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Abstract

Periodic driving of quantum systems gives rise to novel and exciting phenomena. In recent experi-
ments the interaction of particles in a Bose-Einstein condensate has been altered time periodically
and as a result the excitation of collective modes has been observed without changing the condensate
trap [1]. Furthermore, the emergence of the collective emission of matter-wave jets from a driven
condensate has been detected [2].

The aim of this thesis is to observe, how the scattering of particles can be tuned by periodic driving.
Therefore, we investigate the two-body problem with a time-periodic interaction potential [3–5]. By
the use of Floquet theory the Floquet-partial wave expansion is derived. It is capable of calculating
cross sections and steady-state wave functions for scattering by a time-periodic potential. We apply
this method to a sinusoidally driven contact potential, which describes the two-body interaction of
quantum particles in the regime of s-wave scattering. In this case it is possible to map the driven
scattering problem on a recursion relation connecting different Fourier components of the steady-
state wave function. By solving this recursion we obtain a time-averaged scattering amplitude and
observe resonances, which permit to tune this scattering amplitude to very large positive or negative
values, signalling strong enhancement of scattering induced by time-periodic driving. The width of
these resonances can be tuned by the driving strength, while the frequency of the drive allows one
to control the actual enhancement of scattering. We find position and width of these resonances for
a large range of driving strengths and spot that inelastic scattering is suppressed in their vicinity.
We can explain these resonances by the phenomenon of Fano resonance involving a bound state in
the continuum. In addition, we find a Kramers-Kronig like relation connecting real and imaginary
part of the time-averaged scattering amplitude and demonstrate that the shape of these resonances
can be approximately described by a two-channel model. Using the Floquet-partial wave expansion
in its full extend, we are finally able to overcome the restriction of sinusoidal driving and investigate
the influence of higher-Fourier components of the driven contact potential on the resonances.

A possible experimental realisation of our model is a periodically driven magnetic Feshbach res-
onance [3], which grants the creation of resonances at magnetic field strengths beside the actual
magnetic Feshbach resonance. Our method is able to predict the enhancement of scattering in this
setting in a wide range of driving strengths.





Zusammenfassung

Periodisch getriebene Quantensysteme weisen neuartige und interessante Phänomene auf. In ver-
schiedenen Experimenten wurde die Wechselwirkungsstärke von Teilchen in einem Bose-Einstein
Kondensat zeitlich moduliert [1,2]. Dies führt einerseits zur Anregung kollektiver Moden, ohne dass
Änderungen an der Falle vorgenommen werden müssen [1], andererseits wurde das Auftreten kollek-
tiver Emissionen von Materiewellen beobachtet [2].

Das Ziel dieser Arbeit besteht darin, zu untersuchen, wie die Streuung von Teilchen mit Hilfe zeitlich
periodischen Treibens verändert werden kann. Daher wird das Zweikörperproblem mit einem zeitlich
periodisch modulierten Wechselwirkungspotential [3–5] betrachtet. Mit Hilfe der Floquet-Theorie
wird die Floquet-Partialwellenentwicklung hergeleitet, welche die Berechnung von Streuquerschnit-
ten und Wellenfunktionen für beliebig zeitlich periodisch modulierte Potentiale ermöglicht. Diese
Methode wird auf ein harmonisch moduliertes Kontaktpotential angewendet, welches die Zweikör-
perwechselwirkung in der Näherung der s-Wellen Streuung beschreibt. In diesem Fall ist es möglich,
das getriebene Streuproblem auf eine Rekursionsrelation zu transformieren. Die Lösung jener Rekur-
sionsrelation, welche verschiedene Fourierkomponenten der Wellenfunktion verknüpft, erlaubt die
Berechnung der zeitgemittelten Streuamplitude. Es treten Resonanzen auf, welche es ermöglichen,
die Streuamplitude zu sehr großen positiven oder negativen Werten einzustellen und dadurch zu
einer starken Erhöhung der Streurate zu führen. Die Breite dieser Resonanzen kann mit Hilfe
der Treibamplitude eingestellt werden, während die Treibfrequenz die tatsächliche Erhöhung der
Streuamplitude bestimmt. Wir ermitteln Position und Breite dieser Resonanzen für einen großen
Bereich von Treibamplituden und beobachten, dass inelastische Streuung in der Nähe der Reso-
nanz unterdrückt ist. Das Auftreten der Resonanzen wird durch das Phänomen der Fano-Resonanz
erklärt. Zusätzlich stellen wir fest, dass Real- und Imaginärteil der Streuamplitude durch eine Re-
lation, die den Kramers-Kronig Beziehungen ähnelt, verknüpft sind und zeigen, dass die Form der
Resonanz durch ein Zweikanalmodell angenähert werden kann. Unter Verwendung der Floquet-
Partialwellenentwicklung sind wir letztendlich in der Lage, die Restriktion des sinusartigen Treibens
zu verlassen und die Auswirkungen höherer Fourierkomponenten des zeitlich periodisch modulierten
Kontaktpotentials zu untersuchen.

Eine mögliche experimentelle Realisierung unseres Modells ist die periodisch getriebene magnetische
Feshbach-Resonanz [3]. Diese erlaubt die Erhöhung der Streuamplitude in einem weiten Bereich
um die eigentliche magnetische Feshbach-Resonanz. Unsere Methode erlaubt die Vorhersage von
Resonanzen für ein großes Spektrum an Treibamplituden.
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1. Introduction

Although Floquet theory is well established in research dealing with atoms in strong laser fields
[6–10], it is in the recent time introduced to various areas of physics in order to describe and propose
periodically driven systems with interesting and novel properties. We therefore give in Section 1.1
an overview of driven physical systems and how properties of these systems can be tuned by periodic
driving. Section 1.2 provides a short introduction into the tuning of the inter-particle interactions
in ultracold quantum gases. Section 1.3 combines both previous Sections and gives a short insight
into the setting of our thesis. Section 1.4 is devoted to the outline of the thesis.

1.1. Periodic Driving in Physical Systems

Periodic driving of physical systems gives rise to exciting novel phenomena. A simple and impressing
example is the Kapitza pendulum [11–13]. As drawn in Figure 1.1, it consists of a rigid pendulum
possessing a pivot, which vibrates in vertical direction. If the vibration is performed with a large
enough frequency and amplitude, a counter intuitive behaviour is observed: The upper equilibrium,
where the pendulum is inverted, becomes stable and the lower unstable. Kapitza understood this
behaviour by separating the angular motion in a fast oscillation and a slow movement. Averaging
out the fast motion leads to an effective potential stabilizing the slowly varying angular degree of
freedom in the upper equilibrium.

Also in quantum mechanics periodic driving is used in order to induce a behaviour, which is not
present in the static case. A simple band structure can be described by the tight-binding model [14]
on a lattice. It consists of an array of lattice sites, which are connected by the hopping amplitude J .
The hopping amplitude J can be seen as the matrix element for a transition between neighbouring
lattice sites. If a time-periodic field with strength E and frequency ω, which is large in comparison to
the bandwidth of the lattice, is applied, the driven system behaves like a static lattice with effective
hopping amplitude [15]

Jeff = JJ0

(
E
~ω

)
, (1.1)

which is normalised by the Bessel function of order zero J0(x). The effective hopping amplitude
depends explicitly on the driving strength E and driving frequency ω and can therefore be tuned
by periodic driving. This has been exploited in order to investigate the quantum phase transition
between a Mott-insulator and a superfluid state of a Bose-Einstein condensate loaded in an optical
lattice [16–18] in theory and in experiment. The quantum phase transition can be achieved reversibly

1



1. Introduction

(a) (b)

Figure 1.1.: Sketch of the Kapitza pendulum. The rigid pendulum is drawn as a
lever with a blue bob, while the suspension can be driven by an eccentric mechanism.
Both pivots are drawn as a black circle. In panel (a) we show the case without
periodic driving, where the lower equilibrium is stable. It is indicated in this Figure
by a blue arrow. In panel (b) the suspension of the pendulum is altered periodically
in vertical direction and the upper equilibrium becomes stable.

by ramping the strength of the effective hopping amplitude. If the argument of the Bessel function
reaches one of its zeros, the effective hopping amplitude even vanishes. As in this case particles
cannot hop between neighbouring sites, a wave packet will become localised. This effect of dynamic
localisation was predicted by Dunlap and Kenkre [19] and experimentally realised in semiconductor
superlattices [20], photonic wave-guide arrays [21,22] and Bose-Einstein condensates in driven opti-
cal lattices [23–25]. If the driving is tuned in the right way, the effective hopping amplitude can even
become negative and therefore realise a state with negative effective mass [17]. A more complicated
driving scheme applied to a hexagonal optical lattice leads to the realisation of the Haldane model for
ultracold fermions [26] and the observation of dynamical vortices, which are related to the topology
of the driven lattice [27]. One can even go further and induce artificial gauge fields by the periodic
modulation of a lattice [28–30].

All the aforementioned examples have in common, that the driving frequency is larger than the
energy scales of the corresponding static problem and that their dynamics is governed by an ef-
fective Hamiltonian. In the lowest order of the so called Magnus expansion [15], this effective
Hamiltonian is the time average of the time-dependent one. But for lower driving frequencies the
situation becomes more involved. The method of choice in order to treat periodically driven systems
in general is Floquet theory [31–33]. It is named after the French mathematician Gaston Floquet
(1848-1920) [34], who came up with a theorem characterizing the solution of ordinary differential
equations having time periodic coefficients [35]. Introduced to quantum physics [36], Floquet theory
yields the description of time periodic quantum systems in terms of steady states and is capable of
investigating any time-periodic system exactly.

Instead of restricting ourselves to the high frequency limit, we consider in this thesis a periodi-

2



1.2. Tuning the Interaction in Ultracold Gases

cally driven two-body problem without any restrictions on the driving frequency. We use Floquet
theory in order to derive a scattering theory being capable of dealing with time-periodic scattering
potentials and calculating time-averaged scattering cross sections. As one possible experimental re-
alisation of our findings lies in the field of ultracold quantum gases, we first give a brief introduction
to those and specialise to the tuning of interactions in this setting.

1.2. Tuning the Interaction in Ultracold Gases

Ultracold quantum gases allow a huge amount of experimental controllability [37, 38]. Loaded into
an optical lattice, they are used to implement models of solid state physics and provide a playground
for the search of new materials [39]. The controllability of ultracold quantum gases is not limited to
external potentials like optical lattices, also the interaction between particles can be tuned. In the
case of the low energy physics of an ultracold quantum gas, the interaction between two particles
is fully characterised in terms of the scattering length a, whose absolute square is proportional
to the total cross section. Therefore the scattering length can be viewed as a length scale of the
cross-sectional area. Large cross sections correspond to strong inter-particle interactions and are
obtained for large scattering lengths. The method of choice in order to obtain experimental control
of the scattering length in an ultracold gas experiment is the use of a Feshbach resonance. In case
of the widely used magnetic Feshbach resonance a magnetic field is adapted in order to change
the energy of a molecular bound state in such a way, that it is resonant with a scattering state of
the two colliding particles. As the scattering state couples with the bound state, the inter-particle
interaction is changed. The resulting interaction strength and, thus, the scattering length can be
altered by adjusting the strength of the magnetic field. The tuning of the interaction using a Feshbach
resonance has a wide range of application in ultracold quantum gases. For example, they are used
in the controlled attainment of a Bose-Einstein condensate [38, 40, 41], the observation of the BEC-
BCS crossover [42–44] and the production of ultracold molecules [45, 46] using an additional time
periodic field. Several experiments even included a time-periodic interaction strength, which lead
to the excitation of collective modes in a Bose-Einstein condensate without altering the trapping
potential [1, 47, 48] and the observation of the collective emission of matter-wave jets from a Bose-
Einstein condensate [2] .

1.3. Tuning the Interaction Strength by Periodic Driving

Several theoretical works [3, 4] show that if an inter-atomic potential is driven time-periodically,
scattering can be enhanced by tuning the driving frequency near a resonance. Smith [3] proposed
a new method for controlling the scattering length by applying a time-dependent magnetic field in
the vicinity of a magnetic Feshbach resonance. Also in this thesis we combine both fields of time-
periodic driving and the tuning of interactions and investigate the scattering of quantum particles
by a time-periodic potential in the low energy limit.

3



1. Introduction

Figure 1.2.: Plot of the time-averaged transmission coefficient of model (1.2) in
dependence of the driving frequency ~ω and the driving strength V . The incoming
particle is assumed to have the energy E.

Our work originates in a related subject, namely the tunnelling of a quantum particle through a
periodically driven barrier in one dimension. In the work of Reyes et. al [49] a Dirac-delta function
is considered as a barrier and the problem can be described by the Hamiltonian

H(x, t) = − ~2

2m

∂2

∂x2
− V cos(ωt)δ(x). (1.2)

Here m denotes the particle mass, V the driving strength and ω the driving frequency. With the us-
age of Floquet theory the time-averaged transmission coefficient is calculated. The result is shown in
Figure 1.2. Instead of being finite for all barrier strengths V as for a static barrier, in the driven case
there exist lines in the ω-V plane, where the transmission coefficient vanishes exactly. Interestingly,
if the frequency is tuned in the right way, this effect occurs even for infinitesimally small barrier
amplitudes V . Reyes et al. named this finding a quantum resonance catastrophe and explained the
vanishing of the transmission coefficient by a so-called Fano resonance [50,51].

Motivated by the rich and interesting findings in the one dimensional driven tunnelling problem,
the goal of this thesis is to generalise model (1.2) to three dimensions and to observe, under which
circumstances resonances occur in the three dimensional case. Instead of calculating a transmission
coefficient, the scattering length is the suitable parameter for the new setting. We combine Floquet
theory with static scattering theory in order to derive the Floquet-partial wave expansion, which
is capable of calculating cross sections and steady state wave functions of a general time-periodic
potential. We apply this theory to the contact potential, which expands the Dirac-delta potential

4



1.4. Outline of the Thesis

to three dimensions, and observe the emergence of scattering resonances. Those are manifested by a
diverging scattering length instead of a vanishing transmission coefficient and allow us to control the
scattering length and therefore the inter-particle interaction by time-periodic driving. We are able
to describe the shape of these resonances by a simple formula and determine position and width for
almost arbitrary driving frequencies.

A possible experimental realisation of our findings is a magnetic Feshbach resonance with a time-
periodic magnetic field, which is applied in its vicinity [3]. This driven Feshbach resonance can be
induced in wide range of magnetic field strengths and the enhancement can be controlled by the
driving frequency. This allows a larger experimental flexibility, as the magnetic field can be set to
values away from the actual resonance without loosing the enhancement of scattering. Additionally,
our theory can be applied to systems, where a Feshbach resonance is not yet present. This would
allow the tuning of the interaction strength in a case, where it is not be possible without periodic
driving.

1.4. Outline of the Thesis

This thesis combines the field of scattering physics and time-periodic forcing. While Chapters 2-4
are reviewing relevant topics, Chapters 5-8 contain own work. As an introduction, we review in
Chapter 2 the scattering theory for a quantum particle in a time-independent potential, which is
able of treating the two-body problem of interacting particles. We discuss how scattering quantities
like the scattering amplitude and cross section are calculated using the partial wave expansion.

We apply in Chapter 3 the scattering theory in the context of Feshbach resonances. After a theoret-
ical explanation for the emergence of Feshbach resonances, we survey both experimental realisation
and theoretical prediction of those in the regime of ultracold quantum gases.

The focus of Chapter 4 lies on time-periodically driven systems. We introduce Floquet theory, which
is capable of solving the time-dependent Schrödinger equation exactly for arbitrarily large driving
strengths and frequencies. A key feature of this method is, that it allows us to map the time-periodic
Schrödinger equation to a static one in a larger Hilbert space and therefore to calculate steady states.

Using the prior Chapters as fundamentals, we derive in Chapter 5 the Floquet-scattering theory.
It is capable of describing the scattering of a quantum particle by a time-periodic potential. We de-
fine effective scattering quantities by time averaging and derive the Floquet-partial-wave expansion
for calculating these quantities. Similar to Chapter 4, the scattering by a time-periodic potential
can be seen as the scattering by a static one in a more complicated Hilbert space. We finish this
Chapter by investigating the low energy limit of Floquet scattering.

Chapter 6 applies Floquet-partial wave expansion to the contact interaction, which is able to de-
scribe the interaction of ultracold atoms. We show for sinusoidal driving, that the equation describing
scattering by the local contact interaction can be mapped to a recursion relation between Fourier

5



1. Introduction

coefficients of the steady state wave function and overview methods of solving it. Despite the recur-
sion being non linear in the Fourier index, it can be solved exactly by numerical methods.

As a key result we discover in Chapter 7 a strong enhancement of scattering, named scattering
resonance, which is tunable by the periodic driving of the contact interaction. We explain these
scattering resonances by the extended Hilbert space of Floquet theory and show that they emerge
if the scattered particle has the same energy as a driving induced bound state. Using this condition
we determine the position of the scattering resonances. We then evaluate additional properties of
the resonances by fitting simplified formulas to their shape and show that they fulfil the so called
anti-Kramers-Kronig relations. At last we investigate the case of small and large driving frequencies,
where an analytic solution of the recursion is available.

In Chapter 8 we consider the more complicated case of a time-periodic potential, which is not
driven sinusoidally. In this case higher harmonics of the driving frequency occur. We show that
also in this case scattering resonances show up and investigate the effect of the more general driving
scheme on these resonances.

Chapter 9 is devoted to the Conclusion and the Outlook.

6



2. Scattering Theory

Scattering theory is a powerful tool in order to understand and characterise the interaction of particles
and quantify its strength in easily interpretable quantities like the total cross section. As it is the basis
of the following Chapters, a brief overview of the time-independent scattering theory of quantum
particles is given. In Section 2.1 we give an introduction in the considered setting, while in Section
2.2 important quantities are introduced. Section 2.2.1 is focused on the partial wave expansion,
while Section 2.2.2 discusses the case of low energy physics. As an example we show in Section 2.3
the scattering by a hard-sphere potential.

2.1. Introduction

In this Section we consider the elastic scattering of a particle with mass m and no internal degrees
of freedom by a static potential V (r). The problem can be described by the Hamiltonian

H = − ~2

2m
∆ + V (r). (2.1)

In order to use the theory below, the potential is assumed to vanish faster than 1/r

lim
r→∞

V (r)r = 0, (2.2)

where by r the modulus of the position vector r is denoted. Elastic scattering of two distinguishable
particles with massesm1 andm2 can be mapped to the above setting by transforming to the center-of
mass system [52]. The motion of the center-of mass can be separated and only the kinetic energy of
the relative motion appears in the Schrödinger equation. The Hamiltonian of relative motion can be
mapped to (2.1) by setting the reduced mass µ = (m1m2)/(m1 +m2) equal tom and the inter-atomic
potential U(r2 − r1) equal to V (r) while introducing the particle seperation r = r2 − r1.

2.2. Asymptotic Form and Scattering Quantities

In order to gain insight over general features of scattering, we assume an incoming plane wave
along the z-axis and a potential centred at r = 0. Intuitively, the interaction causes emission
of the scattered wave function ψsc(r). It adds with the plane wave to the total wave-function

7



2. Scattering Theory

ψ(r) = eikr + ψsc(r). As it is the asymptotic solution of the Schrödinger equation (2.1) for large
radii [53], the scattered wave can be approximated by ψsc(r) ≈ f(k, θ, φ) e

ikr

r
. It is a spherical wave

with an amplitude only depending on the wave-vector k, the polar angle θ and the azimuthal angle
φ [54]. Therefore the asymptotic solution of the scattering problem for large r is given by

ψ(r) = eikr + f(k, θ, φ)
eikr

r
. (2.3)

The quantity f(k, θ, φ) is called scattering amplitude and is the basis for calculating the following
cross sections, which can be measured in experiment.

The differential cross section dσ
dΩ

is defined as the probability current flowing through an infinitesi-
mal small area dA = r2dΩ located at the solid angle Ω = (θ, φ) divided by dΩ and the probability
current density of the incoming wave [53]

|jin|
dσ

dΩ
dΩ = joutr

2dΩ. (2.4)

Here dΩ points in radial direction outside a sphere. By relating the probability current of the
incoming wave jin = ~k

m
to the one of the outgoing wave jout = ~k

mr2 |f(k, θ, φ)|2êr + O
(

1
r3

)
in the

limit of large radii, one gets an equation connecting the differential cross section to the scattering
amplitude

dσ

dΩ
= |f(k, θ, φ)|2. (2.5)

The total cross section σ is defined as the integral of the differential one over the full solid angle

σ =

∫
Ω

dΩ
dσ

dΩ
. (2.6)

Both differential (2.5) and total cross section (2.6) are measurable quantities.

2.2.1. Partial Wave Expansion

In the case of a spherical symmetric potential, the partial wave expansion leads to an intuitive way
of rewriting and solving the scattering problem (2.1). A spherical symmetric potential implies a
vanishing commutator between the Hamiltonian and the angular momentum operator L̂ = r̂ × p̂

[Ĥ, L̂] = 0. (2.7)

Thus angular momentum l is a good quantum number and the solution of the Schrödinger equation
can be expressed in terms of the eigenstates of the angular-momentum operator, which are given
by the spherical harmonics Y m

l (θ, φ). As the scattering problem has cylindrical symmetry, only
the spherical harmonics without φ-dependence and therefore the magnetic quantum number m = 0
will contribute to the wave function. As the spherical harmonics with m = 0 are proportional to
Legendre polynomials Pl(cos(θ)) [53], the wave function can be written in the form

ψ(r, θ, φ) =
∞∑
l=0

Rl(r)Pl(cos(θ)). (2.8)

8



2.2. Asymptotic Form and Scattering Quantities

By separating the radial and the angular degrees of freedom, the radial-Schrödinger equation for
Rl(r) can be derived (

∆r + k2 − veff(r)
)
Rl(r) = 0. (2.9)

Here, ∆r = 1
r2

∂
∂r
r2 ∂

∂r
is the radial-Laplace operator and veff(r) = l(l+1)

r2 + 2m
~2 V (r) the effective

potential including the centrifugal barrier l(l+1)
r2 . In order to connect the cross section to the solution

of (2.9), only the behaviour of the wave function for large radii is important. In this case the effective
potential in equation (2.9) can be neglected and (2.9) is solved by

Rl(r) = Al
e−ikr

r
+Bl

eikr

r
, (2.10)

which consist of an incoming and outgoing spherical wave. As the total flux through a sphere around
the origin should be zero, both coefficients Al and Bl have the same absolute value. This condition
simplifies the description of the scattering process, as it allows us to introduce the scattering phase
δl by setting [53]

Bl = e2iδlAl. (2.11)

The plane wave eikr can be expanded in Legendre polynomials [53]

eikr = eikr cos(θ) =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos(θ)). (2.12)

Here we introduced the spherical Bessel function jl(x) [53, 55, 56], whose limit of large argument is
given by

jl(x) ≈
sin(x− lπ

2
)

x
. (2.13)

Comparing (2.8) with (2.10) to (2.3), while expressing the occurring plane wave by (2.12) and (2.13),
reveals the concrete value of the Al coefficients

Al = (−1)l(2l + 1)
i

2k
(2.14)

and the asymptotic Form of the wave function

Rl(r) ∝
1

r
sin(kr − lπ

2
+ δl). (2.15)

The influence of the potential on the scattered-wave function is solely expressed by the value of the
scattering phase, which leads to an additional shift of the wave function for large values of r. It is
negative for repulsive potentials and positive for attractive ones.

The scattering amplitude can be calculated by comparing the asymptotic waveform (2.3) using
(2.12) with the limit of large radii of the ansatz (2.8) to

f(k, θ) =
∞∑
l=0

fl =
∞∑
l=0

2l + 1

k
eiδl sin(δl)Pl(cos(θ)). (2.16)

9



2. Scattering Theory

The total cross section evaluates to

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl) (2.17)

This equation shows, that all partial waves contribute to the total cross section and that it can be
calculated by knowing all scattering phases. The contribution of the l = 0 part is called s-wave
scattering, l = 1 p-wave scattering and so on. The value of the total cross section depends on the
form of the scattering potential as well as the particle energy.

At last, we proof the optical theorem, which expresses the unitary of the scattering process. It
links the imaginary part of the scattering amplitude in forward direction θ = 0 to the total cross
section and can be derived by evaluating the formulas (2.16) and (2.17) using θ = 0 to

σ =
4π

k
Im f(θ = 0). (2.18)

An alternative, but more complicated, derivation [56, p. 26] reveals that it states, that the losses
of probability flux through the scattering process, being proportional to σ, are compensated by the
interference of incoming plane wave and scattered wave in forward direction. This interference is
expressed in equation (2.18) by Im f(θ = 0).

2.2.2. Scattering Length

In the low energy limit, where the wave vector k of the incoming particle goes to zero, the scattering
properties can be characterised by a single parameter, which is independent of the detection angle
θ and particle energy. For any potential growing like 1

rs
, with s > 2l + 3, it can be shown [57, pp.

45], [58, p. 306] that

lim
k→0

k2l+1 cot(δl) = − 1

al
, (2.19)

where al is the energy independent l-wave scattering parameter. Equation (2.19) shows that in
the low energy limit s-wave scattering is dominant, as all scattering phases corresponding to higher
partial waves are suppressed by a factor of k2l. We therefore can characterise the scattering process
at low wave vectors by the s-wave scattering length

a = al=0, (2.20)

which does not depend on the energy or the angle θ. Therefore s-wave scattering at low energy is
has a simple structure in comparison to higher partial waves or finite energies. The scattering length
(2.20) determines the total cross section to

σ = 4π|a|2. (2.21)

This equation gives an intuition for the scattering length, as it relates it to a length scale character-
ising the cross sectional area.
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2.3. Scattering by a Hard-Sphere Potential

By inserting equation (2.19) into (2.16) we find that the scattering length can be calculated by
performing the limit of vanishing momentum of the scattering amplitude

a = − lim
k→0

f(k, θ). (2.22)

At this point we note, that the scattering length is only the first contribution in the so-called effective
range expansion [57, 58]. Equation (2.22) will be generalised in Chapter 5 to the case of scattering
by a time-periodic potential and is therefore fundamental to this thesis.

