), (5.11a)

i~∂tψB
j (t) = JψA

j (t). (5.11b)

Equation (5.11) describes a static two-level system, whose solution with initial conditions (5.10)
performs Rabi oscillations between the two sublattices

ψA
l (t) = cos[J(t− t1)/~], (5.12a)
ψB
l (t) = −i sin[J(t− t1)/~]. (5.12b)
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(a) (b)

Figure 5.5.: Simulation of a right-moving (a) and left-moving state (b) of the
SSH-ratchet model with the disconnected dimer driving scheme with parameters
δt = 0.2T , J = ~π/(2δt), such that condition Eq. (5.13) is fulfilled.

Now we come to the key effect that is responsible for the ratchet transport. If the product Jδt is
chosen such that the cosine is one ans the sine vanishes, the wave function can be fully transferred
from sublattice A to B. The condition for that to occur reads

Jδt

~
= π/2 + nπ, n ∈ N0. (5.13)

Equation (5.13) can be seen as a resonance condition, where the periodic drive is in resonance with
the frequency of the Rabi oscillations. For the following discussion it is assumed that condition
(5.13) is met. In the interval t2 < t < t2 + δt the coupling constant J2(t) is nonzero, connecting sites
(l,B) and (l + 1,A). As J2(t) = J1(t − T/2), the wave function is coherently transferred back to
sublattice A, but moved one unit cell to the right

ψγj (t = T ) = δγ,Aδj,l+1. (5.14)

Equation (5.14) prominently shows the working principle of the ratchet, as directed transport is
possible with the velocity of one unit cell per driving period. Since it will turn out that this is the
largest transport possible in this particular ratchet model, and further that the transport is disper-
sionless, we refer to this as the case of ideal transport.

In Figure 5.5 (a) the discussed directed transport is visualized, a quantum particle is transported
dispersionless with a positive group velocity. What happens if initially a lattice site on sublattice B
is excited? This is shown in Fig. 5.5 (b). Here dispersionless transport with the velocity of one unit
cell per driving period is possible in negative direction. This signals that the direction of transport
can be chosen by the initial conditions.

The qualitative behavior of the ratchet model significantly depends on the details of the periodic
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driving. As prominent case, the parameters can also be tuned such that in Eq. (5.12) the cosine
vanishes and the sine equals one. In this case the condition

Jδt/~ = nπ, n ∈ N (5.15)

holds, the state performs full Rabi oscillations between the sublattices during the time intervals of
active coupling constants. As a result, the state resides after one driving period at the same site as
it was before

ψγj (t = T ) = δγ,Aδj,l. (5.16)

Here no transport is possible. This high tunability of the transport properties will turn out as the
key feature of the SSH ratchet model.

Conditions (5.13) and (5.15) can be solved for the driving frequency in order to predict the fre-
quencies ωid

n / ωab
n where transport is ideal / absent:

~ωid
n =

4Jδξ

1 + 2n
, n ∈ N0, (5.17a)

~ωab
n =

4Jδξ

2 + 2n
, n ∈ N0, (5.17b)

with δξ = δt/T . Eqns. (5.17) are of central importance. They exactly determine the driving fre-
quencies at which the ratchet dynamics is most interesting, e.g. where the ideal transport shown
in Fig. 5.5 is possible. The frequencies defined in Eq. (5.17) solely depend on the product of the
coupling strength and the fraction of the driving period where the hopping is active. For n→∞ the
frequencies of Eq. (5.17) converge to zero and become more dense, while neither ideal transport nor
absence of transport is possible for ω > ωid

0 . Eqns. (5.17) are seen as resonance conditions, where
the driving frequency is on resonance with the Rabi oscillation between the sublattices and thus
demonstrate the prominent impact of resonant driving.

5.2.2. Floquet-Bloch Analysis

Floquet-Bloch Theory

For time-periodic quantum systems Floquet theory can be applied in order to find eingenfunctions in
terms of Floquet states. Similarly, for spatially periodic Hamiltonians the solution is given by Bloch
waves [240]. If a Hamiltonian is both periodic in space and time H(r, t) = H(r+ a, t) = H(r, t+T ),
with a as the lattice constant, the combination of Floquet and Bloch theory ensures the existence
of the so-called Floquet-Bloch states [100,241]:

ψk,α,m(r, t) = ei(kr−εk,α,mt/~)φk,α,m(r, t). (5.18)

164



5.2. Hamiltonian Quantum Ratchet

The function φ(k, α,m) is periodic in space and time, i.e φk,α,m(r, t) = φk,α,m(r+ a, t) = φk,α,m(r, t+
T ). Here k ∈ [−π, π[ labels the quasimomentum in the first Brillouin zone, α the Floquet band and
m the Floquet Brillouin zone, cf. Ch. 2. In the case of the lattice model given by Eq. (5.6), the
Floquet-Bloch states are found by the following procedure: We start by defining the operators ψj
by

ψj =

(
cj,A
cj,B

)
. (5.19)

With Eq. (5.19) Hamiltonian (5.6) is expressed as

Hbulk(t) =
∑
j

ψ†j

(
0 J1(t)

J1(t) 0

)
ψj + ψ†j

(
0 0

J2(t) 0

)
ψj+1 + ψ†j+1

(
0 J2(t)
0 0

)
ψj. (5.20)

Equation (5.20) expresses the ratchet model as a tight-binding model with the nearest neighbor
hopping only, but has a matrix valued internal structure that corresponds to the structure of the
unit cells. Hamiltonian (5.20) can be brought to Fourier representation by the transformation

ψk =
1√
N0

∑
j

e−ikjψj, (5.21)

with N0 being the number of unit cells. Note that with the definition of the Fourier transform
in Eq. (5.21) we choose the units such that the length of the unit cell is set to one. The Fourier
representation of Hamiltonian (5.20) reads

Hbulk(t) =
∑
k

ψ†kHk(t)ψk, (5.22)

where the time-periodic Bloch Hamiltonian is given by

Hk(t) =

(
0 J1(t) + J2(t)e−ik

J1(t) + J2(t)eik 0

)
. (5.23)

Similar to the discussion of static lattice Hamiltonians, our problem becomes diagonal in quasi-
momentum k. The Floquet-Bloch states are found by solving the Floquet equation related to
Eq. (5.23):

(Ĥk − i~∂̂t)|φk,α,m〉〉 = εk,α,m|φk,α,m〉〉. (5.24)

Here the Floquet-Bloch modes |φk,α,m〉〉 and the operators are written in the abstract Floquet rep-
resentation discussed in Ch. 2, e.g. (t|〈r|φk,α,m〉〉 = φk,α,m(r, t). The quasienergies εk,α,m define a
bandstructure in Floquet space and allow for a systematic analysis. Since the model (5.6) has a
two-site unit cell, there are two quasienergy bands in each Floquet-Brillouin zone. If possible, the
quasienergy bands are labeled such that the band with α = 1 corresponds to states with positive
group velocity, while α = 2 is related to a negative group velocity. Eq. (5.24) is solved numeri-
cally by a truncation to an eigenvalue equation of a finite size, following the method described in
Subsec. 2.2.1.
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Figure 5.6.: Quasienergy band structure of the disconnected dimer model with
δt = T/4 and (a) ~ω = J , (b) ~ω = J/2, (c) ~ω = 4J/5, calculated by numerically
solving Eq. (5.24). The bands with positive group velocity is marked in blue, the
ones with negative in red and the bands with vanishing group velocity in black.

Floquet-Bloch Analysis of the Disconnected Dimer Model

We perform a systematic analysis of the quasienergy bands of the driven SSH ratchet model (5.6)
in the case of the disconnected dimer driving scheme Eq. (5.8). Figure 5.6 shows that the form of
the band structure significantly depends on the driving frequency ω. This enables to tune the bands
from a perfect linear with a group velocity of one unit cell per driving period to completely flat. In
the following the understanding of this high tunability is deepened by analytical arguments.

Let us start with the perfectly linear bands with finite group velocity shown in Fig. 5.6 (a), where
the driving frequency is chosen such that condition (5.17a) is met. In this case the band structure is
found analytically by calculating the time evolution of a state |ψk(t)〉 =

∑
γ=A,B ψk,γ(t)c

†
k,γ|0〉 with

the Bloch Hamiltonian (5.23) in Fourier space. As initial condition ψk,γ(t = 0) = δγ,A is chosen. It
turns out that besides a Rabi oscillation Hk(t) induces a momentum-dependent phase in the time
evolved state. After one driving period t the state reproduces itself up to a phase factor

ψk,γ(t = T ) = δγ,A × (−1)e−ik, (5.25)

a behavior that Floquet states are known for, cf. Eq. (2.7). Comparing Eq. (5.25) to Eq. (2.12), the
quasienergy band is found to be

εk,α=1,m/~ =
w

2π
k − ω

2
+mω, m ∈ Z. (5.26)

Equation (5.26) displays the perfectly linear slope of the quasienergy band mathematically. The
group velocity is defined by

vk,α =
1

~
∂εk,α,m
∂k

. (5.27)

The Floquet-Bloch states in the band with α = 1 have a positive group velocity and thus are right
movers. With the band structure of Eq. (5.26) the directed transport shown in Fig. 5.5 can be
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explained on a more formal level. A Fourier analysis shows that the excitation of a single lattice
site such as in Eq. (5.10) coincides to an uniformly populated right moving band. The velocity of
the wave packet is given by the average over the first Brillouin zone v̄α = 1/(2π)

∫ π
−π dkvk,α. With

Eq. (5.26) we have

v̄1 =
1

T
. (5.28)

This shows that the averaged group velocity v̄1 is positive and that the state moves at the speed
of one unit cell per driving period, the same we found out in the real space discussion of Subsec. 5.2.1.

A similar calculation finds that a state with ψk,γ(t = 0) = δγ,B corresponds to a Floquet-Bloch
state with the quasienergy band

εk,α=2,m/~ = − w

2π
k +

ω

2
+mω, m ∈ Z, (5.29)

where the direction of transport is exactly inverted. Here the linear slope is negative and the states
are left movers.

In Fig. 5.6 (b) the driving frequency is lowered to the half of Fig. 5.6 (a). In this case the cor-
responding quasienergy bands are flat

εk,α,m/~ = mω, (5.30)

and transport is absent.

In Fig. 5.6 (c) the band structure is calculated numerically for a driving frequency that does not
meet Eqns. (5.17). The bands are neither perfectly linear nor completely flat, but are curved with a
finite band gap at k = 0. Phenomenologically, the physical cause of this gap can be made visible by
the time-evolution of the states in real space. If condition Eq. (5.15) is not met, the Rabi oscillation
of the state is such that both sublattices are populated. As a result, a portion of the state travels to
the right, while another portion is transported to the left. If this picture is transferred into Fourier
space, it corresponds to a coupling of left and right moving Floquet-Bloch states which is in turn
related to a hybridization of the quasienergy bands and a finite band gap.

In the following a deeper understanding of this effect is provided. Instead of changing the driv-
ing frequency away from Eq. (5.17a), an increase or decrease of the coupling constant J is assumed.
The Hamiltonian is written as H(t) = HIdeal(t) + HPert(t). The explicit form of both HIdeal(t) and
HPert(t) is given by the SSH ratchet model (5.20) with the disconnected dimer driving scheme (5.8)
as coupling constant. The values of δt and t1 are chosen to be the same for both HIdeal(t) and
HPert(t), only the value of the coupling constants J differs. The value of J of HIdeal(t) is tuned in
such a way that the transport is ideal, while HPert(t) is assumed to be a small perturbation. The
Floquet modes solving the Floquet equation of the unperturbed Hamiltonian HIdeal(t) are denoted as
|φid
k,α,m〉〉, their mathematical form can be found with the earlier discussion in this section. In order

to calculate the band structure of the total Hamiltonian H(t) = HIdeal(t) +HPert(t) an expansion in
the unperturbed basis |φid

k,α,m〉〉 is performed in Floquet space:

〈〈φid
k,α,m|Ĥ|φid

k,β,n〉〉 = εk,α,mδα,βδn,m + 〈〈φid
k,α,m|ĤPert|φid

k,β,n〉〉. (5.31)
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Since the ĤPert is periodic in real space, the matrix elements of ĤPert are diagonal in quasimomentum
k. A full solution of Eq. (5.31) is possible, but rather exhaustive to elaborate. At weak driving,
however, only the two quasienergy bands that come close to each other are relevant. In this limit it
can be decided whether there is an avoided crossing or not by investigating the matrix elements of
the perturbative part in Eq. (5.31). The relevant matrix element is the one that couples two crossing
bands with different group velocity. By calculating its size we can explain, why there is an avoided
crossing at k = 0 and a crossing at k = ±π. The matrix element is explicitly given by the integral

〈〈φid
k,α=1,m|ĤPert|φid

k,β=2,n〉〉 ∝ (1+e−ik)

∫ t1+δt

t1

dt sin2[J(t−t1)/~]+(1+eik)

∫ t1+δt

t1

dt cos2[J(t−t1)/~],

(5.32)
where we inserted the explicit form of the Floquet-Bloch states, where n and m are chosen such
that the respective crossing / avoided crossing is reached. In Eq. (5.32) it is directly visible that for
k = 0 the matrix element 〈〈φid

k,α,m|ĤPert|φid
k,β,n〉〉 is finite while it vanishes for k = π. This behavior

explains mathematically why there is a crossing of the quasienergy bands at k = 0 and an avoided
crossing at k = π.

5.2.3. Discrete Symmetries of the Ratchet Model

Before a detailed analysis the transport rectification is given, the discrete symmetries of our model
are elaborated for a deeper understanding of the ratchet and the directional filter, that will be
proposed in a later section. The well-known Altland-Zirnbauer symmetry classes [242, 243] can be
generalized to time-periodically driven single particle Hamiltonians [244]. First, discrete symmetries
are defined in terms of Floquet-Bloch Hamiltonians and then the implications of these symmetries
on the quasienergy spectrum and the Floquet states are pointed out. Finally, the symmetries in our
SSH ratchet model Eq. (5.20) are discussed.

In the following particle-hole, time-reversal, and chiral symmetry are defined for Floquet-Bloch
Hamiltonians Hk(t) in d spatial dimensions k ∈ Rd, d ∈ N0 [244].

Particle-Hole Symmetry

If particle-hole symmetry is present, there exists an operator P = KP , with K as the complex
conjugation and P as a unitary operator, which acts on the Bloch-Hamiltonian as follows [244]

PHk(t)P
−1 = −H∗−k(t). (5.33)

Here ∗ denotes the complex conjugation. What are the consequences of Eq. (5.33) on the quasiener-
gies and the Floquet modes? In order to figure this out the Floquet equation is investigated(

PHk(t)P
−1 − i~ ∂

∂t

)
P |φk(t)〉 = εkP |φk(t)〉, (5.34)
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where we apply the transformation P from the left. A possible band index α as well as the Floquet
Brillouin zone index m are dropped. The Floquet-Bloch Hamiltonian can be transformed with
Eq. (5.33), such that we are left with the Floquet equation at −k:(

H−k(t)− i~
∂

∂t

)
(P |φk(t)〉)∗ = −εk(P |φk(t)〉)∗. (5.35)

With Eq. (5.35) the following relation for the quasienergies are made

ε−k = −εk.

