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Zusammenfassung

Diese Dissertation behandelt im Wesentlichen zwei Themen: ultrakalte Atome
und kritische Phänomene. Dabei liegt der Schwerpunkt aller Untersuchun-
gen auf dem Bose-Hubbard Modell, das ein Vielteilchensystem von ultrakalten
Bosonen auf einem optischen Gitter beschreibt. Obwohl die entscheidenden
Merkmale dieses Modells nur durch zwei Terme bestimmt werden, einen Tun-
nel- und einen kurzreichweitigen Wechselwirkungsterm, weist es sehr komplexe
Eigenschaften auf, die sich nur unter vergleichsweise großem Aufwand bes-
timmen lassen. Die wichtigste Eigenschaft ist die Existenz eines Quanten-
phasenübergangs vom Mott-Isolator hin zu einem superfluiden Zustand. Dieser
Phasenübergang ist das Resultat der Konkurrenz zwischen dem Tunneln und
der Wechselwirkung. Der Mott-Isolator wird charakterisiert durch lokalisierte
Teilchen, da in diesem Zustand der Wechselwirkungsterm dominiert, während
im superfluiden Zustand das Tunneln dominiert und die Teilchen über viele
Gitterplätze delokalisiert sind.

Der Phasenübergang wird begleitet durch das Auftreten sowohl einer Kon-
densatdichte, die den Anteil von Teilchen im Grundzustand des Systems angibt,
als auch einer Superfluiddichte, die entsprechend den Anteil von superfluiden
Teilchen angibt. Ziel dieser Arbeit ist das Berechnen dieser Größen und die
Untersuchung ihres kritischen Verhaltens hinsichtlich kritischer Exponenten.
Obwohl diese kritischen Exponenten über die Zugehörigkeit des Bose-Hubbard
Modells zu einer genau untersuchten Universalitätsklasse prinzipiell bekannt
sind, steht die direkte Berechnung der korrekten kritischen Exponenten noch
aus.

Die Einleitung im ersten Kapitel soll einen Überblick über die Physik ultra-
kalter Atome und speziell die des Bose-Hubbard Modells aus der Perspektive
eines sogenannten Quantensimulators geben, welcher im Prinzip die Eigen-
schaften eines perfekt kontrollierbaren physikalischen Systems innehat. Der
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Quantensimulator stellt in dieser Hinsicht eine große Motivation für die Unter-
suchung ultrakalter Atome dar. Weiterhin gibt dieses Kapitel einen Überblick
über einige der wichtigsten Konzepte und Experimente, die zum Beispiel zur
Realisierung der Bose-Einstein Kondensation oder des Quantenphasenüber-
gangs vom Mott-Isolator zum Superfluid des Bose-Hubbard Modells geführt
haben. Am Ende des Kapitels wird zudem das Bose-Hubbard Modell theo-
retisch eingeführt und zusätzlich werden wesentliche Eigenschaften dieses Mod-
ells diskutiert.

Das zweite Kapitel bietet einen Überblick über das Gebiet kritischer Phä-
nomene. Als erstes werden Phasenübergänge phänomenologisch diskutiert.
Nachdem im zweiten Abschnitt einige Ansätze zur quantitativen Analyse von
Phasenübergängen eingeführt wurden, erläutert der dritte Abschnitt die Kon-
zepte der Universalitätsklasse und der kritischen Exponenten. Am Ende wer-
den einige Experimente vorgestellt, mit denen die wichtigsten dieser kritischen
Exponenten gemessen wurden.

Da ein großer Teil der Rechnungen und damit auch der Resultate auf Stö-
rungstheorie beruhen, bietet das dritte Kapitel am Anfang eine detaillierte Er-
läuterung von Katos Formulierung der störungstheoretischen Reihe. Anschlie-
ßend werden grundlegende Eigenschaften dieses Ansatzes diskutiert, der exem-
plarisch zur Berechnung der Grundzustandsenergie des Bose-Hubbard Modells
genutzt wird. Diese Störungstheorie kann auch diagrammatisch interpretiert
werden, und führt so zum sogenannten Prozesskettenansatz, der am Ende des
Kapitels wiederum am Beispiel der Grundzustandsenergie des Bose-Hubbard
Modells näher erläutert wird.

Um auch Zugang zum Superfluid zu Mott-Isolator Phasenübergang und
damit zu dessen kritischen Exponenten zu bekommen, werden auch Metho-
den zur Resummation benötigt, um die für endliche Ordnungen erhaltenen Re-
sultate der Störungstheorie in ein nicht-perturbatives Regime zu überführen.
Die Einführung dieser Methoden erfolgt im vierten Kapitel. Der erste Ab-
schnitt behandelt die Methode des effektiven Potentials, die eine Berechnung
des oben erwähnten Phasenübergangs erlaubt. Dieses Verfahren erlaubt zudem
einen Zugang zu bestimmten Größen, die allein für das Superfluid charakter-
istisch sind, obgleich die störungstheoretischen Rechnungen startend im Mott-
Isolator durchgeführt werden. Darüber hinaus wird mit dem Ziel, die kritis-
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chen Exponenten der Kondensatdichte sowie der Superfluiddichte mit Hilfe der
störungstheoretischen Resultate zu berechnen, im zweiten Abschnitt die Varia-
tionsstörungstheorie eingeführt. Mit Hilfe dieser Theorie können Schwachkop-
plungsreihen zu Starkkopplungsreihen transformiert werden, die einen direkten
Zugang zu den kritischen Exponenten bieten.

Im letzten Kapitel werden die neu gewonnenen Resultate dieser Arbeit prä-
sentiert. Im ersten Abschnitt wird eine leicht modifizierte Methode zur Bestim-
mung der Phasengrenze eingeführt. Nach einer Diskussion der Eigenschaften
des effektiven Potentials wird die Teilchenzahl innerhalb des superfluiden Re-
gimes ausgewertet. Diese weisen Linien konstanter Dichte auf, die mit Hilfe
des effektiven Potentials berechnet werden können. Im vierten Abschnitt wer-
den Resultate für die Kondensatdichte und für die Superfluiddichte vorgestellt.
Dort wird auch der Einfluss der Koeffizienten des effektiven Potentials für
gerade bzw. ungerade Ordnungen erörtert, und es wird demonstriert, dass
dieser bei der Berechnung der kritischen Exponenten berücksichtigt werden
muss. Schlussendlich werden im letzten Abschnitt zwei Methoden eingeführt,
die die Bestimmung der kritischen Exponenten erlauben. Die erste Methode
basiert auf den störungstheoretischen Ergebnissen für ungerade Ordnungen und
benötigt die Anwendung der Variationsstörungstheorie. Die zweite Methode
bietet einen direkten Zugang zu den kritischen Exponenten über die Resultate
der geraden Ordnungen, verlangt jedoch einen erhöhten numerischen Aufwand.





Abstract

This thesis concerns two topics: ultracold atoms and critical phenomena. The
focus of all studies presented herein lies on the Bose-Hubbard model which de-
scribes a many-body system of ultracold atoms in an optical lattice. Although
the main features of this model are defined by only two terms, a tunneling term
and a short-range interaction term, its properties are very complex and hard
to study. The most important feature is the occurrence of a quantum phase
transition from a Mott insulator to a superfluid. This phase transition is the
result of the competition of tunneling and interaction. The Mott insulator is
characterized by localized particles since in this state the repulsive interaction
term dominates, while in the superfluid state the tunneling term dominates
and the particles are delocalized over many lattice sites.

This phase transition to the superfluid state is accompanied by the emergence
of both a condensate density, which indicates the number of particles in the
ground state, and a superfluid density, which gives accordingly the fraction of
superfluid particles. The aim of this thesis is to calculate these quantities, and
to study their behavior in terms of critical exponents. Although these critical
exponents are known in principle because the Bose-Hubbard model belongs
to a well-known universality class, a direct calculation of the correct critical
exponents remains to be done.

The introduction in the first chapter is meant to view the physics of ultra-
cold atoms and especially of the Bose-Hubbard model from the perspective of a
quantum simulator which is basically a perfectly controllable physical system.
The quantum simulator is, therefore, an important stimulus for the field of ul-
tracold atoms. An overview is given of the most important concepts and exper-
iments which led to, e.g., the measurement of the Bose-Einstein condensation,
or of the superfluid-to-Mott insulator phase transition of the Bose-Hubbard
model. At the end of this chapter the Bose-Hubbard model is theoretically
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introduced and its basic properties are discussed.
The second chapter gives an overview over the field of critical phenomena.

First the phenomenology of phase transitions is discussed. After introducing
some ansatzes for a quantitative approach to phase transitions, the concept of
universality classes and their critical exponents is treated. At the end some
experiments are discussed, which have measured the most important of these
critical exponents.

Since a major part of the calculations and therefore of the results are based on
perturbation theory, the third chapter provides a detailed description of Kato’s
formulation of the perturbation series. After that some basic properties of this
approach are discussed, and it is applied exemplarily to the Bose-Hubbard
model in order to calculate the ground-state energy up to the third order.
This perturbation theory can be interpreted diagrammatically and leads to the
process-chain approach, which again is explained by using the example of the
calculation of the ground-state energy of the Bose-Hubbard model at the end
of this chapter.

To gain access to the superfluid-to-Mott insulator phase transition and,
therewith, its critical properties, one also needs various non-perturbative meth-
ods for processing the finite-order results of the perturbational calculations,
which are introduced in the fourth chapter. The first section treats the method
of effective action which allows the calculation of the phase boundary of the
afore-mentioned phase transition and which permits access to certain quanti-
ties characterizing the superfluid phase, although the perturbative calculations
are done starting from the ground state of the Mott insulator. Moreover, with
the aim to extract the critical exponents of the condensate and the superfluid
density from the perturbational results, the variational perturbation theory
is introduced in the second section. With this theory, weak-coupling series
are transformed to strong-coupling series which provide a direct access to the
critical exponents.

In the last chapter the new results obtained in this thesis are presented. In
the first section a slightly modified method for determining the phase boundary
is introduced. After a discussion of the properties of the effective potential,
the particle number inside the superfluid regime is evaluated. It shows lines of
constant density which can be calculated from the effective action. In the fourth
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section the results for the condensate and the superfluid density are presented.
There also the influence of the odd- and even-order coefficients of the effective
potential are discussed and it is demonstrated that the calculation of the critical
exponents of both densities has to account for this distinction. Finally, in the
last section two methods are established which enable the determination of the
critical exponents. The first method is based on the odd-order results of the
perturbational calculations and requires the use of the variational perturbation
theory. The second method yields a direct access to the critical exponents via
the even-order results but it also requires a greater numerical effort.
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1 Introduction

At the moment the research area of ultracold quantum gases is one of the
liveliest fields in physics. The promising fusion of atomic physics and quantum
optics has led to various fascinating developments in the last 30 years. In this
introduction some milestones leading to remarkable experiments are presented.
In particular, we deal with the first realization of a Bose-Einstein condensate in
1995 [1, 2], honored with the physics noble price in 2001, the measurement of
Fermi degeneracy [3–5], and the observation of the superfluid-to-Mott insulator
quantum phase transition in an optical lattice [6].

1.1 Quantum simulators

To start with, the latter experiment can be connected to something at first sight
completely different. In 1982 R. Feynman proposed an entirely new approach
to study physics [7]. Instead of looking for solutions of complicated systems by
using analytical or numerical methods, he suggested to simulate physics with
computers which “will do exactly the same as nature”. Today this approach is
known under the keyword “quantum simulator” and is the objective of many
research branches. The effort becomes understandable if one estimates how
large a quantum system maximally can be in order to be simulable on a classical
computer. For a quantum system with N spin-1/2 particles, 2N possible states
exist and the density matrix has 22N entries. Already for about 30 particles
such systems are not accessible anymore with present-day computers.

One can separate quantum simulators into analog and digital quantum sim-
ulators considering the way the original quantum system is simulated [8]. The
analog quantum simulator, also known as a quantum emulator, mimics the
evolution of the original quantum system. That means one has a simulating
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system which is able to reproduce the dynamics of the original system. The
main advantage in mapping the evolution of one system to another is that gen-
erally one has a far better control over the simulating than over the original
system.

The digital quantum simulator is in fact a quantum computer and also known
as the universal quantum simulator. In contrast to the analog quantum simu-
lator this quantum simulator should be able to simulate any finite-dimensional
local Hamiltonian. A local Hamiltonian can be written as H =

∑
iHi where

each Hi acts on a finite number of particles. The time-evolution is then
performed by applying repeatedly the infinitesimal time evolution operator
Ui = e−i∆tHi/~ [9, 10]. In quantum computing, however, the Hamiltonian is
acting on qubits representing the quantum version of bits. Whereas a classical
bit is always in one of the two states 0 or 1, a qubit can also exist in any
superposition of these states. Generally for simulating a system with N par-
ticles the required time scales polynomially on a quantum computer, whereas
it scales exponentially for a classical computer as described above [11]. Many
candidates for the realization of qubits are under study. An overview of possi-
ble physical systems is given in the supplementary material of Ref. [8] and in
Ref. [12].

1.2 Cooling methods

Both kinds of quantum simulators have in common that one needs a very
good control over all relevant system parameters. One promising candidate
for an extensively controllable system consists of ultracold atoms in optical
lattices [15, 16].

To realize such a control needed for these experiments, the number of degrees
of freedom must be reduced or even frozen out. This also allows one to trap
atoms so that one can prevent the atomic gas from heating and to manipu-
late them in order to perform experiments. Cooling techniques were mainly
developed in the 1980s and early 1990s which culminated in the award of the
physics noble price in 1997 [17–19]. Most of the cooling techniques depend on
the use of lasers.
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(a) Laser cooling (b) Evaporative cooling

Figure 1.1: Schematic illustration of laser cooling and evaporative cooling. (a)
Sketch of the laser cooling process. (A) Laser cooling of an atomic beam with
a counter-propagating laser beam. (B) The velocity change of an atom caused
by the absorption of a photon from the laser. (C) The velocity change that
results from stimulated emission of a photon. (D) The random recoil caused
by spontaneous emission [13]. (b) Schematic diagram illustrating the principle
of evaporative cooling. Two atoms, with the same initial energies, collide and
scatter into different vibrational states. If the hotter atom escapes, the net
effect, after rethermalisation, is to leave the remaining sample colder [14].

The first step of a whole ladder of cooling methods is usually Doppler cool-
ing. An atom moving in the direction of a counterpropagating laser beam as
depicted in Fig. 1.1(a) absorbs photons and also the momentum of the photons.
After one absorption process the atom is excited and is able to emit photons
itself. Stimulated emission would not lead to a momentum decrease since these
photons are emitted in the same direction as the laser beam and so they would
accelerate the atom again. But for spontaneous emission the momentum trans-
fer is zero on the average, leading to a deceleration of the atom. In order to let
only fast-moving atoms absorb photons, the laser beam is slightly off-resonant
so the absorption rate is higher for atoms moving towards the laser beam than
in the other direction due to the Doppler effect. This effect leads to a fric-
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tional force dp/dt = −γv on the atoms which can be interpreted as a radiation
pressure. To consider the deceleration, laser cooling is often performed in a
setup called Zeeman slower. Here the atoms pass through a magnetic field to
change the energy level separation of the atoms so as to keep them in resonance
with the fixed-frequency laser [13]. A setup consisting of several laser beams
propagating in different directions is known as an optical molasses. It cools an
atomic gas down to millikelvins in only a few microseconds. E.g., to cool down
a sodium atom from room temperature to this temperature circa 104 photons
must be absorbed and emitted. Every photon leads to a velocity change of
3 cm/s [13]. But due to the emission of photons the atoms can only be cooled
down to an equilibrium temperature which is called the Doppler limit.

The last step in order to achieve temperatures of less than 1 µK is evaporative
cooling as sketched in Fig. 1.1(b). In this cooling process the hottest atoms are
removed purposefully so that the rest cools down by reaching a new thermal
equilibrium with a lower total energy and entropy, respectively. This process
requires a sufficiently high density since an equilibrium can only be reached
by elastic collisions. Many other cooling techniques are known today allowing
temperatures down to circa 100 nK and below. Furthermore, the cold atoms
must be trapped. For this purpose different concepts such as optical, magnetic
or magneto-optical traps have been established [14, 20–22].

1.3 Bose-Einstein condensation

What happens to bosons, if such low temperatures are reached, is predicted by
the Bose-Einstein statistics. The foundations of this theory, valid for quantum
particles with an integer spin, were laid by S. Bose in 1924 [23] and further
interpreted by A. Einstein [24, 25]. He predicted a new state of matter for very
low temperatures which is today called a Bose-Einstein condensate. According
to the spin-statistics theorem [26] quantum particles with an integer spin are
allowed to occupy the same state. If the temperature of a system is lowered, the
bosons tend to occupy lower energy states until the state with the lowest en-
ergy is occupied with a macroscopic number N ≫ 1 of particles. Furthermore
the thermal de Broglie wave length λdB = h/

√
2πmkBT increases during the
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cooling process until the point is reached where the thermal de Broglie wave
length is equal to or greater than the mean spacing between particles. One
would expect the critical temperature to be at that temperature where the sys-
tem contains at least one particle within the volume λ3

T as indicated in Fig. 1.2.
That means the onset of the phase transition depends on both the temperature
and the density n of the system. The quantity ̟ = nλ3

T is called phase space
density and more precise calculations reveal that ̟ = ζ(3/2) ≈ 2.612 must
hold in order to observe a phase transition, where ζ(z) is the Riemann zeta
function. The critical temperature depends strongly on boundary conditions
and scales, e.g., as Tc ∝ [n/ζ(3/2)]2/3 for a system in a rigid container and as
Tc ∝ [N/ζ(3)]1/3 for harmonically trapped atoms [27, 28].

While a Bose-Einstein condensate must occur even for a non-interacting
system because of the Bose-Einstein statistics, systems with interaction also
show this kind of phase transition. For repulsive interactions one can show
this relatively straightforward [28] but for a long time it was unclear if a Bose-
Einstein condensate could exist with attractive interactions. But it was shown
that this is also possible in certain circumstances which will be briefly described
here.

Because the atoms have such a small energy, scattering processes of two
atoms can be described by one parameter only, the so-called s-wave scat-
tering length a [22]. For large r the scattering wave function is given by
ψ = eikr + f(θ)eikr/r. For very low energies and thus k → 0 the scattering
amplitude approaches a constant −a and the scattering wave function is given
by ψ = 1 − a/r in this limiting case. The total cross section for bosons is
σ = 8πa2 and zero for identical fermions.

Now, Bose-Einstein condensation for atoms with attractive interaction, for
which a < 0, is possible if the number of particles in a condensate in a trap
potential does not exceed a limiting value Nm ≈ l/|a|, where Nm is of the order
of 103 [30–35]. Here l denotes the size of the condensate in the absence of
interactions.

In 1995 two groups observed the phase transition to a Bose-Einstein con-
densate of alkali atoms with repulsive interactions [1, 2]. The two groups used
rubidium and sodium, respectively, and reached densities of 1012 − 1014 cm−3

with 104 − 106 condensed atoms, while the transition temperatures were be-
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Figure 1.2: At high temperatures, a weakly interacting gas can be treated
as a system of “billiard balls”. In a simplified quantum description, the atoms
can be regarded as wavepackets with an extension ∆x, approximately given by
Heisenberg’s uncertainty relation ∆x = h/∆p. Here ∆p denotes the width of
the thermal momentum distribution which is related via ∆p2/2m = kBT to
the temperature T . The resulting ∆x is approximately equal to the thermal
de Broglie wavelength λdB = h/

√
2πmkBT , the matter wavelength for an atom

moving with the thermal velocity. At the BEC transition temperature, λdB

becomes comparable to the distance between atoms, and the Bose-Einstein con-
densate forms which is characterized by a macroscopic population of the ground
state of the system. As the temperature approaches absolute zero, the thermal
cloud disappears leaving a pure Bose condensate [29].

tween 170 nK and 200 nK. Fig. 1.3 shows absorption images of an experimental
observation of a Bose-Einstein condensate at different times after switching off
the magnetic trap together with the original caption [29]. The width of the
peaks is directly related to the velocity distribution and thus to the tempera-
ture of the condensate. The colder the atoms are, the less kinetic energy they
possess, so that for a pure condensate one would expect a very narrow peak
at the center indicating the condensed particles with momentum k = 0. This
situation is almost realized in the last picture of Fig. 1.3.

Today Bose-Einstein condensation has been observed in many other ele-
ments ([36, 37] and references therein) and it is already possible to reach tem-
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Figure 1.3: Observation of Bose-Einstein condensation of sodium atoms by
absorption imaging. Shown is absorption vs. two spatial dimensions. The Bose-
Einstein condensate is characterized by its slow expansion observed after 6 ms
time of flight. The left picture shows an expanding cloud cooled to just above
the transition point; middle: just after the condensate appeared; right: after
further evaporative cooling has left an almost pure condensate. The width of
the images is 1 mm. The total number of atoms at the phase transition is about
7 · 105, the temperature at the transition point is 2 µK [29].

peratures of a few hundred picokelvin [38]. Even the condensation of photons
was observed recently in a microcavity [39, 40] which is impossible for a free
photon gas since photons have a vanishing chemical potential and so the parti-
cle number is not conserved as one varies the temperature [28]. However in the
experiment this was circumvented by bringing a photon gas into a dye-filled
optical microcavity acting as an effective confining potential. The photons
thermalize to the temperature of the dye solution by multiple scattering with
the dye molecules. By increasing the number of the photons the phase space
density increases until a Bose-Einstein condensation can be observed for ap-
proximately 77000 photons. The whole three-dimensional system is equivalent
to an ideal gas of harmonically confined, massive bosons in two spatial dimen-
sions.