2.3. Scattering by a Hard-Sphere Potential

As it is the most simple and fundamental case of a scattering potential, we discuss the scattering by
a hard-sphere potential. It consists of a sphere with infinite large repulsion around the origin

V (r) =

{
∞ , r < r0

0 , r > r0

. (2.23)

Outside the radius r0 equation (2.9) is solved by spherical Bessel jl(kr) and spherical Neumann yl(kr)
functions [53, 55, 56]. These functions have the following asymptotic properties for large arguments
x

jl(x) ≈
sin(x− lπ

2
)

x
, yl(x) ≈ −

cos(x− lπ
2
)

x
(2.24)

and for small arguments

jl(x) ≈ xl

(2l + 1)!!
, yl(x) ≈ (2l − 1)!!

xl+1
. (2.25)

The double factorial n!! is defined by only multiplying the odd numbers up to the integer n. The
solution outside the sphere can be written in the form

Rl(r) = Aljl(kr) +Blyl(kr). (2.26)

With the substitution
Al = Cl cos(δl), Bl = −Cl sin(δl) (2.27)

the asymptotic Form of (2.26) is expressed by the scattering phase δl, which can be computed by
the continuity condition at the radius r0 to be

tan(δl) =
jl(kR0)

yl(kR0)
. (2.28)

Inserting the approximation (2.25) the result for small kr0 is derived to

δl ≈ −
(kr0)2l+1

(2l + 1)!!(2l − 1)!!
. (2.29)
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2. Scattering Theory

This result again shows the dominance of the s-wave scattering in the low energy limit: If the
parameter kr0 is small, higher angular momentum contributions drop off very fast and only the
s-wave scattering phase with angular momentum l = 0 contributes to the scattering. The resulting
s-wave scattering length (2.20)

a = r0 (2.30)

equals the radius of r0 of the repulsive potential and in this case the scattering length can be related
to the size of the scattering potential.

We now want to summarise this Section shortly. We gave an introduction into static scattering
theory and discussed how the measurable scattering cross section can be calculated by the use of
quantum mechanics. We defined the s-wave scattering length (2.20), which characterises the scat-
tering process in the case of low-energy physics. Due to its importance we will lay a main focus
on investigating the scattering length in the further Chapters. As two-body collisions are a domi-
nant process in interacting many-body systems, the scattering length characterises the interaction
strength of such systems at low temperatures [59]. One example are Bose-Einstein condensates,
where the scattering length can be tuned by the usage of Feshbach resonances, which we will discuss
in the next Section in detail.
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3. Feshbach Resonances

This Chapter is devoted to Feshbach resonances. In Section 3.1 we give an introduction into those,
while in Section 3.2 we provide an overview over those resonances and summarise their realisation
in ultracold gas experiments. In the last part of this Section we survey literature investigating how
periodic driving and ac-magnetic fields can be used in order to tune and induce resonances.

3.1. Introduction to Feshbach Resonances

A resonance can be understood as an almost bound state. As it is not truly bound it is associated
with a lifetime [56] and is seen in scattering events in a phase shift of approximately π [38] of the
scattering phase combined with an enhancement of the scattering amplitude. Resonances can be
divided into two groups: The shape resonances occur due to a quasi-bound state, whose energy lies
in a continuum. One example is a trapped state behind a potential barrier, which can decay into
the continuum due to the finiteness of the barrier. As the properties of these resonances depend on
the shape of the potential, they are called shape resonances.

The second type of resonances are the Feshbach resonances, which appear in scatting of multi-
channel systems [56]. Within a multi-channel system two scatterers with multiple internal states
interact. Each of these internal states is labelled by a channel number or a quantum number of
the internal degrees of freedom. An example of a multi-channel system are atoms in a constant
magnetic field, where energy levels split due to the Zeeman effect. The internal states of the atom,
which can be labelled by the total angular momentum F of the atom and its projection along the
spin-quantization axis mF [60], are the channels, if the atoms are viewed as a multi-channel system.
If a channel supports a scattering state, it is said to be open, while closed channels support bound
states. In order to observe a Feshbach resonance, a system needs to have both open and closed
channels. The coupling between these channels can modify the scattering properties in the open
channels significantly, if the energy of the scattering state is close to the energy of a bound state in
a closed channel. These resonances are named after Hermann Feshbach, as he developed a resonant
scattering scheme in the field of nuclear physics in Refs. [61,62].

We will now discuss Feshbach resonances in more detail, following Refs. [38, 56, 63, 64] and assume
a scatterer with multiple internal states possessing the energy Ei, which equal the threshold energy
of the potential Vi(r) in channel i

lim
r→∞

Vi(r) = Ei. (3.1)
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Figure 3.1.: A sketch of the physics behind equations (3.4). The open channel
(blue) supports a free solution with energy E, while the closed (red) possesses a
bound state with energy E0. If both energies approach each other, a Feshbach
resonance occurs. The respective channel thresholds are included with dashed lines.

We now specialise to a two-channel system with an open and a closed channel. The first chan-
nel is defined to be open and the channel thresholds are said to fulfil the relation E1 < E2. We
assume m to be the particle mass or the reduced mass if working in the centre-of mass frame. The
scattering state solution of the corresponding uncoupled Schrödinger equation in the first channel

[
− ~2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ V1(r)

]
Run

1 (r) = E Run
1 (r) (3.2)

is characterised by the background scattering length δBg. In order to have a free channel, the energy
E must lie above E1. The second channel is considered as closed. It possesses in the uncoupled case
the bound state wave function R0(r) fulfilling the Schrödinger equation

[
− ~2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ V2(r)

]
R0(r) = E0R0(r). (3.3)

As shown in Figure 3.1, the bound state energy E0 of the second channel is assumed to lie between
E1 and E2. Introducing inter-channel coupling V12(r) the coupled radial Schrödinger equation for
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3.2. Feshbach Resonances in Ultracold Quantum Gases

such a system can be written in the form[
− ~2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ V1(r)

]
R1(r) + V12(r)R2(r) = E R1(r) (3.4)[

− ~2

2m

1

r2

∂

∂r
r2 ∂

∂r
+ V2(r)

]
R2(r) + V12(r)R1(r) = E R2(r). (3.5)

If the coupling V12(r) between the channels is activated, the bound state u0(r) can lead to a resonance,
as discussed in Ref. [56]. This resonance is seen in the scattering phase δ connected to the unbound
wave function, as it splits into two parts

δ = δbg + δRes. (3.6)

The background phase δbg stems from scattering by the potential V1(r), while the resonant δRes

originates from coupling to the closed channel. Assuming a smooth energy dependence, this resonant
phase can be approximated by [56]

tan(δRes) = − Γ/2

E − ER
, (3.7)

where ER is the position of the resonance and Γ is its width. Both quantities can be expressed
as matrix elements involving the channel coupling potential V12, the bound state and the regular
solution ureg

1 (r) together with the propagator Ĝ [56, p. 149] of the free channel. The position ER
equals the energy of the bound state E0 plus an energy shift δE originating from the interaction
with the open channel

δE = 〈u0|V̂12ĜV̂12|u0〉. (3.8)

The width Γ is associated with a lifetime of the resonance and is calculated to be

Γ = 2π|〈u0|V̂12|ureg
1 〉|2. (3.9)

Especially in the case of ultracold quantum gases the low energy limit of the scattering phase
becomes interesting. As shown in Section 2.2.2 the scattering length a is the relevant parameter and
is given by [38]

a = − lim
k→0

δ

k
= abg +

abgΓ0

−ER + iγ
2

. (3.10)

Here k is the relative momentum and Γ0 = lim
k→0

Γ
2kabg

is the low energy limit of the width Γ. The
imaginary part iγ/2 is added by hand in order to describe additional losses, which might occur, if
the bound state has an additional decay channel.

3.2. Feshbach Resonances in Ultracold Quantum Gases

We overview the common methods to implement Feshbach resonances in ultracold quantum gases
and specialise in the end of the Section to the case of resonances induced by periodic driving. The
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scattering length characterises the interaction of ultracold atoms [52, 59]. As Feshbach resonances
allow a tuning of the scattering length, they provide a powerful tool for tuning the inter-particle
interaction in an ultracold gas, which lead to the discovery of novel and interesting phenomena
[38,44].

3.2.1. Magnetic Feshbach Resonance

Magnetic Feshbach resonances are a common tool in order to control the scattering length [38,63] by
adjusting a spatially constant magnetic field. They have been first observed experimentally in a cold
gas experiment with 23Na by Ref. [65] and with 85Rb by Ref. [66]. Atoms in a magnetic field obtain
a splitting of their energy levels by ∆Ei = −µiB due to the Zeeman effect. As this shift depends
on the magnetic moment µi of the particular internal state, changing of the magnetic field leads to
a change of the relative energy between two channels. If this difference becomes zero, a Feshbach
resonance occurs. Therefore the position of the resonance can be parametrised in the form [38], if
the magnetic field is applied parallel to the difference of the magnetic moments

ER = δµ(B −B0). (3.11)

The variable B0 characterises the magnetic field at resonance position, δµ = µatoms − µpair is the
difference of magnetic moments between the two separated atoms in the open channel and the bound
pair in the closed one. Losses through two body collisions described by γ in equation (3.10) can
usually be neglected in the case of a magnetic Feshbach resonance [38]. With these assumptions the
scattering length (3.10) simplifies to the well-known approximate formula [63]

a(B) = abg

(
1− ∆

B −B0

)
. (3.12)

Here abg denotes the background scattering length, which is obtained away from resonance position.
The width ∆ is given by

∆ = Γ0/δµ. (3.13)

Equation (3.12) is plotted in Figure 3.2. Close to the resonance the scattering length can be tuned
to infinite repulsion or attraction. The width ∆ can be determined using Figure 3.2 (a). It is the
difference of the position of the resonance B0 and the magnetic field strength where the scattering
length vanishes.

3.2.2. Optical Feshbach Resonance

An optical Feshbach resonance is created using laser light, which is nearly resonant to a transition
between a scattering state and an exited molecular bound state and therefore induces a coupling of
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Figure 3.2.: (a): Plot of the approximative formula (3.12) of the scattering length
a in case of a magnetically tuned Feshbach resonance without losses.
(b): First experimental observation of a magnetic Feshbach resonance in a cold gas
experiment with 23Na. The Figure was created by Inouye et al. [65]

both [67–69]. The scattering length can be controlled by tuning the laser frequency ω or intensity I
instead of a magnetic field [38] and follows the equation

a = abg

(
1 +

Γ0(I)

~(ω − ω0 − δω(I)) + iγ/2

)
(3.14)

But unlikely to most magnetic Feshbach resonances the bound state decays, which results in a
non-vanishing loss parameter γ. Therefore the scattering length becomes complex, where real part
characterises the scattering strength and the imaginary the particle loss [38, 70]. According to
equation (3.14), the real part of the scattering length obtains a maximum at a finite value, restricting
the tunability of the resonance. The behaviour of (3.14) is shown in Figure (3.3).

3.2.3. Microwave- and Radio Frequency induced Feshbach Resonances

These classes of resonances are induced or manipulated by the use of microwave (mw) and radio
frequency (rf) fields and have been discussed in recent literature [71–79]. The basic idea behind those
considerations is coupling of different states by those fields. The coupling leads to an energy shift
of bound states in a field dressed picture and results in a Feshbach resonance, which is controllable
by the fields. As in many setups an oscillating magnetic field is considered, the coupling strength is
limited by the relatively weak magnetic dipole matrix elements. A pioneer in this topic was Moerdijk
[71], who considered rf-fields for evaporative cooling but also suggested them for the creation of
resonances. Kaufmann et al. [72] investigated the coupling of bound states due to rf fields with a
static magnetic field close to a static Feshbach resonance in a experiment. Ref. [74] extended this to
the coupling of a colliding pair with a molecular bound state. Both predict the tuning of resonances
by changing both the frequency and strength of a rf field. Tscherbul et al. [75] discovered, that new
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Figure 3.3.: Plot of the real (blue) and imaginary part (red) of the scattering length
in case of an optical Feshbach resonance for γ = 0.1Γ0. In contrast to a resonance
without losses, an imaginary part exists around the central position and a finite
maximum of the real part occurs.

resonances can be induced by rf field using a coupled channel approach in a field dressed picture.
Xie et al. [76] showed the ability of rf fields to tune the interspecies scattering length in 6Li + 40K
collisions, while Owens et al. [78] obtained the creation of new resonances with 39K + 133Cs by using
scattering calculations in a field dressed basis.

3.2.4. Driving Induced Scattering Resonance

The driving induced scattering resonance will be the focus of this thesis and has been discussed in
Refs. [3,4,80] in the case of a periodically driven magnetic Feshbach resonance. The underlying idea
is to create a time-periodic inter-atomic potential by driving a parameter of the considered physical
system time periodically. As we pointed out in Chapter 1 and we will show in this thesis, a time-
periodic potential is able to create bound states, which interact with scattering states in a way that
they induce a resonance. A possible realisation of this resonance was suggested by Smith [3,80,81].
He considered a magnetic Feshbach resonance with a time-periodic magnetic field [3]

B(t) = B1 +B2 cos(ωt), (3.15)

which is polarised along the spin-quantisation axis. He showed by using a Lippmann-Schwinger
formalism that this results in a time-dependent potential inducing a Feshbach resonance at the bias
magnetic field B1, which does not need to coincide with the field strength where the static resonance
occurs. By tuning the driving frequency ω and field strength B2 position and width of this artificially
created resonance can be tuned [80]. Smith named this method by "Modulated Magnetic Feshbach
Resonance".
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Here we go beyond his research and examine in Chapter 7 the driving induced scattering reso-
nance in a more generalised setting and for a larger amount of driving strengths and give a deeper
explanation of their emergence. In order to do this, we extend in Chapter 5 scattering theory to
time-periodic scattering potentials by using Floquet theory. This Floquet-scattering theory is capa-
ble of solving Schrödinger equation in the case of a time-periodic Hamiltonians. As an introduction
to this setting, we first discuss Floquet theory in the next Chapter.
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4. Floquet Theory

In this Chapter Floquet theory is introduced. This theory can be used in order to solve time
dependent, but periodic, problems exactly by converting them to a static problem in a more complex
Hilbert space. We initiate this Chapter in Section 4.1 by Floquet theorem, which can be considered
as the "The Bloch theorem in time". Section 4.2 introduces Floquet equation and summarises
relevant properties of periodically driven systems. Section 4.3 is dedicated to the time evolution of
states under a time-periodic Hamiltonian.

4.1. Floquet Theorem

Floquet theorem was initially stated in the context of ordinary differential equations [35] and can be
written in terms of quantum mechanics in the following way [32, 33, 82]. A time-periodic Hamilton
operator

Ĥ(t) = Ĥ(t+ T ), (4.1)

with ω = 2π/T as the driving frequency is considered. Then Floquet theorem states the existence
of solutions |ψ(t)〉 of the time dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(t)|ψ(t)〉, (4.2)

which are of the form
|ψ(t)〉 = e−i

ε
~ t|φ(t)〉. (4.3)

Here ε is called the quasi energy or the Floquet energy. It is not to be confused with the physical
energy E, which is not necessarily a conserved quantity in a driven system. The Floquet mode |φ(t)〉
has the same time-periodicity as the Hamiltonian (4.1)

|φ(t)〉 = |φ(t+ T )〉. (4.4)

Note that Floquet theorem is similar to Bloch theorem of solid-state physics [14,83]. Instead of having
a Hamilton operator being periodic in space, in Floquet theory the Hamiltonian is considered to be
time periodic. The well-known quasimomentum can be mapped to the Floquet energy and the Bloch
function corresponds to the Floquet mode.
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4. Floquet Theory

4.2. Floquet Equation and Properties of Floquet Modes

Using representation (4.3) of the wave function, an eigenvalue equation for the Floquet energy can
be derived by inserting (4.3) into (4.2):

Ĥ|φ(t)〉 = ε|φ(t)〉. (4.5)

This eigenvalue equation of the Floquet operator

Ĥ = Ĥ − i~ ∂
∂t

(4.6)

is called the Floquet equation. It is defined on the Floquet-Hilbert space F = R⊗T , which consists
of the configuration space R of the original Hamiltonian Ĥ and the space of time-periodic functions
T . By using this Floquet-Hilbert space, time, which is regarded as a parameter in Schrödinger
equation, is promoted to a coordinate. This extended Hilbert-space can be used to write down the
Floquet equation in a way not using time explicitly. By using the Fourier transformation of both
Floquet mode and Hamiltonian

|φ(t)〉 =
∞∑

n=−∞

e−inωt|φn〉, (4.7)

Ĥ(t) =
∞∑

m=−∞

e−imωtĤm, (4.8)

equation (4.5) can be mapped to a static one
∞∑

m=−∞

Ĥm|φn−m〉 − n~ω|φn〉 = ε|φn〉, ∀n ∈ Z, (4.9)

which is involving the Fourier components |φn〉 of the Floquet mode. In addition this equation can
be written as an eigenvalue equation of an infinitely sized matrix

H =



. . . . . . . . .

. . . Ĥ1 Ĥ0 − (n− 1)~ω Ĥ−1 . . .

. . . Ĥ1 Ĥ0 − n~ω Ĥ−1 . . .

. . . Ĥ1 Ĥ0 − (n+ 1)~ω Ĥ−1 . . .
. . . . . . . . .

 . (4.10)

The eigenvalues of this matrix are given by the Floquet energies ε and the eigenvectors consist of
the Fourier components of the Floquet modes

|φ̃〉 =


...
|φn−1〉
|φn〉
|φn+1〉
...

 (4.11)
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Figure 4.1.: A graphical representation of equation (4.9): The blue ovals represent
the configuration space R labelled by Fourier indices n of the Floquet mode. On
this Hilbert space the Hamiltonian Ĥ0 − ~nω acts in terms of a self energy. Higher
Fourier components of the Hamiltonian Ĥm lead to coupling of channels with dif-
ferent Fourier index n. This coupling is indicated in the Figure by green and yellow
arrows.

Equations (4.9) and (4.10) are a fundamental results of Floquet theory and visualised in Figure 4.1.
Any time-periodic Schrödinger equation can be mapped to a static problem, which is located in a
larger Hilbert space, by using Fourier transform. But the price of introducing a channel number by
the Fourier index n has to be paid, as equation (4.9) can be seen as a static multi-channel Schrödinger
equation. This channel structure leads to a more complicated eigenvalue equation in comparison to
the static case, as the Floquet-Hilbert space is much larger than the static one, but equation (4.9) is
much simpler to solve than the corresponding time-dependent Schrödinger equation. We introduce
the concept of Floquet channels by locating the Fourier-component |φn〉 in the Floquet channel with
number n.

From now on, we assume Floquet energy and modes to be labelled by a quantum number q and
consider a Floquet mode |φq〉 with corresponding Floquet energy εq. Then |φq,n〉 = einωt|φq〉 is
also a Floquet mode yielding the same physical wave function |ψ(t)〉, but it has a Floquet energy
εqn = εq + ~nω. As the modes describe the same physical wave function, Floquet energies εq are
unique only up to integer multiples of the driving frequency ~ω. Similar to the case in solid-state
physics, Brillouin zones can be introduced in frequency or Floquet-energy space, respectively. Due
to aforementioned ambiguity, the quasi energies εq can be mapped into the first Floquet-Brillouin
zone, which is defined as the interval

[
−~ω

2
, ~ω

2

[
and is used for the definition of the set

Q1.FBZ =

{
q : εq ∈

[
−~ω

2
,
~ω
2

[}
. (4.12)
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4. Floquet Theory

The Floquet modes |φq,n〉 fulfil the orthonormality conditions of the scalar product of F :

〈〈φq,n|φp,m〉〉 =
1

T

∫ T

0

dt〈φq,n(t)|φp,m(t)〉 = δq,pδn,m. (4.13)

Here 〈φq,n(t)|φp,m(t)〉 denotes the scalar product of R. If q and p are continuous indices, the first
Kronecker delta has to be replaced by a Dirac-delta function. By using the Fourier transform of the
Floquet mode (4.7) and the orthonormality relation, the completeness relation in F reads according
to Ref. [82] ∑

q∈Q1.FBZ

∞∑
n=−∞

|φq,n(t)〉〈φq,n(t′)| = IRδ(t− t′). (4.14)

We denote with IR the identity on the configuration space R. If the times t and t′ are equal up to
an integer multiple of T , it is sufficient to sum over the first Brillouin zone in order to get a modified
completeness relation ∑

q∈Q1.FBZ

|φq(t)〉〈φq(t)| = IR. (4.15)

As the last point of this Chapter, a general formula for time-averaged expectation values is given.
We consider a time-dependent operator Â(t):

A(t) =
∞∑

n=−∞

e−inωtÂn, (4.16)

which has the same time periodicity as the Hamilton operator. The time averaged expectation value
is then defined as

〈〈Â(t)〉〉 = 〈〈ψ(t)|Â(t)|ψ(t)〉〉 =
1

T

∫ T

0

dt〈ψ(t)|Â(t)|ψ(t)〉. (4.17)

If the wave function |ψ(t)〉 is assumed to be a Floquet state according to (4.4), the Fourier decom-
position (4.7) can be used in order to write the expectation value in the form

〈〈Â(t)〉〉 =
∞∑

n,s=−∞

〈φn+s|Âs|φn〉. (4.18)

By setting A(t) = IR, this equation can be used in order to calculate the norm of the Floquet state
|ψ(t)〉.

4.3. Time Evolution and Effective Hamiltonian

With the knowledge of the Floquet energies and the corresponding modes any quantum state |ψ(0)〉
can be propagated by the Hamiltonian Ĥ(t). Let the propagator corresponding to Ĥ(t) with initial
time t0 = 0 be denoted by Û(t, 0). The time dependence

|ψ(t)〉 = Û(t, 0)|ψ(0)〉 (4.19)
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4.3. Time Evolution and Effective Hamiltonian

of an arbitrary quantum state |ψ〉 can be explicitly calculated by inserting the identity (4.15) at
time t = 0 into (4.19). Using the notation

cq = 〈φq(0)|ψ(0)〉, (4.20)

the propagated state can be written in the form |ψ(t)〉 =
∑

q∈Q1.FBZ
Û(t, 0)|φq(0)〉cq. Floquet theorem

validates that Floquet modes |φq(t = 0)〉 equal their corresponding steady state wave function
|ψq(t = 0)〉 at t = 0 and therefore the time evolution of the Floquet mode |φq(0)〉 is given by
Û(t, 0)|φq(0)〉 = e−iεq/~ t|φq(t)〉. With this knowledge the time-evolved quantum state is written in
the form

|ψ(t)〉 =
∑

q∈Q1.FBZ

cqe
−i εq~ t|φq(t)〉. (4.21)

As we assumed |ψ〉 to be arbitrary, the propagator reads

Û(t, 0) =
∑

q∈Q1.FBZ

|φq(t)〉〈φq(0)|e−iεq/~ t. (4.22)

By again inserting identity (4.15) at t = 0, equation (4.22) can be rewritten as

Û(t, 0) = Ûpe
−iĤeff/~ t, (4.23)

where Ûp =
∑

q∈1.BZ
|φq(t)〉〈φq(0)| is denoted as micromotion operator [31], as it deals with the time-

periodic part of the dynamics. The effective Hamiltonian

Ĥeff =
∑

q∈Q1.FBZ

εq|φq(0)〉〈φq(0)| (4.24)

contains the slowly varying components of the dynamics and all information about the Floquet
energies and the Floquet modes at times t = 0. As Ûp(t + T ) = Ûp(t) and Ûp(0) = I, the effective
Hamiltonian contains all information to propagate any quantum state at multiple integers of the
driving period T . The propagator has in this special case a simple structure of

Û(nT ) = e−iĤeff/~ nT = [Û(T )]n, n ∈ Z. (4.25)

It is now the point to do some concluding remarks. In this Chapter we introduced Floquet the-
ory, with which one is able to solve the time-dependent Schrödinger equation in the case of a
time-periodic Hamiltonian. As a main point we saw by using Floquet theorem in combination with
Fourier transform, that we can map the time-dependent Schrödinger equation to a static one, which
is located in a more complex Hilbert space. We saw that this Floquet equation looks similar to a
multi-channel Schrödinger equation. This fact we exploit in the next Chapter in order to generalise
the scattering theory of Chapter 2 to time-periodic potentials.
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5. Floquet-Scattering Theory

In this Section we present a scattering theory for time-periodic potentials by usage of Floquet
theorem. Due to the driving-induced channel structure, Floquet-scattering theory has similarities to
multi-channel quantum scattering theory [56], if the Fourier index n is viewed as a channel. Instead
of introducing a Lippmann-Schwinger formalism like Refs. [3, 80] our focus lies on the partial wave
expansion. We start in Section 5.1 with introducing time averaged scattering quantities. With
this basic framework, the Floquet-partial wave expansion is presented in Section 5.2. We finish
this Section by the Floquet-optical theorem, which expresses the unitary of the Floquet-scattering
process. Section 5.3 is dedicated to the scattering of indistinguishable particles.

5.1. Coupled-Channel Equations and Cross Sections

In this Section we rewrite the time dependent scattering problem in a set of static coupled equations.
This step is useful in order to introduce the scattering amplitude and cross section in an intuitive
way.

5.1.1. Coupled-Channel Equations

In order to investigate the effect of periodic driving on the scattering of quantum particles, we use
a Schrödinger theory with a Hamiltonian

H = − ~2

2m
∆ + V (r, t), (5.1)

where a time-periodic potential V (r, t) is considered. The period of the potential is denoted by T ,
i.e.

V (r, t+ T ) = V (r, t), ∀t ∈ R. (5.2)

As presented in Chapter 4, the driving frequency ω is defined as ω = 2π/T . The Hamiltonian (5.1)
can be interpreted in two ways. On the one hand it describes a single particle with mass m under
the influence of an external potential V (r, t). On the other hand it can be also used to describe
the scattering of two particles with masses m1 and m2 by the inter-particle interaction U(r1 − r2, t)
in the centre-of-mass system [55]. In this case the mass m has to be identified with the reduced
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5. Floquet-Scattering Theory

mass µ = m1m2/(m1+m2) and the potential V (r, t) by the inter-particle interaction potential U(r, t).

In order to find a reasonable description of time-periodic scattering, the goal is to obtain the scat-
tering behaviour of steady-state solutions ψ(r, t) = e−iε/~ tφ(r, t) of the Floquet-equation[

− ~2

2m
∆ + V (r, t)− i~ ∂

∂t

]
φ(r, t) = ε φ(r, t). (5.3)

The first step is to remove the explicit time dependence of the Floquet equation by using the Fourier
transform of the Floquet mode and the potential

φ(r, t) =
∞∑

n=−∞

e−inωtφn(r) (5.4)

V (r, t) =
∞∑

n=−∞

e−inωtVn(r) (5.5)

and to introduce the Floquet channel number by the Fourier-index n. Similar to (4.9), equation
(5.3) can be written down in the form

− ~2

2m
∆φn(r) +

∞∑
m=−∞

Vm(r)φn−m(r) = (e+ n~ω)φn(r), ∀n ∈ Z. (5.6)

In this equation the coupling of Floquet channels is given by the Fourier-components of the potential
Vn(r) which have n 6= 0.

5.1.2. Asymptotic Waveform

In order to derive the asymptotic behaviour of the Floquet mode and the form of the cross section,
we first summarise necessary assumptions.