This says that in the presence of particle-hole symmetry the quasienergy bands are anti-symmetric
with respect to k. The Floquet modes fulfill

|φ−k(t)〉 = (P |φk(t)〉)∗ (5.36)

in the presence of particle-hole symmetry. Eq. (5.36) can be written in terms of Fourier components
as

|φ(n)
k 〉 = (P |φ(−n)

k 〉)∗. (5.37)

Time-Reversal Symmetry

If the Floquet-Bloch Hamiltonian is time-reversal symmetric, there exists an operator T = Kθ,
where θ is unitary, and a number ξ ∈ R such that [244]

θHk(ξT + t)θ−1 = H∗−k(ξT − t). (5.38)

Similar to the considerations for the particle-hole symmetry one finds that the time-reversal sym-
metry implies the quasienergies to be symmetric in k:

ε−k = εk. (5.39)

The Floquet modes fulfill
|φ−k(t)〉 = (θ|φk(2ξT − t)〉)∗. (5.40)

Here the Floquet mode is mirrored in time around the point 2ξT , and the operator θ is applied to
it. Eq. (5.40) can be expressed in terms of Fourier modes by

|φ(n)
−k〉 = ei4πξn(θ|φ(n)

k 〉)
∗ (5.41)

Chiral Symmetry

A Floquet-Bloch Hamiltonian has chiral symmetry if there exists an unitary operator C such that

CHk(ξT + t)C−1 = −Hk(ξT − t) (5.42)
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is fulfilled with ξ ∈ R. If both particle-hole and time-reversal symmetry are present, it follows that
C = Pθ. Using chiral symmetry we can assign each Floquet mode a chiral symmetric partner [239],
whose properties are indicated with a bar. The quasienergies of the partnered Floquet modes have
opposite sign

ε̄k = −εk, (5.43)

while partnered Floquet modes are related by

|φ̄k(t)〉 = C|φk(2ξT − t)〉. (5.44)

Equation (5.44) reads in terms of Fourier components as

|φ̄(n)
k 〉 = ei4πξnC|φ(n)

k 〉. (5.45)

Symmetry Classification of the SSH Ratchet Model

The Floquet-Bloch Hamiltonian (5.23) of the periodically driven SSH ratchet shows all three afore-
mentioned symmetries with the operators P = σz, where σz is a Pauli-Matrix, θ = I2×2 is the 2× 2
identity matrix and C = Pθ. For the disconnected dimer model Eq. (5.8) the condition ξT = t1+δt/2
determines the parameter ξ that is in the definition of the time-reversal symmetry. Note that also the
experimentally motivated driving scheme (5.7) obeys all aformentined symmetries, here it holds that
ξ = 1/4. In summary, the driven SSH ratchet model lies in the Altland-Zirnbauer class BDI [242,244].

Particle-hole symmetry guarantees that the quasienergy bands are anti-symmetric with respect to
k = 0 and the density nk,α,m(γ, t) = |φk,α,m(γ, t)|2, γ = A/B, is symmetric in k at each time
t. Time-reversal symmetry has two consequences: For each mode with quasienergy εk,α,m there
exists a mode with the same quasienergy, but opposite propagtion direction εk,α,m = ε−k,β 6=α,m.
Using condition (5.40) with the experimentally relevant case of ξ = 1/4 the densities are related
by nk,α,m(γ, t) = n−k,β 6=α,m(γ, T/2 − t). If the Floquet-Bloch states perform sublattice oscillations,
the above relation of the densities implies that the oscillation of left and right movers is antipodal.
The chiral symmetry leads to relations that are a combination of the above two: The quasienergies
lie symmetric around zero εk,α,m = −εk,β 6=α,m and also the density of those states are related by
nk,α,m(t, γ) = nk,β 6=α,m(T/2− t, γ).

5.2.4. Rectification of Transport in a Hamiltonian Quantum Ratchet

This subsection is devoted to the deeper analysis of the transport rectification induced by the ratchet
effect. As a central quantity the average group velocity of a wave packet is introduced. A systematic
analysis of the average group velocity and the resulting particle transport for a large parameter range
is performed in the case of the disconnected dimer model.
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Relation of Asymptotic Current to Average Group Velocity

Directed particle transport is possible in a Hamiltonian quantum ratchet and can be measured by
the current that runs through the system. References [222–224,245] quantify the asymptotic current
transported in the ratchet by a time-averaged expectation value of the momentum operator

J = lim
t→∞

1

t− t0

∫ t

t0

dt′〈ψ(t′)|P |ψ(t′)〉. (5.46)

Here, P denotes the momentum operator and |ψ(t)〉 is the time-dependent wave function of the
system which is evolved from an arbitrary state |ψ(t0)〉 = |ψ0〉 at an initial time t0. Following the
argumentation of Refs. [222–224,245], we assume a particle in a lattice potential as a model system

H(r, t) =
P 2

2mP

+ U(r, t), (5.47)

where mP is the particle mass and the space- and time periodic potential is given by U(r, t) =
U(r+ a, t) = U(r, t+ T ) with unit cell a and period T . Since Hamiltonian (5.47) is periodic in both
space and time, a solution via Floquet-Bloch theory is possible [223, 224]. The resulting Floquet
modes |φk,α,m(t)〉 are labeled by quasimomentum k, band index α and Floquet Brillouin zone index
m. The time-evolution of an arbitrary state |ψ(t)〉 is found with Eq. (2.9) by

|ψ(t)〉 =
∑
k,α

Ak,αe
−iεk,α,0t/~|φk,α,0(t)〉, (5.48)

where the coefficients Ak,α are determined by the projection of the initial state to the Floquet
modes

Ak,α = 〈φk,α,0(t0)|ψ(t0)〉. (5.49)

The normalization of the state (5.48) requires∑
k,α

|Ak,α|2 = 1. (5.50)

Using 〈φq,β,0(t)|P |φk,α,0(t)〉 = δk,qδα,β
∂εk,α,0
∂k

m/~ [224], the asymptotic current is given by J =
m
~
∑

k,α |Ak,α|2
∂εk,α,0
∂k

[222,223,245]. Dividing by the particle mass yields the average group velocity

v̄g =
∑
k,α

|Ak,α|2vk,α, (5.51)

with vk,α as defined in Eq. (5.27). With Eq. (5.51) v̄g is given by an average of the group velocity
vk,α weighted by the distribution |Ak,α|2, which in turn is defined by the initial state. The average
group velocity is the central quantity that will be considered as a measure of particle transport in the
following. The better a ratchet works, the larger is the particle transport, which is measured by v̄g.
The above calculation shows that the average group velocity is not a conceptual construct, but can
be related to experimental situations where a time-evolution of a quantum state is observed. At last,
note that Ref. [217] relates the average group velocity to an electric current in a setup similar to ours.
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The previous calculation found a formula for the average group velocity for the case that a real
space representation Eq. (5.47) of the model is possible. In the following we derive Eq. (5.51) within
the tight-binding description. On a lattice model, an average group velocity is defined by introducing
a group velocity operator vg on the basis of the Floquet-Bloch states |φk,α,m〉〉:

vg|φk,α,m(t)〉 = vk,α|φk,α,m(t)〉, (5.52)

with the group velocity vk,α defined in Eq. (5.27). The average group velocity is calculated by the
expectation value of the group velocity operator

v̄g = 〈ψ(t)|vg|ψ(t)〉, (5.53)

where |ψ(t)〉 is a wave packet given by Eq. (5.48). Using the orthonormality of the Floquet modes
Eq. (2.41), Eq. (5.53) transforms into Eq. (5.51), the result we obtained by looking at the asymptotic
current. This shows that the same expression for average group velocity (5.51) is found with both
calculations.

Transport in a Hamiltonian Quantum Ratchet, Case Study of the Disconnected Dimer
Scheme

Equation (5.51) shows that in a Hamiltonian quantum ratchet the direction and the magnitude of
particle transport strongly depends on the initial state. Consider now a general two-band ratchet
model fulfilling time-reversal symmetry, such as the SSH ratchet model of Eq. (5.6). Time-reversal
symmetry implies that the group velocities of the two bands are anti-symmetric in quasimomentum

vk,α = −v−k,β 6=α. (5.54)

Using Eq. (5.54) the averaged group velocity is expressed as

v̄g =
∑
k

vk,α(|Ak,1|2 − |A−k,2|2). (5.55)

Equation (5.55) makes directly visible that for creating a directed current it is central to populate
the two bands unequally. The extreme example of an asymmetric distribution is to populate the
right movers only

Ak,α =
δα,1√
N0

. (5.56)

Figure 5.7 (a) shows the average group velocity for a uniform population of the right moving band in
case of the disconnected dimer driving scheme. The average group velocity performs an oscillating
behavior between ideal transport v̄gT = 1 and absence of transport v̄gT = 0. This demonstrates the
key feature of the SSH ratchets model (5.6), namely, the high tunablility of the particle transport.
The frequencies of ideal transport and absence of transport are correctly predicted by Eqns. (5.17).
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Figure 5.7.: Results for the disconnected dimer model with δt = 0.2 T and J =
~ωid

0 5/4 . (a) averaged group velocity v̄g in dependence of the driving frequency,
(b) quasienergy spectrum in dependence of the driving frequency. Red solid lines
mark the position of ideal transport predicted by Eq. (5.17a), red dashed lines the
frequencies of absence of transport predicted by Eq. (5.17b).

In Fig. 5.7 (b) the quasienergy band structure is shown. It directly links the quantized transport
to the closing of the bulk gap, while flat bands imply a vanishing group velocity. For a band with
solely positive group velocity and uniform population of the form (5.56), the average group velocity
is directly linked to the size of the band gap by

v̄g =
1

2π~
( lim
k→0−

εk,1,0 − lim
k→0+

εk,1,0). (5.57)

If the band gap closes, Eq. (5.57) direclty predicts that there is particle transport with v̄g = 1/T .

In the high frequency limit ωid
0 � ω neither ideal transport nor complete absence of transport is possi-

ble. Calculating the effective Hamiltonian up to first order using Eq. (2.15a) reveals that the effective
model is given by Eq. (5.6) with time-independent effective coupling constants Ji = Jeff , i = 1, 2. A
formula for Jeff will be given in Eq. (5.64). In the high frequency regime the transport is ballistic
and the ratchet effect is absent.
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At last, it is discussed how the initial state influences the ratchet transport. We consider the
disconnected dimer model at a driving frequency given by Eq. (5.17a) and a population of the bands
given by

Ak,1 =
cos(θ)√
N0

, Ak,2 =
sin(θ)√
N0

, (5.58)

with θ ∈ [0, π]. A population as in Eq. (5.58) is achieved by exciting neighboring lattice sites in
real space with different intensities. If θ = 0, only the right movers are populated while θ = π
corresponds to an uniform population of the left movers. For θ = π/4 both bands are populated
equally. The average group velocity for the distribution (5.58) is calculated in the case of linear
bands with the use of Eqns. (5.26), (5.27) and (5.57) to

v̄gT = cos(2θ). (5.59)

This shows that both direction and magnitude of the transport depend on the angle θ and thus on
the initial population of the two sublattices. For a distribution that populates both sites equally,
which is described by θ = π/4, the average group velocity vanishes and thus transport is absent in
this case even for linear quasienergy bands.

5.2.5. Helical Bands and Relation to Topology

In the case where the gap of the quasienergy band structure is closed, the bands are helical in the
Floquet-Bloch Brillouin zone. The term helical means that the bands wind around the Floquet-
Bloch Brillouin zone. In this subsection a general condition for the occurrence of a closed band gap
is derived which is related to helical bands. A topological invariant is introduced that characterizes
this helicity.

Condition of a Closed Band Gap at k = 0

The final goal of this part is to generalize the conditions (5.17) found for the disconnected dimer
scheme to time-dependent coupling constants of a general form, including the experimentally moti-
vated scheme (5.7). In order to achieve this, an analytical expression of the quasienergy at k = 0, π is
derived in the following. For a general time-periodic driving scheme Ji(t) = Ji(t+T ) the Schrödinger
equation for the Floquet-Bloch waves reads at k = 0, π:

i∂tψk,A = fk(t)ψk,B, (5.60a)
i∂tψk,B = fk(t)ψk,A, (5.60b)

where ~fk(t) = J1(t) + J2(t)e−ik. The special cases k = 0, π are chosen such that the hamiltonian
matrix governing the dynamics of Eq. (5.60) solely has real entries. In this case an analytic solution
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of Eq. (5.60) is found by

ψk,A(t) = c1 exp

[
i

∫ t

0

dt′fk(t
′)

]
+ c2 exp

[
−i
∫ t

0

dt′fk(t
′)

]
, (5.61a)

ψk,B(t) = −c1 exp

[
i

∫ t

0

dt′fk(t
′)

]
+ c2 exp

[
−i
∫ t

0

dt′fk(t
′)

]
, (5.61b)

valid for k = 0, π. For the calculation of the Floquet spectrum it is important to note that the
wave function at t = 0 is related to the coefficients by ψk,A(0) = c1 + c2, ψk,B(0) = c2 − c1. The
quasienergies are extracted from the eigenvalue equation of the time-evolution operator Uk(T, 0) in
the sense of Eq. (2.12):(

cos[i
∫ T

0
dtfk(t)] −i sin[i

∫ T
0
dtfk(t)]

−i sin[i
∫ T

0
dtfk(t)] cos[i

∫ T
0
dtfk(t)]

)(
ψk,A(0)
ψk,B(0)

)
= e−iεk,α,mT/~

(
ψk,A(0)
ψk,B(0)

)
, k = 0, π. (5.62)

The quasienergies are then given by the time average of the function fk(t):

εk,±,m = ± 1

T

∫ T

0

dtfk(t) +m~ω, k = 0, π, m ∈ Z. (5.63)

This is a remarkable result, since it yields an analytical understanding of the quasienergies at k = 0, π
and is valid for a general real valued, time-periodic driving scheme Ji(t), i = 1, 2 which is capable
of being integrated. As Eq. (5.63) only calculates the quasienergies at the two points k = 0, π in
k-space, we are not able to label them via the group velocity and introduce a ±-notation as labeling.

In the following we restrict to a driving scheme where the time average of both coupling constants
is equal. This holds in particular for the experimentally motivated driving scheme (5.7). If both
coupling constants have an equal time average, an effective coupling constant can be defined as the
time average

Jeff =
1

T

∫ T

0

dtJi(t), i = 1, 2, (5.64)

using which the quasienergies at k = 0 read

εk=0,±,m = ±2Jeff +m~ω, m ∈ Z. (5.65)

At k = π the time average is taken over the difference fk=π(t) = J1(t)− J2(t) such that the integral
in Eq. (5.63) vanishes. The quasienergies at k = π are thus given by an integer multiple of ~ω:

εk=π,±,m = m~ω, m ∈ Z. (5.66)

In the following we find a condition for a closed band gap, provided that the driving scheme obeys
the following assumptions: First, the time average of both hopping constants should be equal. This
implies with Eq. (5.65) that the quasienergies at k = 0 are symmetric around ε = 0. Equation (5.66)
says that the quasienergies at k = ±π reside in all cases at zero. Thus, a possible opening and closing
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of a band gap cannot be at ε = 0. Second, the driving scheme is assumed such that |εk,1,0 − εk,2,0| is
maximal at k = 0, provided that at least one of the quasienergy bands is in the neighborhood of the
edge of the first Floquet Brillouin zone at ε = ±~ω/2. Physically speaking, it is assumed that if the
band gap closes, then it closes at k = 0. Since the quasienergies at k = 0 are symmetric around ε,
this closing of the band gap is at the edge of the first Floquet-Brillouin zone at ε = ±~ω/2. Both the
disconnected dimer and experimentally motivated driving scheme obey these conditions, c.f. Fig. 5.6
(a) and Fig. (5.9) (a). Under this circumstances, the closing of the bulk gap can be predicted with
Eq. (5.65) by assuming εk=0,+,m′ = ~ω/2 +m′~ω, m′ ∈ Z. This incarnates into the equation

2Jeff =
~ω
2

+ n~ω, n ∈ N0, (5.67)

which generalizes Eq. (5.13) found for the disconnected dimer model. The main difference to
Eq. (5.13) is that in Eq. (5.67) the coupling constant is not required to have a step-function-like
behavior, so that the product of coupling strength times duration of active coupling is generalized
to an integral. Equation (5.67) is solved for the driving frequency to

~ωid
n =

4Jeff

1 + 2n
, n ∈ N0, i = 1, 2. (5.68)

This equation generalizes Eq. (5.17a) and predicts the driving frequencies at which the band gap
closes. It is remarkable, that this prediction is possible for relatively general driving schemes, which
simply have to fulfill the assumptions mentioned above. Thus, Eq. (5.68) is of central relevance
of this chapter. In particular, Eq. (5.68) will predict the driving frequencies at which the experi-
mentally motivated driving scheme hosts ideal transport. This makes Eq. (5.68) a generalization of
Eq. (5.17a) found in the case of the disconnected dimer driving scheme. Note the interesting point
that the ωid

n solely depend on the time average of the coupling constant Ji(t), i = 1, 2. The quantity
n can be interpreted in analogy to the disconnected dimer model as the number of full Rabi-cycles
the system undergoes before it performs the transfer of the state between the two sublattices.