The next step in the study of ultracold atoms was the realization of Fermi
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(a) (b)

Figure 1.4: (a) Measurement of the scattering length a, given here in multiples
of the Bohr radius a0, depending on an external magnetic fieldB near a Feshbach
resonance [44]. The interaction can be attractive (a < 0) or repulsive (a > 0).
(b) Schematic illustration of a Feshbach resonance [45]. An open channel is
coupled to a closed channel by the variation of the energy difference dependent
on a magnetic field.

degeneracy [3–5]. This degeneracy is reached when the temperature of the
system is equal to or less than the Fermi temperature TF. The main problem
here is the cooling below the Fermi temperature. Since s-wave scattering dom-
inates at very low temperatures, fermions are nearly non-interacting particles
because of the Pauli exclusion principle. But evaporative cooling relies strongly
on scattering processes so new cooling mechanisms had to be established. E.g.,
one of these methods is sympathetic cooling [41, 42], during which two species
of atoms are brought together which are allowed to interact so that one species
can give its energy to the other. In the first experiments temperatures of circa
0.3 TF were reached but today also temperatures of approximately 0.03 TF are
possible [43].

Quantum degeneracy opened also another interesting field. By controlling
the interaction strength between fermions, basically given by the scattering
length a, the so-called BEC-BCS crossover [46–48] can be induced. The scat-
tering length can be controlled by Feshbach resonances. They allow one to
adjust the scattering length by varying an external magnetic field as depicted
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in Fig. 1.4(a). For a > 0, called the BEC-side, a weakly bound molecular
state [49–51] exists, so that in this case two fermions could form a bosonic
molecule and thus a Bose-Einstein condensate for sufficiently low tempera-
tures [52–54]. For a < 0, the BCS-side, the fermions can be described by
weakly bound Cooper pairs and a BCS-like state [55, 56] can be observed ([48]
and references therein).

At Feshbach resonances [45] a bound molecular state is coupled to a scatter-
ing state of two atoms. This is depicted in Fig. 1.4(b). The open channel rep-
resents the scattering potential Vbg and the closed channel the potential Vc of a
bound state. A Feshbach resonance occurs when the closed channel approaches
the open channel energetically due to a variation of Ec. The energy difference
Ec depends on an external magnetic field B due to the Zeeman effect. The
resulting scattering length can then be described by a(B) = abg

(
1 − ∆

B−B0

)
.

The background scattering length abg is the scattering length of Vbg, B0 stands
for the position of the Feshbach resonance, and ∆ denotes the width of the
resonance.

1.4 Bose-Hubbard model

Whereas Bose-Einstein condensation and Fermi degeneracy deal mainly with
dilute gases and weak interactions, another research field studies the opposite
limit. In 2002 Greiner et al. measured the superfluid-to-Mott insulator phase
transition [6] of a strongly correlated system.

An effect of strong correlations among electrons was observed in the late
1930s, when some metals were shown to exhibit a poorly conducting or even an
insulating behavior despite their band structure which proposed a conducting
behavior [57]. It was assumed that this could be explained by strong Coulomb
repulsion between electrons preventing them from moving at all [58]. This led
to the formulation of the Hubbard model [59] in the formalism of the second
quantization, given by

H = −J
∑

〈i,j〉

c†
i,σcj,σ + U

∑

i

ni,↑ni,↓ − µ
∑

i

(ni,↑ + ni,↓) . (1.1)

This model is a simplified description of a solid but despite this, it can correctly
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render the transition from a Mott insulator to a metal. It only takes two degrees
of freedom into account: The electrons are allowed to move from one lattice
site i to a neighboring site j with the tunneling energy J and they interact if
two electrons with opposite spin σ occupy the same lattice site penalized by
the interaction energy U . The last term controls the total number of particles
by adjusting the chemical potential µ.

In 1989 a similar model was proposed by Fisher et al. describing bosons
in a lattice [60]. This model is known as the Bose-Hubbard model and its
second-quantization formulation reads

H = −J
∑

〈i,j〉

b†
ibj +

U

2

∑

i

ni (ni − 1) − µ
∑

i

ni . (1.2)

It describes bosons at temperature T = 0 but it also shows the superfluid-to-
Mott insulator phase transition. This means that the phase transition is purely
driven by quantum fluctuations instead of thermal fluctuations and therefore
it falls into the category of quantum phase transitions [61].

Jaksch et al. realized that this Hamiltonian could be simulated with great
accuracy by ultracold bosons in an optical lattice [62]. An optical lattice is
basically a standing wave of laser beams forming a lattice because of interfer-
ence. They adopted trapped bosons in a trapping potential VT interacting with
an optical lattice potential V0 confining the bosons to individual lattice sites.
Because the atoms are ultracold, interactions between them are mostly given
by s-wave scattering processes generally determined by the scattering length a.
The resulting many-body Hamiltonian then reads

H =
∫

d3x ψ†(x)

(
− ~

2

2m
∇2 + V0(x) + VT (x)

)
ψ(x)

+
1

2

4πa~2

m

∫
d3x ψ†(x)ψ†(x)ψ(x)ψ(x) .

(1.3)

By expanding the boson field operator in the localized Wannier basis [63, 64],

ψ(x) =
∑

i

w(x − xi)bi , (1.4)

under the assumption that no excitations are present in the system, one gets
the Bose-Hubbard Hamiltonian (1.2). The interaction strength is then given
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by

U =
4πa~2

m

∫
d3x|w(x)|4 (1.5)

and the hopping matrix element between adjacent sites i and j is

J = −
∫

d3x w∗(x − xi)

[
− ~

2

2m
∇2 + V0(x)

]
w(x − xj) . (1.6)

The energy offset on each lattice site µi =
∫

d3x VT (x)|w(x − xi)|2 is generally
spatially varying, but for the case of a homogeneous lattice its site dependence
vanishes. Then it is allowed to drop the index i by setting µi = µ so that one
arrives at the Hamiltonian (1.2).

The main benefit to simulate (1.2) with ultracold bosons in an optical lattice
is the control over all important parameters in such an experiment. If an atom
interacts with an electromagnetic field E(r, t) = E(r)e−iωt + c.c. of laser light,
a dipole moment p(r, t) = p(r)e−iωt + c.c. is induced. The amplitude p = αE

depends on the polarizability α of the atoms. This leads to an interaction
potential

Vdip = − 1

2ǫ0c
Re(α)I (1.7)

of the induced dipole moment in the electric field with I = 2ǫ0c|E(r)|2 being the
intensity of the laser beam of the optical lattice [65]. That means by changing
the intensity of the laser beams one has direct control over both the tunneling
energy J and the on-site energy U of the Bose-Hubbard Hamiltonian. By using
in addition a Feshbach resonance one can even control the interaction strength
U alone so that one has control over both parameters J and U of the system.

The phase transition is easy to understand if one studies two physical limiting
cases. In the atomic limit J/U → 0 all particles are localized and on a lattice
with N particles and M sites every site is occupied by g = 〈ni〉 = N/M

particles. The filling is denoted by the filling factor g which is supposed to be
integer. This localization of particles and the corresponding incompressibility,
expressed by ∂〈ni〉/∂µ = 0, defines the Mott insulator and, therefore, the
ground state is given by

|ΨMI〉 =
M∏

i=1

(
b†
i

)g
√
g!

|0〉 . (1.8)
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Figure 1.5: Phase diagram of the Bose-Hubbard model. Shown are four Mott
lobes for different filling factors 〈ni〉 = g and for the dimension D = 2. In the
filled areas the system is in the Mott-insulator state. Outside of these areas lies
the superfluid regime. The maximal value of J/U for which the system is still in
a Mott insulator defines the critical chemical potential (µ/U)c and the critical
hopping (J/U)c of the respective Mott lobe.

The local creation operator b†
i acts g times on the vacuum state |0〉 without

particles. In this phase the spectrum shows a gap between the ground-state
energy and the energy of the first excitation.

In the opposite limit J/U → ∞ the interaction energy is very small compared
to the tunneling energy, leading to a delocalization of the particles. All particles
are condensed into the ground state

|ΨSF〉 =
1√
N !

(
1√
M

M∑

i=1

b†
i

)N
|0〉 (1.9)

with k = 0. In this phase one has an uncertain number of particles on each
lattice site but a long-range phase coherence emerges [66].

The two phases can also be classified by the concept of the off-diagonal long
range order [67]. For this one has to define the one-particle density matrix

ρ1 = 〈b†
ibj〉 (1.10)
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of the sites i and j at the positions ri and rj, respectively. In the Mott-insulator
state this matrix vanishes in the limit |ri − rj| → ∞. In the superfluid state,
however, the density matrix converges to a finite value. If one considers the
one-particle density matrix in momentum space, one gets

ρ1 =
∑

k

nkeik(ri−rj) = fc +
∑

k 6=0

nkeik(ri−rj) (1.11)

due to a Fourier representation of (1.10). The part with a nonzero momentum
vanishes and only the the condensed fraction fc of all particles in the state with
k = 0 remains.

Between these two limiting cases lies the phase boundary defined by the
values (J/U)pb and (µ/U)pb as depicted in Fig. 1.5. Between every pair of
integer values of the chemical potential one has a so-called Mott lobe. These
Mott lobes are the shaded areas in Fig. 1.5 in which the system is in the Mott-
insulator state. Everywhere outside of these areas the system is a superfluid.
For each Mott-lobe a critical hopping (J/U)c and a critical chemical potential
(µ/U)c is defined by the maximal value of J/U for which the system is still a
Mott insulator.





2 Critical phenomena

The state of a thermodynamic system is characterized by macroscopic state
variables as, e.g., temperature, pressure or chemical potential. Depending on
the adjustment of these variables the state is in a specific phase. Classical
examples for such phases are solid, liquid or gaseous. But also “exotic” phases
exist which escape the classical world of experience entirely. Examples for this
are the Bose-Einstein condensation of bosonic particles at very low tempera-
tures of circa 10−7 K near the absolute zero point [1, 2, 68] or the quark-gluon
plasma [69] which appears not until temperatures of circa 1012 K [70, 71].

If a system changes its phase, for instance because of the increase of temper-
ature, a phase transition takes place. During such a phase transition determin-
ing properties of the system change in such a characteristic way, that also the
macroscopic behavior of the system changes dramatically. Such a property can
be the symmetry of the system. E.g., whereas liquid water possesses contin-
uous rotational and translational degrees of freedom, it looses these freedoms
during the transition to the solid phase. In this latter phase water exists as
ice and has a crystalline structure with a discrete rotational and translational
symmetry.

If one knows all phases of a system one also knows the phase diagram. In
Fig. 2.1 the phase diagram of water with its three phases solid, liquid, and
gaseous or the three states of aggregation ice, water and, steam, respectively,
can be seen as a function of temperature and pressure. These phases are
separated by phase boundaries, so a phase transition must happen if the system
crosses one of the boundaries. Along the phase boundaries two phases coexist
in an equilibrium state. Actually all three phases coexist at the triple point,
where the three branches meet each other.

The beginnings of the theory of phase transitions can roughly be traced back
to the works of van der Waals [72]. For the first time also the behavior of real
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Figure 2.1: Schematic, simplified phase diagram of water. The three phases
solid, liquid and gaseous of water and the phase boundaries as a function of
pressure and temperature are shown. Further phases like, e.g., amorphous or
overcritical phases are not shown for reasons of clarity. Water has a critical point
at 647 K (373, 9◦ C) and 218 atm behind which water exists as an overcritical
fluid.

gases could be predicted with the van der Waals equation. With the help of
this theory also critical parameters can be calculated which indicate the point
of the phase transition in the phase diagram. However this theory is only a
mean-field theory since the interaction of a particle with the rest of the system
is approximated by an average interaction potential.

Mean-field theories usually render the critical parameters with good accuracy
but the averaging of the interaction leads to the problem, that the approach
of specific system variables to the critical point is described wrongly. This
approach to the critical point is universal for many systems, which means that
different systems behave identically in the vicinity of the critical point. It is
often described by an algebraic equation, e.g., a variable X approaches the
critical point as a function of the temperature as X ∝ (T − Tc)

σ. Here σ is a
so-called critical exponent and Tc is the critical temperature denoting the point
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Figure 2.2: This graph strikingly demonstrates the universality of a phase
transition [73]. The scaled temperature T/Tc is plotted as a function of the
scaled density ρ/ρc, with the critical temperature Tc and the critical density ρc

for each individual gas. All scaled temperatures are almost identical after the
scaling.

of the phase transition. The exponent σ is then a universal parameter which
is identical for a whole class of systems.

In Fig. 2.2 one of the first measurements revealing the universality of the
solid-liquid phase transition of different substances is shown. With the help of
the critical temperature Tc and the critical density ρc one can plot the scaled
temperature T/Tc as a function of the scaled density ρ/ρc so that the scaled
temperatures of all gases approximately coincide. This was also the first hint
that the van der Waals theory is wrong because these data predict a critical
exponent 1/3 of the density whereas the theory of van der Waals predicts 1/2.

The universality of a phase transition is one of the most important concepts
of the theoretical description of critical phenomena. It is obvious that phase
transitions mainly depend on interaction effects, however at the point of the
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phase transition many features of these interactions seem to be unimportant
since different systems show a very similar behavior at this point. The ex-
planation of this behavior is that near the phase transition correlation effects
dominate the behavior of the system. It turns out that these correlation effects
and the fluctuations of them take place on all length scales so that certain mi-
croscopic features like the mass of the particles or the nature of the interaction
between them are no longer important.

This chapter presents a brief introduction into the field of critical phenomena
and introduces some concepts and results. In the first section the distinction
of discontinuous and continuous phase transitions is explained. The focus lies
on the definition and the qualitative study of important thermodynamic quan-
tities. The second section introduces the Ginzburg-Landau and the φ4-theory
and shows, how discontinuous and continuous phase transitions can be quan-
titatively studied using these concepts. The last chapter presents theoretical
and experimental results of critical exponents and states important scaling
relations.

2.1 Phase transitions

An important concept for the description of phase transitions is the order
parameter. This parameter is defined in such a way that it is identical to zero in
the “disordered” phase and unequal zero in the “ordered” phase. These phases
are also called high-temperature and low-temperature phase, respectively.

Hamiltonians describing a many-body system are usually symmetric under
miscellaneous transformations. In the disordered phase these symmetries are
also fulfilled by the respective ground state while in the ordered phase the
system has a lower symmetry than the corresponding Hamiltonian.

A good example for this issue is the phase transition of a magnet from the
ferro- to a paramagnetic phase. For temperatures less than the Curie tempera-
ture a major fraction of elementary magnets are parallel, so that a macroscopic
net magnetization is measurable. This parallel alignment of the elementary
magnets breaks the symmetry of the Hamiltonian which does not favor a cer-
tain direction. Only after a spontaneous symmetry breaking one direction is
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chosen. As one increases the temperature, the elementary magnets fluctuate
more and more until the Curie temperature is reached, where the ferromagnet
becomes a paramagnet. For this phase transition the order parameter is the net
magnetization which is zero in the paramagnetic phase if no external magnetic
field is present. The ordered phase is in this example the ferromagnetic phase
and the disordered phase is the paramagnetic phase.

If F0 [ψ] is the free energy of the system expressed as a function of the order
parameter [74], one can perform a Legendre transformation by introducing a
new variable

η[ψ] = −∂F0[ψ]

∂ψ
(2.1)

and constructing the function

F [η] = F0[ψ] + ηψ . (2.2)

This corresponds to coupling an external field to the system which induces
the spontaneous breaking of the symmetry. The order parameter ψ and the
external field η are conjugated variables, since according to the Legendre trans-
formation the order parameter can be calculated via

ψ[η] =
∂F [η]

∂η
. (2.3)

Furthermore one can calculate the isothermal susceptibility

χT =

(
∂2F [η]

∂η2

)

T

=

(
∂ψ[η]

∂η

)

T

(2.4)

and the specific heat

cη = −T
(
∂2F [η]

∂T 2

)

η

. (2.5)

The coupling of an external field in (2.2) is crucial for the observation of
spontaneous symmetry breaking since otherwise the system would stay in the
state with the higher degree of symmetry. The occurrence of spontaneous
symmetry breaking can be defined by the non-commutativity of the two limits
N → ∞ with N being the particle number and η → 0:

0 = lim
N→∞

lim
η→0

ψ[η] 6= lim
η→0

lim
N→∞

ψ[η] 6= 0 . (2.6)
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The role of the thermodynamic limit N → ∞ is discussed in more detail in
Sec. 2.1.3.

During a phase transition these observables show a characteristic behavior
depending on the kind of the phase transition. On the basis of this behavior
phase transitions are divided into discontinuous and continuous phase transi-
tions.

2.1.1 Discontinuous phase transitions

Discontinuous phase transitions are defined by the absorption and release of
latent heat

l = T∆S = T (S1 − S2) (2.7)

during the phase transition from phase 1 to phase 2. The temperature T does
not change during the phase transition according to the definition of latent
heat. Since the entropy S is connected to the thermodynamic potential, here
the free energy F , via

S = −
(
∂F
∂T

)

η

, (2.8)

the first derivative shows a discontinuity at the critical point. This disconti-
nuity of the first derivative is also responsible for the name first-order phase
transition. Since the specific heat and the susceptibility are also connected
to the free energy via (2.4) and (2.5), they likewise show a singularity at the
critical point. The order parameter given by a derivative of the free energy
with respect to the external field also shows a discontinuity.

2.1.2 Continuous phase transitions

Continuous phase transitions do not show a discontinuity in the first deriva-
tive but in higher derivatives. That means that also no latent heat takes part
in this kind of phase transition. Continuous phase transitions can even be
further divided into nth order phase transitions, depending on the order of
the derivative which shows a discontinuity. However this so-called Ehrenfest
classification is not sufficient for the description of all phase transitions. E.g.,
many systems with logarithmic divergences, i.e., with critical exponents equal
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Figure 2.3: Schematic illustration of the difference between a discontinuous
and a continuous phase transition. In the first case the entropy S = −∂F/∂T
shows a discontinuity which does not exist for continuous phase transitions.
Correspondingly the heat capacity c = −T∂2F/∂T 2 of the discontinuous phase
transition has a singularity at the critical point. It also diverges at the critical
point of a continuous phase transition but the approach is continuous.

to zero, are known which are not taken into account in the Ehrenfest classifica-
tion. One well-known example is the Ising model in two dimensions where the
specific heat with its critical exponent α = 0 shows a logarithmic divergence
(see Tab. 2.3). Also the question arises if the distinction of two phases for a
high-order phase transitions makes physical sense. Therefore the differentia-
tion of discontinuous and continuous phase transitions seems to be the better
classification. For orientation Fig. 2.3 shows the two kinds of phase transitions
in comparison with each other.

A continuous phase transition can be observed in Fig. 2.1 if one moves along
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the phase boundary between liquid water and steam in the direction towards
the critical point. In this case the order parameter is the difference between
the density of the liquid water and the density of the steam. This corresponds
to the horizontal distance of the left and the right branch in Fig. 2.2. It is
unequal zero along the phase boundary and becomes zero at the critical point
characterized by ρc and Tc. Then water exists as a fluid for which one cannot
distinguish between steam and liquid. Instead, one has steam bubbles and
drops of liquid water on all length scales.

2.1.3 Thermodynamic limit

As already mentioned, the properties of thermodynamic potentials and of
their derivatives are of great importance for the classification of phase tran-
sitions. A phase transition occurs at that point, where the system behaves
non-analytically. These non-analytic features can only be observed in the ther-
modynamic limit N, V → ∞ with the ratio N/V remaining constant. The
grand-canonical equation of state reads

pV

kBT
= ln Z (2.9)

and connects the pressure p and the volume V to the grand canonical par-
tition function Z. Thus one can expect a non-analytic behavior where the
partition function has zeros. But the partition function of finite systems has
no real zeros so that divergences and discontinuities cannot occur. Only in
the thermodynamic limit one observes real-valued zeros defining the critical
parameters [75, 76].

2.2 Theories for describing phase transitions

Up to now the role of the order parameter has been discussed only qualitatively.
In this chapter it will be explained how discontinuous and continuous phase
transitions can be modeled quantitatively with the help of the order parameter.

The section starts with the introduction of the mean-field ansatz since this is
usually the first approach to the description of phase transitions because of its



2.2 Theories for describing phase transitions 25

simplifications. Then the Ginzburg-Landau theory is explained which is based
fundamentally on the order parameter concept. Starting from this theory the
Landau theory is deduced and an example, which shows how the Landau theory
models continuous and discontinuous phase transitions, is discussed briefly.

2.2.1 Mean-field theory

As already mentioned at the beginning of this chapter, the first attempts to
describe phase transitions are based on mean-field theories [77]. The con-
ceptual basic principles were laid during the first tries to explain ferromag-
netism [78, 79]. Before the discovery of the spin and the corresponding interac-
tion a mean field was postulated which should be responsible for the alignment
of the magnetic moments. Therefore this theory is also known as a molecular-
field approximation. The success of this theory could be explained later by
the finding that the molecular field corresponds to a mean field which simu-
lates the interaction of one component (spin, particle, etc.) of the system with
the whole rest of it. That means such a theory approximates a hard- or non-
solvable Hamiltonian by one which is easier to solve because it does not contain
the full interaction of all particles with each other but only the interaction of
single particles with the mean-field.