At first, we assume the potential V (r, t) to vanish faster than 1/r for large r

lim
r→∞

rV (r, t) = 0, ∀t ∈ R, (5.7)

where r is the modulus of the position vector r. Although this condition excludes Coulomb-like po-
tentials, it is necessary for obtaining a simple expression of the asymptotic form of the Floquet mode
and covers the in our thesis relevant case of scattering by inter-atomic and short range potentials.

Secondly, a plane wave is considered as an incoming wave function

ψin(r) = eikr. (5.8)

The wave vector k, considered to be parallel to the z-axis, is related to the energy of the plane wave
by the dispersion relation for non-relativistic particles

E =
~2

2m
k2. (5.9)
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5.1. Coupled-Channel Equations and Cross Sections

We assume the incoming wave to be located in the zeroth Floquet channel

φin(r, t) = δn,0e
ikr. (5.10)

By comparing the time-evolution of (5.8) and (4.3), we conclude that the energy of the incoming
particle equals the Floquet energy

E = ε. (5.11)

With this consideration we make an ansatz of the asymptotic wave function solving (5.6) in the
case of large r. This ansatz reads

φn(r) = δn,0e
ikr + fn

eiknr

r
. (5.12)

In this equation the wave vector kn and the scattering amplitude fn in the n-th Floquet channel is
introduced. The Floquet scattering amplitude fn depends on the potential, on the driving frequency,
on the Floquet energy ε and on the solid angle Ω = (θ, φ) of the scattered wave

fn = fn({Vn}, ω, ε, θ, φ). (5.13)

In order to verify the ansatz, we show, that it solves (5.6). The Laplacian of fn(ε,Ω) e
ikr

r
evaluates

for the case of large radii to

∆fn(ε,Ω)
eiknr

r
= fn(ε,Ω)

1

r2

∂

∂r
r2 ∂

∂r

(
eiknr

r

)
+
eiknr

r3

∂

∂Ω
fn(ε,Ω) (5.14)

= −k2
nfn(ε,Ω)

eiknr

r
+O

(
1

r3

)
In the next step we assume for simplicity a potential of the form Vm(r) = 1/r1+α and calculate

Vm(r)φn(r) = eikr/r1+α + eikr/r2+α = O
(

1

r1+α

)
. (5.15)

Condition (5.7) ensures that α > 0 and that the influence of the potential on the asymptotic waveform
can thus be neglected as r goes to infinity. With those approximations the asymptotic waveform is
(5.12) inserted into the coupled-channel equation (5.6)(

~2

2m
k2
n − n~ω

)(
δn,0e

ikr +
eikr

r

)
= ε

(
δn,0e

ikr +
eikr

r

)
+O

(
1

r3

)
, (5.16)

in order to yield the dispersion relation defining the values of kn

~2

2m
k2
n = ε+ n~ω. (5.17)

If one works in the centre of mass system, the mass m in equation (5.17) has to be replaced by the
reduced mass µ. Due to equation (5.11) we identify k0 with k. If the right-hand side of 5.17 becomes
negative, we get an imaginary kn = iκn. The asymptotic solution in this Floquet channel is not a
spherical wave, but an exponentially decaying solution fne−κnr/r.
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5. Floquet-Scattering Theory

5.1.3. Cross Section

The goal of this Section is to derive an expression for the time averaged differential and total cross
section. The starting point is a general definition of the differential cross section in a time dependent
manner similar to (2.4)

|jin|
dσ

dΩ
(Ω, t)|dΩ| = jscatt(Ω, t)r

2dΩ, (5.18)

but we assume an explicit time dependency. For a steady state solution (4.3) the probability current
reads

j(r, t) =
~

2im

∞∑
m,n=−∞

(
φm(r)∗∇φn(r)e−i(n−m)ωt − φm(r)∇φn(r)∗e−i(m−n)ωt

)
. (5.19)

For the incoming plane wave, this evaluates to

jin =
~k

m
. (5.20)

In order to determine the probability current of scattered particles, the asymptotic waveform of the
scattered wave fn(ε,Ω)eiknr/r is inserted into expression (5.19). The gradient is evaluated for large
r to be

∇fn(ε,Ω)
eiknr

r
= fn(ε,Ω)

(
ikn

eiknr

r
− eiknr

r2

)
êr +

eiknr

r2

∂fn(ε,Ω)

∂Θ
êΘ (5.21)

+
eiknr

r2 sin(Θ)

∂fn(ε,Ω)

∂φ
êφ = iknfn(ε,Ω)

eiknr

r
êr +O

(
1

r2

)
.

Inserting this into (5.19), the time-dependent differential cross section is evaluated. As we are
interested in the asymptotic behaviour of the wave function, we neglect terms of order 1/r2 or
higher

dσ

dΩ
(ε,Ω, t) =

1

k

∞∑
m,n=−∞

Im
(
iknf

∗
m(ε,Ω)fn(ε,Ω)ei(kn−k

∗
m)re−i(n−m)ωt

)
. (5.22)

This is the most general expression of the differential cross section. In the case of an imaginary wave
vector, the corresponding summands ei(kn−k∗m)r decay exponentially and do not contributing to the
current for large r. In equation (5.22) different summands oscillate with different frequencies in time
and wave-vectors in space, as they are created by superposition of different Fourier components of the
asymptotic Floquet state. This complicated behaviour is due to the time-dependency of the potential
and not monitored in static scattering theory. In the following we assume the driving frequency ω to
be large in comparison to the measuring process or the measuring process to be done such often at
random times, that it is useful to only consider time averaged quantities 〈〈A〉〉 = 1

T

∫ T
0
dtA(t). This

simplifies the situation dramatically. The time averaged differential cross section is evaluated while
using 1

T

∫ T
0
dt ei(n−m)ωt = δn,m to be

〈〈 dσ
dΩ
〉〉 =

∞∑
n≥nc

|fn(ε,Ω)|2kn
k
, (5.23)
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5.1. Coupled-Channel Equations and Cross Sections

where the critical index nc is defined by the formula

nc =
⌈
− ε
ω

⌉
, (5.24)

which includes the ceiling function d•e. This ensures that all kn with n ≥ nc are real, while all kn
with n < nc are purely imaginary, such that the sum (5.23) only covers open Floquet channels. As
both Floquet energy and driving frequency are positive, definition (5.24) ensures that the critical
index is always smaller or equal than zero. In comparison to equation (2.5) of static single-channel
scattering theory a sum over the squared modulus of the scattering amplitude fn of all free channels,
weighted by kn/k, occurs.

A measure of the complete amount of scattered particles is the total cross section σ. It is the
integral of the differential cross section over all solid angles

σ =

∫
dΩ

dσ

dΩ
. (5.25)

Using the form of the differential cross section (5.23) the time averaged total cross section can be
written in the form

〈〈σ〉〉 =
∞∑

n≥nc

〈〈σn〉〉, (5.26)

where we have introduced the cross section in in Floquet channel n by

〈〈σn〉〉 =

∫
dΩ|fn(ε,Ω)|2kn

k
. (5.27)

As the incoming particle is located in the zeroth Floquet channel, no driving-field quanta and
therefore energy is added or subtracted, if the particle stays in it and scattering is elastic. Therefore
the cross section in Floquet channel zero is considered as the elastic cross section [4]

σel = 〈〈σ0〉〉, (5.28)

while the cross Section in channel n is related to inelastic scattering involving n quanta of the driving
field. The total inelastic cross section calculates to

σin =
∞∑

n≥nc
n 6=0

〈〈σn〉〉. (5.29)

The scattering amplitudes fn(ε,Ω) can be used in order to define a time-dependent scattering am-
plitude

f(t, ε,Ω) =
∞∑

n≥nc

e−inωtfn(ε,Ω), (5.30)

and its time-average equals the scattering amplitude in zeroth Floquet channel

〈〈f〉〉 = f0. (5.31)

31



5. Floquet-Scattering Theory

In Chapter 7 we will used this quantity in order to observe the enhancement of scattering.

At last we point out the similarities of the coupled-channel picture of Floquet scattering to static
multi-channel scattering theory, which is explained for example in Ref. [56, Chapter 3]. In multi-
channel scattering theory an equation similar to (5.6) exists, and the shape of the asymptotic wave-
forms equal each other if the channels of the multi-channel theory are identified with the Floquet
channels. Although multi-channel theory does not include time dependent quantities like in (5.22),
the formula for the time-averaged differential cross section (5.23) is similar to the one obtained in
static multi-channel scattering theory.

5.2. Floquet-Partial Wave Expansion

Here we generalise the concept of the partial wave expansion to the case of time-periodic scattering.
We specialise to spherical symmetric potentials.

5.2.1. Radial-Floquet Equation

Consider a spherical symmetric Hamiltonian H(r, t), which commutes with the angular momentum
operator L at all times

[H(r, t),L] = 0 ∀t ∈ R. (5.32)

This implies that L commutes with all Fourier components (4.8) of the Hamiltonian

[Hn(r),L] = 0,∀n ∈ Z. (5.33)

Using the rules for commutators [84] this result is used in order to prove that the commutator of L
and the Floquet Hamiltonian (4.10) vanishes

[H,L]R⊗T = 0. (5.34)

With this knowledge the eigenfunctions of the angular momentum operator L can be included in
the eigenbasis of H. The eigenfunctions of L are given by the spherical harmonics Y m

l (Θ, φ). They
are parametrised by the quantum number of orbital angular momentum l and its projection m on
the quantisation axis.

With this knowledge the Floquet modes and its Fourier components φl,n(r) can be decomposed
in a radial and angular part

φl,n(r) = Rl,n(r)Pl(cos(θ)), (5.35)

where Pl(z) denotes the l-th Legendre polynomial. They appear instead of spherical harmonics,
as we assume the incoming plane wave to be directed along the z-axis. In this case the problem
is rotational symmetric and therefore the φ dependence of the spherical harmonics drops out like
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5.2. Floquet-Partial Wave Expansion

in static scattering theory. By introducing equation (5.35) time dependency is fully put into the
radial part of the wave function. After inserting these coefficient functions in the coupled-channel
equations (5.6) and separating the angular motion using ∆ = ∆r − L2

~2r2 , equation

− ~2

2m
∆rRl,n(r) +

~2l(l + 1)

2mr2
Rl,n(r) +

∞∑
m=−∞

Vm(r)Rl,n−m(r) = (ε+ n~ω)Rl,n(r) (5.36)

is derived as an intermediate step. We denoted with ∆r = 1
r2

∂
∂r
r2 ∂

∂r
the radial part of the Laplacian.

Like in the time-independent partial wave expansion, a centrifugal barrier including the angular
momentum quantum number l adds to the radial motion. Scaling by −2m

~2 , introducing ~2

2m
k2
n =

ε+ n~ω and vm(r) = 2m
~2 Vm(r) leads to the radial Floquet equation[
∆r + k2

n −
l(l + 1)

r2
− v0(r)

]
Rl,n(r) =

∑
m6=0

vm(r)Rl,n−m(r). (5.37)

This equation is central to this thesis, as its solution gives access to all scattering quantities of a given
potential. For vanishing right-hand side the special case of time-independent scattering is recovered.
In general, the explicitly time-dependent part leads to a coupling of the different Floquet channels.
A schematic view on this is given by Figure 5.1. The Fourier components v±1 lead to a coupling
of nearest neighbour channels, while v±2 couples next-nearest neighbours. Although only in the
zeroth Floquet channel an incoming wave is present, scattered waves can occur in all free channels
due to the periodic driving, where channels supporting imaginary wave vectors posses exponentially
decaying wave functions. This structure is similar to static scattering theory but the fact that in
Floquet-scattering infinitely many Floquet channels are present [4].

5.2.2. Scattering Amplitudes in Floquet-Partial Wave Expansion

The aim of this Chapter is to derive a closed formula for the scattering amplitudes fn in the sense of
a partial wave expansion, which is presented in Section 2.2.1 in the case of static scattering theory.
The beginning of this consideration is the limit of large r of the radial Floquet equation (5.37),
where the potential vm(r) can be neglected, but we do not neglect the centrifugal term. In this case
equation (5.37) gets decoupled (

∆r + k2
n −

l(l + 1)

r2

)
Rl,n(r) = 0. (5.38)

This equation can be solved by spherical Hankel functions h±l (knr) [85], which are defined by

h±l (x) = ∓i(−x)l
(

1

x

∂

∂x

)l
e±ix

x
, (5.39)

and are related to spherical Bessel jl(x) and Neumann yl(x) [53, 55] functions by

h±l (x) = jl(x)± iyl(x). (5.40)
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5. Floquet-Scattering Theory

Figure 5.1.: Visualisation of a Floquet-Scattering Process. An incoming wave φin
o

is considered in the zeroth Floquet channel. Scattering by the time independent
part V0 (indicated by blue circles) of the potential leads to elastic scattering, where
the outgoing wave φout

0 stays in the same channel. The first Fourier component
V1 (drawn in green) leads to a coupling of neighbouring Floquet channels, while
second component V2 (drawn in orange) couples next-nearest neighbours. Due to
this coupling the particle can be scattered inelastic to higher Floquet channels or
become a bound state located in the channels with negative index n. The processes
with V1 involve one quantum of the drive field, while the ones with V2 involve two.
The propagating waves are shown by a wave-package, while the bound states are
displayed by an exponentially damped wave function.

The first two spherical Hankel functions are

h+
0 (x) = −ie

ix

x
, h−0 (x) = i

e−ix

x
, (5.41)

h+
1 (x) =

(
1

x
+

i

x2

)
eix, h−1 (x) =

(
1

x
− i

x2

)
e−ix. (5.42)

Similar to (2.24), in the limit of large arguments these functions read

h±l (x) = ∓e
±(x−π

2
l)

x
. (5.43)
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5.2. Floquet-Partial Wave Expansion

As it is seen from its shape, the spherical Hankel functions with a plus index correspond to incoming
waves and the ones with a minus index to outgoing.

The limit of the wave function for large radii is sufficient in order to investigate scattering proper-
ties. Therefore we choose as an ansatz for the asymptotic radial wave function a superposition of
the asymptotic limit of the spherical Hankel functions

Rl,n(r) = Al,ni
e−i(knr−

π
2
l)

knr
−Bl,ni

ei(knr−
π
2
l)

knr
. (5.44)

If we insert (5.44) into

φn(r) =
∞∑
l=0

Rl,n(r)Pl(cos(θ)), (5.45)

we get the asymptotic form of the wave function. In order to be consistent, this should equal equation
(5.12)

δn,0e
ikr + fn(ε, θ)

eiknr

r
=
∞∑
l=0

[
Al,ni

e−i(knr−
π
2
l)

knr
−Bl,ni

ei(knr−
π
2
l)

knr

]
Pl(cos(θ)). (5.46)

By expanding the plane wave in a sum of angular momenta as in equation (2.12)

eikr =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos(θ)) =
∞∑
l=0

2l + 1

2
il[h+

l (kr) + h−l (kr)]Pl(cos(θ)) (5.47)

and expressing jl(x) via (5.40) and (5.43) by the asymptotic limit of h±l (x), this equation can be
rewritten in the form

fn(ε, θ)
eiknr

r
=
∞∑
l=0

(
Bl,n −

2l + 1

2
ilδn,0

)
−ieiknr(−i)l

knr
Pl(cos(θ))

+

(
Al,n −

2l + 1

2
ilδn,0

)
ie−iknril

knr
Pl(cos(θ))

(5.48)

Since the scattered wave only contains outgoing waves, the term in front of the e−iknr factor has to
vanish. This sets the coefficients Al,n to be

Al,n =
2l + 1

2
ilδn,0. (5.49)

Thus, the scattering amplitude fn(ε, θ) is determined by the coefficients Bl,n to be

fn(ε, θ) =
1

kn

∞∑
l=0

(−i)l+1

[
Bl,n −

2l + 1

2
ilδn,0

]
Pl(cos(θ)) (5.50)

Note that the scattering amplitude can be written as a double sum of fl,n(ε, θ) while using

fl,n(ε, θ) = (−i)l+1[Bl,n −
2l + 1

2
ilδn,0]Pl(cos(θ). (5.51)
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5. Floquet-Scattering Theory

By inserting (5.50) into (5.23) the time-averaged differential cross section is calculated by the knowl-
edge of the Bl,n

〈〈 dσ
dΩ
〉〉 =

∞∑
n≥nc

1

knk

∞∑
l,l′=0

[
B∗l,n −

2l + 1

2
(−i)lδn,0

] [
Bl′,n −

2l′ + 1

2
il
′
δn,0

]
Pl(cos(θ))Pl′(cos(θ)) (5.52)

The integration over the angle θ by using the orthogonality relation of the Legendre polynomials∫ 1

−1
dzPl(z)Pl′(z) = δl,l′

2
2l+1

leads to an expression for the time-averaged total cross section

〈〈σ〉〉 =
∞∑

n≥nc

∞∑
l=0

4π

knk

∣∣∣∣Bl,n −
2l + 1

2
ilδn,0

∣∣∣∣2 1

2l + 1
. (5.53)

This is similar to expression (2.17) of static scattering theory, but in contrast to (5.53), the scattering
phase has been introduced in equation (2.11). We now generalise the concept of the scattering phase
δl,n to Floquet-scattering theory by defining

Bl,n =
2l + 1

2
ile2iδl,n . (5.54)

In contrast to the definition in Chapter 2 it is allowed to be complex

δl,n = βl,n + iγl,n. (5.55)

The real part βl,n of the phase describes a phase shift of the wave function due to the scattering
process, while the imaginary part γl,n describes gains and losses due to scattering into and from
different Floquet channels. Using the scattering phase according to (5.54) the scattering amplitude
can be expressed in the familiar form

f0(ε, θ) =
1

k

∞∑
l=0

(2l + 1)eiδl,n sin(δl,n)Pl(cos(θ)), (5.56)

fn(ε, θ) =
1

kn

∞∑
l=0

2l + 1

2i
e2iδl,nPl(cos(θ)), n 6= 0. (5.57)

Correspondingly the total cross section reads

〈〈σ〉〉 =
∞∑
l=0

4π

k2
(2l + 1)e−2γl,0| sin(δl,0)|2 +

∞∑
n≥nc
n6=0

4π

knk
(2l + 1)

e−4γl,n

4

 . (5.58)

This formula shows in an intuitive way the respective contribution of different channels to the Flo-
quet scattering. The channel with the incoming wave n = 0 contributes to scattering both by phase
shift and losses as displayed in the first summand of equation (5.57), while the other channels only
contribute through their gain and loss factor γl,n.
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5.2. Floquet-Partial Wave Expansion

Similar to equation (2.22) in static scattering theory we define the Floquet-scattering length aFl(t)
as the negative limit of vanishing energy of the Floquet-scattering amplitude

− lim
k0→0

fn(ε, θ) = aFl
n , (5.59)

where aFl
n are the Fourier-coefficients of aFl(t). The time averaged scattering length is defined as

ascatt = 〈〈aFl(t)〉〉 = aFl
0 . (5.60)

This definition is central to this thesis, as it allows us to characterise the scattering by a time-
dependent potential at low energies by a single parameter. Similar to static scattering theory,
s-wave scattering is dominant at low energies in the driven case [4,80] and because of the additional
conservation of angular momentum s-wave scattering is present in all Floquet channels. As s-waves
are radial symmetric, the scattering length (5.59) has no dependence on the angle θ.

5.2.3. Floquet-Optical Theorem

In this section we will derive and discuss the Floquet-optical theorem, which will be of great use in
Chapter 7. Starting point of its derivation by Floquet-partial wave expansion is to note, that the
time-averaged probability current can be separated in partial wave currents 〈〈j〉〉l by

〈〈j〉〉 =
∞∑
l=0

〈〈j〉〉l. (5.61)

Inserting the wave function (5.45), while using as radial part the asymptotic form (5.44), and eval-
uating the Legendre polynomials at forward direction θ = 0, the large r-asymptotic of the time
average of the l-wave current is derived to be

〈〈j〉〉l =
~
mr2

∞∑
n≥nc

1

kn

(
|Bl,n|2 − |Al,n|2

)
êr +O

(
1

r3

)
(5.62)

As in Schrödinger theory no probability is created or destroyed during a scattering process and the
different l-wave solutions are decoupled, the integral of each l-wave current over a sphere of radius
r0 vanishes ∫

dΩr2êr〈〈j〉〉l = 0. (5.63)

The surface integral of 〈〈j〉〉l evaluates to

∞∑
n≥nc

4π

kn

(
|Bl,n|2 − |Al,n|2

)
= 0. (5.64)

This equation describes the unitary of the scattering process, because it was derived from the van-
ishing of the probability flux through a surface around the origin. This statement can be refined
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5. Floquet-Scattering Theory

further by completing the square |Bl,n|2 − |Al,n|2 = |Bl,n − Al,n|2 + 2Re (Bl,nA
∗
l,n) − 2|Al,n|2 and

inserting (5.49) for Al,n to
∞∑

n≥nc

4π

kn
|Bl,n −

2l + 1

2
ilδn,0|2 = −4π(2l + 1)

(
Re [Bl,0(−i)l]− 2l + 1

2

)
. (5.65)

While multiplying by 1
k0(2l+1)

and doing the l-summation, the left-hand side of equation (5.65) is
exactly the time-averaged total cross section (5.53), while the right-hand side is proportional to the
imaginary part of the Floquet-scattering amplitude (5.50). This yields the Floquet-optical theorem

〈〈σ〉〉 =
4π

k0

Im f0(ε, θ = 0). (5.66)

It is very fundamental, as it connects the total cross section to the imaginary part of the scatting
amplitude in the zeroth Floquet channel and ensures, like in the static case, the unitary of the
Floquet-scattering process. Similar to the static case, the part with Im f0 originates from an in-
terference term of incoming plane wave and outgoing special wave 2Re (Bl,nA

∗
l,n) − 2|Al,n|2, while

〈〈σ〉〉 comes due to the probability current of the scattered wave. This implies, that Floquet-optical
theorem does the statement, that losses of probability flux due to the scattered wave are compen-
sated by the interference of plane and scattered wave in forward direction. Note, that only the
scattered wave in the zeroth channel, in which also the incoming plane wave is located, contributes
to this interference, while the cross section 〈〈σ〉〉 has a contribution of all Floquet channels. Since
the probability current (5.61) separates in l-wave currents, Floquet optical theorem can be restated
in the case, where 〈〈σ〉〉 and f0 only cover contributions form l-wave scattering. In the case of s-wave
scattering all scattering amplitudes are independent from the angle θ and the total cross section can
be directly calculated by multiplying (5.23) with 4π. The Floquet-optical theorem (5.66) can be
restated as [4]

Im f0(ε) =
∞∑

n≥nc

|fn(ε)|2kn. (5.67)

If the zero energy limit of (5.67) is done under the assumption, that all Floquet-scattering amplitudes
are not single valued in this limit, we arrive at equation

Im aFl
0 = −

∑
n≥nc
n6=0

|aFl
n |2kn. (5.68)

This equation states that the imaginary part of the time-averaged Floquet scattering length aFl
0

at zero energy is related to the scattering of particles in higher channels, resulting in losses in the
zeroth one. This means that the presence of inelastic scattering can be measured by a non-vanishing
imaginary part of the Floquet scattering length in zeroth channel.

5.3. Indistinguishable Particles

In this Section the Floquet-scattering properties of indistinguishable particles are discussed. In the
centre-of mass frame, two identical particles are positioned at position r and −r, so the (anti)-
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5.3. Indistinguishable Particles

symmetrised form of a scattering-wave function (5.12) reads

ψ±(r, θ, φ, t) =
1√
2
e−iε/~t

{
eikr ± e−ikr +

∞∑
n=−∞

[fn(ε, θ, φ)± fn(ε, π − θ, φ+ π)]
eiknr

r
e−inωt

}
.

(5.69)
The plus sign used for the case of bosons, while the minus sign gives the case of scalar fermions.
As we only deal with scalar fields, both particles have to be spinless or spin polarised. We follow
the common definition [52, 56, 86] of normalizing the scattering amplitude by only considering the
current in positive k direction as incoming

f±n (ε, θ, φ) = [fn(ε, θ, φ)± fn(ε, π − θ, φ+ π)] . (5.70)

This scattering amplitude leads a time-averaged differential cross section of

〈〈 dσ
dΩ
〉〉± =

1

2

∞∑
n≥nc

|fn(ε, θ, φ)± fn(ε, π − θ, φ+ π)|2kn
k
, (5.71)

where the factor of 1/2 comes due to normalisation issues [56], with that the time-averaged total
cross section 〈〈σ〉〉± can be defined as the integral over the full solid angel of (5.71).

In the case of low energy physics we get as the s-wave scattering length a±scatt

a+
scatt = 2ascatt (5.72)

for bosons and
a−scatt = 0 (5.73)

for fermions.

We now arrived the end of this Section and we do a short summary of the most important findings.
We treated the general form of scattering by a time-periodic potential and observed, that with the
usage of Floquet theory the time-dependent scattering problem can be mapped to a static multi-
channel problem with infinitely many channels. We were able to extend partial-wave expansion to
scattering by time-periodic potentials and showed how this theory can be used in order to calculate
cross sections and the scattering length in principle. In the next Chapter we apply this theory to a
simple model potential, where we find a solution of the scattering problem in a closed form. This
solution is used in Chapter 7 to observe the strong enhancement of scattering by periodic driving.
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6. Contact Potential with Driven
Scattering Length

In this Chapter we apply the framework of Floquet-partial wave expansion to a special scattering
potential, named contact potential, which is interesting to investigate, as it possesses a simple solu-
tion in a closed form while featuring interesting and non-trivial properties if periodically driven. We
therefore introduce in Section 6.1 the contact potential, which describes the scattering of particles in
the low energy limit and the regime of s-wave scattering. In Section 6.2 we solve the corresponding
radial-Floquet equation and map the driven scattering problem to a recursion relation. Section 6.3
comprises a discussion of the scale invariance of the derived recursion and a rescaling in convenient
length and energy scales. Finally, in Section 6.4 we present a method, which can be used in order
to solve the recursion relation numerically for general frequencies, and derive approximate analytic
expressions in the limit of small and large driving frequencies.

In this Chapter we solely discuss the methods of solving the radial Floquet equation describing
scattering by a time-periodic contact potential, while a detailed discussion of the results of this
investigation is done in Chapter 7.