Alike to the case of a closed gap, a condition for a maximal bulk gap, i.e. a collapse of the quasienergy
bands to ε = 0, at k = 0 is found by assuming εk=0,±,m′ = m′~ω, which results in

~ωab
n =

4Jeff

2 + 2n
, n ∈ N0. (5.69)

This consideration is valid for general driving schemes where both coupling constants are required
to have an equal time average, but the implications are weaker that the ones made in the discussion
of Eq. (5.68). In Fig. 5.9 (b) the quasienergy bands of the experimentally motivated driving scheme
at a driving frequency of ω = ωab

0 is shown, where it can be seen that at k = 0 the quasienergies
εk,α,0 are indeed zero, but the quasienergy bands are not completely flat, like it is found in the
disconnected dimer model. Nevertheless, Eq. (5.69) is interpreted as a generalization of Eq. (5.17b),
since it will turn out that Eq. (5.69) roughly predicts the driving frequencies where the transport is
minimal in a SSH ratchet model with experimentally motivated driving scheme.
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Helical Bands and their Relation to Topology

The relation of a closed gap to quasienergy bands that are helical in the Floquet-Bloch Brillouin zone
is discussed. Consider therefore Fig. 5.8 (a), where the band structure in the case of the disconnected
dimer model is shown for a finite gap. Since the Floquet-Bloch Brillouin zone structure is both
periodic in quasimomentum and quasienergy, the points on the lines with k = ±π and ε = ±~ω/2
are equivalent to each other. Thus the first Floquet Brillouin zone is topologically equivalent to a
torus, which we parameterize in the following

x = [R + r cos(k)] cos(εT ), (5.70a)
y = [R + r cos(k)] sin(εT ), (5.70b)
z = r sin(k). (5.70c)

Here R is the distance of the center of the torus to the central line of the tube, while r denotes the
radius of the tube itself. A rotation along the axis of revolution of the torus is described by εT , while
k gives a rotation around the tube. As seen in Fig. 5.8 (b), for a finite band gap the quasienergy
bands wind around the tube, but they do not wind around the free space in the center of the torus.
Figure 5.8 (c) shows the case for perfect linear bands. Here the Floquet-Bloch bands wind around the
first Floquet-Bloch Brillouin zone and are thus regarded as helical. This behavior is directly visible
in the torus representation of Fig. 5.8 (d), where each Floquet-Floquet Bloch band winds around
the free space in the center of the torus. In case of the experimentally motivated driving scheme
Eq. (5.63) shows that at k = ±π the quasienergies in the first Floquet Brillouin zone are pinned to
zero, while at k = 0 they are located at the upper and lower edge at ±~ω/2. In addition to that, the
numerical analysis yields that the quasienergy bands behave similar to the ones of the disconnected
dimer model, if Eq. (5.68) holds, c.f. Fig. 5.9 (a). In summary we find that the quasienergy bands
of the experimentally motivated driving scheme are helical if condition (5.68) holds.

The helical bands are related to a nontrivial topology [246]. With the visual representation of
the quasienergy bands on the torus this becomes clear, since one curve winds around the center of
the torus while the other does not. Mathematically speaking the curve in Fig. 5.8 (d) is homotopic to
a different element of the fundamental group of the torus than the curve shown in Fig. 5.8 (b) [247].
For the time-periodically driven SSH-ratchet, the topological invariant can be determined with the
one-cycle time-evolution operator in momentum space Uk(T, 0) [73, 246]. In the case of the discon-
nected dimer model the one-cycle evolution operator reads U(T, 0) = −e−ikσz . It commutes with
σz and thus preserves the sublattice symmetry.If such a sublattice symmetry is present, Uk(T, 0)
decomposes into two irreducible blocks and the Floquet winding number is defined as topological
invariant for each block by [246]

νβ =
1

2πi

∫ π

−π
dkTr[Uβ

k (T, 0)∂kU
β
k (T, 0)†] =

1

~ω

∫ π

−π
dk∂kεk,β,0. (5.71)

Here Uβ
k (T, 0) denotes the projection of U(T, 0) to block β = 1, 2. For the disconnected dimer model

these blocks are just the U1,1(T, 0) and U2,2(T, 0) component. In the case of perfect linear bands it
follows that

νβ =

{
1, β = 1,

−1, β = 2
, (5.72)
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Figure 5.8.: Band structure of the disconnected dimer scheme for δt = T/4 and
(a) ~ω = 2J/3 (c) ~ω = J . (b,d) representation of the first Floquet Brillouin zone
on a torus, the colored parts of (a) and (b), (c) and (d) correspond to each other.
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showing that the Floquet winding number indeed measures the winding of the helical quasienergy
bands in the Floquet-Bloch Brillouin zone.

The helical bands are stable against perturbations that preserve the sublattice symmetry in the
effective Hamiltonian. Unlike to common phenomena in topological systems, such as the edge states
in the static SSH-model [239], this symmetry is easily broken and the quasienergy bands loose their
helicity if one of the system parameters is slightly detuned from a value at which helical bands occur.
This is seen by the fact that by driving the system away from condition (5.13) the bands hybridize
and the quasienergy bands are not helical anymore.

Equation (5.71) directly relates the topological invariant to the average group velocity Eq. (5.51) in
the case of a uniformly filled quasienergy band. This emphasizes that the particle transport with
the velocity of one unit cell per driving period is quantized in our SSH ratchet model.

5.2.6. Analysis of the Experimentally Motivated Driving Scheme

We use the knowledge from the previous subsections in order to analyze the ratchet effect in the
experimentally motivated driving scheme.

Floquet-Bloch Analysis

In Fig. 5.9 the results of the Floquet-Bloch analysis of the experimentally motivated driving scheme
(5.7) are shown. As predicted by Eqns. (5.68) and (5.69), there are driving frequencies where the
system has helical quasienergy bands which are almost linear, and frequencies where the bands are
almost flat. Also dispersive bands with a finite band gap exist. Figure 5.9 (a) shows the case of
almost linear quasienergy bands at ~ω = 1.195 J0, which equals to Eq. (5.68) in the case of n = 0.
Here the band gap is closed and the bands are helical in the Floquet-Brillouin zone. The dynamics of
the corresponding Floquet-Bloch states is visualized in Fig. 5.9 (b). Here, almost perfect sublattice
oscillations of the states are visible. The difference to the disconnected dimer model, where the
quasienergy bands are linear and the states perform full sublattice oscillations, is directly visible
in the lattice simulation shown in Fig. 5.9 (c). The simulated right moving wave packet slightly
broadens, which is related to a dispersion relation that is not exactly linear in quasimomentum k.
The barely visible non-linearity of the quasienergy bands can be explained by the fact that in the
experimentally motivated driving scheme the coupling constants never vanish, i.e. there always re-
mains a dispersive element in the motion.

A similar consideration as above explains why the quasienergy bands in Fig. 5.9 (d), which is made
for ~ω = 0.597 J0 corresponding to Eq. (5.69) with n = 0, cannot be totally flat. The corresponding
Floquet-Bloch states in Fig. 5.9 (e) show a deformed sublattice oscillation. In the real space simu-
lation in Fig. 5.9 (f) the wave function is in a localized oscillatory motion. Also here the non-linear
behavior of the quasienergy bands as a function of quasimomentum k induces a slight spreading of
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Figure 5.9.: Numerically calculated quasienergy bands (a,d,g), Floquet-Bloch
states (b,e,h) and simulation of the lattice dynamics (c,f,i) of the ratchet with the
experimentally motivated driving scheme Eq. (5.7). As initial condition for the simu-
lations a single site on sublattice A is excited. In panels (a,b,c) ~ω = ~ωid

0 ≈ 1.195 J0,
in (d,e,f) ~ω = ~ωab

0 ≈ 0.597 J0 and in (g,h,i) ~ω = 0.9 J0. In (a,d,g) are states
with positive group velocity are marked blue, states with negative are marked red.
In (b,e,h) is the density of a Floquet-Bloch state on sublattice A given in blue, on
B in red, J1(t) in green dashed, J2(t) in purple dashed. The parameters for (b,e,h)
are marked by a black circle in (a,d,g). The initial state in (c,f,i) is an excitation of
the site (0,A) only.
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the localized state.

Fig. 5.9 (g) shows the case of a driving frequency away from the case of almost linear or almost
flat bands. Here the quasienergy bands are curved, a finite band gap is visible. Similar to the
disconnected dimer model, the bands hybridize at k = 0. The Floquet-Bloch states displayed in
Fig. 5.9 (h) perform sublattice oscillations with slight imperfections compared to Fig. 5.9 (b). The
corresponding simulation of a wave packet in real space is shown in Fig. 5.9 (i), here the directed
motion in positive direction is washed out. This is due to the following two effects. First, the influ-
ence of the finite dispersion of the band structure is visible, second, in this case also the left-moving
states are excited.

In the surface plasmon-polariton waveguide array experiments conducted by Z. Fedorova from the
University of Bonn a single site is excited and directed transport is observed [216,237]. It is therefore
of interest to investigate the average group velocity for the experimentally motivated driving scheme
(5.7) if a single lattice site is excited.

Rectification of Transport

Fig. 5.10 (a) shows the average group velocity v̄g for the driving scheme (5.7) with the assumption
that a single site of sublattice A is initially excited. Also here the group velocity follows an oscillatory
behavior. The location of the maxima of v̄g can be predicted with a good accuracy by Eq. (5.68) and
goes hand in hand with a closing of the bulk gap as shown in Fig. 5.10 (b). However, the optimal
transport of v̄gT = 1 cannot be reached. This is explained with the aid of Fig. 5.10 (c) and (d)
showing the modulus squared of Ak,1 = 〈φk,1,0(0)|ψ(0)〉 and Ak,2 = 〈φk,2,0(0)|ψ(0)〉, respectively. In
contrast to the disconnected dimer model, the Floquet-Bloch states do not perform full oscillations
between the two sublattices even for an ideal driving frequency ω = ωid

n , as seen in Fig. 5.9 (b). Thus,
the overlap Ak,1 is close to one, but in any case a bit smaller than one. When performing the average
over the group velocity, this leads to a value that is slightly reduced from v̄g = 1/T . As seen in
Fig. 5.10 (b), there are no frequencies where the quasienergy bands are completely flat. Despite these
peculiarities, Eq. (5.69) gives a quite good approximation for the frequency with minimal bandwidth
and the point where the average group velocity vanishes. At last, note the discontinuity in the Ak,α
coefficients shown in Fig. 5.10 (c) and (d). This comes about the labeling of the quasienergy bands
by their respective group velocity and has no physical impact. As shown in Fig. 5.9 (d), the band
structure of the experimentally motivated driving scheme develops two maxima at k ≈ ±π/2 if ω
is close to a point of almost flat bands. This implies that right movers turn into left movers and
vice versa for a certain range of k values. Despite the change of the group velocity, the sublattice
dynamics stays nearly the same. Thus, there are Floquet-Bloch states with a negative group velocity,
but a major population of sublattice A at initial times. This implies the interesting effect that the
average group velocity can become negative, as displayed in Fig. 5.10 (a).

Also in the experimentally motivated driving scheme the transport properties depend on the initial
state as given by Eq. (5.55). It would be beneficial to avoid this dependence of the ratchet transport
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Figure 5.10.: (a) Average group velocity in dependence of the driving frequency
for the experimentally motivated driving scheme (black), (b) quasienergy spectrum
in dependence of the driving frequency. Red solid lines mark the position of ideal
transport predicted by Eq. (5.68), red dashed lines the frequencies of absence of
transport predicted by Eq. (5.69). Color plot of the squared absolute value of the
coefficient Ak,1 = 〈φk,1,0(0)|ψ(0)〉 (c) and Ak,2 = 〈φk,2,0(0)|ψ(0)〉 (d).
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Figure 5.11.: Sketch of the direction-dependent filter in a bipartite lattice model:
Time periodic loss applied to two central lattice sites is marked by oscillating lines.
A particle sketched as a plane wave impinges upon the dissipative region, resulting
in a transmitted and reflected wave. JA/B(t) denote the time-dependent coupling
constants, γA/B(t) the decay rates. tright is the transmission amplitude of a right
moving particle, rright the reflection amplitude.

on the initial state and to design a system that induces a non-vanishing current intrinsically. This
is done by introducing a direction-dependent filter in the next section.

5.3. Introducing a Direction-Dependent Filter

In Sec. 5.2 a Hamiltonian quantum ratchet based on a periodically driven SSH model was intro-
duced. Quantized directional transport was found for special driving frequencies, however, direction
and magnitude of the particle current strongly depends on the initial state. This is unfortunate
for experiments with no or little control over the initial state. Due to the presence of time-reversal
symmetry the average current vanishes for distributions that populate both sublattices equally.
This motivates our goal to make the system intrinsically non-reciprocal, such that transport can be
observed without a special preparation of the initial state. In order to achieve this goal, a direction-
dependent filter is introduced that filters out states moving in the left direction while the ones moving
to the right remain unimpaired. The filter is implemented by a dissipative, time-periodic impurity.
The resulting direction dependent transport is based on the breaking of time-reversal symmetry due
to the dissipative nature of the filer. In this section the working principle of the filter is discussed in
the case of the disconnected dimer driving scheme, where asymmetric transmission coefficients are
found by an analytical discussion. For the experimentally motivated driving scheme no analytical
solution is possible. For tackling this problem we introduce the Floquet S-matrix method in Sec. 5.4.
With the Floquet S-matrix theory a full analysis of the direction-dependent filter is done in Sec. 5.5.

The direction-dependent filter is realized by time-periodic dissipation on the sites in a single unit cell,
based on the considerations of collaborator Z. Fedorova from University of Bonn. The Hamiltonian
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Figure 5.12.: Time dependent decays rate γA(t) (blue) and γB(t) (red) for ϕ =
0.2× 2π and Lt = 0.2 T .

is the sum of the bulk Hamiltonian Hbulk given by Eq. (5.6) and the impurity operator V (t):

H(t) = Hbulk(t) + V (t), (5.73a)
V (t) = −iγA(t)c†0,Ac0,A − iγB(t)c†0,Bc0,B. (5.73b)

The dissipation is described by the time-dependent decay rates γA/B(t) defining a non-hermitian
impurity operator V (t). This approach is sufficient in order to describe losses in the surface
plasmon-polariton waveguide experiment [237, 248, 249], in which the dissipative impurity is real-
ized by chromium stripes that are positioned periodically along z-direction below the two central
waveguides. Chromium induces strong losses while keeping real part of the refractive index al-
most unchanged [237]. In the analogy of paraxial Helmholtz and Schrödinger equation, the effect
of chromium is well described by the decay rates (5.74) acting as an imaginary part of a poten-
tial [216, 237, 248, 249]. The finite length of the chromium stripes is modeled by the step-function
like behavior of the decay rates [237]

γA(t) = γ0θ[− cos(ωt+ ϕ)− cos(πLt/T )], (5.74a)
γB(t) = γA(t− T/2). (5.74b)

Here θ(x) denotes the heaviside function. The decay rates are time periodic with the same period
T as the bulk Hamiltonian, γA/B(t + T ) = γA/B(t). The concrete form of γA/B(t) is displayed in
Fig. 5.12, it corresponds to a function which takes constant value γ0 inside an interval and is zero at
all other times inside a driving period. In the waveguide experiment, the strength of the dissipation
is fixed to γ0 = 1.5 J0 [216]. The parameter Lt gives the length of the interval with finite dissipation
on each sublattice within one driving period, while ϕ determines the location of the lossy interval
within one driving period. At ϕ = 0 the lossy interval is centered around t = T/2 on sublattice A,
a positive ϕ shifts the center to the smaller times.