For a Hamiltonian H one can use the Bogoliubov inequality [80]

F ≤ Φ = F0 + 〈H −H0〉0 (2.10)

for the calculation of the free energy of the mean-field system [74]. Here F is the
free energy of the full Hamiltonian H, H0 is a Hamiltonian which may depend
on a variational parameter λ, and F0 is the free energy of this Hamiltonian.
The expectation value 〈. . .〉0 means the expectation value of that ensemble
which is given by H0. The best approximation

Fmf = min
λ

Φ (2.11)

to the full system is then given by the minimization of the function Φ with
respect to λ.
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This procedure corresponds to the decoupling of two operators O1 and O2

via
O1O2 −→ O1〈O2〉0 + 〈O1〉0O2 − 〈O1O2〉0 . (2.12)

The last term of the right-hand side makes sure that the expectation value of
the left- and of the right-hand side coincide, if one neglects correlations.

Mean-field theories offer a very general ansatz for the treatment of inter-
acting systems. However the quality of the predictions depends strongly on
the distance from the critical parameter and the dimensionality of the system.
Generally mean-field theories get worse the more one approaches the critical
point since there fluctuations dominate the system which are not taken into ac-
count in these theories because of the averaging of the interactions. The range
in which the mean-field theory gives reliable results is given by the Ginzburg
criterion. Also there exists an upper critical dimension which states when a
mean-field theory describes phase transitions exactly [81]. In general the crit-
ical exponents predicted by mean-field theories are wrong if the dimension of
the system is less than the upper critical dimension. The existence of an upper
critical dimension can be roughly led back to the number of neighbors one com-
ponent has in the system. The higher the dimension of the system is, the more
neighbors one component has and the better the averaging of the interaction
approximates the real interaction.

2.2.2 Landau theory and φ4-theory

The Ginzburg-Landau theory is an extension of the Landau theory and was de-
veloped over the course of the understanding of superconductivity [82]. Landau
knew that a phase transition comes always along with a breaking of symme-
try [83]. Therefore one needs in the ordered phase one parameter more than
in the disordered phase to describe the system completely. This parameter is
the N -component order parameter ψ = (ψ1(x), . . . , ψN(x)) which is zero in the
disordered phase and increases in the ordered phase. Every component ψi(x)
is a scalar, the argument x of which is an element of the D-dimensional space
R
D. Since the order parameter is small nearby the critical parameter, so that

|ψ| ≪ 1 holds, it is assumed that the free energy can be expanded in powers
of |ψ|.
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Should the system break the symmetry spontaneously, no certain value of
the order parameter should minimize the free energy without the presence of
an external field. That indicates that the power series must be invariant under
a rotation of ψ. This is only fulfilled if the power series contains just even
orders of |ψ|.

Furthermore, to permit fluctuations, the order parameter must depend on
the location. However fast fluctuations of the order parameter, whose increase
signal the approach to the critical point of the phase transition [81] and thus
tend to destroy the ordered phase, must lead to an energy increase. Since
only even orders of |∇ψ(r)| are allowed, in first order a term proportional to
|∇ψ(r)|2 describes location-dependent changes correctly. The neglect of higher
order derivatives means that this theory is a local theory. If i denotes the sites
of a one-dimensional lattice and by using the central difference quotient, the
first derivative

∇ψ(i) =
ψ(i+ 1) −ψ(i− 1)

2
(2.13)

connects the site i + 1 and i − 1. The next order would already involve the
sites i+ 2 and i− 2 and even higher order derivatives would gradually lead to
a nonlocal theory.

If one also wants to consider spontaneous symmetry breaking, the order pa-
rameter must be coupled to an external field η having the same dimensionality
as the order parameter ψ. This field determines a preferred direction, which
breaks the original symmetry of the system. The external field η and the order
parameter ψ are conjugated variables since the order parameter is given by
the derivative of the free energy with respect to the field η via (2.3). Here the
sign of this term is negative since the direction chosen by the external field is
supposed to be favored.

By summarizing these considerations one gets the energy of the Ginzburg-
Landau theory in form of the functional

FGL [ψ] =
∫

dr
{
a0 + a2 |ψ(r)|2 + a4 |ψ(r)|4 + a6 |ψ(r)|6

+ γ|∇ψ(r)|2 − ηψ(r)
}
.

(2.14)
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To calculate the partition sum

Z =
∫

Dψ e−FGL[ψ]/(kBT ) (2.15)

one has to integrate over all possible realizations of the order parameter.

Starting with this functional one can also derive the free energy of the Landau
theory. In this approximation one favors that state with the highest probability
which is the equilibrium state of the system minimizing the functional (2.14).
A constant function in space ψ(r) = ψc minimizes the gradient term since
then ∇ψc = 0. Furthermore the order parameter should be parallel to the
external field η since then the interaction term, which must be subtracted, is
maximized. With this condition the order parameter can be chosen to point in
the same direction as the external field, so that both become scalars η and ψc.
Under these conditions one gets the free energy density

fL (ψc) = a0 + a2ψ
2
c + a4ψ

4
c + a6ψ

6
c − ηψc (2.16)

of the Landau theory. Because this theory ignores fluctuations, the Landau
theory is a mean-field theory.

For simplicity let us set η ≡ 0 and a0 = 0. Depending on the other co-
efficients, fL has different solutions for its minimum. If all coefficients are
positive, only the trivial solution ψ0 ≡ 0 exists which guarantees a minimum.
The system is then located in the disordered phase. One can now study con-
tinuous and discontinuous phase transitions by considering different values of
the coefficients a2, a4, and a6.

For a continuous phase transition one must have a4 > 0. Because a positive
a4 guarantees a minimum one does not need the term a6ψ

6
c and the free energy

is given by
fL (ψc) = a2ψ

2
c + a4ψ

4
c . (2.17)

A new minimum is only possible if a2 changes its sign. As soon as a2 is less
than zero a new minimum ψ0 6= 0 does exist. Then one has the solution

|ψ0| =

√
−a2

2a4

(2.18)
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Figure 2.4: The behavior of the free energy and the order parameter of the
Landau theory for (a) continuous and (b) discontinuous phase transitions. In the
first case one has a continuous transition from the trivial minimum at ψ0 = 0 to
another minimum with ψ0 6= 0. It is also shown that the coefficient a6 influences
the curve only marginally in the immediate vicinity of the transition point if a4

is greater zero. In the second case a new minimum develops, separated from the
trivial minimum in a discontinuous way.

for a real-valued order parameter. By verifying the condition

d2fL (ψc)

dψ2
c

> 0 , (2.19)

one can easily show that this solution is indeed a minimum for a2 < 0 and
a4 > 0.

For a complex order parameter one has an uncountable set of solutions since
the free energy has the shape of the Mexican-hat potential of Fig. 2.5(a).
Fig. 2.4(a) shows the free energy and the order parameter during a contin-
uous phase transition attaining values greater zero at the point of the phase
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transition given by a2(ψc) = 0. The left picture shows the free energy for dif-
ferent values of a2 with a4 = 1 and a6 = 0. In the right picture the minimum
of this free energy is plotted as a dotted line. Additionally the minimum of the
free energy fL with a6 = 1 is plotted with circles on a line. The point of the
phase transition is not changed by a6, only the shape of the curve differs.

For discontinuous phase transitions the coefficient a4 is less than zero and so
the coefficient a6 has to be considered for the free energy

fL (ψc) = a2ψ
2
c + a4ψ

4
c + a6ψ

6
c (2.20)

and it must be greater than zero. In this case the phase transition is discon-
tinuous as it is shown in Fig. 2.4(b). There the coefficients are a4 = −0.1 and
a6 = 0.1 and a2 changes from −0.1 to 0.095. The zeros are given by the trivial
minimum ψ0 = 0 and

|ψ+
0 | =

√√√√−a4 +
√
a2

4 − 3a2a6

3a6

, |ψ−
0 | =

√√√√−a4 −
√
a2

4 − 3a2a6

3a6

. (2.21)

The solution |ψ+
0 | describes the phase transition whereas |ψ−

0 | is a non-physical
solution with an imaginary order parameter. Those values of ψ+

0 6= 0 minimiz-
ing the free energy according to the condition

a2ψ
2
0 + a4ψ

4
0 + a6ψ

6
0 < 0 (2.22)

define the new global minima. Already before a2 changes its sign, another
minimum develops apart from ψ0 = 0 at a2 = 0.025 here, which also fulfills
(2.19). The order parameter has a discontinuity where this new minimum
becomes the new global minimum.

If one generalizes the properties of the order parameter of the Ginzburg-
Landau theory one gets the φ4-theory. In the original Ginzburg-Landau theory
used for the description of superconductivity, the order parameter can be in-
terpreted as the wave function of the superconducting electrons. So this order
parameter consists of two components representing a real and a complex part,
respectively. In general the order parameter ψ = (ψ1(x), . . . , ψN(x)) consists
of N components with x ∈ R

D.
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N Universality class

∞ Spherical model [84, 85]

3 Heisenberg model

2 xy-model

l Ising model

0 Polymers (self-avoiding walk) [86]

-2 Gauss model [84]

Table 2.1: For different values of N one gets different universality classes which
are represented by another model [61, 87]. All models of a certain universality
class possess the same critical exponents. The strange case N = −2 corresponds
to an analytical continuation of a 1/N -expansion [88, 89].

The φ4-theory is used for the study of continuous phase transitions. Its
energy functional has the form

F [ψ] =
∫

dDx
1

2

{
[∂xψ(x)]2 +m2ψ2(x)

}
+
λ

4!
ψ4(x) . (2.23)

The first term describes the kinetic energy, the second term represents the
mass, and the last term stands for the interaction. The universality class of the
phase transition is determined by the number N of components of the order
parameter, and the dimensionality D [90, 91]. The best-known universality
classes are shown in Tab. 2.1. The classes are usually named after one of the
most important representatives of each class.

2.3 Critical exponents

The universality of different phase transitions can be explained by observing
that near the critical point the behavior of the system is largely independent
of specific details of the Hamiltonian. This can be further understood by the
renormalization group approach [92]. This approach distinguishes between so-
called relevant and irrelevant operators. Irrelevant operators vanish at the
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critical point due to the large correlation length and only the relevant quan-
tities define the critical behavior of the system. They depend mainly on the
dimensionality D of the system, the number of the order parameters N and
the range of the interactions. Therefore specific quantities of different systems
or models behave nearly identically in the vicinity of the phase transition so
that the behavior of them can be characterized with only a few parameters like
critical exponents.

An important example of such an observable is the connected correlation
function

G(n)(x1, . . . ,xn) = 〈ψ(x1) . . . ψ(xn)〉 − 〈ψ(x1)〉 . . . 〈ψ(xn)〉 , (2.24)

which measures the correlation of the fluctuations of the order parameter
around its expectation value. Especially the 2-point correlation function of
a translationally invariant and isotropic system,

G(x) := G(2)(x) = 〈δψ(x1)δψ(x2)〉 , (2.25)

where δψ(x1) := ψ(x1) − 〈ψ(x1)〉 and the correlation function only depends on
the distance x = |x1−x2| of the points x1 and x2, is of great relevance. Near the
phase transition this correlation function shows the characteristic behavior [81]

G(x) ∝ 1

xD−2+η
e−x/ξ (2.26)

with the correlation length ξ indicating on which length scale correlations exist
in the system. In addition the correlation function depends only on the dimen-
sionality D and on the critical exponent η. At the critical point the correlation
length ξ diverges and the correlation function (2.26) reduces to

G(x) ∝ 1

xD−2+η
. (2.27)

Which critical exponent is assigned to which quantity and how they behave
near the phase transition depending on the temperature τ = Tc − T can be
seen in Tab. 2.2. Except for the exponents β and δ, which are only defined
for T < Tc, since the order parameter is equal to zero in the disordered phase,
the renormalization group theory [90, 93, 94] says that all critical exponents
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physical quantity behavior regime

correlation length ν ξ ∝ τ−ν T → Tc, η̃ = 0

correlation function η G(x) ∝ x−(D−2+η) e−x/ξ T → Tc, η̃ = 0

G(x) ∝ x−(D−2+η) T = Tc , η̃ = 0

specific heat α c ∝ τ−α T → Tc, η̃ = 0

order parameter β ψ ∝ τβ T → Tc, η̃ = 0

δ ψ ∝ η̃1/δ T = Tc , η̃ → 0

susceptibility γ χ ∝ τ−γ T → Tc, η̃ = 0

Table 2.2: Definition of the critical exponents using the example of a tem-
perature dependent phase transition with τ = Tc − T . The critical exponents
determine the behavior of the physical quantities in the vicinity of the phase
transition at T = Tc. Here, the external field introduced in (2.1) is denoted by
η̃ in order to distinguish it from the critical exponent η.

are equal above and below the critical temperature at least in the vicinity of
the phase transition [81]. However this does not hold for the prefactors a± of
a quantity

X ∝ a±|τ |σ, τ → ±0 . (2.28)

They differ from each other depending on whether the system is in the ordered
or disordered phase. On the other hand one can find ratios of these prefactors
which are called universal amplitude ratios. They show a universal behavior
like the critical exponents [95, 96].

2.3.1 φ4-theory

In Tab. 2.3 and Tab. 2.4 some chosen values of critical exponents for dimen-
sionalities D = 2, 3 and 4 are shown. For the φ4-theory D = 4 is the upper
critical dimension. Starting from this dimension the mean-field exponents be-
come exact, and thus they do not depend on the number of order parameters
N anymore.

For D = 3 two independent values for each critical exponent are quoted by
way of comparison in Tab. 2.4. All exponents computed in Refs. [97, 98] except
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D = 2

N ν η α β γ

1 1 0.25 0 (log) 0.125 1.75

D ≥ 4 ([87])

ν η α β γ δ

0.5 0 0 (dis) 0.5 1 3

Table 2.3: Critical exponents of the φ4-theory for dimensionalities D = 2 and
D ≥ 4. For D = 2 the exact exponents of the two-dimensional Ising model are
stated. In D = 4 the mean-field theory is exact. The abbreviation “(log)” refers
to a logarithmic singularity, and “(dis)” indicates a discontinuous transition.

for α result from an ǫ-expansion in D = 4 − ǫ dimensions. The exponent α of
Ref. [98] is the result of an expansion with fixed dimension D = 3 [81, 92, 96].
Since the accessible power series are finite, one needs to extrapolate these series.
In Ref. [97] the weak-coupling series was transformed into a strong-coupling
series by the use of a variational perturbation theory [81, 99–101]. The critical
exponents of Ref. [98] result from a Borel-Leroy transformation [96, 98]. Where
no source is quoted, the hyperscaling relations (2.36a) and (2.36b), respectively,
were used to calculate the respective missing exponent. Ref. [102] provides α
as listed in the upper row with N = 2. (For further reference data, see [103].)

For D = 2 only the critical exponents for the Ising model with N = 1
are stated in Tab. 2.3. This model is one of the very few non-trivial models
which can be solved analytically [104, 105]. Therefore the stated exponents are
exact. For D ≤ 2 and N ≥ 2, i.e., for a system with a continuous symmetry,
no spontaneous symmetry breaking with a long-range order can be observed
according to the Mermin-Wagner theorem [106–108].

This theorem does not hold for the Ising model since this model possesses
a discrete symmetry (spin “up” or “down”) and thus the Hamiltonian is only
invariant under a simultaneous 180◦ rotation of all spins. Despite this the
one-dimensional Ising model does not show a phase transition, either. This is
because for the rotation of one spin an energy E must be spent, since a domain
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Ref. 0 1 2 3

ν [97] 0.5874 0.6292 0.6697 0.7081

[98] 0.5875±0.0025 0.6290±0.0025 0.6680±0.0035 0.7045±0.0055

η [97] 0.0316 0.0373 0.0396 0.0367

[98] 0.0300±0.005 0.0360±0.005 0.0380±0.005 0.0375±0.0045

α 0.2378 0.1124 −0, 01126±0.001
† −0.1243

[98] 0.235±0.003 0.109±0.004 −0.011±0.004 −0.122±0.01

β 0.3030 0.3263 0.3481 0.3670

[98] 0.3025±0.0025 0.3257±0.0025 0.3465±0.0035 0.3655±0.0035

γ [97] 1.1576 1.2349 1.31045 1.3830

[98] 1.1575±0.006 1.2355±0.005 1.3110±0.007 1.3820±0.009

Table 2.4: Critical exponents of the φ4-theory for D = 3 and N = 0, 1, 2, 3.
The exponents are results of an ǫ-expansion together with different following
extrapolation methods. The references for the respective exponents are stated
in the second column. The explanation for exponents without a reference is
given in the text. (†[102]: α for N = 2)

wall is created. But no further energy must be spent for the rotation of every
other spin belonging to this domain, because the surface area of the domain
does not change in a one-dimensional system. In order to create M domains a
finite energy ME must be spent, independent of the number of involved spins.
On the other hand the entropy increases with M . Now the free energy of the
system is given by

F = ME − TS(M) , (2.29)

and one can show that in the thermodynamic limit the entropy increases faster
than the expended energy. Therefore, the system tends to split into a macro-
scopic number of domains for all temperatures T > 0 [109, 110]. A phase
transition is therefore only possible for T = 0.

By contrast the systems for N ≥ 2 are invariant under every infinitesimal
simultaneous rotation of all spins. That means that the system can be excited
by an infinitesimal amount of energy. These excitations with the properties of
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(a) Mexican hat potential (b) Vortex

Figure 2.5: (a) Potential of the free energy (2.17). For the order parameter
to attain a value ψ0 6= 0 the symmetry must be spontaneously broken. (b) A
vortex of spins. Such vortices are the prime cause the Kosterlitz-Thouless phase
transition has unique features.

spin- and massless particles are named Goldstone modes [111]. They occur in
all systems with a broken continuous symmetry and prevent a long-range order
for all systems with D ≤ 2. Descriptively, Goldstone modes can be figured as
vertical excitations in the Mexican-hat potential of Fig. 2.5(a). After a phase
transition the system has chosen one of the minima because of the spontaneous
symmetry breaking, however fluctuations along the minima are possible with
an infinitesimal amount of energy because the gradient in this direction is zero.
An example for Goldstone modes are spin waves or magnons, respectively.

In two dimensions and N = 2 another phase transition takes place because
of this missing long-range order. This is the so-called Kosterlitz-Thouless (KT)
phase transition [112, 113]. The xy-model is one of the first models with which
the KT phase transition was studied [114]. In this model the correlation length
is ξ = ∞ for T < Tc and

ξ ∝ e−b/(T−Tc)1/2

for T > Tc (2.30)

with b ≈ 1.5. Physically this phase transition can be traced back to the exis-
tence of vortices as depicted in Fig. 2.5(b). That means the spins are arranged
in such a way, that for the spin field θ(x), which gives the angle of the spin at
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the position x [87], one has
∮

C
dx ∇θ(x) = 2πq , (2.31)

where q is the quantum number of the so-called charge of the vortices. These
vortices couple mainly to vortex-antivortex pairs during the decrease of temper-
ature. For distances large enough the integral (2.31) over a vortex-antivortex
leads to q = 0. The unbounded vortices are responsible for the exponential de-
cay of the correlation length and the likewise exponentially decaying correlation
function

G(x) ∝ e−x/ξ for T > Tc . (2.32)

Because of the paired vortices a quasi long-range order exists in the low-
temperature phase, which is also named topological long-range order, with

G(x) ∝ x−η for T < Tc . (2.33)

The exponent η = η(T ) depends itself on the temperature. The critical value
is η(Tc) = 0.25 [114, 115]. The singular part of the free energy, which contains
the thermodynamics of the vortices, scales with

F ∝ ξ−2 . (2.34)

That means that the KT phase transition is in the sense of the Ehrenfest clas-
sification a phase transition of infinite order because all derivatives are contin-
uous. The susceptibility shows a similar behavior as the correlation length as
it yields χ = ∞ for T < Tc and

χ ∝ ξ2−η for T > Tc . (2.35)

This kind of phase transition has no order parameter because, e.g., the mag-
netization for the xy-model is zero for all temperatures because of the spin
waves and Goldstone modes, respectively. To sum up, the mechanisms of this
phase transition are entirely different from that of the φ4-theory. This phase
transition is of great interest in the theory of two-dimensional melting pro-
cesses [116] and for the explanation of phenomena important in the field of
superconductivity [117].
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For a two-dimensional system with N > 2 there exists no definite proof for or
against the existence of a phase transition. However there are many indications
that for such systems no phase transition exists for T > 0 ([118, 119] and
references therein).

2.3.2 Scaling relations

The critical exponents are not independent of each other as they are related
via the hyperscaling relations

α = 2 − νD , (2.36a)

β =
ν

2
(D − 2 + η) , (2.36b)

γ = ν(2 − η) , (2.36c)

δ =
D + 2 − η

D − 2 + η
, (2.36d)

depending explicitly on the dimensionality D. Thus if one knows the value
of two of these critical exponents all other exponents can then be calculated.
These relations follow from the renormalization group theory [96].

One can also find scaling relations which neither do depend on the dimen-
sionality nor include the critical exponents ν and η of the order parameter.
The first one reads [120]

α+ 2β + γ = 2 , (2.37)

and can be derived from the two relations

α+ β(1 + δ) = 2 , (2.38a)

γ + β(1 − δ) = 0 . (2.38b)

Quite another relation holds for superfluid density ρsf and its critical expo-
nent υ. The superfluid density also emerges at the critical point as ρsf ∝ τυ,
similar to the quantities stated in Tab. 2.2. For the critical exponent υ one has
the Josephson relation [121–123]

υ = 2β − ην , (2.39)
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which in the case of the Bose-Hubbard model directly connects the critical
exponent of the superfluid density to the critical exponent βc = 2β of the
condensate density.

