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Chapter 1

Introduction

1.1 Motivation

Physicists strive to discover the hidden order of nature. Finding and solving deterministic models
while taking into account all properties of a physical system, however, is not always possible.
As a matter of fact, most physical systems exhibit a certain randomness. Thus, the theory of
disordered systems has become increasingly important over the past few decades. It describes
unknown properties of a specific model with the help of random functions and has been applied
to a wide range of physical, chemical, and biological problems. In real metals, for example, the
lattice symmetry is broken by defects such as impurities and imperfections [ 1, 2]. Furthermore,
Bose-Einstein condensates can be experimentally realized in traps. Taking into account disorder
makes theoretical models for these experiments more realistic. Wire traps in atom chips hold
a natural disorder due to the surface roughness. On the contrary, laser speckles can provide
a highly disordered but stationary coherent light field in optical lattices and, therefore, both
the strength of the disorder and its correlation length can be changed in a controlled manner [
3, 4, 5]. Other examples are the transport in random media and diffusion-controlled reactions.
They can be modeled by random walks in random trapping environments [ 6, 7]. In analogy to
this, random potentials find areas of application even far from its physical origins. The dynamics
of stock markets, for instance, have been modeled as a tracer in a Gaussian random field [ 8]. In
the context of disorder theory, the Sherrington-Kirkpatrick (SK) model describing spin glasses,
i.e., disordered magnets, is especially important as it has been studied capaciously [ 9]. One
imagines half of the bonds between two spins randomly chosen as ferromagnetic and the other
half as antiferromagnetic. The SK model describes this situation via an Ising model in which
the spins are coupled by random infinite-range interactions. These interactions are assumed to
be independent and normally distributed [ 9, 10, 11]. Because the spin variables are frozen
at low temperatures, one speaks of quenched disorder. A standard method to deal with it is
a mathematical trick called the replica method. Instead of treating the actual problem, one
looks at n copies of the system [ 11, 12]. The central idea of the replica trick is to analytically
continue the replicated system to n → 0 . Although it has proven to be successful many times,
this procedure is still quite controversial from a mathematical point of view. Furthermore, it
should be noted that the replica analyticity can break down in certain models [ 13].

Just as most physical systems exhibit a certain randomness, most problems cannot be solved
exactly. Therefore, innumerable approximation methods have been developed throughout the
course of physical history. An extremely powerful tool is perturbation theory. To further include
non-perturbative contributions, variational perturbation theory (VPT) is applied. As the name
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6 Introduction

suggests, it combines standard perturbative methods with a variational principle [ 12, 14]. It
plays a central role in the analysis of the SK model.

An improvement of the SK model was proposed by Giorgio Parisi in 1980 [ 10, 15, 16]. The
so-called replica-symmetric solution describing the SK model up to that point was shown to break
down beneath a critical temperature in certain cases [ 17]. The problem is caused by metastable
states. If just one equilibrium state exits, the solution has to be invariant under permutation of
the different replicas. Thus, at high temperatures or in the case of weak correlation, the replica-
symmetric ansatz is intrinsically correct. In these cases local minima do not play a decisive
role. Otherwise, different replicas can be arranged in different, locally stable equilibria [ 18].
Therefore, Parisi introduced the scheme of replica-symmetry breaking. It was shown to give a
stable solution for the SK model for all temperatures. His method turned out to be a major
breakthrough in disorder theory.

As a guinea pig for these variational approximation methods, we investigate in this thesis the
simple model of a harmonic oscillator in a disorder environment.

1.2 Toy Model

One of the most famous problems in physics is the one-dimensional harmonic oscillator. A particle
of mass m experiences a restoring force proportional to its displacement x. The corresponding
potential is given as

V (x) =
1

2
κx2 , (1.1)

where the constant κ denotes the spring constant in Hooke’s law. In the following, we investigate
this problem within a disorder environment that is described by a random external potential
U(x). It is taken to be a homogeneous and real-valued function. Furthermore, it should represent
a normally distributed random variable satisfying

U(x) = 0, U(x)U(x′) = R(x − x′) , (1.2)

where the overbar denotes the average over all realizations of U(x). In this thesis, we will focus
on a Gaussian correlation

R(x − x′) =
1√
2πλ

exp

{
−(x − x′)2

2λ2

}
, (1.3)

where the parameter λ denotes the correlation length. A δ-correlation can be described by
formally taking the limit λ → 0.

For this system the Hamilton function writes

Hho(x, p) =
p2

2m
+

1

2
κx2 + εU(x) (1.4)

for real x and p. The parameter ε denotes the correlation strength. In the canonical ensemble,
all thermodynamic properties of the system can be obtained via the free energy F . In order to
calculate it, we define the classical partition function

Zho =

∫ ∞

−∞

dp

2π~

∫ ∞

−∞
dx exp [−βHho(x, p)] (1.5)
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with the reciprocal temperature β = 1/kBT . For simplicity, the Boltzmann constant kB will be
set to 1 in the following considerations. It is now evident that the kinetic part of the Hamilton
function (1.4) just contributes the constant prefactor

√
m/2π~2β to the partition function, which

represents the inverse of the thermal de-Broglie wavelength, and, accordingly, leads to a constant
summand in the free energy Fho = − log(Zho)/β. As this constant will not be of any importance
in the discussion to follow, we will concentrate on the toy model Hamilton function

H(x) =
1

2
κx2 + εU(x) , (1.6)

where we omit the kinetic part. In this context the partition function reads

Z =

∫ ∞

−∞
dx exp[−β H(x)] . (1.7)

Now, the free energy can be stated as − log(Z)/β for a fixed realization of the potential U(x).
Hence, in the toy system considered, the system’s free energy is given as the free energy for fixed
potential averaged over all its realizations:

F = − 1

β
log Z . (1.8)

It is to note that the averaging process does not commutate with the logarithm and, therefore, it
is not possible to calculate the free energy directly, not even for the extremely simple toy model.

The Hamilton function (1.6) depends on the two parameters κ and ε. The physics of the
system, however, just depends on the ratio of these two parameters. This can be seen by a
simple rescaling of the reciprocal temperature

β̃ → ε β , (1.9)

which yields the Hamilton function

H̃(x) =
1

2

κ

ε
x2 + U(x) . (1.10)

In the discussion to follow we will stick formally to (1.6). The advantage of this is quite clear:
one just needs to throw a glance at a term to see in which order of the weak coupling expansion
it originates. However, we will not discuss the parameters independently but concentrate on the
case of fixed ε.

The toy model has already been studied in detail in Ref. [ 19] and, thus, we have some
benchmark with which we can compare our results. Although the classical harmonic oscillator
seems to be a very simple model, it is important on the interface to quantum mechanics. Its
natural generalization is a quantum particle in a random environment [ 20]. An experimental
realization of this model is the ion transport in disordered solid electrolytes. The design of the
experiment, however, imposes periodic boundary conditions [ 21]. Also, the behavior of polymer
chains in random media is strongly connected to this field of study [ 22]. Furthermore, a similar
model in higher dimensions has been used in a different area to derive the phase diagram of
vortices for certain high Tc superconductors such as YBCO [ 23, 24, 25, 26].
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1.3 Brownian Motion

Instead of departing from classical thermodynamic equilibrium statistics, the toy model can also
be approached from a different point of view. The starting point is a continuous-time stochastic
processes - the Brownian motion. In 1827 it was rediscovered by the Scottish botanist Robert
Brown. He observed the movement of particles suspended in a liquid studying the fertilization
process of a certain species of flower [ 27, 28]. He did not discover this fluctuating move-
ment, though. As a matter of fact, he mentions some of his precursors in his own publications.
Nonetheless, Brownian movement or Brownian motion is named in honor of this famous scientist.

A physical description of Brownian motion was later proposed by Einstein in his annus
mirabilis, in which he published the four famous papers about the photoelectric effect, which
won him his Nobel Prize in 1921, the theory of special relativity, the equivalence of mass and
energy, and, most important in this context, his physical treatment of the Brownian motion [
29]. A crucial role in the development of this theory played his doctoral thesis stating among
other things the diffusion formula. It was submitted to the University of Zurich in the same year
and published in the journal Annalen der Physik just one year later [ 30]. Due to its practical
applications, it became his most widespread paper that time. It is the least known yet the most
quoted of his infamous works of 1905. Einstein explained the random movement of little particles
in a liquid or gas via the kinetic theory of heat. It should be mentioned that, independently,
Smoluchowski found a solution for the problem of moving Brownian particles [ 31]. Furthermore,
it is interesting to know that from a completely different background and starting point a young
French mathematics student also solved the problem predating the two physicists. Einstein and
Smoluchowski did not know that Louis Bachelier published his PhD thesis on random walks as
early as 1900. It is generally considered the beginning of mathematical finance [ 32]. A quite
different approach to Brownian motion was proposed by Langevin in 1909, yielding the same
results. Comparing with Einstein and Smoluchowski, he called it ’une démonstration infiniment
plus simple’ [ 33]. In the following, we will stay close to his reasoning in order to understand the
physical idea behind Brownian motion.

If a small particle is put, e.g., in a liquid, it starts to move. This resulting motion is quite
unpredictable. Even with identical starting points, one cannot anticipate the exact position of
the particle at any given time. This is caused by collisions with the thermally moving molecules
of the liquid as visualized in Fig. 1.1 [ 34]. It is to note that Brownian motion may be described
by a random walk. A random walk is the trajectory that results from taking successive random
steps of width ε in a discrete time grid of width dt. Brownian motion can be shown to emerge
in the limit ε → 0 and dt → 0, i.e., infinitely small steps in the continuous-time limit [ 35].
One imagines the random walker to take smaller, but more steps in a fixed time interval. Thus,
Brownian motion can be simulated as a random walk with small step size.

In classical physics, the whole problem could, in principle, be solved by a set of differential
equations taking into account every molecule actively or passively involved in the collisions. But
this cannot be done in praxis because the number particles and, therefore, the set of equations is
of the magnitude of Avogadro’s constant. The idea introduced by Langevin is to decompose the
forces acting on the particle into a deterministic one Fd(t), a friction force damping the motion,
and a stochastic force Fs(t) summarizing the effect of thermally activated collisions. By Stokes’
law the damping force is well-known. For a slowly moving sphere of radius r it is

Fd(t) = −αv(t) (1.11)
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Figure 1.1: Visualization of Brownian motion.

with the coefficient α depending linearly on r and the viscosity of the liquid η:

α = 6πrη . (1.12)

The equation of motion for the particle then writes

m
d

dt
v(t) = Fd(t) + Fs(t) = −αv(t) + Fs(t) . (1.13)

It is easily seen that without the fluctuating force the velocity would exponentially go to zero.
We will introduce the new quantities damping constant and Langevin force:

γ =
α

m
, Γ(t) =

Fs(t)

m
. (1.14)

Accordingly, one gets the new equation of motion

d

dt
v(t) = −γv(t) + Γ(t) . (1.15)

In statistical physics an equation of this form is called a Langevin equation. To describe the
stochastic force, one assumes as a natural condition spatial homogeneity: collisions from all
directions have equal probabilities. Mathematically speaking this means

〈Γ(t)〉 = 0 . (1.16)

Furthermore, we impose that the duration of a collision is much smaller than the relaxation time
due to damping. Thus, the Langevin force is described as delta-correlated

〈Γ(t)Γ(t′)〉 = Dδ(t − t′) . (1.17)
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In mathematics, a process with these attributes is called a Wiener process. As already mentioned
above, in thermodynamics the diffusion constant D is derived to be to

D =
2γkBT

m
. (1.18)

It is a special result of the fluctuation-dissipation theorem often called Einstein-Smoluchowski or
just Einstein equation [ 35, 36]. By calculating the moments of 〈v(t)n〉, it is possible to calculate
the stationary probability distribution of the Brownian motion. Nonetheless, we will pursue a
different way on the trails of the two great physicists Adriaan Fokker and Max Planck.

1.4 Fokker-Planck Equation

A couple of years after the first physical description of Brownian movement, the Dutch physi-
cist and musician Adriaan Fokker and the legendary Max Planck used differential equations to
describe the time evolution of a proability distribution P (x, t) = 〈δ(x − x(t))〉, where x(t) is
determined by solving the underlying Langevin equation [ 37, 38]. The first use was, in fact,
the statistical description of Brownian motion. The so-called Fokker-Planck equation writes

∂

∂t
P (x, t) = − ∂

∂x
[K(x)P (x, t)] +

1

2

∂2

∂x2
[D(x)P (x, t)] . (1.19)

The functions K(x) and D(x) are called the drift and the diffusion coefficient, respectively.
This equation is sometimes called Kolmogorov forward equation as it was obtained by Andrey
Nikolaevich Kolmogorov in 1931 [ 39]. It is said that he was not familiar with the work of Fokker
and Planck and he himself called the expression Fokker-Planck equation as he found out about
it. However, the so-called Kolmogorov backward equation, the adjoint of the forward equation,
which describes the evolution backwards in time, was not known up to that time. Eq. (1.19)
can be generalized to a system depending on N variables x = (x1, ..., xN ) in a straightforward
manner [ 36]. The equation reads in this case

∂

∂t
P (x, t) = −

∑

i

∂

∂xi
[Ki(x)P (x, t)] +

1

2

∑

i,j

∂2

∂xi∂xj
[Dij(x)P (x, t)] , (1.20)

with the drift vector Ki(x) and the diffusion tensor Dij(x) which depend on the N variables
xi. An example for a Fokker-Planck equation with more than one stochastic variable will be
discussed in one of the following sections. But first we return to the one variable case.

Starting from the Langevin equation of the system, drift and diffusion coefficient of the corre-
sponding Fokker-Planck equation can be obtained directly [ 35]. In the case (1.15) the stochastic
variable is the velocity v(t) and, accordingly, we get

K(v) = −γv , D(v) = D . (1.21)

Thus, the Fokker-Planck equation for Brownian motion reads

∂

∂t
P (v, t) = γ

∂

∂v
[vP (v, t)] +

D

2

∂2

∂v2
P (v, t) . (1.22)

The solution of the partial differential equation can be found, for example, by using heuristic
arguments. A clever ansatz simplifies the equation considerably. For the calculations in full
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P (v, t)

v

Figure 1.2: Time dependent probability density of Brownian motion P (v, t) calculated from
(A.25) for fixed times t starting at t = 0.1 increasing with time steps ∆t = 0.1. The starting
values are x0 = −1 and t0 = 0 and we have chosen the damping constant γ = 1 as well as the
diffusion constant D = 1. We see that the center of P (v, t) shifts towards 0 and the probability
distribution tends exponentially fast to the stationary Gaussian one (1.23) plotted with a black
line.

length see App. A, where the solution for the Brownian motion case is found to be (A.25).
The time dependent solution evolves exponentially fast into a stationary one, as can be seen in
Fig. 1.2. In the following, we will only be interested in the stationary solution, which is also
known as the Maxwell distribution (A.16):

P (v) =

√
m

2πkBT
exp

(
− m

2kBT
v2

)
. (1.23)

1.4.1 Nonlinear Drift Coefficient

As seen in (A.9), the stationary solution depends of the drift and diffusion coefficients. Assuming
constant diffusion, the general result is derived in App. A to be

Pst(x) =
N

D
exp

[
− 2

D
VFP(x)

]
, (1.24)

with the definition of the Fokker-Planck potential

VFP(x) = −
[∫ x

K(ξ)dξ

]
. (1.25)

Now the case of nonlinear drift coefficients can be examined. A simple example is the anharmonic
drift

K(x) = −γx − gx3 . (1.26)

The stationary solution of this problem can be calculated and with variational methods even the
time dependent solution can be approximated rather well [ 34, 40, 41].



12 Introduction

1.4.2 Kramers and Smoluchowski Equation

A simple example for a problem with two stochastic variables is the Brownian motion with
additional external force. The corresponding Langevin equation is

ẋ(t) = v(t) ,

d

dt
v(t) = −γv(t) + F (x) + Γ(t) , (1.27)

〈Γ(t)Γ(t′)〉 = D δ(t − t′) .

We assume that the additional force can be described by an external potential: F (x) = −V ′
ext(x).

The Kramers equation is the equation of motion for the probability distribution of the space
variable x and the velocity variable v. It is a special form of the Fokker-Planck equation (1.20)
and writes

∂

∂t
P (x, v, t) = − ∂

∂x
[v P (x, v, t)] +

∂

∂v

{ [
γv + V ′

ext(x)
]
P (x, v, t)

}
+

1

2
D

∂2

∂v2
P (x, v, t) . (1.28)

Even more specialized, the case of a large friction constant γ is going to be investigated. In this
case the second derivative with respect to time may be neglected [ 36]. We therefore have the
equation of motion

mγẋ = −V ′
ext(x) + mΓ(t) . (1.29)

Thus, we are left with a system depending on just one variable x. We can also see that (1.29)
has the form of the Langevin equation

ẋ = K(x) + Γ̃(t) (1.30)

with 〈Γ̃(t)Γ̃(t′)〉 = D̃ δ(t − t′). With the Einstein-Smoluchowski relation (1.18), we see that

D̃ =
D

γ2
=

2kBT

mγ
. (1.31)

Furthermore, the drift coefficient is given as

K(x) = − 1

mγ
V ′

ext(x) . (1.32)

The Fokker-Planck equation with this type of drift coefficient is often called Smoluchowski equa-
tion.

1.4.3 Overdamped Brownian Motion in Random Potentials

In this work the aim will be to investigate stationary solutions of the Smoluchowski equation in
a special case: the external force will be determined by a Gaussian distributed random potential
U(x). It is assumed to be a homogeneous and real-valued function with the properties (1.2) and
(1.3). To ensure fast enough decay, we will add a restoring force ensuring the confinement of the
Brownian particle. Thus, the external force writes

F (x) = −κx − εU ′(x) . (1.33)
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With the drift coefficient of the Smoluchowski equation (1.32), we get the Fokker-Planck potential

VFP =
1

2

κ

mγ
x2 +

ε

mγ
U(x) . (1.34)

Accordingly, the stationary probability distribution writes with (1.24)

Pst(x) = N [U ] exp

{
−β

[
1

2
κx2 + εU(x)

]}
, (1.35)

with a normalization factor N [U ], which depends on the random function U(x). This problem
can be described by the Hamilton function (1.6). Therefore, the problem of finding the stationary
solution of the Smoluchowski equation with the external force (1.33) can be solved in close analogy
to the problem of finding the thermodynamic properties of a harmonic oscillator in a disorder
environment. This view is quite appealing to physicists as the harmonic oscillator is probably
the best studied problem in physics.

1.5 Outline

The main goal of this thesis is to find good approximations for the harmonic oscillator in a
disorder environment or, equivalently, the stationary solution of Brownian motion in a confined
disorder potential. To this end, methods with and without replicas will be employed. But
which are the properties of Gaussian distributed random fields? And what does averaging over
the ensemble of all random functions mean? In Chapter 2 these questions are discussed and
the idea of functional averaging is introduced. Furthermore, we familiarize ourselves with an
algorithm to generate continuous random potentials with a given correlation function in order
to evaluate the quality of the approximations to be found. We show that this algorithm works
with good accuracy.

Subsequently, we use non-replica based methods. We start out Chapter 3 by applying
standard perturbation theory for weak correlation strength. Problems will appear for small
temperatures and, thus, the approximations turn out not to converge in this parameter regime.
As an attempt to improve the approximation, we make use of the square root substitution in
order to introduce a variational parameter to perform a resummation of the perturbation series.
The results remain unconvincing. However, we gain a remarkable agreement with numerical
results by heuristically applying a variational method involving the temperature as a variational
parameter.