6.1. Driven Contact Potential

As a suitable generalisation of the one-dimensional delta potential (1.2), which is describing the
inter-particle interaction in the case of scattering of ultracold atoms [38,55], we introduce the contact
potential

V (r, t) =
2π~2a(t)

µ
δ3(r)

∂

∂r
r (6.1)

as a time-dependent scattering potential. Here a(t) denotes the s-wave scattering length, which
is time-dependent in our case, and µ the reduced mass. The contact potential includes a radial
derivative ∂

∂r
, which acts on radius r times the wave function, in order to overcome a 1/r divergence

of wave functions in the origin. The contact potential is constructed for the case of s-wave scattering
and is thus valid in the low-energy limit, where the de-Broglie wavelength of the scattered particle
is much larger than the relevant length scales of an actual inter-atomic potential. Therefore, it is
a simplified model, where the effect of a more complicated inter-atomic potential is only present at
the origin and described by the instantaneous scattering length a(t) [4]. A more detailed discussion
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6. Contact Potential with Driven Scattering Length

of the contact potential is given in Appendix A. In the following we assume the scattering length to
be driven sinusoidally

a(t) = ā+ a1 cos(ωt), (6.2)

with the driving frequency ω, the time-averaged scattering length ā and the driving amplitude a1.
We focus on the parameter range of a1 < |ā|, as we only want to consider the case, where the contact
interaction is either attractive or repulsive over the whole driving period.

In contrast to static scattering theory, the Floquet state consists of a superposition of wave functions
in different Floquet channels, and therefore the de-Broglie wavelength λn = 2π/kn in all relevant
channels should be larger than the typical length scale rpot of the potential

knrpot � 1 (6.3)

in order to justify the approximation of a actual inter-atomic potential by the contact interaction. In
the case of ultracold gases the inter-atomic potential is given by the van der Waals potential and the
typical length scale of the potential rpot is given by the van der Waals length rvdW [38]. Introducing
the energy scale of the potential by

Epot =
~2

2µ

1

r2
pot

(6.4)

and using the dispersion (5.17), while assuming that the Floquet channels relevant in the scattering
process are of order one, we rewrite (6.3) in a more convenient form

~ω � Epot. (6.5)

This condition also ensures the adiabaticity of the driving procedure in energy scales of the poten-
tial [4, 87] and therefore validates the approximation of a time-dependent inter-atomic potential by
an instantaneous scattering length.

Following Refs. [54,88], we make the choice of
∞∫

0

drδ(r) =
1

2
(6.6)

and derive the delta distribution identity

4π

∫ ∞
0

dr r2δ3(r) =

∫
R3

d3rδ3(r) = 1 = 2

∫ ∞
0

drδ(r), (6.7)

in order to relate the radial delta function to the three-dimensional one
1

2πr2
δ(r) = δ3(r). (6.8)

With identity (6.8) and a scaling by 2µ/~2, the non-vanishing Fourier components of the scaled
potential v(r, t) can be expressed only by the modulus r of the position vector

v0(r) = 2
ā

r2
δ(r)

∂

∂r
r (6.9)

v±1(r) =
a1

r2
δ(r)

∂

∂r
r. (6.10)
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Figure 6.1.: Scetch of the actual wave function in different Floquet channels for a
periodically driven contact potential in the case of ε̃ = 10−2, ω̃ = 1 and ã1 = 0.1.
We consider an incoming wave with wavelength λ to be located in the zeroth Floquet
channel. Due to the periodic modulation of the potential (6.10) the wave can be
scattered inelastically in higher Floquet channels. Additionally the drive creates
bound states in the Floquet channels with negative index. Although these bound
states have a vanishing probability current, they affect the scattering properties
remarkably.

In order to keep the following calculation on the most general level, we consider the case of distin-
guishable particles.

6.2. Derivation of Recursion Relation

The following derivation of a recursion relation is starting with the radial Floquet equation in the
case of s-wave scattering (5.37) with a driven contact potential.[

∆r + k2
n − 2

ā

r2
δ(r)

∂

∂r
r

]
Rn(r) = 2

a1

2r2
δ(r)

∂

∂r
r [Rn+1(r) +Rn−1(r)] . (6.11)

As s-waves correspond to total angular momentum l = 0, no centrifugal term appears in equation
(6.11) and we will omit this l-index in the wave function in the further calculation by writing
Rn(r) = Rl=0,n(r). For r 6= 0 the radial-Floquet equation can be solved by spherical Hankel functions

43



6. Contact Potential with Driven Scattering Length

(5.11) with index l = 0:

Rn(r) = Cn
ie−iknr

knr
−Dn

ieiknr

knr
. (6.12)

Like in Chapter 5 we consider an incoming plane wave in the zeroth Floquet channel with energy

E =
~2

2µ
k2. (6.13)

Due to the considerations made in (5.11) this incident energy E equals the Floquet energy ε. Ac-
cording to equation (5.49) the coefficients Cn have the form

Cn =
δn,0
2
. (6.14)

As visualised in Figure 6.1 the wave functions in higher Floquet channels posses a larger wave vector,
while those in lower have an imaginary one leading to bound wave functions localised around the
origin, which read

Rn(r) = −Dn
e−κnr

κnr
. (6.15)

Here we defined kn = iκn. As the other summand in (6.12) would lead to an exponentially growing
solution, it is omitted in (6.15). The coefficients Dn are obtained by investigating the behavior at the
origin by integrating over a small volume located around it. Therefore equations (6.9), (6.10,(6.12)
are inserted into equation (6.11), multiplied by r2 and integrated over the radius r∫ εr

0

dr r2

(
∆r + k2

n − 2
ā

r2
δ(r)

∂

∂r
r

)
Rn(r) =∫ εr

0

dr r2

(
2
a1

2r2
δ(r)

∂

∂r
r[Rn+1(r) +Rn−1(r)]

)
,

(6.16)

where εr is a small, but finite parameter. We are going to evaluate this integral piecewise. In order
to obtain the part involving the radial Laplacian, we rewrite the integration as a volume integral
over the Laplacian on a sphere with radius εr∫ εr

0

dr r2∆rRn(r) =
1

4π

∫
Bεr (0)

d3r∆Rn(r). (6.17)

This step is possible as the s-wave character of the ansatz function (6.12) includes no contribution
of the total angular momentum operator L2 in the Laplacian. To the right-hand side of equation
(6.17) we apply Gauss theorem and transform it to a surface integral

1

4π

∫
Bεr (0)

d3r∆Rn(r) =
1

4π

∫
∂Bεr (0)

dΩ r2 ∂

∂r
Rn(r). (6.18)

The surface integral leads to the radial derivative of the wave function evaluated at r = εr. Inserting
the ansatz functions (6.12) and performing the limit of vanishing εr we arrive at∫ εr

0

dr r2∆rRn(r) = r2 ∂

∂r
Rn(r)

∣∣∣∣
r=εr

εr→0
−→

i

kn
(Dn − Cn) . (6.19)
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6.2. Derivation of Recursion Relation

The second part of equation (6.16), which is proportional to k2
n vanishes in the limit of εr going

to zero, as the integral is also proportional to ε2r.

The integral over the contact potential evaluates to∫ εr

0

dr r2 1

r2
δ(r)

∂

∂r
r
e±ikr

kr
= ±

εr∫
0

drδ(r)ie±ikr = ± i
2
. (6.20)

Using this intermediate step in the remaining terms of (6.16) we receive as result∫ εr

0

dr r2v0(r)Rn(r)
εr→0
−→ ā(Cn +Dn), (6.21)∫ εr

0

dr r2v∓1(r)Rn±1(r)
εr→0
−→

a1

2
(Cn±1 +Dn±1). (6.22)

With Cn = δn,0/2 and equations (6.19), (6.21) and (6.22) the radial Floquet equation (6.11) can be
transformed to a recursion relation for the coefficients of the outgoing spherical waves(

i

knā
− 1

)
Dn −

a1

2ā
(Dn+1 +Dn−1) = gn, (6.23)

where the inhomogeneity is given by

gn =

(
i

knā
+ 1

)
δn,0
2

+
a1

2ā

(
δn+1,0

2
+
δn−1,0

2

)
. (6.24)

This inhomogeneous recursion relation is linear in the coefficients Dn and relates three of them with
neighboring indices n, n + 1 and n− 1. Due to the factor i/kn − ā, being non-linear in the Fourier
index n, the recursion can not be solved analytically. The inhomogeneity (6.24) is only located at
the indices n = 0,±1 and ensures, that the solution of (6.23) does not completely vanish. As the
norm of the Floquet mode (4.18) includes a sum over its Fourier components, the coefficients Dn

have to converge to zero in order to obtain a finite norm of the corresponding Floquet state. This
imposes the following boundary condition for the coefficients Dn

lim
n→±∞

Dn = 0. (6.25)

If the ansatz (6.12) is compared with the asymptotic solutions of the radial Floquet equation (5.44)
and (5.41), it will be seen that the Dn coefficients coincide with the B0,n of equation (5.44) and
therefore the scattering amplitude can be calculated by

f s−wave
n (ε) =

−i
kn

(
Dn −

1

2
δn,0

)
. (6.26)

Equation (6.23) combined with convergence condition (6.25) is central to this thesis, as it allows us
to calculate the scattering amplitudes, and with them all further scattering quantities of interest,
for arbitrary driving frequency.
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6. Contact Potential with Driven Scattering Length

6.3. Scale Invariance of Recursion

It can be read off that equation (6.23) with the inhomogeneity (6.24) is invariant under the following
scale transformation

kn → βkn, (6.27)

ā → ā

β
, (6.28)

a1 →
a1

β
. (6.29)

Using the dispersion relation (5.17) the transformation can be extended to the Floquet energy ε and
the driving frequency ω by

ε → β2ε, (6.30)
ω → β2ω. (6.31)

With this scale invariance we eliminate the explicit dependency of the recursion relation on the
time-averaged scattering length ā. We therefore choose to rewrite the recursion relation in units of
energy and length scales, which are convenient for this setting. Starting point is measuring the wave
vector in units of inverse ā

k̃n = knā, (6.32)

which can be rewritten as

knā = sign(ā)

√
ε+ n~ω

~2

2m

ā2 = sign(ā)

√
ε

ED

+ n
~ω
ED

. (6.33)

This determines the energy scale of the problem, which we introduced by the dimer energy

ED =
~2

2m

1

ā2
. (6.34)

It is defined as the binding energy of the bound state, which the contact potential supports for
positive value of ā and is discussed in more detail in Appendix A. It is convenient to measure energy
and frequency in units of the dimer energy

ε̃ =
ε

ED

, ~ω̃ =
~ω
ED

. (6.35)

At last by introducing
ã1 =

a1

ā
(6.36)

the driving amplitude is measured in units of ā. With these considerations the recursion relation
(6.23) and the inhomogeneity (6.24) can be solely rewritten in terms of dimensionless quantities(

i

k̃n
− 1

)
Dn −

ã1

2
(Dn+1 +Dn−1) = g̃n. (6.37)
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Here the inhomogeneity is given by

g̃n =

(
i

k̃n
+ 1

)
δn,0
2

+
ã1

2

(
δn+1,0

2
+
δn−1,0

2

)
. (6.38)

Also condition (6.25) has to be fulfilled for a solution Dn of (6.37). By rewriting the recursion rela-
tion in the form (6.37) the dependency of the averaged scattering length ā has been eliminated and
only that on ã1, w̃ and ε̃ remain. Although we emphasised the importance of equation (6.23), we
will prefer equation (6.37) to (6.23), as it involves one free parameters less than (6.23), while both
equations possess the same solution Dn.

Also the scattering amplitude can be measured in units of ā

f̃n =
fn
ā
, (6.39)

and equation (6.26) reads

f̃n(ε) =
−i
k̃n

(
Dn −

1

2
δn,0

)
. (6.40)

But there is one disadvantage remaining in equation (6.37). If k̃n = 0 for one n ∈ Z the fraction
i/k̃n becomes infinitely large. A special case, where this happens is the low-energy limit, where k0

tends to zero. Therefore it is useful to solve the expression of the scattering amplitude (6.26) for the
Dn coefficients

Dn = ik̃nf̃n +
δn,0
2

(6.41)

and insert it into (6.37) in order to get a recursion relation directly for the scattering amplitudes
f̃n.

−(1 + ik̃n)f̃n −
iã1

2
(k̃n+1f̃n+1 + k̃n−1f̃n−1) = δn,0 +

ã1

2
(δn+1,0 + δn−1,0) (6.42)

This way of writing down the recursion has the disadvantage of having more k̃n terms involved, which
are nonlinear in n, but it has the advantage of being defined at the point k̃0 = 0. Note that (6.42)
coincides with the result obtained by a Bethe-Peierls boundary condition approach by Ref. [4].

6.4. Solution Methods for the Recursion Relation

Due to the term i/k̃n − 1 in (6.37), which is non-linear in the index n of the recursion, no method
has been found to solve the recursion (6.37) analytically in the general case. We therefore present
methods which solve the recursion numerically or approximately in the limit of small and large
driving frequencies.
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6.4.1. Truncation to Linear Set of Equations

In order to treat (6.37) and (6.38) numerically, they are first transformed to a set of linear equations
of infinite size

AD = g. (6.43)

The solution vector D has the components Dn, while the index n is considered as an integer. The
infinitely sized matrix A is tridiagonal with the matrix elements

An,n =
i

k̃n
− 1, An,n±1 = − ã1

2
. (6.44)

The inhomogeneity vector g possesses the non-vanishing components

g0 =

(
i

k̃n
+ 1

)
, g±1 =

ã1

4
. (6.45)

In order to solve (6.37) numerically, the infinite linear set of equations (6.43) is truncated to a finite
one. This approach is useful due to boundary condition (6.25) and states that the approximative
solution vanishes even at a finite cut-off index m, that means it holds Dn = 0 for |n| > m. Ad-
ditionally the matrix elements An,m are set to zero for |n| > m. The resulting finite set of linear
equations looks formally like (6.43) and can be solved by numerical algorithms. We implemented a
MATLAB function, to which we will further refer as numerical method, using the backslash opera-
tor [89] D = A\g in order to solve the finite set of linear equations. In order to check if the cut-off
m is sufficiently large, we test numerically if the solution of the finite linear set of equations lies near
zero for indices close to the cut-off on both sides. If it does, the solution is considered to be correct
inside the numerical errors, if not a new calculation using a larger cut-off needs to be done. In Figure
6.2 both real and imaginary part of the solution of the recursion relation (6.37) are depicted. In this
case the coefficients Dn converge to zero even in the range of index numbers for m = 10.

Note, that also equation (6.42) can be truncated in the same manner to

Bf = γ. (6.46)

Again, B is a tridiagonal matrix with matrix elements of

Bn,n = −(1 + ik̃n), Bn,n±1 = −iã1

2
k̃n±1 (6.47)

and the non-zero vector components are given by

γ0 = 1, γ±1 = ã1. (6.48)

6.4.2. Limit of Large Driving Frequencies

In the limit of infinite large driving frequencies ω̃ we find an analytical expression, which approx-
imately solves the recursion relation (6.37). Starting point is the behaviour of the wave vector
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Figure 6.2.: Plot of real (blue) and imaginary (red) part of the solution Dn of
(6.37) for ε̃ = 0.1, ω̃ = 1 and ã1 = 0.1.

k̃n =
√
ε̃+ n~ω̃ in this case, which tends for n 6= 0 towards infinity, but for n = 0 it equals

√
ε̃ . In-

serting this limit into (6.37), it simplifies in a dramatic way, as the non-linear n-dependence vanishes.
For |n| > 1 the simplified recursion reads

Dn +
ã1

2
(Dn+1 +Dn−1) = 0, (6.49)

while for the rest of the indices we still remain with (6.37). Equation (6.49) is solved by the
exponential ansatz Dn = Λ

|n|
± , where Λ± has the values

Λ± =
−1±

√
1− ã2

1

ã1

. (6.50)

They fulfil Λ+Λ− = 1. Additionally Λ± are real provided that ã1 ≤ 1 and complex in the other
case, where it holds |Λ±| = 1. This is not leading to a converging solution of the recursion for large
absolute values of n. We therefore stay in the case of ã1 < 1, where |Λ+| < 1. The solution of the
recursion in the high frequency limit is thus given by

Dn = αΛ
|n|
+ , n ≥ 1, (6.51)

Dn = βΛ
|n|
+ , n ≤ 1. (6.52)

Recursion (6.37) with indices n = −1, 0, 1 is used in order to determine the values of α and β together
with D0. With the ansatz (6.51), (6.52) these equations are written as a set of linear equations Λ+ + ã1

2
Λ2

+
ã1

2
0

− ã1Λ+

2
i
k0
− 1 −a1

2
Λ+

0 ã1

2
Λ+ + ã1

2
Λ2

+

 α
D0

β

 =

 − ã1

4
1
2

(
i
k0

+ 1
)

− ã1

4

 , (6.53)

which is solved uniquely by
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Figure 6.3.: Plot of the real part (a) and the imaginary part (b) of the sequence
Dn using the numerics (blue) and the high frequency limit (red) at ~ω̃ = 1000, ε̃ = 0,
ã1 = 0.1.

α = β = − i√
1− ã2

1 k̃0 − i
, (6.54)

D0 =

√
1− ã2

1 k̃0 + i

−2
√

1− ã2
1 k̃0 + 2i

. (6.55)

For large frequencies, like ~ω̃ = 1000, which is used in Figure 6.3, the high frequency solution fits
very well to the numerical one. The case of lower frequencies can be spotted in Figure 6.4. There
the difference gets larger, especially for those coefficients Dn with small but finite n. A detailed
discussion of the resulting scattering amplitude is done in Section 7.7.

6.4.3. Limit of Low Driving Frequencies

Similar to the considerations in the previous Subsection we derive a closed formula for the coefficients
Dn, which solve the recursion (6.37) approximately in the limit of low frequencies. Following [90]
we consider in this limit driving frequencies ~ω̃ being much smaller than the Floquet energy ε̃, such
that the condition

n~ω̃ � ε, (6.56)

is fulfilled for all indices n with a coefficient Dn of relevant weight. Numerical experiments show,
that for small driving frequencies these indices are located close to zero. As an example, Figure 6.5
shows the case of ε̃/ω̃ = 104, where only the n = 0 index differs from zero in a relevant way. We
therefore assume that we can neglect the driving-frequency dependency of the wave-vector k̃n and
do the approximation
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Figure 6.4.: Plot of the real part (a) and the imaginary part (b) of the sequence
Dn using the numerics (blue) and the formula for high frequencies (red) close to
a resonance. In this case the approximation does not coincide with the numerical
solution. We used ~ω̃ = 1.02, ã1 = 0.1 and ε̃ = 0 as parameters.
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Figure 6.5.: Real (blue) and imaginary (red) part of the recursion relation (6.37)
in the case of ã1 = 0.4, ε̃ = 10−4 and ω̃ = 10−8.
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k̃n ≈ k̃0. (6.57)

In this limit (6.37) is written(
i√
ε̃
− 1

)
Dn −

ã1

2
(Dn+1 +Dn−1) = g̃n, (6.58)

where the inhomogeneity g̃n is defined in equation (6.38). Similar to (6.49) we can solve this equation
by assuming an exponential ansatz

Dn = αΛ
|n|
+ , n ≥ 1 (6.59)

Dn = βΛ
|n|
+ , n ≤ 1, (6.60)

where Λ+ is equal to

Λ+ =

(
i
k0
− 1
)

+

√(
i
k0
− 1
)2

− ã2
1

ã1

. (6.61)

Plugging this ansatz into (6.37), the remaining parameters α, β,D0 are calculated to be

α = β = − i

k̃0

√
−ã2

1 + (k̃0−i)2

k̃2
0

, (6.62)

D0 = −1

2
+

ik̃0

√
−ã2

1 + (k̃0−i)2

k̃2
0

(ã2
1 − 1) k̃2

0 + 2ik̃0 + 1
. (6.63)

These equations are used in Section 7.8 for a detailed investigation of the low frequency limit of
scattering by a driven contact potential.

We now do a short summary: In this Chapter we mapped the radial Floquet equation (6.11) to
recursion relation (6.37), which is used in order to calculate all quantities of interest. This was
possible, as we dealed by the contact interaction with a local potential. Recursion (6.11) can be
solved numerically for arbitrary driving frequencies and analytically in the limit of high and low
driving frequencies. In the next Chapter we use this results in order to calculate the time-averaged
scattering amplitude (5.30) and both total (5.26) and elastic cross (5.28) sections and observe, that
scattering can be enhanced in the vicinity of so-called driving induced scattering resonances.
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7. Enhancement of Scattering by
Periodic Driving

In this Chapter we use the results of Chapter 6 in order to investigate the Floquet-scattering am-
plitude (6.40), which results from scattering by a driven contact potential and can be calculated by
recursion (6.37). In Section 7.1 we give an overview of the quantities and settings of interest and
spot the emergence of so-called scattering resonances. Section 7.2 is dedicated to the deeper under-
standing of these resonances. There we find an explanation of their emergence by the occurrence
of bound states in the continuum, which are induced by periodic driving. This consideration lays
the basis for Section 7.3, where we investigate the position of the scattering resonances. In Section
7.4 we introduce two formulas, which approximate the scattering amplitude in the vicinity of those
resonances. An evaluation of position and width of the scattering resonances is given in Section
7.5. We focus on the limit of vanishing Floquet energy and investigate the resonances in the plane
spanned by the driving strength ã1 and the driving frequency ω̃. We report in Section 7.6 that
real and imaginary part of the Floquet-scattering amplitude are connected by Kramers-Kronig like
relations. Section 7.7 provides a short discussion of the large frequency limit, while Section 7.8 deals
with the case of small frequencies.

7.1. Overview

Like in Chapter 6 we focus on case of low-energy physics in the s-wave regime and therefore omit the
angular momentum index l in this Chapter. Moreover, we measure all quantities, which are marked
by a tilde, in dimensionless units, which we defined in equations (6.35), (6.36) and (6.39). As it
can be used to calculate all quantities of interest, we focus our research on the time average of the
Floquet scattering amplitude (5.30)

〈〈f̃(t)〉〉 = f̃0, (7.1)

which is equal to the Floquet-scattering amplitude in the zeroth channel f̃0. Its low-energy limit
yields the time-averaged scattering length (5.60)

ãscatt(ω) = − lim
ε→0

f̃0(ε, ω) (7.2)

and it determines the strength of elastic scattering (5.28) by the driven potential, as its absolute
square is proportional to the cross section of the zeroth Floquet channel

〈〈σ0〉〉 = 4π|f̃0|2. (7.3)
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(a)

(b)

Figure 7.1.: Plot of the real (a) and imaginary (b) part of the time-averaged
scattering amplitude in the ω̃-ã1 plane for a Floquet energy of ε̃ = 0.01 and positive
average scattering length ā.54



7.1. Overview

Furthermore, its imaginary part can be related to the time-averaged total cross section by the Floquet
optical theorem (5.66)

〈〈σ〉〉 =
4π

k
Im f̃0. (7.4)

In order to measure time-averaged quantities in experiment, the time scale of the measuring process
should be much larger than the period of the time-periodic driving.

We show in Appendix E that, if we consider the scattering of atoms in a Bose-Einstein condensate
by a periodically modulated interaction potential, the Floquet scattering length ãscatt(ω) appears
in the interaction term of the Gross-Pitaevskii equation in Floquet-Born approximation. Therefore
(7.2) is directly related to the interaction strength of particles in a Bose-Einstein condensate and a
tuning of the Floquet-scattering length leads to a change of the interaction strength.

In Figure 7.1 real and imaginary part of the scattering amplitude f̃0 is plotted in the ω̃-ã1 plane with
a Floquet energy of ε̃ = 0.01 and positive average scattering length ā. We see lines of resonances,
where the imaginary part obtains its maximum and the real part is enhanced. As the imaginary part
corresponds via (7.4) to the total scattering cross section, the particle is scattered maximally along
these lines. We therefore call these lines scattering resonances. As they do not cross each other, we
enumerate them in Figure 7.1 from left to right. As the width of these resonances vanishes in the
limit of small ã1, it cannot be seen in Figure 7.1, that some lines reach the ω̃-axis. With growing
ã1 their slope and their width increases. For ã1 close to one the lines of resonance seem to get too
dense to get numerically resolved.

In order to understand these resonances better, Figure 7.2 shows a cut along the ω̃-axis at ã1 = 0.1
for the first resonance with several Floquet energies ε̃. As it converges to the scattering length ãscatt

for vanishing energy, we investigate the negative scattering amplitude −f̃0. The case of a Floquet
energy of ε̃ = 10−3 is shown in (a). Here the enhancement of the scattering amplitude is small
compared to the other Panels. In (b) we reduced the Floquet energy by a factor of 10−1. Here, the
real part of the scattering amplitude has a larger maximum as in Panel (a), while the qualitative
course is the same. The minimum of the imaginary part also decreases, which is signalling a larger
total cross section. This trend continues for lower Floquet energy in Panel (c). Panel (d) shows
the case of vanishing Floquet energy, where the negative scattering amplitude −f̃0 equals the scat-
tering length ãscatt. In this case the width of the imaginary part converges to zero, while the real
part is still enhanced and can be tuned to any value between plus and minus infinity. This allows
the enhancement of the scattering strength to any desired value by tuning the driving frequency.
The vanishing imaginary part signals with equation (5.68) the absence of inelastic scattering in the
vicinity of a scattering resonance.

In Figure 7.3 we plot the negative scattering amplitude −f̃0 for different driving strengths ã1, while
we centre each plot at the resonance frequency ω̃0, where the imaginary part is maximally enhanced.
We observe, that the shape of the resonances is the same, if we rescale the difference between driv-
ing frequency ω̃ and the frequency ω̃0, as we did in Figure 7.3. This shows, that the width of the
resonance can be tuned by the driving strength ã1. Since solely ã1 is changed in Figure 7.3, the
transformation between the Panels is not described by the scale invariance (6.27). The similarity
rather portends that the scattering resonances have an universal behaviour [3]. In Section 7.5 we
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Figure 7.2.: Plot of real (blue) and imaginary (red) part of the negative scattering
amplitude over the driving frequency for ã1 = 0.1 and ε̃ = 10−3 (a), ε̃ = 10−4 (b),
ε̃ = 10−8 (c) and ε̃ = 0 (d).

do a more detailed analysis of the resonance shape and see that it can be approximately described
by simple formulas, where only fitting parameters of these formulas change with ã1, but not its
qualitative shape.

The case of scattering by a contact potential having a negative average scattering length ā is shown
in Figure 7.4. Both real and imaginary part of the scattering amplitude change by tuning of the
driving frequency ω̃ and driving strength ã1, but there are no lines of resonances, where scattering
is strongly enhanced. We will see in Section 7.2 that the occurrence of the scattering resonances
is related to the presence of a bound state. For negative time-averaged scattering length ā the po-
tential is attractive and it turns out, that such a bound state and therefore scattering resonances
are not present. If not explicitly stated, we therefore investigate in the following the case of positive ā.

In Figure 7.5 the cut-off index mcut−off , at which equation (6.43) is truncated, is shown. It in-
creases for larger ã1 and is expected to diverge in the limit of ã1 → 1. This indicates, that our
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Figure 7.3.: Plot of the negative scattering amplitude −f̃0 with Floquet energy
ε̃ = 10−4. Panel (a) shows the case of ã1 = 0.2, where ~ω̃0 = 1.072, while (b) shows
the case of ã1 = 0.4 with ~ω̃0 = 1.34 and (c) shows the case of ã1 = 0.6, where
~ω̃0 = 2.084.

numerical method breaks down at ã1 = 1. In addition, our method fails for ã1 > 1, as the results
depend on the cut-off index mcut−off in this case and thus are not reliable.