2.3.3 Experimental measurements

To support the theoretical predictions of Tab. 2.3 and Tab. 2.4 one also needs
experimental results for comparison. This section reports some experimental
measurements of certain critical exponents. The main focus lies on the λ-
transition of helium which is in the universality class of D = 3 and N = 2 [124].
This universality class is of peculiar interest because the D-dimensional Bose-
Hubbard model is a member of the universality class of the (D+1)-dimensional
xy-model [60, 61].

By decreasing the temperature helium shows a second-order phase transi-
tion from so-called He-I to He-II at the λ-point. This point marks the critical
pressure-dependent transition temperature Tλ ≈ 2.17 K. Whereas He-I is just
liquid helium without unusual properties, He-II is a superfluid. Characteristic
features of this state are a very large thermal conductivity [125, 126] as well
as a very small viscosity. The viscosity can be explained with the two-fluid
model [68, 127]. This model states, that the density ρ = ρs + ρn of He-II
is given by one component called the superfluid density ρs and one compo-
nent called the normal density ρn. Whereas the normal component acts as
a classical liquid, the superfluid component has zero viscosity, zero entropy,
and an infinite thermal conductivity. This can be observed conclusively in the
Hess-Fairbank effect [128]. If one has a rotating container filled with liquid
He-I at a temperature T > Tλ, the angular momentum of He-I is Lcl = Iclω,
where Icl is the classical moment if inertia. Now if one cools down the system
while the angular velocity is less than a critical angular velocity, the superfluid
fraction will not contribute to the angular momentum. With the normal frac-
tion fn(T ) = ρn(T )/ρ the non-classical angular momentum is then given by
L(T ) = fn(T )Iclω.

The superfluid density is closely related to the condensate density ρc which
is defined as that part of the system which is Bose-Einstein condensed. The
superfluid density is proportional to the condensate density but up to date it
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(a) Specific heat near the λ-point (b) Superfluid density for T < Tλ

Figure 2.6: (a) Specific heat of liquid helium measured during a zero-gravity
experiment [129]. The dots are the measured data and the line is a fit according
to (2.40) with a critical exponent α = −0.01264. (b) The superfluid density
of 4He determined by a measurement of the second sound leading to a critical
exponent υ = 0.674 [130].

is not quite clear how they are connected exactly. But it seems clear that in
the limit T → 0 one has ρs → ρ and simultaneously ρc/ρ ≈ 0.1 [131]. It also
follows from the Josephson relation (2.39) that ρs > ρc must hold.

Furthermore the specific heat as a function of the temperature has the epony-
mous shape of the Greek letter λ as depicted in Fig. 2.6(a). The points are
measured data [129] from a microgravity experiment [132] and the line is a fit
with the function

cp =





A−

α
t−α

(
1 + a−

c t
∆ + b−

c t
2∆
)

+B , T < Tλ
A+

α
|t|−α +B , T > Tλ

(2.40)

and t = 1 − T/Tλ. The most important quantities are the universal amplitude
ratio A+/A− = 1.05251 and the critical exponent α = −0.01264. This fit
function is a truncated version of the theoretically predicted specific heat [133]

cp =
A±

α
|t|−α

(
1 + a±

c |t|∆ + b±
c |t|2∆ + . . .

)
+B . (2.41)

One of the first measurements of the superfluid density ρs is depicted in
Fig. 2.6(b). There the superfluid fraction fs = ρs/ρ is plotted versus the
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(a) Condensate density near the λ-point (b) Correlation length

Figure 2.7: (a) Condensate density determined experimentally by neutron scat-
tering measurements (dotted lines) and theoretically with Monte-Carlo simula-
tions (points) [134]. (b) Correlation length of a Bose-Einstein condensed sample
of 87Rb [135].

reduced temperature ǫ = 1 − T/Tλ on logarithmic scales. This experiment is
based on the measurement of the second sound c2, which is connected to the
superfluid and normal density via

c2
2 ∝ ρs

ρncp
, (2.42)

and leads to the critical exponent υ = 0.674 ± 0.001 of the superfluid den-
sity [130].

The experimental determination of the critical exponent of the condensate
density of He-II is pending. Even the challenge of an unambiguous identi-
fication of a condensate in liquid 4He and an accurate determination of the
condensate fraction fc is not completed. Reasons for this are that liquid 4He
is a strongly interacting fluid and the condensate fraction is small. However
in Fig. 2.7(a) experimental as well as theoretical results are shown for the
condensate fraction denoted here as n0 [134]. The points refer to results of
Monte-Carlo simulations and the dotted lines to experimental data of neutron
scattering experiments ([134] and references therein). The condensate fraction
at T = 0 K lies between 7% and 10%. For T > Tλ the condensate fraction is
zero according to Ref. [134] which emphasizes the link between the condensate
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and the superfluid fraction.
Another remarkable experiment determined the critical exponent of the cor-

relation length of a Bose-Einstein condensed sample of 87Rb [135]. The 2-point
correlation function (2.25) was determined by the measurement of the visi-
bility of the interference pattern of two atomic beams [136]. The correlation
length is depicted in Fig. 2.7(b). Only the correlation length for temperatures
T > Tc was measured. It is clearly visible how the correlation length diverges
at the critical temperature Tc. The phase transition of Bose-Einstein conden-
sation should also be in the same universality class as the xy-model and the
λ-transition of He-II with N = 2. But in this case the atoms were located in
a trap so it was neither theoretically nor experimentally clear which value the
critical exponent should attain. However the measured critical exponent of the
correlation length is ν = 0.67 ± 0.13, which agrees with the theoretical result
of the φ4-theory in Tab. 2.4 quite well.

Great prospects for the measurement of critical exponents offer Bose-Einstein
condensates and ultracold atoms in optical lattices [62, 137]. In these experi-
ments a Bose-Einstein condensate or a gas of ultracold atoms interact with a
light-induced periodic potential leading to the interaction potential (1.7), which
acts as the optical lattice. These systems are free of impurities and one has full
control over various parameters such as the interaction strength. With such
a controllable system it is possible to realize different models experimentally,
such as the Bose-Hubbard model with its superfluid-to-Mott insulator quantum
phase transition [6]. The opportunity to address and manipulate single sites
of the lattice [138–141], which has emerged only recently, can be used, e.g., to
directly measure correlation functions [142].
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In physics one has often models which cannot be solved analytically. This
means one has to use either approximations or perturbation theory. When us-
ing approximations there is always the danger of ignoring important physical
features so that many problems do not allow to be treated with approxima-
tions. But on the other hand perturbational methods cannot always be used
and the computational effort is often immense so that one is usually restricted
to calculations up to the second order. Several approaches have been devel-
oped over the last hundred years as, e.g., the Rayleigh-Schrödinger [143] or
Brillouin-Wigner perturbation theory [144]. In the first section of this chapter
another formulation, which is called Kato’s perturbation theory [145], will be
introduced. It has the major advantage that this theory allows one to formu-
late the contributions to every order in a closed form, that means one needs no
information about the preceding orders. In the second section this perturba-
tion theory is applied to the Bose-Hubbard model. This leads to a tremendous
speed-up of the calculations so that calculations up to the 10th order can be
done on an average PC. It will be shown how this theory can be adapted to
the treatment of the Bose-Hubbard model and how it can be implemented
numerically by a diagrammatic approach.

3.1 Kato’s perturbation theory

Starting point of the perturbation theory by Kato is the resolvent of an operator
H which is defined as

R(ℓ) = (ℓ−H)−1 := (ℓI −H)−1 (3.1)

with the identity operator I. All ℓ ∈ C are allowed for which the resolvent
exists, i.e., for which (ℓI − H) is invertible. They define the resolvent set
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ρ(R) and the spectrum σ(H) = C/ρ(R) of an operator H. Because H is from
now on the linear operator of a quantum mechanical system, the spectrum
consists of all eigenvalues. In the following it is assumed that all operators
are well-behaved in the sense that no pathological cases have to be considered.
Ref. [146] presents a more precise definition of the operators treated here.

We assume that the spectrum of H is a point spectrum. That means this
spectrum consists of discrete eigenvalues σ(H) = {λi, i ∈ N}. The Hamilto-
nian can then be written as

H =
∑

i

λiPi , (3.2)

with the projection operator Pi on the eigenspace of the corresponding eigen-
value λi. These projection operators fulfill the properties

PiPj = δijPi , (3.3)

which means that they are idempotent and orthogonal, as well as the com-
pleteness relation ∑

i

Pi = I . (3.4)

The resolvent can then be spectrally decomposed into

R(ℓ) =
∑

i

(ℓ− λi)
−1Pi . (3.5)

If one applies Cauchy’s integral formula to this equation one gets

1

2πi

∮

C
dℓ R(ℓ) =

1

2πi

∮

C
dℓ

∑

i

(ℓ− λi)
−1Pi =

∑

C

Pi , (3.6)

with a sum over all projection operators with eigenvalues λi lying inside the
closed curve C in the complex plane.

Now a perturbed operator

Hx = H0 + xV (3.7)

is considered with a perturbation V , which is linearly coupled to the unper-
turbed part H0 with a coupling strength x ≪ 1. The eigenvalues of the un-
perturbed operator H0 are denoted here as λi. Without loss of generality it
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is assumed that the eigenvalue λi is not degenerate and, therefore, has the
multiplicity one. For the resolvent Rx(ℓ) of Hx one has

Px =
1

2πi

∮

C
dℓ Rx(ℓ) (3.8)

on the supposition of a regular perturbation, meaning that the projection op-
erator on the eigenspace of the eigenvalues λx of Hx fulfills the condition

Px −−−−→
limx→0

P0 . (3.9)

Here it is assumed that the curve C encircles both the perturbed eigenvalue λx
and the unperturbed eigenvalue λ0 but no other eigenvalues.

Furthermore, for the resolvent one finds

Rx(ℓ) = (ℓ−Hx)
−1 = (ℓ−H0 − xV )−1

=

(
[1 − xV ·R0(ℓ)]

1

R0(ℓ)

)−1

= R0(ℓ)
∞∑

n=0

[V ·R0(ℓ)]
n · xn ,

(3.10)

where in the last step [1 − xV ·R0(ℓ)]
−1 was expanded into a Taylor series

about x = 0. Inserting this into (3.8) one gets the expansion

Px =
1

2πi

∮

C
dℓ R0(ℓ) +

1

2πi

∞∑

n=1

∮

C
dℓ R0(ℓ) [V ·R0(ℓ)]

n · xn

= P0 +
∞∑

n=1

A(n) · xn
(3.11)

for the projection operator on the eigenspaces of the full Hamiltonian Hx as a
Taylor expansion about x = 0 with coefficients

A(n) =
1

2πi

∮

C
dℓ R0(ℓ) [V ·R0(ℓ)]

n . (3.12)

At this point the reduced resolvent

S0(ℓ) =
∑

i6=0

(ℓ− λi)
−1Pi (3.13)
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is introduced, given by the sum over all projection operators Pi with eigenvalues
λi 6= λ0. With this the unperturbed resolvent can be split into

R0(ℓ) = (ℓ− λ0)
−1P0 + S0(ℓ) . (3.14)

The reduced resolvent S0(ℓ) is regular for ℓ = λ0 and the derivatives with
respect to ℓ fulfill

S
(k)
0 (ℓ) :=

dk

dℓk
S0(ℓ) =

dk

dℓk
∑

i6=0

(ℓ− λi)
−1Pi

= (−1)k k!
∑

i6=0

(ℓ− λi)
−(k+1)Pi = (−1)k k! S0(ℓ)

k+1 ,
(3.15)

where the last identity holds because of the orthogonality of the projection
operators in (3.3). After an expansion about ℓ = λ0 one gets together with
(3.15)

S0(ℓ) =
∞∑

k=0

1

k!
S

(k)
0 (λ0) · (ℓ− λ0)

k

=
∞∑

k=0

(−1)k S0(λ0)
k+1 · (ℓ− λ0)

k .

(3.16)

With (3.16) the full unperturbed resolvent (3.14) can be written as

R0(ℓ) = (ℓ− λ0)
−1P0 +

∞∑

k=0

(−1)k S0(λ0)
k+1 · (ℓ− λ0)

k

=
∞∑

k=−1

(−1)k Sk+1 · (ℓ− λ0)
k .

(3.17)

Here, the short-hand notation

S0 := −P0 , (3.18a)

Sk := S0(λ0)
k, k > 0 (3.18b)

was introduced. Equation (3.17) corresponds to the Laurent series of R0(ℓ).
That means that for the integrand R0(ℓ) [V ·R0(ℓ)]

n of (3.12) there also exists
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a Laurent series, whose principal part consists only of that part which is pro-
portional to (ℓ−λ0)−1. Because of the integral equation (3.12) and the residue
theorem, A(n) is identical with the residue of the integrand. For the evaluation
of the integral in (3.11) only those summands in the sum

∑∞
n=1 R0(ℓ) [V ·R0(ℓ)]

n

have to be considered for which the factors (ℓ − λ0)k multiply to (ℓ − λ0)−1.
Introducing new exponents αk (k = 1, . . . , n+1) and numerating the occurring
factors according to

[
(−1)α1−1Sα1(ℓ− λ0)

α1−1
]
V . . . V

[
(−1)αn+1−1Sαn+1(ℓ− λ0)

αn+1−1
]
, (3.19)

one gets therefore the condition

(α1 − 1) + . . . + (αn+1 − 1) = −(n+ 1) +
n+1∑

k=1

αk
!

= −1 . (3.20)

It is exactly fulfilled if
n+1∑

k=1

αk = n (3.21)

holds for the respective exponents αk. Because of this condition the prefac-
tors (−1)αi−1 of the particular factors in (3.19) result in a prefactor −1 and,
therefore, (3.12) becomes

A(n) = −
∑

α1+...+αn+1=n

Sα1V Sα2V . . . V Sαn+1 . (3.22)

Thus, the projection operator is finally given by

Px = P0 −
∞∑

n=1

xn
∑

α1+...+αn+1=n

Sα1V Sα2V . . . V Sαn+1 . (3.23)

The derivation of a scheme for the perturbative calculation of the eigenvalues
proceeds in a similar way. With the identity HxRx(ℓ) = −I + ℓRx(ℓ) and (3.8)
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one has

(Hx − λ0)Px =
1

2πi

∮

C
dℓ (Hx − λ0) ·Rx(ℓ)

=
1

2πi

∮

C
dℓ (ℓ− λ0) ·Rx(ℓ)

=
1

2πi

∮

C
dℓ (ℓ− λ0) ·R0(ℓ)

∞∑

n=0

[V ·R0(ℓ)]
n · xn

=
∞∑

n=1

B(n) · xn ,

(3.24)

where the expression (3.10) was used in the third row. The summand for n = 0
vanishes and only the analytic integrand P0 remains. For the calculation of the
integral

B(n) =
1

2πi

∮

C
dℓ (ℓ− λ0) ·R0(ℓ) [V ·R0(ℓ)]

n (3.25)

all arguments leading to the condition (3.21) in the calculation of the integral
(3.12) can also be used here. The only difference is that in the integrand one
more factor (ℓ− λ0) exists so that the condition for the exponents reads here

1 + (α1 − 1) + . . . + (αn+1 − 1) = −n+
n+1∑

k=1

αk
!

= −1 , (3.26)

leading to
n+1∑

k=1

αk = n− 1 . (3.27)

Since the requirement on the exponents αk differs from that for the projection
operator, here the prefactor, which stems from the particular factors (−1)αk−1

in (3.19), is one.

For the following it is useful to define the set

Λn :=

{
(α1, . . . , αn+1) |

n+1∑

k=1

αk = n− 1

}
, (3.28)

containing all integers (α1, . . . , αn+1) which obey the condition (3.27).
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After the application of the trace operator on (3.24) the desired eigenvalue
of the full Hamiltonian Hx is given by

λx = λ0 +
∞∑

n=1

xn · tr
{
B(n)

}
·

= λ0 +
∞∑

n=1

xn
∑

Λn

tr {Sα1V Sα2V . . . V Sαn+1} .

(3.29)

For the evaluation of the matrix elements n + 1 exponents αi must be de-
termined. This is a purely combinatorial problem and can be solved irrespec-
tive of the concrete form of the perturbation V . So only the combinations
(α1, . . . , αn+1) are of interest for this problem. The determination of all combi-
nations can be done numerically up to very high orders. For instance up to the
20th order the computation time on a 2GHz PC stays under a minute [147, 148].

3.2 Properties and applications

As already mentioned in the introduction of this chapter, one can adapt Kato’s
perturbation theory to the Bose-Hubbard model in order to speed up the cal-
culations provided one is given a unique ground state |m〉. Furthermore, the
calculation of correlation functions with this perturbation theory will be ex-
plained. Finally, the implementation of Kato’s perturbation theory is shown
by using the example of the calculation of the ground-state energy.

3.2.1 Standard form of matrix elements

The operators of (3.18) are superpositions of weighted projection operators and
fulfill, due to (3.3) and (3.4), the useful relations

S0S0 = −S0 , (3.30a)

S0Sα = SαS0 = 0 for α > 0 , (3.30b)

SαSβ = Sα+β for α, β > 0 . (3.30c)

From now on they are called chain operators because they connect the single
perturbation operators to a chain as can be seen in (3.29).
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The following considerations allow one to convert the seemingly complicated
matrix elements tr {Sα1V Sα2V . . . V Sαn+1}, which are necessary for the cal-
culation of the eigenvalues, to the so-called standard form which enables a
significantly simpler evaluation.

If one of the conditions

α1 = 0 ∧ αn+1 6= 0 or α1 6= 0 ∧ αn+1 = 0 (3.31)

holds for the first or last exponent in (3.29) the corresponding matrix element
vanishes, since then orthogonal states appear on the left and right side because
of the trace operator and cancel each other according to (3.30b). Therefore,
only matrix elements with α1 6= 0 6= αn+1 have to be considered.

Furthermore, condition (3.27) requires that at least two exponents have to
be zero since n + 1 non-negative integers must be summed up to n − 1. That
means a matrix elements consists always of at least two chain operators S0.

In addition the trace is invariant under cyclic permutations, i.e.,

tr (ABC) = tr (CAB) = tr (BCA) . (3.32)

If one combines the two latter properties, the matrix elements can always be
turned into

tr
{
Sα1V . . . Sαi−1V S0V Sαi+1 . . . V Sαn+1

}

(3.30c)
= tr

{
S0V Sαi+1 . . . V Sα1+αn+1V . . . Sαi−1V

}

(3.30a)
= − tr

{
S0S0V Sαi+1 . . . V Sα1+αn+1V . . . Sαi−1V

}

= − tr
{
S0V Sαi+1 . . . V Sα1+αn+1V . . . Sαi−1V S0

}

(3.33)

with S0 at the first and last position. Therefore, assuming that the projection
operator P0 is given by the projection on the unique ground state |m〉 with the
corresponding chain operator

S0 = −P0 = − |m〉 〈m| , (3.34)

all matrix elements can always be turned into the standard form

± 〈m| V Sα1V Sα2V . . . V Sαn−1V |m〉 (3.35)
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independent of their explicit structure.

Matrix elements already in standard form can be further summed up. A
matrix element in standard form with one or more chain operators S0 can be
split up in so-called submatrix elements:

= 〈m| V Sα1 . . . Sαi−1V S0V Sαi+1 . . . Sαn−1V |m〉
(3.18a)

= − 〈m| V Sα1 . . . Sαi−1V |m〉 〈m| V Sαi+1 . . . Sαn−1V |m〉

= − 〈m| V Sαi+1 . . . Sαn−1V |m〉 〈m| V Sα1 . . . Sαi−1V |m〉

= 〈m| V Sαi+1 . . . Sαn−1V S0V Sα1 . . . Sαi−1V |m〉 .

(3.36)

If the submatrix elements of different standard forms are identical, which may
be achieved in some cases only after cyclic permutation, then also the standard
forms are identical. They can be summed up, and yield a corresponding weight
factor.

So far the considerations were independent of the concrete form of the pertur-
bation V . But in some cases the evaluation of matrix elements can be further
simplified if the explicit structure of the perturbation operator is considered.
E.g., in many cases the first-order contribution

〈m| V |m〉 = 0 (3.37)

vanishes. This holds often for the dipole operator d = −er and the interaction
operator V = −d·E , respectively, of a charge in an electromagnetic field, which
changes the parity of the wave function. Another example is the tunneling op-
erator V = b†

ibj of the Bose-Hubbard model, if the ground state |m〉 is the Mott
insulator (1.8). In these cases matrix elements with the factors . . . S0V S0 . . .

can be neglected.

3.2.2 Calculation of correlation functions

Up to now only the calculation of the expectation value of the energy of a
Hamiltonian has been addressed. Beyond that it is also necessary to calculate
expectation values of other operators as, for instance, correlation functions.
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Starting with the perturbative calculation of energy eigenvalues, there also
exists a general approach to the calculation of these [149].

If one wants to calculate the expectation value of an operator H2 of a system
described by a Hamiltonian Hx = H0 + xH1, the first step is to couple the
operator to this Hamiltonian. Should H2 not be Hermitian, one could choose
the superpositions H(+)

2 = 1
2
(H2 +H†

2) or H(−)
2 = 1

2i
(H2 −H†

2).

Now the energy of the new Hamiltonian

Hx,y = H0 + xH1 + yH2 (3.38)

can be calculated for the perturbation V = xH1 + yH2 with the formalism of
Sec. 3.1. For the eigenstate |m〉 of the unperturbed part H0 one gets according
to (3.29)

λx,y = λ0 +
∞∑

n=1

∑

Λn

tr {Sα1V Sα2V . . . V Sαn+1}

= λ0 +
∞∑

n=1

n∑

ν=0

xνyn−νD(ν,n−ν) .

