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Abstract

Since A. Einstein’s prediction of the existence of a Bose-Einstein condensate, in
which the ground state of a bosonic gas is macroscopically occupied below a crit-
ical temperature. The experimental realisation was achieved by W. Ketterle in
a 23Na gas and by C. Wieman and Cornell for 87Rb, Bose-Einstein condensates
have been extensively studied. One of the most exciting Bose-Einstein conden-
sates in the last 10 years is a condensate of photons. This basically consists
of a microresonator filled with dye molecules. On the one hand, the resonator
ensures that the photons are harmonically trapped and, on the other hand, the
interaction of the photons with the dye ensures that the photons interact effec-
tively with each other and more import thermalize at room temperature. Due
to the nature of the system, photons can leave the condensate, which must be
compensated for by constantly adding photons. Thus, a photon Bose-Einstein
condensate is a prime example of an open dissipative system.
A fascinating phenomenon in Bose-Einstein condensates are vortices, which re-
flect topological defects in the flow of a quantum fluid. An essential part of the
theoretical description of vortices is the velocity field caused by the presence of
the defects, which changes depending on the system under consideration. Thus,
the velocity field of a single vortex in a closed system consists of circular stream-
lines, whereas in an open dissipative system spiral streamlines become visible.
The main part of this thesis is the construction of a method to analytically
find approximate solutions of an arbitrary equation of motion underlying the
system. The basic principle is to approximate the wave function of the system
by a suitable ansatz depending on different parameters and then to determine
these parameters by projecting the equation of motion onto the chosen param-
eter manifold.
Equipped with this method, we then consider an open dissipative system, which
is described by a Gross-Pitaevskii equation generalised to open dissipative sys-
tems, and apply the constructed projection optimization method to various
systems for which only numerical solutions are currently available. Thus, we
compute approximate analytical solutions for an open dissipative condensate in
a harmonic trap. The special feature thereby is that the density profile of the
condensate changes significantly depending on the system parameters used for
pumping and losses due to the generation of supercurrents. Furthermore, we
consider an infinitely extended condensate without external trapping potential
in the presence of a single vortex. Using the projection optimization method,
we construct an analytical solution of the velocity field and thus achieve the
description of the spiral shape.
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Zusammenfassung

Seit der Vorhersage A. Einsteins der Existenz eines Bose-Einstein Kondensats,
bei dem der Grundzustand eines Bosonen Gases unterhalb einer kritischen Tem-
peratur makroskopisch besetzt wird; und der experimentellen Realisierung durch
W. Ketterle in einem 23Na Gas bzw. durch C. Wieman für 87Rb wurden Bose-
Einstein Kondensate ausführlich untersucht. Eines der wohl spannendsten Bose-
Einstein Kondensate in den vergangenen 10 Jahren ist ein Kondensat aus Pho-
tonen. Dieses besteht grundlegend aus einem Mikroresonantor gefüllt mit Farb-
stoffmolekülen. Dabei sorgt zum einen der Resonator dafür, dass die Photonen
harmonisch gefangen werden, und zum anderen die Interaktion der Photonen
mit dem Farbstoff für eine effektive Wechselwirkung der Photonen untereinan-
der und noch wichter für die Thermalisierung bei Raumtemperatur. Aufgrund
der Beschaffenheit des Systems können Photonen das Kondensat verlassen, das
durch ständiges Hinzufügen von Photonen kompensiert werden muss. Somit ist
ein Photonen Bose-Einstein Kondensat ein Paradebeispiel für ein offen dissipa-
tives System.
Ein faszinierendes Phänomen in Bose-Einstein Kondensaten sind Vortizes, wel-
che topologische Defekte im Fluss einer Quantenflüssigkeit widerspiegeln. Ein
essenzieller Teil in der theoretischen Beschreibung von Vortizes ist dabei das
durch die Anwesenheit der Defekte verursachte Geschwindigkeitsfeld, welches
sich abhängig vom betrachteten System verändert. So besteht das Geschwindig-
keitsfeld eines einzelnen Vortex in einem abgeschlossenes System aus kreisför-
migen Stromlinien, wohingegen in einem offen dissipativen System spiralförmige
Stromlinien sichtbar werden.
Der Hauptbestandteil dieser Arbeit ist die Konstruktion eines Verfahrens, um
approximativ Lösungen einer beliebigen, dem System zugrundliegenden, Bewe-
gungsgleichung analytisch zu finden. Das Grundprinzip dabei besteht darin, die
Wellenfunktion des Systems durch einen geeigneten Ansatz abhängig von ver-
schiedenen Parametern zu nähern und anschließend die Parameter durch Pro-
jektion der Bewegungsgleichung in eine Mannigfaltigkeit zu bestimmen.
Mit dieser Methode ausgestattet betrachten wir anschließend ein offen dissipa-
tives System, welches beschrieben wird durch eine entsprechend auf offen dis-
sipative Systeme verallgemeinerte Gross-Pitaevskii Gleichung, und wenden die
konstruierte Projektions Optimierungs Methode auf verschiedene Systeme an,
bei denen aktuell nur numerische Lösungen vorliegen. Damit berechnen wir ap-
proximative analytische Lösungen für ein offen dissipatives Kondensat in einer
harmonischen Falle. Dabei liegt die Besonderheit darin, dass sich das Dich-
teprofil des Kondensats abhängig von der verwendeten Systemparametern für
Pumpen und Verluste durch die Erzeugung von Superströmen stark verändert.
Außerdem betrachten wir ein unendlich ausgedehntes Kondensat ohne äußeres
Fallenpotential in Anwesenheit eines einzelnen Vortex. Mit Hilfe des Proektions-
verfahrens konstruieren wir eine analytische Lösung des Geschwindigkeitsfeldes
und erreichen damit die Beschreibung der Spiralform.
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1. Introduction
The field of ultracold quantum gases in open-dissipative systems has become better
known in the last ten years. In particular, the experimental realization of a Bose-
Einstein condensate from pure light in 2010 attracted a a lot of attention. One
challenge here is the description of vortices. This thesis is devoted to the theoreti-
cal modelling of an open-dissipative Bose-Einstein condensate of light, taking into
account also the existence of a vortex. As an introduction to the topic, this chapter
first gives a historical overview of Bose-Einstein condensation. The experimental
and theoretical foundations of a condensate of light are then presented, followed by
a brief introduction to vortices, starting with atomic Bose-Einstein condensates and
moving on to condensates of photons.

1.1. Atomic Quantum Gases
Atomic quantum gases represent a fascinating area at the forefront of modern
physics, where matter behaves in extraordinary ways dictated by the laws of quan-
tum mechanics. These gases consist of collections of ultracold atoms that, when
cooled to temperatures close to absolute zero, undergo a remarkable phase transi-
tion, revealing their quantum nature.
One of the occurring macroscopic quantum phenomena in bosonic gases is the Bose-
Einstein condensation (BEC), where the single particles loose their individual iden-
tities and occupy a single quantum state, the quantum mechanical ground state.
The foundation of Bose-Einstein condensation is based on theoretical considerations
by A. Einstein in 1925 [1] based on the work of Bose in 1924 [2] on the statistics of
photons. Einstein considered a non-interacting, massive Bose gas and came to the
conclusion that there must be a phase transition. This phase transition is character-
ized by the fact that below a critical temperature, the state with the lowest energy
is occupied by a macroscopic number of atoms.
However after Einsteins claim it took over one decade to become practically impor-
tant. Only with the discovery of superfluidity in liquid helium by Allan and Misener
in 1938 [3] and the resulting thoughts on linking superfluidity and BEC of London in
the same year [4] brought more attention. To see the connection, London calculated
the critical temperature for Bose-Einstein condensation (Tc = 3.1K) and the lambda
point (Tλ = 2.17K) at which 4He becomes a superfluid [5]. As these two temper-
atures are very close to each other, a connection was suspected. Indeed superfluid
liquid helium is the prototype of a BEC, but due to strong atomic interactions the
number of condensed atoms is drastically reduced such that it was difficult in 1938
to measure the real occupation of the ground state.
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Figure 1.1.: Creation of a BEC. Left: Cooled Bose gas right above critical
temperature. Middle: Beginning of condensation right after critical
temperature. Right: BEC after further cooling. Taken from [8].

This was the reason why many experimental physicists then concentrated to gener-
ate a BEC for dilute Bose gases. Only after achieving the technique of laser cooling
various BEC’s for different atom gases were produced in 1995 by Cornell and Wie-
man [6] for 87Rb or by Ketterle [7] for 23Na, see also Fig. 1.1.

Today the concept of Bose-Einstein condensation is applied to many more sys-
tems different to liquid helium. Even for a system without energy conservation like
exciton-polaritons or photons it is also possible to reach condensation. This leads
directly to the next section.

1.2. Photon Bose-Einstein Condensates
The first condensate of light was not a condensate of pure light, but a nonequilibrium
condensate of exciton-polaritons [9–11]. These are condensates of quasi-particles,
which are built up of electron-hole pairs and cavity photons.
The first pure photon condensate was realised by the Weitz group in 2010 [12] and is
usually prohibited by the lack of particle conservation. In the following we provide
an overview on the experimental realization and the theoretical description of a
Photon Bose-Einstein condensate (PBEC).

1.2.1. Experimental Setup
The experimental realisation of a photon Bose-Einstein condensate essentially re-
quires two main components. Firstly, thermal equilibrium and secondly, a cavity.
To reach thermal equilibrium and therefore doing the first step in realizing a BEC
it is usually crucial to have a particle-particle interaction, which is realized for pho-
tons by coupling them to a bath of dye molecules. Due to the lack of such a direct
interaction for photons one uses an optical microcavity filled with dye-molecules,
sketched in Fig. 1.2 (a). In the experiment typically the dye Rhodamine 6G is
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(a)

(b)

(c) (d)

Figure 1.2.: (a) Sketch of experimental setup; (b) Dispersion relation of the
photonic modes; (c) Image of the spatial photon distribution
transmitted through one mirror below threshold; (d) above threshold
showing the condensation. Taken from [14, 15].

used. Moreover the microcavity consists of two highly reflective, spherical mirrors,
which trap the electrical field inside the resonator and also introduce a harmonic
trapping potential (see Fig.1.2(a)). Due to the interaction of the photons with the
dye-molecules an effective photon-photon interaction is generated.
Furthermore the cavity as the second important step allows the introduction of a
quadratic dispersion relation and a cutoff frequence as shown in Fig.1.2(b)). This
provides a ground state for the photons. In addition, the photon gas behaves like a
massive Bose gas due to the quadratic dispersion, which means that a mass analogue
can be introduced [13].
Moreover due to imperfections of the mirrors photons can also leave the cavity and
thus yields a loss rate, which can be directly measured.
With this mechanism it is possible to tune the photon number above a critical
threshold, as shown in Fig.1.2 (c,d)
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1.2.2. Theoretical Foundations

To describe a PBEC theoretically on a mean-field level necessitates a description of
both the temperature diffusion through the dye-solution and the photon BEC. As
described in [13] one can model the diffusion through the dye-solution by introducing
a diffusion equation and the photon BEC by its mean-field wave function fulfilling
the wave equation in the cavity. This model is also formally analogous to models of
incoherent pumped polariton-exciton condensates [13, 16].
However in this thesis we consider a different theoretical approach. We know that
a BEC without pumping and losses of particles can be described by the Gross-
Pitaevskii equation (GPE) first introduced in 1961 by Pitaevskii [17] and Gross [18].
This equation is formally a nonlinear, time-dependent Schrödinger equation. Due
to stimulated emission, it can be derived in a phenomenological way in the case of a
PBEC, that an additional imaginary nonlinear term is obtained in the GPE taking
into account the laser rate equations for a two-level model [19].

1.3. Vortices in Quantum Gases

In classical hydrodynamics, vortices refer to swirling patterns or regions within a
fluid where the flow revolves around an axis line. They are often observed in liquids
or gases and are characterized by a rotating motion. Natural occurrences of vortices
are seen in phenomena such as tornadoes in the atmosphere and whirlpools in bodies
of water. These large-scale vortices can have significant effects on their surroundings
due to their energy and rotational movement [20].
In the first part of this section we discuss vortices in closed systems, so without any
particle gains and losses, and secondly we then proceed to open dissipative systems
like a PBEC and discuss how the open dissipative property effects vortices.

1.3.1. Vortices in Closed Systems

Vortices in quantum mechanics represent fascinating phenomena where particles or
fields exhibit intricate rotational motion within a quantum setting. These vortices
emerge across diverse domains, from superfluids and superconductors to quantum
gases. In quantum fluids like superfluid helium or Bose-Einstein condensates, vor-
tices appear as topological defects in the fluid’s flow [21]. These vortex structures
play a crucial role in understanding the dynamics and properties of several quantum
systems.
However the most important difference of quantum vortices and those in classical
hydrodynamics is the quantized circulation due to the singled-valuedness of the con-
densate wave function.
The first realization of quatum vortices was achieved in 1999 [22]. Quantum vortices
in BECs can be created using different techniques. One common method involves
stirring the BEC using laser beams or magnetic fields, creating a rotating potential
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Figure 1.3.: Absorption images of a stirred Bose-Einstein condensate. (a) and (b)
show the optical thickness of the cloud along the horizontal axis.
(c)-(g) show the appearance of zero up to four vortices. Taken from
[23].

that induces the formation of vortices [23] (see Fig.1.3).