We have introduced the time-dependent dissipative impurity. But how does it act as a direction-
dependent filter? First, note that the non-hermiticity of V (t) breaks the time-reversal symmetry
which in principle allows for a finite current in the system. In order to understand this filtering
effect in a more detailed way, a simple calculation within the disconnected dimer driving scheme
(5.8) is presented. We choose ϕ = 0, such that the loss is centered around t = T/2 on sublattice

184



5.3. Introducing a Direction-Dependent Filter

Figure 5.13.: Sketch of one cycle of the disconnect dimer scheme with dissipative
impurity. The time-interval within each driving period where a certain quantity is
non-zero is marked by a colored rectangle which is labeled by the corresponding
quantity.

A and at t = T on sublattice B. The disconnected dimer coupling constants (5.8) are chosen with
δt = T/2 − Lt, t1 = T/4 − δt/2 and J is tuned such that the condition of ideal transport (5.68) is
fulfilled. This situation is visualized in Fig. 5.13, where the parameters are chosen such that one
cycle is partitioned in intervals where either one hopping constant or one decay rate is non-zero.
The strength of the decay γ0 and the duration of the loss Lt remain as free parameters.

Consider now a state that initially was located on a site on sublattice A left of the impurity, i.e. a
state moving to the right without any dispersion. Following the discussion of Subsec. 5.2.1, the
particle enters the dissipative region on the site (0,A) at time t = −Lt/2. As shown in Fig. 5.13,
there is no dissipation on this site for the times −Lt/2 < t < Lt/2. Then a full Rabi transition to the
neighboring site on sublattice B is performed. For (T/2− Lt/2) < t < (T/2 + Lt/2) the dissipation
is on site (0,A), but the state sits on site (0,B). After a second Rabi cycle it leaves the dissipative
region unimpaired. The transmission of a right moving state through the dissipative impurity is
therefore

Tα=1 = 1. (5.75)
For a left moving state this situation is different. It enters the dissipative region on site (0,B) at
time t = −Lt/2 and stays on this site until t = Lt/2. During this time interval, dissipation is active
and the amplitude of the state gets damped ψ0,B(t = Lt/2) = e−γ0Ltψ0,B(t = −Lt/2). After a Rabi
transition to site (0,A), the decay rate γA(t) is active for (T/2− Lt/2) < t < (T/2 + Lt/2) and the
state is damped a second time. When leaving the dissipative region, the amplitude of a left moving
state is damped, which reflects in a transmission coefficient of

Tα=2 = exp(−4γ0Lt). (5.76)

The left movers are thus exponentially damped, while the strength of the suppression depends on
the product of decay rate γ0 and the length of the interval with finite loss Lt.
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(a) (b)

Figure 5.14.: Simulation of the dissipative filter for Lt = 0.2 T , γ0 = J/4 and the
disconnected dimer driving scheme with parameters δt = 0.3 T and J = 6~ω/5, such
that the ideal transport is possible. White lines mark the region of the impurity. (a)
Left moving state, (b) right moving state.

This short discussion shows that a time-dependent dissipative impurity allows for directional de-
pendent transmission. We have created a direction-dependent filter which leaves the right moving
states unimpaired while filtering out the left moving states by damping their wave function exponen-
tially. This impressive effect is visualized by Fig. 5.14. Note that there is in both cases no reflection
Rα=1,2 = 0.

For the experimentally motivated driving scheme (5.7), however, no such simple discussion is possi-
ble. The main reason for this is the presence of dispersion even in the case of helical bands, i.e. the
bands are not perfectly linear. This leads in any case to a spreading of a wave packet which makes
an analytical discussion impossible. In order to still be able to analyze the properties of the filter, we
use the well-known S-matrix theory in order to calculate transmission coefficients of left and right
moving states. The S-matrix theory has the further advantage that momentum resolved quantities
can be calculated. This is of importance for the case of driving frequencies that are away from
Eq. (5.68). In the following section we generalize the commonly used S-matrix theory such that it is
able to describe scattering properties in our periodically driven SSH ratchet model with a dissipative,
time-periodic impurity.
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Figure 5.15.: Sketch of the setting of Floquet S-matrix theory in one dimension.
In the remote past a wave packet |ψ(t)〉 travels through space, while the dynamics
is given by the bulk Hamiltonian H0(t). At t ≈ 0 the packet impinges upon the
impurity and is scattered at late times into a transmitted part t|ψt〉 and reflected
part r|ψr〉. The transmission / reflection amplitude is denoted by t / r.

5.4. Floquet S-Matrix Theory

The S-matrix theory is a well-known method for investigating the scattering by various types of
potentials [113]. Here we apply the theory to a one-dimensional scattering problem, as visualized
in Fig. 5.15. Consider a particle scattered by a possibly time-dependent potential. At times before
the scattering process occurred it is described by a wave packet being far away from the impurity.
When the particle impinges upon the impurity, the actual dynamics may be involved to describe.
Nevertheless, at times far after the scattering event, the wave function of the particle divides into a
transmitted part on the right of the impurity and a reflected part on the left. The S-matrix theory
enables to calculate the proportion of transmitted and reflected parts of the wave function and allows
to find the transmission and reflection coefficients. In order to calculate the transport properties
of the direction-dependent filter, this section introduces a formal scattering theory for describing
the scattering of states Floquet-Bloch states by a time-periodic, non-hermitian potential V (t). We
emphasize that this theory solves two nontrivial tasks that do not occur in the common formulation
of a S-matrix theory [99,118,250]. First, we consider a case where the bulk part of the Hamiltonian
is driven periodically, second, the impurity operator is non-hermitian and time-dependent.

5.4.1. Floquet Lippmann-Schwinger Equation

As a prerequisite of the definition of the S matrix, a Floquet Lippmann-Schwinger equation is de-
rived in the case of a time-periodic, dissipative impurity. It turns out that some arguments of the
following discussion in the Floquet case are similar to the time-independent case. If possible, we will
therefore do the connection to the time-independent case, but we will also point out what concepts
are new due to the presence of periodic driving and dissipation.
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Starting point is a discussion of the overall Hamiltonian

H(t) = H0(t) + V (t), (5.77)

where H0(t) is the bulk or free Hamiltonian, and V (t) is the scattering potential, which is also
named as impurity operator. The bulk Hamiltonian is considered to be hermitian, while V (t) is
a non-hermitian time-dependent operator with the same driving period as the bulk Hamiltonian
H0(t). Unlike to Refs. [99, 250–255], which all contain a formal scattering theory for time-periodic
scattering potentials, we explicitly include in our theory the case where both bulk and impurity
operator are time-periodic. This is motivated by the fact that the SSH-ratchet, which sets up the
bulk in our model, is time-dependent. A set of basis states |φ(0)

a (t)〉 is given by the solution of the
Floquet equation of the bulk [256](

H0(t)− i~ ∂
∂t

)
|φ(0)
a (t)〉 = εa|φ(0)

a (t)〉. (5.78)

These states are assumed to be free states forming a continuous spectrum. The multiindex a can
contain both continuous and discrete quantum numbers. For the Hamiltonian quantum ratchet
Eq. (5.6) it holds that a = (k, α,m), with k as the quasi momentum, α as the band label and m as
the Floquet Brillouin-zone index.

The scattering states |ψa(t)〉 = e−iεat/~|φa(t)〉 are defined by their related Floquet modes which
solve the Floquet equation of the full Hamiltonian H(t) = H0(t) + V (t):(

H(t)− i~ ∂
∂t

)
|φa(t)〉 = εa|φa(t)〉. (5.79)

It is assumed that the spectrum of Eq. (5.79) contains a continuous spectrum and may, in addi-
tion, have a discrete spectrum. Possible wave functions related to the discrete spectrum are bound
states while the continuous spectrum is composed of scattering states. The impurity operator V (t)
is assumed to be local in real space [254], in a sense that V (t) is such that the continuous spectrum
of the scattering states |ψa(t)〉 does not differ from the spectrum of the free states |ψ(0)

a (t)〉 [119].
This allows to choose a labeling such that a free Floquet mode |φ(0)

a (t)〉 with quantum number a
has the same quasienergy as the scattering state |φa(t)〉 with the same quantum number. The non-
hermiticity of the impurity potential is reflected in the fact that the |φa(t)〉 states do not form an
orthonormal basis [98,193]. However, we will not need the orthonormality of |φa(t)〉 in the discussion
of this subsection.

For a complete classification of the scattering properties of the scattering states |φa(t)〉 it is im-
portant to relate them to the free states. In order to do so, a wave packet |ψ(t)〉 is considered. As
sketched in Fig. 5.15 in the setting of one dimension, the packet can be scattered by the impurity
potential V (t). As typical for scattering theory, it is assumed that in the remote past the wave packet
is sufficiently away from the impurity such that it is not affected by the potential. This motivates
to define the "in" states by [118]:

|ψin(t)〉 = lim
τ→−∞

U0(t, τ)|ψ(τ)〉, (5.80)
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where U0(t, τ) is the time-evolution operator with respect to the free Hamiltonian H0(t). The state
|ψin(t)〉 is equal to the wave packet |ψ(t)〉 in the remote past, but it evolves with the free Hamiltonian
and thus stays unaffected by the impurity at all times. Conversely, by setting the mathematical
structure of |ψin(t)〉, the initial conditions of the scattering process are defined by Eq. (5.80). Here
we follow Ref. [118] and assume that |ψin(t)〉 is a wave packet centered around a quantum number
a. Such a packet is denoted by |ψwp

a (t)〉. It is furthermore assumed that the |ψwp
a (t)〉 states span the

complete space of the continuous spectrum [118]. With Eq. (5.80) the freely evolving wave packet
|ψin(t)〉 = |ψwp

a (t)〉 is related to the scattered packet |ψ(t)〉 = |ψsc
a (t)〉 by

|ψwp
a (t)〉 = lim

τ→−∞
U0(t, τ)U(τ, t)|ψsc

a (t)〉. (5.81)

Here U(t, τ) is the time-evolution operator with respect to the full non-hermitian Hamiltonian H(t)
[98,257,258]. Performing the limit that the wave packet |ψwp

a (t)〉 gets infinitely sharp in quasienergy,
Eq. (5.81) can be formulated in terms of Floquet states with energy εa [118,119]

|ψ(0)
a (t)〉 = lim

τ→−∞
U0(t, τ)U(τ, t)|ψa(t)〉. (5.82)

Up to now the reasoning was similar to the case of a Lippmann Schwinger equation with time-
independent Hamiltonian such as in Refs. [118, 119], but in the next step the Floquet calculation
differs. The identity U(t, τ) =

∫ T−nT
−nT dt′δ(t′−τ)eiεa(t′−τ)U(t, t′), τ ∈ [−nT, t−nT [, n ∈ Z is inserted

into Eq. (5.82), which results in the intermediate step

|ψ(0)
a (t)〉 = lim

τ→−∞

∫ T−nT

0−nT
dt′ U0(t, τ)δ(τ − t′)eiεa(t′−τ)U(t′, t)|ψa(t)〉. (5.83)

Here n is chosen such that τ lies in the interval of integration, i.e. n goes to infinity. We now want
to express Eq. (5.83) in term of Floquet modes. The complex exponential that has been introduced
into Eq. (5.83), is such that all terms that depend on the intermediate time t′ cancel out. With the
identities (2.42), (2.21), U(t, t′)|ψa(t′)〉 = |ψa(t)〉 and the definition ∆t = τ − t we find

|φ(0)
a (t)〉 = lim

∆t→−∞

∑
b

e−i∆t(εa−εb)|φ(0)
b (t)〉 1

T

∫ T

0

dt′ 〈φ0
b(t
′)|φa(t′)〉. (5.84)

The limit ∆t→ −∞ is performed using the identity [119]

lim
t→−∞

f(t) = lim
η→0+

η

∫ 0

−∞
dt eηtf(t). (5.85)

If the limit for a function f(t) exists, Eq. (5.85) is an alternative way for calculating it. For functions
where the ordinary limit does not exist, such as it is the case for the complex exponential ei∆t(εa−εb),
Eq. (5.85) can serve as a way of calculating this limit. With this it holds that

lim
η→0+

η

∫ 0

−∞
dt eηte−it(εa−εb) =

i0+

εa − εb + i0+
, (5.86)

where 0+ stands for a small positive number of which the limit to zero is implicitly taken [118,119].
In Eq. (5.84) an arbitrary, but finite time t was chosen. The time dependence in Eq. (5.84) can
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thus be translated to a notation in Floquet space by using Eqns. (2.20c), (2.23) and (2.25). With
ĤF

0 =
∑

a εa|φ
(0)
a 〉〉〈〈φ(0)

a | the Floquet-space version of Eq. (5.84) reads

|φ(0)
a 〉〉 =

i0+

εa − ĤF
0 + i0+

|φa〉〉. (5.87)

Equation (5.87) is remarkable, as it constitutes a step needed for deriving the time-independent
Lippmann-Schwinger equation [119], but formulated in Floquet space. It implies that the Floquet
Lippmann-Schwinger theory is a well-known time-independent Lippmann-Schwinger theory in Flo-
quet space. The Floquet Lippmann-Schwinger equation reads

|φ+
a 〉〉 = |φ(0)

a 〉〉+ Ĝ+
0 (εa)V̂ |φ+

a 〉〉, (5.88)

where the retarded Greens function in Floquet space is introduced by

Ĝ+
0 (εa) =

1

εa − ĤF
0 + i0+

. (5.89)

The notation |φ+
a 〉〉 denotes the Floquet scattering solutions that solve the Lippmann-Schwinger

equation with retarded Greens function.

Similar to the "in" states, the "out" states are defined via [118]

|ψout(t)〉 = lim
τ→∞

U0(t, τ)|ψ(τ)〉. (5.90)

Equation (5.90) sets the boundary conditions such that the scattered particle is in the remote future
in a controlled wave packet state, an assumption which is not easy to realize in an experiment.
Nevertheless, using it one can derive a Lippmann-Schwinger equation

|φ−a 〉〉 = |φ0
a〉〉+ Ĝ−0 (εa)V̂ |φ−a 〉〉, (5.91)

with the advanced Greens function

Ĝ−0 (εa) =
1

εa − ĤF
0 − i0+

. (5.92)

The Floquet Lippmann-Schwinger equation enables a systematic calculation of the scattering states
|φ±a 〉〉 which have the correct boundary conditions in a sense that they coincide either at infinite
early or late times with the free states. As seen in Eqns. (5.88) and (5.91), the boundary conditions
at infinite early and late times are reflected in the choice of either the retarded or advanced Greens
function, while the inhomogeneity is given in both cases by the free state |φ(0)

a 〉〉. It is easily verified
that the solution of the Floquet Lippmann-Schwinger equations (5.88) and (5.91) solve the Floquet-
equation (5.79). At last, note that the formal solution of the Floquet Lippmann Schwinger equation
is given by

|φ±a 〉〉 = |φ(0)
a 〉〉+ Ĝ±(εa)V̂ |φ(0)

a 〉〉 (5.93)

with the Greens function of the full Hamiltonian

Ĝ±(εa) = (εa − ĤF
0 + V̂ ± i0+)−1. (5.94)
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5.4.2. Møller Wave Operators and Floquet S Matrix for a Non-Hermitian
Impurity

The solution of the Floquet Lippmann-Schwinger equation characterizes the scattering process and
can be used in order to calculate the so called scattering matrix (S matrix). In the following we define
the S matrix by relating it to the overlap of the scattering states with a freely evolving state at infi-
nite late times, a quantity that characterizes the scattering process [99, 118, 119, 250]. For example,
in the one-dimensional case a relation between the S matrix and the transmission coefficients is found.