(3.39)

Here D(ν,n−ν) is the sum over all traces which contain ν operators H1 and
n− ν operators H2 fulfilling the condition (α1, . . . αn+1) ∈ Λn. After using the
Hellmann-Feynman theorem [150]

d

dy
〈H〉 = 〈 d

dy
H〉 , (3.40)

where the left-hand side refers to the eigenvalue of (3.39) and the right-hand
side to the extended Hamiltonian of (3.38), one gets

〈H2〉 = lim
y→0

∞∑

n=1

n∑

ν=0

(n− ν)xνyn−ν−1D(ν,n−ν) . (3.41)

In the limit of vanishing coupling y → 0 only summands with n − ν − 1 = 0
contribute, with n = ν + 1 being the order of the perturbative calculation.
That means the operator H1 occurs (n− 1) times and the operator H2 occurs
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(n− ν = 1) times. Therefore, the sum reduces to

〈H2〉 =
∞∑

ν=0

xνD(ν,1)

= tr
{
S0H2S

0
}

+ x tr
{
S0H1S

1H2S
0 + S0H2S

1H1S
0
}

± O(x2)

= 〈m| H2 |m〉
+
[
〈m| H1S

1H2 |m〉 + 〈m| H2S
1H1 |m〉

]
x± O(x2) .

(3.42)

3.2.3 Energy eigenvalues in third-order perturbation theory

Now Kato’s perturbation theory will be demonstrated by using the example of
the perturbative calculation of the ground-state energy λx in third order of a
Hamiltonian H = H0 +xV in the state |m〉 with the unperturbed energy given
by

H0 |m〉 = λm |m〉 . (3.43)

The zeroth order delivers trivially the eigenvalue λ(0)
m = λm of H0.

According to (3.27), in first order the exponents must fulfill the condition
α1 + α2 = 0 which is only possible for (α1, α2) = (0, 0). Accordingly the
perturbational contribution in this order is

λ(1)
m = tr

{
S0V S0

}
= 〈m| V |m〉 . (3.44)

In second order α1 + α2 + α3 = 1 must hold, leading to the set

Λ2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (3.45)

of 3-tuples. The corresponding matrix elements of the first and last term vanish
according to (3.31). Only the diagonal matrix elements

λ(2)
m = tr

{
S0V S1V S0

}
= 〈m| V S1V |m〉 =

∑

i6=m

〈m| V |i〉 〈i| V |m〉
λm − λi

(3.46)

are left over.
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In third order already ten combinations fulfilling α1 +α2 +α3 +α4 = 2 exist.
Excluding non-contributing matrix elements as dictated by (3.31), one gets the
set

Λ3 = {(1, 0, 0, 1), (0, 1, 1, 0), (0, 2, 0, 0), (0, 0, 2, 0)} (3.47)

of 4-tuples. The first term can be rearranged to read

(1, 0, 0, 1) =̂ tr
{
S1V S0V S0V S1

}

= tr
{
S0V S0V S1S1V

}
= tr

{
S0V S0V S2V

}

= tr
{
S0V S2V S0V

}
= − tr

{
S0V S2V S0V S0

}

=̂ − (0, 2, 0, 0) .

(3.48)

Similarly the term (0, 0, 2, 0) can be rearranged to (0, 2, 0, 0) so that after sum-
marizing the three resulting terms, (0, 2, 0, 0) has the weight one. The resulting
set contains therefore the combinations {(0, 2, 0, 0), (0, 1, 1, 0)}. This leads to
the third-order energy correction

λ(3)
m = tr

{
S0V S2V S0V S0

}
+ tr

{
S0V S1V S1V S0

}

= −
∑

i6=m

〈m| V |i〉 〈i| V |m〉 〈m| V |m〉
(λm − λi)2

+
∑

i,j 6=m

〈m| V |i〉 〈i| V |j〉 〈j| V |m〉
(λm − λi)(λm − λj)

.

(3.49)

In total one gets

λx = 〈m| H0 |m〉 + 〈m| V |m〉 · x+
∑

i6=m

〈m| V |i〉 〈i| V |m〉
λm − λi

· x2

+


 ∑

i,j 6=m

〈m| V |i〉 〈i| V |j〉 〈j| V |m〉
(λm − λi)(λm − λj)

−
∑

i6=m

〈m| V |i〉 〈i| V |m〉 〈m| V |m〉
(λm − λi)2


 · x3 + O(x4) ,

(3.50)

which is equivalent to the well-known textbook result of Rayleigh-Schrödinger
perturbation theory [143].



3.2 Properties and applications 55

3.2.4 Process-chain approach

In this section the diagrammatical implementation of Kato’s perturbation the-
ory within a many-body context will be explained [149]. Since the focus of
this thesis lies on the Bose-Hubbard model, this model is also used as a testing
ground for the implementation of this perturbation theory. For reasons of sim-
plicity all examples given in the following are calculated on a one-dimensional
lattice with z = 2 nearest neighbors. All calculations can be easily adapted to
other lattice geometries by considering the respective diagrams.

The process-chain approach can also be applied to other models, as it was
recently done in Ref. [151] in order to calculate the ground-state energy of the
Jaynes-Cummings lattice model.

The homogeneous Bose-Hubbard Hamiltonian has been introduced in (1.2).
For reasons of numerical calculations the Hamiltonian is used in its dimension-
less form

HBH =
1

2

∑

i

ni (ni − 1) − µ/U
∑

i

ni − J/U
∑

〈i,j〉

b†
ibj . (3.51)

Basically is consists of two parts. The first part

H0 =
1

2

∑

i

ni (ni − 1) − µ/U
∑

i

ni (3.52)

is the on-site interaction together with the chemical potential. This part of
the Hamiltonian is diagonal in the Fock space of site-occupation states. The
second part is the tunneling term

V = −J/U
∑

〈i,j〉

b†
ibj , (3.53)

which is treated as the perturbation. The index 〈i, j〉 indicates that the tun-
neling is restricted to neighboring sites.

The ground state

|m〉 = |ΨMI〉 =
M∏

i=1

(
b†
i

)g
√
g!

|0〉 = |g〉 . . . |g〉 , (3.54)



56 3 Perturbation theory

from which the perturbative calculations start, is given by the ground state
(1.8) of the Mott insulator and has an integer number g = N/M of particles
on every site. Here N denotes the number of particles and M is the number of
lattice sites. In this basis the ground-state energy is given by

λm := λ(0)
m = 〈m| H0 |m〉 =

M

2
g(g − 1) −M

µ

U
g . (3.55)

Central point of the diagrammatical representation of Kato’s perturbation
theory are the matrix elements in standard form

λ(n) =
∑

κ{αℓ} 〈m| V Sα1V Sα2V . . . V Sαn−1V |m〉 (3.56)

as defined in (3.35). Here λ(n) denotes the n-th order energy correction and
κ{αℓ} is the sign belonging to a specific (n − 1)-tuple {αℓ}, with the sum ex-
tending over all these tuples. The chain operator S0 = − |m〉 〈m| is defined by
the ground state mentioned above and all other chain operators

Sα =
∑

i6=m

|i〉〈i|
(λm − λi)

α (3.57)

are therefore defined by the intermediate states |i〉 which form a complete basis
of orthogonal Fock states with N particles.

Every summand of (3.56) can now be interpreted as a chain of processes V
leading from the ground state |m〉 over various intermediate states given by Sα

back to the ground state [152].

Formally one has to calculate the energy starting from every lattice site.
But since the homogeneous Bose-Hubbard Hamiltonian (3.51) is isotropic and
translationally invariant, it is sufficient to calculate the contribution to the
energy of one lattice site. The contribution of the whole lattice is then given
by a multiplication with the number M of lattice sites.

To visualize the diagrammatic perturbation theory, the perturbative calcu-
lation of energy corrections in a one-dimensional lattice will be presented. The
number of nearest neighbors for D = 1 is given by z = 2D = 2 so that for
every tunneling process b†

2b1 with lattice sites 1 and 2 being nearest neighbors
two directions are possible. Starting with the first order, the corresponding
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1.

(a) 2nd-order diagram

3.

2.

(b) 4th-order diagrams

Figure 3.1: All three 2nd- and 4th-order diagrams contributing to the ground-
state energy of the Bose-Hubbard model on a one-dimensional lattice. An arrow
corresponds to a hopping process, a circle depicts a lattice site. All these dia-
grams are closed, i.e., in nth-order a particle would tunnel back to its starting
site after n tunneling processes. Odd-order diagrams do not contribute to the
ground-state energy since these are never closed.

contribution is given by (3.44). So one particle has to tunnel from site 1 to site
2 leading to an intermediate state

|i〉 =
√
g(g + 1)|g〉 . . . |g〉 |g − 1〉︸ ︷︷ ︸

1

|g + 1〉︸ ︷︷ ︸
2

|g〉 . . . |g〉 (3.58)

with the prefactor coming from the creation and annihilation operators, re-
spectively. Since 〈m|i〉 = 0 the first-order energy contribution vanishes.

At this point it is beneficial to introduce a clear notation of diagrams. Since
all lattice sites of the Bose-Hubbard Hamiltonian (3.51) are equivalent, it is
not important which specific sites of the lattice are involved in the tunneling
processes. Instead every diagram is uniquely defined by the way it connects the
individual sites. For example the diagram, which is used for the calculation
of the first-order energy correction, can be represented by the notation {1

2}.
Here a particle tunnels from site 1 to site 2. In general an nth-order diagram
consisting of tunneling processes

{
b†
i1bj1 b

†
i2bj2 . . . b†

inbjn
}

can be represented by{
j1
i1

j2
i2 . . . jnin

}
.

The second order is given by (3.46) so that two tunneling processes have
to be considered. For the same reasons stated above, two tunneling processes
leading away from the starting site give rise to a state which is orthogonal to
the ground state |m〉. So only two tunneling processes leading back and forth
can contribute. This is only fulfilled by the diagram {1

2,
2
1}. Since there are two
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possibilities to realize this diagram, given by tunneling first to the left or right
nearest neighbor, this diagram must be provided with a weight factor 2. This
diagram is shown in Fig. 3.1(a). The arrows symbolize the tunneling processes
and the circles the lattice sites. Fig. 3.1(b) shows the respective diagrams of
the 4th-order. Diagram number two is given by {1

2
2
3

3
2

2
1} and diagram number

three by {1
2

2
1

1
2

2
1}. Since odd orders always vanish for the same reason the first

order vanishes, Fig. 3.1 shows all diagrams necessary to calculate the energy
up to the 4th order.

As already mentioned it is possible to calculate the contribution of all lattice
sites by calculating the contribution of one lattice site. The end result is then
given after the multiplication with M . The easiest way to calculate the contri-
bution of one site is to find all possible diagrams and to permute the sequence
of tunneling processes, e.g. one has to calculate the contribution of {1

2
2
1} and

{2
1

1
2}. But this leads to a multiple counting since after the multiplication with

M the sequence of tunneling processes {1
2

2
1} counts as a full contribution of

both the sites 1 and 2, although both participate only half in this sequence. In
order to avoid this, an additional correction factor must be assigned to every
diagram. For diagrams necessary to calculate the energy this correction factor
is the number of sites involved in the respective diagram. This is characteristic
for diagrams which are closed, i.e., such diagrams which lead a particle back
to the site where it started.

Summarizing these remarks, with the intermediate states

|i1〉 =
√
g(g + 1) |g〉 . . . |g〉|g + 1〉|g − 1〉|g〉 . . . |g〉 ,

|i2〉 =
√
g(g + 1) |g〉 . . . |g〉|g − 1〉|g + 1〉|g〉 . . . |g〉

(3.59)

the second-order contribution is given by

λ(2)
m = M(J/U)2 2︸︷︷︸

weight factor

0.5︸︷︷︸
correction factor

·

〈m| b†

jbj−1 |i1〉 〈i1| b†
j−1bj |m〉

λm − λi1
+

〈m| b†
j−1bj |i2〉 〈i2| b†

jbj−1 |m〉
λm − λi2




= −2Mg(g + 1)(J/U)2 .

(3.60)

It does not depend on the chemical potential µ since for the energy differences
one has λm − λi1 = λm − λi2 = −1.
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diagram weight factor

{1
2

2
1} 2D

{1
2

2
3

3
2

2
1} 2D(2D − 1) +D(2D − 1)

{1
2

2
1

1
2

2
1} 2D

{1
2

2
3

3
4

4
1} 2D(2D − 2)

{1
2

2
3

3
4

4
3

3
2

2
1} 4D(2D − 1)2

{1
2

2
1

1
2

2
1

1
2

2
1} 2D

{1
2

2
3

3
4

4
1

1
5

5
1} 8D(2D − 2)2 + 2D(2D − 2)(2D − 3) + 2D(2D − 2)

{1
2

2
3

3
2

2
3

3
4

4
1} 8D(2D − 2)

{1
2

2
3

3
4

4
5

5
6

6
1} 6D(2D − 2) + 8D(2D − 2)(2D − 4)

{1
2

2
3

3
2

2
4

4
2

2
1} 4

3
D(2D − 1)(2D − 2)

{1
2

2
3

3
2

2
3

3
2

2
1} 6D(2D − 1)

Table 3.1: Listed are all diagrams needed for the calculation of the ground-state
energy of the Bose-Hubbard model up to the 6th order. The weight factors are
valid for lattice geometries with 2D nearest neighbors, e.g., the square lattice
for D = 2 or the cubic lattice for D = 3.

The next non-vanishing order is the 4th order. The two diagrams are shown
in Fig. 3.1(b). The calculation of their contribution is by far more complex
than that of the second-order diagram. The diagram number two, {1

2
2
3

3
2

2
1} in

Fig. 3.1, consists of four different tunneling processes so that one has 4! = 24
permutations to consider. Diagram number three {1

2
2
1

1
2

2
1} consists of the two

different tunneling processes 1
2 and 2

1 which gives 4!
2!2!

= 6 permutations. If
one considers lattices with a higher dimensionality, only the complexity of the
diagrams changes. Tab. 3.1 shows all diagrams up to the 6th order including
their weight factors. Some diagrams with weight zero like the fourth diagram
do not exist for a one-dimensional lattice.

According to the linked-cluster theorem [153] it is sufficient to consider only
process-chains which consist of one connected piece. That means every lattice
site participating in the considered process has to be connected to all others
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by a sequence of chain operators.
For the one-, two-, and three-dimensional square lattice the results of the per-

turbational calculation of the ground-state energy of the Bose-Hubbard model
can be found in Ref. [154]. For the one-dimensional lattice these results agree
accurately with the data of a linked-cluster expansion [155].

For this kind of numerical evaluation the number of permutations is the
most severe limitation. Up to now the numerical implementation allows us to
perform calculations up to the 12th order with a maximum of 12! permutations.

The diagrammatics introduced in this section can be ideally implemented
numerically as is explained briefly in Ref. [156]. This formalism can also be
easily generalized and used for the diagrammatic calculation of, e.g., correlation
functions [149, 154].



4 Non-perturbative methods

In this chapter some methods are introduced to extend the perturbative results
of the process-chain approach into a non-perturbative regime. These methods
allow one to obtain results which are not directly accessible through the finite
series of the perturbative calculations. This is necessary since the process-chain
approach itself relies on the ground state of the Mott insulator so that the su-
perfluid phase cannot be entered with this approach alone. Moreover some
perturbative results apparently show a mean-field behavior which is quantita-
tively wrong for the critical exponents. Thus, a special treatment is required,
in order to obtain results which are beyond mean field.

In the first section the method of the effective potential [157] is detailed
briefly. This method allows one to enter the superfluid phase although all per-
turbational calculations start in the Mott-insulator state as stated in Sec. 3.2.4.
The key point of this method is the implementation of a symmetry-breaking
term and the Legendre transformation of the free energy of the Bose-Hubbard
Hamiltonian to the effective potential which depends on the order parameter
of the superfluid-to-Mott insulator phase transition. This method involves a
resummation of the perturbative coefficients of the free energy, which are ac-
cessible as finite series. This resummation has the form of a Taylor expansion
and transforms the perturbative data of the process-chain approach to beyond-
perturbative results.

In the second section the variational perturbation theory of Hagen Klein-
ert [99, 100] is explained. It allows one to transform the divergent weak-
coupling series of the process-chain approach to a convergent strong-coupling
series which provides a direct access to the critical exponents of a considered
quantity. Thus, variational perturbation theory basically acts as a resumma-
tion method which permits access to beyond-mean field results.
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4.1 Method of effective action

The Bose-Hubbard Hamiltonian (3.51) possesses a U(2) = O(1) symmetry
which basically means that the Hamiltonian is invariant under a phase trans-
formation bi → eiϕbi, b

†
i → e−iϕb†

i of the annihilation and creation operators,
respectively. This also means that the Hamiltonian conserves the number of
particles N in the lattice. On the other hand the phase transition from the
Mott insulator to the superfluid explained in the introduction in Sec. 1.4 can
only be observed if this symmetry is broken. This breaking of the symmetry
occurs spontaneously and is modeled by introducing external source fields η, η∗

as explained in Sec. 2.1. The natural choice for implementing the symmetry-
breaking terms is the creation and annihilation operators, respectively, since
they are not invariant under the transformation mentioned above on their own.
So the symmetry-breaking terms read ηb† and the complex conjugated η∗b.
They are coupled to the dimensionless Bose-Hubbard Hamiltonian (3.51) so
that one gets a new Hamiltonian

H̃BH = H0 + V +
∑

i

(
η b†

i + η∗bi
)
, (4.1)

where H0 represents the site-diagonal terms defined in (3.52) and V is the
tunneling term defined in (3.53). These symmetry-breaking terms are also
called source and drain terms since they create or annihilate particles, so H̃BH

does not conserve the number of particles.
The grand-canonical free energy of (4.1) at zero temperature is given by

F(J/U, µ/U, η, η∗) = 〈H̃BH〉 . (4.2)

Since it depends explicitly on the fields η and η∗, one can rewrite the free
energy in powers of them. As explained in Sec. 3.2.4 the ground state of the
perturbative calculations is the ground state of the Mott insulator as defined in
(3.54). Thus, all contributions with an odd number of source and drain terms
vanish. Because all terms of the perturbation theory in the formalism of the
process-chain approach are matrix elements in standard form like (3.35), an
odd number of source and drain terms would change the particle number of
the incoming state on the right-hand side in (3.35). So this state would meet
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a state with a different number of particles on the left-hand side. Such states
are orthogonal and, therefore, all such terms do not contribute. This leads to
a power series in |η|2 according to

F(J/U, µ/U, |η|2) = M

(
f0(J/U, µ/U) +

∞∑

i=1

c2i(J/U, µ/U)|η|2i
)

(4.3)

on a lattice with M sites.
The order parameter of this phase transition is given by

ψ =
1

M

∂F
∂η∗

= 〈bi〉 , ψ∗ =
1

M

∂F
∂η

= 〈b†
i〉 (4.4)

and describes the reaction of the system to the source and drain terms. In
the Mott-insulator state the ground state is site-diagonal and, therefore, the
order parameter is zero. In the superfluid state the particles delocalize and the
order parameter starts to increase at the critical point. The effective potential
is then given by the Legendre transform

Γ̃(J/U, µ/U, η, η∗) = F −M (η ψ∗ + η∗ψ) . (4.5)

The field η and the order parameter ψ constitute conjugated variables.
In order to expand the effective potential in powers of the order parameter,

firstly this must be done for η and η∗. The crucial point for this expansion is
up to which order the free energy of (4.3) is taken into account. Since later
both expansions up to ℓ = 2 and up to ℓ = 3 are needed, both degrees of
approximation will be discussed in this thesis.

For the following calculations we use the truncated free energy

F(J/U, µ/U, |η|2) = M
(
f0 + c2|η|2 + c4|η|4 + c6|η|6

)
(4.6)

with c2i = c2i(J/U, µ/U) and f0 = f0(J/U, µ/U). By invoking (4.4) one gets

ψ = c2η + 2c4|η|2η + 3c6|η|4η ,

ψ∗ = c2η
∗ + 2c4|η|2η∗ + 3c6|η|4η∗ .

(4.7)

These equations must be inverted and solved for η and η∗. This will be done
successively order by order. In the first order one gets

η =
ψ

c2

, η∗ =
ψ∗

c2

. (4.8)
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Inserting this into the next-order approximation

η =
ψ

c2 + 2c4|η|2 , η∗ =
ψ∗

c2 + 2c4|η|2 (4.9)

leads to

η =
ψ

c2 + 2 c4

c2
2

|ψ|2 , η∗ =
ψ∗

c2 + 2 c4

c2
2

|ψ|2 . (4.10)

This expressions must be inserted into the still more accurate approximations

η =
ψ

c2 + 2c4|η|2 + 3c6|η|4 , η∗ =
ψ∗

c2 + 2c4|η|2 + 3c6|η|4 . (4.11)

By ignoring terms with orders higher than |ψ|6 and expanding the denominator
about |ψ| = 0, the final result reads

η = ψ

[
1

c2

− 2c4

c4
2

|ψ|2 +

(
12c2

4

c7
2

− 3c6

c6
2

)
|ψ|4 + O(|ψ|6)

]
,

η∗ = ψ∗

[
1

c2

− 2c4

c4
2

|ψ|2 +

(
12c2

4

c7
2

− 3c6

c6
2

)
|ψ|4 + O(|ψ|6)

]
.

(4.12)

With this expansion of η and η∗ one is able to expand the effective action
(4.5) in powers of |ψ|2:

1

M
Γ̃(J/U, µ/U, |ψ|2) =f0 − 1

c2

|ψ|2 +
c4

c4
2

|ψ|4 +

(
c6

c6
2

− 4c2
4

c7
2

)
|ψ|6 + O(|ψ|8)

:=f0 + α2|ψ|2 + α4|ψ|4 + α6|ψ|6 + O(|ψ|8)

=f0 +
ℓ∑

i=1

(
α2i|ψ|2i

)
+ O(|ψ|2(ℓ+1)) .