7.2. Feshbach-Fano Physics in Floquet Picture

In this Section we connect the occurrence of scattering resonances to the energy of so-called driving-
induced bound states and find, that the emergence of a scattering resonance can be explained by a
Fano-Feshbach resonance involving these bound states.

We define a scattering resonance as a state with maximally enhanced scattering cross section for
a given Floquet energy ε̃. Our goal is to use this definition in order to calculate the value of the
scattering amplitudes f0 at a resonance and to derive a recursion relation with a boundary condi-
tion, which is only fulfilled at a resonance and can therefore be used to calculate the position of those.

We start our derivation by the Floquet-optical theorem (5.66) and specialise it to the case of s-
wave scattering (5.67)

Im f0 = k[(Re f0)2 + (Im f0)2] +
∞∑

n≥nc
n6=0

|fn|2kn. (7.5)

This equation is quadratic in Im f0 and can therefore be solved for it

Im f0 =
1±

√
1− 4k[k(Re f0)2 +

∑
n6=0 |fn|2kn]

2k
. (7.6)

Due to the Floquet optical theorem (5.66) scattering is maximal, if this also applies to Im f̃0. As
the quantities k, (Re f0)2, |fn|2 and kn behind the minus sign of the discriminant in equation (7.6)
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(a) (b)

Figure 7.4.: Plot of real (a) and imaginary (b) part of the scattering amplitude in
zeroth Fourier mode in the ω̃-ã1 plane for a Floquet energy ε̃ = 0.01 and negative
average scattering length ā.

are greater or equal than zero, they all have to vanish in order to maximise Im f0 and therefore
the cross section 〈〈σ〉〉. This implies that at resonance the scattering amplitude in zeroth Floquet
channel equals

f res
0 =

i

k
, (7.7)

while the ones in all other open Floquet channels vanish

f res
n = 0 ∀n ≥ nc and n 6= 0. (7.8)

We introduced the superscript res in order to emphasise, that these values are obtained at a scattering
resonance. Note, that condition (7.7) is fulfilled by the resonances shown in Figure 7.2 and the sketch
of the wave function at resonance displayed in Figure 7.6. In comparison to Figure 6.1 all amplitudes
of wave functions in higher Floquet channels vanish in Figure 7.6 because of relation (7.8). Inserting
equation (6.26) into (7.7) we arrive at the following condition for the Hankel-function coefficient

Dres
0 = −1

2
, (7.9)

while the coefficients belonging to open channels vanish

Dres
n = 0 ∀n ≥ nc and n 6= 0, (7.10)

as they are proportional to the corresponding scattering amplitude. The next step is to adapt
recursion relation (6.37) to coefficients Dres

n with a negative index n. Inserting condition (7.9) into
(6.37) for n = −1 leads to (

i

k̃−1

− 1

)
Dres
−1 −

ã1

2
Dres
−2 +

ã1

4
=
ã1

4
, (7.11)

while we obtain for all indices n ≤ −2 the equation(
i

k̃n
− 1

)
Dres
n −

ã1

2

(
Dres
n−1 +Dres

n+1

)
= 0, ∀n ≤ −2. (7.12)
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Figure 7.5.: Maximal cut-off index mcut−off needed to ensure the convergence of
the truncation method. As the cut-off index is expected to diverge for ã1 → 1, we
limited this index to be smaller than a maximal one of around 300.

Since at resonance the Floquet state should also be normalisable, the coefficients Dres
n have to fulfil

the boundary condition (6.25). As equation (6.25) is implicitly fulfilled for n → ∞ by condition
(7.10), a physical solution of (7.11) and (7.12) has to satisfy

lim
n→−∞

Dres
n = 0. (7.13)

Condition (7.13) is used in Section 7.3 in order to calculate the energies ε̃res, where a resonance
occurs in the ω̃-ã1 plane.

Now we want to make the connection from the emergence of scattering resonances to the occur-
rence of driving induced bound states. This consideration starts by noting, that if the term ã1/4 in
equation (7.14) is cancelled, equations (7.11) and (7.12) can be rewritten in the from(

i

k̃n
− 1

)
Dside
n − ã1

2

(
Dside
n−1 +Dside

n+1

)
= 0, ∀n ≤ −1, (7.14)

if we impose to (7.14) as boundary conditions (7.13) and

Dside
0 = 0, (7.15)

while relabellingDres
n = Dside

n for n ≤ −1. This decouples the recursion for coefficientsDside
n belonging

to negative indices n from the one for positive ones. We introduced the label side in order to point
out, that equation (7.14) can be alternatively derived from radial Floquet equation (6.11), if a wave
function of the form

Rn(r) =

{
0, n ≥ 0

−Dside
n

e−κnr

κnr
, n < 0

, (7.16)

being non-zero only in the side system, which is defined to consist of all closed Floquet channels, is
taken as ansatz. In this step we additionally assume all Floquet channels with n < 0 to be closed.
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Figure 7.6.: Plot of the actual wave function at a scattering resonance with a
critical index nc = 0. In all channels with n ≥ 1 the wave functions φout

n vanish,
while for n = 0 it has the form such that scattering gets maximally enhanced. For
Floquet channels with n ≤ −1 exponentially decaying solutions exist. This set of
bound states is named side system. This plot is made for ε̃ = 10−2, ã1 = 0.1 and
~ω̃ = 1.0271837.

Due to this, ansatz (6.11) consists only of bound wave functions and is therefore referred to a bound
state, which is induced by periodic driving and therefore named as driving-induced bound state. It
has the dispersion

ε̃side + n~ω̃ = − ~2

2m
κ̃2
n, (7.17)

i.e. k̃n = iκ̃n.

The fact, that equation (7.14) can be derived in two different ways gives rise to a central state-
ment of this thesis: A scattering resonance emerges at points in the ω̃ − ã1 plane, where the energy
of an incoming particle ε̃res equals the energy of a bound state ε̃side located in the side system

ε̃res = ε̃side (7.18)

and the side system gets decoupled from the open Floquet channels. In the case of a non-vanishing
wave function in the zeroth Floquet channel, this decoupling is manifested due to the above reasoning
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and equation (7.9) by a wave function of

R0(r) =
i

kr
cos(kr). (7.19)

At a scattering resonance the wave function in the zeroth Floquet channel is as shown in Figure 7.6
exactly given by (7.19), while it vanishes due to equation (7.10) for all further open channels and is
given by (7.16) for the channel located in the side system.

There are ranges of the parameters ω̃ and ã1, where the energy ε̃side lies above zero and thus in the con-
tinuum of scattering solutions. In this case, Floquet states of the form (7.16) are bound states in the
continuum. In general, bound states in the continuum are defined as square-integrable bound states
which are energetically embedded in a continuum of non-normalizable scattering states [91]. This
idea goes back to von Neumann and Wigner [92], who theoretically constructed a time-independent
potential possessing such a bound state [93]. They also appear in interfering resonances [94,95] and
can be induced by periodically driven systems [96, 97]. It has been shown that they occur in one-
dimensional driven impurities and are connected to transmission resonances in both tight-binding
lattice and driven delta potential [5, 49].

With the insight, that in the presence of a scattering resonance, the side system possesses a
bound state in the continuum, the emergence of such a resonance can be explained in an in-
tuitive way by destructive interference of different paths for the scattered wave related to Fano-
interference [50, 51, 90, 98]. The first path consists of an elastic scattering process by the contact
potential in the zeroth Floquet channel, while the second involves a transition to and from the side
system before getting scattered. At resonance condition, the side system possesses a bound state
in the continuum and the second path thus obtains an additional phase shift of π. The destructive
interference of both paths is leading to a decoupling of side system and open channels, and therefore
to (7.19) as a wave function in the zeroth Floquet channel and due to (7.7) to a maximal scattering
amplitude. Note, that similar features show up in the scattering of electrons with protons in a laser
field [6, 10].

Equation (7.18) suggests that this resonance has similarities to static Feshbach resonances, which
are discussed in Chapter 3. There also scattering becomes maximal, if the energy of the incoming
particle equals up to a shift of (3.8) to the energy of a bound state in a closed channel. The energy of
this bound state can be altered in the case of the common magnetic Feshbach resonance by tuning a
magnetic field. For our driven scattering problem these tuning parameters are the driving frequency
ω̃ and the driving strength ã1, and the bound state is the bound state in the continuum located in
the side system.

At last we take a look on the case n = 0 of equation (6.37) at a scattering resonance. If (7.9)
and (7.10) is inserted, we obtain

Dres
−1 = − 2i

ã1k̃
. (7.20)

This result allows us to iteratively calculate in combination with the recursion relation (7.14) all
coefficients Dres

n for negative n, if the value of k̃ is determined by the use of the convergence condition
(7.13). Moreover we use it in order to derive a critical frequency ω̃c, below which no scattering
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resonances occur. This is done by arguing, that the n = −1 Floquet channel is open if ε̃ ≥ ~ω̃, due
to dispersion relation (5.17). In this case condition (7.10) also applies to the n = −1 channel and
it states that Dres

−1 = 0, which is a contradiction to (7.20), as both ã1 and k̃ are not considered to
be infinitely large, so that equation (7.20) could not become zero. Due to this reasoning scattering
resonances can only occur for frequencies larger than the critical frequency ω̃c of Floquet energy
divided by ~

ω̃ ≥ ω̃c =
ε̃

~
. (7.21)

This feature has also been observed in scattering by an one-dimensional driven impurity [5, 98, 99]
and is related to the opening of the Floquet channel with number n = −1. If condition (7.21) is
not fulfilled, the side system does not include the Floquet channel with number n = −1 and is
therefore not directly coupled to the zeroth Floquet channel, where the incoming wave is present. In
this situation the side system can not be decoupled from the open Floquet channels. As it turned
out that this decoupling of open and closed channels is essential for the emergence of a scattering
resonance, this explains the absence of resonances for frequencies below the critical one (7.21).

7.3. Investigation of Resonance Positions

We now use equation (7.14) to calculate the locations ε̃res or ε̃side, respectively, of the scattering
resonances in the ω̃-ã1 plane. In Subsection 7.3.1 we do the calculation with a numerical method,
while in 7.3.2 we work out an analytic approximation in the limit of weak driving.

7.3.1. Numerical Calculation

In order to solve equation (7.14) numerically, we first map it to a set of linear equations of infinite
size similar to (6.37), which reads

AD = 0, (7.22)

where the vector D consists of the coefficients Dn and the matrix elements of A vanish except of

An,n =
i

k̃n
− 1, (7.23)

An,n±1 = − ã1

2
. (7.24)

Like in equation (7.14) all indices n are restricted to the set n ∈ −N. In contrast to (6.43) this
equation is homogeneous. In this case a non-zero, and therefore physical, solution of the set of linear
equations is only occurring, if the determinant of the matrix A vanishes. In order to compute such
a determinant numerically, we truncate the infinitely large matrix to a finite one by restricting the
index to be larger than a cut off m ∈ −N. This is appoximately valid due to condition (7.13). We
use a Matlab algorithm to locate the zeros of the determinant and therefore the resonance positions.
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Figure 7.7.: Plot of the energy of the bound state of the side system ε̃side (red) and
the Floquet scattering amplitude ãscatt (blue, in arbitrary units) over the driving
frequency for ã1 = 0.3. The intersection of ε̃side with the dotted line at ε̃ = 0 equals
the position of the scattering resonances for ãscatt. We only calculated ε̃side in the
case of ~ω̃ > ε̃side, as otherwise no resonances occur.

For energies larger than the driving frequency the imaginary part of the determinant gets non-zero.
This indicates, that in this case the wave vector k−1 gets real and therefore the side system begins
at index n = −2. This results in the absence of scattering resonances in this region, as it represents
the case of driving frequencies lower than the critical one (7.21).

In Figure 7.7 we plot the energy ε̃side over the driving frequency for fixed ã1. This makes the
statement of equation (7.18) directly visible: A scattering resonance, which is visualised by the di-
vergence of ãscatt painted in blue in Figure 7.7, emerges at driving frequencies, where the Floquet
energy ε̃ = 0 equals the energy of the side system ε̃side. In addition it shows that for certain driving
frequencies the side system possesses more than one bound state.

The results of this method in the ω̃-ã1 plane is shown in Figure 7.8, where we show in (a) the
lines, where ε̃side intersect the Floquet energy of ε̃ = 0 and in (b) we show intersections with a
Floquet energy of ε̃ = 0.5. We restricted this investigation to five scattering resonances located at
the largest frequencies. In both Figures lines of scattering resonances exist, which all start in the
case of ε̃ = 0 at the ω̃-axis with the slope zero and ascend in the case of rising ã1. For ε̃ = 0.5 only
three lines reach the ω̃-axis, as the others would have reached it below the critical frequency ω̃crit.
This behaviour of the lines of resonances equals to the lines of in Figure 7.1.

It turns out that in the case of negative ā this method gives the result, that in the whole ω̃-ã1

plane no bound state exists, and due to relation (7.18) this explains that no scattering resonances
occur.
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Figure 7.8.: Location of scattering resonances in the ω̃-ã1 plane for ε = 0 (a)
and ε = 0.5 (b). The first resonance is painted in blue, the second red, the third
yellow, the fourth purple and the fifth green. The dashed black vertical line shows
the position of the critical frequency (7.21), below which no resonances occur.

7.3.2. Analytic Evaluation

This Subsection is devoted to an approximative analytic evaluation of the resonance position by
expanding the recursion (7.14) in orders of the driving strength ã1. We therefore express (7.14) in
the form

GnDn −
ã1

2
(Dn+1 +Dn−1) = 0, n ∈ −N, (7.25)

where Gn = 1/κ̃n−1 and the subscript side is dropped at the coefficients Dn for simplicity. In order
to evaluate this equation systematically we perform a perturbative ansatz for the coefficients

Dn =
∞∑
α=0

ãα1D
(α)
n . (7.26)

We first consider the limit of vanishing driving amplitude ã1, whose asymptotic behaviour is deter-
mined in zeroth order of ã1. The recursion (7.25) decouples in this case and reads(

1

κ̃n
− 1

)
D(0)
n = 0. (7.27)

It has only a non-vanishing solution

D(0)
n = δn,m, m ∈ −N, (7.28)

if the term in the brackets vanishes. This is the case if κ̃n = 1 for some n ∈ −N, which can be
simplified to

ε̃res = −1− n~ω̃res, n = −1,−2, ...,−nmax. (7.29)
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Figure 7.9.: Number of resonances nmax reaching the ω̃ axis over the energy ε̃. For
vanishing energy the number diverges to infinity.

Due to the critical frequency (7.21) there exits a maximal number of scattering resonances for
vanishing ã1, which can be calculated by inserting (7.29) into condition (7.21). This inequality can
be solved for n, yielding

|n| ≤ nmax, (7.30)

with nmax = b1 + 1/ε̃c as the maximal number of resonances at vanishing ã1. The quantity nmax

is plotted in Figure 7.9. For ε̃ close to one, only one resonance exists, while this number goes to
infinity in the case of vanishing Floquet energy. For the case of ε̃ = 0.5 three resonances reach the
ω̃-axis, as it is shown in Figure 7.8.

Equation (7.29) provides an intuitive interpretation of the bound states of the side system, which
stands on the right-hand side of this equation, as a field dressed version of the bound state of the
static contact potential. Additionally a physical interpretation of the interfering paths, which create
the scattering resonance by a Fano-interference, becomes clearer. The first path is the direct scat-
tering process on the contact interaction, while the second one involves a transition to the bound
state of the contact potential with an emission of |n| driving field quanta and a subsequent transition
back. Moreover, the resonance number, defined in Section 7.1, is given by |n|.

We now solve recursion (7.25) to the first order of ã1. The perturbative approach leads to the
insight, that for a solution of the form (7.28) in zeroth order only the coefficients D(1)

m±1 are unequal
from zero. In case of the first resonance, where n = −1, equation (7.25) reads in this order of ã1(

G−1 −ã1/2
−ã1/2 G−2

)(
D

(0)
−1 + ã1D

(1)
−1

ã1D
(1)
−2

)
=

(
0
0

)
. (7.31)

This equation only possesses a non-vanishing solution, if the determinant of the matrix vanishes.
This leads to

G−1G−2 =
ã2

1

4
. (7.32)
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In order to solve this equation approximately, we solve it first for κ̃−1 and find

κ̃−1 =
1

1 +
ã2

1

4
1

1
κ̃−2
−1

. (7.33)

This expression can be solved for the driving frequency. In this step we approximate κ−2 ≈
√
ε̃res + 2

by assuming the driving frequency to be located near the first resonance by inserting equation (7.29)
into κ̃−2. As an intermediate step we arrive at an expression for the driving frequency of the first
scattering resonance for small ã1. This reads

~ω̃res ≈ ε̃res +
1(

1 +
ã2

1

4
1

1√
ε̃res+2

−1

)2 . (7.34)

Using the small-argument approximation 1/(1 + x)2 ≈ 1 − 2x we extract the term in the leading
order of ã1

~ω̃res ≈ ε̃res + 1− 1

2

1
1√

ε̃res+2
− 1

ã2
1. (7.35)

This equation corresponds to (7.29) with an additional term being quadratic in ã1, which can be
seen as a shift of the field dressed energy of the bound state due to a finite driving strength ã1.
Alternatively, the same result can be obtained by looking at a convergence condition of the sequence
similar to [49]. Following the procedure of [49], we come to

2

ã1

G−1 ≈
ã1

2
G−1
−2, (7.36)

as an intermediate step, which is equal to equation (7.32).

In the case of resonances belonging to n 6= −1, a similar result can be obtained by looking at
the determinant of the matrix  Gn−1 −ã1/2 0

−ã1/2 Gn −ã1/2
0 −ã1/2 Gn+1

 . (7.37)

Performing the same steps as in the case of n = −1, we calculate the location on the |n|-th reso-
nance

~ω̃res =
ε̃

|n|
+

1

|n|
1[

1 +
ã2

1

4

(
1

1√
ε̃res(n+1

n −1)+n+1
n

−1
+ 1

1√
ε̃res(n−1

n −1)+n−1
n

−1

)]2 , (7.38)

which can be simplified in leading order of ã1 to

~ω̃res ≈
ε̃res

|n|
+

1

|n|
− 1

2|n|

 1
1√

ε̃res(
n+1
n
−1)+n+1

n

− 1
+

1
1√

ε̃res(
n−1
n
−1)+n−1

n

− 1

 ã2
1. (7.39)

Similar to (7.35) these equations state that the energy of the driving induced bound state and
therefore the resonant frequency can be changed by altering the driving strength ã1, while (7.39)
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ã1

0

0.5

1

1.5

2

2.5

3

h̄
ω̃

(a)

0.2 0.4 0.6 0.8
ã1
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Figure 7.10.: Location of scattering resonances for ε̃ = 0 in the ω̃-ã1 plane. The
solid lines are obtained while using the numerics. In (a) we show in dashed lines
the result of equation (7.38), while in (b) we display the result of (7.39) in dashed
lines.

furthermore displays that this change is of the order ã2
1 for small driving strength ã1. Although there

are technical differences in the derivation, equations (7.34) and (7.35) coincide with (7.38) and (7.39)
in the case of n = −1. In Panel (a) of Figure 7.10 we compare equation (7.38) to the numerical
data, while we do the same in Panel (b) with equation (7.39). For small ã1 both approximations
fit well to the numerical results, but (7.38) agrees in a much larger range to the numerics as (7.39).
Especially in the case of n = −1 the accordance of (7.38) to the numerics is exceptional.

In Figure 7.11 we plot the solution of recursion (7.25) at the first and second resonance. Although
the coefficients D−1 of both cases are equal, the weight in case of the first resonance lies on D−1, in
case of the second the D−2 coefficient is largest. This demonstrates the validity of the perturbation
approach (7.26) for small ã1.

At last, we shortly discuss the case of negative background scattering length ā. Due to equation
(6.33) it holds in this case

κ̃n = −
√
−ε̃− n~ω . (7.40)

In zeroth order, the perturbative approach (7.26) would only have a non-vanishing solution of the
form D

(0)
n = δn,m, if the condition

−
√
−ε̃−m~ω̃ = 1 (7.41)

were fulfilled. As the square root is positive, the left-hand side of (7.41) becomes negative and can
not be equal to 1. Therefore equation (7.41) is never fulfilled, which shows, at least in zeroth order
of ã1, that no resonances can occur for negative ā. This can be also understood physically. As in the
case of negative ā the contact interaction is attractive, it possesses no bound state like for positive
ā. There we have seen, that the scattering resonance originates from a Fano-interference of different
paths, where one of these paths includes a direct scattering by the contact interaction and the other
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Figure 7.11.: Plot of the coefficients Dres
n at the first (blue) and second (red)

resonance for ã1 = 0.1 and ε̃ = 0.01.

an additional transition to and from the bound state (A.14) of the contact potential. If the bound
state is not present, the second path does not exist, with the result of no possible interference of
paths. This leads to the absence of scattering resonances as shown in Figure 7.4.

7.4. Scattering Amplitude in the Vicinity of a Resonance

In the last two Sections we only discussed the situation, where we are located exactly at the resonance
position. In this Section we want to broaden the view and investigate the scattering amplitude in
the vicinity of a resonance. We already saw in Figures 7.2 and 7.4 that the shape of the scattering
amplitude around a resonance looks similar for different Floquet energies ε̃ and driving strengths ã1.
This leads to the question, if this shape can be approximated by a simple formula, like it is done by
(3.12) in the case of a magnetic Feshbach resonance. In order to give an answer to this question, we
introduce two phenomenological formulas, for which we show by fitting them to the data, that they
approximate the shape of the scattering amplitude in the vicinity of a resonance. In Subsection 7.4.1
we motivate the first formula as a frequency dependent adaption of equation (3.12) and compare
it with the numerical data, while in Subsection 7.4.2 a second formula is derived by investigating
scattering in a two-channel model. In Section 7.5 we use these formulas in order to extract position
and width of the resonances by fitting the formulas introduced in this Section to the data.

7.4.1. Frequency Controlled Feshbach Scattering Amplitude

The first formula originates from equation (3.10). In the case of magnetic Feshbach resonances the
bound-state energy ER in equation (3.10) is parametrised by ER = δµ(B − B0). Inspired by this
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approach we assume also a linear dependency of the bound state energy on the driving frequency

ER = C~(ω̃ − ω̃0), (7.42)

where ω0 denotes the resonant frequency and C is a constant. Inserting this into equation (3.10)
yields

− f̃0(ω̃) = abg

(
1− ∆

~ω̃ − ~ω̃0 − iΓ

)
. (7.43)

We additionally extrapolate the scattering length to the negative scattering amplitude in the case
of non-vanishing energy of the scattered particle. The involved parameters will be used as fitting
parameters and have the following physical meaning. The background scattering length abg equals
the scattering length in the limit of large frequencies, ∆ equals the width of the real part of the
resonance in the limit of vanishing Γ. The quantity Γ limits the maximal amount of scattering and
determines the width of the imaginary part. We introduce the dimensionless variable

x = ~
ω̃ − ω̃0

∆
(7.44)

and separate equation (7.43) in real and imaginary part

−Re f̃0(ω̃)

abg

= 1 +
x

x2 +
(

Γ
∆

)2 (7.45)

−Im f̃0(ω̃)

abg

=
∆

Γ

1(
x
Γ

)2
+ 1

. (7.46)

In Figure 7.12 we compare these formulas to the numerical data by fitting both real and imaginary
part simultaneously. In general, we obtain a good agreement between both, deviations are much
smaller than the actual values.
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Figure 7.12.: Comparison of the real (blue) and imaginary (red) part of the scatter-
ing amplitude −f̃0 over the difference of the driving frequency ω̃ from the resonant
ω̃0 measured in units of the width ∆. The values for fitting equation (7.43) are shown
with + for real and o for imaginary part. Panel (a) shows the case of ε̃ = 10−4 and
ã1 = 0.1, which gave the result of ~ω̃0 = 1.0174, ∆ = 5.0673×10−3, Γ = 5.0260 10−5

and abg = 0.9917. Panel (b) shows the case of ε̃ = 10−8 and ã1 = 0.1, which gave the
result of ~ω̃0 = 1.0173, ∆ = 5.064× 10−3, Γ = 5.025×10−7 and abg = 0.992. Panel
(c) shows the case of ε̃ = 10−4 and ã1 = 0.5, which gave the result of ~ω̃0 = 1.6135,
∆ = 0.1671, Γ = 1.5×10−3 and abg = 0.9. Panel (d) shows an enlarged plot of case
(a) in order to indicate the limitations of the method.

In (b) we decreased the Floquet energy ε̃ compared to (a). While the width ∆ stays approximately
the same, the maximal enhancement of scattering is larger, while the scaling of the frequency axis by
a factor of 10−2 has to be done in order to resolve the shape of the resonance in a way like it is done
in (b). This behaviour is implemented in equation (7.46), as Γ also changes with 10−2, which leads
with equation (7.46) to an enhancement of the maximum by 102. In addition, (7.46) is expressed in
a way, where it only depends on x/Γ, which makes visible, that the scaling of the x-axis leads to
a similar shape of the imaginary part of the scattering amplitude. The real part (7.45) has similar

70



7.4. Scattering Amplitude in the Vicinity of a Resonance

1.07208 1.0721 1.07212 1.07214 1.07216 1.07218
h̄ω̃

-50

-49.8

-49.6

-49.4

-49.2

-49

-48.8

−
f̃
0
(ω̃

)

1.06 1.08 1.1

-80
-60
-40
-20

0
20
40

(a)

1.075 1.08 1.085 1.09 1.095 1.1
h̄ω̃

-0.1

-0.05

0

0.05

0.1

−
f̃
0
(ω̃

)

1.06 1.08 1.1

-80
-60
-40
-20

0
20
40

(b)

Figure 7.13.: Enlarged plots of real (blue) and imaginary (red) part of the scattering
amplitude calculated with the numerical method of Subsection 6.4.1. The black area
in the inset points out the enlarged area. The black dotted line in panel (b) is a
guide to the eye. Both plots are calculated with ε̃ = 10−4 and ã1 = 0.2.

scaling properties. In (c) we increased ã1 compared to (b), here the curve looks the same like in (b)
and the value of ∆/Γ stays approximately the same. This behaviour is also included in equations
(7.45) and (7.46), as (7.45) depends on ∆/Γ, while (7.46) has slight deviations. Panel (d) shows
that equation (7.45) deviates largest from the data around the maximum value of the real part. In
order to see this more detailed, we show in Figure 7.13 (a) an enlarged plot of the numerical data,
which fulfil the relation

2 max |Re f̃0| = max |Im f̃0|, (7.47)

but equation (7.43) does that explicitly not. This shows a limitation of the fitting with equation
(7.43).