1.3.2. Vortices in Open Dissipative Systems

Photon condensates are in good approximation an ideal Bose gas, which limits its
possibilities to study vortices, because the core size becomes as large as the entire
system [5]. This is related to the infinite compressibility of an ideal Bose gas, which
leads to large density fluctuations. Therefore it is prevented to have a well defined
phase degree of freedom. But due to the presence of losses in a PBEC and therefore
a compensating pumping, PBEC differs from an ideal Bose gas. So due to the
interplay of losses and pumping density fluctuations can be reduced and form a well
defined photon phase.
Considering an array of photon condensates [24], which are coupled by tunneling,
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(a) (b)

Figure 1.4.: Phase of the wave function for different values of losses Γ. Taken from
[24].

one can model the system by a generalized Gross-Pitaevski equation

iℏ
∂ψ(x, t)
∂t

= −(1− iκ)J
∑

x′∈Nx

+V (x)ψ(x) + i

2
[B21M2(x)−B12M1(x)− Γ]ψ(x) ,

(1.1)
where J denotes the coupling strength, V an external potential, γ the loss rate of
the system and B12, B21 the Einstein coefficients for emission and absortion. Fur-
thermore we note that in equation (1.1) there is no explicit interaction term known
from the GPE, but instead it is claimed that the κ-term acts like an interaction
term. With this one can then investigate numerically the emergence of vortices.
Considering one single vortex a numerical simulation shows that the phase of the
wave function has a spiral shape (see Fig.1.4). Also we see because the phase is
directly related to the velocity field that also the velocity field has a spiral shape.
Due to the continuous pumping of photons we therefore note that the direction of
the corresponding flow points outwards the system, to avoid a divergence of density.
Therefore one can see that a single vortex in a PBEC acts like a particle source.
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1.4. Outline
In this thesis we work out an analytical solution for a photon condensate in presence
of a single vortex. To this end the thesis consists of three parts. The first part is ded-
icated to give an introduction into the used model and how to describe the system
with hydrodynamic equations. In Chapter 2 we introduce the used complex Gross-
Pitaevskii equation. Therefore we start with the derivation of the standard GPE,
which is used to describe atomic BECs. Afterwards we derive on a phenomenolog-
ical level the complex GPE describing also pumping and losses. In Chapter 3 we
introduce the hydrodynamic description of a Bose-Einstein condensate in a closed
system by applying the Madelung transformation to the GPE and then discussing
the changes in the hydrodynamic equations for the open dissipative system.

In the second part, we introduce in Chapter 4 analytical methods for approximately
solving the underlying equations of motion described from a mathematical point
of view. This part is splitted it three sections. First we starting by introducing
shortly the least action priciple, which based on minimizing the corresponding ac-
tion. Afterwards due the lack of energy conservation in open systems we introduce
as a first method for open dissipative systems the cumulant optimization method,
which is only valid for exponential like wave functions. To overcome this issue of the
cumulant optimization method we then construct in the last section of this part a
new method [25] for solving all kinds of equations of motion, which is independent
of the underlying wave function.

In the last part, which consists of three chapters we consider at first in Chapter
5 an open dissipative system in presence of an external harmonic potential and
calculate an approximate solution using both the cumulant and the projection op-
timization method [25] for different ansatz wave functions. We also compare the
results from the cumulant and projection optimization method and show explicitly
that both methods are equivalent. Afterwards in Chapter 6 we use the projection
optimization method for an homogeneous system in presence of a single vortex. This
will lead to an approximate solution of the density and the velocity field and we will
see that also in the analytical solution we get a spiral shaped velocity field. The
comparison of all results together with the numerical simulations then leads to a
good match. In Chapter 7 we consider the continuum model of (1.1) and show that
the imaginary κ-term behaves, indeed, as an interaction term.



2. Mean-Field Model of Interacting Bose
Gas in BEC Phase

The description of an ideal Bose gas is based on methods of statistical mechanics,
in which the gas can be described as a union of independent atoms due to the lack
of particle-particle interaction [26]. However, these techniques do not work for an
interacting Bose gas.
In this chapter we will derive the Gross-Pitaevskii equation (GPE), which describes
the evolution of the order parameter of an interacting BEC. Afterwards, we gen-
eralize the GPE to interacting Bose gases for open dissipative systems by adding
heuristically an additional term to the GPE due to particle gain and loss. However,
note this can also be derived by an gradient expansion of a path-integral theory [27]
or considering a Lindblad master equation [28].

2.1. The Gross-Pitaevskii Equation
In this section we derive the equation of motion for an interacting Bose gas in the
BEC phase. From Penrose and Onasger [29] we know that the essential quantity
of describing a Bose gas of N interacting particles is given by the order parameter
ψ(r). This order parameter is defined with the eigenvector Θ0 of the reduced density
matrix ρ(r, r′), which is related to the many-body wave function Ψ(r1, ..., rN ) of the
system

ρ(r, r′) = N

∫
dr2...drNΨ∗(r, ..., rN )Ψ(r′, ..., rN ) (2.1)

as
ψ(r) =

√
N0Θ0(r) . (2.2)

In (2.2) N0 corresponds to the largest eigenvalue of (2.1), which is also interpreted
as the condensed particles in the BEC phase. Note that the eigenvector Θ0 of (2.1)
does exist due to the hermiticity of the density matrix according to the spectral
theorem [30].

As the order parameter describes the global behaviour of the system it is also re-
ferred to be the condensate wave function [31]. Furthermore by definition the order
parameter has the properties ∫

dr |ψ(r)|2 = N0 (2.3)

|ψ(r)|2 = ρ(r, r) , (2.4)
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where the latter (2.4) represents the condensate density.
To derive the equation of motion for the condensate wave function we consider the
Hamiltonian of the system in second quantization:

Ĥ =

∫
dr ψ̂†(r)

{
− ℏ2

2m
∇2 + V (r)

}
ψ̂(r) (2.5)

+
1

2

∫
dr
∫
dr′ ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r′)ψ̂(r) ,

which was first introduced in 1961 by E.P. Gross [18] and L.P. Pitaevskii [17]. In
Eq. (2.5) the first term in the integrand denotes the kinetic term, V an external
potential and U the particle-particle interaction.
With using the commutation relations for bosons [32][
ψ̂(r, t), ψ̂†(r′, t)

]
−
= δ(r− r′) ,

[
ψ̂(r, t), ψ̂(r′, t)

]
−
= 0 =

[
ψ̂†(r, t), ψ̂†(r′, t)

]
−

(2.6)

the Heisenberg equation of motion for the field operator ψ̂(r, t) can be calculated

iℏ
∂ψ̂(r, t)
∂t

=
[
ψ̂(r, t), Ĥ

]
−
. (2.7)

Making now Bogoliubov’s assumption [33] that the BEC state is given by the order
parameter

ψ̂(r, t) ≈ ψ(r, t) (2.8)

and assuming a short-range particle-particle interaction via U(r − r′) = δ(r − r′)
yields the time dependent Gross-Pitaevskii equation

iℏ
∂ψ(r, t)
∂t

=

{
− ℏ2

2m
∇2 + V (r) + g |ψ(r, t)|2

}
ψ(r, t) , (2.9)

where the interaction strength g is given by

g =

∫
drU(r) . (2.10)

Note that the GPE (2.9) can be interpreted as a non-linear Schrödinger equation,
where the nonlinearity is created by the particle-particle interaction.
For seperating spatial and time contribution of the wave function perform the ansatz

ψ(r, t) = ψ(r)e−
i
ℏµt , (2.11)

where µ denotes the chemical potential and is determined by the normalization
condition (2.3). Inserting the ansatz (2.11) into the time-dependent GPE (2.9)
results in the time independent GPE

µψ(r) =
{
− ℏ2

2m
∇2 + V (r) + g |ψ(r)|2

}
ψ(r) , (2.12)

which describes stationary states of the condensate.
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2.2. The Complex Gross-Pitaevskii Equation
For the theoretical description of the dynamics of a Bose-Einstein condensate in an
open dissipative system one has to extend the GPE (2.9) and also include terms
appearing due to particle pumping and decay [34].

2.2.1. Heuristical Derivation
As the GPE only describes condensates, where the particles are caught in the system
we therefore have to include additional terms for open dissipative condensates like a
PBEC. So we have to find these terms describing also the effect of particle pumping
and losses as this leads to an increase or decrease of the condensate density. This
yields then a generalized GPE called the complex Gross-Pitaevskii equation (cGPE).
Considering nonresonant pumping and also introducing stimulated scattering yields
an equation for particle gains [34]

ℏ
∂ψ(r, t)
∂t

= γψ , (2.13)

where γ denotes the rate of particle gain. Furthermore introducing a constant global
loss rate leads to

ℏ
∂ψ(r, t)
∂t

= −κψ , (2.14)

where κ represents the rate of particle losses. Combining Eq. (2.13) and Eq. (2.14)
yields an effective open system parameter

λ = γ − κ . (2.15)

However, with such a modeling he dynamics becomes unstable as numerical simu-
lations reveal. If gains exceeds losses, according to Eq. (2.15) λ is positive and thus
leads to an infinite increase in the condensate density. And conversely, if losses are
higher than gains, this leads to a negative λ and thus to a vanishing condensate.
Because of that and knowing that in reality the condensate density can be brought
to a stationary state, it is necessary to use a different model.
The simplest model is given by a density dependent loss term

ℏ
∂ψ(r, t)
∂t

=
(
γ − Γ |ψ(r, t)|2

)
ψ(r, t) , (2.16)

where γ stands for the pumping rate and Γ denotes the losses. Indeed for a Photon
BEC a density dependent loss rate is needed to also describe the dye bleaching [12,
15], which is a limiting factor of a single experimental cycle.
Note this kind of model is also used in exciton-polariton condensates [16].
This leads to the following equation of motion

iℏ
∂ψ(r, t)
∂t

=

{
− ℏ2

2m
∇2 + V (r) + g |ψ(r, t)|2 + i

2

[
γ − Γ |ψ(r, t)|2

]}
ψ(r, t) , (2.17)



11

which describes an open dissipative condensate.
Furthermore analogue to the closed system case we also can separate the time de-
pendence of the wave function with the ansatz (2.11) yielding the cGPE describing
a steady-state

µψ(r) =
{
− ℏ2

2m
∇2 + V (r) + g |ψ(r)|2 + i

2

[
γ − Γ |ψ(r)|2

]}
ψ(r) . (2.18)

2.2.2. Linear Stability Analysis
To have better insight into the mean-field model (2.17) we start with analysing the
homogeneous case, i.e. V = 0

iℏ
∂ψ(r, t)
∂t

=

{
− ℏ2

2m
∇2 + g |ψ(r, t)|2 + i

2

[
γ − Γ |ψ(r, t)|2

]}
ψ(r, t) . (2.19)

Note that we are considering a BEC without a trapping potential in two dimensions,
which does not exist according to the Mermin-Wagner-Hohenberg theorem [35–37].
However, this theorem is only valid for closed systems and therefore can not be
applied to our case.
Now we start our calculation by linearizing the cGPE (2.19). For this purpose we
make the ansatz [16]

ψ(r, t) = ψ0(r, t) + δψ(r, t) , (2.20)
where the steady state solution of (2.19) represents the zeroth order

ψ0(r, t) =
√
n0e

− i
ℏµt (2.21)

with the equilibrium density n0 and the chemical potential µ.. Calculating the large
distance behavior of the stationary cGPE (2.18) in a homogeneous system without
a trap we get relations for the chemical potential µ as well as for the steady state
density n0

µ = gn0 , n0 =
γ

Γ
(2.22)

connecting these parameters with the pumping γ and losses Γ.
Furthermore δψ stands for a small perturbation from the stationary state. Inserting
the ansatz (2.20) into the cGPE (2.19) and neglecting all higher orders of δψ starting
with δψ2 yield

iℏ
∂δψ

∂t
= − ℏ2

2m
∇2δψ+g

[
2 |ψ0|2 δψ + ψ2

0δψ
∗
]

(2.23)

+
i

2

[
γδψ − Γ

(
2 |ψ0|2 δψ + ψ2

0δψ
∗
)]

and also for the complex conjugated cGPE (2.19) we get

−iℏ∂δψ
∗

∂t
= − ℏ2

2m
∇2δψ∗+g

[
2 |ψ0|2 δψ∗ + (ψ∗

0)
2 δψ

]
(2.24)

− i

2

[
γδψ∗ − Γ

(
2 |ψ0|2 δψ∗ + (ψ∗

0)
2 δψ

)]
.
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To find solutions of (2.23) and (2.24) we make the following Fourier ansatz for the
perturbation δψ [13, 16, 38]

δψ(r, t) = e−
i
ℏµt
[
u(r)e−iωt − v∗(r)eiω∗t

]
(2.25)

where u, v are yet unknown functions and ω is complex. Note that the minus sign in
(2.25) is just a matter of convention [38]. Furthermore to ensure a stable steady state
we have to include a damping term, which leads to a complex valued ω and therefore
to a stable stationary state iff Im(ω) < 0. Note that this is a major contrast to a
corresponding calculation for the GPE (2.9) in closed systems, where ω is a purely
real quantity [38].
Inserting the ansatz (2.25) and the steady state solution (2.21) into (2.23) results in

µ
[
ue−iωt − v∗eiω

∗t
]
+ ℏωue−iωt − ℏω∗v∗eiω

∗t = − ℏ2

2m

[
∇2ue−iωt −∇2v∗eiω

∗t
]

+ g
[
2n0ue

−iωt − 2n0v
∗eiω

∗t + n0u
∗eiω

∗t − n0ve
−iωt

]
(2.26)

+
i

2

[
γue−iωt − γv∗eiω

∗t − 2Γn0ue
−iωt + 2Γn0v

∗eiω
∗t − Γn0u

∗eiω
∗t + Γn0ve

−iωt
]

Comparing coefficients of e−iωt and eiω
∗t leads to the Bogoliubov equations[

− ℏ2

2m
∇2 + 2gn0 − µ− ℏω +

i

2
(γ − 2Γn0)

]
u+

[
−gn0 +

i

2
Γn0

]
v = 0 (2.27)[

− ℏ2

2m
∇2 + 2gn0 − µ− ℏω − i

2
(γ − 2Γn0)

]
v −

[
gn0 +

i

2
Γn0

]
u = 0 , (2.28)

where the latter equation (2.28) was complex conjugated. Note that it is equivalent
to insert the ansatz (2.25) and the steady state solution (2.21) into (2.24).
Due to translational invariance we make the following ansatzes

u(r) = uke
ik·r (2.29)

v(r) = vke
ik·r . (2.30)