Before the S matrix can be introduced, operators that relate the "in" and "out" states to the
state of a scattered particle are defined via [118]

|ψ(t)〉 = Ω+|ψin(t)〉, (5.95a)
|ψ(t)〉 = Ω−|ψout(t)〉. (5.95b)

These operators are called Møller wave operators. Similar to the discussion in the previous subsec-
tion, the wave packet is contracted to a single state |ψ±a (t)〉 = Ω±|ψ(0)

a (t)〉. This defines the Møller
wave operators in Floquet space

Ω̂± =
∑
a

|φ±a 〉〉〈〈φ(0)
a |. (5.96)

Note that this result is similar to that what is found in Ref. [118] for the static case. For a hermitian
impurity, the Møller wave operators obey (Ω̂±)†Ω̂± = 1, in the non-hermitian case this equation is
not fulfilled due to the fact that the scattering states |φ±a 〉〉 do not form an orthonormal basis. This
issue is resolved with the use of biorthogonal Floquet theory, which is introduced in App. C. The
adjoint scattering states are defined as Floquet eigenfunctions of the hermitian adjoint of the full
Hamiltonian

[H†(t)− i~∂t]|φ̄a(t)〉 = εa|φ̄a(t)〉, (5.97)

where V (t) is again assumed to be local such that the continuous spectrum of the adjoint scattering
states coincides with the one of the free states |φ(0)

a (t)〉 and is thus real valued. With the results of
Subsec. 5.4.1 the adjoint Møller wave operators are defined by

ˆ̄Ω± =
∑
a

|φ̄±a 〉〉〈〈φ(0)
a |. (5.98)

Note that for the hermitian case the adjoint operators Eq. (5.98) coincide with Eq. (5.96). The
Møller wave operators and their adjoint fulfill the condition

( ˆ̄Ω±)†Ω̂± = 1. (5.99)

due to the biorthogonality of the Floquet scattering states |φ±a 〉〉 and the adjoint basis |φ̄±a 〉〉. Com-
bining both Eqns. (5.95) with the use of Eq. (5.99), the "out" states are related to the "in" states
by

|ψout(t)〉 = (Ω̄−)†Ω+|ψin(t)〉. (5.100)

This result is of relevance for the subsequent discussion.
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For defining the S matrix, the following thoughts are made [118]: Consider a particle in a scat-
tering state |ψ(t)〉, that in the remote past started in a wave packet state of the form |ψwp

b (t)〉. How
large is the overlap of the scattering state |ψ(t)〉 with the wave packet state |ψwp

a (t)〉 at infinite late
times? In order to answer this question, a short calculation is performed following Ref. [118]:

lim
t→∞
〈ψwp

a (t)|ψ(t)〉 = lim
t→∞
〈ψwp

a (t)|ψout(t)〉 = lim
t→∞
〈ψwp

a (t)|(Ω̄−)†Ω+|ψwp
b (t)〉 (5.101)

In the first step Eq. (5.90) is applied, while the second step uses the relation of "in" and "out" states,
Eq. (5.100), together with the assumption that at initial time the system is in the state |ψwp

b (t)〉. In
the limit that the wave packets are contracted to zero width, Eq. (5.101) makes the statement that
the quantum mechanical amplitude, that the state |φ(0)

b 〉〉 scatters into the state |φ(0)
a 〉〉, is given by

〈〈φ(0)
a |( ˆ̄Ω−)†Ω̂+|φ(0)

b 〉〉 = 〈〈φ(0)
a |Ŝ|φ

(0)
b 〉〉 = Sa,b (5.102)

With Eq. (5.102) the Floquet S-matrix for scattering by a non-hermitian impurity is defined by
Ŝ = (ˆ̄Ω−)†Ω̂+ and the matrix elements of the Floquet S matrix with respect to the free basis are
denoted by Sa,b. Equation (5.102) is central to this section, since it defines the quantum mechanical
amplitudes for a scattering process from state |φ(0)

b 〉〉 to state |φ(0)
a 〉〉. The beauty of the S matrix

is that with it the outcome of a scattering experiment can be calculated with a simple expectation
value. Due to the non-hermiticity of the impurity operator, the adjoint Møller wave operator appears
in Eq. (5.102).

For practical reasons it is of favor to find a formula for the matrix elements of the S matrix Eq. (5.102)
without the use of the Møller wave operators. Generalizing the result of Ref. [119], this is done in
the following by applying the adjoint of Eq. (5.93) to the difference of retarded and advanced adjoint
solution

|φ̄−a 〉〉 − |φ̄+
a 〉〉 = [ ˆ̄G−(εa)− ˆ̄G+(εa)]V̂

†|φ(0)
a 〉〉. (5.103)

In Eq. (5.103) the adjoint Greens function is given by ˆ̄G±(εa) = (εa− ĤF
0 + V̂ †± i0+)−1. In order to

continue, note that the matrix elements of the Floquet S matrix are also given by Sa,b = 〈〈φ̄−a |φ+
b 〉〉.

This motivates to multiply in Eq. (5.103) with 〈〈φ+
b | and then do a complex conjugation

Sa,b − δa,b = 〈〈φ(0)
a |V̂ [ ˆ̄G−(εa)− ˆ̄G+(εa)]

†|φ+
b 〉〉. (5.104)

The Kronecker delta on the left comes in due to the biorthogonality of the Floquet states |φ+
a 〉〉

and the adjoint basis |φ̄+
a 〉〉. In case that a contains continuous indices, the Kronecker delta turns

into a Dirac delta function for the continuous indices. For example, for our ratchet model it holds
δa,b = δ(k,α,m),(q,β,n) = δ(k−q)δα,βδm,n. Finally, the adjoint Greens functions are evaluated using that
the state |φ+

b 〉〉 is at quasienergy εb:

[ ˆ̄G−(εa)− ˆ̄G+(εa)]
†|φ+

b 〉〉 = lim
η→0+

−2iη

(εa − εb)2 + η2
|φ+
b 〉〉 (5.105)

Inserting limη→0+ −2iη/[(εa−εb)2 +η2] = −2πiδ(εa−εb) [119] and |φ+
b 〉〉 = Ω̂+|φ(0)

b 〉〉 into Eq. (5.104),
the following expression of the matrix elements Sa,b is found

Sa,b = δa,b − 2πiδ(εa − εb)Ta,b, (5.106)
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which is a central result. In Eq. (5.106) Ta,b = 〈〈φ(0)
a |V̂ Ω̂+|φ(0)

b 〉〉 are the matrix elements of the
Floquet T matrix

T̂ = V̂ Ω̂+. (5.107)

The first term in Eq. (5.106) describes the matrix element of the identity matrix, while the sec-
ond term is related to the scattering process. The Dirac delta function ensures the conservation of
quasienergy and is weighted by the matrix elements of the Floquet T matrix. Eq. (5.106) is impres-
sive, since it describes the scattering by a non-hermitian impurity operators without the need of the
adjoint basis. Further, it is of relevance to this chapter, since the matrix elements of the Floquet
T matrix Ta,b are accessible. A self-consistency equation for the matrix elements Ta,b is found by
multiplying 〈〈φ(0)

b |V̂ to the left of Eq. (5.88). Since Eq. (5.107) implies Ta,b = 〈〈φ(0)
a |V̂ |φ+

b 〉〉, the
self-consistency equation for the Ta,b reads

Ta,b = Va,b +
∑
c

Va,c
εb − εc + i0+

Tc,b. (5.108)

Equation (5.108) is of importance to this thesis, since it enables the direct calculation of the matrix
elements of the Floquet T matrix without any additional steps. If the matrix elements Ta,b are known,
the Floquet S matrix can be calculated by Eq. (5.106). With the use of the Floquet S matrix other
scattering properties, such as the transmission coefficients, are found. In case of our time-periodic
SSH ratchet model (5.20), Eq. (5.108) is expanded in the Floquet-Bloch basis |φ(0)

a 〉〉 = |φ(0)
k,α,m〉〉,

as defined in Eq. (5.24), in order to obtain a self-consistency equation for the matrix elements
T(q,β,n),(k,α,m) = 〈〈φ(0)

q,β,n|T̂ |φ
(0)
k,α,m〉〉:

T(q,β,n),(k,α,m) = V(q,β,n),(k,α,m) +
∑
δ,l

∫ π

−π
dp

V(q,β,n),(p,δ,l)

εk,α,m − εp,δ,l + i0+
T(p,δ,l),(k,α,m). (5.109)

The integral in Eq. (5.109) is split in a principal value and resonant contributions using the distri-
butional identity 1/(x + i0+) = P.V.1/x − iπδ(x) following the procedure of Ref. [259]. Here P.V.
denotes the principal value.

At last, a deeper look is taken on the Floquet Brillouin zone structure of the Floquet S matrix.
Consider similar to the SSH ratchet model the case where the quantum number is given by a triple
consisting of the quasimomentum k, band index within one Floquet Brillouin zone α and Floquet
Brillouin zone index m. The quasienergy conserving Dirac delta function in Eq. (5.106) only allows
non-vanishing Floquet S matrix elements within one Floquet Brillouin zone, that means that there
are no transitions between different Floquet Brillouin zones. With the Floquet Brillouin zone struc-
ture of the scattering states |φ±k,α,m〉〉 it can be shown that the matrix elements repeat themselves
in each Floquet Brillouin zone S(q,β,m),(k,α,m) = S(q,β,0),(k,α,0). Thus it is sufficient to determine the S
matrix in one Floquet Brillouin zone in order to have knowledge about the S matrix in the whole
Floquet Hilbert space.
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5.4.3. Finding Transmission and Reflection Coefficients with the Floquet
S Matrix

In this work we are interested in applying the Floquet S-matrix theory to scattering problems in one
dimension. The central quantity to look at are transmission and reflection coefficients that describe
the probability for a quantum particle to be transmitted through the impurity or the probability
of reflection, respectively. In order to clarify how these quantities are calculated with the S-matrix
theory, we consider the simplest case of one-dimensional scattering, namly the scattering by a time-
independent impurity potential. For a position x far away from the impurity position at x = 0, the
scattering wave function can be generically parameterized by a superposition of plane waves

ψa(x) =

{
1√
2π
eikax + r√

2π
e−ikax, x < 0,

t√
2π
eikax, x > 0.

(5.110)

Here, t / r is the transmission / reflection amplitude, using which the transmission / reflection
coefficients are given in this simple case by T = |t|2, R = |r|2, respectively. In the language of
the Floquet S-matrix theory, these amplitudes are found with the overlap of a free state with the
scattering state at infinite late times. In order to see this argument, consider the transmission
coefficient defined in Eq. (5.110), which can be calculated by

tδ(k − q) =

∫ ∞
−∞

dx t
ei(k−q)x

2π
, (5.111)

i.e. by the scalar product of a plane wave with amplitude t and the free state eiqx/
√

2π. In analogy
to Eq. (5.111), the identity δ(f(x)) =

∑
x0, f(x0=0) δ(x− x0)/|f ′(x = x0)| is used in order to express

the matrix elements of the Floquet S-matrix Eq. (5.106) solely in terms of delta functions in k:

S(q,β,0),(k,α,0) = δ(k − q)δα,β −
∑
kβ

2πi

|vkβ ,β|
δ(q − kβ)T(kβ ,β,0),(k,α,0). (5.112)

In Eq. (5.112) it is assumed that the multiindex is of the form a = (k, α,m), with k as quasimo-
mentum, α as band index and m as Floquet-Brillouin zone index. The kβ in Eq. (5.112) are given
by the conservation of quasienergy εkβ ,β,0 − εk,α,0 = 0. Assuming that the group velocity vk,α,0 of
the incoming wave is positive, the transmission and reflection amplitudes read with Eq. (5.112) in
analogy to Eq. (5.111) [260,261]:

tα,β(k, kβ) = δα,β −
2πi

|vkβ ,β|
T(kβ ,β,0),(k,α,0), for kβ with vkβ ,β > 0, (5.113a)

rα,β(k, kβ) = − 2πi

|vkβ ,β|
T(kβ ,β,0),(k,α,0), for kβ with vkβ ,β < 0. (5.113b)

Transmission and reflection amplitudes are parameterized by the momentum of the incoming wave
k, the band α of the incoming wave as well as band β and momentum kβ of the outgoing wave.
The sign of the group velocity vkβ ,β decides whether a state with quasimomentum kβ contributes
to either transmission or reflection amplitude. If vkβ ,β > 0, the probability current assigned to this
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state flows in positive direction and is thus related to the transmitted part of the scattering wave
function. Vice versa, terms with vkβ ,β < 0 contribute to the reflection. Equation (5.113) tells us that
transmission and reflection amplitudes are fully determined if the matrix elements of the Floquet T
matrix and the group velocities are known. Similar to the Floquet scattering in three dimensions
discussed in chapter 3, the bands α can be seen as channels from and to which a particle can scatter.
In the following we assume that there is in each channel at most one kβ with positive group velocity
and at most one with negative group velocity. If kβ exists in channel β, the channel β is said to
be open, otherwise it is closed. Momentum-dependent transmission and reflection coefficients are
found in the Floquet case by dividing the modulus of scattered and incoming current [159,262]. The
coefficients read

Tk,α =
∑
β open
vkβ,β>0

|vkβ ,β|
|vk,α|

|tα,β(k, kβ)|2, (5.114a)

Rk,α =
∑
β open
vkβ,β<0

|vkβ ,β|
|vk,α|

|rα,β(k, kβ)|2, (5.114b)

where the summation goes over all open channels. Note, that definitions analog to Eq. (5.113) and
Eq. (5.114) can be made for an initial state with negative group velocity.

In the case of our ratchet model Eq. (5.20), the transport properties of a wave packet are also
of relevance. For a given initial state |ψ0〉, Eq. (2.9) dictates that the weight of each Floquet state is
found by Ak,α = 〈φ(0)

k,α,0(t0)|ψ0〉. In the following it is assumed that only Floquet-Bloch states with
either positive or negative group velocity are excited. In the case that only one channel contributes
in Eq. (5.114), averaged transmission and reflection coefficients are defined by

T̄ =
∑
k,α

Tk,α|Ak,α|2, (5.115a)

R̄ =
∑
k,α

Rk,α|Ak,α|2, (5.115b)

where the sum in Eq. (5.115) goes over all states with either positive or negative group velocity. Equa-
tion (5.115a) is found by calculating the norm of the state |ψ(t)〉 =

∑
k,α tk,αAk,αe

−iεk,α,0t/~|φ(0)
k,α,0(t)〉,

where |φ(0)
k,α,0(t)〉 are the Floquet-Bloch modes given by the solution of Eq. (5.24). A similar calcu-

lation can be done for Eq. (5.115b).

After having introduced the general expressions for transmission and reflection amplitude within
the Floquet S-matrix theory, we specialize to the case of the driven SSH ratchet (5.20). Here, only
two quasienergy bands reside inside each Floquet Brillouin zone. If we are not too close to a point
of almost flat bands, each channel only allows for either a single transmitted or a single reflected
wave. Since the impurity operator oscillates with the same frequency than the bulk, the quasienergy
conserving delta function in the Floquet S matrix Eq. (5.106) restricts the scattered wave to chan-
nels inside the first Floquet Brillouin zone. Thus, the Floquet S matrix is in this case effectively a
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2× 2-matrix, where with Eqns. (5.112) and (5.113) the non-singular parts at εk,α,0 read

S̃(k) =

(
tα=1,β=1(k, k) rα=2,β=1(−k, k)
rα=1,β=2(k,−k) tα=2,β=2(−k,−k)

)
. (5.116)

The transmission and reflection amplitudes define the matrix elements in Eq. (5.116). The corre-
sponding coefficients are given by Tk,α = |tα,α(k, k)|2 and Rk,α = |rα,β 6=α(k,−k)|2. Band averaged
transmission and reflection coefficients are defined using Eq. (5.115) by

Tα =
1

N0

∑
k

Tk,α, (5.117a)

Rα =
1

N0

∑
k

Rk,α, (5.117b)

where N0 is the number of unit cells. The band averaged quantities will be used in the further
discussion. They are of relevance, since the excitation of a single lattice site corresponds to an
almost uniform population of one quasienergy band at the ideal driving frequencies. Furthermore,
it turns out that at ideal conditions the dependence of the transmission and reflection coefficients
on k is barely visible, so that in many cases only little information is lost by the average.