As it is useful in the later discussion, we calculate the limit of vanishing Γ of equations (7.45)
and (7.46). The imaginary part (7.46) is proportional to a Lorentz-shaped curve with width Γ.
Therefore in the limit Γ→ 0 it is proportional to the Dirac-delta function. Both real and imaginary
part of the scattering amplitude read in the limit of vanishing Γ

− lim
Γ→0

Re f̃0

abg

= 1− 1

x
, (7.48)

− lim
Γ→0

Im
f̃0

abg

= −∆πδ(~ω̃ − ~ω̃0) (7.49)

Equation (7.48) equals (3.12), if the magnetic field is replaced by the driving frequency ω̃. But
instead of being zero, the imaginary part is proportional to the Dirac-Delta function in this limit.
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7.4.2. Scattering Amplitude of a Simple Coupled Channel Model

In the spirit of the radial Floquet equation (6.11) the scattering by a time-dependent potential can
be rewritten as a multi-channel scattering problem. For the derivation of the second approximative
formula, we ask the question, how many channels are necessary in order to approximate the physics of
Floquet scattering, which intrinsically involves an infinite amount of channels. As the simplest non-
trivial model we investigate the scattering by a two-channel Hamiltonian with contact interaction

H(r) = H0(r) + Vint(r). (7.50)

Here H0 consists of the kinetic energy and the intra-channel potential

H0 = − ~2

2µ

(
1
r2

∂
∂r
r2 ∂

∂r
0

0 1
r2

∂
∂r
r2 ∂

∂r

)
+

~2

2µ

(
2a0

r2 δ(r)
∂
∂r
r 0

0 V + 2a1

r2
∂
∂r
r

)
, (7.51)

where the zeroth channel is considered to be open, while the energy of the first channel is shifted by
V in order to obtain a closed one. If we only consider H0 as the Hamiltonian, the two channels are
decoupled, and the scattering by H0 is described with the findings of Appendix A. In this case the
scattering amplitude in the zeroth channel is −f−1 = 1/a0 + ik and the first one possesses a bound
state with the eigenenergy

Ebound = V − 1/a2
1. (7.52)

The inter-channel coupling is induced by the potential

Vint(r) =
~2

2µ

(
0 2aWW

r2 δ(r) ∂
∂r
r

2aWW

r2 δ(r) ∂
∂r
r 0

)
. (7.53)

The strength of the coupling is given by aWW, which has the dimension of a scattering length.

If one would only consider the Floquet channels n = 0 and n = −1 in the radial Floquet equa-
tion in coupled channel representation (6.11), one would recover the same Hamilton operator as
(7.50), but with the parameters a0 = a1 = ā, aWW = ã1ā and V = ~ω. In this model we want
to go beyond and absorb the influence of higher Floquet channels of the side system in a1, which
does not have to be related to a0, and a potential of the form V = |n|~ω. In Appendix C we
derive the scattering amplitude of model (7.50) and see, that the inverse scattering amplitude can
be approximated by the form

− 1

f
=

1

aBG

ω̃ − ω̃0

ω̃ − ω̃0 − δ/~
+ iγ, (7.54)

where we have introduced by

aBG = a0

(
1− a2

WW

a0a1

)
, (7.55)

the background scattering length, which determines the scattering amplitude in the case of an
infinitely large frequency ω. The width of the real part of the scattering amplitude corresponds to

δ =
2a2

WW

a0a1|n|
1

1− a2
WW

a0a1

1

a2
1

. (7.56)
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The quantity

γ = k (7.57)

characterises the width of the imaginary part and its inverse corresponds to the maximal value of
the scattering amplitude. In practice, ω̃0, δ, γ and aBG are fitting parameters and are extracted
by fitting equation (7.54) to the numerical data for f̃0. We can invert relations (7.55)-(7.57) in
combination with (7.52) in order to calculate the parameters of the simple coupled channel model
from the fitting parameters obtained with equation (7.54). The inverted relations read

E = γ2, (7.58)

a1 =

√
1

−E + |n|~ω̃0

, (7.59)

aWW =

√
1

2
aBGδa3

1|n| , (7.60)

a0 = aBG +
a2

WW

a1

. (7.61)

Formula (7.54) has been reported recently by [80], but without the derivation shown in Appendix
C. With the dimensionless variable

x = ~
ω̃ − ω̃0

δ
(7.62)

the scattering amplitude (7.54) is expressed in real and imaginary part

−Re f
aBG

=
(x− 1)x

x2 + γ2a2
BG(x− 1)2

, (7.63)

−Im f

aBG

= − γaBG(x− 1)2

x2 + γ2a2
BG(x− 1)2

. (7.64)

In Figure 7.14 we compare these equations to the numerical data by simultaneously fitting real and
imaginary part. Similar to Figure 7.12 we find a good agreement between approximative formula and
numerical data. Panel (d) shows that equation (7.54) resolves the numerical data in the vicinity of
the maximum of the real part, which is a benefit in comparison to equation (7.43). Also in this case
we scaled both axis in order to plot the scattering amplitude for different parameters in a similar
form.
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Figure 7.14.: Comparison of the real (blue) and imaginary (red) part of the scatter-
ing amplitude −f̃0 over the difference of the driving frequency ω̃ from the resonant
ω̃0 measured in units of the width ∆. The values for fitting equation (7.43) are shown
with + for real and o for imaginary part. Panel (a) shows the case of ε̃ = 10−4 and
ã1 = 0.1, which gave the result of ~ω̃0 = 1.0174, δ = 5.051 × 10−3, γ = 10−2 and
abg = 0.995. Panel (b) shows the case of ε̃ = 10−8 and ã1 = 0.1, which gave the
result of ~ω̃0 = 1.0173, δ = 5.0507 × 10−3, γ = 10−4 and abg = 0.995. Panel (c)
shows the case of ε̃ = 10−4 and ã1 = 0.5, which gave the result of ~ω̃0 = 1.6135,
δ = 0.1826, γ = 10−2 and abg = 0.8235. Panel (d) shows an enlarged plot of the
case of (a).

The invariance between (a) and (c) is directly implemented in equations (7.63) and (7.64), as they
are completely expressed by the dimensionless variable x. Because

maxRe |f | = 1

2γ
(7.65)

and
max Im |f | = 1

γ
(7.66)
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hold for equations (7.63) and (7.64), we see in Panel (b), that a larger enhancement of scattering is
described by a lower value of γ. In Figure 7.13 (b) we see that only the real part of the numerically
calculated scattering amplitude has a zero, while (7.63) and (7.64) only simultaneously equal zero.
This is a limitation of these approximate formulas.

Since it is important in the next Section, we show in Appendix D that for the limit of vanishing
width γ formulas (7.63) and (7.64) converge to

− lim
γ→0

Re f = aBG

(
1− δ

~ω̃ − ~ω̃0

)
. (7.67)

for the real and
− lim

γ→0
Im f(ω̃) = −|δ|aBGπδ(ω̃ − ω̃0). (7.68)

for the imaginary part. The real part fits with the corresponding result of (7.48), while the imaginary
differs from (7.49) only by a modulus of δ.

7.5. Position and Width of Scattering Resonances

In this Section we use both equations (7.43) and (7.54) in order to extract fitting parameters charac-
terising the scattering resonance. In particular we are interested in the position ~ω̃0 and the width
∆ or δ. In Subsection 7.5.1 we evaluate the dependency of the fitting parameters on the Floquet
energy ε̃, while in Subsection 7.5.2 we evaluate their values in the ω̃-ã1 plane.

7.5.1. Energy Dependence of Parameters

We now investigate the behaviour of the fitting parameters, which characterise a resonance. We
therefore fit the formulas (7.43) and (7.54) to the numerical data and extract the dependencies of
their parameters on the Floquet energy ε̃. As the coefficient of determination R2 [100] quantifies
the accordance between the results of the fitting procedure to the data, only those fits yielding a
coefficient of determination R2 close to one are considered. The closer R2 lies by one, the better the
fit explains the data. We start with the width of the imaginary parts γ, respectively, Γ and found
out that they depend on the Floquet energy in the following way

log γ = p1 log ε̃+ p2, (7.69)
log Γ = p1 log ε̃+ p2. (7.70)

We display this result in Figure 7.15 (a). In Table 7.1 we see, that p1 ≈ 0.5, which implies the
dependency of γ on ε̃ by

γ ≈
√
ε̃ , (7.71)

while in the case of equation (7.43) one has to multiply the right-hand side by a constant C = 10p1 ,

75



7. Enhancement of Scattering by Periodic Driving

Table 7.1.: Results of the fitting procedure using equation (7.54) in the case of
ã1 = 0.1 up to two decimals. Values in brackets give the 95% confidence interval.

Quantity Formula Values ( 95%-Confidence Bounds)
γ log γ = p1 log ε̃+ p2 p1

p2

0.50 (0.50, 0.50)
3.14× 10−5

(2.78× 10−5, 3.49× 10−5)
aBG aBG = c c 1 (1, 1)
δ δ = a ε̃b + c a

b
c

2.38× 10−4

(1.32× 10−4, 3.44× 10−4)
1.08 (1.08, 1.4)
5.05× 10−3

(5.05× 10−3, 5.05× 10−3)
~ω̃0 ~ω̃0 = a ε̃b + c a

b
c

0.99 (0.99, 0.99)
1.00 (1.00, 1.00)
1.017 (1.017, 1.017)

Table 7.2.: Results of the fitting procedure using equation (7.43) in the case of
ã1 = 0.1 up to two decimals. Values in brackets give the 95% confidence interval.

Quantity Formula Values ( 95%-Confidence Bounds)
Γ log Γ = p1 log ε̃+ p2 p1

p2

0.50 (0.50, 0.50)
−2.32 (−2.33, −2.31)

abg abg = c c 0.92 (0.92, 0.92)
∆ ∆ = a ε̃b + c a

b
c

3.2× 10−2

(−2.5× 10−1, 0.32)
1.33 (−1.08, 3.75)
5.33× 10−3

(5.27× 10−3, 5.38× 10−3)
~ω̃0 ~ω̃0 = a ε̃b + c a

b
c

0.99 (0.99, 0.99)
1.00 (1.00, 1.00)
1.017 (1.017, 1.017)
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Figure 7.15.: Panel (a) shows in blue the results of the fitting parameter γ of (7.54)
and in yellow the results for Γ defined in (7.43). Linear fits for both data are shown
in dashed lines. Panel (b) shows position ~ω̃0 and width δ (dashed lines) obtained
with equation (7.54) of the first scattering resonance.

which is documented in Table 7.2 and gets

Γ = C
√
ε̃ . (7.72)

Further investigations revealed, that equations (7.71) and (7.72) stay true in the case of larger ã1,
while the constant C depends on ã1.

As the main result of this investigation we can state that in the limit of vanishing energy ε̃ both γ and
Γ are going to zero and therefore equations (7.63), (7.64) and (7.48), (7.49) are a valid description of
the scattering resonance in the limit of vanishing Floquet energy ε̃. As in both cases the imaginary
part of the Floquet-scattering length is proportional to a Dirac-delta function, we conclude that the
Floquet scattering resonance is lossless if the driving frequency does not exactly hit the resonant
frequency ~ω̃0. One leading physical mechanism of losses is inelastic scattering. We show in Section
7.2 that all higher open Floquet channels possess a vanishing Floquet scattering length, which means
that at scattering resonance inelastic collisions are not present.

We found out that the behaviour of the quantity ~ω0 as shown in Figure 7.15 is described by a
power law

Q = a ε̃b + c. (7.73)

In the case of aBG, abg, δ and ∆ a power law gives only the trend of the data and does not match to
each single data point, as shown in Figure 7.16. The result of this investigation is shown in Tables
7.1 and 7.2. In Figure 7.15 (b) we see that both position and width stay approximately constant
for Floquet energies below ε̃ = 10−4.

As the coefficient of determination R2 [100] quantifies the accordance between the results of the
fitting procedure to the data, we compare the values of R2 between (7.43) and (7.54). In Figure 7.16
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Figure 7.16.: (a): Plot of the fitting parameter δ (blue) and a power law fit (red).
(b): plot of the decade logarithm of 1 − R2 of the fit results with equation (7.54)
(blue) and equation (7.43) (red) relative to the decade logarithm of the Floquet
energy ε̃ in the case of ã1 = 0.1.

we plot the logarithm of 1 − R2. The coefficient of determination gets closer to one in the case of
vanishing Floquet energy ε̃, signalling a better accordance of the fitting equations to the numerics.
Additionally the values corresponding to (7.54) are always closer to one and therefore fit better to the
data than the ones, which correspond to (7.43). We conclude that equation (7.54) is more suitable
in order to describe the shape of a scattering resonance than (7.43). This is additionally manifested
in numerical instabilities occurring in the fit results of equation (7.43) in the case of small Floquet
energies ε̃ and by the findings displayed in Panel (d) of Figures 7.12 and 7.14.

7.5.2. Position and Width in the ω̃-ã1 Plane

After the investigation of the ε̃ dependence of the scattering-resonance parameters we take a look on
the behaviour of these resonances in the ω̃-ã1 plane. We specialise to the case of vanishing Floquet
energy. In order to calculate the numerical results, we use equation (6.42), which is valid for ε̃ = 0.
Due to the considerations in the previous Subsection, we do a fitting procedure using equation (7.67).
In Figure 7.17 we compare equation (7.67) to the numerical data and obtain a good agreement. It
turns out that this fitting procedure yields good results, except for small values of ã1, as in this case
the resonances become very narrow and the fitting procedure fails due to computational issues. In
order to obtain results also in this region, we extrapolated the data to small ã1 and excluded data
points with a large numerical uncertainty. This can be done with a high precision, as the resonance
frequency at ã1 = 0 is known due to equation (7.29). As a result, we plot in Figure 7.18 position
and width of the first five resonances in the ω̃-ã1 plane. Similar to Figure 7.8 the resonance positions
and widths increase for larger ã1. Figure 7.18 can be seen as a map of how to tune the parameters
in order to form the shape of the resonance in a desired way. The time-averaged scattering length ā
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Figure 7.17.: Comparison of the numerical calculated scattering length ãscatt with
the fitting equation (7.67) at ã1 = 0.1. The fitting procedure yields the values
~ω̃0 = 1.0173, δ = 5.0512× 10−3 and abg = 0.9949.

in the contact interaction determines the energy and length scale, as it appears in ~ω̃ via the dimer
energy (6.34) and is used as a scaling factor connecting a1 to the dimensionless ã1. Position ~ω̃0

and width δ of the resonance can be controlled by choosing the driving amplitude ã1. Finally, the
driving frequency ~ω̃ can be used to adjust the actual value of the scattering length ãscatt and for
example control the enhancement over its background value.

In Figure 7.19 we compare the resonance positions to the ones obtained in Section 7.3 and find
a good agreement, as the maximal error is of order 10−4.

In Panel (a) of Figure 7.20 we plot the width of the first five resonances over the driving strength ã1

and report, that they increase with the driving strength. In order to characterise the width of the
resonances further, we analyse their behaviour in the limit of low driving amplitudes ã1, and find
out that the data can be described by a power law

δn = an ã
bn
1 . (7.74)

In order to obtain the values of the fit parameters an and bn in the limit of vanishing ã1, we
successively restrict the data to be fitted to the values around zero. At last, we extrapolate these
results to the case of ã1 = 0. The resulting values of an and bn are shown in Table 7.3. The exponents
bn increase with the number n of the resonance and have the approximate behaviour

bn ≈ 2n. (7.75)

In Panel (b) of Figure 7.20 we show the background scattering length aBG, which is approximately
one in the most cases and decreases in the case of the first resonance.
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Figure 7.18.: Position and width of scattering resonances in the ω̃-ã1 plane for
Floquet energy ε̃ = 0. Positions are given by continuous lines, while widths are
given by difference between dashed and continuous lines of the same colour. The
quantities for first resonance are painted blue, for second red, for third yellow, for
fourth purple and for fifth green.

7.5.3. Relation to Simple Coupled Channel Model

In this Section we calculate with equations (7.58)-(7.61) the parameters of the simple coupled channel
model from the fit parameters obtained with equation (7.54). In Figure 7.21 we plot the dependencies
of the model parameters over the driving strength ã1 using the data from the fitting procedure with
equation (7.54). As the width of the imaginary part γ is zero for vanishing Floquet energy ε̃, the
energy E in the model does also vanish. The value of a0 approximately follows the value of aBG,
while a1 is decreasing with increasing ã1 in order to lower the energy of the model bound state such
that the behaviour of the energy of the side system is reproduced. It turns out that all considered
scattering resonances have approximately the same value of a1. For small ã1 the value of aWW is
close to zero and it increases with larger ã1. This can be understood by the fact that ã1 couples
the open Floquet channels to the driving induced bound state in the Floquet-side bands, and the
width is related to the coupling strength by equation (7.56). For larger values of ã1 and for higher
resonance numbers the coupling strength decreases. An intuitive explanation is that higher Floquet
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Figure 7.19.: Plot of the decade logarithm of the difference between the resonance
positions calculated by the fitting procedure (7.54) and by the energy of the side
system (7.14). The quantities for the first resonance are painted blue, for the second
red, for the third yellow, for the fourth purple and for the fifth green.
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Figure 7.20.: (a): Plot of the resonance width δ over the driving strength ã1. (b):
Plot of the background scattering length aBG of the resonance. The width for the
first resonance is painted blue, for the second red, for the third yellow, for the fourth
purple and for the fifth green.
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Table 7.3.: Results of the fitting procedure for widths of the resonances δ = a ãb1
in the limit of vanishing ã1 up to two decimals. Values in brackets give the 95%
confidence bounds.
Number an bn
1 0.48 (0.44, 0.55) 2.00 (1.97, 2.03)
2 0.36 (0.32, 0.39) 4.00 (3.97, 4.02)
3 0.34 (0.26, 0.42) 5.94 (5.83, 6.05)
4 0.33 (0.19, 0.48) 7.79 (7.54, 8.05)
5 0.42 (0.26, 0.58) 9.83 (9.63, 10.03)
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Figure 7.21.: Plot of the parameters of the simple coupled channel model of Section
7.4.2 over the driving strength ã1. In (a) the background scattering length of the
free channel is plotted, in (b) the one for the closed and in (c) the coupling strength
of both channels, which are present in the model. Quantities for first resonance are
painted blue, for second red, for third yellow, for fourth purple and for fifth green.
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channels get more populated and therefore the overlap between the wave functions in different modes
becomes smaller. This results in an effective smaller coupling of the channels. Note that these model
parameters exist due to simplification issues and are no measurable quantities.

7.6. Kramers-Kronig like Relation between Real and
Imaginary Part

After the detailed analysis of the scattering resonances we report that the following quantity involving
the time-averaged scattering amplitude

χ̃(ω) = −f0(ω) + lim
ω→∞

f0(ω) (7.76)

fulfils the so called anti Kramers-Kronig relations

Re χ̃(ω0) = − 1

π
P
∫ ∞
−∞

dω
Im χ̃(ω)

ω − ω0

, (7.77)

Im χ̃(ω0) =
1

π
P
∫ ∞
−∞

dω
Re χ̃(ω)

ω − ω0

, (7.78)

which are derived in Appendix B for anti-causal susceptibilities. We introduced the principal value
integral as

P
∫ ∞
−∞

dx
χ̃(x)

x− x0

= lim
γ→0

(∫ x0−γ

−∞
dx+

∫ ∞
x0+γ

dx

)
χ̃(x)

x− x0

(7.79)

and use the quantity χ̃(ω) = −f0(ω) + lim
ω→∞

f(ω) instead of the bare scattering amplitude −f0(ω) in
order to ensure that the limit of χ̃(ω) for infinite frequencies is going to zero. We show in Appendix
B, that this condition is necessary for the fulfilment of the anti-Kramers Kronig relations. The
fact that (7.76) fulfils equations (7.77) and (7.78) is not a violation of causality, as (7.76) is not a
susceptibility. The fulfilment of the anti-causal Kramers Kronig relations signals that the scattering
amplitude f0(ω̃) has a simple analytic structure, which captures the physics of a scattering reso-
nance. In Appendix B we further show, that functions with poles in the upper complex half plane
fulfil the anti-Kramers Kronig relations. As both fit formulas (7.43) and (7.54) have only one pole,
which is located in the upper half plane for positive γ or Γ, respectively, they also fulfil equations
(7.77) and (7.78).

In order to show that the numerically calculated values fulfil the anti-Kramers-Kronig relations,
a MATLAB function was implemented in order to calculate the imaginary part of the scattering
amplitude using the real part with equation (7.78) and vice versa with (7.77). The function is im-
plemented in the following way: The integrals in (7.77) and (7.78) are truncated to a range of total
length 2Λ lying symmetrically around the point ω0. This is done in order to ensure that

P
∫ Λ+ω0

−Λ+ω0

dw
1

ω − ω0

= 0. (7.80)
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Figure 7.22.: Plot of real (blue) and imaginary (red) part of the negative scattering
amplitude in the case of ε̃ = 10−4, ã1 = 0.1. The yellow + mark the values obtained
by re-calculating the real part using the imaginary by equation (7.77). The purple
x are calculated using equation (7.78).

Additionally we approximate the principal value by leaving out the integration between the values
ω0 − εp and ω0 + εp, where εp is a small, but numerical resolvable value. The numerics have been
validated with the function χ̃val(ω) = 1/(ω + iγ), which has a pole in the upper complex half plane
for γ < 0 and therefore known to fulfil the anti-Kramers-Kronig relations.

The result of this investigation is shown in Figure 7.22, where a good agreement between numerical
and anti-Kramers-Kronig relations calculated data is shown. In Figure 7.23 we plot the relative
norm

|χ̃numeric(ω)− χ̃anti−Kramers−Kronig(ω)|
|χ̃numeric(ω)|

(7.81)

of the error between numerical and anti-Kramers-Kronig calculated data. For all considered posi-
tions in the ε̃-ã1 plane this error has the order of the numerical uncertainty of the method.

Additionally we can directly show that (7.43) and (7.54) fulfil the anti-Kramers-Kronig relations
in the case of positive imaginary part γ or Γ, respectively, by calculating the principal value integral
in the following manner

P
∫ ∞
−∞

dx
χ̃(x)

x− x0

= lim
γ→0,Λ→∞

(∫ x0−γ

−Λ+x0

dx+

∫ Λ+x0

x0+γ

dx

)
χ̃(x)

x− x0

. (7.82)

It turns out that in the case of (7.43) and (7.54) both in equation (7.82) occurring limits commute.
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Figure 7.23.: Plot of the relative error (7.81) of numerical data and anti-Kramers-
Kronig relation recalculated data in the plane of Floquet energy ε̃ and driving
strength ã1.

7.7. Scattering Amplitude at Large Driving Frequencies

In this Section we consider the limit of infinitely large driving frequencies. In this case the wave
functions in all Floquet channels with index greater than zero are unbound, while all below are
bound. Interestingly, the coefficients Dn obey the rule Dn = D−n, as the recursion relation (6.49)
is the same in both cases. Therefore the amplitude of the wave function in both open and closed
Floquet channels are distributed symmetrically around channel number zero in this limit. The
scattering amplitude can be calculated with the results obtained in Section 6.4 by inserting equation
(6.54) into (6.26) and it reads

f̃0(ε̃, ã1) =
−
√

1− ã2
1 + i(1− ã2

1)k̃0

1 +
√

1− ã2
1 k0

. (7.83)

As equation (7.83) has no dependency on the driving frequency, this result corresponds to the
limit of infinite large driving frequency without any 1/ω̃ correction. A plot of (7.83) in the ε̃-ã1

plane is performed in Figure 7.24. If ã1 = 1, real and imaginary part of the scattering amplitude
vanishes. For the limit of ε̃ going to zero the imaginary part vanishes, while the real part converges
to ãscatt =

√
1− ã2

1 . This is quite remarkable, as for large driving frequencies one would expect, that
the effect of the time-dependent part vanishes due to averaging issues, which leads to a scattering
length of ãscatt = 1. Additionally no resonances occur, as the condition of maximal scattering (7.7)
can never be fulfilled by equation (7.83).
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Figure 7.24.: Real (a) and imaginary (b) part of the negative scattering amplitude
−f̃0 in the case of infinite large driving frequency ω̃.

7.8. Scattering Amplitude at Low Driving Frequencies

In this Section we discuss the case of vanishing driving frequency, in which condition (6.56) is fulfilled.
In this limit the critical index (5.24) diverges to minus infinity and all Floquet channels capturing a
relevant weight of the wave function are unbound. Due to the absence of bound states no resonances
occur in this limit. In Section 6.4.3 we solve the recursion relation (6.37) in the case of vanishing
driving frequency. Plugging the (6.63) into (6.40), we arrive at a time-averaged scattering amplitude
of

f̃0 =
i

k̃0

− 1

k̃0

√
−1 + k̃0

(
−ã2

1k̃0 + k̃0 − 2i
) . (7.84)

In order to find a result being easier to interpret, we perform the limit of vanishing energy of (7.84).
As the driving frequency is exactly zero, equation (6.56) is always valid in this limit. The complex
roots occurring in this calculation are considered to be the principal square root [85, 101]. The
resulting time-averaged scattering length is

ãFl
0 = 1. (7.85)

Additionally we can show, that in those limits −f̃±1 converges to

ãFl
±1 =

ã1

2
, (7.86)

while the scattering amplitudes of all other channels vanish. By extrapolating this limit to small,
but finite, driving frequencies ω̃, we can write down the time dependent scattering length

ãFl(t) = 1 + ã1 cos(ωt). (7.87)

This is an interesting result, as it states that for low driving frequencies the Floquet-scattering length
equals the scattering length involved in the driving potential (6.2), i.e. the scattered particle follows
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the potential adiabatically.

We show in Appendix E that the time dependent Floquet-scattering length can be identified with
the scattering length appearing in the interaction term of the Gross-Pitaevskii equation. Therefore,
equation (7.87) is supported by the investigations [1, 48] of collective excitations of a Bose-Einstein
condensate induced by a periodically modulated scattering length.