(4.13)

The introduction of the coefficients αi implies a Taylor expansion, e.g., α2 is
given by the Taylor expansion of −1/c2. This expansion is equivalent to a
resummation of the underlying perturbative contributions.

As already mentioned the external field and the order parameter constitute
conjugate variables. That means they are connected via the Legendre trans-
formation and obey

1

M

∂Γ̃

∂ψ∗
= −η , 1

M

∂Γ̃

∂ψ
= −η∗ . (4.14)
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n = 3

n = 4

n = 2

(a) c2-diagrams

n = 4

n = 5

(b) c4-diagrams

n = 6

n = 7

(c) c6-diagrams

Figure 4.1: Shown are different nth-order diagrams necessary for the calcu-
lation of the coefficients c2i. Tunneling processes are represented by arrows,
a creation process by a square, and an annihilation process by a cross. Two
adjacent lattice sites are always connected by an arrow.

The original Bose-Hubbard Hamiltonian (3.51) without source and drain terms
is restored by setting η = η∗ = 0. So one has to determine the order parameter
ψ0(J/U, µ/U) actually adopted by the system in such a way that it fulfills
(4.14) for η = η∗ = 0. This corresponds exactly to the condition discussed in
Sec. 2.2.2. It implies that the effective potential has to have a trivial minimum
at ψ0 = 0 in the Mott-insulator state, which means that the effective action
and the free energy of the original Bose-Hubbard Hamiltonian are equivalent
there, and a non-trivial minimum when ψ0 is non-zero in the superfluid phase.

The parameter c2 can be interpreted as a susceptibility like (2.4) since, ac-
cording to (4.7), one has

c2 =

(
∂ψ

∂η

)

η→0

. (4.15)

According to this and according to Landau’s argument given in Sec. 2.2.2, the
phase boundary is defined by that value (J/U)pb for which

lim
(J/U)→(J/U)pb

c2(J/U, µ/U) = ∞ , (4.16)

or rather for which the coefficient α2 of the effective potential (4.13) vanishes:

α2((J/U)pb , µ/U) = 0 . (4.17)
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For each fixed value of µ/U , the coefficients c2i can be expanded into a power
series of J/U :

c2i =
n−2i∑

ν=0

γ
(ν)
2i (J/U)ν . (4.18)

In nth order of perturbation theory one has to consider i annihilation and
i creation processes, respectively, and ν = n − 2i tunneling processes for the
calculation of the coefficients γ(ν)

2i . They can be obtained from the process-chain
approach by carrying out the strategy for the calculation of the ground-state
energy of Sec. 3.2.4 with the small modification that one has two different kinds
of perturbations. This leads to a new kind of diagram as depicted in Fig. 4.1.
In these diagrams, tunneling processes are represented by arrows, a creation
process by a square, and an annihilation process by a cross. The lattice sites
are not shown since two adjacent lattice sites are always connected by an arrow.
These diagrams do not have to be closed like the energy diagrams. This leads
to a greater variety of diagrams, and a more rapid increase of the number of
diagrams with the order of perturbation theory.

Another observation is that the lowest order of the different diagrams changes
since one has a different number of creation and annihilation processes. This
is a great disadvantage for the numerical calculation because the coefficients
c2i of the free energy must all exhibit the same number of tunneling processes
in order to evaluate the effective potential. If one has six tunneling processes,
the calculation of c2 corresponds to 8th-order perturbation theory, which can
be evaluated on an average PC in a few minutes. But for c6 this already
corresponds to 12th-order perturbation theory. Currently this requires a few
weeks computation time on our “Hero”-cluster.1

Based on (4.14) and the condition η = η∗ = 0, the equations

∂Γ̃

∂ψ∗
= 0 ,

∂Γ̃

∂ψ
= 0 (4.19)

allow one to determine the condensate density ρc = |ψ0|2. Here two cases
regarding the order of the expansion of (4.3) will be taken into account.

1For the specifications of the Hero (High-End Computing Resource Oldenburg) cluster see:

http://www.fk5.uni-oldenburg.de/45729.html
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In the first case the free energy is expanded up to ℓ = 3. This means one
has to use the effective action (4.13) leading to the condition

α2 + 2α4|ψ|2 + 3α6|ψ|4 = 0 (4.20)

and finally to the condensate density

ρc,3 = |ψ0,3|2 =
1

3

−α4 +
√
α2

4 − 3α2α6

α6

. (4.21)

The second solution of the quadratic equation is unphysical as can be seen if
the coefficients α2i are known.

In the second case the free energy is expanded up to ℓ = 2. Therefore the
term proportional to |ψ|6 in (4.13) can be ignored. This leads in the same way
as described above to the condensate density

ρc,2 = |ψ0,2|2 = − α2

2α4

. (4.22)

Finally one is also able to calculate the superfluid density ρsf. The underlying
idea is the following: Let Ψ0 be the spatially constant (or at most slowly
varying) condensate wave function. A spatially varying condensate phase ϕ(x)
imposed on the wave function Ψ0(x) = eiϕ(x)|Ψ0| leads to the superfluid velocity

vs = 〈p/m〉 =
~

m
∇ϕ(x) . (4.23)

Moreover, the phase is considered to behave like ϕ(x) = θx/L̃ where L̃ is
the total length of the system. With this the superfluid velocity is given by
vs = (~/m)θ/L̃ [158]. If we now consider a lattice with M sites, and with
the dimensionless superfluid density ρsf specifying the number of superfluid
particles (of mass m) per lattice site, the difference between the free energy
F(θ 6= 0) corresponding to a system with a moving superfluid fraction and the
free energy F(0) for a system with vanishing momentum is equal to the kinetic
energy of the superfluid:

F(θ) − F(0) =
1

2
mρsfMv2

s =
1

2
mρsfM

(
~

m

)2 (
θ

L̃

)2

. (4.24)
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The term ρsfM can be interpreted as that fraction of the particles that is in a
superfluid state.

Now the parameters have to be adapted to the Bose-Hubbard model. In-
specting its single-particle dispersion relation, one sees that the factor ~2/(2m)
has to be replaced by Ja2, where a is the lattice constant. Moreover, the free
energy F is replaced by U times the reduced dimensionless effective action

Γ(θ) = Γ̃(θ) − f0 . (4.25)

Hence the superfluid density is finally given by

ρsf(J/U) = lim
θ→0

1

M(J/U)

(
L

θ

)2

[Γ(θ) − Γ(0)] , (4.26)

with the dimensionless length L = L̃/a measuring distances in numbers of
lattice sites.

The required “twisted boundary conditions” [159, 160]

Ψ(. . . , xn, . . .) = eiϕ(x)Ψ(. . . , xn + L, . . .) (4.27)

are imposed on the wave function by adding a phase to the tunneling processes
via [161]

bi → eixθ/Lbi and b†
i → e−ixθ/Lb†

i . (4.28)

Apart from this modification all calculations proceed as before.

4.2 Variational perturbation theory

The process-chain approach allows one to calculate various quantities up to
very high orders. Nonetheless these series are often asymptotic series so that
a further treatment is necessary in order to transform them into convergent
strong-coupling series. This procedure is known as resummation [81, 96].

A series

fL(x) =
L∑

ℓ=0

aℓx
ℓ (4.29)
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is called asymptotic to a function f(x) if a bound cL|x|L exists and one has

|f(x) −
L∑

ℓ=0

aℓx
ℓ| ≤ cL+1|x|L+1 (4.30)

for all L and for all x where f(x) is analytic, but the bound diverges like

cL|x|L −−−→
L→∞

∞ . (4.31)

If |x| is small enough the bound first decreases with L and then finally in-
creases. If one truncates the series at the minimum distance to f(x) one gets
the best possible estimate of f(x). The divergence is connected to a radius
of convergence which is zero so that the series diverges for all |x| > 0. The
asymptotic behavior of a perturbatively calculated function usually stems from
the factorial growth aℓ ∝ ℓ! of the perturbative coefficients.

The question is whether a mapping

φ : fL(x) → f(x) (4.32)

exists which maps the divergently calculated function fL(x) on the exact phys-
ical function f(x). This mapping is then a so-called resummation. Promi-
nent resummations are, e.g., Padé-approximants [162] or the Borel transforma-
tion [81, 96].

In this work the variational perturbation method [99, 100] is used which
acts as a resummation of divergent weak-coupling series. This method will be
introduced and then applied to certain quantities of the Bose-Hubbard model.

4.2.1 Strong-coupling transformation

Starting point is a weak-coupling series

fL(x) =
L∑

ℓ=0

aℓx
ℓ (4.33)

with a coupling parameter x ≪ 1 and some coefficients aℓ. The purpose of
the upcoming transformation is to transform this weak-coupling series into a
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strong-coupling series

gM(x) = xp/q
M∑

m=0

bm
(
x−2/q

)m
(4.34)

with parameters p and q determined by the specific properties of the strong-
coupling series. The ratio p/q is called the leading-power behavior in x and
2/q is the so-called approach to the leading-power behavior.

The first step is to extend the weak-coupling series with an auxiliary param-
eter ω to

h(x) = ωp
L∑

ℓ=0

aℓ

(
x

ωq

)ℓ
, (4.35)

where ω will be set to one eventually. With the identity

ω →
√
k2 + ω2 − k2 (4.36)

a parameter k is introduced which acts as the variational parameter later on.
For the sake of simplicity this substitution is written with new dimensionless
quantities

x̂ := x/kq and ω̂ := ω/k (4.37)

leading to

ω → k(1 − σx̂)1/2 (4.38)

with

σ(x, ω, k) = (1 − ω̂2)/x̂ . (4.39)

Since x̂ is dimensionless, one must have [x] = [k]q.

This new substitution is now inserted in (4.35) so that one gets

h(x, k) = kp
L∑

ℓ=0

aℓ (1 − σx̂)(p−ℓq)/2 x̂ℓ . (4.40)

The expression (1 − σx̂)(p−ℓq)/2 is now expanded about x̂ = 0 leading to

(1 − σx̂)(p−ℓq)/2 =
∞∑

i=0

1

i!
(−σ)i x̂i

i−1∏

j=0

[
p− ℓq

2
− j

]
, (4.41)
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where the empty product is defined as
∏i
j>i [. . .] := 1. This expansion is now

inserted into (4.40) but since the series is only known up to the order L, (4.41)
is only allowed to be expanded up to the order L− ℓ. That leads to

hL(x, k) = kp
L∑

ℓ=0

aℓ x̂
ℓ
L−ℓ∑

i=0

1

i!
(−σ)i x̂i

i−1∏

j=0

[
p− ℓq

2
− j

]
. (4.42)

This result is equivalent to

hL(x, k) = kp
L∑

ℓ=0

ǫℓ(σ) x̂ℓ (4.43)

with

ǫℓ(σ) =
ℓ∑

j=0

aj

(
(p− qj)/2

ℓ− j

)
(−σ)ℓ−j (4.44)

of Ref. [100].
The k-dependency of (4.42) becomes apparent if one sets ω = 1 as stipulated

in the beginning. This turns (4.42) into

hL(x, k) =
L∑

ℓ=0

aℓ k
p−ℓqxℓ

L−ℓ∑

i=0

1

i!

(
1

k2
− 1

)i i−1∏

j=0

[
p− ℓq

2
− j

]
. (4.45)

This k-dependency stems from the Taylor expansion (4.41) which is truncated
after the order L − ℓ in (4.42), and vanishes for L → ∞. To minimize the
influence of this parameter one has to use the principle of minimal sensitiv-

ity [163]. That means the first and second derivative with respect to k has to
be calculated for (4.45). The optimal scaling parameter kL is then given by
smallest value k which belongs to an extremum or a turning point of hL(x, k)
(see [81], p. 328). Then the function hL(x) = hL(x, kL) constitutes the Lth
variational approximation to the function f(x) for finite x.

However, the crucial point is what happens in the strong-coupling limit
x → ∞. Then one resorts to a scaling argument: Since [x] = [k]q, the op-
timal kL ≈ x1/qcL is proportional to x1/q with some proportionality factor cL.
That means x̂ becomes asymptotically constant, x̂ → c−q

L . Since one has

ω̂ = ω/k
x≫1≈ ω

x1/qcL
−−−→
x→∞

0 , (4.46)
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it follows that

σ =
1

x̂
− ω̂2

x̂
−−−→
x→∞

cqL (4.47)

becomes constant, too.
To get the full strong-coupling series, (−σx̂)i = (ω̂2 − 1)i of (4.42) has to be

expanded about

ω̂2 =
(
x

ωqx̂

)−2
q

= 0 . (4.48)

This leads to the expansion

(ω̂2 − 1)i =
i∑

m=0

1

m!
(−1)i−m

(
x

ωqx̂

)−2m/q m−1∏

j=0

[i− j] . (4.49)

By inserting this expansion into (4.42) and by simultaneously going to the
strong-coupling limit with kp = xp/qx̂−p/q one gets an expansion of the form

h∞
L (x, x̂) = xp/q

L∑

ℓ=0

bℓ(x̂)x̂(2ℓ−p)/q
(
x

ωq

)−2ℓ/q

. (4.50)

The variable x̂ now is a variational parameter, to be determined by taking the
derivatives with respect to x̂ as the optimal extremum or turning point, in
accordance with the principle of minimal sensitivity. This optimal parameter
is of the form

x̂ = c−q
L

[
1 + γ1

(
x

ωq

)−2/q

+ γ2

(
x

ωq

)−4/q

+ . . .

]
. (4.51)

Here also the optimal parameter c−q
L has to be determined, which leads with

ω = 1 to the strong-coupling series

h∞
L (x) = xp/q

L∑

ℓ=0

bℓ x
−2ℓ/q . (4.52)

The procedure for the explicit determination of the coefficients bℓ, γℓ and bℓ
can be found in Ref. [81].

Later on one is only interested in the limit x → ∞ for which the approach
proportional to x−2/q vanishes. One does get this strong-coupling limit of (4.42)



4.2 Variational perturbation theory 73

for σx̂ → 1, which leads to

h∞
L (x, x̂) ≈ xp/q x̂−p/q

L∑

ℓ=0

aℓ x̂
ℓ
L−ℓ∑

i=0

1

i!
(−1)i

i−1∏

j=0

[
p− ℓq

2
− j

]
. (4.53)

That means this function takes on the form

h∞
L (x, x̂) ≈ xp/q x̂−p/q wL(x̂) (4.54)

with

wL(x̂) =
L∑

ℓ=0

aℓ x̂
ℓ
L−ℓ∑

i=0

1

i!
(−1)i

i−1∏

j=0

[
p− ℓq

2
− j

]
. (4.55)

The variable x̂ is now a new variational parameter, again to be determined as
the optimal extremum or turning point. This optimal point is defined as the
smallest such x̂ according to the principle of minimal sensitivity.

Up to now the parameters p and q are unknown. They must be determined
self-consistently from the strong-coupling expansion (4.53). To this end one
defines the two logarithmic derivatives

F1(x) =
d log fL(x)

d log x
=
xf ′

L(x)

fL(x)
(4.56)

and

F2(x) =
d logF1(x)

d log x
=
xF ′

1(x)

F1(x)
(4.57)

of the original weak-coupling series (4.33).
After transforming these two functions to the strong-coupling limit, so that

one gets two functions F∞
1 (x, x̂) and F∞

2 (x, x̂) of the form (4.53) and assuming
that fL(x) is of the form (4.52), one gets two equations which can be used for
the determination of the variational parameters p and q. The first of these
conditions reads

lim
x→∞

F∞
1 (x, x̂) =

p

q
. (4.58)

The second condition depends on the parameter p, on whether p is zero or not.
The logarithmic derivative of (4.52) for L = 1 leads to

lim
x→∞

4b0b1

(
b0 + b1x

−2/q
)

q (x2/qpb0 + pb1 − 2b1) (b0 + x−2/qb1)
=





0, p 6= 0

−2/q, p = 0
. (4.59)
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That means the second condition reads

lim
x→∞

F∞
2 (x, x̂) =





0, p 6= 0

−2/q, p = 0
. (4.60)

These two equations constitute a system from which the two parameters can
be determined self-consistently

4.2.2 Application to the Bose-Hubbard model

As will be explained in detail in Chapter 5, the variational perturbation theory
can be used to calculate the critical exponents of both the condensate and the
superfluid density of the Bose-Hubbard model. The process-chain approach
yields a finite series of the form

fL(x) =
L∑

ν=0

aν x
ν (4.61)

for both densities, with x = J/U . The variational approach is then applied to
these series.

It cannot be clearly stated if the series of the condensate and superfluid
density are divergent or convergent. Fig 4.2 shows the coefficients aν of the
condensate density in 7th-order perturbation theory for D = 2. The data of
the superfluid density look qualitatively similar. Two criteria are evaluated
which should give the radius of convergence r. It is

r1 = lim
ν→∞

∣∣∣∣∣
aν
aν+1

∣∣∣∣∣ (4.62)

for the ratio test and
r2 =

1

lim supν→∞
ν

√
|aν |

(4.63)

for the root test. Both tests fail to give a clear limit. But in both cases the
data points are very small and have the tendency to decrease so the radius
of convergence is at least smaller than the critical point of the Bose-Hubbard
model which is approximately (J/U)c = 0.06 for D = 2 [152]. Since the
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Figure 4.2: The root test and the ratio test are applied to the coefficients of
the condensate density in 7th-order perturbation theory for D = 2. Plotted
are (a) the ratios (4.62) and (b) the roots (4.63) versus 1/ν. The radius of
convergence should be given by the limit 1/ν → 0. The line depicts a linear
fit of the data points. These data do not show clearly if the series has a finite
radius of convergence.

variational perturbation theory is used to calculate the critical exponents of
the phase transition of the Bose-Hubbard model, one enters the superfluid
regime with x > (J/U)c which makes a resummation necessary.

The critical exponents of interest are β, quantifying the condensate density,
and υ, quantifying the superfluid density. The procedure of their determination
will be explained by considering the example of the condensate density ρc.
After the calculation of ρc via the process-chain approach, it is given as a
weak-coupling series

ρc(x) =
L∑

ℓ=0

aℓ x
ℓ (4.64)

with x := J/U ≪ 1. On the other hand, in the strong-coupling regime the
leading-power behavior of the condensate density is given by the critical expo-
nent β, so that the strong-coupling expansion has to have the form

ρ∞
c (x) = xβ

M∑

m=0

bm
(
x−2/q

)m
(4.65)

with β := p/q. That means that one has to take the logarithmic derivative of



76 4 Non-perturbative methods

the weak-coupling series (4.64),

G(x) =
d log ρc(x)

d log x
=
xρ′

c(x)

ρc(x)
=

L′∑

ℓ=0

ãℓ x
ℓ , (4.66)

and transform the resulting series to the strong-coupling regime; it should then
converge to the critical exponent in the limit x → ∞. Generally one has
L′ ≤ L.

Because one does not match the asymptotics of the original series (4.64), but
rather that of its logarithmic derivative (4.66), the strong-coupling expansion
of this latter series has to proceed with pG = 0, leading according to (4.53) to
a series

G∞(x̃) =
L′∑

ℓ=0

ãℓ x̃
ℓ
L′−ℓ∑

i=0

1

i!

i−1∏

j=0

[
ℓqG
2

+ j

]
(4.67)

depending on the parameter qG. According to (4.58) and (4.60) this parameter
must be determined self-consistently with the help of the functions

F1(x) =
d logG(x)

d log x
=
xG′(x)

G(x)
=

L1∑

ℓ=0

f
(1)
ℓ xℓ (4.68)

and

F2(x) =
d logF1(x)

d log x
=
xF ′

1(x)

F1(x)
=

L2∑

ℓ=0

f
(2)
ℓ xℓ . (4.69)

Since pG = 0, the conditions (4.58) and (4.60) become

F∞
1 (x̂) = 0 and F∞

2 (x̂) = −2/qG (4.70)

with

F∞
1 (x̂) =

L1∑

ℓ=0

f
(1)
ℓ x̂ℓ

L1−ℓ∑

i=0

1

i!

i−1∏

j=0

[
ℓqG
2

+ j

]
(4.71)

and

F∞
2 (x̂) =

L2∑

ℓ=0

f
(2)
ℓ x̂ℓ

L2−ℓ∑

i=0

1

i!

i−1∏

j=0

[
ℓqG
2

+ j

]
. (4.72)

First one has to determine the optimal variational parameter x̂ as described
in Sec. 4.2.1 for (4.71) and (4.72), which also depends on qG. Both equations
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depend then only on qG. Then these conditions allow one to determine the
parameter qG itself.

With the knowledge of this parameter qG, the optimal variational parameter
x̂ for (4.67) must be determined by the principle of minimal sensitivity in a
next step. Inserting this x̂ in (4.67), one finally gets the critical exponent β.

The explicit results of this variational perturbation theory, when applied to
the Bose-Hubbard model, will be discussed in detail in Chapt. 5.





5 Results

In this chapter the final results of this thesis will be presented. All data have
been calculated for the two-dimensional square and the three-dimensional cu-
bic lattice, respectively. That means if only the dimensionality is mentioned
the results refer to one of these cases. The underlying model is always the
dimensionless Bose-Hubbard model (3.51).

In the first section the determination of the phase boundary according to
Ref. [152] will be recapitulated. But also a further method will be put forward,
which gives similar but slightly different results for the phase boundary. In
the second section the coefficients of the effective potential will be discussed.
This is necessary because the behavior of these coefficients depends strongly on
the order of the perturbation theory. In the third section the determination of
the particle number will be discussed. This method not only gives the lines of
constant density inside the superfluid region, but it also gives access to another
method for determining the phase boundary whose results are identical to the
method of the first section. The calculation of both the condensate and the
superfluid density is performed in the fourth section. In two dimensions odd
and even orders of the perturbation theory have to be treated differently. Based
on these two cases the critical exponents of both densities will be calculated in
the last section. For one case the use of the variational perturbation method is
necessary, while the other case permits a direct access to the critical exponents.