Inserting the ansatzes (2.29) and (2.30) into (2.27) and (2.28) leads to a system of
linear equations(
E0 + 2gn0 − µ− ℏω + i

2 (γ − 2Γn0)
i
2Γn0 − gn0

−
(
i
2Γn0 + gn0

)
E0 + 2gn0 − µ+ ℏω − i

2 (γ − 2Γn0)

)(
uk
vk

)
= 0 ,

(2.31)
where the free particle dispersion was introduced [38]

E0 =
ℏ2k2

2m
. (2.32)

To simplify the notation we denote in the following the matrix in (2.31) as A. In order
for the equation (2.31) to have a consistent solution, we require that the determinant
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of the matrix A vanishes. Therefore calculating the characteristic polynomial of the
matrix A gives us

pA(ω) = (ℏω)2−i (γ − 2Γn0) ℏω−(E0 + 2gn0 − µ)2−
(
γ − 2Γn0

2

)2

+

(
Γn0
2

)2

+(gn0)
2

(2.33)
Using the relations (2.22) in (2.33) yields

pA(ω) = (ℏω)2 − iγℏω + (E0 + gn0)
2 + (gn0)

2 . (2.34)

Calculating all zeros of the characteristic polynomial (2.34) and therefore the eigen-
values for the matrix A in (2.31) we get

E(k) = −iγ
2
±
√
E0 (E0 + 2gn0)−

γ2

4
. (2.35)

Therefore we directly see that in the closed system limit γ → 0 the dispersion
relation reduces to the standard Bogoliubov dispersion [38]. First note that both
eigenmodes are stable due to a negative imaginary part.
The upper + branch in (2.35) is the Goldstone branch [16], because this converges
in the limit k → 0. Expanding the upper branch in (2.35) for small k-vectors

E(k) ≈ −iγ
2
+ i

γ

2

(
1− 2gn0

γ2
E0

)
= 0 +O(k2) (2.36)

we directly note the appearance of the Goldstone theorem [39], which is also shown in
Fig.2.2 . Secondly the lower branch, where its long wave vector behavior corresponds
to a damped free particle

E(k) = −iγ
2
− E0 , (2.37)

but an expansion for short wave vectors yields

E(k) = −iγ +O(E2
0) (2.38)

Therefore the real part of the lower branch violates the Goldstone theorem and
yields a flat region of the Goldstone mode in k-space, see Fig. 2.1. This also can be
quantified by calculating the zeros of the square root argument and results in

E2
0 +

2gγ

Γ
E0 −

γ2

4
= 0 ⇒ Ẽ0 =

(
− g

Γ
±
√( g

Γ

)2
+

1

4

)
γ . (2.39)

Note that in (2.39) only the +-solution is physically relevant, because otherwise a
negative energy dependent on the interaction strength and losses occur.
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Figure 2.1.: Real part (solid lines) and imaginary part (dotted lines) of the lower
branch of the energy dispersion (2.35). Plottet for fixed g/Γ = 1 and
γ = 1 (red color), γ = 5 (green color), γ = 10 (blue color).

Figure 2.2.: Real part (solid lines) and imaginary part (dotted lines) of the upper
branch of the energy dispersion (2.35). Plottet for fixed g/Γ = 1 and
γ = 1 (red color), γ = 5 (green color), γ = 10 (blue color).



3. Hydrodynamic Description

An alternative description of the BEC phase using the condensate density and veloc-
ity is derived in this chapter. We first derive the hydrodynamic equations in the case
of a closed system, which can be described according to the first Chapter with the
GPE. Afterwards we focus on the open dissipative case and derive the hydrodynamic
equations.

3.1. Closed System
Multiplication of the GPE (2.9) with ψ∗ and vice versa the complex conjugated GPE
with ψ yields after substracting

∂ |ψ|2

∂t
+∇ ·

{
ℏ

2mi
[ψ∗∇ψ − ψ∇ψ∗]

}
= 0 . (3.1)

We note that (3.1) coincides the continuity equation for the Schrödinger field, which
is an equation for the probability density [38]. Therefore by identifying the expres-
sion in brackets as a current field, i.e. a velocity field times the density, we get for
the velocity field the expression

v =
ℏ

2mi

ψ∗∇ψ − ψ∇ψ∗

ψ∗ψ
. (3.2)

With this the continuity equation can be written in the compact form

∂n

∂t
+∇(nv) = 0 , (3.3)

where n = |ψ|2 denotes the condensate density and nv := j can be identified as the
current density.
Furthermore using the Madelung representation by writing the order parameter as

ψ(r, t) =
√
n(r, t)eiΦ(r,t) (3.4)

one calculates for the velocity

v(r, t) = ℏ
m
∇Φ(r, t) . (3.5)

Therefore the phase of the wave function is directly related to the condensate veloc-
ity.
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3.1.1. Hydrodynamic Equations in 3D
Since the density and the velocity contain according to (3.4) the same information
as the condensate wave function we now derive the respective equations of motion.
Inserting the Madelung representation (3.4) in the GPE (2.9), we get

iℏ
[

1

2
√
n

∂n

∂t
+ i

√
n
∂Φ

∂t

]
eiΦ =

=− ℏ2

2m

[
∇2n

2
√
n
− (∇n)2

4
√
n
3 + i

∇n∇Φ√
n

+ i
√
n∇2Φ−

√
n (∇Φ)2

]
eiΦ (3.6)

+ V
√
neiΦ + g

√
n
3
eiΦ .

Separating real and imaginary part of (3.6) yields

∂φ

∂t
=

ℏ
4m

[
∇2n

n
− (∇n)2

2n2
− 2 (∇φ)2

]
− V

ℏ
− gn

ℏ
, (3.7)

∂n

∂t
= − ℏ

m

[
∇n∇φ+ n∇2φ

]
. (3.8)

Taking the gradient of (3.7) and inserting the identity

∇2n

n
− (∇n)2

2n2
= 2

∇2√n√
n

(3.9)

into (3.7) and, furthermore, using the expression of the velocity field (3.5) results in
the hydrodynamic equations

∂n

∂t
+∇ (n · v) = 0 , (3.10)

∂v
∂t

−∇
{

ℏ2

2m2

∇2√n√
n

− 1

2
v2 − V

m
− gn

m

}
= 0 . (3.11)

The first equation (3.10) corresponds to the continuity equation for the particle
density (3.3), whereas the second equation (3.11) denotes a Newton equation. This
second equation (3.11) can be rewritten using the vector identity

1

2
∇v2 = (v ·∇) v − (∇× v)× v . (3.12)

This leads to the Euler or quantum Bernoulli equation

∂v
∂t

+ (v ·∇) v = −∇
[
V

m
+
gn

m
− ℏ2

2m2

∇2√n√
n

]
+ (∇× v)× v . (3.13)

Concluding, because the condensate velocity fulfills the Euler equation with an ad-
ditional vorticity term, that the condensate behaves like a flow without friction [31].
Note that the left-hand side of (3.13) represents a material derivative and therefore
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denotes the time derivative of an observer flowing with the current. Additionally
we discuss each term in the Euler equation (3.13). Note that the first term on the
right-hand side of (3.13) represents a pressure, which contains three terms. The
first pressure term is the mechanical pressure introduced by an external trapping
potential. The second term is the interaction pressure due to repulsive interactions
between the atoms. The third and last pressure is the quantum pressure, which
shows the resistance against deformation of the wave function. The last term on the
right hand side of (3.13) acts like a Lorenzian force and appears only if the velocity
field has a singularity.
Therefore in presence of vortices we have also have to take into account that turbu-
lences appear in the velocity field. We define therefore over the curl of the velocity
field the vorticity

ω(r, t) = ∇× v(r, t) , (3.14)
which is in principle a measure on how turbulent the system is. With that definition
we can now derive a third hydrodynamic equation for the vorticity (3.14). By taking
the curl of the Euler equation (3.13) we derive the Helmholtz vorticity equation

∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v − ω · (∇ · v) . (3.15)

Note that the latter is also well known in classical hydrodynamics. For further
interest we refer to [40].

3.1.2. Hydrodynamic Equations in 2D
Of special interest for this thesis is a description of a two-dimensional condensate in
presence of singularities in the condensate phase. Therefore we work out a descrip-
tion of a system involving also vortices in two dimensions.
Knowing from (3.5) that the condensate velocity field is directly proportional to the
gradient of the phase we conclude in the absence of singularities for the phase

ω = ∇× v =
∂2Φ

∂x∂y
− ∂2Φ

∂y∂x
= 0 . (3.16)

But in presence of a vortex, where we assume its location without loss of generality
at the origina, the phase has a singularity at x = y = 0 and therefore we get

ω = ∇× v =
∂2Φ

∂x∂y
− ∂2Φ

∂y∂x
̸= 0 . (3.17)

Note that the latter statement (3.17) is equivalent to the fact that the phase is
not twice continuously differentiable and thus Schwarz’s theorem does not hold [41].
Due to the single-valuedness of the condensate wave function we get, by integrating
around a closed contour, that the change in the phase Φ in two dimensions must be
a multiple of 2π. Thus the circulation Z, which is defined as

Z =

∮
v · dr (3.18)
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(a) (b)

Figure 3.1.: (a) Tangential velocity field of single vortex in arbitrary units diverges
at the origin. (b) velocity field in two dimensions. The color of the
arrows shows the strength of the velocity field.

results, by using (3.5) and Stoke’s theorem, in

Z = 2π
ℏ
m
l , (3.19)

where l is an integer and represents the winding number of the flow. The winding
number is often also referred in case of a vortex as the charge of the vortex. Note
that the quantization of the circulation was first proposed by Onsager [42] in 1949
for superfluid helium and by Feynman in 1955 [43].
As an example we now consider a purely azimuthal flow, which represents a vortex
line straight in z-direction [38]. Therefore we consider a phase

Φ = arctan
(y
x

)
(3.20)

with the corresponding velocity field according to (3.5)

v(r) = ℏ
m
∇φ(r) = ℏ

m

1

r
eφ , (3.21)

where r = |r| denotes the radial distance and eφ the unit vector in polar coordinates.
Therefore we see that the velocity field is singular at the origin, which is also plotted
in Fig. 3.1. We know from (3.20) that the phase has a singularity at the origin and
is directly related to the velocity field (3.5). So the velocity field is represented
by a non continuous function. To overcome this and write the velocity field with
a continuous function for which also the theorem of Schwarz is valid we consider
instead a different approach. To this end we define a function, which is called the
stream function χ, in the following sense [44, 45]

v(r) = ℏ
m

(
−∂χ(r)

∂y
∂χ(r)
∂x

)
. (3.22)
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This has the advantage that the continuity equation in the far field, where the
density is nearly constant, reads

∇ · v = 0 , (3.23)

so the stream function is twice continuously differentiable and the theorem of Schwarz
can be applied. To derive the stream function for a single vortex at the origin we
consider the vorticity from (3.14) and (3.22)

ω =
ℏ
m
∇2χez . (3.24)

On the other hand we read off from (3.14) and (3.21) that ω(r) = 0forr ̸= 0 and
that

∫
ω(r)df =

∮
v · dr = 2πℏ/m, so we conclude ω = 2piδ(r). Thus, combining

this with (3.21) we get
∇2χ(r) = 2πδ(r) . (3.25)

Using the method of Green’s function [46] we can solve (3.25) and get

χ(r) = 1

2π
ln(|r|) + C , (3.26)

where we choose the integration constant such that the argument of the logarithm
in (3.26) is dimensionless. Therefore we introduce the healing or coherence length ξ,
which is the typical length scale for a vortex and can be interpreted as the distance
at which the condensate wave function can appreciably vary or the healing of a
condensate back from zero to its bulk value n0. Mathematically this is defined as
the spatial scale, where the kinetic energy per particle is equal to the interaction
energy [38]

ℏ2

2mξ2
= n0g . (3.27)

To get back to (3.26) we now set the integration constant to be

C = − 1

2π
ln(ξ) (3.28)

and get therefore the stream function

χ(r) = 1

2π
ln

(
|r|
ξ

)
. (3.29)

The stream function can also be interpreted geometrically, see Fig. 3.2. Thus, the
gradient of the phase points in the direction of the velocity flow, whereas the gradient
of the stream function points perpendicular to it. Note that also for a system with
more than one vortex a suitable stream function can be found by considering the
generalization of (3.25) given by [44]

∇2χ(r) = 2π

k∑
i=1

liδ(r − ri) . (3.30)

For a complete discussion we refer to [44].
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Figure 3.2.: Geometrical interpretation of the velocity field generated by a stream
function in two dimensions.

3.2. Open dissipative System
After we derived in the last section the hydrodynamic description of a BEC with-
out any particle gains or losses, we now turn our attention to the hydrodynamic
description of a BEC with particle gains and losses.

3.2.1. Hydrodynamic Equations in 3D

Similar to the last section we start the derivation of the hydrodynamic equations by
applying the Madelung representation to the underlying equation of motion, which is
the cGPE (2.17). By separating real and imaginary parts in the upcoming equation
and also using the Eqs. (3.5), (3.9) and (3.12) yields

∂n

∂t
+∇ (n · v) = n (γ − Γn) , (3.31)

∂v
∂t

+ (v ·∇) v = −∇
[
V

m
+
gn

m
− ℏ2

2m2

∇2√n√
n

]
+ (∇× v)× v . (3.32)

Notice that (3.32) is exactly the same as in the closed system case (3.13). Therefore
also the vorticity equation results in

∂ω

∂t
+ (v ·∇)ω = (ω ·∇)v − ω · (∇ · v) . (3.33)

Therfore the hydrodynamic equations (3.31)–(3.33) only differ from the closed sys-
tem in the continuity equation (3.31). The continuity equation still describes con-
servation of particle density, but now with an additional right-hand side. This
inhomogeneous term takes the pumping γ and losses Γ into account.
Of special interest for this thesis is the stationary state of the continuity equation
(3.31). Integrating the continuity equation (3.31) yield after applying GauSS integral
theorem

∂N

∂t
=

∫
drn(r) {γ − Γn(r)} . (3.34)
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Considering now an stationary state of (3.34) we therefore get∫
drn(r) {γ − Γn(r)} = 0 . (3.35)

Considering the homogeneous density

n(r) = γ

Γ
(3.36)

and inserting this into (3.35) yields that the homogeneous density (3.36) is a solution
of the stationary continuity equation.