We now sum up the most important points of this Chapter. We considered the scattering by a
periodically driven contact potential and saw in Section 7.1 that periodic driving is able to create
scattering resonances, which allow the tuning of the interaction strength to any desired value. We
explained in Section 7.2 that their emergence is related to Fano interference and we could show that
they occur, if the energy of the incoming particle equals the energy of a bound state in the contin-
uum. With this result we calculated in Section 7.3 the positions of scattering resonances. In Section
7.4 we showed, that the shape of a scattering resonance can be approximated by simple formulas.
We used these formulas in a fitting procedure and characterised the scattering resonance by their
fitting parameters, which we determined in Section 7.5 in the ω̃-ã1 plane. In Section 7.6 we reported,
that the scattering amplitude in the vicinity of a resonance fulfils the so-called anti-Kramers-Kronig
relations. After a detailed analysis of the sinusoidally driven contact potential we characterise in the
next Chapter the influence of higher harmonics of the driving scheme on the scattering resonances.
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8. Influence of Higher Fourier Modes of
the Driven Potential

This Chapter is devoted to the better understanding of higher Fourier modes of the driven contact
potential, as it plays a role for experimental applications. If, as considered in Ref. [3], a time-periodic
magnetic field

B(t) = B1 +B2 cos(ωt) (8.1)

is applied in the vicinity of a magnetic Feshbach resonance, it leads to a time-dependent scattering
length

a(t) = abg

(
1− ∆

B2 cos(ωt) +B1 −B0

)
. (8.2)

For small driving amplitudes B2 � |B1 −B0| this time-dependent scattering length can be approx-
imated by only considering the first Fourier component as in Chapter 6 or Rev. [3]. In order to
consider higher harmonics, we solve in Section 8.1 the scattering by a contact potential which has
an arbitrary, but periodic, time-dependence and map the solution of the scattering problem to a
relation between Floquet-scattering amplitudes of different channels. Section 8.2 is devoted to the
better understanding of the influence of higher Fourier modes in the potential, while Section 8.3
applies these findings to the case of a periodically driven magnetic Feshbach resonance. In Section
8.4 we calculate the frequency and length scales of a driven scattering resonance in the case of 85Rb
and 133Cs atoms.

8.1. Contact Potential with General Time-Periodic Driving

We consider the contact interaction introduced in Chapter 6 by equation (6.1) and assume a general
time-periodic scattering length, which can be represented as a Fourier series

a(t) =
∞∑

n=−∞

e−inωtAn. (8.3)

If the contact potential is considered to be hermitian, its Fourier components fulfil the relation

An = A∗−n. (8.4)
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In this case the radial Floquet equation (5.37) with zero angular momentum of the driven contact
potential reads (

∆r + k2
n

)
Rn(r) =

∞∑
m=−∞

2
Am
r2
δ(r)

∂

∂r
rRn−m(r). (8.5)

As we consider s-wave scattering only, we omit similar to Chapter 6 the angular momentum index
of the wave function. Although equation (8.5) differs from (6.11) by including Fourier components
of the potential An with an index larger than one, it is solved by the same ansatz (6.12) assuming
condition (6.14). The integration procedure around the singularity introduced in Chapter 6 is also
applied to this setting and leads to a relation connecting potentially all coefficients Dn(

i

k̃n
− 1

)
Dn −

∞∑
m=−∞
m6=0

ÃmDn−m = h̃n. (8.6)

The inhomogeneity is given by

h̃n =

{(
i

k̃nā
+ 1
)

1
2
, n = 0

Ãn
2
, n 6= 0.

(8.7)

As A0 plays the role of ā in Chapter 6, we introduced the dimensionless wave vector k̃n = knA0,
scattering amplitude f̃n = fn/A0 and defined the normalised Fourier components of the potential
by

Ãn =
An
A0

. (8.8)

Re-expressing the coefficients Dn by the scattering amplitudes (6.40) in equations (8.6) and (8.7)
leads to the relation

−(1 + ik̃n)f̃n − i
∞∑

m=−∞
m6=0

Ãmk̃n−mf̃n−m = Ãn. (8.9)

This equation is due to the occurrence of the Floquet-wave vector k̃n non-linear in the Fourier index
n and has also been obtained by Ref. [4] with a different approach. As it connects coefficients,
whose indices differ by an integer n we can interpret the effect of Ãn as the strength of processes
involving |n| quanta of the drive field. Due to its complexity, equation (8.9) can be only solved
numerically. In this case a truncation scheme similar to Section 6.4 is performed. First of all, only
Fourier components Ãn with indices having a modulus smaller than a cut-offm1 are considered. This
approximation is only valuable, if Fourier-components Ãn with large indices vanish. Then equation
(8.9) is truncated by setting all f̃n with indices having a modulus larger than a cut-off m2 to zero.
It is useful to consider m1<m2. The result is a set of linear equations, which is solved numerically.

Also in this case, the knowledge of the time-averaged scattering amplitude f̃0 suffices to calculate
both elastic and inelastic cross section and the time-averaged scattering length ãscatt.
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8.2. Commensurate Two Colour Drive

In order to understand the effect of higher Fourier modes of the potential in the simplest case, we
assume the driven scattering length to be of the form

a(t) = A0 + 2A1 cos(ωt) + 2A2 cos(2ωt). (8.10)
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Figure 8.1.: Plots of real (blue) and imaginary (red) part of the time-averaged
scattering length ascatt for ε̃ = 0 and the following parameters:
(a): Ã1 = 0.2, Ã2 = 0.0, (b): Ã1 = 0.2, Ã2 = 0.08, (c): Ã1 = 0.2, Ã2 = 0.2, (d):
Ã1 = 0.0, Ã2 = 0.2

For A2 = 0 this equation reduces to (6.2) with 2A1 = a1. In order to give an overview of the
effects of the additional Fourier component Ã2, we show in Figure 8.1 cuts along the ω̃-axis of the
time-averaged scattering length, i.e. we set ε̃ = 0, as in this case the resonances are strongest. Panel
(a) shows the case of no additional Fourier component. There we observe scattering resonances
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Figure 8.2.: Plots of the following fitting parameters for Ã1 = 0.05 in blue, Ã1 = 0.1
in red and Ã1 = 0.2 in yellow:
(a): Coefficient of determination R2 of the corresponding fitting procedure coloured
for different Ã1. (b): Imaginary part γ coloured for different Ã1, 1/max |Im ascatt|
with black dashed line. (c): Resonant frequency ~ω0 coloured for different Ã1, ~ωside

with black dashed line, position of maximal imaginary part with black dotted line,
(d): Width of the resonance δ coloured for different Ã1.

with a large enhancement of the real part of the scattering amplitude, while the imaginary part is
zero except of non-shown delta-peaks exactly at the resonance positions. In Panel (b) we switch
on the Fourier component Ã2 slightly and observe a non-vanishing imaginary part in the vicinity
of all scattering resonances. This effect is strongest for the resonance with largest frequency, also
the maximal real part is finite in this case. Panel (c) shows the case where Ã1 and Ã2 are equal.
Here, this effect is stronger and involves a lower maximal real part for multiple resonances. This
effect is enhanced only at every second resonance. Panel (d) shows the case for Ã1 = 0, where only
half of the resonances occur. This has been expected, as it should be recovered with the methods
of Chapter 6 while driving with the double driving frequency. As a non-vanishing imaginary part of
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Figure 8.3.: Decade logarithm of modulus of real (blue) and imaginary (red) part
of equation (8.11) for the parameters aBG = 1, γ = 10−2 (a) and aBG = 1, γ = 10−4

(b). The yellow curve in both panels shows the quantity log(|Re ãscatt/Im ãscatt|).

the scattering length ãscatt is associated with particle loss, its occurrence limits the applicability of
our method. In order to obtain a strong enhancement of elastic scattering without strong particle
loss, one has to tune the frequency on the flank of the resonance, where the real part is much larger
than the imaginary.

In the following we give a more quantitative insight in the dependency of the resonance with largest
frequency on the Fourier component Ã2. As the time-averaged scattering length ãscatt looks in the
presence of higher Fourier components of the potential similar to (7.54), we fit the numerical data
to the following approximate formula

1

ascatt(ω)
=

1

aBG

ω̃ − ω̃0

ω̃ − ω̃0 − δ/~
+ iγ. (8.11)

Figure 8.2 shows the dependency of the fitting parameters on the Fourier component Ã2. As it is
shown in Panel (a), this fit works well for small values of Ã2, while for higher Ã2 the lowering of the
coefficient of determination R2 indicates a lower conformity of equation (7.54) and the numerical
data. We only considered data with a coefficient of determination larger than R2 ≥ 0.915. In Panel
(b) the imaginary part γ is shown. As expected it vanishes for small Ã2 and reproduces the findings
in Chapter 7. With increasing Ã1 also γ increases following a power-law behaviour

γ = a

(
Ã2

Ã1

)b

. (8.12)

As the imaginary part of the scattering length ãscatt can be related by (5.68) to inelastic scattering,
the occurrence of higher harmonics in the driving scheme leads to a lossy driving induced resonance.
These losses occur, as for Ã2 6= 0 the side systems is no more decoupled from the open channels and
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therefore no bound state in the continuum occurs. Instead higher Floquet channels obtain a non-
vanishing occupation leading to inelastic scattering. In Figure 8.3 we display the decade logarithm of
real and imaginary part of equation (8.11) and see that in the vicinity of a resonance the imaginary
is larger than the real part. The yellow curve shows the quantity log(|Re ãscatt/Im ãscatt|) which has
a minimum exactly at resonance position. In order to get a large real part with a relatively small
imaginary part, one has to tune the driving frequency on the flank of the resonance, and, as the
comparison between Figure 8.3 (a) and (b) shows, lower the parameter γ. In Figure 8.2 (b) we
show in a black dashed line the quantity 1/max |Im ãscatt|, which should equal γ in the ideal case.
Indeed, we get a good agreement of both quantities verifying the correctness of the fitting procedure.
Figure 8.2 (c) shows, that the change of Ã2 also changes the resonant frequency slightly compared
to Ã2 = 0. The black dashed lines are calculated by evaluating the eigenenergies of the side system
while assuming condition (7.18). We generalised the calculation presented in Section 7.3 to the case
where Ã2 is non-zero by introducing next-nearest neighbour coupling Ã2 of the side systems channels
while assuming that the coupling to the open channels completely vanishes. Although both lines
posses similar qualitative behaviour, they deviate from each other especially in the case of large
Ã2. This deviation can shows that the assumption of an uncoupled side system is not true in this
case. The non-vanishing next-nearest neighbour coupling of closed and open channels by Ã2 leads
in the sense of equation (3.8) to a shift of the resonance position. The black dotted lines show the
frequency position of maximal enhanced scattering and it fits well to the data obtained by the fitting
procedure. Figure 8.2 (d) shows that the width δ of the resonances lower with increasing Ã1.

We saw by this investigation that position and width of the scattering resonances are altered by
the value of Ã2. But most important is that a non-vanishing Ã2 implies a finite maximal scattering
length, which is manifested at zero energy ε̃ = 0 by a non-vanishing width γ. This findings are
important for the discussion in the next Section.

8.3. Periodically Driven Magnetic Feshbach Resonance

In this Section we consider the case of a periodically driven magnetic Feshbach resonance. As
introduced in the beginning of this Chapter we consider a contact potential with a time-periodic
scattering length following equation (8.2). Its Fourier components are defined by

An =
1

T

T∫
0

dteinωt
(

1− ∆

B2 cos(ωt) +B1 −B0

)
. (8.13)

This integral can be mapped by the substitution z = eisign(n)ωt to a line integral on the complex unit
sphere. Using the residue theorem and assuming B2 < |B1 −B0| equation (8.13) is evaluated to

An = abg

δn,0 − ∆

(B1 −B0)
√

12 − y2

[√
1− y2 − 1

y

]|n| , (8.14)
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Figure 8.4.: (a): Plot of position and width (dashed lines) of the driven magnetic
Feshbach resonance in dependency of the ac-magnetic field B2. In blue the results,
where the maximal considered Fourier component of the potential is m1 = 10, are
shown, while in red we consider m1 = 1. (b): Dependency of the width δ of
the resonance on the ac-magnetic field B2 (c): Maximal enhancement of elastic
scattering maxRe ascatt = 1

2γ over the ac-magnetic field B2. All plots have been
done with ∆ = −2(B1 −B0), while B1 −B0 < 0.

while we introduced
y =

B2

B1 −B0

. (8.15)

Its structure reveals that An drops polynomially with increasing Fourier index n in the case of
|y| < 1 and the truncation method defined in Section 8.1 is applicable in this case. As a result we
plot in Panel (a) of Figure 8.4 in blue position and width of the resonance with largest frequency
over the strength of the ac-magnetic field B2. It can be seen that both resonance position and
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width grow with the strength of the ac-magnetic field B2. This is also the case for the results of
a calculation considering only one Fourier mode and can thus be explained qualitatively with the
findings of Subsection 7.5.2. The differences of both results can be understood by the results of
Section 8.2, as the higher Fourier components increase with larger y. In Panel (c) we show that the
maximal enhancement of the real part of the time-averaged scattering amplitude decreases with the
ac-magnetic field B2. It is infinite if only one Fourier channel of the potential is considered. In the
consideration of higher harmonics it becomes infinitely large only in the case of B2 = 0, while the
width vanishes at B2 = 0. This effect might be important for experiments, where a large width and a
large enhancement of scattering are favourable. We see in Figure 8.4 that the maximal enhancement
of scattering decreases with the ac-magnetic field B2, while the width increases. Therefore in practice
one has to do a trade-off between both quantities and might chose a value of B2, which allows a
notable enhancement of scattering while the width is not too small.

8.4. Frequency and Length Scale for Scattering of Ultracold
Atoms

At the end of this Chapter we give an overview of the frequency and length scales occurring in
a driven magnetic Feshbach resonance in the case of bosonic 85Rb and 133Cs atoms. For 85Rb we
specialise on the resonance at B0 = 155.04 G with the width ∆ = 10.7 G and a background scattering
length of abg = −443 aBohr [102]. For 133Cs we consider the resonance with B0 = 547 G, ∆ = 7.5 G
and abg = 2500 abohr [38]. As all of these resonances are so-called entrance channel dominated [38],
the contact potential is a valid approximation of the actual inter-atomic interaction over a wide
range of magnetic fields within the width of the magnetic Feshbach resonance. The frequency scale
of the driving induced scattering resonance, as displayed in Figure 8.4 (a), is given by the dimer
energy divided by ~, while the length scale is given by the zeroth Fourier component A0 of the driven
contact potential. Therefore Figure 8.5 can be used in order to convert the dimensionless y-axis of
Figure 8.4 into physical units in order to estimate the value of the frequency or the field strength,
which has to be applied in order to investigate the scattering resonances. In Figure 8.5 we calculate
the dimer energy by

ED =
~2

2µ

1

[A0(B2 = 0)]2
, (8.16)

where µ denotes the reduced mass and A0(B2 = 0) is calculated with equation (8.14). Panel (a)
of Figure 8.5 shows that the dimer energy of the considered Rb resonance lies in the MHz range
and increases if |B1 − B0| increases. Due to equation (6.5) the results are only valid for driving
frequencies below the energy scale of the potential, which is for 85Rb given by the van der Waals
energy EvdW ≈ 6 MHz [38]. This is indicated in Figure 8.5 by the red dashed line and reveals that
this approximation is only valid for small deviations of B1 from B0. In combination with Figure 8.4
(b) this shows that the width of the resonance lies in the regime of 100 kHz. For 133Cs the situa-
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Figure 8.5.: (a): Plot of the dimer energy ED (blue line) and the van der Waals
energy scale (dashed red line) for 85Rb
(b): Plot of the dimer energy ED for 133Cs
(c): Plot of A0(B2 = 0) in Bohr radii aBohr for 85Rb
(b): Plot of A0(B2 = 0) in Bohr radii aBohr for 133Cs

tion is different, as the dimer energy lies in the kHz regime and thus way below the van der Waals
energy of EvdW = 2.666 MHz [38]. The width of the resonance is of the order of 100 Hz. Panel
(c) and (d) can be used to express the maximal enhancement of scattering shown in Figure 8.4 (c)
in Bohr radii. In order to validate the approximation of ε̃ = 0, the dimer energy has to be larger
than the temperature of the Bose-Einstein condensate. Assuming a temperature of T ≈ 10−9 nK,
we arrive at a frequency scale of 100 Hz. If this condition is not fulfilled, the maximal enhancement
of elastic scattering is lower due to the finite energy ε̃ as discussed in Subsection 7.5.1.
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In Section 9.1 we summarise the most important findings of our work and give concluding remarks,
while Section 9.2 is dedicated to the Outlook.

9.1. Conclusion

The tuning of the interaction strength enables a rich amount of experimental settings, especially
in the case of ultracold quantum gases [1, 2, 38]. Due to low kinetic energies s-wave scattering is
dominant and the interaction strength can be described by a single parameter, named scattering
length. Magnetic Feshbach resonances provide a common tool of controlling the scattering length
experimentally. A limiting factor of their application is that they occur only at certain characteristic
magnetic field strengths. Recent works [3–5] showed that periodic driving can enhance the scattering
of quantum particles in a dramatic way, opening new possibilities of controlling the scattering length.

This thesis investigated the two-body problem with a time-periodic interaction potential. Based
on Floquet theory the Floquet-partial wave expansion was derived in Chapter 5 as a generalisation
of scattering theory which is able to deal with time-periodic interaction potentials. It was used to
calculate time-averaged scattering amplitudes, cross sections and Floquet states.

We applied in Chapter 6 the Floquet-partial wave expansion to a sinusoidally driven contact po-
tential, which describes the two-body interactions of quantum particles in the regime of s-wave
scattering. Due to the simple structure of the potential the time-dependent scattering problem
(6.11) was mapped to the recursion relation (6.37), which connects different Fourier-components of
its steady-state wave function. The solution of the recursion was used to calculate the time-averaged
scattering amplitude. Although this recursion is non-linear in the Fourier index, it can be solved
numerically for arbitrary driving frequencies. In addition we found an analytic solution for high
and low driving frequencies. At low frequencies the resulting Floquet state follows adiabatically the
time-evolution of the driven potential.

The main result of our investigation, displayed in Chapter 7, concerned the observation of driving
induced scattering resonances, which occur along lines in the parameter space of driving strength and
frequency. In the vicinity of these resonances scattering is dramatically enhanced, which allows the
tuning of the time-averaged scattering amplitude to large positive or negative values. The width of
these resonances can be adapted by the driving strength, while the enhancement is controlled by the
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driving frequency. It turned out that they are lossless, as no inelastic scattering due to absorption
of energy quanta from the drive field is present in their vicinity.

The occurrence of these scattering resonances was related to the emergence of bound states in the
continuum and explained in Section 7.2 as Fano-Feshbach resonances involving these bound states
located in a Floquet side-band. With this finding we were able to calculate the resonance position
for arbitrary driving strength and frequency. For weak driving a resonance occurs, if the frequency
matches with a transition between the scattering state and the universal dimer state of the contact
potential. We spotted that these resonances only emerge if the driving frequency is larger than the
particle energy divided by ~.

The time-averaged scattering amplitude can be approximately described by simple formulas (7.43)
and (7.54), where equation (7.54) was derived in Section 7.4.2 from scattering by a two-channel model
and approximates the numerical data slightly better than (7.43). These formulas were used in Sec-
tion 7.5 in order to extract position and width of scattering resonances for almost arbitrary driving
strengths. Their width increases with the driving strength and vanishes in the limit of small driv-
ing. In addition we found in Section 7.6 a Kramers-Kronig like relation between real and imaginary
part of the time-averaged scattering amplitude, which is also fulfilled by the approximative formulas.

A possible experimental realisation of this theory is the periodically driven magnetic Feshbach res-
onance [3]. In order to describe this setting with a better accuracy, the scattering by a contact
potential with a more general time-periodic driving was investigated in Chapter 8. In this case
inelastic scattering is present in the vicinity of the resonance, but by tuning the frequency slightly
away from it, elastic scattering can be still enhanced without suffering a large amount of losses. We
were able to calculate position and width of the periodically driven magnetic Feshbach resonance in
a wide range of driving strengths.

In summary we conclude that it is possible to tune the scattering length and therefore the in-
teraction strength of particles by periodic driving. This driving induced scattering resonance has
the benefit of being almost lossless and tunable solely by the driving parameters. This allows a
larger experimental flexibility, as unlike in the case of a magnetic Feshbach resonance the magnetic
field strength can be set relative far away from the resonance without loosing the enhancement of
scattering. In comparison to an optical Feshbach resonance it has the advantage of being almost
lossless. In addition, it might be applied to tune the interaction in ultracold gas experiments, where
no magnetic or optical Feshbach resonance is available.

9.2. Outlook

Although the contact potential is a simple model of the more complicated inter-atomic interaction
potential, its study in a driven case is highly non-trivial. Despite the fact that a quite general form
of the solution is given in this thesis, several points remain unsolved.
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At first we want to mention, that it would be of large interest, if also in the case of a periodi-
cally driven scattering resonance general formulas for calculating position and width like equations
(3.8) and (3.9), which are applicable for magnetic Feshbach resonances, exist. Such formulas would
give a clear definition and allow a calculation of these quantities without relying on a fitting proce-
dure or being restricted to approximative solutions.

Secondly, a detailed study of the case, where the driving amplitude a1 extends the value of the
time-averaged one, has not been done. It would be of interest, as it can be reached in experimen-
tal setups [2]. Our investigations revealed that scattering resonances only exist in the case of a
positive scattering length of the contact interaction, as their emergence is connected with the ex-
istence of a bound dimer state. In the case of a1 > ā this dimer state is only present in a part of
the driving period. Therefore it would be interesting, if the occurrence of scattering resonances is
also possible in this case or if the partial absence of the bound state destroys the possibility of the
system to enhance elastic scattering. In order to do this investigation it would be advantageous to
find a formalism, where 1/a is treated as a smallness parameter or use a different scattering potential.

We only dealed with two body physics, but experimental realisations of Feshbach resonances are
also limited by losses due to three-body collisions. Due to their experimental relevance and based
on [4] it would be interesting to investigate the occurrence of three body losses in the case of a pe-
riodically driven inter-particle interaction. Also the investigation of higher partial waves in Floquet
scattering would be interesting.

A natural extension of the findings of Chapter 8 would be the investigation of more sophisticated
driving schemes. This includes the case of applying a general time-periodic driving, like a sawtooth,
on a periodically driven magnetic Feshbach resonance. A more complicated setting would include
the driving of the system with two incommensurate frequencies.

As we observed driving induced scattering resonances by using the methods of theoretical physics,
an interesting next step would be implementation of these resonances in an experimental setup. In
the following we discuss two possible fields of application for driving induced Feshbach resonances
and give an introduction in wave-guide arrays, where Floquet physics can be made visible directly.

9.2.1. Periodically Driven Optical Feshbach Resonance

Optical Feshbach resonances are induced by laser light, which is near resonant to a transition be-
tween a scattering state and a molecular bound state. As the bound state is usually not a ground
state, it decays spontaneously. This decay limits the applicability of the optical Feshbach resonance,
as it results in strong losses in its vicinity. As shown in Figure 9.1, there are processes which lead
to a limited amount of elastic scattering, as the shift of the scattering length is proportional to the
displayed interaction shift, which can be enhanced up to 30%. In order to get a larger enhancement
of elastic scattering we suggest to apply the driving induced Feshbach resonance in this setting. A
feasible protocol would locate the bias of the periodic drive at the side of the optical Feshbach reso-
nance, where the losses are negligible, but the rate of elastic scattering can be changed noticeably.
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Figure 9.1.: Plot of an optical Feshbach resonance in ultra long-range Rydberg
molecules. Blue dots represent the interaction shift over the detuning of the laser,
which created the optical Feshbach resonance. The orange curve has been calculated
using an approximate theoretical model. The purple curves are ion signals used for
measuring the resonance structure. The Figure was created by Thomas et al. [69],
where a detailed explanation of the emerging quantities is found.

In this region it could be possible to enhance the scattering amplitude without suffering a large
amount of losses. The question is, if it is possible to minimise both losses from the optical Feshbach
resonance and the driving induced one in such a way that the method is applicable. Equation (3.14)
suggests that driving scheme can be implemented by either altering the intensity or the detuning of
the laser used for creating the optical Feshbach resonance periodically.

This possible implementation of the driving induced Feshbach resonance is also of theoretical in-
terest, as it combines the field of periodic driving with the investigation of dissipative systems. In
order to deal with it correctly, losses have to be included in the formalism. A straight-forward way of
obtaining this theoretically is the extension of Floquet-scattering theory to non-hermitian potentials.
The investigation of scattering by a non-hermitian potential in an one-dimensional tight-binding
chain [103] revealed fascinating results as the complete invisibility of the potential in scattering con-
figurations. This effect brings up the question, how dissipation can change or even suppress resonant
features and therefore dramatically redraft the behaviour of the driven system. As the simplest non-
trivial scattering potential we suggest the contact interaction with a complex scattering length. A
second compelling and very general approach would be the scattering by a square well potential with
a complex potential strength. As in the case of a driven hermitian square well potential there exists
a solution in a closed form [80], it is the hope that this might be extended to a driven-dissipative
case in an intuitive manner.
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9.2.2. Scattering in Quantum Gases with Internal Degree of Freedom

The development of the optical dipole trap [104] enabled to trap Bose-Einstein condensates in dif-
ferent hyperfine states and therefore with a spin-like internal degree of freedom. These spinor
Bose-Einstein condensates possess a rich phase diagram especially in the presence of an external
magnetic field [105]. For example, by changing the magnetic field across a critical value, one is
able to observe a quantum phase transition to a ferromagnetic phase [106]. Magnetic Feshbach
resonances are limited for the control of the interaction strength in these systems, as they cannot
be tuned independently from the magnetic field and only occur at restricted field strengths. The
driving induced scattering resonance can be induced in a wide range of magnetic field strengths
and the enhancement of scattering is controlled by use of the driving frequency and strength. It
would allow the enhancement of scattering while simultaneously tuning the magnetic properties of
the spinor gas by changing the magnetic field.

One specific example, on which the driving induced scattering resonance can be applied, is the
control of scattering rates of spin impurities with a bath. In a recent experiment [107] impurities
of neutral 133Cs atoms with total internal angular momentum of Fi = 3 are immersed into a Bose-
Einstein condensate of 87Rb atoms with Fb = 1 and are used to probe properties of the condensate.
For example it is possible to detect the hyperfine-Zeeman level of the condensate by investigating
spin-exchange dynamics between impurity and bath. Additionally, this setup enables the observation
of coherent dynamics by preparing the impurity in a quantum superposition state. The de-phasing
of the dynamics is influenced by the actual value of the elastic scattering length. Theoretical and
experimental investigations indicate the presence of a magnetic Feshbach resonance [108], which al-
lows to enhance both elastic and spin-exchange scattering rates for collisions between impurity and
bath. In practice the scattering can only be enhanced for collisions in one Zeeman level, because the
resonances for different levels are located at different magnetic field strengths.

This restriction can be overcome by the application of the driving induced scattering resonance [108].
If possible, one has to choose a bias magnetic field B1 in a region, where all magnetic resonances pro-
vide a positive scattering length. By applying a sinusoidally modulated magnetic field with strength
B2 one would be able to create a driving induced scattering resonance in all Zeeman levels simul-
taneously. This would enhance scattering in total and fasten up the interaction process between
impurity and bath, which would be a benefit in investigations probing the Bose-Einstein condensate
in a non-equilibrium state.