In the following, we make use of the replica trick to restate the single-particle disorder problem
as a non-random many-body system. Proceeding conceptually as in the SK model, we adopt a
variational method to also include non-perturbative terms in the discussion of the thermodynamic
properties. The Jensen-Peierls inequality provides us with a safe upper bound for the free energy.
In Chapter 4 a simple solution, the replica-symmetric ansatz (RSA), is discussed. It can,
however, become unstable for small temperatures depending on the parameters of the system.

Chapter 5 deals with the so-called replica-symmetry breaking (RSB) scheme. In detail, we
explain the Parisi algebra and its formalism will be commented. Furthermore, the improvements
of the finite-step symmetry breaking approach is calculated.

In the last part of this thesis, we compare all approximation methods. Chapter 6 contains
a summary of all results and a brief outlook.





Chapter 2

Random Fields

In this chapter, we will introduce the idea of Gaussian distributed random fields. It will be shown
how to treat both the distribution and the correlation function mathematically. In order to test
analytic results of disorder problems, it is convenient to generate random potentials numerically.
In this context, the main problem is to assign specific characterizations to the random fields.
In the following, an algorithm is presented to generate normally distributed random functions
with given correlation function. As a special ansatz the so-called Randomization Method is
investigated by the examples of Gaussian and Cauchy-type correlations. For the more interested
reader, further accuracy considerations are made in App. B.

2.1 Gaussian Random Fields

In classical statistics, the correlation function is by definition (1.2) a real valued and even function

R(x)∗ = R(x) , R(x) = R(−x) . (2.1)

For later purposes, we define the spectral density as the Fourier transform of the correlation
function

S(k) =
1

2π

∫ ∞

−∞
dx e−ikxR(x) . (2.2)

As a consequence of (2.1), the spectral density has to be real valued and even:

S(k)∗ = S(k) , S(k) = S(−k) . (2.3)

In the following, general aspects of Gaussian random fields are mentioned [ 42]. The probability
distribution P [U ] is a functional of the random potentials U(x). We denote the averaging process
by

• =

∫
DU • P [U ]. (2.4)

The functional integral corresponds to an infinite product of ordinary integrals

∫
DU =

∏

x

∫ ∞

−∞
dU(x) (2.5)

15
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with an integration measure which obeys the normalization condition
∫

DUP [U ] = 1. (2.6)

Because the functions are normally distributed, one can specify the probability distribution
according to

P [U ] = exp

{
−1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ R−1(x − x′)U(x)U(x′)

}
, (2.7)

where the integral kernel R−1(x − x′) is the functional inverse of the correlation function:
∫ ∞

−∞
dy R−1(x − y)R(y − x′) = δ(x − x′). (2.8)

In order to calculate all moments of P [U ], it remains to compute the generating functional

I[j] = exp

{
i

∫ ∞

−∞
dx j(x)U(x)

}
. (2.9)

Little arithmetics gives

I[j] = exp

{
−1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ j(x)j(x′)R(x − x′)

}
. (2.10)

In Ref. [ 14] the expectation value (2.9) is calculated for the discrete case which is then generalized
to the case of continuous variables by interchanging sum and integral, yielding (2.10). Now the
moments can be calculated as successive derivatives of the generating functional

U(x1)U(x2)...U(xn) =
1

in
δnI[j]

δj(x1)δj(x2)...δj(xn)

∣∣∣∣∣
j(x)=0

. (2.11)

As a consequence of this special form of the generating functional, uneven moments must vanish
and even moments can be calculated using Wick’s Theorem. The 4-point correlation function,
for instance, can be calculated to

U(x1)U(x2)U(x3)U(x4) = R(x1 − x2)R(x3 − x4) + R(x1 − x3)R(x2 − x4)

+R(x1 − x4)R(x2 − x3) , (2.12)

which also follows directly from (2.10) and (2.11).

2.2 Generating Random Potentials

Motivated by Fourier series, a simple ansatz for the random functions is made. The potential is
written as a finite superposition of sin(k x) and cos(k x) terms with properly picked amplitudes
An and Bn and wave numbers kn [ 43]:

U(x) =
1√
N

N−1∑

n=0

[An cos(kn x) + Bn sin(kn x)] . (2.13)
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We assume An and Bn to be mutually independent Gaussian random variables with zero mean
and variance α2

〈An Bm〉 = 0,

〈An Am〉 = 〈Bn Bm〉 = α2δmn .
(2.14)

Furthermore, the wave numbers kn are independent random variables, as well, picked from the
probability distribution

p(k) =
S(k)∫∞

−∞ S(k′) dk′.
. (2.15)

Note that choosing wave numbers kn = 2πn/L would produce a periodic function with period
L. In the limit of very large L one would generate potentials that resemble random Gaussian
correlated functions sufficiently. Computer simulations would be extremely costly, though. But
the ansatz (2.13) will be shown to give a good approximation to normally distributed random
potentials, if the parameter α is chosen according to

α2 = R(0) =

∫ ∞

−∞
S(k) dk. (2.16)

To justify the correct correlation and distribution function of the random process, one examines
the generating functional. Inserting the decomposition (2.13) into (2.9) yields

I[j] =

〈
N−1∏

n=0

exp

{
i√
N

∫ ∞

−∞
dx j(x)[An cos(kn x) + Bn sin(kn x)]

}〉
, (2.17)

where the average over all random functions is rewritten in terms of ensemble averages over both
the amplitudes An and Bn and the wave numbers kn:

〈•〉 =
1

α2

1

2π α2

N−1∏

n=0

∫ ∞

−∞
dkn S(kn)

∫ ∞

−∞
dAn e−A2

n/2α2

∫ ∞

−∞
dBn e−B2

n/2α2 • . (2.18)

The calculation of (2.17) can be done in a straightforward manner, just using the trigonometric
addition theorem and completing the square. We get as the result

I[j] =

N−1∏

n=0

∫ ∞

−∞
dkn

S(kn)

α2
exp

{
− α2

2N

∫ ∞

−∞

∫ ∞

−∞
dx dx′ j(x) j(x′) cos[kn(x − x′)]

}
. (2.19)

In view of the limit N → ∞, we expand the exponential function and obtain

I[j] =

N−1∏

n=0

∫ ∞

−∞
dkn

S(kn)

α2

{
1− α2

2N

∫ ∞

−∞

∫ ∞

−∞
dx dx′ j(x) j(x′) cos[kn(x − x′)] + O(1/N2)

}
.(2.20)

After using the Euler formula, one finds for an even spectral density

I[j] =

N−1∏

n=0

{
1 − 1

2N

∫ ∞

−∞

∫ ∞

−∞
dx dx′ j(x) j(x′)

∫ ∞

−∞
dkneikn(x−x′)S(kn) + O(1/N2)

}
, (2.21)
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where (2.16) has been used. The kn-integration is the inverse Fourier transform of (2.2) giving
the correlation function R(x − x′).

For writing (2.21) more transparently, some general mathematical considerations will be done
in order to carry out the product over all n. To this end, we write

N−1∏

n=0

[
1 +

x

N
+ O(1/N2)

]
=

N−1∏

n=0

exp
{
log
[
1 +

x

N
+ O(1/N2)

]}
. (2.22)

This form is more comfortable, since the product can now be executed easily. As well, it is
advantageous to write the logarithm in the exponent in form of its Taylor series

N−1∏

n=0

[
1 +

x

N
+ O(1/N2)

]
= exp

{
N

∞∑

k=1

(−1)1+k

k

( x

N
+ O(1/N2)

)k
}

(2.23)

Factoring out N inside the brackets in the exponent, we obtain

N−1∏

n=0

[
1 +

x

N
+ O(1/N2)

]
= exp

{
∞∑

k=1

(−1)1+k

k

1

Nk−1
(x + O(1/N))k

}

= exp
{

x + O(1/N)
}

. (2.24)

After evaluating the exponential series, just a simple expression is left:

N−1∏

n=0

[
1 +

x

N
+ O(1/N2)

]
= ex + O(1/N) . (2.25)

Considering this, the generating functional (2.21) can be rewritten as

I[j] = exp

{
−1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ j(x) j(x′)R(x − x′)

}
+ O(1/N). (2.26)

This discussion shows that the Randomization Method produces Gaussian correlated random
potentials in the limit of N → ∞. Even for smaller N it gives a good approximation with the
error being of the order 1/N . Also, one notices that the choice of the variance α2 in (2.16) is
quite reasonable as it cancels out of the exponent in the step from (2.20) to (2.21). Thus, it
assures the right form of the generating functional.
Of course, there are more intricate ways of constructing random functions with a given cor-
relation and distribution function. To get an overview see Ref. [ 44], where optimizations of
the Randomization Method and another approach with better fractal properties, the so-called
Fourier Wavelet Method, are introduced.

2.2.1 Gaussian Correlation

In the following, two sorts of correlation functions will be investigated. First, we concentrate
on a Gaussian correlated random field as an example for short range correlations. They are
represented by the correlation function

R(x) =
ε2

√
2πλ

exp

{
− x2

2λ2

}
, (2.27)
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Figure 2.1: Sample potential for Gaussian correlation with N = 100, ε = 1, and λ = 1.
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Figure 2.2: Correlation U(x)U(0) with N = 100 averaged over (a) 100, (b) 1 000, and (c) 10 000
sample potentials compared to R(x) from (2.27) (black line).

where ε2 is a measure of the strength of the correlation. In this case it is very simple to calculate
its Fourier transform (2.2) via completing the square. One finds the spectral density

S(k) =
ε2

2π
exp

{
−λ2 k2

2

}
. (2.28)

Integrating S(k) over all k gives the first parameter of the Randomization Method according to
(2.16):

α2 =
ε2

√
2π λ

. (2.29)

The probability distribution of the wave numbers k, thus, is simply a normal distribution with
variance 1/λ2:

p(k) =
λ√
2π

exp

{
−λ2 k2

2

}
. (2.30)

We show in Fig. 2.1 a typical example of a random potential generated by (2.13) for ε = 1
and λ = 1. The same values of α and λ are used to show in Fig. 2.2 the correlation function
U(x)U(0) (blue dots) sampled for N = 100 and averaged over 100, 1 000 and 10 000 pseudo-
randomly generated functions, respectively. The results are compared to the expected correlator
R(x) plotted as a solid black line. The larger the value of N , the better the correlation is
described by Gaussian curve.
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Figure 2.3: Sample potential for Cauchy-type correlation with N = 100, ε = 1, and λ = 1.
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Figure 2.4: Correlation U(x)U(0) with N = 100 averaged over (a) 100, (b) 1 000 and (c) 10 000
sample potentials compared to R(x) from (2.31) (black line).

2.2.2 Cauchy-Type Correlation

To model longer ranged correlations, a Cauchy-distribution is taken to be the correlation function,
which is described by

R(x) = ε2 λ

π

1

λ2 + x2
. (2.31)

Again ε2 is a measure of the strength of the correlation. The spectral density is calculated to be

S(k) =
ε2

2π
e−λ |k| (2.32)

and its integration yields

α2 =
ε2

λπ
. (2.33)

Therefore, we get an exponential distribution for the probability density of the wave number k

p(k) =
λ

2
e−λ |k| . (2.34)

Fig. 2.3 shows a sample potential with Cauchy-type correlation but otherwise the same values
for N , λ and α as used in the previous paragraph. Compared with the case of a Gauss correlator,
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one notices faster and stronger fluctuations around zero. Again averaging over pseudo-randomly
generated sample potentials, the correlation converges to the expected Cauchy-function for large
N . Fig. 2.4 shows the numerically averaged correlation U(x)U(0) over 100, 1 000 and 10 000
sample potentials.





Chapter 3

Harmonic Oscillator in Random

Potential

In this chapter, we will focus on a harmonic oscillator in a random environment. This quite
simple problem has vast applications, for example, in chemistry or biology [ 6, 7]. The aim
is to find the disorder-averaged thermodynamic properties of this system. Unfortunately, it
is problematic to calculate the free energy due to the averaging process. To overcome this,
appropriate varitational techniques will be applied. They are based on standard perturbation
theory. The quality of the obtained approximations will be judged by comparing them with
Monte Carlo simulations. In the previous chapter, the algorithm to generate random functions
was shown to work with controllable accuracy. Thus, we expect the simulations to be quite
accurate. An example for such a source code can be found in App. B.

3.1 Perturbation Approach

The most straightforward approximation method is perturbation theory. Our starting point will
be the Hamilton function without disorder

H0 =
1

2
κx2 (3.1)

and the additional random potential will be treated as a small perturbation of the system. The
thermodynamic properties of the harmonic oscillator are well-known. The partition function Z0

is calculated to be

Z0 =

∫ ∞

−∞
dx exp

(
−1

2
βκx2

)
=

√
2π

βκ
(3.2)

and, thus, the free energy (1.8) reads

F0 =
1

2β
log

(
κβ

2π

)
. (3.3)

Furthermore, one defines the expectation value

〈 • 〉H0
=

1

Z0

∫ ∞

−∞
dx exp[−β H0(x)] • . (3.4)

23
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With the help of these definitions, one can rewrite the partition function with disorder in terms
of the expectation value (3.4):

Z = Z0 〈 exp [−β εU(x)] 〉H0
. (3.5)

In the following, we will expand the partition function in terms of ε.

3.1.1 Cumulant Expansion

Knowing the Taylor series of the exponential functions, we can expand the potential energy part
of the partition function:

〈
exp [−β εU(x)]

〉
H0

= 1 − β ε 〈U(x)〉H0
+

β2 ε2

2!
〈U(x)2〉H0

−β3 ε3

3!
〈U(x)3〉H0

+ ... . (3.6)

The perturbative procedure (3.6) is called moment expansion. However, since the quantity of
interest will be the free energy, we concentrate on the so-called cumulant expansion and determine
the expansion of the logarithm [ 45]

〈
exp [−β εU(x)]

〉
H0

= exp
{
− β ε 〈U(x)〉cH0

+
β2 ε2

2!
〈U(x)2〉cH0

−β3 ε3

3!
〈U(x)3〉cH0

+ ...
}

. (3.7)

Evaluating the series of the exponential function explicitly in the cumulant expansion (3.7) and
equating the coefficients of the generated polynomial of ε yields the aspired expressions for the
cumulants. In first-order cumulant and moment expansion are equal:

〈U(x)〉cH0
= 〈U(x)〉H0

. (3.8)

The second cumulant corresponds to the variance

〈U(x)2〉cH0
= 〈U(x)2〉H0

− 〈U(x)〉2H0
. (3.9)

In a similar way, the third cumulant yields

〈U(x)3〉cH0
= 〈U(x)3〉H0

− 3〈U(x)2〉H0
〈U(x)〉H0

+ 2〈U(x)〉3H0
. (3.10)

As it will be needed later on, the fourth cumulant reads accordingly

〈U(x)4〉cH0
= 〈U(x)4)〉H0

− 3〈U(x)3〉H0
〈U(x)〉H0

− 3〈U(x)2〉2H0

+12〈U(x)2〉H0
〈U(x)〉2H0

− 6〈U(x)〉4H0
. (3.11)

A systematic method to calculate the n-th cumulant in terms of the moments is mentioned in
Ref. [ 36].
In terms of the cumulant expansion the free energy for a fixed representative of the ensemble of
random potentials can now be computed as

Frand = F0 −
1

β

∞∑

k=1

(−ε β)k

k!

〈
U(x)k

〉c

H0

. (3.12)
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Figure 3.1: Zeroth (dotted, black), first (solid, blue), and second (solid, green) order expansion
of the free energy with parameters ε = 1, λ = 1, and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2,
respectively, compared to computer simulations (dashed, red).

The averaging process (2.4) yields the free energy F of the system. Because the random potentials
are normally distributed, odd cumulants of U(x) vanish. To approximate the free energy, we will
truncate the series after N terms. Hence, up to N th order we get

FN = F0 +
N∑

k=1

F (2k) , (3.13)

with the coefficients

F (k) =
(−β)k−1εk

k!

〈
U(x)k

〉c

H0

. (3.14)

The cumulant expansion is a weak coupling perturbation series for small correlation strength ε.
At this point, we remind of the rescaled Hamilton function (1.10). The physics of the system
just depends on the ratio of κ/ε. In the following, we discuss the three cases of κ >> ε, κ ≈ ε,
and ε >> κ separately. We therefore will fix ε = 1 in all plots and discuss the cases for changing
κ.

3.1.2 First- and Second-Order Free Energy

The first non-vanishing correction to F0 arises from the second cumulant (3.9). Applying (1.2),
one gets as the first non-vanishing order approximation

F (2) = −β ε2

2

[
〈U(x)2〉H0

− 〈U(x)〉2H0

]
. (3.15)

Wisely adding the identity 1 = Z−1
0

∫∞
−∞ dx′ exp(−κβx2/2), we get in a compact notation with

all integration limits going from −∞ to ∞

F (2) = −β ε2

2Z2
0

∫ ∫
dx′dx′′ exp

[
−1

2
κβ(x′2 + x′′2)

] [
R(0) − R(x′ − x′′)

]
. (3.16)

Evaluating for the Gaussian correlation (1.3) of the toy model yields the expression

F (2) = − β ε2

2λ
√

2π

[
1 − κβ λ√

κβ(2 + κβ λ2)

]
. (3.17)
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The second non-vanishing coefficient F (4) involves the computation and averaging of the 4th

cumulant (3.11) which yields

F (4) =−β3 ε4

24Z4
0

∫ ∫ ∫ ∫
dx′dx′′dx′′′dx′′′′ exp

[
1

2
κβ(x′2 + x′′2 + x′′′2 + x′′′′2)

] [
3R(0)R(x′ − x′′)

+24R(x′ − x′′)R(x′ − x′′′) − 6R(x′ − x′′)2 − 18R(x′ − x′′)R(x′′′ − x′′′′)
]

. (3.18)

For the toy model at stake the coefficients result in

F (4) = −ε4κβ4

16π

[
− 6

2 + κβλ2
+

8√
3 + 4κβλ2 + κ2β2λ4

+
1

λ
√

κβ(2 + κβ λ2)

− 2

λ
√

κβ(4 + κβ λ2)

]
. (3.19)

The free energy can now be approximated by (3.13) with the corrections (3.17) and (3.19).
First- and second-order perturbation expansion of the free energy are compared with computer
simulations in Fig. 3.1. We notice that the second order turns out to be a worse approximation
in comparison with the numeric curve for small temperatures. To verify this impression, we
investigate the limit T → 0 of the obtained expressions:

lim
T→0

F (0) = 0 , (3.20)

lim
T→0

F (1) = − ε2

√
2π

1

2κλ3
, (3.21)

lim
T→0

F (2) = −∞ . (3.22)

In our derivation, we performed an expansion for small coupling ε2. We did expect the first-
order expansion to approximate the system’s free energy reasonably well for very small coupling
parameters, i.e., large κ. The second order correction produces a divergent term and, thus, cannot
describe the behavior of the system for small temperatures. As illustrated by the Fig. 3.1, the
first-order result does indeed aproximate the expected curve well for large κ. Only in the case
κ = 0.01 one recognizes a visible deviation from numerical results. For T = 0 and κ = 0.01, the
first-order free energy is about 20 times the value of the simulated free energy.