3.2.2. Hydrodynamic Equations in 2D
As we saw in the last Section the hydrodynamic equations for an open dissipative
system (3.31)–(3.33) do only differ to the closed system equation (3.10), (3.13) and
(3.15) in the continuity equation. Therefore the question arises whether one can
find in two dimensions, similar to section 3.1.1, a corresponding stream function.
Consider to this end a system with one single-charged vortex at the origin. We
know from numerical simulations and experiments in open dissipative systems like
in exciton-polariton condensates [47–50] and even for photon condensates [24] that
in presence of a vortex the shape of the velocity field, respectively the phase, is
changed to a spiral behaviour.
Theoretically this can be described by the Helmholtz decomposition theorem [51],
which states that every vector field can be decomposed into a non-divergent and a
non-rotational component. Applied to the condensate velocity field gives

v(r) = vS(r) + vR(r) =
ℏ
m
∇φS(r) +

ℏ
m
∇φR(r) , (3.37)

where vR(r) is the non-rotational component and vS(r) is the non-divergent com-
ponent. In the following we call the non-rotational velocity the regular velocity due
to the fact that this component is twice continuously differentialable and therefore a
regular function without any singularities. And vice versa we call the non-divergent
velocity to be the singular velocity, because this component describes the circular
velocity field and has therefore, as we also have seen in (3.21) a singularity.
In the following we consider similar to the closed system case a single vortex at the
origin. Furthermore we assume that the singular component of the velocity field in
(3.37) is equal to the closed system velocity field (3.21).
Calculating the curl of (3.37) and therefore the vorticity we get exactly the same
equation (3.25) as for the closed system due to the fact that the theorem of Schwarz
holds for the regular velocity. So we conclude we can analogously to the closed sys-
tem define a stream function for the singular velocity, which results in (3.29). Also
we can conclude that the singular velocity is not effected by pumping and dissipation
and the regular velocity is not related to the charge of a vortex or the number of
vortices in the system.
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Therefore we assume that the singular velocity corresponds to the closed system
velocity field (3.22), where we derived in Section 3.1.2 the stream function (3.26).
Note that the latter fulfills by definition

∇ · vS = 0 , (3.38)

which corresponds to the continuity equation (3.10) in the far field. So considering
now the continuity equation (3.31) for the open dissipative system in the far field
we get a Poisson equation for the regular velocity

∇2φR = n (γ − Γn) , (3.39)

where the right-hand side is now a constant.
Note that the general solution of a Poisson equation of the form

−∆u(x) = f(x) (3.40)

with x ∈ Rk and f : Rk → R, does only exist according to [52], iff the right hand
side in (3.40) is twice continuously differentiable and has compact support.
In our case in (3.39) the right-hand side is obviously twice continuously differentiable,
but however, the only constant function with compact support in R is the zero-
function. Therefore the Poisson equation (3.39) is not solvable by using standard
thechniques.
To overcome this issue we have to use a different technique and we refer to Chapter
6.



4. Optimization Methods
Solving equations of motion analytically exact can be really hard, difficult or not
even possible. So one has to construct methods to solve such equations analytically
at least in an approximate way. These analytical methods are called variational or
optimization methods. The main idea is to make an ansatz for the wave function
depending on optimization parameters, which is close to the exact solution. Ex-
tremization of the underlying optimization equations yields then an approximate
solution for the wave function.
In this chapter we introduce three different optimization methods, each applicable
for a different kind of systems. As a first method we introduce the standard op-
timization method from Lewenstein and Zoller proposed in 1996 [vm1996erez],
which relies on the existence of an action. Secondly, as a first optimization method
for open dissipative system, we give a short introduction to the cumulant optimiza-
tion method [53–55], which is based on the idea to calculate different moments for
exponential like ansatz wave function. But the big disadvantage of the cumulant
method is, that the method can only be applied to describe an ansatz function with
a finite number of cumulants. Therefore we derive a new projection optimization
method, which is based on the idea to project the underlying Hilbert space onto a
parameter manifold. In this manifold one then can calculate projection optimization
equations to get optimal values for the ansatz of the wave function [25].

4.1. Least Action Optimization Method
The most prominent optimization method introduced by Lewenstein and Zoller in
1996 [vm1996erez] is based the Hamilton or least action principle. As the name
implies this method relies on the underlying action

A [ψ,ψ∗] =

∫ ∫
dt drL , (4.1)

where L denotes the Lagrange density. Note that by extremizing the action with
respect to the order parameters we get the equations of motion.
Instead of extremizing with respect to the true wave function we now make an ansatz
for the wave function

ψ(r, t) ≈ Ψ(r,λ(t)) , (4.2)
where λ(t) = (λ1(t), λ2(t), ..., λk(t)) denotes a vector of yet unknown optimization
parameters. Inserting the ansatz (4.2) into the action (4.1) yields an approximate
action

A [ψ,ψ∗] ≈ A [Ψ(r,λ(t)),Ψ∗(r,λ(t))] = A[λ(t)] . (4.3)
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Extremizing the approximated action (4.3) with respect to the optimization pa-
rameters λi(t) leads in general to a system of coupled equations for the variational
parameters

δA(λ(t))

δλi(t′)
= 0 , ∀i ∈ {1, ..., k} , (4.4)

which may be analytically solved. The big advantage of this method is that by mak-
ing an approximate ansatz for the wave function we can reduce a partial differential
equation to a system of ordinary differential equations.

4.2. Cumulant Method
As the standard optimization method from last section relies on the existence of an
action this can not be used for open dissipative system due to the lack of particle or
energy conservation. One method, which does not rely on an action is the cumulant
method [53–55].
Instead of tackling the underlying equation of motion directly the cumulant method
is based on statistical properties of the solution, which are called moments or cu-
mulants. In the following we explain the procedure of the cumulant method using
the example of a Gassian ansatz function, which is a valid ansatz wave function for
example in a BEC described by the GPE (2.9) in presence of a harmonic trapping
potential [13]. To this end we denote in this example the underlying equation of
motion with EOM according to

EOM [ψ,ψ∗] (r, t) = 0 . (4.5)

Furthermore consider a general Gaussian ansatz in two dimensions [13]

Ψ =

√
N

πq1(t)q2(t)
exp

(
2∑

i=1

[
−
(

1

2qi(t)
+ iAi(t)

)
(ri − r0i(t))

2 + ixiCi(t)

])
.

(4.6)
To calculate now the parameters of the ansatz function we insert the latter into the
equation of motion (4.5) and average this with weights fik∫

dr fik ·Ψ∗(r,λ(t))EOM [ψ,ψ∗] (r,λ(t)) = 0 , (4.7)

where we used the former notation for the optimization parameters.
As we consider a Gaussian ansatz it is enough to calculate the first two cumulants,
which are given by the weights [54]

f0k = 1 (4.8)
f1k = rk − r0k (4.9)

f2k = (rk − r0k)
2 −

q2k
2
, (4.10)
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where k = 1, 2 denotes the spatial dimension. The resulting cumulants equation of
motion can now be solved either analytically or numerically yielding expressions for
the optimization parameters. Note that the zeroth cumulant equation turns out to
correspond to the continuity equation (3.1). Furthermore, similar to the standard
optimization method, the cumulant method has the advantage to reduce a partial
differential equation to a system of ordinary differential equations. However, it
should be noted that the cumulant method can only be used for exponential ansatz
wave functions with a finite number of cumulants and is therefore not suitable for
every problem as we will see later in Chapter 6.

4.3. Projection Optimization Method
As we saw in the previous sections in case of an open dissipative system neither the
standard optimization method nor the cumulant optimization method is generally
applicable. Therefore we construct in this section a generially applicable optimiza-
tion method, the so-called projection optimization method [25].
As a starting point we consider the space of all square integrable functions L2, which
is indeed a Hilbert space according to [30]. Furthermore we know that the complex
wave function ψ solves the equation of motion

EOM [ψ,ψ∗] = 0 . (4.11)

Note that for sake of simplicity we only consider one single wave function as the
extension to more wave functions is straight-forward. Next we assume that the
wave function ψ can be approximated by a trial function Ψ(λ), which depends on
trial parameters λ

ψ(r) ≈ Ψ(r,λ) . (4.12)
The trial parameters can now be determined by the nonlinear algebraic equations〈

EOM∗ [Ψ,Ψ∗] ,
∂Ψ∗

∂λi

〉
+

〈
EOM [Ψ,Ψ∗] ,

∂Ψ

∂λi

〉
= 0 , (4.13)

where ⟨•, •⟩ corresponds to the scalar product

⟨f, g⟩ ≡
∫
dr f(r)g∗(r) . (4.14)

Together with Riesz’ representation theorem [56] and the projection theorem [57]
this represents a projection from the Hilbert space L2 onto a parameter manifold
M = span(λ) spanned by the trial parameters λ. Therefore we calculate the trial
parameters not in the usual Hilbert space but in a parameter manifold M.
The projection optimization method can also be motivated heuristically. Indeed,
under the assumption some action exists, the equation of motion (4.11) corresponds
to extremizing the action

EOM [ψ,ψ∗] =
δA
δψ∗ = 0 . (4.15)
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Approaching the action with the wave function ansatz (4.12) the standard opti-
mization method leads under extremization of the action with respect to the trial
parameters by using the chain rule for functional derivatives [30]

δA[λ(t)]

δλi(t′)
=

∫
dt′
∫
dr
[
δA
δΨ

δΨ

δλi(t′)
+

δA
δΨ∗

δΨ∗

δλi(t′)

]
= 0 . (4.16)

Assuming that the ansatz wave function is a function of the optimization parameters
we have

δΨ(r, t)
δλi(t′)

=
∂Ψ(r, t)
∂λi(t)

δ(t− t′) . (4.17)

Inserting (4.17) into (4.16) yields

δA[λ(t)]

δλi(t′)
=

∫
dr
[
δA
δΨ

∂Ψ

∂λi
+

δA
δΨ∗

∂Ψ∗

∂λi

]
= 0 , (4.18)

which corresponds to the projection optimization equations (4.13).
Note that the projection optimization method can also be geometrically illustrated
as shown in the Appendix A.



5. Non-Vortex Solution

As an first example using the projection optimization method we study in this
chapter the solutions of the stationary cGPE (2.18) in two dimensions in presence
of an external harmonic potential

V (r) = 1

2
mω2 |r|2 . (5.1)

To this end we consider separately first the established cumulant optimization method
and then afterwards the newly developed projection optimization method and dis-
cuss both results.
As known from numerical studies of the stationary cGPE (2.18) in [34] (see Fig. 5.1)
it is reasonable to make for small values of pumping and dissipation an approximate
ansatz for the wave function in form of a Gauss profile

Ψ(r) =

√
N

πq2
e
− r2

2q2 (5.2)

with the particle number N and the width of the Gauss package q as optimization
parameters. Also we are setting the center of the harmonic trap to be at the origin,
so that the center of the ansatz (5.2) is also set to be at the origin.
With this ansatz (5.2) we determine in the following the optimization parameters
first with the projection optimization method and afterwards using the cumulant
optimization method as comparison.

5.1. Projection Optimization Solution
Calculating the equations for the particle number and the width for the Gauss profile
(5.2) corresponds according to the projection optimization method (4.13) to

〈
EOM [Ψ] (r), ∂Ψ

∂N

〉
=

∫
R2

dr EOM [Ψ] (r) ∂Ψ
∂N

= 0 , (5.3)〈
EOM [Ψ] (r), ∂Ψ

∂q

〉
=

∫
R2

dr EOM [Ψ] (r) ∂Ψ
∂q

= . (5.4)

Inserting the stationary cGPE (2.18) and the derivatives of the Gauss ansatz (5.2)
into Eq. (5.3) yields

µ

2
− ℏ2

4mq2
− mω2q2

2
− gN

4πq2
− i

(
γ

2
− ΓN

4πq2

)
= 0 . (5.5)
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Figure 5.1.: Density n of the steady states of (2.18) for σ = Γ/g = 0.3 and
α = 2γ/ℏω = 1.5, 4.4 (solid lines) and compared to the Thomas Fermi
solution n = (3α/2σ − r2) (dashed lines). Taken from [34].