5.4.4. Numerical Method for Calculating the Floquet T Matrix

Due to the complexity of the problem we have to apply numerical methods in order to find the
transmission and reflection coefficients. The way to go is to solve the self-consistency equation of the
Floquet T matrix (5.109), specialized to the filter model Eq. (5.73), numerically. With the numerical
result the transmission and reflection amplitudes are calculated with Eqns. (5.113). For the numeric
solution of Eq. (5.109) at first a cutoff in Floquet space mco is introduced, such that the T-matrix
T(q,β,n),(k,α,m) is considered to be nonzero only for |n|, |m| ≤ mco. The cutoff mco is chosen large
enough in order to guarantee that the result has converged, it is typically chosen to be of the order
of 10. Momentum space is discretized by using the grid kn = −π+ 2π/(Nk − 1)n, n = 0, ..., Nk − 1,
which is chosen such that it is symmetric around k = 0. This simplifies the procedure, since,
if a quasi momentum k is an element of the grid, then −k is as well. The quasienergies fulfill
εk,α,0 = ε−k,β 6=α,0, which is the condition of quasienergy conservation in the Floquet S matrix (5.106).
Thus transmission and reflection can be calculated using the elements of the T matrix within the
grid points kn, and no extrapolation is needed. In the end, the self-consistency equation (5.109) is
approximated by the following inhomogeneous linear system

T(ki,β,n),(kj ,α,m) = V(ki,β,n),(kj ,α,m) +
∑
r,δ,l

∆k
P.V

εkj ,α,m − εkr,δ,l
V(ki,β,n),(kr,δ,l)T(kr,δ,l),(kj ,α,m)

− iπ

|vkn,α|
[V(ki,β,n),(kj ,α,m)T(kj ,α,m),(kj ,α,m) + V(ki,β,n),(−kj ,δ 6=α,m)T(−kj ,δ 6=α,m),(kj ,α,m)].

(5.118)

In Eq. (5.118) ∆k is the step size of the grid ki in quasimomentum space and P.V
x

is defined such
that P.V

x
= 1/x for x 6= 0 and P.V

x
= 0 for x = 0 in order to approximate the principal value in the
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numerical calculation. We used 1/(x+i0+) = P.V.1/x−iπδ(x) in order to separate in principal value
and resonant part, while an occurring energy dependent delta function can be explicitly evaluated
due to the choice of the grid in k-space having the property that the Dirac delta function only peaks
at k-values that lie inside the grid. For calculating the quasienergies εki,α,m and the matrix ele-
ments V(ki,β,n),(kj ,α,m), the Floquet-Bloch equation Eq. (5.24) is numerically solved within the k grid.
For given multiindex (kj, α,m = 0) of the incoming wave, Eq. (5.118) translates to a set of linear
equations for the vector Tki,β,n = T(ki,β,n),(kj ,α,m=0), which is solved with common numerical methods.

In order to obtain more accurate results, the transmission and reflection coefficients calculated
by the numerics are extrapolated to infinitely many grid points in k-space Nk → ∞. This routine
is performed by calculating the transmission and reflection coefficients for different values of Nk,
which typically range from 80 < Nk < 200. Since the different grids in quasi momentum can be
incommensurate with each other, some results have to be extrapolated to the grid in k-space that is
used for the final result. At each final grid point the data are interpolated by a polynomial in 1/Nk.
The extrapolation of this polynomial to 1/Nk = 0 yields the desired limit Nk →∞ of transmission
and reflection coefficients. However, this method leads to unreliable results near k = ±π, as there
the two bands are degenerate. Also the hybridization of the bands at k ≈ 0 can cause this numerical
method to fail, as the group velocity drops to zero at this point. Nevertheless, in the case of helical
bulk bands, both transmission and reflection coefficients only depend weakly on quasimomentum
k and the above discussed extrapolation method is used in order to increase the accuracy of the
numerically calculated transmission and reflection coefficients.

5.5. Analysis of the Direction-Dependent Filter

In this section the properties of the direction-dependent filter are analyzed thoroughly. In Sub-
sec. 5.5.1 the working principle of the direction-dependent filter is formulated within the language
of the Floquet S-matrix theory. A Floquet S-matrix analysis of the direction-dependent filter is
performed in Subsec. 5.5.2, while Subsec. 5.5.3 reports on direction dependent reflection.

5.5.1. Understanding the Direction-Dependent Filter within Floquet
S-Matrix Theory

Here a deeper understanding of the direction-dependent filter is provided in the language of the
Floquet S-matrix theory. The central quantity to look at are the matrix elements of the impurity
operator in the Floquet-Bloch basis

V(q,β,n),(k,α,m) =
1

T

∫ T

0

dt〈φ(0)
q,β,n(t)|V (t)|φ(0)

k,α,m(t)〉. (5.119)

As defined by Eq. (2.45), they are given by the time average of the matrix elements of the impurity
operator V (t) and the Floquet-Bloch states |φ(0)

k,α,m(t)〉 calculated with Eq. (5.24). Applying Floquet
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Figure 5.16.: Density of the Floquet-Bloch states on sublattice A (blue solid) and
sublattice B (red solid), decay rate on sublattice A (blue dashed) and sublattice B
(red dashed) in case of the disconnected dimer model for (a) left-moving state at
k = −π/2, (b) right moving state at k = π/2. Parameters: ~ω = 0.8 J , δt = 0.2 T ,
γ0 = 0.9 J , ϕ = 0, Lt = 0.3 T .

S-matrix theory to the SSH ratchet model, the matrix elements diagonal in the quasienergy band
index α = β determine the magnitude of the transmission coefficients, while the matrix elements
coupling different bands α 6= β are related to the reflection coefficients.

For a simple discussion, the disconnected dimer model in the case of perfect linear bands is con-
sidered. The Floquet-Bloch states perform full sublattice oscillations during each driving period.
In Fig. 5.16 the Floquet-Bloch states and the time-dependent loss rates are depicted. As discussed
in Subsec. 5.2.3, time-reversal symmetry guarantees that the sublattice oscillation of right and left
movers is antipodal. As a result, the dissipation can be chosen at space-times where, for example,
the density of a left moving state is large and the density of a right moving state vanishes. This
situation is visible in Fig. 5.16, where a left moving state has a substantial overlap with the time-
dependent decay rates, while the overlap of a right moving state with the dissipation is zero. This
leads with Eq. (5.119) to finite matrix elements for the left movers and vanishing ones for the right
movers. As a result the right movers are transmitted with unit probability, while the left movers
are affected by the dissipative impurity potential and thus damped. The matrix elements coupling
left and right movers are zero in this case V(q,β,0),(k,α6=β,0) = 0. This implies that all reflection coeffi-
cients are vanishing. Since for the case of helical bands the Floquet-Bloch states are independent of
quasimomentum k, the above discussion holds at each k and it is sufficient to look at band averaged
transmission and reflection coefficients as defined in Eq. (5.117). We expect for the experimentally
motivated driving scheme a qualitatively similar behavior, since Figs. 5.16 and 5.17 are similar to
each other.

Within the Floquet S-matrix theory we can see why the non-hermiticity of the impurity is nec-
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Figure 5.17.: Density of the Floquet-Bloch states on sublattice A (blue solid) and
sublattice B (red solid), decay rate on sublattice A (blue dashed) and sublattice B
(red dashed) in case of the experimentally motivated driving scheme for (a) left-
moving state at k = −π/2, (b) right moving state at k = π/2. Parameters: ~ω =
~ωid

0 = 1.1948 J0, γ0 = 0.9 J , ϕ = 0, Lt = 0.3 T . Green dashed J1(t), purple dashed
J2(t).

essary to achieve direction dependent transport. Consider now the case of a hermitian impurity
operator. In this case the Floquet S matrix is unitary [118,250]. For the SSH ratchet, the S matrix
then is a unitary 2 × 2 matrix. The general structure of unitary 2 × 2 matrices implies that the
transmission and reflection coefficients at equal quasienergy are equal

Tk,1 = T−k,2, Rk,1 = R−k,2. (5.120)

When averaged over a full band, as it is done in our case, the transmission / reflection of right and
left movers are the same

T1 = T2, R1 = R2. (5.121)

This implies the absence of direction-dependent transport in the case of uniformly populated bands
for a hermitian impurity operator. It follows that the non-hermiticity of the impurity operator is a
key feature in order to achieve direction dependent transport as observed in our case.

We introduced the direction-dependent filter and discussed its working principle on a prototype
case. In the next section we ask the question, how the direction-dependent transport depends on
system parameters such as the strength of the decay γ0, the duration of the losses Lt, the driving
frequency ω and the center of the dissipative region controlled by ϕ.
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5.5.2. Floquet S-Matrix Analysis of the Direction-Dependent Filter

Dependence on Dissipation Strength and Duration

At first, the dependence of the transmission coefficients on the dissipation strength γ0 and duration
Lt is investigated. The bulk ratchet is assumed to be driven with ωid

0 , such that the bands are helical
and particle transport is possible with the velocity of one unit cell per driving period, while we
choose for the impurity ϕ = 0. In Sec. 5.3 this case is discussed for the disconnected dimer model in
order to create a direction-dependent filter. Figure 5.17 shows the dynamics of the Floquet-Bloch
states in the case of the experimentally motivated driving scheme (5.7) together with the temporal
form of decay rates and coupling constants. The dynamics of Floquet-Bloch states and decay rate
allows direction-dependent filtering: The dissipation is timed such that the overlap with the density
of a left moving state is large, while it is small for a right moving state.

Here we specialize in the case of the experimentally motivated driving scheme and appeal to Floquet
S-matrix theory in order to numerically calculate transmission and reflection coefficients. The results
for the disconnected dimer model have already been found by Eqns. (5.75) / (5.76). Figure 5.18 (a,b)
shows the band averaged transmission coefficient of right / left movers obtained using Eq. (5.117)
in dependence of the driving strength γ0 and duration Lt at ϕ = 0. The transmission of the right
movers is at unity for vanishing Lt and γ0, while at small, but finite parameters it remains on a
plateau of large transmission T1 = O(1). As for the experimentally motivated driving scheme the
sublattice oscillation is not separated in time from the intervals with finite decay, c.f. Fig. 5.17, the
right movers are also affected by the dissipation, such that T1 is a bit smaller than one for finite
parameters. The transmission of the left moving states decays fast to smaller values if γ0 or Lt is
increased. This implies that in a vast parameter region there is a pronounced direction dependent
transport T2 � T1. In particular if 0.1 < Lt/T < 0.3 and γ0 > J0 the transmission coefficient of the
right movers is near unity, while a left mover can be transmitted with a probability below 10−2, such
that we conclude to have designed a filter that works in a wide parameter region. In Fig. 5.18 (c)
the ratio T1/T2 is shown. This ratio quantifies the selectivity of the filter and exceeds in the shown
parameter range the value of T1/T2 > 103 while keeping T1 of the order of 1.

As a function of Lt, the ratio T1/T2 has a maximum at a finite duration Lt, and drops again
for larger Lt. This is related to a steep decrease of T1 at Lt ≈ 0.4 T which comes from the fact
that at these large values of Lt the dissipative region does not fit into the sublattice oscillation of
the Floquet-Bloch states. As a result both right and left movers are damped. In Fig. 5.18 (d)
the reflection coefficient R1 is displayed, which is, in difference to the disconnected dimer model,
non-zero. Nevertheless, in the parameter region where our system works most optimal as a direction-
dependent filter the transmission coefficient is close to zero if compared to the size of T1. Note that
both reflection coefficients are equal R1 = R2.
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(a) (b)

(c) (d)

Figure 5.18.: Transmission of (a) right and (b) left movers in dependence of the
dissipation strength γ0 and duration of the dissipation Lt. (c) Decade logarithm of
the ratio T1/T2, the white line marks the function maxLt(T1/T2)(γ0). (d) Reflection
coefficients R1 = R2. Figures (a-d) are made using the experimentally motivated
driving scheme for ~ω = ~ωid

0 = 1.195 J0.
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(a) (b)

Figure 5.19.: Transmission (a) and reflection (b) of right movers for the experimen-
tally motivated driving scheme with parameters L = 0.25 T , ϕ = 0 and γ0 = 1.5 J0.

Dependence on the Driving Frequency: Creating a Velocity Filter

In the case of helical Floquet-Bloch bands we saw that the dissipative impurity acts as a direction-
dependent filter. But what happens if one goes away from this ideal case by tuning the driving
frequency to other values than ωid

0 ?

The question is answered by Fig. 5.19, where transmission and reflection coefficient of the right
movers are shown in color code in dependence of quasimomentum k and driving frequency ω in the
case of the experimentally motivated driving scheme. The coefficients are symmetric in k, so we
restrict to showing them for k > 0 only. At ω = ωid

0 the transmission coefficient T1 is homogeneous
and close to one, while the reflection is near zero at each k. Shifting the driving frequency away from
ω = ωid

0 , the value of T1 drops to lower values in the vicinity of k = 0, while the reflection coefficient
peaks at k = 0. The further ω is away from ωid

0 , the wider are the areas of small transmission and
non-zero values of the reflection coefficient. The numerical analysis shows that the transmission
coefficient of the left movers is smaller than 10−1 in the examined parameter range. In summary, we
find that the direction-dependent filter operates optimal at ω = ωid

0 with minimally damped right
movers and almost vanishing reflection coefficients.

The fact that transmission drops near k = 0 can be explained by the hybridization of the quasienergy
bands, that mixes left and right movers near k = 0, cf. Subsec. 5.2.2. As discussed in Subsec. 5.2.2,
this hybridization leads to a reduced amplitude of the Rabi oscillation of the Floquet-Bloch states.
As a result, both right and left movers are affected by the dissipation for quasimomenta k in the
region of the hybridization. This leads to a drop of the transmission coefficient at the corresponding
values of k. In a similar vein the reflection coefficient peaks at k = 0 when moving away from the
ideal driving frequency ωid

0 . This is explained by the fact that the hybridized states lead to finite
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Figure 5.20.: Transmission coefficient of right movers (blue solid) and left movers
(blue dashed), reflection coefficient of right movers (red solid) and left movers (red
dashed) with ω = ωid

0 and Lt = 0.25 T . (a) Disconnected Dimer driving scheme
with δt = 0.25 T , (b) Experimentally motivated driving scheme.

matrix elements V(k,1,n),(q,2,m) coupling the different channels, which in turn implies a non-vanishing
reflection coefficient.

The dependence of the transmission and reflection coefficients shown in Fig. 5.19 on k can be used
in order to create a velocity-dependent filter. The Floquet-Bloch states with a relatively slow group
velocity are located near k = 0 and correlate with a smaller transmission coefficient. This implies
that away from ideal driving the driven impurity works as a velocity-dependent filter that reflects
and dissipates the slow moving parts of a wave packet.

Dependence on Temporal Location of the Dissipation

In this part we ask the question what happens if the interval of active dissipation is shifted against the
coupling constants in time. This is achieved by changing the parameter ϕ, as defined in Eq. (5.74).
Here it is assumed that the system is driven at the ideal driving frequency ωid

0 , such that the bands
are helical. Figure 5.20 shows the resulting transmission and reflection coefficients for both the
disconnected dimer and the experimentally motivated driving scheme. Both plots show that the
maxima of the transmission coefficients are reached at ϕ = 0, π, confirming that we chose ϕ for
an optimal direction-dependent filter in the previous section. At ϕ = 0 the left movers are filtered
out, at ϕ = π the right movers are dissipated. While for the disconnected dimer driving scheme
a maximal transmission of T1/2 = 1 can be achieved, this is not the case for the experimentally
motivated scheme. The reason for this effect is that in the case of the experimentally motivated
driving scheme the coupling constants never vanish, such that the dissipation always affects both
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(a) (b)

Figure 5.21.: Simulations in the disconnected dimer model with ~ω = J , δt = T/4
such that optimal transport is possible. The impurity parameters are γ0 = 10 J ,
ϕ = π/2 and Lt = T/4. The probability density of the wave function is given in
color code. White lines border the dissipative region, while space times with finite
dissipation are marked by gray meshes. Black lines give active coupling constants.
(a) right moving state, (b) left moving state.

right and left movers. Away from ϕ = 0, π the ratio T1/T2, T2/T1 decreases in a similar way in
both considered driving schemes. If the dissipation is active at times where the Floquet-Bloch states
perform the sublattice oscillations, both sublattices are occupied by the Floquet-Bloch states and
both left and right movers are affected by the dissipation almost equally.