3.1.3 Mean Square Displacement

To be able to compare with experimental data, we will investigate a physical quantity which
is accessible by experiments namely the mean square displacement of the particle. The angle
brackets without subscript denote the thermal average of the original system (1.6)

〈•〉 =
1

Z

∫ ∞

−∞
dx exp [−β H(x)] • . (3.23)

One has to keep in mind, that the disorder averaging processes does not commute with (3.23).
Taking the average over all realizations of the random potential has to occur after thermal
averaging. Thus, the mean square displacement writes

〈x2〉 =
1

Z

∫ ∞

−∞
dxx2 exp [−β H(x)] . (3.24)
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Closely looking at the toy model Hamilton function (1.6), one can use a mathematical trick often
used in statistical physics: one differentiates with respect to the parameter κ and rewrites the
resulting expression in form of a logarithm. Doing so, we get

〈x2〉 = − 2

β

1

Z

d

dκ
Z = − 2

β

d

dκ
log Z . (3.25)

With help of the definition for the free energy (1.8), this reduces to

〈x2〉 = 2
d

dκ
F . (3.26)

Now the mean square displacement can be obtained from the perturbation expansion of the free
energy (3.13) and (3.26).

3.1.4 First- and Second-Order Mean Square Displacement

To calculate the first- and second-order corrections of the perturbation series for weak correlation
strength ε of the mean square displacement, we just have to differentiate the first- and second-
order free energy with respect to κ according to (3.26). The calculation yields

〈x2〉(0) =
1

κβ
(3.27)

for the unperturbed mean square displacement. In first order one finds the correction

〈x2〉(1) = β3/2 ε2

√
2π

1√
κ(2 + βλ2κ)3

. (3.28)

The second-order correction of the mean square displacement expansion for small correlation
length writes

〈x2〉(2) =
β4

4

ε4

2π

[
− 12

(2 + κβλ2)2
+

12

2 + κβλ2
− 8√

3 + 4κβλ2 + κ2β2λ4

− 1

λ

1√
κβ(2 + κβλ2

+
1

λ

2√
κβ(4 + κβλ2)

+ κ2β2λ

(
1

[κβ(2 + κβλ2)]3/2

− 2

[κβ(4 + κβλ2)]3/2
+

8λ3

(3 + 4κβλ2 + κ2β2λ4)3/2

)]
. (3.29)

These results are shown and compared to numerical simulations in Fig. 3.2. Again, the respective
expressions for small T are investigated. One finds

lim
T→0

〈x2〉(0) = 0 (3.30)

lim
T→0

〈x2〉(1) =
ε2

√
2π

1

κ2λ3
(3.31)

lim
T→0

〈x2〉(2) = −∞ . (3.32)

As was the case for the free energy expansion, one finds again a divergent contribution from the
second-order correction.

In the following part of this chapter, we will mainly be concerned with finding a better
approximation in the small temperature regime.
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Figure 3.2: Zeroth (dotted, black), first (solid, blue) and second (solid, green) order approxi-
mation of the mean square displacement with paremeters ε = 1, λ = 1, and (a) κ = 0.01, (b)
κ = 0.5, (c) κ = 2, respectively, compared to computer simulations (dashed, red).

3.2 Variational Perturbation Theory

Improved results are expected to be given by variational perturbation theory (VPT), which has
already been shown to be a useful tool to handle divergencies in many physical problems [ 12].
In the following, this method will be introduced. As well, a shortcut will be shown to resum
weak-coupling perturbation series. We will at first discuss the variational perturbation approach
in a standard way using the frequency ω instead of the spring constant κ, which has been used in
our toy model (1.6). This will help to gain more physical insight. Then just small adjustments
have to be made to apply VPT to the original problem.

A simple Hamilton function is given by

H(x) =
M

2
ω2 x2 + εV (x) , (3.33)

where ε is a small parameter. Now, the partition function is calculated by (1.7) and the free
energy by taking its logarithm and multiplying by −T as in (1.8). We assume that both, the
partition function and the free energy of this problem, cannot be calculated exactly. Therefore,
one is in need of a good approximation to extract the system’s physical information.

At first, we will introduce artificially a harmonic oscillator with trial frequency Ω by adding
and substracting a term in the Hamilton function:

H(x) =
M

2
(ω2 + Ω2)x2 − M

2
Ω2x2 + ε V (x) . (3.34)

The idea of variational perturbation theory is to treat the deviation from the harmonic oscillator
with trial frequency as a perturbation or, to put it simple, to approximate the original system
by a harmonic oscillator. The problem breaks down to the task of finding the optimal frequency.
To do this in detail, one defines the trial Hamilton function

Ht(x) =
M

2
(ω2 + Ω2)x2 . (3.35)

As well, one defines an expectation value of the trial system (3.35) to prepare the cumulant
expansion:

〈•〉Ht =
1

Zt

∫ ∞

−∞
dx exp[−βHt(x)] • . (3.36)
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Furthermore, we calculate the partition function

Zt =

∫ ∞

−∞
dx exp[−βHt(x)] =

√
2π

βM(ω2 + Ω2)
. (3.37)

Now the free energy can be approximated by the truncated series of the cumulant expansion
(3.7) as

FN = F0 −
1

β

N∑

k=1

(−ε β)k

k!

〈[
ε V (x) − M

2
Ω2 x2

]k
〉c

Ht

(3.38)

with ε → 1. Note that the free energy in the limit N → ∞ does not depend on the trial
frequency Ω. The truncated series FN , however, does. This is the central point of the variational
perturbation method. The new parameter Ω provides a tool to optimize the approximated
expression for the free energy. For the optimal parameter one requires

dFN

dΩ
= 0 . (3.39)

This strategy is referred to as principle of minimal sensitivity [ 46]. If no minimum exists,
one needs to carefully investigate higher derivates with respect to the variational paramter Ω [
12]. The idea is quite intriguing: Since the infinite series does not depend on the variational
parameter, one searches for a solution which depends least on it. A special case is N = 1, which
can be shown to give an optimal upper bound. This is referred to as the Jensen-Peierls inequality:

F ≤ F0 + 〈H(x) − Ht(x)〉Ht . (3.40)

Thus, in first order we search for a minimum of the trial free energy F1 depending on the
variational parameter Ω to obtain an optimal upper bound.

3.2.1 Square Root Substitution

If the first coefficients are already calculated in standard perturbation theory, Kleinert’s square
root substitution comes in handy to optimize the approximation [ 12, 47]. It is a clever shortcut
to obtain (3.38). The idea is to rewrite the Hamilton function (3.34) as

H(x) =
M

2

(
Ω
√

1 + ε r
)2

x2 + ε V (x) (3.41)

with the newly defined auxiliary parameter

r =
ω2 − Ω2

εΩ2
. (3.42)

Formally treating the parameter r as being independent of ε, one expands the free energy for
small coupling ε up to the considered order. We remark that this corresponds to performing the
formal square root substitution

ω → Ω
√

1 + ε r (3.43)

into the standard perturbation series and a subsequent expansion in powers of ε. Then (3.42) is
resubstituted. Again, it is to note that the full expansion does not depend on the parameter Ω.
whereas the truncated series does.
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Underlying the square root substitution is a harmonic oscillator with trial frequency Ω. Ar-
tificially, a dependence of this frequency is introduced. As the free energy is independent of
this variational parameter, one searches for the expression which least depends on it. It is quite
tempting to move away from the physical view and to see the square root expansion as a mere
mathematical tool. In a given function f(ω) which is expanded in terms of a coupling parameter
ε the identity (3.42) is inserted. Accordingly, a dependence of the variational parameter Ω is
introduced by an expansion in ε to the respective order N . With this, we get a new function
fN (ω,Ω). Then the optimal approximation to the exact result is the one least sensitive to the
artificial parameter [ 46].

3.2.2 Resummation of Perturbation Expansion

We will use the square root substitution (3.43) in order to try to improve the result for the free
energy and the mean square displacement. For practical reasons we used the spring constant
κ = m ω2 to describe the harmonic oscillator in (1.6). Therefore, a tiny adaption of (3.43) has
to be made. In terms of the spring constant κ and coupling ε2, the substitution writes

κ → σ(1 + ε2r) (3.44)

with the parameter r given by

r =
κ − σ

ε2 σ
. (3.45)

As discussed at the end of Sect. 3.2.1, we could simply treat this as a mathematical trick and
differentiate the expanded expression with respect to κ. However, to emphasize the physical
idea behind the square root substitution, we will relate the appearing conditional equations.
Substituting (3.44) into the free energy and expanding in orders of ε2, one gets an expression

FN (κ, σ) = FN (ω2,Ω2) . (3.46)

Due to (3.39), the corresponding conditional equation calculates with the chain rule

dFN (ω2,Ω2)

dΩ
=

dFN (ω2,Ω2)

dΩ2
· 2Ω = 2

√
σ

dFN (κ, σ)

dσ
= 0 . (3.47)

Accordingly, the conditional equation

dFN (κ, σ)

dσ
= 0 (3.48)

is going to be used. The solution σ = κ reproduces the perturbation expansion and, thus, one
does not expect new or better approximations. We keep this case in mind as a solution of the
conditional equation, but it will be excluded from the discussion to follow.

3.2.3 Resummation of First-Order Free Energy

At first, we will apply the variational method to the first-order free energy. Substituting (3.45)
into F1 and expanding to first order coupling ε2 leads to

F1(κ, σ) = − 1

β
log

√
2π

σβ
+

1

2σβ
(κ − σ) +

β

2

ε2

√
2π

[
− 1

λ
+

σβ√
σβ(2 + σβλ2)

]
. (3.49)
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Figure 3.3: Resummation of first-order free energy (solid, blue) with parameters ε = 1, λ = 1,
and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2, respectively, compared to computer simulations. The
dashed black line represents the resummation result. The result σ = κ was explicitly excluded.
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Figure 3.4: Resummation of second-order free energy (solid, green) with parameters ε = 1,
λ = 1, and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2 , respectively, compared to computer simulations
(dashed, red). The dashed black line represents the resummation result. The result σ = κ was
explicitly excluded.

Differentiating with respect to σ yields the conditional equation

0 =
1

2σβ
+

β

2

ε2

√
2π

{
β√

σβ(2 + σβλ2)
− σ(1 + σβλ2)

β2[σβ(2 + σβλ2)]

}
− 2κ

σ2β2
, (3.50)

which has to be solved numerically. All numerical results are plotted in Fig. 3.3. No improve-
ment of the perturbative correction is visible and, therefore, in first order no non-perturbative
contributions can be added.

3.2.4 Resummation of Second-Order Free Energy

To obtain the second-order result of the free energy, we have to follow the same steps. In second
order the free energy writes

F2(κ, σ) = − 1

2β
log

(
2π

βσ

)
− 1

4β

κ2 − 4κσ + 3σ2

σ2
+

ε2

2π

β

2γ
√

2βσ + β2γ2σ2

[
√

βσ(2 + βγ2σ)

−βγ(κ + σ + βγ2σ2

2 + βγ2σ

]
+

ε4

2π
β5σ

[
12

2 + βγ2σ
− 16√

3 + 4βγ2σ + β2γ4σ2

− 2

γ
√

βσ(2 + βγ2σ)
+

4

γ
√

βσ(4 + βγ2σ)

]
. (3.51)
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Figure 3.5: Resummation of first-order mean square displacement (solid, blue) with parameters
ε = 1, λ = 1, (a) κ = 0.01, (b) κ = 0.5, and (c) κ = 2, respectively, compared to computer
simulations. The dashed black line represents the resummation result. The result σ = κ was
explicitly excluded.
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Figure 3.6: Resummation of second-order mean square displacement (solid, green) with param-
eters ε = 1, λ = 1, and (a) κ = 0.01, (b) κ = 0.5 and (c) κ = 2, respectively, compared to
computer simulations (dashed, red). The dashed black line represents the resummation result.
The result σ = κ was explicitly excluded.

To find the optimal σ we numerically solve

∂F2(κ, σ)

∂σ
= 0 . (3.52)

The result is plotted in Fig. 3.4. One does not see an improvement in the overall approximation.
The second-order expansion, however, is slightly corrected. Because of its divergence in the
T → 0 limit, it cannot be considered as a better approximation as the first-order standard
perturbation theory.

3.2.5 Resummation of Mean Square Displacement

In the variational perturbation expansion, the free energy depends on both the parameter κ and
the variational parameter σ. The variational parameter is a result of the saddle point equation
(3.48), and, therefore, can depend on κ. To calculate the mean square displacement, however,
we need to differentiate with respect to κ:

dFN (κ, σ)

dκ
=

∂FN (κ, σ)

∂κ
+

∂FN (κ, σ)

∂σ

∂σ

∂κ
. (3.53)
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Figure 3.7: Temperature resummation of first-order free energy (solid, blue) with parameters
ε = 1, λ = 1, and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2, respectively, compared to computer
simulations (dashed, red). The dashed black line represents the resummation result.
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Figure 3.8: Temperature resummation of second-order free energy (solid, green) with parameters
ε = 1, λ = 1, and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2, respectively, compared to computer
simulations (dashed, red). The dashed black line represents the resummation result.

The second term vanishes because of (3.48) and, thus, we just need to calculate the partial
derivative with respect to κ. Thus, the mean square displacement is computed to be

〈x2 〉N = 2
∂FN (κ, σ)

∂k
. (3.54)

We find the expression for the mean square displacement in first order to be

〈x2 〉1(κ, σ) = − κ

βσ2
+

2

βσ
+

ε2

√
2π

βσ3

βσ(2 + βγ2σ)3/2
. (3.55)

The variational parameter σ in (3.55) is the solution of (3.50). The numerical results are plotted
in Fig. 3.5. The analog discussion can be made for the second-order corrections. We just show
the results in Fig. 3.6. As already noticed in the free energy VPT expansion, no improvement is
found.

3.3 Temperature Resummation

In the previous section, we have seen that Kleinert’s method to treat the frequency of the
harmonic oscillator as a variational parameter does not lead to any improvment. Therefore,
we have to leave the usual route. In order to find an analytic for small T that sufficiently
well resembles the Monte Carlo simulations, we apply the square root substitution (3.42) rather
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Figure 3.9: Temperature resummation of first-order mean square displacement (solid, blue) with
parameters ε = 1, λ = 1, and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2, respectively, compared to
computer simulations (dashed, red). The dashed black line represents the resummation result.
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Figure 3.10: Temperature resummation of second-order mean square displacement (solid, green)
with parameters ε = 1, λ = 1, and (a) κ = 0.01, (b) κ = 0.5, (c) κ = 2, respectively, compared to
computer simulations (dashed, red). The dashed black line represents the resummation result.

unconventionally. We suggest a new resummation of the perturbation series by treating the
temperature instead of the frequency as variational parameter. Therefore, we substitute

T → τ
√

1 + ε2r (3.56)

with the parameter

r =
T 2 − τ2

ε2τ2
. (3.57)

3.3.1 Free Energy

Substituting (3.56) in the expression for the free energy FN (T ) and expanding with respect to
the coupling ε2 to the first order yields the expression

F1(T, τ) = −T 2

4τ
− 1

4τ
+ (T 2 + τ2) log

(
2πτ

κ

)
− ε2

√
2π

2κ

γ2κ2 + 2κτ
. (3.58)

We search the solution which least depends on the variational parameter τ . Thus, we demand

∂F1(T, τ)

∂τ
= 0 (3.59)
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Figure 3.11: Zoomed plot of the temperature resummation of the free energy with parameters
ε = 1, λ = 1, (a) κ = 0.01, (b) κ = 0.5 and (c) κ = 2 respectively. The first order (black, dashed)
and the second order (blues ,dashed) compared to computer simulations (red, dotted).
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Figure 3.12: Zoomed plot of temperature resummation of the mean square displacement with
parameters ε = 1, λ = 1, (a) κ = 0.01, (b) κ = 0.5 and (c) κ = 2 respectively. The first order
(black, dashed) and second order (blue, dashed) are compared to computer simulations (red,
dotted).

and get in consequence the conditional equation

0 = γ
√

κ(γ2κ + 2τ)3/2(T 2 − τ2) log

(
2πτ

κ

)
+ 2

ε2

2π

[
− γ3κ2 − 3γκτ

+γ2κ
√

κ(γ2κ + 2τ) + 2τ
√

κ(γ2κ + 2τ)
]

. (3.60)

The numerical results can be seen in Fig. 3.7 and the corresponding one in second order in
Fig. 3.8. Even in first order the numerical curve represents extremely well the simulation results.

3.3.2 Mean Square Displacement

With the same argumentation as in Sect. 3.2.5, we calculate the mean square displacement as
the partial derivative with respect to κ. With the saddle point equation (3.60), we find a solution
which least depends on the varitional parameter. Results are plotted in Fig. 3.9 in first order
and in Fig. 3.10 for second. As for the free energy, the results resembles the simulation curves
quite well.

3.3.3 Comparison of First and Second Order

It is quite surprising that both, first- and second-order temperature resummation, resemble the
simulation curve extremeley well. In Fig. 3.11 and Fig. 3.12 we zoom into the problematic



36 Harmonic Oscillator in Random Potential

region near T = 0 to get a feeling for the quality of the approximation. The case of large
κ can be described quite accurate by standard perturbation theory. For small κ and small
temperatures non-perturbative contributions of the disorder potential play a decisive role. In
this case, the temperature resembles the simulations with increasing accuracy in second order.
For the problematic case κ = 0.01 in the limit T = 0, the deviation to numerical results is an
estimated 10% for first order of the free energy, and about 6% in second. For the mean square
displacement the picture is quite similar: the difference are about 9% and 8%, respectively.
In the case of large κ, however, the resummation is slightly worse than standard perturbation
expansion.



Chapter 4

Replica Symmetry

In this chapter, we will apply a different method often used to describe the physics of disordered
systems. The replica method is used to rewrite the toy model in form of a many-particle problem.
This has the advantage of stating the problem in terms of its correlation function instead of the
random potentials. The replica-symmetric solution and its limits will be discussed. In the
following, we will describe the problem in the language of Ch. 3. This makes it easy for the
reader to proceed to higher orders in variational perturbation theory. This, for instance, has
been done to describe the phase diagrams for vortices in certain superconductors in Ref. [ 24].
We, however, will stop with the calculations of first-order VPT as starting point for the discussion
of the replica solutions.

4.1 Replica Trick

A standard method to solve (1.8) is the replica trick [ 12]

log Z = lim
n→0

1

n

(
Zn − 1

)
, (4.1)

which follows directly from the Taylor expansion of the logarithm if the limit and the averaging
process commutate. Hence, the disorder-averaged partition function Zn of a system of n identical
replicas is calculated for all integer parameters n. Having done this, one has to analytically
continue Zn with respect to n and study it in the limit n → 0. The replicated partition function
is given by

Zn =

{∫ ∞

−∞
dx exp [−β H(x)]

}n

. (4.2)

Inserting the Hamilton function (1.6) yields

Zn =

∫ ∞

−∞
dnx exp

{
−β

n∑

a=1

[
1

2
κx2

a + εU(xa)

]}
. (4.3)

Here, the volume element dnx is an abbreviation for
∏n

a=1 dxa. Because of Wick’s Theorem
(2.12), odd moments vanish in the averaging process. Thus, we get

Zn =

∫ ∞

−∞
dnx exp

[
−β

2
κ

n∑

a=1

x2
a

]
exp

[
−β ε

n∑

a=1

U(xa)

]
. (4.4)

37
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The random functions U(xa) are Gaussian distributed. Therefore, one can use (2.9) and (2.10)
to write

exp

[
−β ε

n∑

a=1

U(xa)

]
= exp


1

2
β2ε2

∑

a,b

U(xa)U(xb)


 = exp


1

2
β2ε2

∑

a,b

R(xa − xb)


 . (4.5)

This allows to calculate the replicated partition function according to

Zn =

∫
dnx exp


−β

2
κ

n∑

a=1

x2
a +

1

2
β2ε2

∑

a,b

R(xa − xb)


 . (4.6)

Expression (4.6) can now be reinterpreted as the partition function of a non-random system with
the Hamilton function

Hr(x) =
1

2
κ

n∑

a=1

x2
a −

1

2
β ε2

∑

a,b

R(xa − xb) (4.7)

with x = (x1, x2, ..., xn). Thus, the correlation function R(xa − xb) represents a non-linear
potential involving two arbitrary replica coordinates a and b. Note that the minus sign in (4.6)
indicates that the disorder in the replica formalism is always attractive.