Thus, because (5.5) is a complex valued equation with left hand side equal to zero
and therefore the real and imaginary parts have to vanish seperatly. So separating
real and imaginary part of Eq. (5.5) leads to two equations

µ =
ℏ2

2mq2
+
mω2q2

2
+

gN

2πq2
, (5.6)

N =
2πγq2

Γ
. (5.7)

Calculating the second projection equation by inserting the stationary cGPE (2.18)
and the respective derivative of the ansatz (5.2) into Eq. (5.4) yields correspondingly
an equation for width q

q4 =
ℏ2

m2ω2
+

gN

2πmω2
. (5.8)

With the equations (5.6)–(5.8) we thus obtain three coupled equations depending
on pumping and dissipation. Solving these three equations results in the following
equations for the particle number N , the width q and additionally also for the
chemical potential µ

µ̃ =

16πσ2 + 3α2

(
1 +

√
1 + 16πσ2

α2

)

4σ2

√
16π2 +

2πα2

(
1+

√
1+ 16πσ2

α2

)
σ2

, (5.9)

N =
α2

4σ2g̃

[
1±

√
1 +

16πσ2

α2

]
, (5.10)

q = losc
4

√√√√ α2

8πσ2

(
1 +

√
1 +

16πσ2

α2

)
+ 1 . (5.11)
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In order to make the equations clearer for understanding we introduced the oscillator
leghth losc as an typical length scale for the harmonic trap.

losc =

√
ℏ
mω

. (5.12)

Furthermore we also introduced the dimensionless parameters for pumping, dissipa-
tion, chemical potential and the interaction strength [34]

α :=
2γ

ℏω
, σ :=

Γ

g
, (5.13)

g̃ :=
gm

ℏ2
, µ̃ :=

µ

ℏω
. (5.14)

With the results (5.9),(5.10) and (5.11) we can now focus on the discussion. First
of all we note that in order to have a positive particle number for every choice of
pumping and dissipation the only physical relevant solution of (5.10) is the + solu-
tion. This was in fact also used in the calculations resulting in (5.9) and (5.11).
First note that all parameters in (5.9),(5.10) and (5.11) depend only on the fraction
of pumping and dissipation. We see in Fig. 5.2 that every quantity is always posi-
tive, and therefore in particluar the chemical potential µ and the particle number N
is indeed a thermodynamic variable [26]. Furthermore the quantities are increasing
with increasing value of the fraction of pumping and dissipation. Especially consid-
ering the width (5.11) we see that this monotonously increases with the the fraction
of pumping and dissipation or in case of a fixed loss rate it increases monotonously
with the pumping rate α.
Of special interest is also the limit of small pumping values α by fixed losses, because
usually the losses are given by the experimental setup. Therefore by expanding the
chemical potential for small pumping α and fixed losses σ we get

µ̃ = 1 +
α

2
√
πσ

+O(α2) . (5.15)

So we see that the chemical potential converges in the limit α, σ → 0, where
α/σ = const, nearly to the ground state energy ℏω/2 of a two-dimensional har-
monic oscillator. However, this does not correspond to the prediction of reference
[34], in which the chemical potential in the limit of small pumping strength is given
by

µ ≈ ℏω
2

3α

2σ
. (5.16)

For the width of the Gauss profile, though, we get in this limit

q =

(
1 +

α

8
√
πσ

+O(α2)

)
losc , (5.17)

which corresponds to the width of a Gauss function in a harmonic potential and
therefore matches the closed system solution well.
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(a) (b)

(c)

Figure 5.2.: (a) Width q of the Gauss ansatz function ploted as function of
pumping α and dissipation σ in units of the oscillator length losc. (b)
Particle number ploted as function of pumping α and dissipation σ in
units of the dimensionless interaction strength g̃. (c) Chemical
potential as function of pumping α and dissipation σ in units of the
oscillator energy ℏω.

5.2. Cumulant Solution
To compare the results from last section we now calculate also the cumulant opti-
mization equations (4.7) for the particle number and the width of the Gauss profile
(5.2). According to Section 4.2 it is enough to determine the zeroth and the sec-
ond central moments given with the weights (4.8) and (4.10) [13]. However, due to
the fact that our ansatz (5.2) for the Gauss function is centered at the origin it is
not needed to also calculate the first central moment. According to Section 4.2 the
zeroth cumulant equation is given by∫

R2

dr EOM [Ψ] (r)Ψ∗ = 0 , (5.18)

whereas the second cumulant equation refers to∫
R2

dr EOM [Ψ] (r)
(
r2 − q2

2

)
Ψ∗ = 0 . (5.19)
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Inserting the stationary cGPE (2.18) and the Gauss ansatz (5.2) yield after per-
forming the integrals from Eq. (5.18)

µ

2
− ℏ2

4mq2
− mω2q2

2
− gN

4πq2
− i

(
γ

2
− ΓN

4πq2

)
= 0 . (5.20)

Similar to Eq. (5.5) calculated with the projection optimization method we seperate
real and imaginary parts of (5.20), which results in

µ =
ℏ2

2mq2
+
mω2q2

2
+

gN

2πq2
, (5.21)

N =
2πγq2

Γ
. (5.22)

Also inserting the stationary cGPE (2.18) and the Gauss ansatz (5.2), yield after
performing the integrals, in Eq. (5.19)

q4 =
ℏ2

m2ω2
+

gN

2πmω2
. (5.23)

However, to get this result (5.23) we use Eq. (5.22) for the particle number, causing
that the imaginary part of in Eq. (5.23) vanishes.
Comparing the results obtained from the projection optimization method (5.6)–(5.8)
with the cumulant optimization method (5.21)–(5.23) shows that both methods re-
sult in the same equations for the optimization parameters.
Indeed the cumulant optimization method is equivalent to the projection optimiza-
tion method, which we show in the following. Calculating the needed derivatives of
the Gauss ansatz (5.2) for the projection optimization method gives us

∂Ψ

∂N
=

1

2
√
Nπq2

e
− r2

2q2 =
1

2N
Ψ , (5.24)

∂Ψ

∂q
=

(
r2

q3
− 1

q

)√
N

πq2
e
− r2

2q2 =

(
r2

q3
− 1

q

)
Ψ (5.25)

Inserting Eq. (5.24) and Eq. (5.25) into the projection optimization equations for
the particle number (5.3) and the width of the Gauss function (5.4)

0 =

∫
R2

drEOM [Ψ] (r) ∂Ψ
∗

∂N
=

∫
R2

drEOM [Ψ] (r) 1

2N
Ψ =

=
1

2N

∫
R2

drEOM [Ψ] (r)Ψ∗ , (5.26)

0 =

∫
R2

drEOM [Ψ] (r) ∂Ψ
∗

∂q
=

∫
R2

drEOM [Ψ] (r)
(
r2

q3
− 1

q

)
Ψ =

=
1

q3

∫
R2

drEOM [Ψ] (r)
(
r2 − q2

)
Ψ∗ (5.27)
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where we used the fact that our ansatz function is purely real. So the zeroth cumu-
lant equation and the second cumulant eqution is equal to the projection optimiza-
tion equations for the particle number and the width of the Gauss profile up to a
global prefactor. However, this does not matter due to the fact that these equations
are zero on one side∫

R2

drEOM [Ψ] (r) ∂Ψ
∂N

∝
∫
R2

drEOM [Ψ] (r)Ψ∗ , (5.28)∫
R2

drEOM [Ψ] (r) ∂Ψ
∂q

∝
∫
R2

drEOM [Ψ] (r)
(
r2 − q2

2

)
Ψ∗ . (5.29)

So we conclude that the projection optimization method is equivalent to the cumu-
lant optimization method in case of a gauss ansatz function. In fact one can proof
that, in case the cumulant optimization method can be applied, both optimiza-
tion methods are equivalent. According to reference [13] the cumulant optimization
method is also equivalent to the standard optimization method introduced in section
4.1, which we will also see in Chapter 6 for a system with a single vortex.

5.3. Solution With Complex Phase
If pumping is not that small anymore a gauss ansatz of the form (5.2) like in the pre-
vious sections is not suitable. By looking into numericalsimulations [34]we note that
the density profile is denoted as a deformed Gaussian. Noticing that for increasing
pumping the deformation of the Gauss profile and therefore the deviation to the
Thomas Fermi profile increases, which is in [34] referred to increasing supercurrents.
A reasonable way to also include the description of currents in a BEC, according
to Chapter 3 and (3.5), is therefore by introducing an additional phase term to the
Gauss profile

Ψ(r) =

√
N

πq2
e
− r2

2q2
−iAr2

. (5.30)

In the optimization ansatz (5.30) we therefore include, in addition to the previous
optimization parameters, an extra optimization parameter A describing the phase
and therefore the strength of the currents. In the following, we therefore investigate
the influence of the additional optimization parameter A on the number of particles
N and the width q of the Gaussian.
Applying the projection optimization method to this problem we now have three
equations to solve∫

R2

dr
{

EOM[Ψ,Ψ∗]
∂Ψ∗

∂N
+ EOM∗[Ψ,Ψ∗]

∂Ψ

∂N

}
= 0 , (5.31)∫

R2

dr
{

EOM[Ψ,Ψ∗]
∂Ψ∗

∂q
+ EOM∗[Ψ,Ψ∗]

∂Ψ

∂q

}
= 0 , (5.32)∫

R2

dr
{

EOM[Ψ,Ψ∗]
∂Ψ∗

∂A
+ EOM∗[Ψ,Ψ∗]

∂Ψ

∂A

}
= 0 . (5.33)
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Note that we have to consider two terms in each projection optimization equation due
to the fact that the ansatz function is now complex valued. Inserting the stationary
cGPE (2.18) and all necessary derivatives of (5.30) needed in Eq. (5.31)–(5.33) yield
after integrating the following system of coupled equations

N =
2πµq2

g
− ℏ2

2m

2π

g

(
1 + 4A2q4

)
− mω2π

g
q4 , (5.34)

q =
4

√
gmN
2πℏ2 + 1

4A2l4osc + 1
losc , (5.35)

A =
ΓNm

16πℏ2q2
− γm

8ℏ2
. (5.36)

First we see that in the limit A → 0 Eq. (5.34)–(5.36) coincide with the previous
results from Eq. (5.6)–(5.8). So the results are consistent with each other. Also
we can similar to the previous sections proceed further and solve this system of
equations. However, this will lead to huge formulas and we will restrict oursefls for
the sake of simplicity to only discuss the influence of the parameter A on the width
q of the Gauss function (5.30).
To simplify the notation we introduce two length scales induced by pumping and
dissipation

lγ =

√
ℏ2
mγ

, lΓ =

√
ℏ2

mNΓ
. (5.37)

Furthermore we will use in the following as an abbreviation for the oscillator length

lω = losc . (5.38)

Inserting (5.36) into (5.35) leads to

q2± =
1

32π
(

l2Γ
16l2γ

+
l2Γl

2
γ

l4ω

)
1±

√√√√(64π)2
(
g̃N

2π
+ 1

)(
l4Γ
16

+
l4Γl

4
γ

l4ω

)
−

16l4γ
l4ω

 . (5.39)

Demanding a, for all values of pumping and dissipation, positive width shows that
only the positive solution is of physical interst. Taking the square root of (5.39)
results in the equation for the width

q =

√√√√√ 1

32π
(

l2Γ
16l2γ

+
l2Γl

2
γ

l4ω

)
1 +

√√√√(64π)2
(
g̃N

2π
+ 1

)(
l4Γ
16

+
l4Γl

4
γ

l4ω

)
−

16l4γ
l4ω

 . (5.40)

Therefore we see that pumping and dissipation are directly related to the width.
By increasing pumping (5.40) results also in an increasing width. Note that also for
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vanishing interaction strength g the width q is still larger than the oscillator length
lω, iff pumping and dissipation is not zero

q =

√√√√√ 1

32π
(

l2Γ
16l2γ

+
l2Γl

2
γ

l4ω

)
1 +

√√√√(64π)2

(
l4Γ
16

+
l4Γl

4
γ

l4ω

)
−

16l4γ
l4ω

 > lω (5.41)



6. Vortex Solution

As a first example, where only the projection optimization method is applicable
we consider in this chapter a homogeneous system without an external trapping
potential in presence of a single vortex. Furthermore we only consider stationary
states. To become more familiar with the topic of a single vortex we split the chapter
in two parts. First we consider the case of a closed system with the underlying
equation (2.12) and go then over to open system.

6.1. Closed System

Let us first consider in this section a single vortex in a uniform medium for a closed
system. We also know that we can describe a BEC for a closed system in a stationary
state with the stationary GPE (2.12). Therefore we consider in (2.12) V = 0 and
for the sake of simplicity also a single charged vortex l = 1.
As a starting point we introduce the stationary state ansatz

ψ(r, φ) = f(r)eiφ , (6.1)

which is analogous to the Madelung representation (3.4). Furthermore we rescale the
amplitude of (6.1) with its bulk value f0 and also introduce the healing length as the
typical length scale for a vortex [38]. Note that from Section 2.2.2 we know that the
chemical potential µ and the bulk value f0 are related by Eq. (2.22). Inserting now
the ansatz (6.1) into the stationary GPE (2.9) with the rescaled quantities yields
the stationary GPE in a dimensionless form

−1

r

d

dr

(
r
dχ

dr

)
+
χ

r2
+ χ3 − χ = 0 , (6.2)

where all spatial components are rescaled by the healing length (3.27) r → r/ξ and
χ = f/f0 denotes the rescaled value of the density. Using the dimensionless GPE
(6.2) we now calculate approximate solutions for the density using different types of
ansatz functions.

6.1.1. Least Action Variational Method vs. Projection Optimization
Method

In this section we solve the GPE with both the standard optimization method as
well as with the projection optimization method using the standard literature ansatz
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for the density [38]

χ =

√
r2

r2 + α
, (6.3)

where the optimization parameter α has to be determined. In order to apply the
standard optimization method we therefore need a quantity to extremize. One
possibility is the total energy per unit length associated with the vortex [38]

ϵV =
πℏ2

m
n0

∫ D

0
dr r

{(
dχ

dr

)2

+
χ2

r2
+

1

2

(
1− χ2

)2}
. (6.4)

This total vortex energy (6.4) is thereby the difference of the total energy per unit
length of the uniform system and the energy per unit length along the vortex axis
(6.4). Note that we have to introduce an ultraviolet cutoff due to the divergence of
the vortex energy (6.4) in a uniform medium [38]. This quantity (6.4) can now be
used in the standard optimization method.
Inserting the density ansatz (6.3) into the vortex energy (6.4) leads to

ϵV =

∫ D

0
dr

r
(

1√
r2 + α

− r2
√
r2 + α

3

)2

+
r

r2 + α
+
r

2

(
1− r2

r2 + α

)2
 . (6.5)

Using partial integration and simple substitutions in (6.5) leads to the following
approximation of the vortex energy

ϵV =
1

4
− α2

4 (α+D2)2
+

1

2
ln

(
1 +

D2

α

)
+
α

4
− α2

4 (α+D2)
, (6.6)

where we also directly note that in the limit D → ∞ the energy (6.6) diverges.
Minimizing (6.6) with respect to the optimization parameter α results in

dϵV
dα

=
α2 − 2α

4 (α+D2)2
+

α2

2 (α+D2)3
− 2α

4 (α+D2)
− D2

2α (α+D2)
+

1

4

!
= 0 , (6.7)

where we now can explicitly take the limit D → ∞ leading to

− 1

2α
+

1

4
= 0 ⇔ α = 2 (6.8)

As a comparison to the standard optimization method we now calculate the value
of α using the projection optimization method. Therefore according to Chapter 4
the following projection optimization equation has to be solved∫

R2

dr EOM [χ] (r)∂χ
∂α

= 0 . (6.9)
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Inserting the ansatz (6.3) into the projection optimization equation (6.9) leads to

lim
D→∞

∫ D

0
dr

{
4r3

(r2 + α)3
+

r5

(r2 + α)

3

− 3r5

(r2 + α)4
− r3

(r2 + α)2

}
= 0 . (6.10)

Note that also here an ultraviolet cutoff was introduced due to the divergence of the
integral. Performing all integrals yields

0 = lim
D→∞

{
α2

2 (D2 + α)3
− α

2 (D2 + α)2
− α2 − 2α− 2

4 (D2 + α)
+

1

2α
− 1

4

}
=

1

2α
− 1

4
,

(6.11)
where the limit D → can now be taken. Therefore we also get corresponding to the
projection optimization method the same result as with the standard optimization
method (6.8)

α = 2 . (6.12)
This result for the approximate density can be now compared with numerical simu-
lations. To obtain numerical results by using python we therefore apply to the GPE
(6.2) a 4th order collocation algorithm [58] already implemented by the function
’solve_bvp’. Using this algorithm requires a boundary value problem and therefore
we are using for the density profile Dirichlet boundary conditions. Comparing the
approximate result with the numerical solution as we can see in Fig. 6.1 already
the standard literature ansatz (6.3) matches good with the numerical simulation.
Although we see that the ansatz (6.3) crosses the numerical solution such that the
approximation is larger than the numerical solution for small r and becomes smaller
for larger r. Furthermore we note that the approximate solution matches the nu-
merics for large distances, but approximates the numerics for smaller distances only
moderately. Therefore the question arises, if there are better fitting ansatz functions
approximating better also smaller distances.