In order to model the situation in a better way, the spin-like internal degree of freedom has to
be included in the interaction potential. The most basic way to do this is to use the contact po-
tential as spatial degree of freedom and add an internal matrix structure, which couples different
channels of the wave function [105, 109]. This can be expressed using the spin operators of the
scatterers [109]. It would be interesting to observe how this additional degree of freedom and the
matrix structure of the potential is able to alter the properties of scattering resonances or if it can
even be used in order to create new ones. Another direction would be the investigation, if periodic
driving can be used in order to control collisions with a spin-exchange efficiently. This would make
it possible to prepare or conserve a favoured hyperfine state in a system, which is interacting with
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its environment.

9.2.3. Driven Impurities in Coupled Wave-Guide Arrays

Another path of further research goes back to one-dimensional systems with periodically driven
impurities. A profound experimental setup for investigating single particle dynamics in those systems
are dielectric [110, 111] and plasmonic [112] wave-guide arrays. The paraxial Helmholtz equation
[110]

i
∂

∂z
ψ(x, y, z) = − 1

2kwg

[
∂2

∂x2
+

∂2

∂y2
+ V (x, y)

]
ψ(x, y, z) (9.1)

describes the propagation of light in these wave-guides and is mathematically equivalent to the
Schrödinger equation [113]. Therefore the behaviour of light can be used in order to mimic quantum
mechanics. As it can be seen in equation (9.1), time in quantum mechanics corresponds to the
propagation direction of light in the wave-guides, which is here considered as z-direction, the mass
is given by the wave vector in the wave-guide kwg and the wave function ψ is given by the light field.
A non-vanishing potential can be induced by tuning the refractive index.

If the wave-guides are arranged in a lattice in x or y direction, the dynamics of light in such an
array is governed by a lattice Hamiltonian similar to the tight-binding model [114]. The hopping
constant J in this case is determined by the overlap of the evanescent light-modes in the wave-guides.
Figure 9.2 sketches a possible experimental setup, which consists of a tight-binding model with a
periodically modulated site.

As wave-guide arrays are accessible and allow tuning of parameters, they are suitable for the in-
vestigation of defect states [110] and the realisation of topological models. A recently created ex-
perimental setup [115] deals with the stability of topological protected edge states under periodic
modulation. The experimental situation is modelled by two one-dimensional Su-Schrieffer-Heeger
chains [116], which are coupled via a central site acting as an impurity. A sketch of this setting is
done in Figure 9.3.

The Su-Schrieffer-Heeger model consist of a chain with staggered hopping amplitudes and as a model
with a non-trivial topology it possesses topological protected edge states. A band structure of the
experimentally realised Hamiltonian is shown in Figure 9.4. It consists of two bulk bands related to
states with finite momentum and a bound edge state emerging at the central site.

In order to probe the robustness of the system against local perturbations, the position of the
wave-guide corresponding to the central site is periodically modulated perpendicular or parallel to
the direction of the SSH-chain. As the distance to the neighbouring lattice sites is modulated peri-
odically, this results in a periodically modulated hopping amplitude to and from the impurity site.
The curvature of the wave-guide can be related to a time-dependent on-site potential [115]. As
an initial condition light is only located in this impurity site. The question is, if the edge state re-
mains localised in the presence of periodic modulation or if a transition to the bulk band is occurring.
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Figure 9.2.: Possible experimental setup of dielectric wave-guide arrays realising an
one dimensional tight-binding model. All arrays are oriented in z-direction, which
corresponds to the time in quantum mechanics, while the lattice is formed in x-
direction. As an impurity one wave-guide is periodically modulated perpendicular
to the direction of the lattice, inducing a time-dependend term in the tight-binding
model. The picture was created by C. Jörg [115].

In order to complement the experimental results [117], the corresponding time-periodic Schrödinger
equation is solved using Floquet theory. The full time-evolution of the system at arbitrary driving
strength can be determined by diagonalising the Floquet Hamiltonian (4.10), which yields Floquet
modes and energies. With Floquet theory we can calculate the probability, that a state with mo-
mentum k and energy E is occupied.

In addition it would be intriguing to invert the setting by looking at scattering by the driven im-
purity in a model with a topological background and investigate the influence of the periodically
modulated hopping amplitude on the scattering process. A goal of this research direction would be
to find a relation between the excitation of the defect state and the transmission amplitude through
the driven barrier.
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Figure 9.3.: Sketch of the theoretical model being realised in experiment. It consists
of two SSH chains, which have staggered hopping amplitudes J1 and J2, and are
connected by the impurity site. The hopping J(t) to and from the impurity is
periodically modulated.
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Figure 9.4.: Band structure of the SSH model. In blue the dispersion of the bulk
bands is drawn, while the energy of the defect state is visualised as a straight line
at an energy of zero.
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A. Contact Potential

The idea of the contact potential, also named pseudo potential, is to approximate a complicated
potential by a simple one. This approximation is valid in the case of scattering with low energies,
where the de-Broglie wavelength is much larger than the range of the actual potential and the
potential is effectively present only in the origin. This idea has been discussed in literature of earlier
days of quantum mechanics [118,119] and considered as a simplification of the scattering by a hard-
sphere potential. We present a derivation in the case of s-wave scattering [55]. Starting point is the
wave function solving the scattering by a hard-sphere potential

R0(r) = A0[j0(kr)− tan(δ0)y0(kr)], (A.1)

which has been introduced in Section 2.3. As the contact potential is designed to act on the wave
function only in the origin, we extend equation (A.1) to be also valid inside the hard sphere and
integrate the radial Schrödinger equation (2.9) over a sphere of radius r0 around the origin using
Gauss theorem ∫

Br0 (0)

d3r[∆ + k2]R0(r) =

∫
∂Br0 (0)

dA∇R0(r0) +

∫
Br0 (0)

d3r k2R0(r) (A.2)

In the limit of r0 → 0 the last term vanishes, while the first is evaluated by using dA = dΩr2
0êr and

∇R0(r0) · êr = ∂rR0(r)
∣∣
r=r0

to −4π
k

tan(δ0)A0. The amplitude A0 can be rewritten as the operator
limr→0

∂
∂r
rR0(r), if R0(r) is of the Form (A.1). The identity 1 =

∫
d3rδ3(r) is used in order to drop

the integral

[∆ + k2 +
4π

k cot(δ0)
δ3(r)

∂

∂r
r]R0(r) = 0. (A.3)

If equation (A.3) is compared to the radial Schrödinger equation, the contact potential can be
identified to

Vcontact(r) =
−2π~2

µk cot(δ0)
δ3(r)

∂

∂r
r, (A.4)

with µ as the reduced mass. For the case of scattering with low energies the scattering length a
(2.20) can be used to further simplify the potential to

Vcontact(r) =
2π~2a

µ
δ3(r)

∂

∂r
r. (A.5)

In the following we discuss some properties of the contact potential: At first, the difference to a
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bare delta-function potential is made clear. Therefore the wave function is expressed by a Laurent
series

R(r) =
∞∑

n=−∞

cnr
n. (A.6)

The evaluation of the delta function integral, using equation (6.6), leads to the result∫ ∞
0

drδ(r)R(r) =
c0

2
+

1

2

−1∑
n=−∞

cnr
n
∣∣
r=0︸ ︷︷ ︸

divergent terms

. (A.7)

The divergent terms only disappear, if the coefficients cn vanish for all n ≤ −1. The same calculation
is also done in the case of the contact potential∫ ∞

−∞
drδ(r)

∂

∂r
[rR(r)] =

∫ ∞
−∞

drδ(r)
∞∑

n=−∞

cn(n+ 1)rn =
c0

2
+

1

2

−2∑
n=−∞

cnr
n
∣∣
r=0︸ ︷︷ ︸

divergent terms

. (A.8)

If there are no divergent terms in the test function, the result of both calculations is the same. But
if only divergent terms of the order 1

r
are present, they will not appear in the contact potential

calculation, but in the one using the delta function. This vanishing of divergences is necessary in
order to obtain useful scattering properties in case of s-wave scattering by a short range interaction,
as the ansatz functions (6.12) posses an 1/r divergence in the origin.

A.1. Scattering by a Contact Potential

In the following we derive the scattering properties of the pseudo potential by assuming a scattering
state of the form

R0(r) =
sin(kr)

kr
+ f

eikr

r
(A.9)

and using the formalism introduced above. The first part of (A.9) is the s-wave part of the plane
wave, the second the scattered spherical wave. Equation (A.9) solves the free radial Schrödinger
equation for each r 6= 0. In order to evaluate the Dirac delta-function, an integration on a sphere of
radius r0 around the origin similar to (A.2) is done∫

Br0 (0)

dΩdr r2[∆R0(r) + k2R0(r)] + 4πaδ3(r)[
∂

∂r
rR0(r)] (A.10)

Inserting (A.9) into (A.10) yields the equation −f − a(1 + ikf) = 0. From this the scattering
amplitude f can be derived to

f =
−1

1
a

+ ik
. (A.11)

108



A.2. Bound State

A.2. Bound State

At last, we mention that the contact potential possesses a bound state in the case of positive
scattering length a. This can be found out by solving the Schrödinger equation[

∆− 4πaδ3(r)
∂

∂r
r

]
ψ(r) =

2m

~2
Eψ(r) (A.12)

with the ansatz
ψ(r) = Ce−κ|r|. (A.13)

Similar to (A.10) an integration around the origin leads to the result κ = 1
a
, which inserted into

equation (A.12) for r 6= 0 yields the bound state energy of E = −ED. Here we introduced the dimer
energy

ED =
~2

2µ

1

a2
. (A.14)

We followed [3] and named this bound state energy dimer energy, as its wave function corresponds
to a bound dimer state.
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B. Kramers-Kronig Relations for
Anti-Causal Susceptibilities

In literature [120–122] Kramers-Kronig relations are derived for causal response functions like the
electric susceptibility χ(t), which describes the material property how the polarisation P (t) is influ-
enced by an external field E(t)

P (t) =

∫ ∞
−∞

dt′χ(t− t′)E(t′). (B.1)

In several references [4, 75, 79, 80] and this thesis the driving frequency dependent scattering length
obeys relations, which will now to be derived as the Kramers-Kronig relations for anti-causal sus-
ceptibilities. As the driving frequency dependent scattering length cannot be interpreted as a sus-
ceptibility, there is no violation of causality if the Kramers-Kronig relations are not fulfilled in this
case. In order to derive the Kramers-Kronig relations in the case of an anti-causal susceptibility χ(t)
and its Fourier-transform χ̃(ω) =

∫∞
−∞ dt χ(t)eiωt, we first have to discuss about the requirements.

Mentioned first and most important is the anti-causality of χ(t) in the sense of (B.1), which reads

χ(t) = 0 ∀t > 0. (B.2)

Additionally χ(t) and its Fourier transform χ̃(ω) have to fulfil certain convergence conditions:

lim
t→−∞

χ(t) = 0 faster than
1

t
, (B.3)

lim
ω→∞

χ̃(ω) = 0 faster than
1

ω
. (B.4)

With (B.1) the Fourier transform can be simplified to χ̃(ω) =
∫ 0

−∞ dtχ(t)eiωt and generalised to
complex omega. For Im ω < 0 the Fourier transform χ̃(ω) exists, as the negative imaginary frequency
and the condition (B.3) ensures the convergence of the Fourier transform. This argument can be
generalised to all derivatives of χ̃(ω) and therefore it is analytic in the lower half plane. With the
residue theorem the integral along the path shown in Figure B.1 must vanish∮

dω
χ̃(ω)

ω − ω0

= 0, (B.5)

as no poles of χ̃(ω) lie inside. By taking the radius of the larger half-sphere to infinity, only the
parts of the integral near the real axis remain∫

R\∂Bγ(ω)

dω
χ̃(ω)

ω − ω0

+
1

2

∮
∂Bγ(ω)

dω
χ̃(ω)

ω − ω0

= 0. (B.6)
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Figure B.1.: Plot of integration path used to derive the Kramers-Kronig relations
in the case of an anti-causal susceptibility. The arrows along the line indicate the
integration direction.

Note that the factor 1/2 stems from only going half the small circle around ω0 in the integration
path in Figure B.1. With the residue theorem the last term simplifies to πiχ(ω0). Taking the limit
of vanishing γ and rewriting equation (B.6) in real and imaginary part, we arrive at Kramers-Kronig
relations for an anti-causal susceptibility:

Re χ̃(ω0) = − 1

π
P
∫ ∞
−∞

dω
Im χ̃(ω)

ω − ω0

(B.7)

Im χ̃(ω0) =
1

π
P
∫ ∞
−∞

dω
Re χ̃(ω)

ω − ω0

. (B.8)

We introduce the principal value integral as

P
∫ ∞
−∞

dx
χ̃(x)

x− x0

= lim
γ→0

(∫ x0−γ

−∞
dx+

∫ ∞
x0+γ

dx

)
χ̃(x)

x− x0

. (B.9)

We name these equations as anti-Kramers Kronig relations. They equal the Kramers-Kronig relations
for causal susceptibilities [120] except of the change of a minus sign in front of the principal value
integrals.

112



C. Derivation of Scattering Amplitude of
a Simple Coupled-Channel Model

In this Appendix we calculate the scattering of a two-component wave function

ψ(r) =

(
ψ0(r)
ψ1(r)

)
(C.1)

by the coupled-channel Hamilton operator (7.50). The radial Schrödinger equation H(r)ψ(r) =
Eψ(r) for the coupled-channel scattering problem reads[

− 1

r2

∂

∂r
r2 ∂

∂r
+

2a0

r2
δ(r)

∂

∂r
r

]
ψ0(r) +

2aWW

r2
δ(r)

∂

∂r
rψ1(r) = Eψ0(r), (C.2)[

− 1

r2

∂

∂r
r2 ∂

∂r
+

2a1

r2
δ(r)

∂

∂r
r + v

]
ψ1(r) +

2aWW

r2
δ(r)

∂

∂r
rψ0(r) = Eψ1(r). (C.3)

We use as an ansatz

ψ0(r) = eikr
∣∣
s−wave

+ f
eikr

r
=

sin(kr)

kr
+ f

eikr

r
(C.4)

in the open channel, which is considered to be channel zero, and

ψ1(r) = C
e−κr

r
(C.5)

in the closed one. The quantity f denotes the s-wave scattering amplitude and C is the normalisation
constant of the closed channel wave function.

Inserting both ansatz-wave functions in the respective coupled-channel equations for r 6= 0, we
obtain the dispersion relation

k2 = E (C.6)

for the free solution ψ0 and
κ2 = v − k2 (C.7)

for the closed channel solution ψ1. We assume v to be positive and of a strength necessary in order
to make ψ1 a bound state, i.e. v > k2. In order to determine the constants C and f we multiply
both equation (C.2) and (C.3) by r2 and integrate from 0 to a small radius εr similar to Section 6.
At last, we take the limit of vanishing εr. Equation (C.2) can thus be rewritten as

(1 + ika0)f + a0 − aWWκC = 0. (C.8)
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Figure C.1.: Plot of real (a) and imaginary (b) part of the scattering amplitude
f for the case of aWW = 0.25a1 (blue) and aWW = 0.75a1 (red), E = 10−3/a2

1 and
a0 = a1.

With the same argumentation equation (C.3) is simplified to

(1− a1κ)C + aWW(1 + ikf) = 0. (C.9)

These two equations are linear in f and C. The amplitude C is given by

C =
aWW

a1κ− 1 + ik(a2
WWκ+ a0a1κ− a0)

, (C.10)

while the scattering amplitude f can be written in the form

f =
−1

1
a

+ ik
. (C.11)

Hereby we define the scattering length

a = a0

(
1 +

a2
WWκ/a0

1− a1κ

)
(C.12)

depending on the coupling strength aWW and the offset potential v of the closed channel. The κ
dependence of equation (C.12) is similar to the magnetic field dependency of equation (3.12). For
κ = 1/a1 the scattering length diverges and leads to a resonantly enhanced scattering amplitude of
value f = i

k
. This condition is equivalent to the equality of the energy of the scattered wave in the

first channel E and the energy of the bound state Ebound = V − 1
a2

1
in the second one. Figure C.1 shows

the dependence of the scattering amplitude on the offset potential v for different coupling strengths
aWW. The width of the resonance increases with growing coupling strength aWW. The shape of the
scattering amplitude is similar to the results obtained in the case of the driven scattering problem if
one plots it over the driving frequency. Therefore it is suggestive to replace the offset potential v by
an integer multiple of the driving frequency |n|~ω̃ in order to get a formula to fit the two-channel
model on the more complicated case of the driven scattering problem
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− 1

f
=

1

a0

1− a1

√
|n|~ω̃ − E

1− a1

√
|n|~ω̃ − E + a2

WW/a0

√
|n|~ω̃ − E

+ ik. (C.13)

This formula can be simplified near a resonant frequency ω̃0 fulfilling the resonance condition

E = − 1

a2
1

+ |n|~ω̃0. (C.14)

We approximate the square root by a linear expression

√
|n|~ω̃ − E =

√
|n|~(ω̃ − ω̃0) +

1

a2
1

≈ 1

a1

+
a1|n|~

2
(ω̃ − ω̃0). (C.15)

In this case the inverse scattering amplitude can be brought to the form

− 1

f
=

1

aBG

ω̃ − ω̃0

ω̃ − ω̃0 − δ/~
+ iγ, (C.16)

where we have introduced by

aBG = a0

(
1− a2

WW

a0a1

)
, (C.17)

the background scattering length, which determines the scattering amplitude in the case of an
infinitely large frequency ω. The width of the real part of the scattering amplitude corresponds to

δ =
2a2

WW

a0a1|n|
1

1− a2
WW

a0a1

1

a2
1

. (C.18)

The quantity

γ = k (C.19)

characterises the width of the imaginary part and its inverse corresponds to the maximal value of
the scattering amplitude. Although having a much simpler structure than (C.11), Figure C.2 shows
that the approximation (C.13) fits quite well to the correct value of (C.11). Formula (C.13) has been
reported recently by [80], but without the derivation above.
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Figure C.2.: Comparison of real (blue) and imaginary (red) part of the scattering
amplitude (C.12) with real (yellow dashed) and imaginary (purple dashed) part of
approximate formula (C.16). This plot shows the case of E = 0.01/a2

1, aWW = 0.25a1

and a0 = a1.
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D. Limit of Vanishing γ of
Approximative Formula (7.54)

In this Section we evaluate the limit of γ going to 0 of the formula (7.54). For the real part (7.63)
the limit can be straight-forwardly evaluated to

− lim
γ→0

Re f = aBG

(
1− δ

~ω̃ − ~ω̃0

)
. (D.1)

This equals to the limit of Γ → 0 of equation (7.43), if we identify abg = aBG and ∆ = δ. The
imaginary part (7.64) converges in this limit to a Dirac-delta function, which is peaked at the
resonance frequency ω̃0. This can be made clear by showing that the quantity −Im f(ω̃) fulfils the
properties of the delta distribution in this limit. These are [123]

δ(x) =

{
0, ∀x 6= 0

∞, x = 0
(D.2)

and ∫ ∞
−∞

dxδ(x) = 1. (D.3)

We start with (D.2) and let x = ω̃−ω̃0 be unequal to zero. Then the imaginary part of the scattering
amplitude evaluates to

Im f(ω̃) =
γa2

BG(x− δ)2

γ2a2
BG(x− δ)2 + x2

+
γa2

BG

1 + γ2a2
BG

. (D.4)

The last term equals Im f̃0(∞) and the whole imaginary part (D.4) vanishes in the limit γ → 0 if
ω̃ 6= ω̃0. For the case of ω̃ = ω̃0 the imaginary part (D.4) equals 1/γ, which tends to infinity for
vanishing γ.

The proof of condition (D.3) is a bit more involved, as it includes an integration over a non-trivial
function. The integral

∫∞
−∞ dω̃ [−Im f(ω̃) + Im f(∞)] can be evaluated using partial integration

to ∫ ∞
−∞

dω̃ [−Im f(ω̃) + Im f(∞)]

= lim
R→∞

−a2
BGγ

δ
(
−
√
c log [c(δ − x)2 + x2]− (c− 1) arctan

(
c(x−δ)+x√

c δ

))
√
c (c+ 1)2

∣∣∣∣∣∣
R

−R

= −aBGπ|δ|
1− c

(1 + c)2
.

(D.5)
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D. Limit of Vanishing γ of Approximative Formula (7.54)

Here we introduced the abbreviation c = γ2a2
BG and added Im f(∞), which is zero in the case of

vanishing γ and does therefore not contribute to the result. Equation (D.5) evaluates in the limit of
vanishing γ to

− lim
γ→0

aBGπ|δ|
1− c

(1 + c)2
= −aBG|δ|π. (D.6)

Using the delta-distribution definition (D.3) we conclude that

− lim
γ→0

Im f(ω̃) = −aBG|δ|πδ(ω̃ − ω̃0). (D.7)

This also equals the expression in the limit of vanishing Γ (7.49) in the case of equation (7.43) in
the case of δ > 0.
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E. Gross-Pitaevskii Equation with Time
Dependent Interaction Strength

E.1. Derivation of a Gross-Pitaevskii Equation

In this Appendix we derive the Gross-Pitaevskii equation in the case of a time-periodic inter-particle
interaction V (r, t). The Gross-Pitaevskii equation describes an interacting non-uniform and dilute
Bose-Einstein condensate in mean-field approximation. Following [59], we start with the many-body
Hamiltonian

Ĥ =

∫
d3r

(
~2

2m
∇Ψ̂†(r, t)∇Ψ̂(r, t) + Ψ̂†(r, t)Vext(r)Ψ̂(r, t)

)
+

1

2

∫ ∫
d3r′d3rΨ̂†(r, t)Ψ̂†(r′, t)V (r− r′, t)Ψ̂(r, t)Ψ̂(r′, t).

(E.1)

The first part describes the kinetic energy of the gas and a possible external potential Vext(r), whereas
the second one takes account of two-particle interactions with the inter-particle potential V (y, t). It
is assumed to be time-periodic with period T . In the further derivation we assume the condensate
to be dilute. The diluteness at low temperature can be quantified by the condition

|a|n
1
3 � 1. (E.2)

The quantity |a|n 1
3 is called the gas parameter and it includes the density of the gas n and the s-wave

scattering length a. Additionally the inequality

ka� 1 (E.3)

for the wave vector k holds in the case of small temperatures. The Gross-Pitaevskii equation can be
derived from the corresponding Heisenberg equation following from (E.1) for the field operator:

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∆ + Vext(r) +

∫
d3r′Ψ̂†(r′, t)V (r− r′, t)Ψ̂(r′, t)

]
Ψ̂(r, t). (E.4)

The crucial point lies in the two-particle interaction: At low energies the wavelength of the particles
is much larger than the range of the inter-atomic potential. Therefore the explicit form of the
potential is not important, we can replace it by an effective or a pseudo potential leading to the
same scattering length. An example is the contact interaction

V (y, t) = g(t)δ(y), (E.5)
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E. Gross-Pitaevskii Equation with Time Dependent Interaction Strength

where the interaction strength is given by g(t) =
∫
d3rV (r, t). We further assume that both potential

and interaction strength can be written as a Fourier series. Instead of using the original Born
approximation [52], we introduce the Floquet-Born approximation in zeroth order. Starting point
is the assumption of |φn〉 = δn,0|k〉 in [80, (5.10)], which connects the Fourier components of g(t) to
the Floquet-scattering length (5.59) by

gn =
2π~2aFl

n

µ
, (E.6)

where µ is the effective mass of the particles and aFl
n the Floquet-scattering length of the n-th

channel. The effective potential (E.5) is inserted into equation (E.4) and the quantum operator
Ψ̂(r, t) is replaced by the classical field Φ0(r) in order to derive the Gross-Pitaevskii equation [59]
for a time-periodic interaction potential

i~
∂

∂t
Φ0(r, t) =

(
− ~2

2m
∆ + Vext(r) + g(t)|Φ0(r, t)|2

)
Φ0(r, t). (E.7)

The Gross-Pitaevskii equation has the form of the Schrödinger equation with an additional nonlinear
term stemming from the two-body interactions. As a time-periodic potential implies a time-periodic
Floquet-scattering length, this non-linearity is time-dependent. As we show in Chapter 7 and 8
that the driving induced scattering resonance is in a good approximation lossless, it is a valid
approximation to consider only the time averaged Floquet scattering length ascatt = aFl

0 as the
interaction strength in equation (E.7)

g(t) ≈ 2π~2

µ
ascatt(ω). (E.8)

Therefore g(t) gets constant in this approximation and is tunable by the frequency ω of the periodic
driving.

E.2. Continuity Equation and Effect of Imaginary Scattering
Length

The similarity to the Schrödinger equation permits us to calculate the continuity equation of the
Gross-Pitaevskii equation (E.7), which is capable of describing the effect of a complex scattering
length ascatt as occurring in Chapter 8. The starting point of the deviation is to calculate the time
derivative of the local density ∂

∂t
n(r, t) = ∂

∂t
|Φ0(r, t)|2 = Φ∗0(r, t) ∂

∂t
Φ0(r, t) + ∂

∂t
Φ∗0(r, t)Φ0(r, t) and

to replace the time derivative of the order parameter by the right-hand side of the Gross-Pitaevskii
equation. The calculation is straightforward and results in the continuity equation for a Bose-Einstein
condensate

∂

∂t
n(r, t) = −∇j(r, t) +

8π~ Im ascatt

µ
n2(r, t), (E.9)

where the current density is given by

j = − i~
2m

(Φ∗0∇Φ0 − Φ0∇Φ∗0). (E.10)
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Figure E.1.: Plot of the homogeneous condensate density over the time with the
values ~a

µ = −1 and n0 = 1.

Equation (E.9) states that the density of a Bose-Einstein condensate in a volume can be changed by
either a current flow through its surface or a decay due to an imaginary part of the scattering length
ascatt. The decay rate is proportional to the imaginary part of the scattering length and the square
of the density of the condensate. This can be made visible in the case of a homogeneous density
in equation (E.9). As the current vanishes in this case and the space dependency can be dropped,
equation (E.9) simplifies to the ordinary differential equation

∂

∂t
n(t) =

8π~ Im ascatt

µ
n2(t). (E.11)

The solution of this equation is derived straightforwardly by using the method of separation of
variables to

n(t) =
1

1
n0
− 8π~ Im ascatt

µ
(t− t0)

. (E.12)

Here n0 describes the density at initial time t0. As due to the optical theorem the imaginary part of
the scattering length is negative, (E.12) converges to zero for large times. A plot of equation (E.12)
is seen in Figure E.1. Here the shape of the decay due to the imaginary part of the scattering length
is visible.
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