4.2 Variational Perturbation Approach for Replicated Partition

Function

Due to the highly nonlinear term in the exponent, it is not possible to calculate (4.6) exactly.
Therefore, appropriate approximation methods are needed. In order to include non-perturbative
contributions, the approach presented here will be based on variational perturbation theory as
introduced in Sect. 3.2. We start with defining a new Hamilton function as [ 19]

Ht(x) =
1

2
κ

n∑

a=1

x2
a −

1

2

∑

a,b

xa σab xb . (4.8)

It depends on n(n − 1)/2 parameters σab = σba. Later on these parameters will be chosen
according to an extremalization condition for the free energy. Furthermore, a matrix G−1 is
defined in analogy to the covariance of a Gaussian integral

G−1
ab := (κI − σ)ab. (4.9)

With this matrix G−1 the Hamilton function (4.8) is rewritten as

Ht(x) =
1

2

∑

a,b

xa G−1
ab xb . (4.10)

For the system (4.10) the partition function Zt reads

Zt =

∫
dnx exp

[
− β Ht(x)

]
=

(
2π

β

)n/2 1√
det G−1

, (4.11)
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which yields the corresponding free energy

Ft = −T log Zt = − n

2β
log

2π

β
+

1

2β
log det G−1 . (4.12)

It is left to define an expectation value for the system with the new Hamilton function (4.10),
which will turn out to be useful in the following discussion:

〈 • 〉Ht =
1

Zt

∫
dnx exp [−β Ht(x)] • . (4.13)

In this formalism, the advantages of the newly introduced Hamilton function become obvious.
Evaluating the expectation value means solving averages with a Gaussian weight. The idea is to
rewrite (4.6) in a different manner

Zn =

∫ ∞

−∞
dnx exp

(
−β
{
Ht(x) + [Hr(x) − Ht(x)]

})
. (4.14)

We assume the difference of replicated and trial Hamilton function to be small and denote this
by an artificial parameter η. The replicated partition function (4.14) is rephrased in terms of the
expectation value (4.13):

Zn = Zt

〈
exp

{
− β η [Hr(x) − Ht(x)]

}〉
Ht

. (4.15)

Of course, we have in mind that the parameter η is evaluated in the limit η → 1 at the end, but
for the time being, we expand the replicated partition function with respect to η, which will be
formally considered a small parameter.

Using (4.15) and the cumulant expansion (3.13) the free energy of the replicated system is
given in the N th order by

F (N)
n = Ft −

1

β

N∑

k=1

(−β)k

k!

〈
[Hr(x) − Ht(x)]k

〉c

Ht

, (4.16)

where η was already set to 1. Note that the replicated free energy does not depend on the
parameters σab at all. The N -th order expansion, however, does depend on these variational
parameters. Therefore, they provide a tool to improve the approximation of the free energy for
the replicated system. The optimal σab extremize F

(N)
n according to the principle of minimal

sensitivity [ 12, 46]. Thus, one requires

∂F
(N)
n

∂σab
= 0 . (4.17)

Especially important will be the optimal upper bound given by the Jensen-Peierls inequality
(3.40) in the many-particle case:

Fn = F (∞)
n ≤ Ft +

〈
Hr(x) − Ht(x)

〉
Ht

. (4.18)

It is, in fact, the starting point of the usual replica symmetry technique and its successor, the
broken replica symmetry [ 17, 19]. We aspire a safe upper bound approximation of the system’s
free energy.
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4.2.1 A Clever Choice

Handling the cumulant expansion (4.16) involves quite lengthy calculations of the moments of
the interaction potential. Therefore, a mathematical trick will be adopted here. First of all, we
focus once again on a rewritten version of the replicated partition function (4.13) or (4.15). An
apparently trivial transformation is given by

Zn =

∫
dnx exp



−β


κ

2

n∑

a=1

x2
a −

1

2

∑

a,b

xa(1 − η)σab xb + η
β ε2

2

∑

a,b

R(xa − xb)






 . (4.19)

As it often happens, the tricky part begins with renaming a certain parameter:

(1 − η)σab = σ̃ab . (4.20)

This leads straight to the new Hamilton function

H̃t =
κ

2

n∑

a=1

x2
a −

1

2

∑

a,b

xa σ̃ab xb (4.21)

and the corresponding expectation value

〈 • 〉H̃t
=

1

Z̃t

∫
dnx exp(−β H̃t) • . (4.22)

Just for the sake of completeness, it is pointed out that Z̃t =
∫

dnx exp(−β H̃t) represents the
normalization factor. Thus, the replicated partition function (4.15) is now written as

Zn = Z̃t

〈
exp



−η

β2ε2

2

∑

a,b

R(xa − xb)





〉

H̃t

. (4.23)

In analogy to (4.16), one gets the free energy in form of the series

F̃ (N)
n = F̃t −

1

β

N∑

k=1

(η β2ε2)k

2k k!

〈

∑

a,b

R(xa − xb)




k〉c

H̃t

. (4.24)

Here, one has to be careful to perform the limit η → 1 after the final step, as it is left to insert
(4.20) into the final result and to expand it up to order N in η.

To describe the expansion in powers of η a new notation is introduced. We will expand

F̃ (N)
n = F̃ (N,0)

n

∣∣∣
η=0

+ F̃ (N,1)
n

∣∣∣
η=0

η + F̃ (N,2)
n

∣∣∣
η=0

η2 + ... , (4.25)

with the coefficients of the Taylor series given by

F̃ (N,i)
n =

∂i

∂ηi
F̃ (N)

n . (4.26)

Furthermore, we denote the operation ...
∣∣∣
η=0

by omitting the tilde:

F̃ (N,i)
n

∣∣∣
η=0

= F (N,i)
n . (4.27)
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As discussed before, one can now obtain the free energy series (4.16) in a recursive manner. For
fixed N , it can be obtained of the (N − 1)th expression for the free energy by just adding the
corresponding terms. After setting η = 1 it reads

F (N)
n = F (N−1)

n +

N∑

i=0

F (i,N−i)
n . (4.28)

4.2.2 What to Gain?

One has to keep in mind that the replicated partition function formally describes a non-random
system. The free energy F of the toy system can be obtained directly from the free energy of
the replicated system Fn. To see this, we first calculate

lim
n→0

n−1Fn = − 1

β
lim
n→0

1

n
log Zn . (4.29)

Using the Taylor expansion for the logarithm near x = 1 yields

lim
n→0

n−1Fn = − 1

β
lim
n→0

1

n
(Zn − 1) . (4.30)

In the limit n → 0 the Taylor expansion for small n is intrinsically exact. The replicated partition
is assumed to be a continuous function of the number of the replicas n. Accordingly, one may
use the replica trick (4.1) and obtains

lim
n→0

n−1Fn = F . (4.31)

Thus, with the same arguments underlying (3.26), it is possible to write the mean square dis-
placement (3.24) as

〈x2〉 = lim
n→0

2

n

d

dκ
Fn . (4.32)

With this, the N th order approximation for (4.32) can be obtained from the cumulant expansion
(4.16) for n = 0:

〈x2〉(N)
= lim

n→0

2

n

d

dκ
F (N)

n . (4.33)

We know F
(N)
n to be a function of κ and σab(κ), such that differentiating with respect to κ yields

with the chain rule

d

dκ
F (N)

n (κ, σ(κ)) =
∂F

(N)
n

∂κ
+
∑

a,b

∂F
(N)
n

∂σab

∂σab

∂κ
. (4.34)

The second term vanishes because of the saddle point equation (4.17). Hence, one just has to
consider the explicit dependence on the parameter κ:

〈x2〉(N)
= lim

n→0

2

n

∂

∂κ
F (N)

n . (4.35)
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4.2.3 Toolbox

After going through all this secondary considerations, one is almost prepared to attack the
variational perturbation expansion. To proceed with the calculations, one will need further
mathematical tools to do the explicit calculation. First of all, the matrix σ in (4.8) is symmetric:
σab = σba. Since it will pop up quite some times, one has to handle the consequences of differ-
entiating quantities with respect to a matrix element of a symmetric matrix. It helps to know [
48]

∂σab

∂σcd
=

1

2
(δacδbd + δadδbc) , (4.36)

which takes care of the two equal components, respectively. The principle of minimal sensitivity
asks to differentiate the free energy so that one must know the derivative of a determinant. Let
A(t) be a matrix with components aij(t) which depend on a parameter t. Then A−1(t) is the
inverse with matrix elements a−1

ij (t), which are characterized by the property
∑

j a−1
ij ajk = δik.

Then we have [ 49]

∂ detA(t)

∂t
= det A

∑

i,j

a−1
ij

∂aji(t)

∂t
. (4.37)

Because it will be often used in the following, we will restate the inverse relation for G, the
inverse of (4.9):

n∑

b=1

G−1
ab Gbc = δac . (4.38)

This helps us to differentiate G, with respect to σab:

∂Gab

∂σcd
= −

∑

e,f

Gae

(
∂G−1

ef

∂σcd

)
Gfb . (4.39)

With inserting the definition of G−1
ab and (4.36), we calculate

∂Gab

∂σcd
=

1

2

[
GacGbd + GbcGad

]
. (4.40)

In the following, the difference between (4.16) and (4.24) becomes essential. Therefore, quantities
depending on G̃ab and σ̃ab, respectively, will be marked by a tilde itself. This will mean that
the definition of symbols labeled with a tilde stay, in principle, the same, i.e. one just changes
Gab → G̃ab and σab → σ̃ab.

Finding the optimized parameters σab of (4.10) will not pose any fundamental problems. It can
be done just by using the tools of this and the previous chapters. Because of (4.26), derivatives
with respect to the parameter η will appear. It will therefore be helpful to state the chain rule
of differentiation in the special form

∂

∂η
=
∑

c,d

(
∂σ̃cd

∂η

)
∂

∂σ̃cd
= −

∑

c,d

σcd
∂

∂σ̃cd
. (4.41)

In the calculations to follow, expressions involving terms of elements of σ multiplied with matrix
elements of G will appear because of the chain rule (4.41). To handle these terms more elegantly,
we will apply the definition (4.9) to the property (4.38). This leads to the identity

∑

b

σabGbc = κGac − δac . (4.42)
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4.3 Explicit Expansion

With the help of the mathematical tools introduced in Sec. 4.2.3, the explicit calculations will
be done in the following part of this chapter. Everything will be set up, so the more passionate
and brave calculator can compute the variational perturbation series of this problem to higher
orders in order to approximate the system better. We, however, will stay in the safe haven of the
Jensen-Peierls inequality. We therefore just calculate the first-order free energy and try different
choices for the variational parameters.

4.3.1 Zeroth Order

The 0th order of (4.24) poses no further problems. It reads

F̃ (0)
n =

1

2β
log det G̃−1 − n

2β
log

(
2π

β

)
. (4.43)

Applying the chain rule (4.41), the expansion coefficients (4.26) and (4.27) for η = 0 are given
as

F (0,0)
n =

1

2β
log det G−1 − n

2β
log

(
2π

β

)
, (4.44)

F (0,1)
n =

1

2β

∑

c,d

σcdGcd , (4.45)

F (0,2)
n = − 1

2β

∑

c,d

∑

e,f

σefσcdGecGfd , (4.46)

...

Applying (4.42) simplifies the higher orders to

F (0,1)
n =

κ

2β
Tr G − n

2β
, (4.47)

F (0,2)
n = −κ2

2β

∑

e,f

G2
ef +

κ

β
Tr G − n

2β
, (4.48)

...

The free energy of the replicated system in zeroth order (4.16) reads

F (0)
n = F (0,0)

n . (4.49)

4.3.2 First Order

To calculate the first order of the free energy series (4.16), we apply the recursive relation (4.28):

F (1)
n = F (0)

n + F (0,1)
n + F (1,0)

n . (4.50)

The only new term arises from the first order of (4.24) and reads

F̃ (1)
n = −β ε2

2

∑

a1,b1

〈
R(xa1

− xb1)
〉

H̃t

. (4.51)
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Expectation values of correlation functions have been calculated in App. C with the smearing
formula [ 50, 51]. We use Eq. (C.25) to get

f̃ [q(a, b)] = ε2
〈

R(xa − xb)
〉

H̃t

, (4.52)

which is just a function of

q(a, b) =
1

β
(Gaa + Gbb − 2Gab) . (4.53)

The analog expression without tilde quantities writes according to (4.27)

f [q(a, b)] = ε2
〈

R(xa − xb)
〉

Ht

. (4.54)

For the toy model (1.6), the function (4.54) can be calculated explicitly by (C.31):

f(ξ) =
ε2

√
2π

[
ξ + λ2

]−1/2
. (4.55)

The coefficients of the expansion in η can be calculated by elementary transformations. They
read with (4.40), (4.41) and renaming the summation indices:

F (1,0)
n = −β

2

∑

a,b

f [q(a, b)] , (4.56)

F (1,1)
n =

∑

a,b

∑

e,f

σeffξ[q(a, b)] [GaeGaf − GaeGbf ] , (4.57)

...

The subscript ξ denotes differentiation with respect to the argument. In a nutshell, the first
order free energy writes using the identity Trlog = logdet:

F (1)
n = − n

2β
log

(
2πe

β

)
+

1

2β
Trlog G−1 +

κ

2β
Tr G − β

2

∑

a,b

f [q(a, b)] . (4.58)

It is left to point out, that calculating the mean square displacement, one has to partially
differentiate with respect to κ according to (4.35). Thus, it computes

〈x2 〉(1) = lim
n→0

1

nβ
TrG . (4.59)

Now the extremalization of the free energy can be done. Differentiating (4.50) with respect to
the variational parameter σcd yields

∂

∂σcd
F (1)

n = − 1

2β
Gcd +

κ

2β

∑

e

GecGed −
∑

a,b

fξ[q(a, b)]
[
GacGad − GacGbd

]
. (4.60)

The principle of minimal sensitivity (4.17) demands

∂

∂σcd
F (1)

n = 0 . (4.61)



4.4 Replica-Symmetric Ansatz 45

From the structure of the terms in (4.60), we read off that the application of the identity (4.38)
can lead to a conditional equation for the elements of σ. After a straightforward calculation just
using (4.38), one obtains

σcd = 2β
∑

a

fξ[q(a, c)]δcd − 2βfξ[q(c, d)] . (4.62)

The result (4.62) can be rewritten as

c 6= d ⇒ σcd = −2βfξ[q(c, d)] , (4.63)

c = d ⇒ σcc = −
∑

a6=c

σac . (4.64)

4.4 Replica-Symmetric Ansatz

In this section a special ansatz for the matrix σ will be discussed: the replica-symmetric ansatz
(RSA). It is taken to be the simplest ansatz’ possible - a highly symmetric matrix is assumed
with just two elements [ 19]:

σab = σ̃δab + σ0(1 − δab) . (4.65)

So now the matrix in G−1 (4.9) is given as

G−1
ab = (κ − σ̃)δab − σ0(1 − δab) . (4.66)

Given this structure of G−1, it is reasonable to make for its inverse G the corresponding ansatz

Gab = Aδab + B . (4.67)

Using the relation of inverse matrices (4.38), one obtains two conditional equations for A and B:

A =
1

κ − σ̃ + σ0
, (4.68)

B =
σ0

κ − (n − 1)σ0 − σ̃
· 1

κ − σ̃ + σ0
. (4.69)

Within the RSA, we get for the quantity (4.53)

q(a, b) =
2A

β
(1 − δab) . (4.70)

4.4.1 Zeroth-Order Result

As seen in the Sec. 4.3.1, no physical conditional equation for the variational parameters could
be found. Despite this, it is possible to calculate quantities in zeroth order cumulant expansion
as the mean square displacement (4.35).

The free energy has been calculated for the case of a general matrix Gab. In the RSA an
explicit formula can be derived straightforwardly. The only real problem is to calculate the
determinant of a n × n matrix G as demanded in (4.44). With the help of the considerations of
App. C.2 and especially equation (C.39), the free energy calculates in zeroth order

F (0) = lim
n→0

1

n
F (0)

n =
1

2β
log

κβ

2π
. (4.71)
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It is no suprise, that this is exactly (3.3), the result disregarding the random potentials. Fur-
thermore, the corresponding mean square displacement calculates

〈x2〉(0) =
1

κβ
. (4.72)

4.4.2 First-Order Result

Via variational perturbation theory and the principle of minimal sensitivity, we obtained for the
matrix elements σab the conditional equation (4.62). Using (4.63) and (4.64), we find

σ̃ = −(n − 1)σ0 . (4.73)

Now, one can state (4.67) with (4.68), (4.69) in a very comfortable way:

Gab =
1

κ + nσ0
δab +

σ0

κ(κ + nσ0)
. (4.74)

Inserting into (4.63) yields

σ0 = −2βfξ

(
2

β(κ + nσ0)

)
. (4.75)

In the limit n → 0 this expression reduces to

σ0 = −2βfξ

(
2

βκ

)
, (4.76)

leaving the left-hand side independent of σ. In the case (4.55), we obtain

σ0 =
ε2

√
2π

β

[
2

βκ
+ λ2

]−3/2

. (4.77)

4.4.3 Free Energy and Mean Square Displacement

The free energy of the random system is calculated by (4.31). Having obtained the zeroth order

contribution to the free energy (4.71), we are left to calculate F
(0,1)
n /n and F

(1,0)
n /n in the limit

n → 0, which poses no further problem. Using the expression (4.47) and inserting the matrix
(4.67) with coefficients (4.68) and (4.69) yields in the limit n → 0

1

n
F (0,1)

n → 0 . (4.78)

With (4.56), (4.74), and (4.75) we get correspondingly

1

n
F (1,0)

n → −β

2
f(0) +

β

2
f

(
2

κβ

)
. (4.79)

We note that the free energy in the replica-symmetric ansatz in the limit n → 0 does not depend
on the variational parameter. Thus, no non-perturbative correction is achieved for any correlation
function. The free energy turns out to be

F (1) =
1

2β
log

κβ

2π
− β

2
f(0) +

β

2
f

(
2

κβ

)
, (4.80)
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which, comparing with (3.3) and (3.17), is exactly the same result as within first-order perturba-
tion theory. This will be seen more direct in the general case that will be discussed in the next
chapter. By (4.33) or (4.59) it is possible to calculate now the mean square displacement to

〈x2〉(1) =
1

κβ
− 2

κ2
fξ

(
2

κβ

)
. (4.81)

As said before, the first-order result is especially important. Because of the Jensen-Peierls in-
equality (4.18), it gives an upper bound to the free energy. At low temperatures the accuracy of
the approximation can decrease. This will be investigated in the following section by calculating
the Hessian.

4.4.4 Stability Analysis

The stability analysis of the system is extremely delicate. Because of the Jensen-Peierls inequality
(4.18), it is quite clear that in the case n > 1 one has to find the minimum of the first order
variational free energy to find the optimal upper bound. Analytically continuing the free energy
to n < 1, the corrections come from the maxima and not from the minima of the system (4.58).
Naively speaking, all dimensional factors in the partition function become negative in the limit
n → 0. This artifact of the model is commented on in Refs. [ 11, 52] and will not be discussed
further in this work. To avoid further problems, the stability for the solutions is shown for n > 1.
One calculates the Hessian and the stability depends on it being positive definite.