6.1.2. Alternative Optimization Ansatzes
From a numerical simulation, as shown in Fig. 6.1, we also can think of different
ansatz functions, which might fit better the true solution. Therefore we consider
in this section two different types of ansatzes. The first ansatz we consider is an
exponential ansatz function with one optimization parameter β and the second we
consider is an ansatz function in form of a hyperbolic tangens with also one opti-
mization parameter δ

χβ = 1− e−βr , (6.13)
χδ = tanh(δr) . (6.14)

Starting with the exponential ansatz function (6.13) and calculate the vortex energy
(6.4) yields the following integral equation

ϵV =

∫ D

0
dr

{
β2re−2βr +

1

r

(
1− e−βr

)2
+
r

2

(
1−

(
1− e−βr

)2)2
}
. (6.15)
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Figure 6.1.: The rescaled amplitude of the wave function as function of r. The
dashed line represents the numerical solution of (6.2) and the straight
line denotes the approximate solution (6.3), (6.12) obtained with both
optimization methods.

Evaluating the integrals as shown in the Appendix B leads to

ϵV =
1

4
+ γ + ln

(
Dβ

2

)
− β2 + 2β2D + 4βD + 2

4β2
e−2βD +

2 + 6βD

9β2
e−3βD

− 1 + 4βD

32β2
e−4βD +

89

288β2
+

n∑
k=0

{
(−1)k k!

(βD)k+1

(
2e−βD − 1

2k + 1
e−2βD

)}
,

(6.16)

where γ denotes the Euler-Mascheroni constant. For further information concerning
the evaluation of the integrals we refer to Appendix B.
Minimizing the energy (6.16) with respect to the optimization parameter β yields
the limit

lim
D→∞

dϵV
dβ

=
1

β
− 89

144β3
!
= 0 ⇔ β = ±

√
89

144
. (6.17)

Note that only the positive solution is physical relevant, because the negative solu-
tion yields an exponentially increasing density.

In the second part of this section we consider the ansatz (6.14) and calculate at
first the vortex energy (6.4)

ϵV =

∫ D

0
dr

{
rδ
[
1− tanh2(δr)

]
+

tanh2(δr)

r
+
r

2

[
1− tanh2(δr)

]2}
. (6.18)

Evaluating the integrals yields according to Appendix B

ϵV =tanh(δD)
D − 6δD

2δ
− tanh3(δD)

2δD +D

6δ
+ ln(cosh(δD))

2δ + 1

3δ2

+
1

cosh2(δD)

2δ + 1

12δ2
+

2δ + 1

12δ2
+ ln(δD) +R , (6.19)
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where R is a numerical constant given by

R =

∫ 1

0
dx

{
tanh(x)

x
+

4

x (e2x + 1)2
− 4

x (e2x + 1)

}
≈ 0, 2095 . (6.20)

For further information we refer also here to Appendix B. Taking the derivative of
(6.19) with respect to δ yields

dϵV
dδ

=D
(
1− tanh2(δD)

) D − 10δD

3δ
+ tanh(δD)

2D

3δ
− ln(cosh(δD))

4

3δ2
+ (6.21)

+ sech2(δD)

[
−δ + 1

6δ3
+D

(
1− tanh2(δD)

) 2δD +D

6δ
− tanh(δD)

D

6δ2

]
− 2D sech2(δD) tanh(δD)

[
2δ + 1

12δ2
+ tanh(δD)

2δD +D

6δ

]
+

6δ2 − δ − 1

6δ3
,

wwhere we now can perform the limit D →. To this end we are using also the
formula for the limit

lim
D→∞

{ln(cosh(δD))− δD tanh(δD)} = ln

(
1

2

)
. (6.22)

Thus this yields a polynomial of third order for the optimization parameter δ

3δ3 +
1

2
δ2 +

(
1

2
+ ln

(
1

2

))
δ + ln

(
1

2

)
= 0 . (6.23)

Solving (6.23) leads to two solutions

δ1 ≈ 0.595 , (6.24)
δ2 ≈ −0.381 , (6.25)

where the solution (6.25) is not of physical interest, because this would lead to a
negative density profile.

6.1.3. Discussion
In this section we compare the optimization results for the different ansatz func-
tions (6.3) with α = 2, (6.13) with β =

√
89
144 and (6.14) with δ = 0, 595 with the

numerical solution of (6.2), see Fig. 6.2. First we note that all found approxima-
tions match quite well with the numerical result. However, all results also cross
the numerical solution. Furthermore the approximations match the numerics for
large distances quite well and yield therefore a good description far away from the
vortex. Nevertheless, it is noticeable that the exponential approach (6.13) describes
the numerical solution much faster than the other two ansatzes for the far field.
Furthermore, when considering the near field, the hyperbolic tangent ansatz (6.14)
best approximates the numerical solution. From this we can conclude that the hy-
perbolic tangent ansatz (6.14) is best for analysing the near field of the vortex and
the exponential ansatz (6.13) for describing the far field.
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Figure 6.2.: Rescaled density plotted as function of r for the different ansatz
functions compared with the numerical solution of (6.2).

6.2. Open Dissipative System
In this Section we go now from the closed system to the open dissipative system
case. The goal in the following calculations is to get a first insight of the analytical
description of a single charged vortex in a stationary state for open dissipative
systems. As we already introduced in Section 1.3 the main differnce between a
vortex in a closed system and the open dissipative system lies in the velocity field,
which has now, as shown in [24, 59] from numerical investigations, a spiral shape.
To this end, we consider the stationary cGPE (2.18) and apply the transformation

Ψ(r) =
√
n0f(|r|)eiΦ(|r|,φ) . (6.26)

Note that the representation for the open system (6.26) and the representation for
the closed systems (6.1) are quite similar. However, the two representations differ
fundamentally in the phase of the wave function, which has in case of an opoen
dissipative system also a spatial component. Due to the spiral shape of the velocity
field induced by the vortex we are using the Helmholtz vector decomposition theorem
[51] to decompose the velocity field into a non-rotational and a non-divergent part,
similar to (3.37) from Section 3.2.2, yielding

v(r, φ) = vS(φ) + vR(r) . (6.27)

Due to the relation (3.5) between the velocity field and the phase of the condensate
it follows directly from (6.27) that the phase Φ can also be decomposed into two
components

Φ(r, φ) = φS(φ) + φR(r) , (6.28)
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where φS denotes the circular component, which we also refer like in Section 3.2.2 to
be the singular phase, and φR represents the radial contribution of the phase, which
we refer to be the regular phase. Furthermore we know from the hydrodynamic
chapter that the open dissipative parameters only influence the regular velocity
(3.39). Therefore we assume that the singular phase and the singular velocity to be
the same as in the closed system

φS(φ) = φ ⇒ vS =
ℏ
m
∇φS =

ℏ
m

eφ

r
. (6.29)

However, as calculated in Section 3.2.2 we can not continuity equation for the open
dissipative system exactly without taking into account the density profile. Therefore
we determine in the following an analytical approach using the projection optimiza-
tion method [25]. To this end we make the standard literature density ansatz (6.3)
for closed systems. Note that at this point we are not able to also make an ansatz for
the velocity field. Solving the stationary cGPE (2.18) can be done in two different
but equivalent ways.
One possibility is to separate the real and imaginary part of the stationary cGPE
(2.18). To this end we insert (6.26) into the cGPE (2.18) and then separate real and
imaginary parts, which leads to

0 = µ+
ℏ2

2m

[
∇2f

f
− 1

r2
− (∇φR)

2

]
− gn0f

2 , (6.30)

0 =
ℏ2

2m

[
∇2φR + 2

∇f

f
·∇φR

]
− 1

2

[
γ − Γn0f

2
]
. (6.31)

Note that for large distances according to Section 3.2.2 the chemical potential µ, the
density n0, the pumping γ and the losses Γ are related by (2.22). Also we see that
using √

n0f =
√
n that Eq. (6.31) corresponds to the continuity equation (3.31) and

Eq. (6.30) to the velocity equation (3.32) in a steady state.
Inserting the ansatz (6.3) into the Eq. (6.31) yields a second order ordinary dif-
ferential equation, which can be solved analytically exact dependent on the trial
parameter α. To determine the optimal value for the trial parameter α we can use
to this end the projection optimization method applied to Eq. (6.30).
However, in this section we show a different possibility by solving the whole sta-
tionary cGPE (2.18). First combining the density ansatz (6.3) and the separation
of the phase components (6.28) with the transformation (6.26) yields an ansatz for
the wave function Ψ

Ψ(r) =
√
n0

√
r2

r2 + α
eiφ+iφR(r) . (6.32)

This ansatz we now use in the projection optimization method to find an approx-
imate solution to the stationary cGPE (2.18). Treating the radial phase φR as an
optimization trial function leads to the projection optimization equation∫

R2

dr
{

EOM(r) [Ψ,Ψ∗]
δΨ∗(r)
δφR(r′)

+ EOM∗(r) [Ψ,Ψ∗]
δΨ(r)
δφR(r′)

}
= 0 . (6.33)
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Using the functional chain rule applied to the wave function ansatz (6.32)

δΨ(r)
δφR(r′)

=
∂Ψ(r)
∂φ(r)

δφR(r)
δφR(r′)

= iΨ(r)δ(r − r′) (6.34)

δΨ∗(r)
δφR(r′)

=
∂Ψ∗(r)
∂φ(r)

δφR(r)
δφR(r′)

= −iΨ∗(r)δ(r − r′) (6.35)

results due to the definition of the delta-distribution to a vanishing spatial integral.
Therefore this leads to a second order inhomogeneous ordinary differential equation
for the singular phase

d2φR

dr2
+

r2 + 3α

r (r2 + α)

dφR

dr
=
γm

ℏ2
α

r2 + α
. (6.36)

Note that we used in (6.33) the relation n0 = γ/Γ between pumping, dissipation and
the bulk value for the density. Therefore the only parameter of the open dissipative
system, which is involved in the singular phase is the pumping rate γ. Furthermore
reducing the order of (6.33) by introducing the quantity

vR(r) =
dφR(r)

dr
(6.37)

yields a first order inhomogeneous ordinary differential equation for vR. Note that
due to (3.5) the quantity vR is proportional to the absolute value of the regular
velocity:

dvR
dr

+
r2 + 3α

r (r2 + α)
vR =

γm

ℏ2
α

r2 + α
. (6.38)

The general solution of such a differential equation (6.38) is according to [60] a
superposition of the homogeneous solution and one particular solution. Therefore
the general solution of (6.38) has the form

vR(r) = vhom
R (r) + vpart

R (r) . (6.39)

In order to find these solutions let us first consider a generalization of (6.38)

du(x)

dx
+ a(x)u(x) = b(x) , (6.40)

where u(x) is a general function fulfilling the differential equation (6.40) and a(x), b(x)
are arbitrary but continuous functions.
The general solution of the homogeneous case is then given by

uhom(x) = C exp

(
−
∫
dx a(x)

)
, (6.41)

where C is a integration constant and determined by boundary conditions. Via
separation of constants one also finds the particular solution, which is given by

upart(x) =

[∫
b(x)e

∫
a(x)dxdx

]
e−

∫
a(x)dx . (6.42)
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With these equations we can now determine the homogeneous solution and the
particular solution of (6.38) leads after integration to

vhom
R (r) = C

r2 + α

r3
, (6.43)

vpart
R (r) =

αγm

2ℏ2

[
ln
(
r2 + α

)r2 + α

r3
+
α

r3

]
. (6.44)

Therefore the general solution is given by

vR(r) = C
r2 + α

r3
+
αγm

2ℏ2

[
ln
(
r2 + α

)r2 + α

r3
+
α

r3

]
. (6.45)

To determine the integration constant we impose Dirichlet boundary conditions for
vR, .e. vR must vanish at the origin.. By expanding the general solution (6.45) for
small r leads to the value of the integration constant C

C = −αγm
2ℏ2

[1− ln(α)] . (6.46)

Inserting the found constant (6.46) into the general solution (6.45) yields

vR(r) =
αγm

2ℏ2

[
ln

(
r2 + α

α

)
r2 + α

r3
− 1

r

]
, (6.47)

which we also can rewrite in terms of the healing length ξ

vR(r) =
1

ξ2
αγ

4µ

[
ln

(
r2 + α

α

)
r2 + α

r3
− 1

r

]
. (6.48)