5.1 Phase boundary

The precise determination of the phase boundary is a topic of great interest.
The first solution was a mean-field approach which was presented by Fisher et
al. [60] together with the proposal of the model. But the mean-field solution is
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only exact in the limit D → ∞ so that, e.g., the critical hopping (5.6) at the
tip of the Mott lobe is about (J/U)mf

c ≈ 0.043 for D = 2 and g = 1 within the
mean-field approach. This solution deviates from the more precise numerical
solution (J/U)c ≈ 0.06 by approximately 30%. This example makes it clear
that the mean-field solution is insufficient.

The phase boundary was therefore studied by many other methods like
strong-coupling expansions [164, 165], quantum Monte Carlo simulations [166–
169], the density matrix renormalization group [170–173] and recently by means
of the variational cluster approach [174, 175]. In addition many different as-
pects were considered like various dimensionalities or additional disorder.

Here the determination of the phase boundary for the two- and the three-
dimensional square and cubic lattice, respectively, with the method of the
effective potential of Sec. 4.1 will be explained. Since the one-dimensional sys-
tem lies in a different universality class than the Bose-Hubbard model with
D ≥ 2, it is not accessible with the method of the effective potential. Two-
and three-dimensional lattices are therefore the most interesting cases for this
method; for these dimensionalities various geometries like triangular, hexago-
nal or kagome lattices are experimentally realizable [176, 177]. The following
methods are also valid for these and other lattice geometries. Only the dia-
grams of the process-chain approach used for the calculation of the effective
potential change if one considers different lattice geometries but everything else
is unaffected.

The phase boundary is determinable by solely the coefficient c2 or rather by
the coefficient α2(J/U) = −1/c2(J/U) arising in the effective potential (4.13).
For fixed chemical potential µ/U the phase boundary is given by that value
(J/U)pb for which c2 diverges, or for which the coefficient α2 vanishes.
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Figure 5.1: Shown are the two extrapolation schemes for determining the phase

boundary, exemplary for D = 2. In (a) the ratios γ
(ν−1)
2 /γ

(ν)
2 of the coefficients

of c2 of (5.2) are plotted in order to determine the radius of convergence. In (b)

the zeros (J/U)
(νm)
0 of the series α

(νm)
2 defined in (5.3), which mark the phase

boundary in (νm + 2)th order, are fitted linearly.
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The first condition,

lim
(J/U)→(J/U)pb

c2(J/U, µ/U) = ∞ , (5.1)

already introduced in Ref. [152], requires a method to determine the radius of
convergence of the nth-order perturbation series

c2 =
n−2∑

ν=0

γ
(ν)
2 (J/U)ν . (5.2)

This is done by the already mentioned ratio test, as defined in (4.62). For this
the ratios γ(ν−1)

2 /γ
(ν)
2 are plotted over the inverse order 1/ν. They are linearly

fitted in order to determine the radius of convergence, which is then equal to
the extrapolated value of the phase boundary (J/U)pb with n → ∞. This
procedure is depicted in Fig. 5.1(a) for n = 11 on a two-dimensional square
lattice and filling factor g = 1. The chemical potential is the critical chemical
potential at the tip of the Mott lobes, i.e. (µ/U)c = 0.375. The critical hopping
for n → ∞ is given by (J/U)c ≈ 0.05920. This differs by about 0.2% from the
value 0.05909 stated in Refs. [152, 154], since this previous value was obtained
for n = 10.

The second condition involves a Taylor expansion of α2 = −1/c2 so that one
gets a new series

α
(νm)
2 =

νm≤n−2∑

ν=0

a
(ν)
2 (J/U)ν . (5.3)

The zeros (J/U)(νm)
0 for different values of νm mark the (νm + 2)th-order phase

boundary. Here only the zero of the function α
(νm)
2 is of interest. These zeros

are also fitted linearly, but here odd and even orders are fitted separately. This
extrapolation scheme leads to two estimates for the phase boundary. This is
shown in Fig. 5.1(b) for the same parameters as stated above with the exception
that the critical chemical potential is now (µ/U)c ≈ 0.373 for both the even
and odd orders. The critical hopping also differs slightly from that of the first
condition. One gets the critical hopping (J/U)even

c ≈ 0.05898 for the even and
(J/U)odd

c ≈ 0.06018 for the odd orders.
The resulting phase boundaries provided by both schemes are shown in

Fig. 5.2(a). One recognizes that the two phase boundaries of the second scheme
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Figure 5.2: Shown are the phase boundaries of (a) the two-dimensional square
lattice and (b) the three-dimensional cubic lattice. In both figures the extrap-
olated results of the ratio test applied to (5.2) and of the zeros of (5.3) are
plotted. The insets show the tip of the Mott lobe. One recognizes that both
methods converge to each other when µ/U becomes integer. Furthermore, the
two phase boundaries determined by the zeros act as upper and lower bounds
on the results of the ratio test.
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D = 2 D = 3

νm (J/U)(νm)
c (µ/U)(νm)

c (J/U)(νm)
c (µ/U)(νm)

c

1 0.04289 0.414 0.02860 0.414

2 0.05557 0.382 0.03305 0.397

3 0.05333 0.387 0.03266 0.398

4 0.05791 0.376 0.03347 0.395

5 0.05612 0.380 0.03331 0.396

6 0.05818 0.375 0.03366 0.395

7 0.05724 0.377 0.03357 0.395

8 0.05847 0.374 0.03376 0.394

9 0.05786 0.376 - -

∞, odd 0.06018 0.373 0.03426 0.393

∞, even 0.05898 0.373 0.03405 0.393

Table 5.1: Critical values of the hopping and the chemical potential depending
on the maximal order νm defined in (5.3). The phase boundary is determined

by the respective smallest non-negative zero (J/U)
(νm)
0 = (J/U)

(νm)
pb of (5.3) for

each value of the chemical potential. The critical parameters are defined by the
largest value of the hopping belonging to the phase boundary. The last two
columns show the extrapolated critical parameters where odd and even orders
are fitted separately.

act as upper and lower bounds of the phase boundary determined by the first
scheme. All three phase boundaries converge when the chemical potential goes
to one and zero, respectively. In Fig. 5.2(b) also the phase boundaries for D = 3
are shown. The procedure for the determination of these phase boundaries
works in the same way. Here the critical chemical potential (µ/U)c = 0.393 is
the same for both conditions. The critical hopping is (J/U)c ≈ 0.03407 for the
first method as well as (J/U)even

c ≈ 0.03405 and (J/U)odd
c ≈ 0.03426, respec-

tively, for the second method. Tab. 5.1 lists all critical values depending on
the maximal order νm for the two- and three-dimensional square lattice. The
accuracy of both schemes is very high and the error can be estimated to be



5.1 Phase boundary 85

(a) Triangular lattice (b) Hexagonal lattice

Figure 5.3: Shown are the triangular and the hexagonal lattice geometry stud-
ied in Ref. [178] regarding the phase boundary. A circle represents a lattice site
and the lines show the possible nearest neighbor tunneling bonds.

less than 3%. If one assumes that the exact value (J/U)c actually lies between
(J/U)even

c and (J/U)odd
c , the error would even be less than 1%.

The study of the phase boundary determined with the process-chain ap-
proach and the ratio test is mostly done in Ref. [154]. There the phase boundary
of orthogonal lattices with 2D nearest neighbors is calculated for various dimen-
sionalities and filling factors. It is shown that for D → ∞ the phase boundary
converges to the phase boundary of the mean-field phase diagram [60],

2D
(
J

U

)

pb
=

(µ/U − g + 1) (g − µ/U)

µ/U + 1
. (5.4)

This is due to the effect that for D → ∞ only one type of diagram contributes
within the process-chain approach. These are the so-called one-way diagrams
which never visit the same lattice site twice since the odds to do so is vanishing
for infinite dimensionality.

Furthermore a scaling

(
J

U

)

c
=
(
J

U

)mf

c
+

0.13√
g(g + 1)D2.5

(5.5)

was found which connects the critical hopping (J/U)c for given values of D
and g to the critical hopping

(
J

U

)mf

c
=

1

2D

(
2g + 1 − 2

√
g(g + 1)

)
(5.6)
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of the mean-field solution.
It is also shown that one can render the critical hopping (J/U)c almost

independent of the filling factor g with a scaling
(
J

U

)sc

c
=
√
g(g + 1)

(
J

U

)

c
. (5.7)

This scaling is further improved in Ref. [179] so that the scaled critical hopping
(
J

U

)sc

c
=
√
g(g + 1)

(
1

2
+

√
1

4
+

1

16g(g + 1)

)(
J

U

)

c
(5.8)

varies by less than 0.2% as a function of g. Finally a function
(
J

U

)

c
=

1

2D

(
2g + 1 − 2

√
g(g + 1)

)

·
(

1 + 0.35
1

D
+ 0.39

1

D2
+ 0.84

1

D3

) (5.9)

was found numerically which gives the critical hopping as a function of the
dimensionality and the filling factor with an accuracy of better than 0.15% in
comparison to the results of the process-chain approach. This function also
shows that the particle-hole asymmetry of the phase boundary vanishes in the
limit g → ∞.

Another advantage lies in the straight-forward adaption of this method to
other lattice types. In Ref. [178] the phase boundaries of the two-dimensional
triangular and hexagonal lattice as depicted in Fig. 5.3 were studied with the
ratio test. These lattices differ from the square lattice in the number of nearest
neighbors. Whereas each site of a two-dimensional square lattice has 4 nearest
neighbors, the triangular lattice provides 6 and the hexagonal lattice only 3
nearest neighbors. This changes the respective diagrams of the process-chain
approach so that these have to be evaluated separately for every lattice type.

5.2 Properties of effective potential

The condensate densities (4.21) and (4.22) as well as the superfluid density
(4.26) depend on the coefficients

α2 = − 1

c2

, (5.10a)
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α4 =
c4

c4
2

, (5.10b)

α6 =
c6

c6
2

− 4c2
4

c7
2

(5.10c)

of the effective potential

Γ(J/U, µ/U, |ψ|2) = α2|ψ|2 + α4|ψ|4 + α6|ψ|6 + O(|ψ|8) , (5.11)

where the sourceless part f0 of the free energy is already subtracted as stated
in (4.25). All coefficients are the result of a Taylor expansion so that they are
given by series

α
(νm)
2i =

νm≤n−2i∑

ν=0

a
(ν)
2i (J/U)ν with i = 1, 2, 3 . (5.12)

As already mentioned in Sec. 4.1, it is decisive for both densities up to which
order the effective potential is expanded. This decision depends on the behavior
of the coefficients (5.10) and particularly on the coefficient α4 in (5.10b). If
α4 is greater than zero it should be sufficient to expand the effective potential
up to |ψ|4 according to the arguments given in Sec. 2.2.2. This would lead to
the condensate density (4.22). If the coefficient α4 is less than zero, one needs
the coefficient α6 of (5.10c) in order to guarantee a stable effective potential
providing a minimum near (J/U)c.

In what follows the coefficients of (5.10) will be examined in detail. It will be
made clear that for D = 2 one has to consider two cases for the determination
of the densities since the coefficient α4 shows a behavior which depends on the
parity of the order of the perturbation theory. That means it is always greater
than zero for odd orders but it changes its sign from positive to negative for
even orders. Moreover the case D = 3 is discussed for which the coefficient α4

shows a similar behavior as for the dimensionality D = 2 but the zeros do not
affect the region J/U ≈ (J/U)c where the perturbation theory is valid.

The coefficient α2 has already been treated in Sec. 5.1 in the context of the
phase boundary, where this boundary has been calculated by solving α2 = 0.
But for the sake of completeness Fig. 5.4(a) and Fig. 5.5(a) show this coefficient
depending on the maximal order νm as defined in (5.3) for D = 2. This and



88 5 Results

all following coefficients are plotted for µ/U = (µ/U)(νm)
c . What is important

to note is that α2 changes its sign from positive to negative. The other zeros
besides the first one can be explained by the finite Taylor expansion so that
the perturbational expansion is not valid anymore for values J/U & 0.07.

The behavior of α4 is shown in Fig. 5.4(b) and Fig. 5.5(b). Whereas the odd
orders are always positive, the even orders change their sign. This alternation
of the behavior for different ℓ is also characteristic for the other coefficients as
shown in Fig. 5.4 and Fig. 5.5. In order to illustrate this trend also

α8 =
24c3

4

c10
2

− 12c4c6

c9
2

+
c8

c8
2

(5.13)

is plotted. Since this coefficient is only known up to νm = 4 which is equivalent
to n = 12, it is not used to calculate the critical exponents later on.
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Figure 5.4: For details see the caption on the next page.
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Figure 5.4: Coefficients α2i given in (5.10) of the effective potential as defined
in (5.11) for D = 2 with the critical chemical potential depending on νm as listed
in Tab. 5.1. Here only even orders regarding the maximal order νm as defined
in (5.12) are shown. The critical values of the respective orders are plotted in
the inset of the plots as vertical lines.
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Figure 5.5: Coefficients α2i(J/U, µ/U) of the effective potential for odd orders
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Now the question arises which form of the effective potential is valid for which
set of coefficients α2i. The alternation of positive and negative coefficients for
values of the hopping J/U > (J/U)c must be considered in the effective po-
tential. So the question is whether the effective potential guarantees a solution
with a positive coefficient α2i although the coefficient α2(i+1) is negative. This
would mean that there exists at least a local minimum of the effective potential
in the vicinity of (J/U)c where the perturbation theory is valid.

Due to the self-consistency equation (4.19) with which the order parameter
is determined, one would need the effective potential as a function of |ψ| to
determine this minimum. This is not possible since the effective potential
is only known as a function of J/U and thus one cannot study the effective
potential directly regarding the existence of a minimum. Thus the consequences
of the properties of the coefficients will be clarified in the next section based
on the behavior of the condensate and of the superfluid density.

In Fig. 5.6 the coefficients α2, α4, and α6 for D = 3 are plotted for D = 3.
The behavior is qualitatively similar to the behavior of the coefficients forD = 2
but especially the zeros of α4 should not affect the perturbational results as
significantly as do the zeros of the two-dimensional case, since α4 is greater
than zero in a sufficient range inside the superfluid region.
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Figure 5.6: Coefficients α2i(J/U, (µ/U)
(νm)
c ) of the effective potential for

D = 3. The behavior is qualitatively similar to that for D = 2. The im-
portant difference is that for this dimensionality the zeros of α4 are sufficiently
far away from the critical hopping strengths, which are indicated by the vertical
lines on the x-axis.
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5.3 Particle number

If one knows the effective potential, one is also able to calculate the density
〈n(µ/U, J/U)〉 of particles depending on the chemical potential µ/U and the
hopping strength J/U . The particle density is in general given by

〈n〉 = − 1

M

∂F
∂µ

, (5.14)

which translates here to [180]

〈n〉 = − 1

M

(
∂Γ

∂(µ/U)

)

ψ=ψ0,ℓ

(5.15)

since the free energy F is substituted by the effective potential because of the
use of the Legendre transformation. For ψ one must insert the self-consistent
solution (4.21) for ℓ = 3 or (4.22) for ℓ = 2.

Inside the superfluid region one expects lines of constant density [60]. This
is exemplarily shown in Fig. 5.7 for D = 2, νm = 7 and ℓ = 2. Starting from
the tip of the Mott lobe one can see a line of constant density with 〈n〉 = 1.
Lines with 〈n〉 < 1 and with 〈n〉 > 1 converge to this line for J/U → ∞. The
lines which are inside the Mott lobe and the lines at the top and at the bottom
of the plot are artifacts of the finite-order perturbation theory.

The dots on the line 〈n〉 = 1 denote the phase boundary calculated by the
zeros of α2 as explained in Sec. 5.1. It is interesting to note that both phase
boundaries are identical. That means the calculation of the particle number
represents another method for determining the phase boundary of the Bose-
Hubbard model. But both phase boundaries match each other perfectly only
for the odd orders. For even orders the phase boundary determined by this
method differs from that of Sec. 5.1 by approximately 1% at the tip of the
lobe, but it converges to this phase boundary for µ/U → 0 and µ/U → 1,
respectivley.

5.4 Condensate and superfluid density

As stated in the previous section, for the determination of the densities two
cases have to be considered. According to the behavior of the coefficients of



96 5 Results

0.01 0.02 0.03 0.04 0.05 0.06

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.85

0.85
0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.95
0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.98
0.98

0.98

0.98

0.98

0.98

0.980.98
0.98

0.98

0.98

0.98

0.980.98

1

1

1

1

1

1

1

1

1

1

111 1 111 11

11 1

1
1.02

1.02
1.02

1.02 1.02
1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.02

1.05

1.05

1.05

1.05 1.05
1.05

1.05

1.05

1.05
1.05

1.05

1.05

1.05

1.15

1.15

1.15

1.15 1.15
1.15

1.15

1.15

1.15

1.15

1.15

1.15

J/U

n

Figure 5.7: Lines of constant particle number 〈n〉 inside the superfluid region
for D = 2. The lines inside the Mott lobe and the ones at the top and the
bottom of the figure are relicts of the perturbational calculations where these
are not valid. The dots on the line 〈n〉 = 1 are determined by the condition
α2 = 0 introduced in Sec. 5.1. The two phase boundaries are identical.

the effective potentials the even and odd orders should yield different estimates
for the densities.

The condensate density

ρc,3 =
−α4 +

√
α2

4 − 3α2α6

3α6

(5.16)

has been introduced in (4.21) and results from (4.13) for ℓ = 3, whereas for
ℓ = 2 one gets

ρc,2 = − α2

2α4

. (5.17)



5.4 Condensate and superfluid density 97

For D = 2 one should not expect a physical solution for ρc,2 if only even
orders are considered due to the negative values of α4 for J/U > (J/U)c since
this would lead to negative values of ρc,2. This means one should only expect
valid results of ρc,2 for odd orders.

Considering this case, the question remains how the coefficient α6 or more
specifically the change of its sign or even higher order coefficients influence the
condensate density for odd orders for which α4 is positive. If the perturbational
results should be valid, higher order coefficients like α6 or α8 should change
the density appreciable only for values of J/U significantly greater than the
critical value. This will be proven in the following.

In Fig. 5.8(a) the densities ρc,2 and ρc,3 are plotted as a function of J/U at
the respective critical chemical potential (µ/U)(νm)

c . First of all it is notewor-
thy that both densities increase linearly in the vicinity of the critical hopping
(J/U)(νm)

c . This is contrary to the expectations since for D = 2 the critical
exponents of both densities of the Bose-Hubbard model with N = 2 should
be approximately 2/3 according to Tab. 2.4. This discrepancy is resolved in
Sec. 5.5.1 where the critical exponents are calculated with the variational per-
turbation theory of Sec. 4.2.

Furthermore, one recognizes that the densities of the same order νm rapidly
converge to each other for J/U → (J/U)(νm)

c . This is illustrated more pre-
cisely in Fig. 5.8(b) where the ratios ρc,2/ρc,3 and ρc,2/ρc,4 as a function of
J/U − (J/U)(νm)

c are plotted. The density ρc,4 can be calculated just as the
other two densities on page 66 by considering the coefficient α8 defined in (5.13).
One recognizes that, e.g., in the interval (J/U)(νm)

c < J/U < (J/U)(νm)
c + 0.001

the respective deviations are less than 3% which is less than the error one
should expect due to the perturbational nature of the calculations.

The inset of Fig. 5.8(a) shows how the condensate densities of different or-
ders can be transformed onto each other by plotting them as a function of
J/U− (J/U)(νm)

c . Nonetheless this transformation does not lead to an extrapo-
lation scheme for νm → ∞ since no convergence is recognizable and in addition
one has too few data points.

Summarizing these considerations leads to the conclusion that for odd orders
ρc,2 is a good approximation to the condensate density in the vicinity of the
critical hopping since the deviation from higher order densities vanishes for
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Figure 5.8: Properties of the condensate density for D = 2. (a) Comparison of
the condensate densities ρc,2 and ρc,3 for odd orders. In a good approximation

both densities increase linearly in the vicinity of (J/U)
(νm)
c . The inset shows

ρc,2 for the orders stated in the plot as a function of J/U − (J/U)
(νm)
c . The

curves conform so well that they can hardly be distinguished from each other.
(b) The plot shows that the densities converge to each other remarkably well so
that ρc,2 is sufficient to describe the condensate density for J/U ≈ (J/U)c.



5.4 Condensate and superfluid density 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.054  0.056  0.058  0.06  0.062  0.064

ρ c
,3

J/U

νm = 2
νm = 4
νm = 6

 0

 0.1

 0.2

 0  0.002  0.004
J/U - (J/U)c

(νm)

ρc,2

(a) D = 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.028  0.03  0.032  0.034  0.036

ρ c
,2

  a
nd

  ρ
c,

3

J/U

νm = 1, 3, 2, 4

ρc,3

ρc,2

(b) D = 3
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of ρc,2 and ρc,3 for D = 3 and µ/U = 0.393. The upper curve always belongs
to ρc,2. Here no deviation from a critical exponent equal to one is observable
neither for ρc,2 nor for ρc,3. Just like in the case D = 2 these densities also
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J/U = (J/U)(νm)
c which is crucial for the later determination of the critical

exponent.