The Hessian is computed as the second derivative of the free energy with respect to the
variational parameters:

Hab,cd =
∂2

∂σab∂σcd
F (N)

n . (4.82)

The intermediary results are given in App. C. The Hessian of the replicated system in general
is given in (C.41). Furthermore, using (C.46) makes it possible to calculate the Hessian in the
replica-symmetric ansatz straightforwardly. Using (4.65)–(4.70) and the first-order result (4.75),
one gets after a cumbersome calculation the expression

Hab,cd = − 1

2β
B2 +

2AB2κ

β
+ 2A2Bfξ

(
2A

β

)
+ (δac + δad + δbc + δbd)

[
− AB

4β

+
κ

4β
(3A2B + nAB2) − 1

2
(nA2B − A3)fξ

(
2A

β

)]
+ (δacδbd + δadδbc)

×
[
− 1

4β
A2 +

κ

2β
A3 − nA3 − 1

β
A4fξξ

(
2A

β

)]
− (nδabδacδcd + δabδcd

−δacδad − δbcδbd − δabδac − δabδad)
A4

β
fξξ

(
2A

β

)
. (4.83)

The eigenvectors have to satisfy the relation

∑

a,b

Hab,cd vab
!
= λ vcd . (4.84)

The most natural ansatz

vab = v + uδab . (4.85)
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Tc

κ

Figure 4.1: Almeida-Thouless line for Gaussian correlation with λ = 1, ε = 1.

reproduces the critical eigenvalue. Two solutions can be found, which coincide in the limit n = 0.
In this limit the coefficient u vanishes and, therefore, the eigenvector is a matrix with constant
entries. The critical eigenvalue reads

λc =
1

κ2β
− 4

κ4β
fξξ

(
2

κβ

)
. (4.86)

Further eigenvalues of those so-called ultrametric matrices are calculated in [ 17, 19, 53]. In the
limit n → 0, there are three different eigenvalues, two of which are positive for all temperatures.

To get the optimal upper bound of the free energy, one has to demand that

λc ≥ 0 . (4.87)

The line λc = 0 is called the Almeida-Thouless line and is plotted in Fig. 4.1. In our case of
Gaussian correlation, we arrive at the inequality

T ≤ 1

2

(
9ε4κ

2π

)1/5

− λ2κ

2
. (4.88)

The right-hand side is plotted in Fig. 4.1. If the confinement parameter satisfies the condition

κ ≥
√

3 ε

(2π)1/4
λ5/2 , (4.89)

the replica-symmetric solution is an optimal bound for the free energy for all temperatures.
Otherwise, it does not give satisfying results below a critical temperature.

Although the replica-symmetric ansatz does not provide a better approximation than first-
order standard perturbation theory, we can understand Fig. 3.1 better. For κ = 2 we obtain
almost no difference between the first order free energy and numerical results, whereas for κ =
0.01, one notices huge deviations. This, however, agrees perfectly with the expectations gained
by the discussion of the Almeida-Thouless line. For the problem of a harmonic oscillator within
a disorder environment, the replica-symmetric solution is, indeed, a good approximation in cases
of κ bigger than approximately 1.1. However, it ceases to resemble the simulation results for
smaller parameter values, as visualized in Fig. 3.1.
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Since by using the replica-symmetric approach no further improvement in the approximation
has been achieved, one needs to find a better method. This gives rise to the breaking of replica
symmetry. To this end, the Parisi method and its formalism will be presented in the following
chapter.





Chapter 5

Replica-Symmetry Breaking

In this chapter we will overcome the limits of the replica-symmetric ansatz, which does not
yield satisfying results in the small temperature regime. Therefore, we will break the replica
symmetry according to Giorgio Parisi. Originally developed to describe spin glasses, the replica-
symmetry breaking (RSB) method has shown to be very successful in many other systems as
well [ 10, 15, 53].

5.1 Idea

In the RSA a symmetric matrix of the form Gab = g̃δab + g0(1− δab) was used, which is invariant
under the permutation of the replica indices. With this choice of the matrix all replicas are equiv-
alent. A natural suggestion to improve the approximations obtained is to introduce additional
independent variational parameters. Unfortunately, it is not possible to invert an arbitrary n×n
matrix in a general way as needed to calculate the free energy expression (4.58). Hence, we will
restrict ourselves to a special type of matrices called Parisi matrices, for which one can calculate
the free energy (4.58) explicitly. Physical motivations for this choice of matrix can be found for
instance in Ref. [ 11].

One starts by dividing the n replicas into n/m groups of replicas [ 10, 11]. Of course, n/m
must be an integer as well. Then all diagonal elements are set to constant values Gaa = g̃.
Further on, one sets the other matrix elements Gab = g1, if the indices a and b belong to the
same group and Gab = g0, if they do not. Mathematically speaking (assuming a 6= b):

Gaa = g̃ (5.1)

Gab = g1 if ⌈a/m⌉ = ⌈b/m⌉ (5.2)

Gab = g0 if ⌈a/m⌉ 6= ⌈b/m⌉ . (5.3)

The bracket ⌈·⌉ denotes the ceiling function:

⌈x⌉ = min{n ∈ Z|n ≥ x} . (5.4)

With this ansatz, one adds one more independent variational parameter. The method of replica-
symmetry breaking can further be generalized by dividing the groups of replicas into groups of
replicas and so on. In order to describe this recursive procedure a set of integers mi with i ∈ I
is introduced. The set I contains k + 1 integer values:

I = {0, 1, 2, ..., k} . (5.5)

51
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One will later speak of a k-step RSB. If not said otherwise, all summations in the discussion to
follow will go over all i ∈ I . In this formalism the replica symmetric approach can be named a
0-step RSB. These integers have the following properties:

mk+1 = 1 (5.6)

m0 = n (5.7)

mi/mi+1 ∈ Z, ∀ i ∈ I (5.8)

and, thus, they obey the inequalities

1 = mk+1 ≤ mk ≤ ... ≤ m1 ≤ m0 = n . (5.9)

Furthermore, we introduce a set of real valued constants {g0, g1, ..., gk}. The aim is to divide the
n replicas into n/mk groups of replicas. These groups are subdivided into mk/mk−1 groups and
so on. Thus, the elements of the Parisi matrix are given by (again assuming a 6= b);

Gaa = g0 , (5.10)

Gab = gi if ⌈a/mi⌉ 6= ⌈b/mi⌉ and ⌈a/mi+1⌉ = ⌈b/mi+1⌉ for i ∈ I. (5.11)

The concept of Parisi matrices can further be generalized. To keep track of the parameters g,
we define the piecewise constant function g(u) by

g(u) = gi if mi+1 ≤ u ≤ mi . (5.12)

Note that this expression is just a reparametrization. We are still looking at a n × n matrix for
the integer n. However, the aim is to formulate a language in which it is possible to analytically
continue the results, like the Trace or the Tracelog, to the limit n → 0. A complete discussion
of properties and methods to deal with Parisi matrices is given in the following sections.

5.2 Parisi Matrices

The treatment of replica-symmetry breaking can be quite cumbersome and scientific publications
often just mention the basic equation referring mostly to the original papers of Giorgio Parisi
that can be found in the book Ref. [ 10] or in the work with Marc Mézard and Miguel A.
Virasoro in Ref. [ 16]. The core equations of the formalism were first mentioned in full in their
article Ref. [ 54]. In the following, the basic ideas of the mathematical treatment of RSB will
be presented. The discussion can also be found in the lecture notes of Ref. [ 55] in a similar
manner. In particular, one has to be careful with the analytic continuation. In the case n < 1,
the inequality (5.9) formally goes over into [ 10, 11, 15]

1 = mk+1 ≥ mk ≥ ... ≥ m1 ≥ m0 = n . (5.13)

Whenever this plays a decisive role, we will refer to this equation explicitly.

5.2.1 Definitions

The set P of all Parisi matrices forms a closed algebra. In order to show this, we will introduce a
practical way to construct a Parisi matrix. At first we will introduce the n×n matrix Ii,n = Imi,n.
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It can be most intuitively described by the following example for mi = 3 and n = 12:

Ii,12 =




1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1




. (5.14)

We remember that we read off from (5.9)

i < j ⇒ mi ≥ mj , (5.15)

which will become important in the continuous case. In the special cases of i = 0 and i = k + 1,
we get the n × n matrices

I0,n =




1 . . . 1
...

. . .
...

1 . . . 1


 , Ik+1,n = In =




1 0
. . .

0 1


 , (5.16)

a matrix with constant elements equal to 1 and the unity matrix, respectively. An arbitrary Ii,n

can be written in terms of (5.16) as

Ii,n =




I0,i 0
. . .

0 I0,i


 . (5.17)

Before we go on to demonstrate how to write Parisi matrices in a convenient form, we calculate
the matrix product Ii,nIj,n. This calculation crucially depends on the assumptions (5.6)–(5.9).
For i = j, the situation is quite clear. The multiplication yields

Ii,nIi,n =




I0,iI0,i 0
. . .

0 I0,iI0,i


 = miIi,n . (5.18)

Otherwise, we assume i < j without loss of generality. Because of (5.8), we may calculate



I0,j 0
. . .

0 I0,j


 I0,i = mjI0,i . (5.19)

This leads to

Ij,nIi,n =




mjI0,i 0
. . .

0 mjI0,i


 = mjIi,n . (5.20)
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Summarizing both cases (5.18) and (5.20), we find the general product to be

Ii,nIj,n = mmax{i,j}Imin{i,j},n . (5.21)

Having derived the multiplication properties of the matrices Ii,n, we are going to drop the second
index n, which refers to the size of the matrix as we will just deal with n × n matrices. With
this notation (5.21) goes over into

IiIj = mmax{i,j}Imin{i,j} . (5.22)

Now a Parisi matrix is constructed as follows. It is convenient to define the matrices

Ii ≡ Ii − Ii+1 (5.23)

in order to write a general Parisi matrix as

P = p̃ I +
∑

i

pi Ii . (5.24)

An example is a Parisi matrix with parameter values n = 12, k = 1 and m1 = 3. This is the
so-called one-step replica-symmetry breaking case. The form of the matrix is

P =




p̃ p1 p1 p0 p0 p0 p0 p0 p0 p0 p0 p0

p1 p̃ p1 p0 p0 p0 p0 p0 p0 p0 p0 p0

p1 p1 p̃ p0 p0 p0 p0 p0 p0 p0 p0 p0

p0 p0 p0 p̃ p1 p1 p0 p0 p0 p0 p0 p0

p0 p0 p0 p1 p̃ p1 p0 p0 p0 p0 p0 p0

p0 p0 p0 p1 p1 p̃ p0 p0 p0 p0 p0 p0

p0 p0 p0 p0 p0 p0 p̃ p1 p1 p0 p0 p0

p0 p0 p0 p0 p0 p0 p1 p̃ p1 p0 p0 p0

p0 p0 p0 p0 p0 p0 p1 p1 p̃ p0 p0 p0

p0 p0 p0 p0 p0 p0 p0 p0 p0 p̃ p1 p1

p0 p0 p0 p0 p0 p0 p0 p0 p0 p1 p̃ p1

p0 p0 p0 p0 p0 p0 p0 p0 p0 p1 p1 p̃




. (5.25)

From (5.24) we see that

n∑

b=1

Pab = p̃ +
∑

i

pi(mi − mi+1) . (5.26)

To be able to deal with the Parisi matrices, we derive from (5.22), (5.23) the relations

IiIj =





(mi − mi+1)Ii − mi+1Ii for i = j

(mj − mj+1)Ii for i < j

(mi − mi+1)Ij for j < i .

(5.27)

Note that because of (5.27), the matrices Ii commute:

IiIj = IjIi . (5.28)
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5.2.2 Algebra

Now we will finally prove that the set of Parisi matrices forms a closed algebra. To this end, we
take two Parisi matrices P,Q ∈ P and define their product R = PQ. Using the construction
scheme of a Parisi matrix (5.24), we get

R =

(
p̃ I +

∑

i

pi Ii

)
q̃ I +

∑

j

qj Ij


 , (5.29)

which yields

R = p̃q̃ I +
∑

i

(q̃pi + p̃qi) Ii +
∑

i,j

piqj IiIj . (5.30)

Due to the commutativity (5.28) and the identity
∑

i,j<i

=
∑

j,i>j

(5.31)

one can rewrite the product of two Parisi matrices (5.30) as

R = p̃q̃ I +
∑

i

(q̃pi + p̃qi) Ii +
∑

i,j>i

(piqj + pjqi) IiIj +
∑

i

piqi IiIi . (5.32)

Using (5.27) yields

R = p̃q̃ I +
∑

i

(q̃pi + p̃qi) Ii +
∑

i,j>i

(piqj + pjqi)(mj − mj+1) Ii −
∑

i

piqimi+1Ii

+
∑

i

piqi(mi − mi+1)Ii . (5.33)

To get the correct form of R, we make use of the identity

Ii = I +
∑

j≥i

Ij , (5.34)

which follows from the summation of (5.23) and taking into account (5.16). By changing the
summation indices and using (5.34), we get from (5.33) the form

R =

[
p̃q̃ +

∑

i

qipi(mi − mi+1)

]
I +

∑

i

(q̃pi + p̃qi) Ii +
∑

i,j>i

(piqj + pjqi)(mj − mj+1) Ii

−
k∑

i

piqimi+1Ii +
∑

i,j≤i

pjqj(mj − mj+1)Ii . (5.35)

For the last term, we used the identity
∑

i,j≥i =
∑

j,i≥j. Hence, Eq. (5.35) corresponds to a
Parisi matrix (5.24) with the parameters

r̃ = p̃q̃ +
∑

i

qipi(mi − mi+1) , (5.36)

ri = q̃pi + p̃qi − piqimi+1 +
∑

j>i

(piqj + pjqi)(mj − mj+1) +
∑

j≤i

pjqj(mj − mj+1) . (5.37)



56 Replica-Symmetry Breaking

5.2.3 Analytic Continuation

In order to prepare the analytic continuation, one prefers to describe the matrix elements as a
piecewise linear function (5.12). In this way, the sums go over into integrals:

∑

j

(mj − mj+1) →
∫ n

1
dv . (5.38)

Because of the convention (5.15), one has to be careful with the integration limits:

∑

j≤i

(mj − mj+1) →
∫ n

u
dv , (5.39)

∑

j>i

(mj − mj+1) →
∫ u

1
dv . (5.40)

Thus, we get for the respective coefficients of the Parisi matrix (5.36) and (5.37)

r̃ = q̃p̃ +

∫ n

1
dv p(v)q(v) , (5.41)

r(u)= p̃q(u) + q̃p(u) − up(u)q(u) +

∫ n

u
dv p(v)q(v) +

∫ u

1
dv [p(u)q(v) + q(u)p(v)] . (5.42)

The latter equation can be rewritten as

r(u) = (p̃ −〈p〉n)q(u) + (q̃ −〈q〉n)p(u) − np(u)q(u) −
∫ u

n
dv [p(v) − p(u)][q(v) − q(u)] , (5.43)

where we introduced the abbreviation

〈p〉n =

∫ 1

n
dv p(v) . (5.44)

Now there remains no further problem to continue the function analytically for all n. We will
be mostly interested in the case n = 0. Writing 〈p〉0 = 〈p〉 and taking the limit n → 0 of the
expressions (5.41) and (5.43) yields the final expressions

r̃ = p̃q̃ −
∫ 1

0
dv p(v)q(v) = p̃q̃ − 〈pq〉 , (5.45)

r(u) = (p̃ − 〈p〉)q(u) + (q̃ − 〈q〉)p(u) −
∫ u

0
dv [p(v) − p(u)][q(v) − q(u)] . (5.46)

5.2.4 Inverse Matrix

With help of the results of the previous section, it is possible to calculate the inverse of a Parisi
matrix in a quite general way. The aim is to find for a given matrix P a corresponding matrix Q

such that PQ = I. In the limit n → 0, this matrix can be obtained via Eqs. (5.45) and (5.46).
We just set r̃ = 1 and r(u) = 0 and solve for q̃ and q(u), respectively. In order to do that, a
further new abbreviation will be introduced

[q]n(u) :=

∫ u

n
dv [q(u) − q(v)] , (5.47)
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which basically measures the deviation of q(u) from a constant. Again we will write [q]0 = [q].
It is easy to see that

[q]′(u) = uq′(u) . (5.48)

Calculating the derivative of r(u) with respect to u for n = 0 yields from (5.46)

r′(u) = q′(u)
{
p̃ − [p](u) − 〈p〉

}
+ p′(u)

{
q̃ − [q](u) − 〈q〉

}
. (5.49)

Because of (5.48) this writes

r′(u) = −1

u

d

du

{
p̃ − 〈p〉 − [p](u)

}{
q̃ − 〈q〉 − [q](u)

}
= 0 . (5.50)

Therefore, we know that
{
p̃ − 〈p〉 − [p](u)

}{
q̃ − 〈q〉 − [q](u)

}
= 1 . (5.51)

The constant 1 on the right-hand side of the equation can be determined via Eq. (5.43) by
calculating r(1) and setting it equal to 0. The unknown integral can be substituted because
(5.45) is equal to 1. Comparing with (5.51) at u = 1 leads to the given result.

On the other hand, for u = 0 Eq. (5.51) reads because of [q](0) = 0 as
[
p̃ − 〈p〉

][
q̃ − 〈q〉

]
= 1 . (5.52)

The case u = 1 yields the similar expression
[
q̃ − q(1)

][
p̃ − p(1)

]
= 1 . (5.53)

Now using (5.51) and (5.52), we arrive at

[q](u) = − 1

p̃ − 〈p〉
[p](u)

p̃ − 〈p〉 − [p](u)
. (5.54)

Differentiating with respect to u yields with (5.48)

q′(u) = − 1

p̃ − 〈p〉
1

u

d

du

[p](u)

p̃ − 〈p〉 − [p](u)
. (5.55)

To solve this equation for q(u), we are in need of an initial value. Evaluating (5.46) at u = 0 and
using (5.52) to simplify the result yields

q(0) = − p(0)

(p̃ − 〈p〉)2 . (5.56)

Now we can solve (5.55) for the function q(u) by integration and get

q(u) = q(0) − 1

p̃ − 〈p〉

∫ u

0
dv

1

v

d

dv

[p](v)

p̃ − 〈p〉 − [p](v)
. (5.57)

Thus, we get the coefficient function of the inverse Parisi matrix to be

q(u) = − 1

p̃ − 〈p〉

(
[p](u)

u{p̃ − 〈p〉 − [p](u)} +
p(0)

p̃ − 〈p〉 +

∫ u

0

dv

v2

[p](v)

p̃ − 〈p〉 − [p](v)

)
. (5.58)
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It remains to compute the diagonal element q̃ of the inverse matrix. In order to do that, we
make use of (5.53), (5.58) and calculate straightforwardly

q̃ =
1

p̃ − p(1)
+ q(1) =

1

p̃ − 〈p〉

(
1 − p(0)

p̃ − 〈p〉 −
∫ 1

0

dv

v2

[p](v)

p̃ − 〈p〉 − [p](v)

)
. (5.59)

As we see, the inverse of a Parisi matrix is of the Parisi form with coefficients (5.58) and (5.59).
We end this section by mentioning an equation that can be calculated straightforwardly. It will
turn out to be useful throughout the calculation of the toy model (1.6) to take into account

q̃ − q(u) =
1

u{p̃ − 〈p〉 − [p](u)} −
∫ 1

u

dv

v2

1

p̃ − 〈p〉 − [p](v)
, (5.60)

which follows directly from (5.58) and (5.59).