Note that with the choice of the integration constant the velocity field also fulfills
automatically Dirichlet boundary conditions at infinity. To calculate the trial opti-
mization parameter α according to the projection optimization method leads to the
projection optimization equation∫

R2

dr
{

EOM [Ψ,Ψ∗] (r)∂Ψ
∗(r)
∂α

+ EOM∗ [Ψ,Ψ∗] (r)∂Ψ(r)
∂α

}
= 0 (6.49)

Inserting the ansatz for the wave function (6.32) yields after integration the inter-
mediate result for the trial parameter α

ℏ2

2m

∫ ∞

0
dr

r3

(r2 + α)2
v2R(r) =

gγ

4Γ
− ℏ2

4mα
. (6.50)

Note that in the limit vR → 0 by using (2.22) the Eq. (6.50) results directly to the
value of the trial parameter α for the closed system case

gγ

4Γ
− ℏ2

4mα
= 0 ⇔ α = 2ξ2 . (6.51)
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In order to evaluate (6.50) further we insert the solution of the radial velocity (6.48),
which leads to

α2 − 4gℏ2

Γγm
α+

(
2ℏ2

γm

)2

= 0 . (6.52)

Solving the quadratic equation (6.52) for α leads to two solutions

α± = 4
µ

γ

g

Γ

1±
√
1−

(
Γ

g

)2
 ξ2 . (6.53)

Note that demanding in the closed system limit Γ → 0 only the −-solution is of
physical interest. Also we notice that for increasing loses Γ the square root in (6.53)
becomes imaginary and therefore we get, by demanding a real valued density, a
restriction for the possible values of losses

0 ≤
∣∣∣∣Γg
∣∣∣∣ ≤ 1 . (6.54)

Using the relation between losses and pumping in a steady state (2.22) we therefore
also get a restriction for the pumping parameter

0 ≤
∣∣∣∣γµ
∣∣∣∣ ≤ 1 . (6.55)

As shown in Fig. 6.3 a) the value of the optimization parameter α increases by
increasing the loss rate Γ up to Γ/g = 1, because increasing further would lead to
a complex value of α. Also we see in Fig. 6.3 that depending on the observation
area the velocity field has different types of behaviour. Near the vortex core, the
velocity field is mostly circular similar to the closed system. At some intermediate
distance from the vortex we see the spiral behaviour and at large distances the radial
component dominates the circular motion such that the velocity field is mostly radial,
as shown in Fig. 6.3.
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(a) (b)

Figure 6.3.: Left: Optimization parameter α as a function of losses Γ. Right:
Comparison of radial velocity (orange) with singular velocity (blue) as
a function of r
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Figure 6.4.: Current |j| = ℏ Im(ψ∇)ψ∗) around vortex with Γ/g = 0.4. From left to
right different characteristics are visible depending on the observation
area.

6.3. Discussion and Numerical Simulation
In order to compare the analytical results from the previous section, we now also
solve numerically the cGPE (2.17). Therefore it is helpful to write the cGPE (2.17)
in dimensionless units. According to [25] we rescale the particle density with the
saturation density n0 and choose as the characteristic length scale the healing length
ξ from (3.27) to rescale all length units as well as ξ

√
2/c0 for time units, where c0

denotes the sound velocity [61]. With this we get

i
∂ψ

∂t
=

[
−∇2 + |ψ|2 + i

2
σ
(
1− |ψ|2

)]
ψ . (6.56)

Note that Eq. (6.56) only depends on one parameter σ = Γ/g describing the losses
in the system.
Applying the pseudospectral method [62] to the dimensionless cGPE (6.56) together
with the simulator XMDS2 [63] yields then a numerical solution. To do the time
steps we are using 4th order adaptive Runge-Kutta method with step size ht = 10−5.
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Figure 6.5.: Left: Particle number as function of time. Right: Energy as function
of time. In both figures are plotted the quantities for different values
of losses.

To solve the spatial part we implement a cosine basis and use a square box of size
L = 400 with a grid size of hx = hy = 0.5. The reason for choosing the cosine basis
is that this automatically imposes Neumann boundary conditions at the edges of
the box.
Furthermore to prepare an initial state of the wave function we are using the an-
alytically approximated density solution of the closed system case (6.3) with the
calculated optimization parameter (6.12)

Ψinit(r, φ) =
r√

r2 + 2
eiφ . (6.57)

Therefore we put a single charged vortex in the center of the integration box as an
initial state. To reach a stationary state we have to fulfill the steady state continuity
equation (3.35). Therefore we consider in the simulation the particle number and
the energy in the system and apply the condition for a steady state

∂N

∂t
= 0 . (6.58)

∂E

∂t
= 0 . (6.59)

Note that in the closed system case both conditions are equivalent, but however,
for an open dissipative system we have to consider both as they are not simultane-
ously fulfilled, as Fig. 6.5 shows. Furthermore due to the used numerical method
and starting with the closed system vortex solution as an initial state, we see in
Fig. 6.6 and Fig. 6.7 that the spiral behaviour of the phase becomes more visible for
increasing time. Therefore we see that the radial velocity has to propagate from the
origin through the whole system until it reaches the walls of the box. With the ob-



47

(a)

−100 −75 −50 −25 0 25 50 75 100
x

−100

−75

−50

−25

0

25

50

75

100

y

(b)

(c)

−100 −75 −50 −25 0 25 50 75 100
x

−100

−75

−50

−25

0

25

50

75

100

y

(d)

Figure 6.6.: Evolution of the phase in two dimensions. Starting in a) for t=0, b)
t=250, c) t=500, d) t=750.

tained numerical results for the system in a steady state we can finally compare the
approximate analytical solutions obtained in Section 6.2 with the numerical data.
As shown in Fig. 6.8 the analytical solution for the velocity field agrees excellent
with the numerical results. Comparing also the density profiles leads to a very good
match, as shown in Fig. 6.9. Although the analytical approach only differes notice-
ably from the numerical data in the intermediate distance, which is only visible in
an magnification of the area. This can be understood by considering equation (6.30)
as the density is only affected pertubatively by the dissipation dependence of the
velocity field. However, considering also the comparison of the radial velocity field
we notice a larger deviation between numerics and the result obtained by the pro-
jection optimization method by increasing the loss rate Γ/g, see Fig. 6.10. This is
also noticeable in the maximum value of the radial velocity and the the optimization
parameter α as shown in Fig. 6.11.
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Figure 6.7.: Evolution of the phase in two dimensions. Starting in a) t=1000, b)
t=1250, c) t=1500, d) t=1750, e) t=2000.
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Figure 6.8.: Current |j| = ℏ Im(ψ∇)ψ∗) around vortex with Γ/g = 0.4. Left column
is the calculated analytical solution. Right column is the
corresponding numerical result. Taken from [25].
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Figure 6.9.: Density profile for a loss rate Γ/g = 0.5. The dotted line represents the
numerical solution, whereas the straight line corresponds to the
projection optimization approach. Taken from [25].
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[25].
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method. Taken from [25].



7. Continuum Model

As the final chapter of thesis we consider a lattice model describing a Photon Bose-
Einstein condensate introduced in reference [24]. The special feature of this model is
that there is no explicit interaction term, but instead it is claimed that an effective
interaction is achieved by an imaginary hopping term. The underlying equation of
motion of this model is the following

iℏ
∂ψ(x, t)
∂t

= −(1− iκ)J
∑

x′∈Nx

+V (x)ψ(x) + i

2
[B21M2(x)−B12M1(x)− Γ]ψ(x) ,

(7.1)
where Γ denotes a loss global rate and V an external potential. Reference [24]
claims that the effective interaction is modeled by the energy relaxation strength
and related by the Kennard-Steppanov relation to

κ =
1

2
βB12M1 , (7.2)

where β is proportional to the inverse temperature

β =
1

kBT
. (7.3)

To provide a plausible indication for this far-reaching claim we consider the contin-
uum model of 7.1

iℏ
∂ψ(x, t)
∂t

= − ℏ2

2m
(1− iκ)∇2ψ(x, t)+V (x)ψ(x, t)+g |ψ(x, t)|2 ψ(x, t)+ i

2

[
γ − Γ |ψ(x, t)|2

]
ψ(x, t) ,

(7.4)
where we use the relation between hopping J , the lattice length a and the kinetic
energy

Ja2 =
ℏ2

2m
. (7.5)

In fact this corresponds to the cGPE (2.17) with an additional imaginary kinetic
term. Furthermore we specify the external trapping potential to be a harmonic trap

V (x) = 1

2
mω2 |x|2 . (7.6)

Note that using the continuum model (7.4) we consider at first a model with two
interaction terms in order to check whether the above mentioned claim of [24] is



53

correct. This leads at the end to a better comparison of the determined results with
our previous calculations. Applying the separation ansatz

ψ(x, t) = ψ(x)e−
i
ℏµt (7.7)

leads to the steady state equation

µψ(x, t) = − ℏ2

2m
(1− iκ)∇2ψ(x, t)+V (x)ψ(x, t)+g |ψ(x, t)|2 ψ(x, t)+ i

2

[
γ − Γ |ψ(x, t)|2

]
ψ(x, t) .

(7.8)
In order to apply the projection optimization method we make the ansatz for the
wave function

Ψ(r) =

√
N

πq2
e
− r2

2q2
−iAr2 (7.9)

where we included three trial parameters N, q and A similar to Section 5.3. The
projection optimization method applied to the ansatz (7.9) yields three projection
optimization equations∫

R2

dr
{

EOM [Ψ,Ψ∗] (r)∂Ψ
∗(r)

∂N
+ EOM∗ [Ψ,Ψ∗] (r)∂Ψ(r)

∂N

}
= 0 , (7.10)∫

R2

dr
{

EOM [Ψ,Ψ∗] (r)∂Ψ
∗(r)

∂q
+ EOM∗ [Ψ,Ψ∗] (r)∂Ψ(r)

∂q

}
= 0 , (7.11)∫

R2

dr
{

EOM [Ψ,Ψ∗] (r)∂Ψ
∗(r)

∂A
+ EOM∗ [Ψ,Ψ∗] (r)∂Ψ(r)

∂A

}
= 0 . (7.12)

Inserting the steady-state equation of motion (7.8) and the respective derivatives of
the ansatz (7.9) yields the following integrals∫ ∞

0
dr

{
µr +

ℏ2

2m

[
−2r

q2
+
r3

q4
− 4A2r3

]
− κ

ℏ2

2m

[
4Ar − 4Ar3

q2

]
(7.13)

− mω2

2
r3 − g

N

πq2
re

− r2

q2

}
N

πq2
e
− r2

q2 = 0 , (7.14)

∫ ∞

0
dr

{
µr +

ℏ2

2m

[
−2r

q2
+
r3

q4
− 4A2r3

]
− κ

ℏ2

2m

[
4Ar − 4Ar3

q2

]
(7.15)

− mω2

2
r3 − g

N

πq2
e
− r2

q2

}
N

πq2
e
− r2

q2

[
r2

q3
− 1

q

]
= 0 , (7.16)

∫ ∞

0
dr

{
ℏ2

2m

[
4Ar3 +

4Ar5

q2

]
+ κ

ℏ2

2m

[
−2r3

q2
+
r5

q4
− 4A2r5

]
(7.17)

+ γr3 − ΓNr3

πq2
e
− r2

q2

}
N

πq2
e
− r2

q2 = 0 . (7.18)
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Calculating the integrals leads to three equations, one for each trial parameter

µ− ℏ2

2mq2
− 2ℏ2A2q2

m
+ κ

ℏ2A
2m

− mω2

2
q2 − g

N

2πq2
= 0 , (7.19)

ℏ2

2mq3
− 2A2ℏ2

m
q + κ

2ℏ2A
mq

− mω2

2
q +

gN

4πq3
= 0 , (7.20)

3ℏ2A
m

q2 − κ
2ℏ2A2

m
q4 + γq2 − ΓN

2π
= 0 . (7.21)

By introducing the oscillator length (5.12) the equations (7.19)–(7.21) can be sim-
plified resulting in

N = 2π

{[
µ

g
+ κ

ℏ2A
2mg

]
q2 −

[
2ℏ2A2

mg
+
mω2

2g

]
q4 − ℏ2

2mg

}
, (7.22)

q =

√√√√ 2κAl2osc
4A2l4osc + 1

+

√(
2κAl2osc

4A2l4osc + 1

)2

+
g̃N
2π + 1

4A2l4osc + 1
losc , (7.23)

A =
3

4κq2

[
1±

√
1 +

8mκ

9ℏ2

[
γq2 − ΓN

2π

]]
. (7.24)

Thus we obtained three coupled equations, which can be solved explicitly. However,
this is not needed as our interest lies on the effect of the energy relaxation strength
κ upon the width q of the Gauss profile (7.9). First we note that in the limit κ→ 0
all results from Section 5.3 can be reconstructed, although it is not directly clear
that the parameter A does not diverge. To check this we expand Eq. (7.24) for small
κ leading to

A = −
m
(
γq2 − Γn

2π

)
3ℏ2q2

+
2m2

(
γq2 − Γn

2π

)2
27ℏ4q2

κ+O(κ2) . (7.25)

Now we can read off from Eq. (7.25) that also the parameter A does not diverge in
this limit and remains constant. Also we notice from (7.23) that even in the limit of
vanishing interaction strength g the width q is influenced by κ. The most important
insight we get from these equations is that the width (7.23) of the condensate wave
function is increased by the value of κ, as also shown in Fig. 7.1. And his remains
to be true even in the limit g → 0 by κ increased. Therefore we can conclude that
the above introduced imaginary κ-term acts indeed like an interaction.
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Figure 7.1.: Width q of the Gauss profile as function of the energy relaxation
strength κ, plotted in units of the oscillator length losc.