The reflection coefficients peak at ϕ = π/4, 3π/4. Here the dissipation is centered around the
time where the states populate both sublattices equally within a Rabi oscillation. This implies large
matrix elements V(k,1,m),(q,2,n) and strong coupling between the channels, which in turn is reflected
in the peak of the reflection coefficients. Remarkably, the reflection coefficients are not symmetric
around ϕ = π/2. This interesting feature allows for direction-dependent reflection and is discussed
in the next subsection.

5.5.3. Direction-Dependent Reflection

In Fig. 5.20 an asymmetry of the reflection coefficients can be observed. This feature is termed as
direction-dependent reflection, since the size of the reflection coefficient depends on the direction
of the particle. Figure 5.21 visualizes this effect by showing two different scenarios in the case of
ϕ = π/2 and using the disconnected dimer scheme (5.8): In Fig. 5.21 (a) a right moving wave packet
is impinging on the impurity, in Fig. 5.21 (b) a left moving packet is coming. While the right moving
packet is damped, leading to both vanishing transmission and reflection, the left moving packet is
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partially reflected by the dissipative impurity.

In order to quantify this effect, a discussion based on an analytical calculation is provided in the case
of the disconnected dimer model. For simplicity we choose ϕ = π/2 and assume that the hopping
strength and the decay rate activate and deactivate at the same times by choosing the parameters
δt = LT, t1 = T/4−δt/2. As shown in Fig. 5.21 (a), this choice implies that the sublattice oscillations
are timed such that a right moving wave packet enters the lattice sites of the dissipative impurity
without being immediately affected by the dissipation. Inside the impurity the coupling constant
and the decay rates are active at the same time. The equations of motion with active hopping and
decay rate γA(t) read

i~∂tψ0,A(t) = Jψ0,B(t)− iγ0ψ0,A(t), (5.122a)
i~∂tψ0,B(t) = Jψ0,A(t), (5.122b)

while the initial conditions are in the case of a right mover ψ0,A(t1) = 1, ψ0,B(t1) = 0. The portion
of the wave function that remains on site (0,A) after the decay rate is turned off will move to the
left and becomes the reflected part of the wave packet. Using model (5.122) this part becomes

ψ0,A(t1 + Lt) =
1

2
√
γ2

0 − 4J2

[
(γ0 +

√
γ2

0 − 4J2)e−(
√
γ2

0−4J2)Lt/(2~)

+(
√
γ2

0 − 4J2 − γ0)e−(γ0−
√
γ2

0−4J2)Lt/(2~)

] (5.123)

showing that the particle gets damped before it can perform the sublattice oscillation inside the
dissipative region. Performing the limit of large γ0 we arrive by using

√
γ2

0 − 4J2 = 2γ0 − 2J2/γ0 +
O(1/γ2

0) at a simplified expression

ψ0,A(t1 + Lt) ≈ e−γ0Lt/~ +
J2

γ2
0

e−J
2Lt/(~γ0). (5.124)

We neglect possible contributions that stem from a similar effect from the site (0, B), since these
contributions are exponentially damped compared to the result in Eq. (5.124). The reflection co-
efficient is given by the modulus squared R1 = |ψ0,A(t1 + LT)|2. For infinite large γ0 the reflection
coefficient of the right movers R1 goes to zero.

In Fig. 5.21 (b) a left mover is considered. Here the coupling constant that enables the sublat-
tice oscillation from outside to inside the impurity is in time with the decay rate of the adjacent
impurity site. This situation is described by the following equations of motion

i~∂tψ1,A(t) = Jψ0,B(t), (5.125a)
i~∂tψ0,B(t) = Jψ1,A(t)− iγ0ψ0,B(t), (5.125b)

with the initial conditions ψ1,A(T/2 + t1) = 1, ψ0,B(T/2 + t1) = 0. A strong decay rate γ0 in
Eq. (5.125) leads to a detuning of the Rabi frequency of the sublattice oscillation, c.f. the exponent
in Eq. (5.123). As a result, a major portion of the state stays outside the dissipative region, the
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Figure 5.22.: Transmission (blue T1 = T2) and reflection (red dotted R1, red dashed
R2) coefficients for the disconnected dimer model with ~ω = J , δt = T/4, Lt = T/4,
φ = π/2. The black dotted R1 with Eq. (5.124), black dashed R2 with Eq. (5.126).

little portion that gets inside is damped and will be neglected in the further calculation. The portion
that stays outside the dissipative region becomes a right moving state in the next cycle of the drive
and is thus the reflected part of the wave packet. With a calculation similar to the one of the right
movers, the reflection coefficient of the left movers is found in the limit of large γ0 to be equal to

R2 ≈ e−2J2Lt/(~γ0). (5.126)

For sufficiently large dissipation strength, the reflection coefficient for a left mover is of the order of
one.

In Fig. 5.22 the formulas (5.124) and (5.126) are compared to the results of the Floquet S-matrix
theory for the disconnected dimer model. It holds that at small γ0 both transmission coefficients are
near one and the reflection coefficients are close to zero and equal to each other. The transmission
coefficients decline to Tα → 0 for γ0 → ∞ and α = 1, 2. For γ0 > 0 the reflection coefficients differ
significantly from each other. For γ0 →∞ the right movers are totally absorbed while the reflection
coefficient of the left movers R2 is substantially larger than R1. The results of the Floquet S-matrix
theory are shown up to log10(γ0/J) = 0.6, both curves of numerical data and analytical approxima-
tion adapt to each other at that point. For larger γ0 the Floquet S-matrix yields unreliable results
for given parameters. For γ0 → ∞ the right movers are totally absorbed R1 → 0, while the left
movers are reflected with unit probability R2 → 1.

5.6. Results of the Waveguide Experiment

In this subsection the results of the waveguide experiment performed by Z. Fedorova from University
of Bonn are presented.
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(a) (b)

Figure 5.23.: Figure created by Z. Fedorova from University of Bonn and pub-
lished in Ref. [216]. (a) Real space surface plasmon-polariton intensity distribution,
(b) Fourier space surface plasmon-polariton intensity distribution in color code for
driving frequencies Ω1 coresponding to ωid

0 and Ω2 larger than ωid
0 .

At first, directed transport in the Hamiltonian ratchet is characterized. In order to do so, a single
waveguide is excited by shining a laser beam onto a grating coupler, for details see Ref. [216]. This
configuration corresponds in analogy to quantum mechanics to an initial state located at a single
lattice site. Figure 5.23 (a) shows the resulting real space intensity distribution measured by leakage
radiation microscopy, while Fig. 5.23 (b) displays the corresponding quantities in Fourier space. For
the driving frequency Ω1, that corresponds to ωid

0 in the experiment, ratchet transport is almost
perfect. Note that in the experiment the driving frequency has the unit of an inverse length, for
better distinction to actual frequencies we use the symbol Ω. The intensity of the surface plasmon-
polaritons is transported almost dispersionless with positive velocity, while only little intensity decays
into the −x direction. The corresponding figure in Fourier space shows linear quasienergy bands
with almost vanishing band gaps. The fact that the slope of most bands is positive confirms that in
a high proportion Floquet-Bloch states with positive group velocity are excited. The lower figures
show the case of the driving frequency Ω2 that is substantially higher than Ω1. Here the ratchet
effect is less pronounced compared to Ω1, the transport is more dispersive and there is a substantial
transport in −x direction. This agrees with the results found by the theoretical investigation in
Subsec. 5.2.4. The corresponding quasienergy bands are shown in Fig. 5.23 (b). Here both right and
left movers are populated, while band gaps are clearly visible in the spectrum.

In order to investigate the direction-dependent filter, the parameters of the waveguides on the sample
are chosen such that optimal bulk transport is possible, including a the driving frequency of ω ≈ ωid

0 .
This can be seen in Fig. 5.24 by the almost dispersionless directed propagation of the state in real
space.
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(a) (b)

Figure 5.24.: Figure created by Z. Fedorova from University of Bonn and published
in Ref. [216]. Real space surface plasmon-polariton intensity distribution in color
code, white lines mark the dissipative region. The parameters are chosen such that
maximal ratchet transport is possible and that the dissipative impurity acts as an
direction-dependent filter. Surface plasmon polaritons are excited at input A (x<0)
and input B (x>0), while x denotes the transverse position on the sample in units of
the unit cell a0 ≈ 4 µm. The plots on the right side display the intensity distribution
after the propagation through the sample at z = 5 T , red arrows mark reflected
waves. The impurity parameters are γ0 ≈ 1.5 J0, ϕ ≈ 0. The length of the chromium
stripes inside the dissipative region is (a) Lt = 0.3 T , (b) Lt = 0.15 T .

The results shown Fig. 5.24 verify that the dissipative impurity acts as a direction-dependent filter.
While the surface plasmon polaritons that travel with positive velocity can pass the impurity only
with little decay, the states moving with a negative velocity are almost completely dissipated by the
impurity. This is an ample result, since it demonstrates that such a filter can be really built. The
sample shown in Fig. 5.24 (a) is made with Lt = 0.3 T , the one of Fig. 5.24 (b) is designed with
Lt = 0.15 T . In both cases the transmission of the left movers is below the noise level T2 < 10−2, while
for the parameters of Fig. 5.24 (a) T1 ≈ 0.53 and for the parameters of Fig. 5.24 (b) T ≈ 0.92 was
measured [216]. This again confirms that the proposed driving scheme of the impurity parameters
works as an excellent direction-dependent filter. As predicted by the Floquet S-matrix analysis the
transmission coefficient of the right movers T1 slightly decreases with increasing loss duration Lt.

5.7. Conclusion and Outlook

In this chapter the realization of a Hamiltonian quantum ratchet based on a time-periodically driven
SSH model is proposed. The model is inspired by the conditions of the surface plasmon-polariton
waveguide array experiment. Directed transport with the velocity of one unit cell per driving period
is possible at certain driving frequencies, which obey a resonance condition. This situation is much
easier to realize in an experiment compared to adiabatic Thouless pumping [236, 237]. In contrast
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to other realizations of a Hamiltonian ratchet [219, 232], a maximal current can be reached with a
relatively simple initial state distribution. In addition, it is discovered that the band structure and
the magnitude of transport is highly tunable. By adjusting the driving frequency a configuration
with helical quasienergy bands can be reached. This helicity is related to quantized transport of
one unit cell per driving period. But also driving frequencies with flat bands are possible. Here,
transport is absent. This high tunability of the quasienergy band structure is what makes the model
interesting for future investigations.

The transport in a Hamiltonian quantum ratchet significantly depends on the initial state. In
order to overcome this limitation, a direction-dependent filter is introduced. The filter is realized by
time-dependent dissipation placed on a few central lattice sites and filters out the states moving in
negative direction while leaving the ones moving in positive direction almost unimpaired. This re-
sult implies that it is possible to create a Hamiltonian ratchet that intrinsically allows for a directed
current independent of the initial state, as all states contributing to a current in negative direction
are damped out by the filter. We investigate the direction-dependent filter using Floquet S-matrix
theory which we originally derive for a time-periodic, dissipative impurity operator, as it is required
by this setting. As a key result direction-dependent transmission coefficients are observed. There
is a vast region of parameters where a left moving state is filtered out almost completely while the
transmission of a right mover is of close to one.

Both ratchet and filter are realized by the surface plasmon-polariton waveguide array experiment,
where the ratchet effect is observed by measuring directed transport. As prominent result, the
direction-dependent filter is found to work as proposed in the waveguide experiment: The right
movers are transmitted with almost no losses, while the transmission of the left movers is below
noise level.

For future research activities it might be of interest to realize both ratchet scheme and dissipa-
tive filter with ultracold atoms in an optical lattice. The bipartite unit cell can be realized with
an optical superlattice and time dependent coupling constants by a periodic modulation of a phase
difference [263]. Ref. [263] realized a Touless pump based on the Rice-Mele model with ultracold
fermions. The Rice-Mele model differs from the SSH model by an additional staggered on-site po-
tential. It remains a future task to either get rid of this additional potential in order to realize the
time-dependent SSH model in an ultracold gas experiment, or to extend the theory of the Hamilto-
nian ratchet to a fast Thouless pump. The direction-dependent filter is achieved by applying time
dependent losses on a few lattice sites. This might be realized for example by shining an electron
beam onto the ultracold atoms, as discussed in Ref. [264]. For realizing a filter, the electron beam
should be focused one a single or a few lattice sites. In order to describe the ultracold gas realization
of the direction-dependent filter theoretically, a more sophisticated description of the dissipation
compared to the simple decay rates used in this work has to be considered. One way to do so is to
describe the dissipation by a Lindblad approach, which may include new effects such as the dephas-
ing of a state [199]. However, the description of open Floquet systems is a nontrivial task [265,266],
such that a future investigation might additionally develop new tools for the theoretical investigation
of a wide class of models.
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We conclude on the main points of this thesis and give a brief outlook on further research topics.

Motivated by the relevance to ultracold gas experiments, we investigate in Ch. 3 Feshbach reso-
nances within the framework of scattering theory. As a main result, we relate scattering resonances,
that are induced by the time-periodic driving of a pseudo potential, to the physics of a Feshbach
resonance in the Floquet Hilbert space. Using the Floquet-Feshbach resonance theory we find that
the shape of these resonances is given by a simple formula. This proves that the periodic drive
can tune the scattering length to arbitrary positive and negative values. Further, we calculate the
resonance parameters such as position and width, and show that they depend on the details of the
periodic drive, while the atom loss remains comparably small.

The Floquet-Feshbach resonance theory is a powerful tool for understanding and calculating the
resonance properties in periodically driven impurity systems. Future works apply this formalism
to other situations, such as radial potentials with finite range, the tunneling through a periodically
driven barrier in one dimension, or even impurity problems in a quantum many-body system.

In a further part, we investigate a periodically driven multi-channel model of atom scattering.
Floquet-Feshbach resonances, which give rise to finite atom loss, emerge in this model. An inelastic
rate coefficient that is asymmetric around the resonance position is directly linked to scattering in
the Floquet Hilbert space. This is an important result, since this asymmetry in the rate coefficient,
serving as a probe of Floquet physics, can be measured by inelastic loss spectroscopy [18, 29]. Our
multi-channel model serves as prototype of a further discussion about the influence of strong time-
periodic fields on ultracold atom scattering.

Chapter 4 stays in the field of ultracold quantum gases and investigates the periodic driving of
the interaction strength in a one-dimensional ultracold bosonic gas. In comparison to Ch. 3, our in-
terest lies explicitly in analyzing a quantum many-body system, and we consider driving frequencies
that are adiabatic on the energy scales of the scattering problem of Ch. 3. As a central result, we
observe that the drive induces a standing wave pattern in the density-density correlation function of
the ultracold gas. The origin of this pattern is revealed within the Tomonaga-Luttinger description
of the underlying model. There it is found that the periodic drive generates density waves at wave
vectors that obey the condition of a parametric resonance.