5.2.5 Eigenvalues of Parisi Matrix

To determine the eigenvalues of a Parisi matrix, we first construct projectors. We introduce the
matrices

Pi :=
1

mi
Ii , for i ∈ I and P−1 := 0 . (5.61)

Because of the property (5.27) of the matrices Ii, we get the multiplication rule

PiPj = Pmin{i,j} . (5.62)

Similar to (5.23), we now define the actual projector as

Pi := Pi − Pi−1 . (5.63)

Because of (5.62), they are idempotent and orthogonal

PiPj = δijPi , (5.64)

and with (5.16), (5.61) and (5.63) one finds a completeness relation

I =

k+1∑

i=0

Pi . (5.65)

Hence, the matrices Pi are, indeed, orthogonal projection operators. The rank of the matrices
(5.61), i.e., the number of linear independent rows or columns, follows from symmetry reasons:

rank(Pi) =
n

mi
. (5.66)

The rank of the projector (5.63) accordingly calculates for i ≥ 1

rank(Pi) =
n

mi
− n

mi−1
. (5.67)

The case i = 0 has to be treated independently as m−1 is not a well-defined quantity. It will be
discussed later in this section.
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Due to the identity (5.65), we can decompose any vector y as

y =
k+1∑

i=0

yi , (5.68)

with the coefficients

yi = Piy . (5.69)

In the following, we will show that the coefficients yi are eigenvectors of the Parisi matrix P. To
this end, we use (5.22), (5.61) and write the matrix (5.24) in terms of the projectors

P = p̃ I +
∑

i

pi (miPi − mi+1Pi+1) . (5.70)

Multiplication of the Parisi matrix P with the vector yi leads to

Pyj =

[
p̃ I +

∑

i

pi (miPi − mi+1Pi+1)

]
(Pj − Pj−1)y , (5.71)

where the index j runs from j = 0 to j = k + 1. Applying the properties (5.62) yields

Pyj = p̃yj +
∑

i

[
pimi

(
Pmin{i,j} − Pmin{i,j−1}

)

−pimi+1

(
Pmin{i+1,j} − Pmin{i+1,j−1}

) ]
y , (5.72)

which reduces to

Pyj = p̃yj +
∑

i≥j

pi(mi − mi+1)yj − pj−1mjyj . (5.73)

The corresponding eigenvalues can thus be read off as

λj = p̃ +
∑

i≥j

(mi − mi+1)pi − mjpj−1 . (5.74)

In the parameterization in terms of the continuous functions (5.12) we get

λ(u) = p̃ − up(u) +

∫ u

1
dv p(v) = p̃ − 〈p〉n − [p]n(u) − np(u) . (5.75)

Their multiplicities can be derived from (5.67) as

n

mi
− n

mi−1
= n

mi−1 − mi

mimi−1
→ n

du

u2
. (5.76)

Now we return to the case j = 0 and take a look at the projector P0. From (5.16) and (5.61)
follows that it is a matrix with constant coefficients Pij = 1/n ∀i, j. Accordingly, applying the
projector P0 to any vector leads to a new vector with constant entries. Because of the general
considerations (5.72), it is also an eigenvector with a multiplicity that is obviously equal to 1. The
corresponding eigenvalue can be obtained from (5.74). One has to be careful with the quantity
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p−1. It has to be defined as 0 in accordance with the definition of the Parisi matrix (5.24) and
(5.72). The eigenvalue then results to be

λ0 = p̃ +
∑

i

pi(mi − mi+1) . (5.77)

This eigenvalue already could have been read off directly from Eq. (5.26) for an eigenvector
e = (1, 1, ..., 1)T .

In the continuous case, the eigenvalue can by found with (5.38). One finds

λ0 = p̃ − 〈p〉n . (5.78)

Now we will go over to the case n < 1. However, we will defer the limiting process n → 0 to
the next section. There it will be shown that a term vanishing in this limit will give a nonzero
contribution to the Tracelog. This is, in fact, the first time we have to be careful with small n.
Moreover, the inequality (5.13) becomes important for the first time as the multiplicity of the
eigenvalues changes its sign because of mi−1 −mi → −du for small n. Hence, we obtain instead
of (5.76)

n

mi
− n

mi−1
→ −n

du

u2
. (5.79)

5.2.6 Tracelog of Parisi Matrix

In order to avoid any confusion, we will state right at the beginning of this section that all
following considerations are done for n < 1. To calculate the Tracelog of a Parisi matrix, we
first investigate the logarithm of a Parisi matrix. Via the Taylor expansion of the logarithm
log A = log[I + (A − I)], one can show that for every diagonizable matrix A

log A = T (log A′)T−1 , (5.80)

where the matrix A′ = T−1AT is the matrix with the eigenvalues as entries on the diagonal.
Each column vector of T is an eigenvector of A. It is convenient that eigenvalues are invariant
under this transformation as

det(A′ − λI) = detT−1(A − λI)T = det(A − λI) . (5.81)

Therefore, the trace of a matrix, i.e., the sum of all diagonal elements, is invariant and equal to
the sum of all eigenvalues

TrA =
∑

i

λαi

i . (5.82)

The exponent αi denotes the multiplicity of the corresponding eigenvalue. It follows that the
Tracelog of a diagonizable matrix A calculates according to

TrlogA =
∑

i

log λαi

i . (5.83)

Considering this, one finds via the results (5.75), (5.76), and (5.78) of the previous section the
expression for the continuous case

Trlog P= log
{
p̃ − 〈p〉n

}
+

∫ 1

n
dv log

{
p̃ − 〈p〉n − [p]n(v) − np(v)

}−n/v2

= log
{
p̃ − 〈p〉n

}
−n

∫ 1

n

dv

v2
log
{
p̃ − 〈p〉n − [p]n(v) − np(v)

}
. (5.84)
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In view of the limit n → 0, one has to account for all terms up to order n. Because the second
term is already of that order, the first one for will be expanded for small n to get

log
{
p̃ − 〈p〉n

}
= log

{
p̃ − 〈p〉

}
+ n

p(0)

p̃ − 〈p〉 + O(n2) . (5.85)

With this, it follows that the whole Tracelog can be written as

Trlog P = log
{
p̃ − 〈p〉

}
+ n

p(0)

p̃ − 〈p〉 − n

∫ 1

n

dv

v2
log
{
p̃ − 〈p〉 − [p](v)

}
+ O(n2) . (5.86)

Furthermore noticing the identity

1

n
− 1 =

∫ 1

n

dv

v2
, (5.87)

we may simplify the whole expression and get

Trlog P = n log
{
p̃− 〈p〉

}
+ n

p(0)

p̃ − 〈p〉 − n

∫ 1

n

dv

v2
log

{
p̃ − 〈p〉 − [p](v)

p̃ − 〈p〉

}
+ O(n2). (5.88)

Now one is able to take the well-defined limit n → 0

lim
n→0

1

n
Trlog P = log

{
p̃− 〈p〉

}
+

p(0)

p̃ − 〈p〉 −
∫ 1

0

dv

v2
log

{
p̃ − 〈p〉 − [p](v)

p̃ − 〈p〉

}
. (5.89)

This is exactly the result found by Mézard and Parisi in Ref. [ 54].

5.3 Application to Model

Having developed the formalism of Parisi matrices, we can finally tackle our key problem. At
first, we rewrite (4.53) in terms of the new formalism:

q(a, b) =
2

β
(g̃ − g(u)) , (5.90)

with g̃ being the diagonal and g(u) describing the non-diagonal part of the matrix G. Similar,
the conditional equation (4.64) for the diagonal elements σaa = σ̃ reads using (5.26) and (5.38):

σ̃ =

∫ 1

0
dv σ(v) = 〈σ〉 . (5.91)

Note that σ̃ can be expressed in terms of the non-diagonal elements. It is, thus, no independent
degree of freedom. Accordingly, one proceeds for the non-diagonal elements. The conditional
equation (4.63) translates into

σ(u) = −2βfξ

(
2

β
[g̃ − g(u)]

)
. (5.92)

The inverse G−1 of G is defined in (4.9). A Parisi matrix in the limit n → 0 is described by the
diagonal element

g̃−1 = κ − σ̃ (5.93)
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and a function on the interval [0, 1] describing the non-diagonal elements

g−1(u) = −σ(u) . (5.94)

Therefore, (5.44) and (5.47) give

〈g−1〉 = −〈σ〉 = −σ̃ (5.95)

[g−1](u) = −[σ](u) . (5.96)

Furthermore, we find from (5.60) the expression

g̃ − g(u) =
1

u{κ + [σ](u)} −
∫ 1

u

dv

v2

1

κ + [σ](v)
. (5.97)

The central point is to calculate the free energy (4.58). In order to this, we need the expressions
for TrG and Trlog G−1. From Eq. (5.59), we find

lim
n→0

n−1 Tr G = g̃ =
1

κ
+

σ(0)

κ2
+

1

κ

∫ 1

0

dv

v2

[σ](v)

κ + [σ](v)
. (5.98)

The mean square displacement was derived to be (4.59) and, thus, it is given in the Parisi
formalism as

〈x2〉(1)(k) =
1

β

[
1

κ
+

σ(0)

κ2
+

1

κ

∫ 1

0

dv

v2

[σ](v)

κ + [σ](v)

]
. (5.99)

The index k denotes the indirect dependence of the step parameter in (5.5).
Looking at the expression, we have to be careful near u = 0 as the integrand is multiplied by

a factor 1/v2. Thus, one naively expects the remaining part of the integrand to have to go in
leading order with v2 as to make sure that the integral does not diverge. We have to keep in mind,
though, that sometimes we have to be careful with the limit n → 0. Hence, we conclude that if
we have [σ](u) = 0 in an interval [0, c] with c ≤ 1, no further problems arise in the integra. In
the case of finite-step RSB, this is exactly what happens. Also it is possible to have a continuous
function σ(u) starting as constant on the interval [0, c]. Now we use (5.89) to compute

lim
n→0

n−1 Trlog G = log κ − σ(0)

κ
−
∫ 1

0

dv

v2
log

{
κ + [σ](v)

κ

}
. (5.100)

The last term missing is the double sum. Due to the fact that one separates the diagonal case
from the non-diagonal one, we get

∑

a,b

f

[
2

β
(Gaa + Gbb − 2Gab)

]
= nf(0) − n

∫ 1

0
dv f

[
2

β
(g̃ − g(v))

]
(5.101)

= nf(0) − n

∫ 1

0
dv f

[
2

β

(
1

u{κ + [σ](u)} −
∫ 1

u

dv

v2

1

κ + [σ](v)

)]
.

The minus sign in front of the integral results from the case n < 1. With the help of (5.98)–
(5.101), we find the free energy under replica-symmetry breaking to be

F
(1)
(k) = lim

n→0
n−1 F (1)

n =− 1

2β
log

(
2π

κβ

)
+

1

2β

∫ 1

0

dv

v2

[σ](v)

κ + [σ](v)
− 1

2β

∫ 1

0

dv

v2
log

{
κ + [σ](v)

κ

}

−β

2
f(0) +

β

2

∫ 1

0
du f

[
2

β

(
1

u{κ + [σ](u)} −
∫ 1

u

dv

v2

1

κ + [σ](v)

)]
.(5.102)
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Again the index k indicates the step number of RSB. One notices that the free energy (5.102)
just depends on the function [σ](u).

After all this preparation, it is easy to reproduce the replica-symmetric result. In this specific
ansatz, all non-diagonal elements are equal

σRSA(u) = σ0 = const. (5.103)

According to (5.47), the quantity [σRSA](u) is seen to be 0 for all values u ∈ [0, 1]. Hence,
the free energy (5.102) does not depend on the variational parameter. This is the reason why
the replica-symmetric ansatz does not include non-perturbative contributions as mentioned in
Sect. 4.4.3. As expected, this case is easily seen to reproduce (4.80).

5.3.1 Infinite-Step Symmetry Breaking

Inspired by its success in spin glasses, we search for continuous functions σ(u) and [σ](u), re-
spectively, as a solution of the saddle point equation. In order to find it, we differentiate the
conditional equation (5.92) with respect to u. We get

βσ′(u) {κ + [σ](u)}2 = 4fξξ

[
2

β
(g̃ − g(u))

]
σ′(u) . (5.104)

Thus, one has either σ′(u) = 0, which is the case for a piecewise constant function, or

β {κ + [σ](u)}2 = 4fξξ

[
2

β
(g̃ − g(u))

]
. (5.105)

According to (5.97), this equation depends just on [σ](u). In our toy model, the function f is
defined in (4.55). Using this definition, we rewrite

2

β
[g̃ − g(u)] + λ2 =

(
9ε4

2π

)1/5

{κ + [σ](u)}−4/5 . (5.106)

Differentiating yet another time with respect to the variable u and simplifying the resulting
expression yields

(
5

2β

)5 2π

9ε4

1

u5
= κ + [σ](u) . (5.107)

Note that (5.107) cannot be used in the limit u ց 0, as the definition (5.47) guarantees the
boundary condition [σ](0) = 0. Keeping in mind, that solutions with σ′(u) = 0 also satisfy the
conditional equation (5.92), the most general continuous solution is

[σ](u) =





0 for 0 ≤ u ≤ u1

Au−5 − κ for u1 < u < u2

Au−5
2 − κ for u2 ≤ u ≤ 1 ,

(5.108)

with the definition

A =

(
5

2β

)5 2π

9ε4
. (5.109)
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[σ](u)

0

u
u1 u2

y = A 1

u5
− κ

Figure 5.1: Sketch of the function [σ](u) as defined in (5.108).

The function (5.108) is sketched in Fig. 5.1. The parameter u1 is defined by Au−5
1 − κ = 0 and,

thus, is

u1 =

(
A

κ

)1/5

, (5.110)

if this solution u1 is less or equal to 1. Otherwise, the replica-symmetric solution is reproduced.
The second parameter u2 is either equal to 1 or can be obtained from (5.97) and (5.106) in order
to get a continuous solution. Inserting [σ](u) for u = u2 leads to the conditional equation

4u5
2 − 5u4

2 + 2βAλ2 = 0 . (5.111)

The solution of Eq. (5.111) has to be in the interval [u1, 1]. Otherwise, the parameter u2 is chosen
to be equal to 1, if a solution is greater than 1. In this case, just the function [σ](u) is defined by
just two regions. If all solutions u2 ≤ u1, one is back at the replica-symmetric case with [σ](u) =
0. The parameter function [σ](u) is decreasing monotonously. Accordingly, the parameter σ(u)
is also a decreasing function, as can bee seen from Eq. (5.48). This, however, crucially depends
on the correlation function. For other choices of derived function f , the parameter σ(u) may be
described by an increasing function [ 19]. In this case, the infinite-step replica-symmetry breaking
solution is shown to be stable for all temperatures [ 56]. As an assumption the proof uses the
argument that σ(u) is increasing to show that the eigenvalues of the Hessian are non-negative.

Although the infinite step is not proven to be stable for all temperatures, we can compare the
free energy solution to numerical simulation. Knowing (5.108), there remains no further problem
to calculate the free energy (5.102)

F
(1)
(∞) = − 1

2β
log

(
2π

κβ

)
+

1

2β

[
1

u1
− 1 +

κ

4A
(u4

1 − 5u4
2 + 4u5

2)

]
− 1

2β

[
log

(
A

κ

)(
1

u1
− 1

)

+5 log u2 − 5
log u1

u1
+

1

u1
− 1

u2

]
− β

2
f(0) +

β

2

{
u1f

[
2

β

(
1

κu1
+

u4
1 + 4u5

2 − 5u4
2

4A

)]

+(1 − u2)f

[
2

β

(
u5

2

A

)]
+

∫ u2

u1

du f

[
2

β

(
5u4 + 4u5

2 − 5u4
2

4A

)]}
. (5.112)
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It is left to calculate the remaining integral. If one finds an u2 such that Eq. (5.111) is satisfied,
the integration is simple. The integrand in case of the Gauss correlator (1.3) then simplifies to

f

(
5

2Aβ
u4 − λ2

)
= ε2

√
Aβ

5π

1

u2
. (5.113)

Thus, the integration yields

∫ u2

u1

du f

[
2

β

(
5u4 + 4u5

2 − 5u4
2

4A

)]
= ε2

√
Aβ

5π

(
1

u1
− 1

u2

)
. (5.114)

If no solution of (5.111) can be found, then u2 = 1. In this case, the integration is more
complicated. One finds the remaining integral to be

∫ u2

u1

du f

[
1

2Aβ
(5u4 − 1)

]
= ε2

√
Aβ

5π

{
1

u1
2F1

[
1

4
,
1

2
;
5

4
;
1 − 2βAλ2

5u4
1

]

+2F1

[
1

4
,
1

2
;
5

4
;
1 − 2βAλ2

5

]}
. (5.115)

The function 2F1 is the hypergeometric function. It is defined by

2F1[a, b; c;x] =

∞∑

n=0

(a)n(b)n
(c)n

xn

n!
, (5.116)

with the Pochhammer symbol (a)n = a(a + 1)(a + 2)...(a + n − 1).

5.3.2 Finite-Step RSB

In this section, we will improve the approximation results by apllying finite-step RSB. The easiest
non-symmetric choice of a Parisi matrix is

σ(u) =

{
σ0 for 0 ≤ u ≤ uc

σ1 for uc ≤ u ≤ 1 .
(5.117)

It corresponds to the parameter k = 1 and mk = m → uc for n → 0. Furthermore, we use the
definition (5.47) to calculate

[σ](u) =

{
0 for 0 ≤ u ≤ uc

Σ = uc(σ1 − σ0) for uc ≤ u ≤ 1 .
(5.118)

For this one-step RSB, the free energy (5.102) writes

F
(1)
(1) = − 1

2β
log

(
2π

κβ

)
+

1

2β

(
1 − 1

uc

)[
log

(
κ + Σ

κ

)
− Σ

κ + Σ

]
− β

2
f(0)

+
β

2

{
ucf

[
2

β(κ + Σ)

(
1 +

Σ

ucκ

)]
+ (1 − uc)f

[
2

β(κ + Σ)

]}
. (5.119)
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Figure 5.2: The dotted black line represents the free energy and mean square displacement,
respectively, in one-step replica symmetry breaking with parameters ε = 1, λ = 1, and κ =
0.01. The results are compared to the replica-symmetric solution (solid, blue) and computer
simulations (dashed, red).