8. Summary and Outlook

Inspired by numerical simulations of a single vortex described by a mean-field theory
for Photon Bose-Einstein condensates in reference [24] and for nonequilibrium quan-
tum fluids in reference [49], the aim of this thesis is to find approximate analytical
solutions of the velocity field generated by a single vortex and therefore determine
an analytical solution to describe the spiral shape [24].
For this purpose we start in Chapter 2 with the Gross-Pitaevskii equation (2.9) [17,
18] for closed systems and extend heuristically to a complex Gross-Pitaevskii equa-
tion (2.17) [34], which also includes the properties of an open dissipative system.
Namely we add to the Gross-Pitaevskii equation an additional imaginary term de-
scribing pumping and losses of particles. Furthermore we also investigate a linear
stability analysis of the complex Gross-Pitaevskii equation (2.17) and derive two
eigenmodes, where the first reproduces an unstable Goldstone mode (2.36) and the
second a stable eigenmode (2.37),(2.38), but with the fact that the Goldstone theo-
rem [39] is modified.
With these two equations (2.9) and (2.17) we derive in Chapter 3 a hydrodynamic
description for both a BEC in a closed and an open dissipative system. Starting
with the closed system case we derive the continuity equation for the particle density
(3.10), an Euler equation for the velocity field (3.13) and to have a closed descrip-
tion of the system also including turbulence we determine the Helmholtz vorticity
equation (3.15). Afterwards we specify in the next section to a two-dimensional
condensate and derive one solution for the hydrodynamic equations (3.10),(3.13)
and (3.15) by introducing a stream function description of the velocity field. In
the second part of Chapter 3 we then go to an open dissipative system and derive
the hydrodynamic equation in this case yielding the same equations for the velocity
field and the vorticity as in the closed system. The only difference appears in the
continuity equation (3.31), which now has an inhomogeneous right-hand side. Also
due to this nhomogeneity of the continuity equation we are not able to find, in a
similar way to the closed system, a solution for the hydrodynamic equations (3.39).
To overcome this issue we construct in Chapter 4 a new projection optimization
method [25], which is based on a projection of the underlying Hilbert space to a
parameter manifold spanned by a set of parameters due to the choice of an ansatz
wave function. With that method [25] we are then able to reduce a partial differen-
tial equation to a set of ordinary differential equations, which is in general easier to
solve than the whole problem.
As a first example of the projection optimization method [25] we consider in Chap-
ter 5 the complex Gross-Pitaevskii equation (2.17) with an external harmonic trap.
By using an standard Gauss ansatz (5.2) with the particle number and the width
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of the Gauss profile as optimization parameters we calculate these parameters with
both the projection optimization method and the well known cumulant method [54]
yielding the same results. By that inspired we even proof that the projection opti-
mization equations and the cumulant equations are equivalent. As a second example
for the projection optimization method we then finally consider a single vortex in an
infinite homogeneous system in Chapter 6. To familiarise yourself with the system
we have at first a closer look into the closed system case and calculate various types
of ansatz functions ending with the conclusion that the simplest and also good ap-
proaching function is the standard literature ansatz (6.3). Now going to the open
system case and using the standard ansatz for closed systems (6.3) we are then able
to approximate the solution of the complex Gross-Pitaevskii equation (2.17) in a
stationary state yielding compared with numerical simulations a good match for the
density profile and an even better match for the spiraling velocity field.
As an last example and also a first calculation for future work we consider in Chapter
7 a more general equation of motion from reference [24]. In this model we are work-
ing out by considering the continuum limit of [24] how the additional imaginary term
influences the particle-particle interaction. Therefore we make an Gaussian ansatz
for the wave function (7.9) and apply the projection optimization method [25]. This
yields that the introduced term highly influences the width of the condensate wave
function and therefore can be seen similar to an interaction term.
To sum up, in this thesis we constructed a new optimization method [25], which
opens the door for finding analytical approximate solutions to any systems. We
then apply this new method to three different examples and yield a good match of
the analytical solutions with numerical simulations.

As described above the projection optimization method [25] opens the door for
further investigations in the future. A still open question is how the nonlinearities
in [24] involved in pumping and dissipation can lead to a finite vortex core in ab-
sence of a contact interation term in the mean-field model. Applying the projection
optimization method to the mean-field equation of [24] might give the answer. Fur-
thermore in this thesis we show that our model is valid for small values of pumping
and losses. Therefore by applying a different, much more complicated, ansatz to the
projection optimization equations might solve this problem. A reasonable ansatz is
similar to the closed system Pade-approxiumation derived by N. Berloff [64]. Also
we can consider extending the analysis in order to determine how two vortices in an
open-dissipative system are interacting in comparison with the corresponding situa-
tion in a closed system. With these results we then can investigate the consequences
for the BKT transition [65–67] between bound and unbound vortex pairs, which
occur also for open-dissipative systems [59].



A. Projection Optimization Method
As described in Chapter 4 the projection optimization method generalises the stan-
dard optimization method [vm1996erez] and the well know cumulant optimization
method [13, 54] to all kinds of systems. The method is not restricted to a special
kind of ansatz function like the cumulant method [13, 54] or needs particle conser-
vation like the standard optimization method [vm1996erez]. Furthermore from a
mathematical point of view we introduced the projection optimization method as a
projection of the equation of motion onto a parameter manifold spanned by trial or
optimization parameters. This trial parameters were introduced by the ansatz wave
function. However, this procedure can also be interpreted geometrically. To this
end we consider the following equation of motion

EOM(X) = Ẋ − F(X) = 0 , (A.1)

where X,F(X) ∈ RN and F(X) denotes the underlying vector field. Assuming that
we can approximate the vector X by a vextor x(α), which depends on a set of M
trial parameters α = (α1, ..., αM )

X ≈ x(α) . (A.2)

Now introducing similar to Chapter 4 the scalar product, but note that we here are
using the standard Euclidean scalar product instead of the L2 scalar product (4.14),
and calculating the projection optimization equations (4.13) yielding〈

ẋ − F(x), ∂x
∂αi

〉
= 0 i = 1, ..., N . (A.3)

To geometrical interpret this we first recognize that due to (A.2) the trajectory X(t)
lies on the manifold spanned by α and embedded in RN due to x(α), see Fig. A.1.
Therefore the partial derivative ∂x/∂αi corresponds to a tangential vector of the
manifold and points perpendicular to αi = const line, see Fig. A.1. According to
[25] (A.3) projects the dynamics of (A.1) onto the manifold, which is quite natural.
After projecting we therefore have, and also see in Fig. A.1, that the approximation
x can be expanded in terms of the partial derivatives yielding

x =
M∑
j=1

α̇j
∂x
∂αj

. (A.4)

This leads now together with (A.3) to
M∑
j=1

α̇jgji(α) =

〈
F(x), ∂x

∂αi

〉
, (A.5)
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Figure A.1.: Geometrical illustration of projection optimization method for N = 3
and M = 2. Taken from [25]

where gji denotes the mentric of the manifold

gji(α) =

〈
∂x
∂αj

,
∂x
∂αi

〉
. (A.6)

Defining the right hand side of (A.5) as the projected components fi of the vector
field F(x) onto the manifold

fi(α) =

〈
F(x), ∂x

∂αi

〉
. (A.7)

Because Eq. (A.7) holds we can interpret the vector f as the projection of the vector
field F onto the manifold and is therefore the approximation of the vector field F.
Finally we get the following equations for the trial parameters

α̇ = f(α) (A.8)

as due to the projection (A.3) equations this corresponds to an approximation of
the equation of motion in the manifold.



B. Useful Integrals

In this Appendix we show the calculations concerning the Section 6.1.2 in more
detail. To this end we separate the following into two parts. In the first part we
consider the exponential ansatz function (6.13) and then afterwards we consider the
hyperbolic tangens ansatz function (6.14).

B.1. Exponential Ansatz

According to Section 6.1.2 we are considering the following integral (6.15)

ϵV =

∫ D

0
dr

{
β2re−2βr +

1

r

(
1− e−βr

)2
+
r

2

(
1−

(
1− e−βr

)2)2
}

(B.1)

This can be simplified as follows

0 =

∫ D

0
dr

{
rβ2e−2βr +

1

r
+

1

r
e−2βr − 2

r
e−βr + 2re−2βr +

r

2
e−4βr − 2re−3βr

}
(B.2)

Therefore we have to calculate the following seven integrals

I1 =

∫ D

0
drrβ2e−2βr = −β

2

2

∂

∂β

∫ D

0
dre−2βr =

1

4
− 1

4
e−2βD − βD

2
e−2βD (B.3)

I2 =

∫ D

0
dr2re−2βr = − ∂

∂β

∫ D

0
dre−2βr =

1

2β2
− 1

2β2
e−2βD − D

β
e−2βD (B.4)

I3 =

∫ D

0
dr
r

2
e−4βr = −1

8

∂

∂β

∫ D

0
dre−4βr =

1

32β2
− 1

32β2
e−4βD − D

8β
e−4βD (B.5)

I4 =

∫ D

0
dr − 2re−3βr =

2

3

∂

∂β

∫ D

0
dre−3βr = − 2

9β2
+

2

9β2
e−3βD +

2D

3β
e−3βD

(B.6)

I5 =

∫ D

0
dr

1

r
= lim

r0→0

∫ D

r0

dr
1

r
= lim

r0→0
{ln(D)− ln(r0)} (B.7)

I6 =

∫ D

0
dr

1

r
e−2βr = lim

r0→0

∫ 2βD

2βr0

dt
1

t
e−t = lim

r0→0
{Γ(0, 2βr0)− Γ(0, 2βD)} (B.8)

I7 =

∫ D

0
dr − 2

r
e−βr = −2 lim

r0→0

∫ βD

βr0

dt
1

t
e−t (B.9)
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Note that we introduced in (B.7)–(B.9) also an additional infrared cutoff due to
divergences. Furthermore we introduced the upper Gamma-function [68]

Γ(s, x) =

∫
d
tx∞ts−1e−t . (B.10)

Notice that the integrals (B.7)–(B.9) diverge separately, but by considering the sum
and two different expansion formulas for the upper Gamma function, one for small
x [68]

Γ(0, x) = −γ − ln(x)−
∞∑
k=1

(−x)k

k(k!)
, (B.11)

where γ denotes the Euler-Mascheroni constant and for for large x [69]

Γ(0, x) =
e−x

x

n∑
k=1

(−1)kk!

xk
, where n is large enough (B.12)

we see that all divergences vanish automatically

I5 + I6 + I7 = ln

(
βD

2

)
+ γ − e−2βD

n∑
k=0

(−1)kk!

(2βD)k+1
+2e−βD

∑
k=0

n
(−1)kk!

(βD)k+1
. (B.13)

From Eq. (B.13) we see that except of the logarithmic divergence all other diver-
gences vanish. Therefore by taking the derivative with respect to β we don’t have
any divergences left.

B.2. Hyperbolic Tangens Ansatz

According to Section 6.1.2 we are considering the following integral (6.18)

ϵV =

∫ D

0
dr

{
rδ
[
1− tanh2(δr)

]
+

tanh2(δr)

r
+
r

2

[
1− tanh2(δr)

]2}
. (B.14)

After rewriting (B.14) this leads to the following six integrals, of which the five
can mostly be calculated by using partial integration and identities for hyperbolic



62 B.2. Hyperbolic Tangens Ansatz

tangens

S1 =

∫ D

0
dr
{
rδ +

r

2

}
=

1

2
δD2 +

1

4
D2 , (B.15)

S2 =

∫ D

0
drδr tanh4(δr) =

1

2
δD2 −D tanh(δD)− 1

3
D tanh3(δD) (B.16)

+
4

3δ
ln(cosh(δD)) +

1

6δ cosh2(δD)
+

1

6δ
, (B.17)

S3 =

∫ D

0
dr
r

2
tanh4(δr) =

1

4
D2 − D

2δ
tanh(δD)− D

6δ
tanh3(δD) (B.18)

+
2

3δ2
ln(cosh(δD)) +

1

12δ2 cosh2(δD)
+

1

12δ2
, (B.19)

S4 = −2

∫ D

0
drδr tanh2(δr) = −δD2 − 2D tanh(δD)− 2

δ
ln(cosh(δD)) (B.20)

S5 = −2

∫ D

0
dr
r

2
tanh2(δr) = −1

2
D2 +

D

δ
tanh(δD)− 1

δ2
ln(cosh(δD)) . (B.21)

The last integral is, however, much more complicated as needs a special treatment.
First we note that it holds

tanh(x) = 1− 2

e2x + 1
. (B.22)

With this we can make the first step in calculating the last remaining integral

S6 =

∫ D

0
dr

1

r
tanh2(δr) =

∫ δD

0
dx

1

x
tanh2(x) =

∫ 1

0
dx

1

x
tanh2(x) +

∫ δD

1
dx

1

x
tanh2(x)

(B.23)

=

∫ 1

0
dx

1

x
tanh(x) +

∫ δD

1
dx

{
1

x
+

4

x (e2x + 1)2
− 4

x (e2x + 1)

}
(B.24)

=

∫ 1

0
dx

1

x
tanh(x) + ln(δD) +

∫ ∞

1
dx

{
4

x (e2x + 1)2
− 4

x (e2x + 1)

}
(B.25)

−
∫ ∞

δD
dx

{
4

x (e2x + 1)2
− 4

x (e2x + 1)

}
(B.26)

By substituting y = 1/x in the second integral allows to combine this with the first
integral resulting in

S6 =

∫ 1

0
dx

{
tanh(x)

x
+

4

x (e2x + 1)2
− 4

x (e2x + 1)

}
(B.27)

−
∫ ∞

δD
dx

{
4

x (e2x + 1)2
− 4

x (e2x + 1)

}
+ ln(δD) (B.28)
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Now we note that the first integral can not be solved analytically, however, a nu-
merical integration yields∫ 1

0
dx

{
tanh(x)

x
+

4

x (e2x + 1)2
− 4

x (e2x + 1)

}
= R ≈ 0.2095 , (B.29)

whereas the second integral converges in the limit D → ∞ to zero. Therefore
considering large D this integral does not influence the value of the integral.∫ ∞

δD
dx

{
4

x (e2x + 1)2
− 4

x (e2x + 1)

}
≈ 0 (B.30)

Therefore the last integral can be approximated by

S6 ≈ R+ ln(δD) (B.31)
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