A parametric resonance is in general associated with an exponential increase of a physical quan-
tity in time, such that the drive resonantly imparts energy into the system. This is in contrast to
the nature of the Feshbach resonance, which is based on a quantum mechanical interference effect
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leading to a sharp change of the scattering phase shift. However, the two above discussed resonance
phenomena have in common that they appear in the case that two energies come close to each other.
A Feshbach resonance emerges if the energy of a bound state equals the energy of the scattering
state, while a parametric resonance in the Tomonaga-Luttinger description is given by the condi-
tion that an integer multiple of drive quanta has the same energy as a pair of bosonic particles.
Further, in both cases the system shows a pronounced response at resonance. At the position of
a Feshbach resonance the scattering length diverges, while at a parametric resonance the Floquet
steady state solution of the driven Tomonaga-Luttinger Liquid model shows a prominent peak in the
presence of damping. This again demonstrates that a resonance is related to an enhanced response
of the system to an external influence, which fits to the introduction of the term "resonance" in Ch. 1.

Mathematically, we find the Floquet steady states of the periodically driven Tomonaga-Luttinger
Liquid by introducing the Floquet-Bogoliubov theory. With this theory we generalize the well-known
Bogoliubov transformation to periodically driven Hamiltonians and thus find a framework that is
capable of calculating Floquet steady states in quantum many-body systems.

The Floquet-Bogoliubov theory has been applied in Refs. [181, 267, 268] to the case of magnonic
excitations in magnetic materials that are subject to a time-periodic magnetic field. Further works
might generalize the Floquet-Bogoliubov theory to fermionic models or investigate, how possible
non-linearities in a theory influence the parametrically induced density-wave patterns. It is also of
interest to couple the system to a bath and investigate if this configuration can stabilize the dynam-
ics without destroying the nontrivial Floquet-induced correlations.

In Ch. 5 we consider a periodically driven Su-Schrieffer-Heeger model, which is based on the condi-
tions of a surface plasmon-polariton waveguide array experiment. The periodic drive is designed to
make the system act as a Hamiltonian ratchet. We find that there are driving frequencies which are
resonant with the sublattice oscillations of the Floquet-Bloch states. As a result, at these resonant
frequencies ratchet transport is possible with the velocity of one unit cell per driving period, which
is the maximum that can be achieved within this model. This behavior fits into the phenomenology
of a resonance, in this case the velocity is the quantity that is maximal at a resonant frequency. The
major drawback of our ratchet model is that the current depends on the initial state. In order to
remove this dependence on the initial state, the direction-dependent filter is introduced as a time-
periodic, dissipative impurity. We emphasize that we derive for the theoretical analysis of this model
an S-matrix theory that deals with the combination of a non-hermitian, time-periodic impurity and
a bulk, that is driven with the same frequency as the impurity. The findings of the S-matrix analysis
agree with the results of the plasmon-polariton waveguide experiment.

A future way of research would be to apply the filter in ultracold gas experiments. Here, a de-
scription of the dissipation that goes beyond decay rates is necessary, it will be an interesting task
to describe such a dissipation theoretically.
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A. Relating a Recursion Relation to a
Continued Fraction

In this appendix it is shown that the ratio of recursion coefficients can be calculated by a continued
fraction. Consider a general, tridiagonal recursion relation

Anxn +Bnxn+1 + Cnxn−1 = hn, n ∈ Z (A.1)

with the boundary conditions limn→±∞ xn = 0 and inhomogeneity hn with hn = 0 ∀n ≥ −1.
Equation (A.1) resembles the case of Eq. (3.82). Here, we specialize to the positive indices and aim
to compute the ratio x0/x−1. For a inhomogeneity hn, that also vanishes for large negative indices,
a similar discussion is possible for the negative indices. We define the fraction

fn =
xn−1

xn
. (A.2)

Dividing recursion (A.1) by xn we arrive at the following equation for the fn:

fn = bn +
an+1

fn+1

. (A.3)

with bn = −An/Cn, an+1 = −Bn/Cn. With this definition we formulate the following theorem.

Theorem 1

If Eq. (A.3) is fulfilled for each n ∈ N0, the following relation holds

f0 = b0 +
a1

b1 + a2

...bn+
an+1
fn+1

. (A.4)

Proof of Theorem 1
The proof goes via mathematical induction. In the base case of n = 0, Eq. (A.4) equals Eq. (A.3)
for the case n = 0, and thus Eq. (A.4) holds true. The induction step follows directly from inserting
Eq. (A.3) into Eq. (A.4) and using the fact that this procedure is consistent with the structure of a
continued fraction.

Performing the limit n → ∞ of Eq. (A.4), which is assumed to exist, we can express f0 by an
infinite continued fraction

f0 = b0 +
a1

b1 + a2

b2+
a3

...

. (A.5)
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B. Floquet-Feshbach Resonance Theory
for Multi-Channel Models

In this appendix we give a derivation of Eq. (3.236). The first step is to write down an equation
for the Floquet bound states of the model Eq. (3.217). In analogy to Sec. 3.8, this is achieved by
truncating Eq. (3.233) to the closed channels only. Introducing the multiindex a = (µa, na) and the
notation Va,b = 〈〈µa, na|Â|µb, nb〉〉, this equation can be written as

(Î + V̂ iK̂α)Dα = 0, for closed channels only (B.1)

where the wave function in the closed channels is given by Rα,a(r) = −iDα
a e

ikα,ar/(kα,ar) and
(K̂α)a,a = kα,a =

√
Eα − Ea − Eσ0,n0 as purely imaginary number. We again emphasize that

Eq. (B.1) is truncated to the closed channels only. Similar to Eq. (3.111), the normalization of
the bound state is incarnated into the condition

1 =
∑

a, k2
a<0

|Dα
a |2

2ik3
α,a

. (B.2)

Equations (B.1) and (B.2) are solved numerically and yield the vector Dα as well as the quasienergies
Eα of the bound state.

We now want to solve the Floquet equation of the full coupled channel model while assuming that
the wave function in the closed channels is proportional to the one of a single bound state |φα〉〉

|φclosed channels〉〉 = Aα|φα〉〉. (B.3)

The entrance channel is labeled by ain = (µin, nin) and contains the wave function

Rain
=

sin(kr)

kr
+ f

eikr

r
. (B.4)

The wave function in the inelastic channels is given by

Ra(r) = −iBa
eikar

kar
, (B.5)

where the ka are determined by Eq. (3.231).

The equivalent to Eq. (3.195) reads in the Floquet multichannel calculation

(Eα − ε)Aα = −
∑
a,k2

a<0

Dα
aVa,ain

(1 + ikf)−
∑

a,k2
a<0,

b,k2
b>0

Dα
aVa,bBb. (B.6)
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For the entrance channel we find

f + Vain,ain
(1 + ikf) +

∑
b,k2

b>0

Vain,b, Db +
∑
b,k2

b<0

Vain,bDb = 0. (B.7)

while it holds for the inelastic channels that

Ba =
∑

a′, k2
a′>0

Λa,a′

 ∑
b, k2

b<0

Va′,bDb + Va′,ain
(1 + ikf)

 (B.8)

with the matrix Λa,b defined by
∑

b,k2
b>0 Λa,b(iδb,c/kb − Vb,c) = 1, a, b, c as indices of open channels.

Inserting Eq. (B.8) into Eq. (B.6) and then finally in Eq. (B.7) an expression of the energy dependent
scattering length in the entrance channel is found

aE = abg −
Ξα

Eα + δEα + iγα − ε
+ anon−res (B.9)

In Eq. (B.9), the shift δEα is found as real part and the loss coefficient γα is imaginary part of the
quantity

δEα + iγα =
∑

a,k2
a<0,

b,k2
b>0,

a′,k2
a′>0,

b′,k2
b′<0

Dα
aVa,bΛb,a′Va′,b′D

α
b′ . (B.10)

The variable Ξα determines the width of the resonance and is given by

Ξα =


∑

b, k2
b>0,

a′, k2
a′>0

b, k2
b<0

Vain,bΛb,a′Va′,bD
α
b +

∑
b, k2

b>0

Vain,bD
α
b



×


∑

a, k2
a<0,

b, k2
b>0,

a′, k2
a′>0

Dα
aVa,bΛb,a′Va′,ain

+
∑

a, k2
a<0

Dα
aVa,ain

 .

(B.11)

The non-resonant part of the scattering length is determined by

anon−res =
∑

b, k2
b>0,

a′, k2
a′>0

Vain,bΛb,a′Va′,ain. (B.12)

The position of the resonance δα at zero energy is found by the condition

Eα(δα) + δEα(δα) = 0. (B.13)

Similar to Eq. (3.206) an additional energy shift δEα is present. With this Eq. (B.9) can be easily
reduced to the scattering length (3.236). We emphasize that the physical interpretation of the
quantities in Eq. (B.9) is analog to Eq. (3.204).
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C. Non-Hermitian Floquet Theory

In this appendix a Floquet theory for a non-hermitian Hamiltonian H(t) is presented. Since Floquet
theory has been introduced to a set of linear ordinary differential equations with periodic coefficients
[101], it can be readily generalized to non-hermitian Hamiltonians in the quantum mechanical setting
[98]. The Floquet states are still of the form

|ψα(t)〉 = e−iεαt/~|φα(t)〉, (C.1)

but the quasienergy εα is in general complex. It is seen in Eq. (C.1) that the Floquet-Brillouin
zone structure still valid as defined in Eq. (2.8). In Eq. (C.1) and in the following, α labels a state
within one Floquet-Brillouin zone, while m serves as Floquet-Brillouin zone index. The notation in
Floquet space as defined in Sec. 2.2.2 also holds for the non-hermitian case. With the definition of
the Floquet Hamiltonian H(t) = H(t)− i~∂t and the notation of Subsec. 2.2.2 the Floquet equation
reads

Ĥ|φα,m〉〉 = εα,m|φα,m〉〉. (C.2)

Equation (C.2) looks exactly as in the hermtian case, but the eigenstates |φα,m〉〉 are in general not
orthogonal. This is seen by the following relation

〈〈φα,m|φβ,n〉〉 =
〈〈φα,m|(Ĥ − Ĥ†)|φβ,n〉〉

εβ,n − ε∗α,m
, (C.3)

where it is assumed that ε∗α,m 6= εβ,n. In the hermitian case the right hand side of Eq. (C.3) is
zero such that the orthogonality of the |φα,m〉〉 states follows. In the non-hermitian case, however,
Ĥ 6= Ĥ† such that in general the right hand side of Eq. (C.3) as an expectation value of a non-
vanishing operator can become non-zero. This indicates that the states |φα,m〉〉 are non-orthogonal.
This issue is resolved by introducing biorthogonal quantum mechanics [98,193]. The key is to define
a basis of the Hermitian adjoint Hamiltonian

Ĥ†|χα,m〉〉 = hα,m|χα,m〉〉. (C.4)

In the following we assume that both |φα,n〉〉 and |χα,n〉〉 form a basis. In this case we can label the
states such that [193]

εα,n = h∗α,n, (C.5)

while the states |φβ,n〉〉 and the adjoint states |χα,m〉〉 obey biorthonormality [98,193]

〈〈χα,m|φβ,n〉〉 = δα,βδn,m (C.6)
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and a biorthonormal completeness relation∑
α,m

|φα,m〉〉〈〈χα,m| = IF . (C.7)

Following Ref. [193], the expectation value of an operator A(t) is the system is in a Floquet state is
defined as

〈A(t)〉α = 〈χα,0(t)|A(t)|φα,0(t)〉. (C.8)

Similar to Eq. (2.43) we find that ∑
α

|φα,0(t)〉〈χα,0(t)| = IR. (C.9)

Using Eq. (C.9), any state |ψ0〉 can be expanded in the |φα,n〉〉 basis

|ψ0〉 =
∑
α

cα|φα,0(t0)〉, (C.10)

while t0 is assumed as initial time. Using Eqns. (C.1) and (C.10), the time-evolution operator for a
time-evolution with respect to H(t) calculates to

U(t, t0) =
∑
α

e−iεα,0(t−t0)/~|φα,0(t)〉〈χα,0(t0)|, (C.11)

which looks similar to Eq. (2.9) that has been derived for the hermitian case. The key difference is
that in Eq. (C.11) we project at initial time with the adjoint basis.
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D. Inductive Generation of the
Floquet-Bogoliubov Spectrum

Here we prove via mathematical induction that the quasienergies and the Floquet modes of Hamil-
tonian (4.33) are found by Eqns. (4.53) and (4.54). Furthermore we prove that the Floquet modes
form a basis. The base case is shown in Sec. 4.3.3, where the existence of the Floquet vacuum state
is proven and its quasienergy is found.

For the induction step we use the result of Eq. (4.52), from which follows that if |φn(t)〉 is a Floquet
state, also |φn+1(t)〉 is and that the quasienergy is indeed given by Eq. (4.53).

For showing that |φn+1(t)〉 is normalized to one, we assume that |φn(t)〉 is normalized to one. Note
that in Sec. 4.2 is is shown that the Floquet vacuum state is properly normalized. For performing
the induction step we use

β†(t)|φn(t)〉 =
√
n+ 1|φn+1(t)〉. (D.1)

With [β(t), [β†(t)]n] = n[β†(t)]n−1 it follows that

β(t)|φn(t)〉 =
√
n|φn−1(t)〉. (D.2)

Using Eqns. (D.1) and (D.2) it can be found that the two states have equal norm

〈φn+1(t)|φn+1(t)〉 = 〈φn(t)|φn(t)〉, (D.3)

which implies 〈φn+1(t)|φn+1(t)〉 = 1. For showing that to states with different index are orthogonal,
the following inner product is calculated

〈φn(t)|φj(t)〉 = 〈φ0(t)| [β(t)]n[β†(t)]j√
n!j!

|φ0(t)〉, (D.4)

with j < n. With the iterativ evaluation of pairs of operators β(t)β†(t), Eq. (D.4) is simplified to

〈φn(t)|φj(t)〉 = (Πj
l=1)〈φ0(t)|[β(t)]n−j|φ0(t)〉. (D.5)

Using the condition (4.50) of the Floquet vacuum state, Eq. (D.5) implies that two distinct Floquet
states are orthonormal

〈φn(t)|φj(t)〉 = 0. (D.6)
In summary, we have shown that the Floquet modes given by Eq. (4.33) are orthonormal. As the Flo-
quet modes (4.33) can be mapped by a unitary transformation to a static eigenbasis, c.f. Eq. (4.58),
we found all Floquet modes within one Floquet Brillouin zone by Eq. (4.33). Solutions from other
Floquet Brillouin zones can be reached via transformation (2.8). This shows that the that the
Floquet modes given by Eq. (4.33) form an orthonormal basis.
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E. Transformation to Rotating Frame in
Floquet-Bogoliubov Transformation

In this appendix it is shown how Hamiltonian (4.33) with parameters

A(t) = A0 + 2A1 cos(ωt), B(t) = B0 (E.1)

can be transformed to Eq. (4.96) with the time-dependent transformation Eq. (4.95). Starting point
is to express the Hamiltonian (4.33) in terms of the generators J0, J± of the SU(1,1) algebra which
obey the following commutation relations

[J0, J±] = ±J±, [J+, J−] = −2J0. (E.2)

A representation of the SU(1,1) algebra is given by

J0 =
b†b+ bb†

4
, J+ =

b†b†

2
, J− =

bb

2
. (E.3)

With Eq. (E.3) Hamiltonian (4.33) can be written as

H(t) = 2A(t)J0 +B(J+ + J−)− A(t)

2
. (E.4)

The transformation Eq. (4.95) is expressed in terms of the SU(1,1) algebra as

Q(t) = exp[−i4A1/(~ω) sin(ωt)J0], (E.5)

while the transformed Hamiltonian is found by the formula

H̃(t) = Q†(t)H(t)Q(t)− i~Q†(t)∂tQ(t). (E.6)

The transformation Q(t) is chosen such that the time-dependent part of A(t) cancels out in Eq. (E.6).
For finding H̃(t) the following relation is used [202]

eizJ0(J+ + J−)e−izJ0 = eizJ+ + e−izJ−, z ∈ R. (E.7)

In combination with the Jacobi-Anger decomposition eix sin(θ) =
∑∞

n=−∞ Jn(x)einθ, Eq. (4.96) is
derived as result.
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