For completeness reasons, we state the expression for the mean square displacement resulting
from (5.99):

〈x2 〉(1)(1) =
1

κβ

[
1 +

σ0

κ
+

Σ

κ + Σ

(
1

uc
− 1

)]
. (5.120)

It is left to determine σ̃, σ0, σ1 and uc via conditional equations. For practical reasons, we will
find equations in terms of Σ instead of σ1, which can be computed by the definition from Σ in
(5.118) with the help of σ0 and uc. In the following, we are going to set up four conditional
equations for the four unknown variables. By using (5.92), one gets the first equation

σ0 = −2βfξ

[
2

β(κ + Σ)

(
1 +

Σ

ucκ

)]
. (5.121)

The parameter σ1 is calculated analogously. However, we will make use of an indirect conditional
equation. For practical reasons, we concentrate on

Σ = uc(σ1 − σ0) = −2βuc

{
fξ

[
2

β(κ + Σ)

]
− fξ

[
2

β(κ + Σ)

(
1 +

Σ

κuc

)]}
. (5.122)

Furthermore, we get by the definition (5.96) and further using (5.91) the diagonal element

σ̃ = σ0 +

(
1

uc
− 1

)
Σ . (5.123)

Until now, we did not account for the fact, that the free energy depends on the parameter uc.
Applying the principle of minimal sensitivity, we have to demand

∂

∂uc
F 1

n = 0 . (5.124)

Thus, we find the last equation to be

0 = β2u2
c

{
f

[
2

β(κ + Σ)

]
− f

[
2

β(κ + Σ)

(
1 +

Σ

ucκ

)]}
− 2βuc

Σ

κ(κ + Σ)
fξ

[
2

β(κ + Σ)

]

−Σ

κ
+ log

(
κ + Σ

κ

)
. (5.125)
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Figure 5.3: Parameters of one-step RSB uc and Σ with parameter values ε = 1, λ = 1 and
κ = 0.01 as function of the temperature. Both parameters are not continuous. They jump
discontinuously from the replica-symmetric solution uc = 1 and Σ = 0 to a new solution beneath
a certain temperature.

As a matter of fact, these are the equations found in Ref. [ 19]. Numerically solving sets of
multidimensional nonlinear equations is complicated and a convergence of any algorithm cannot
be guaranteed. We can, however, avoid this problem. The conditional equations are set up to
find the optimal upper bound of the free energy. Extremalization of a function is computationally
much simpler. Hence, we make use of optimization algorithms to find the extrema of the free
energy. Mainly, we employ the Simplex Method developed by Nelder and Mead [ 57]. The
Eqs. (5.122) and (5.125) may then be used to verify the results.

As seen in the discussion of the Almeida-Thouless line (4.89), the replica-symmetric solution
breaks down for small κ at small temperatures. Thus, we will concentrate on this problematic
case and show in Fig. 5.3 the case κ = 0.01. We notice that the symmetry-breaking improves the
approximation both for the free energy and the mean square displacement. Still, the deviation
from the numerical simulations is about 30% for the free energy and approximately 40% for the
mean square displacement.

The one-step solution branches continuously off the replica-symmetric curve. The parameter
uc, however, jumps from the replica-symmetric solution uc = 1 to the replica-broken solution be-
neath a small temperature slightly higher than the critical instability point (4.89). This becomes
clearer from Fig. 5.3.

It is natural to expect further corrections of higher step replica-symmetry breaking. There is
no fundamental problem using piecewise constant functions σ(u) with more steps. With every
new step two parameters are introduced and, accordingly, the number of conditional equation
will raise. Also, the free energy expression (5.102) will contain three additional summands. We
numerically maximized the free energy for step parameters up to k = 6. No additional corrections
could be found.





Chapter 6

Overview

Describing nature, one has to face the facts: it is impossible to have information about all details
of any physical system. The awareness of nescience has entered the domain of physical modelling
via the concept of randomness and disorder. By means of several examples, the importance
of disorder theory in modern physics was illuminated in Chapter 1. However, many problems
containing randomness cannot be solved exactly. Thus, the introduction was devoted to establish
a guinea pig model in order to test different approximation techniques. The use of our specific
model was motivated on the one hand with classical statistics. Although the toy model of a
harmonic oscillator in a random environment seemed very simple at first, numerous applications
and generalizations were presented [ 20, 21, 22, 23, 24, 25, 26]. On the other hand, we
approached the model via the theory of continuous-time stochastic processes: from the Fokker-
Planck equation we proceeded to the Kramers and Smoluchowski equations. Our testing ground
for disorder was the stationary probability distribution of an overdamped Brownian motion
exposed to a conservative random force. In this thesis, we concentrated on the thermodynamic
problem of finding the free energy of a harmonic oscillator in a random potential, which was
already studied in depth in Ref. [ 19].

In Chapter 2, we introduced the idea of Gaussian distributed random fields and we pre-
sented the Randomization Method (2.13). The parameters were chosen according to (2.15) and
(2.16). This led to the calculation of the generating functional (2.26). We showed that the algo-
rithm generates, indeed, Gaussian distributed random functions with controllable accuracy. As
examples, a Gaussian correlation and a Cauchy-type correlation were discussed in Figs. 2.1–2.4.

In the following, we approached the actual toy model. In the beginning of Chapter 3, we
calculated the perturbation expansion for small correlation strength. The unperturbed state
was taken to be a harmonic oscillator without disorder. The corrections for the free energy in
first and second order were given in (3.17) and (3.18) and were plotted in Fig. 3.1. To compare
our approximations with quantities accessible to experiments, we calculated the width of the
probability distribution, i.e., the mean square displacement. The corrections were computed in
(3.28) and (3.29) and the results, plotted in Fig. 3.2, were shown to be unsatisfactory for small
temperatures. The deviation for κ = 0.01 was about 2000% at T = 0. Hence, we tried to
improve the approximations by introducing in a variational parameter in a naïve approach using
the square root substitution (3.43) for the restoring force κ. The obtained results were plotted in
Figs. 3.3–3.6 and we showed that no improvement was gained. We thus went on using a square
root like method (3.56) to introduce a variational parameter via the temperature dependence of
the system. The free energy is then computed in (3.58) and the results are plotted in Figs. 3.7–
3.10. To our astonishment, the results even in first order reproduced the numerical simulations
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extremely well. The deviation for the investigated parameter κ = 0.01 in the small temperature
regime could be reduced to a maximal 10%.

Chapter 4 was devoted to the replica trick, which is the standard method to treat systems
with quenched disorder. By rewriting the toy model system as a many-particle system introduc-
ing n copies, the problem could be formulated in terms of a non-random system in (4.7). Due to
the identity Eq. (4.31), the free energy of the replicated system could be shown to be equal to the
real system’s free energy in the limit n → 0. This system, however, was not solvable analytically.
Therefore, we employed a variational principle by introducing a n×n matrix G−1

ab = κδab−σab in
(4.9), in which the variational parameters were stored. The first-order expansion (4.15) was the
basis of all approaches to follow because the Jensen-Peierls inequality (4.18) provided us with the
result that the first-order free energy in the variational perturbation expansion is a safe upper
bound for the free energy of the system. It was calculated in (4.58) and the variational parameter
could be determined in (4.62). As a canonical ansatz for the variational matrix σ we chose the
approach (4.65) where all replicated systems are interchangeable. In this special ansatz the free
energy was calculated in (4.80) and the mean square displacement, thus, resulted in (4.81). In
this way, the results of Ref. [ 19] could be reproduced. However, we showed that the free energy
did not depend on the variational parameter and, therefore, no non-perturbative correction was
found. This conclusion, that one just derived the first-order standard perturbation expansion in
an extremely complicated way was overlooked in Ref. [ 19]. Additional information was given
by the Almeida-Thouless line (4.89), though, plotted in Fig 4.1 and found in Ref. [ 19] as well.
It provided a criterion to test the stability of the system by evaluating the eigenvalues of the
Hessian. In order to have a stable bound for the free energy, it has to be positive definite. Al-
though no non-perturbative corrections could be included, we nevertheless gained a method to
decide when non-perturbative contributions do play a decisive role. Thus, the stability analysis
manifests the scope of perturbation theory.

For small restoring constants κ and small temperatures the perturbation expansion of the
system breaks down and it does not provide a good approximation of the system. Therefore,
in Chapter 5 we investigated the method of replica-symmetry breaking [ 54]. This method
has shown to be successful in many disorder problems. The basic formalism was introduced in
Sects. 5.1–5.2. The method is based on stepwise raising the number of variational parameters.
The free energy was given in (5.102) and the mean square displacement in (5.98). The first step
correction was plotted in Fig. 5.3 and, in fact, improved the perturbation approach to a certain
extent as also shown in Ref. [ 19]. The obtained curve, however, did not resemble the simulation
results. For the smallest confinement parameter κ = 0.01, the deviation at T = 0 was still an
estimated 30%. It was seen that, by numerical optimization, even higher step parameters up to
k = 6 did not provide further corrections.

The overall aim of this work was to test approximation techniques on a guinea pig model.
The simple disorder problem of a harmonic oscillator in a random environment turned out to
be quite tricky. The standard approach for systems with quenched disorder, the replica method,
did not provide a satisfying approximation. It turns out that the canonical replica-symmetric
approach could not include non-perturbative corrections. Also, the stability of the infinite-
step replica-symmetry breaking, a method that has been extremely successful in describing spin
glasses, could not be proved to give a stable solution for all temperatures. Small corrections
were found by the finite-step replica-symmetry breaking. However, they did not reproduce the
numerics and it still remains to investigate the stability of the finite-step RSB solutions. Within
this thesis, a satisfactory approximation of the simulated results could only be obtained by a
variational principle based on the temperature as variational parameter. This approach, however,
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yet remains to be put onto a solid mathematical basis.
The most important result of this thesis was to expose the shortcomings of the replica-

symmetry breaking method in the investigated model. Parisi’s approach is the standard tool
in disorder problems. It is based on the first order of a systematic variational perturbation ex-
pansion, which is convenient because of the Jensen-Peierls inequality. However, previous VPT
results for the anharmonic oscillator [ 12, 58, 59] suggest that higher orders of RSB may
improve the results considerably. Thus, combining higher corrections of the variational pertur-
bation expansion with the symmetry breaking scheme is expected to be very useful. The idea is
to improve the approximation for a fixed representative of the ensemble of random potentials by
VPT and to additionally include the effects of locally stable extrema by breaking the symmetry.
This procedure was already applied to investigate the disappearance of a saddle point solution
in higher order VPT leading to a second order phase transition in certain high-temperature
superconductors [ 24].

The applications of variational methods in disorder problems are numerous. These methods
play an integral role in disorder models not only of physical systems, but they are used in
the theory of neural networks and, quite recently, they even made an impact on economics,
e.g., describing emerging properties in heterogeneous agent models [ 11, 18, 60, 61]. As a
representative for the countless possibilities opened up by strong variational techniques, I want to
come back to the Brownian motion. It can be described as a passive movement. A small particle
suspended in a liquid moves just because of collisions with thermally moving molecules. Many
biological systems, however, exhibit driven motion. Cells or microorganisms, for instance, can be
modeled as active particles with an inner energy depot. This reserve depot can be converted into
kinetic energy and refilled by interaction with the environment. In more complicated models,
also the dissipation of internal energy is included. This active motion is superposed with the
effect of colliding molecules and, consequently, is called active Brownian movement [ 62, 63, 64].
Energy is pumped into the system via an external potential. To make the model realistic, it is
inevitable to include disorder. Together with a potent approximation procedure, realistic active
particle models constitute a useful description. Especially in the small temperature regime where
the correlation strength is of the order of magnitude of the thermal movement, interesting results
are to be expected.





Appendix A

Solution of Fokker-Planck Equation for

Brownian Motion

The Fokker-Planck equation (1.19) has the form of a continuity equation. It can be written as

∂

∂t
P (x, t) +

∂

∂x
S(x, t) = 0 (A.1)

with the probability current

S(x, t) = K(x, t)P (x, t) − 1

2

∂

∂x
[D(x, t)P (x, t)] . (A.2)

As the Fokker-Planck equation describes the time evolution of the probability density, we re-
quire natural boundary conditions, i.e., the probability density vanishes for x → ±∞. Therefore,
the probability current (A.2) has to vanish as well. It follows that

0 = S(∞, t) − S(−∞, t) =

∫ ∞

−∞
dx

∂

∂x
S(x, t) =

∫ ∞

−∞
dx

∂

∂t
P (x, t) =

∂

∂t

∫ ∞

−∞
dxP (x, t) . (A.3)

Conveniently, this allows a normalization of the probability density which we choose to be
∫ ∞

−∞
dxP (x, t) = 1 . (A.4)

A.1 Stationary Solution

First of all, we try to find the stationary solution of the Fokker-Planck equation by requiring

∂

∂t
Pst(x) = 0 . (A.5)

Further, assuming time independent drift and diffusion coefficients, this leads to the ordinary
differential equation

d

dx

{
K(x)Pst(x) − 1

2

d

dx
[D(x)Pst(x)]

}
= 0 . (A.6)

Integrating yields

K(x)Pst(x) − 1

2

d

dx
[D(x)Pst(x)] = const . (A.7)
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With natural boundary conditions, the integration constants is equal to 0. So, (A.7) can be
rewritten as

d

dx
Pst(x) +

d
dxD(x) − 2K(x)

D(x)
Pst(x) = 0 . (A.8)

As can be verified quite easily, the solution of (A.8) is

Pst(x) =
N

D(x)
exp

[
2

∫ x K(ξ)

D(ξ)
dξ

]
. (A.9)

The parameter N is the normalization constant. It is chosen according to the normalization
condition (A.4). Assuming a constant diffusion coefficient D(x) = D, we get as a result the
stationary solution

Pst(x) =
N

D
exp

[
− 2

D
V (x)

]
, (A.10)

with the newly introduced potential

V (x) = −
∫ x

K(ξ)dξ (A.11)

and the normalization constant

N =
D∫∞

−∞ dx exp
[
− 2

DV (x)
] . (A.12)

A.2 Dynamic Solution

For Brownian motion we have the Kramers-Moyal coefficients

K(x) = −γx and D(x) = D . (A.13)

Additionally, we have the initial condition

P (x, t0) = δ(x − x0) . (A.14)

Thus, we easily find with (A.9) the stationary solution to be a Gaussian distribution

Pst(x) =

√
γ

πD
exp

(
− γ

D
x2
)

. (A.15)

With the Einstein-Smoluchowski relation (1.18), we identify (A.15) to be the Maxwell distribution

P (x) =

√
m

2πkBT
exp

(
− m

2kBT
x2

)
. (A.16)

Knowing the stationary solution of the Fokker-Planck equation, the time dependent solution
can be found in a heuristic manner [ 35]. Knowing the stationary distribution to be Gaussian,
one uses as ansatz a Gaussian distribution with time dependent variance and mean value. We
write

P (x, t) = N(t) exp

[−x2 + 2H1(t)x

2H2(t)

]
. (A.17)



A.2 Dynamic Solution 75

Inserting (A.17) into the Fokker-Planck equation (1.19) with corresponding Krames-Moyal coef-
ficients and dividing by P (x, t) to get rid of the exponentials yields a polynom of second order
in x:

x2

[
Ḣ2(t)

2H2(t)2
+

γ

H2(t)
− D

2H2(t)2

]
+ x

[
Ḣ1(t)

2H2(t)
− H1(t)Ḣ2(t)

2H2(t)2
− γH1(t)

2H2(t)
+

DH1(t)

2H2(t)2

]

+
Ṅ(t)

N(t)
− γ − D

H1(t)
2

8H2(t)2
+

D

2H2(t)
= 0. (A.18)

Equating coefficients we get equations for the functions H2(t), H1(t) and N(t). As H2(t) 6= 0
the first one is the coefficient of x2

Ḣ2(t) = −2γH2(t) + D . (A.19)

With help of (A.19), we find the second conditional equation via the x cofficient to be

Ḣ1(t) = −γH1(t) . (A.20)

Furthermore, we find

Ṅ(t)

N(t)
= γ + D

H1(t)
2

8H2(t)2
− D

2H2(t)
. (A.21)

The solutions of (A.19) and (A.20) can easily found to be

H2(t) =
D

2γ

[
1 − e−2γ(t−t0)

]
, (A.22)

H1(t) = H1(t0)e
−γ(t−t0) . (A.23)

The solution of (A.21) is not calculated that simply. Luckily, we might as well use the normal-
ization conditon (A.4) to find N(t), giving

N(t) =
1√

2πH2(t)
exp

[−H1(t)
2

2H2(t)

]
. (A.24)

This result can be easily verified by inserting into (A.21). Now we can state as final solution the
time evolution of the probability density of Brownian motion as

P (x, t) =
1√

2πH2(t)
exp

{
− [x − H1(t)]

2

2H2(t)

}
. (A.25)

From this solution, we can identify H1(t0) = x0 due to (A.14). It is important to see, that
the functions H1 and H2 do depend on the initial values x(t0) = x0 and t = t0. To point
out this dependence, we therefore could equivalently use the notation H1(t) = H1(x0, t0; t) and
H2(t) = H2(x0, t0; t). Moreover, one sees that the time-dependent solution quickly tends toward
the stationary one (A.15). For progressing fixed time steps, this is plotted in Fig. A.14.





Appendix B

Numerical Appendix

In addition to the external parameters like correlation length and variance, the Randomization
Method is in need of an integer constant N . In this appendix, we show quantitatively, that the
choice of this parameter allows to tune the accuracy. Furthermore, an example for a source code
will be given to show how the algorithm can be implemented.

B.1 Algorithm Parameter

As the Randomization Method will be used to calculate expectation values, one has to accept that
computing the complete average over all realizations via sampling pseudo-randomly generated
functions is numerically impossible. But although Monte Carlo methods converge slowly, they can
produce a good accuracy, which has been visualized in Figs. 2.2 and 2.4. The Randomization
Method produces an additional error, though. It does not depend on the number of samples
used, but of the choice of the parameter N . For the considerations to follow we will introduce
the following abbreviation:

〈•〉k =

∫ ∞

−∞
dk p(k) • . (B.1)

Now, we obtain for even spectral density (2.2) and probability distribution (2.15)

〈eikx〉k = 〈e−ikx〉k = R(x)/α2 . (B.2)

This additional error does not occur for approximating the 2-point correlation. Calculating the
correlation, we get with definition (2.13)

〈U(x)U(x′)〉k =
1

N

N−1∑

n=0

N−1∑

m=0

[
〈AnAm cos(knx) cos(kmx′)〉k + 〈BnBm sin(knx) sin(kmx′)〉k

+〈AnBm cos(knx) sin(kmx′)〉k + 〈BnAm sin(knx) cos(kmx′)〉k
]

(B.3)

Using the property (2.14) this simplifies to

〈U(x)U(x′)〉k =
α2

N

N−1∑

n=0

[
〈cos(knx) cos(knx′)〉k + 〈sin(knx) sin(knx′)〉k

]
(B.4)

Using addition theorems and (B.2), we finally get as result

〈U(x)U(x′)〉k =
α2

N

α2

N

N−1∑

n=0

〈cos[kn(x − x′)]〉k = R(x − x′) . (B.5)
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To get a visible deviation from the imposed properties of the random functions one has to
calculate the 4-point correlation. As normal distributed functions, Wick’s Theorem (2.12) should
be satisfied.

It is left to compute the 4-point correlation. Inserting (2.13) using (2.14) yields after a direct
but somewhat involved calculation

U(x1)U(x2)U(x3)U(x4) = α4

N2

∑
n,m〈cos[kn(x1 − x2)] cos[km(x3 − x4)] + cos[kn(x1 − x3)]

× cos[km(x2 − x4)] + cos[kn(x1 − x4)] cos[km(x2 − x3)]〉. (B.6)

To calculate the expectation values, one has to carefully distinguish between two cases. For the
N(N − 1) terms in the sum with n 6= m, one gets

〈cos(knx) cos(kmx′)〉 = 〈cos(knx)〉kn
〈cos(kmx′)〉km

= 〈eiknx〉kn
〈eikmx′〉km

= R(x)R(y)/α4 . (B.7)

For the N terms with n = m, however, the average looks slightly different:

〈cos(knx) cos(knx′)〉 =
1

2
〈cos

[
kn(x − x′)

]
+ cos

[
kn(x + x′)

]
〉kn

=
1

2
〈eikn(x+x′) + eikn(x−x′)〉kn

=
[
R(x − x′) + R(x + x′)

]
/2α4 . (B.8)

Therefore, Eq. (B.6) yields a form that is easily comparable with (2.12)

U(x1)U(x2)U(x3)U(x4) = R(x1 − x2)R(x3 − x4) + R(x1 − x3)R(x2 − x4)

+R(x1 − x4)R(x2 − x3) + 1
N ∆(x1, x2, x3, x3) (B.9)

In accordance with (2.26), it is seen that Wick’s Theorem is satisfied as the deviation

∆(x1, x2, x3, x4) =
{

R
[
(x1 − x2) − (x3 − x4)

]
+ R

[
(x1 − x2) + (x3 − x4)

]

+R
[
(x1 − x3) − (x2 − x4)

]
+ R

[
(x1 − x3) + (x2 − x4)

]

+R
[
(x1 − x4) − (x2 − x3)

]
+ R

[
(x1 − x4) + (x2 − x3)

]

−R(x1 − x2)R(x3 − x4) − R(x1 − x3)R(x2 − x4)

−R(x1 − x4)R(x2 − x3)
}

, (B.10)

is suppressed by a factor 1/N . As seen in Fig. B.1, the deviation of the expected 4-point
correlation is small as it scales with 1/N .

A simple example is provided by a Gaussian correlation function. It can be taken to be (2.27)
restated as

R(x − y) = α2 exp

{
−(x − y)2

2λ2

}
(B.11)
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Figure B.1: U(0)2U(x)2 compared to Wick’s Theorem for the parameters α = 5 and N = 100

The computation of the error due to the randomization parameter N is computed as

∆(x1, x2, x3, x4) =

{
R(x1 − x2)R(x3 − x4)

[
cosh

(
(x1 − x2)(x3 − x4)

λ2

)
− 1

]

+R(x1 − x3)R(x2 − x4)

[
cosh

(
(x1 − x3)(x2 − x4)

λ2

)
− 1

]

+R(x1 − x4)R(x2 − x3)

[
cosh

(
(x1 − x4)(x2 − x3)

λ2

)
− 1

]}
.(B.12)

In this section it was shown, that, using the simple ansatz (2.13), it is possible to generate
random functions. The numerically generated expressions resemble the imposed properties of
normally distributed random functions with given correlation function very well. Thus, we expect
simulations of physical quantities due to randomness to be quite accurate.
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B.2 Example Source Code

In Ch. 2, the Randomization Method was introduced to generate random potentials. This method
was used for comparing analytic results with numerical simulations throughout this diploma the-
sis. As an example, the source code of the program simulating the free energy of a harmonical
oscillator in a random potential is given in this appendix. The program was written in C++.
The algorithm is farely simple: A random potential of the form (2.13) is created with help of
trigonometric functions defined in the math.h-header. Furthermore, the Gnu Scientifc Library
provided random number generators [ 65]. Then, the partition function for the fixed function
U(x) is calculated by numerical integration. This can be easily done because the Gaussian pref-
actor of the integrand ensures a fast enough decay of the integrand. This procedure is done for
a number of numOfRandomPot functions and then averaged. For the commentated version of the
source code of the free energy and the mean square displacement simulations see the webpages [
66, 67].
At first, we include the headers used:

#include <iostream>

#include <ostream>

#include <fstream>

#include <math.h>

#include <gslgsl_rng.h>

#include <gslgsl_randist.h>

Then, we define the functions used in the main program. The first one generates a N × 3
matrix that store the randomly drawn wavenumber kn and the amplituds An and Bn, respec-
tively. The second function uses this matrix to generate a random potential:

double coeff(double, double, int, const gsl_rng);

double randomPot(double, int, double**);

int main(){

The parameters of the random number generator are initialized in the following. The seed

is the starting point for the random number generator, which is allocated in the following. The
quantities alpha, sigma, N and numOfRandomPot are the variances of the probability distribu-
tions, the algorithm paramter N and the number of potential averaged over, respectively:

gsl_rng_default_seed =1326752;

gsl_rng*r = gsl_rng_alloc (gsl_rng_taus);

double alpha = 0.1/pow(2*3.14159265358979323846,0.25);

double sigma = 1;

int N = 100;

int numOfRandomPot = 100;

The parameter kappa corresponds to the external paramter κ:
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double kappa = 0.01;

The paramters need for the numerical integration are defined in the following:

double pi=3.14159265358979323846;

int numOfTempSteps = 100;

double lowerT =0.01;

double deltaT =0.01;

double dw;

double **matrix;

double T = lowerT;

double helpArray[numOfTempSteps];

for(int i = 0; i<numOfTempSteps; i++){

helpArray[i]=0;

}

The implementation of the numerical integration and the averaging process work as follows.
The integration limits can be estimated by looking at the standard deviation of the Gaussian
prefactor. The integration routine is a standard integration via Riemann sums:

double Z;

double freeEnergy;

for(int i = 0; i<numOfRandomPot; i++){

matrix = coeff(alpha, sigma,N,r);

for(int j =0; j<numOfTempSteps; j++){

Z = 0;

freeEnergy = 0;

double lower = -50;

double upper = 50;

dw = (upper -lower)/10000;

double w = lower;

while( w < upper){

Z += dw*exp(-kappa*w*w/(2*T)

-randomPot(w,N,matrix)/(T));

w += dw;

}

w = lower;

freeEnergy = -T*log(Z);

helpArray[j] += freeEnergy/numOfRandomPot;

T+=deltaT;

}

T=lowerT;

}

The data output is written into an external file:
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std:: ofstream pout("/home/duettman/diplom/cpp/freieEnergie01.txt");

if(pout) {

std::cout « "Cannot open file.\n";
return 1;

}

T = lowerT;

for(int q = 0; q < numOfTempSteps; q++){

pout « T « " "« helpArray[q] «’\n;
T+=deltaT;

}

pout.close();

return 0;

}

After the main function, the above defined functions coeff and randomPot are implemented
with predifined random number generators of the Gnu Scientific Library:

double **coeff(double alpha, double beta, int N, const gsl_rng*r){

double **out;

out = (double**) malloc(N*sizeof(double*));

for(int i=0; i< N; ++i)

{

out[i]= (double*)

malloc(3*sizeof(double));

}

for(int i=0; i<N; ++i){

out[i][0]= gsl_ran_gaussian(r, alpha);

out[i][1]= gsl_ran_gaussian(r, alpha);

out[i][2]= gsl_ran_exponential(r, beta);

}

return out;

}

double randomPot(double x, int N,double **koeffMatrix){

double out = 0;

for(int i=0; i<N; ++i){

out += koeffMatrix[i][0] * cos(koeffMatrix[i][2] *x)

+ koeffMatrix[i][1] * sin (koeffMatrix[i][2] * x );

}

out = sqrt(N);

return out;

}



Appendix C

Mathematical Tools for Replica

Method

In this appendix, we will present mathematical methods used throughout the calculations of
Ch. 4. It will be shown how to calculate expectation values of correlation functions. Furthermore,
the determinant of a replica-symmetric matrix will be calculated by obtaining its eigenvectors.
Then, we will compute the Hessian of the free energy approximation. Finally, we will use a
mathematical trick to simplify calculations of functions of Kronecker delta considerably.

C.1 Smearing Formula for Harmonic Expectation Values

Due to (4.24), it is impossible to evade the calculation of harmonic expectation values of powers
of the correlation function. A particularly elegant way to do this is to reduce the expectation
value to a product of N convolutions of the regarded function with Gaussian functions. This
method is presented in first order in Ref. [ 50] and generalized in Ref. [ 51] to higher orders.
Here, we will derive similar expressions of the harmonic expectation value (4.22) for powers of
the correlation function (1.3). For simplicity, the tilde will be omitted in the following discussion.

C.1.1 One Correlation Function

For N = 1 just first powers of the correlation function appear. The important quantity therefore
is

〈R(xa − xb) 〉Ha =
1

Za

∫
dnx exp{−β Ha(x)}R(xa − xb) . (C.1)

To get a Gaussian-type integral, one carries out a Fourier transform of the correlation function.
Introducing the spectral density (2.2), this yields

〈R(xa − xb) 〉Ha =
1

Za

∫
dnx

∫ ∞

−∞
dk S(k) exp



−β

2

∑

c,d

xc G−1
cd xd + ik(xa − xb)



 . (C.2)

By introducing currents, one transforms the expression into the standard form

〈R(xa − xb) 〉Ha =
1

Za

∫
dnx

∫ ∞

−∞
dk S(k) exp



−β

2

∑

c,d

xc G−1
cd xd + i

∑

c

jc xc



 . (C.3)
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with jc = k (δac − δbc). The dnx integral can be solved in analogy to (2.10), but a direct solution
can also be found in Ref. [ 14]. The solution reads

〈R(xa − xb) 〉Ha =

∫ ∞

−∞
dk S(k) exp



− 1

2β
k2
∑

c,d

jc Gcd jd



 . (C.4)

Inserting the current jc yields

〈R(xa − xb) 〉Ha =

∫ ∞

−∞
dk S(k) exp

{
− 1

2β
k2 (Gaa + Gbb − 2Gab)

}
. (C.5)

Note that similar to the case (2.10) the inverse G of (4.9) appears in the exponent. It is charac-
terized by the property (4.38). Transforming back with (2.2) yields

〈R(xa − xb) 〉Ha =

∫ ∞

−∞
dk

∫ ∞

−∞

dx

2π
R(x) exp

{
−ikx − 1

2β
k2 (Gaa + Gbb − 2Gab)

}
. (C.6)

Luckily, the k integral can be transformed to a simple Gaussian integral via completing the
square. For a more compact notation, yet another abbreviation is introduced:

q(a, b) :=
1

β
(Gaa + Gbb − 2Gab) . (C.7)

With this, one finally arrives at the expression

〈R(xa − xb) 〉Ha =
1√

2π q(a, b)

∫ ∞

−∞
dxR(x) exp

{
− x2

2q(a, b)

}
. (C.8)

C.1.2 Two Correlation Functions

For N = 2 terms up to two correlation functions appear. Thus, one needs to calculate

〈R(xa1
− xb1)R(xa2

− xb2) 〉Ha =
1

Za

∫
dnx exp{−β Ha(x)}R(xa1

− xb1)R(xa2
− xb2) . (C.9)

Introducing the spectral density one gets

〈R(xa1
− xb1)R(xa2

− xb2) 〉Ha =
1

Za

∫
dnx

∫ ∞

−∞
dk1 S(k1)

∫ ∞

−∞
dk2 S(k2)

× exp



−β

2

∑

c,d

xc G−1
cd xd + i

∑

c

jc xc



 (C.10)

with the current jc = k1(δa1c − δb1c) + k2(δa2c − δb2c). As before, the computation of (C.10) can
be performed explicitly. It yields

〈R(xa1
− xb1)R(xa2

− xb2) 〉Ha =

∫ ∞

−∞
dk1 S(k1)

∫ ∞

−∞
dk2 S(k2) (C.11)

× exp

{
−1

2

[
q11(a, b)k2

1 + q22(a, b)k2
2 + 2k1k2 q12(a, b)

]}
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with the new parameters

qij ≡ qij(a, b) :=
1

β

(
Gaiaj

+ Gbibj
− Gbiaj

− Gaibj

)
, (C.12)

which are functions of the vector components

a = (a1, a2) , b = (b1, b2) . (C.13)

Obviously, we have qii = q(ai, bi) as in (C.7). As the equations seem to get more and more
complex, it seems a good idea to introduce the following vector notation:

k :=

(
k1

k2,

)
, x :=

(
x1

x2

)
. (C.14)

Furthermore, one defines the matrix

Q :=

(
q11 q12

q12 q22

)
(C.15)

in order to write the exponent in the more convenient form

− 1

2

[
q11k

2
1 + q22k

2
2 + 2k1k2 q12

]
= −1

2
kTQk . (C.16)

Transforming back yields in this new notation

〈R(xa − xb)R(xc − xd) 〉Ha =

∫
d2k

∫
d2x

(2π)2
R(x1)R(x2) exp

{
−ikTx − 1

2
kTQk

}
. (C.17)

And again we find convolutions of Gaussian functions with correlation functions

〈R(xa − xb)R(xc − xd) 〉Ha =
1√

(2π)2 det Q

∫
d2xR(x1)R(x2) exp

{
−1

2
xTQ−1x

}
. (C.18)

C.1.3 M Correlation Functions

Now the general case will be considered. For fixed M the harmonic expectation value of a product
of M functions R(xa − xb) will be calculated:

〈R(xa1
− xb1)R(xa2

− xb2)...R(xaM
− xbM

) 〉Ha = 〈
M∏

n=1

R(xan − xbn
) 〉Ha . (C.19)

Following the same steps as before, one arrives at the similar expression

〈
M∏

n=1

R(xan − xbn
) 〉Ha =

M∏

n=1

[∫ ∞

−∞
dknS(kn)

]
exp

{
−1

2
kTQk

}
(C.20)

with vectors defined as

k :=




k1

.

.

.
kM




, x :=




x1

.

.

.
xM




. (C.21)
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With (C.7) and (C.12) the M × M matrix Q looks a little bit more complicated

Q =




q11 q12 q13 · · · q1M

q21 q22 q2M
...

. . .
...

...
. . .

...
qM1 · · · · · · · · · qMM




. (C.22)

The matrices Gab are assumed to be symmetric, so one can write rather elegantly

Qij = qij . (C.23)

As in (C.12) the matrix elements are functions of vector components of

a = (a1, ..., aM ) , b = (b1, ..., bM ) . (C.24)

In principle, the multi-dimensional Gaussian integral can be calculated in a straightforward
manner

〈
M∏

n=1

R(xan − xbn
) 〉Ha =

1√
(2π)M det Q

M∏

n=1

[∫ ∞

−∞
dxnR(xn)

]
exp

{
−1

2
xTQ−1x

}
. (C.25)

Despite this compact expression, calculating the harmonic expectation value remains compli-
cated. To get the M th order result, one has to invert a M × M matrix and calculate M convo-
lutions of Gaussian functions with the correlation function. Then, it is still left to compute the
determinant of the matrix Q.

C.1.4 Specializing to Gaussian Correlation

In this subsection, we return to our toy model. The correlation assumed is of the Gaussian type
(1.3). After inserting into (C.25) reads

〈
N∏

n=1

R(xan − xbn
) 〉Ha =

1√
(2π)2MλM detQ

∫
dMx exp

{
− x2

2λ2

}
exp

{
−1

2
xTQ−1x

}
.(C.26)

As this is just the product of two multi-dimensional Gaussian functions, the expression can be
written in a natural way. After renaming

Q−1 :=
1

λ2
I + Q−1 (C.27)

we write (C.26) as just one Gaussian integral

〈
M∏

n=1

R(xan − xbn
) 〉Ha =

1√
(2π)2MλM detQ

∫
dMx exp

{
−1

2
xTQ−1x

}
, (C.28)

which can be evaluated in general:

〈
M∏

n=1

R(xan − xbn
) 〉Ha =

(
1√
2πλ

)M
√

detQ
detQ

. (C.29)
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With the properties of the determinant and definition (C.27), we get

detQ−1 detQ = detQ−1Q = det
1

λ2

(
Q + λ2I

)
=

1

λ2M
det
(
Q + λ2I

)
, (C.30)

so the expression reads simply

〈
M∏

n=1

R(xan − xbn
) 〉Ha =

1

(2π)M/2

[
det
(
Q + λ2I

)]−1/2
. (C.31)

Thus, in the case of a Gaussian correlation function, the smearing formula for the toy model
simplifies considerably. Just an elementary calculation of the determinant of a M × M matrix
remains which, admittedly, can be quite cumbersome.

C.2 Determinant of Replica-Symmetric Matrix

Because of the special form of the replica-symmetric matrices, the determinant can be derived
after some general considerations. Let us take a matrix

Mab = (A − B)δab + B . (C.32)

This special form appears in the RSA in all matrices of concern, namely Gab, G
−1
ab and σab. To

calculate det M we want to find the eigenvalues λi, since

detM =
∏

i

λi . (C.33)

Thus, we search for solutions of the equation
∑

b

Mabη
(i)
b = λi η

(i)
a , (C.34)

with η(i) being the eigenvector to λi. Inserting the definition (C.32) yields

∑

b

Mabη
(i)
b = (A − B)η(i)

a + B
∑

b

η
(i)
b

!
= λi η

(i)
a . (C.35)

We see, that the simple form of the matrix Mab makes it possible to just guess the eigenvectors.
This equation can be fulfilled easily, if all vector components are equal. Therefore, we choose
the first eigentvector

η(1) =




1
1
...
1


 (C.36)

with the resulting eigenvalue

λ1 = A + (n − 1)B . (C.37)

Eigenvectors of different eigenvalues are orthogonal. Because of (C.36), we therefore know∑
b η

(i)
b = 0. But in this case, Eq. (C.34) is automatically satisfied. The easiest way to do
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this is to choose vectors with just two nonzero components set to −1 and 1, respectively. The
resulting eigenvalues are all equal to A−B and one can construct in total n−1 linear independent
eigenvectors of this type:

η(2) :=




−1
1
0
...

0




, η(3) :=




−1
0
1
0
...
0




, . . . ,η(n) :=




−1
0
...
0
1




. (C.38)

All these vectors η(i) with i = 1, ..., n are orthogonal to η(1). Therefore, by guessing we found a
basis of n eigenvectors. Hence, we can calculate the determinant of the matrix M :

detM = (A − B)(n−1)[A + (n − 1)B] = (A − B)n + nB(A − B)n . (C.39)

C.3 Hessian Matrix

The Hessian (4.82) is very symmetric in our case. Because of the permutability of the derivatives
and the symmetric matrix σab = σba, we see that

Hab,cd = Hba,cd = Hcd,ba = ... . (C.40)

In a straightforward calculation using (4.40) and (4.60) we get the explicit result

Hab,cd = − 1

4β

[
GacGbd + GadGbc

]
+

κ

4β

∑

e

[
GecGaeGbd + GecGadGbe + GedGadGbc

+GedGacGbe

]
− 1

2

∑

e,f

fξ

[
q(e, f)

][
GecGaeGbd + GecGadGbe + GedGadGbc

+GedGacGbe − GecGaf Gbd − GecGadGbf − GfdGaeGbc − GdfGacGbe

]

+
∑

e,f

fξξ

[
q(e, f)

][
GaeGbeGceGde + GafGbfGceGde + GaeGbfGceGdf

+GafGbeGceGdf − GaeGbfGceGde − Gaf GbeGceGde − GaeGbeGceGdf

−GafGbfGceGdf

]
(C.41)

As seen, e.g., in expression (C.41) we have to deal with functions of the type f [q(e, f)]. In the
RSA, those functions have the form f(a+b δij), with constants a and b. We will restrict ourselves
to functions that can be expanded into a Taylor series. To handle these functions, we will employ
a little mathematical trick which will be introduced now.

C.4 Functions of Kronecker symbols

At first, one expands the function f in a Taylor series:

f(a + b δij) = f(a) + f ′(a) b δij +
1

2
f ′′(a) b2 δ2

ij + ... . (C.42)
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It is useful to notice that

δn
ij = δij for n ∈ N . (C.43)

Using (C.43), we can now write the series (C.42) as

f(a + b δij) = f(a) + δij [f(a + b) − f(a)] . (C.44)

In a general order of the free energy expansion, the quantity qii may appear in the argument of
a function. In the replica-symmetric ansatz, it is computed to

qii =
2A

β
(1 − δaibi

) . (C.45)

Applying the trick (C.44), these expressions simplify to

f(qii) = f (2A/β) + δaibi
[f(0) − f (2A/β)] . (C.46)
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