For the even orders the issue is more complicated. The density ρc,2 is not
valid due to the arguments given at the beginning of this section regarding the
sign of α4. The next order which could give physical results is ℓ = 3 with the
density ρc,3. This is shown in Fig. 5.9(a). Here the condensate density looks
qualitatively different from that density obtained in odd orders. For example,
the different curves do not fall onto each other if they are plotted as a function
of J/U − (J/U)(νm)

c as it is shown in the inset. But, more importantly, the
density does not increase linearly but with a critical exponent less than one.

This is also illustrated in the inset where additionally ρc,2 with νm = 7 is
plotted. Apparently one has ρc,2 < ρc,3 in the vicinity of the critical hopping.
This observation will lead to a direct determination of the critical exponent of
the condensate and of the superfluid density in Sec. 5.5.2.

Fig. 5.9(b) shows the condensate density for D = 3 at the chemical potential
µ/U = 0.393 which is the extrapolated critical chemical potential. Both den-
sities increase linearly so that here no difference between the cases ℓ = 2 and
ℓ = 3 is observable. The convergence properties are like that for the densities of
D = 2 which means that the two densities ρc,2 and ρc,3 converge to each other
for J/U → (J/U)(νm)

c . This behavior corresponds to the expected behavior
since for the Bose-Hubbard model the dimension D = 3 is equal to the upper
critical dimension so that here the mean-field critical exponents of Tab. 2.3 are
valid.

The superfluid density (4.26) is determined with the help of the phase θ which
is introduced in (4.28). As one can see in these equations, only the ratio θ/L
of the phase θ and the length L of the system is crucial for the determination
of the superfluid density. This ratio will from now on be called twist. In the
following all coefficients c2i and, therefore, also the coefficients α2i depend on
the twist.

All statements made for the condensate density are also valid for the super-
fluid density since the influence of the phase on the coefficients of the respective
effective potential is only minimal. This is shown in Fig. 5.10(a), where the
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Figure 5.10: Results for the superfluid density with D = 2: (a) Ratios r2i

defined in (5.18). As one can see the twist θ/L changes the coefficients only
minimally. (b) Comparison of the superfluid densities for ℓ = 2 with νm = 7
and ℓ = 3 with νm = 6. Whereas the density for ℓ = 2 increases linearly, the
critical exponent for ℓ = 3 must be less than 1.
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ratios

r2i :=
α2i(θ/L = 0.001)

α2i(θ/L = 0)
(5.18)

of the coefficients of the effective potential

Γℓ(θ/L) =
ℓ∑

i=1

α2i(θ/L)|ψ0,ℓ(θ/L)|2i (5.19)

with |ψ0,ℓ(θ/L = 0)|2 = ρc,ℓ are plotted. For θ/L = 0 this effective potential is
equal to that of (4.13), which is used for determining the condensate density.
This plot shows that the twist does not change the qualitative behavior of the
coefficients. The apparent divergence of r2 at the beginning marks the point of
the phase transition where α2 changes its sign. Also the divergence of r4 can be
explained by a change of the sign of α4. The discrepancy of the coefficients at
these points can be ascribed to numerical inaccuracies. The superfluid density
itself is plotted in Fig. 5.10(b). This plot shows ρsf,2 as well as ρsf,3 and one can
observe a linear behavior for ℓ = 2 and a nonlinear behavior for ℓ = 3, as it
was already the case for the respective condensate densities. Besides, the very
small influence of the twist is visible again.

Now the two densities can be compared to each other. Fig. 5.11 shows the
condensate density and the superfluid density for ℓ = 2 and ℓ = 3, for D = 2
and D = 3 on a square lattice. Shown is in all cases the highest available order.
For the superfluid density the chosen value of the twist is θ/L = 0.001.

For D = 2 one observes once more that the superfluid density ρsf,ℓ is greater
than the condensate density ρc,ℓ which indicates that the critical exponent
of the superfluid density is less than that of the condensate density. This is
expected due to the Josephson relation υ = 2β − ην of (2.39) which connects
the critical exponent υ of ρsf,ℓ to the critical exponent βc = 2β of ρc,ℓ.

Also the qualitative difference between the densities for ℓ = 2 and ℓ = 3 can
be seen in this figure. Whereas for ℓ = 2 both densities are linear over a wide
range of the hopping, the densities for ℓ = 3 are clearly not linear. In contrast,
the densities for D = 3 are always linear in good approximation.

For three dimensions one observes only a slight difference between the two
densities. Since in this case one expects the critical exponents of mean-field
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Figure 5.11: Superfluid density ρsf,ℓ and condensate density ρc,ℓ for D = 2 and
D = 3. For the superfluid density the twist is set to θ/L = 0.001. Whereas
both densities shown in (a) increase linearly, the densities in (b) differ from each
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theory with η = 0, one can deduce υ = βc from the Josephson relation (2.39),
so that both densities should coincide in the critical region.

Since all these results are of finite order, they cannot compete with methods
which calculate the condensate and superfluid density directly. But compar-
isons show that the densities calculated with the method of the effective action
are at least in the vicinity of the critical point comparable to that obtained by
other methods [181].

5.5 Critical exponents

In this section two methods for determining the critical exponents υ of the su-
perfluid density and βc of the condensate density of the Bose-Hubbard model
are explained. The critical exponent of the condensate density is directly re-
lated to the critical exponent of the order parameter |ψ0| since the condensate
density is given by ρc = |ψ0|2. Therefore the critical exponent of the order
parameter is β = βc/2.

The first method uses the effective potential only up to ℓ = 2. This ansatz
will be called |ψ|4-approach. The densities ρc,2 and ρsf,2 do not lead directly
to the correct critical exponents since for D = 2 and D = 3 one just gets the
critical exponents of mean-field theory, which are only valid for D ≥ 3. Only
after using the variational perturbation theory introduced in Sec. 4.2 one gets
the predicted critical exponents for D = 2.

The second method is based on calculating the effective potential with ℓ = 3
up to |ψ|6, and analyzing the corresponding densities ρc,3 and ρsf,3. These
densities permit a direct calculation of the critical exponents without further
treatments. In the spirit of the first method, this ansatz will be called |ψ|6-
approach.

The direct way to calculate the critical exponent of a certain variable is to
use the following logarithmic derivative: Since both densities ρ scale like

ρ ∝ (J/U − (J/U)c)
x (5.20)

for (J/U − (J/U)c) ≪ 1 as stated in (4.34), the logarithmic derivative

d log ρ := lim
J/U−(J/U)c→0

d log ρ

d log (J/U − (J/U)c)
= x (5.21)
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yields the critical exponent denoted here by x.
The Bose-Hubbard model on a D-dimensional cubic lattice is in the same

universality class as the D + 1-dimensional XY -model [60] for which one has
N = 2. That means that for the two-dimensional Bose-Hubbard model one
expects the critical exponents of Tab. 2.4 with D = 3 so that both critical expo-
nents should be approximately 2/3. To be more precise, the critical exponents
of the two densities should be

βc = 2β = 0.6962 and υ = βc − ην = 0.6697 (5.22)

according to Ref. [97] for the condensate and for the superfluid density, respec-
tively. Critical exponents calculated by other groups [98, 103] differ by less
than 1% from these results so that the values of (5.22) function as reference
values in the following. The second equation represents the Josephson relation
of (2.39). For the Bose-Hubbard model the dimension D = 3 is equal to the
upper critical dimension, so that in this case the mean-field critical exponents
of Tab. 2.3 are valid. That means one should expect

βc = 1 and υ = 1 . (5.23)

5.5.1 |ψ|4-approach

As one can see in Fig. 5.12 the critical exponent for D = 2 of both densities,
as calculated by the logarithmic derivative (5.21), is one. This conforms to the
data shown in the previous section where this was already noticeable, e.g., in
Fig. 5.11(a). But these are not the correct critical exponents for D = 2: Here
one requires the values stated in (5.22).

Nonetheless variational perturbation theory permits an access to the critical
exponents predicted by the φ4-theory. Starting point is the Taylor expansion

α
(νm)
2i =

νm≤n−2i∑

ν=0

a
(ν)
2i (J/U)ν with i = 1, 2, 3 (5.24)

of the coefficients of the effective potential. For the following procedure it
does not matter whether the coefficients depend on the twist θ/L so that this
dependency is dropped during the discussion in this section. This expansion
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Figure 5.12: Logarithmic derivatives for D = 2 of the condensate density ρc,2

and the superfluid density ρsf,2 with θ/L = 0.001. Both curves fall onto each
other. As one can clearly see, according to (5.21) the critical exponents would
be one in both cases.

(5.24) is transformed to a new variable g = J/U − (J/U)(νm)
c so that one gets

new coefficients ã(ν)
2i . For example, in first order of the hopping the coefficients

transform like

a
(0)
2i + a

(1)
2i J/U −→ a

(0)
2i + a

(1)
2i

(
g + (J/U)(νm)

c

)
= ã

(0)
2i + ã

(1)
2i g (5.25)

with
ã

(0)
2i = a

(0)
2i + a

(1)
2i (J/U)(νm)

c and ã
(1)
2i = a

(1)
2i . (5.26)

This transformation depends on the order n of the perturbational expansion
so that for different n one gets different coefficients ã(ν)

2i . This procedure leads
to a new expansion

α̃
(νm)
2i =

νm≤n−2i∑

ν=0

ã
(ν)
2i g

ν with i = 1, 2, 3 , (5.27)

which just shifts the zero of the condensate and the superfluid density from
J/U = (J/U)(νm)

c to g = 0. With these new coefficients both the condensate
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and the superfluid density can be expressed as series

ρ =
νm∑

ν=0

âνg
ν (5.28)

with coefficients âν depending on the coefficients ã(ν)
2i .

According to (4.66) the logarithmic derivative of (5.28) yields an expansion
of the critical exponent. To this series variational perturbation theory is ap-
plied, leading to the estimate (4.67) which now depends on the two variational
parameters g̃ and the corresponding q. This parameter q must be determined
by the first logarithmic derivative F1 introduced in (4.68) or by the second
logarithmic derivative F2 introduced in (4.69), and by the conditions stated in
(4.70).

It turns out that both logarithmic derivatives lead to a value for q. For the
calculation of the critical exponents always that parameter q is chosen which
is the closest to the reference value q ≈ 2.5 stated in Ref. [81]. Since these
parameters always lead to the best results for the critical exponents and due
to the lack of further data points which could be used for an extrapolation,
this procedure seems the best for a reliable choice of the optimal variational
parameter q.

After applying the variational perturbation theory to F2, one has to look for
the zeros g̃0,F2

of F∞
2 (g̃, q) + 2/q, which are simultaneously extrema or turning

points due to the principle of minimum sensitivity. Fig. 5.13 shows the second
derivative

F
(2)
2 :=

d2F∞
2 (g̃0,F2

, q)

dg̃2
0,F2

(5.29)

for νm = 7 in the case of the condensate density which has a zero at q ≈ 2.4615.
Besides this zero there is also a zero at q ≈ 2.817. For lack of further zeros the
smallest of these two values is taken as an approximation for the extrapolated q
with νm → ∞. That means qc = 2.4615 is taken as the value of the variational
parameter q for the condensate density. The function F1 leads in the same
way to q ≈ 3.1 but because of the arguments given above this estimate is not
considered during the further calculations.

This value of q is now inserted in (4.67) so that the expansion of β only
depends on g̃. The optimal g̃ is determined by the extrema of (4.67). If there
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Figure 5.13: The second derivative of F2 defined in (4.69). The zeros are
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zero at q ≈ 2.4615.

exists more than one zero of the derivative, always the smallest, nonnegative
zero is taken as the optimal variational parameter g̃.

This procedure leads to the results stated in Tab. 5.2. Since only three data
points are known, they are fitted linearly leading to the extrapolated critical
exponent for νm → ∞ which is 0.7028 for the condensate density of a two-
dimensional square lattice.

The calculation of the critical exponent υ of the superfluid density proceeds
basically in the same way. Here one finds that the first logarithmic derivative
F∞

1 permits the determination of the best q in the same way as stated above.
Since the superfluid density depends on the twist θ/L, one more extrapola-

tion for θ/L → 0 is necessary. This is done for θ/L = 0.001 with q0.001 = 2.7822
and θ/L = 0.01 with q0.01 = 2.7857. These two values are extrapolated linearly
which leads to qsf = 2.7818. One also gets the estimate q ≈ 3.4 by using the
function F2 but as already said in the context of the condensate density this
guess will not be considered furthermore.

The former value of q together with the coefficients of the superfluid density
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νm β(νm)
c υ(νm) β η α γ

3 1.3774 1.4291 - - - -

5 1.0206 1.0836 - - - -

7 1.0334 1.0221 - - - -

∞ 0.7028 0.6784 [0.3514] [0.0360] [−0.03533] [1.33245]

Tab. 2.4 [0.6962] 0.6697 0.3481 0.0396 −0.01126 1.31045

[182] [0.733] 0.699 [0.367] 0.049 [−0.097] [1.364]

Table 5.2: The top of the table shows the critical exponents for D = 2 de-
pending on the order νm, and the linear fit for νm → ∞. Critical exponents
in square brackets are calculated via the hyperscaling relations (2.36) and the
Josephson relation (2.39). The bottom of the table shows first the critical ex-
ponents as taken from the φ4-theory, see Tab. 2.4. The second reference values
from Ref. [182] are critical exponents which were explicitly calculated for the
Bose-Hubbard model by means of a renormalization group approach.

with θ/L = 0.001 are used for the subsequent determination of the optimal
variational parameter g̃ and the resulting critical exponent. The determination
of g̃ differs slightly from that of the condensate density. Since there are no
positive zeros always the smallest negative zero is taken as the variational
parameter.

This procedure leads to the critical exponent υ stated in Tab. 5.2. The
extrapolation for νm → ∞ is also done linearly here.

One is now able to calculate the other critical exponents with the help of
the hyperscaling relations (2.36) and the Josephson relation (2.39). This leads
to the rest of the exponents stated in Tab. 5.2. In the last row the reference
values previously stated in Tab. 2.4 are listed again for comparison.

As one can see, the quality of the calculated critical exponents is very good
if one considers the amount of data which is available for the extrapolation. It
is also interesting to note that one actually finds values of q which are close to
q ≈ 2.5 as used in Ref. [81] for determining various critical exponents. But one
has also to remark that the choice of the parameter q is in some way arbitrary
since for the calculation of the critical exponents always the estimate closest
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to q = 2.5 was chosen. This is only justified by the very good results, and by
the lack of extrapolation points.

The error of the reference values is much smaller than that of our result due
to the lack of extrapolation points. Since one needs a fit for the extrapolation
of the variational parameter q and of the critical exponent itself, one should
expect an error of at least approximately 5%.

For D = 3 the variational perturbation theory yields no unique results for
the critical exponents. As in the case D = 2 one is not able to find a solution for
the parameter q for the odd orders νm = 3 and νm = 5. Since with νm = 7 no
data are available for D = 3 due to the immense numerical effort, the question
whether one can reproduce the expected mean-field results with the variational
perturbation theory must remain open.

One can also apply the variational perturbation theory to the even orders
for D = 2 and D = 3. This leads to results which are not consistent with
the results for the odd orders and which do not lead to reliable values for the
critical exponents. Possibly this can be traced back to the zeros of α4 in the
vicinity of the critical hopping, as shown in Fig. 5.4(b). Further research is
necessary in order to clarify the properties of the even orders and the influence
of the variational perturbation scheme on them.

5.5.2 |ψ|6-approach

The logarithmic derivative (5.21) is now applied to the condensate density ρc,3

and the superfluid density ρsf,3 shown in Fig. 5.11(b). Fig. 5.14 shows the
derivatives for D = 2 and νm = 4, 6 of the condensate density. As one rec-
ognizes, both functions behave differently depending on the distance to the
respective critical hopping (J/U)(νm)

c . In the vicinity of (J/U)(νm)
c the func-

tions increase fast and converge to one. At a certain point the functions adopt
a nearly linear behavior with a monotonic decrease. It is a remarkable obser-
vation that for specific extrapolations for J/U−(J/U)(νm)

c → 0 of the segments
with a linear behavior one is able to calculate the critical exponents, as will be
demonstrated in the following.

In this Fig. 5.14 also the results for D = 3 are plotted. For this dimension
the logarithmic derivatives behave differently from that for D = 2 and appar-
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ently converge to one, which corresponds to the expected mean-field critical
exponent.

For the condensate density the derivative

d log ρ′
c,3 :=

d

dJ/U
d log ρc,3 (5.30)

of the logarithmic derivative is shown in Fig. 5.15. All derivatives are plotted for
those values of J/U − (J/U)(νm)

c for which the condensate and the superfluid
density are monotonically increasing. This is approximately the interval for
which the perturbation theory is valid.

For νm = 6 the derivative of d log ρc,3 is monotonically decreasing so that a
quadratic fit seems to be the best choice for an extrapolation. The horizontal
black line underneath each curve shows which part of the respective curve is
used for the fit. The derivative for νm = 4 is not monotonically decreasing so
that the minimum of the derivative is used as the boundary for the maximal
value of J/U .
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β(νm)
c υ(νm)

νm \ θ/L 0.001 0.01

4 0.5715 0.6446 0.6463

6 0.6153 0.6525 0.6541

∞ 0.7029 0.6683 0.6697

θ/L → 0 - 0.6681

Table 5.3: Shown are the results obtained when determining the critical expo-
nents with the |ψ|6-approach for the two-dimensional Bose-Hubbard model on
a square lattice.

The inset shows the derivative of d log ρsf,3. Both curves are decreasing after
a maximum in the vicinity of the critical point until a minimum is reached
after which both increase again. This behavior distinguishes them from that of
the condensate density. Here a linear fit gives the best results. The values for
which the logarithmic derivative is fitted is chosen by the maximal (J/U)max at
the end of both curves and the respective point (J/U)min with the same value
d log ρ′

c,3((J/U)min) = d log ρ′
c,3((J/U)max). This corresponds to an averaging

of the slope by a linear fit.

To sum up, these arguments lead to the conclusion that the best fit of the
logarithmic derivative of the condensate density is a quadratic fit and for the
logarithmic derivative of the superfluid density one does get the best results
with a linear fit. The results of this procedure are stated in Tab. 5.3. Again
one needs an extrapolation for θ/L → 0 for the superfluid density, which is
done linearly since only the two data points θ/L = 0.01 and θ/L = 0.001 are
available.

These results agree with the reference values of Tab. 2.4 remarkably well.
Both critical exponents, βc and υ, differ from the reference values stated in
Tab. 5.2 and Tab. 2.4 by less than 1%. But due to the various fitting schemes
required to get this result one should expect an error between roughly 5% and
10%. Especially the choice of the interval used for the fit of the logarithmic
derivatives d log ρc,3 and d log ρsf,3, respectively, is crucial for the final result,
but this interval is subject to a certain arbitrariness. Nonetheless both crit-



5.5 Critical exponents 113

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0  0.005  0.01  0.015  0.02  0.025

dl
og

ρ’
c,

3

J/U - (J/U)c
(νm)

νm= 4
νm= 6

-60

-40

-20

 0

 0  0.01  0.02
dl

og
ρ’

sf
,3 θ / L = 0.001
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ical exponents βc and υ obtained from the present |ψ|6-approach, and from
the |ψ|4-approach followed in the preceding subsection, agree significantly bet-
ter with the previous values obtained by Kleinert and Schulte-Frohlinde [97]
and by Guida and Zinn-Justin [98] from the φ4-theory than the values re-
cently obtained from a renormalization group approach to the Bose-Hubbard
model [182]. This indicates that the approaches put forward in this thesis have
a high potential, and thus deserve to be studied further.





6 Summary

In this thesis critical properties of the two- and three-dimensional Bose-Hub-
bard model have been evaluated, using the method of the effective action. To
this end, the coefficients αi in the expansion (4.13) of the effective action with
respect to the order parameter have been computed perturbativley with the
help of the process-chain approach, which allows one to perform expansions in
powers of the hopping strength numerically in high orders. These perturbative
results have then been extended into the non-perturbative regime by means of
variational perturbation theory as put forward by H. Kleinert.

• Knowledge of the coefficient α2 provides the boundary between the Mott
insulator and the superfluid phase. In Sec. 5.1 an extrapolation scheme
has been established which provides an upper and a lower bound on the
phase boundary, as depicted in Fig. 5.2. The results obtained in this
manner are fully consistent with those of previous calculations.

• Inside the superfluid region, lines of constant density have been computed
in Sec. 5.3, as shown in Fig. 5.7. In addition, both the condensate and the
superfluid density have been computed in Sec. 5.4, see Fig. 5.11. These
results demonstrate that the method of effective action actually enables
one to calculate quantities which are defined only inside the superfluid
region, although the underlying perturbative calculations start from the
ground state of the Mott insulator. In contrast to other methods, this
approach is particularly accurate in the vicinity of the phase boundary.

• Since D = 3 is the upper critical dimension of the Bose-Hubbard model,
where the critical exponents coincide with those given by mean-field the-
ory, a calculation of the critical exponents for D = 2 is of particular inter-
est. In Sec. 5.5.1 the critical exponents βc for the condensate density and
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υ for the superfluid density have been obtained from the coefficients α2

and α4, combining the process-chain approach with variational perturba-
tion theory. The results, listed in Tab. 5.2, indicate that this approach
indeed is viable.

• In Sec. 5.5.2 the critical exponents have been obtained by evaluating
also the coefficient α6; see Fig. 5.14. The fact that the data obtained
in this manner, listed in Tab. 5.3, agree quite well with those of the
previous approach is a quite important confirmation of consistence, since
variational perturbation theory is not used here.

It might be interesting to ask whether the methods developed in this thesis
can be refined and extended such that they yield the critical properties of the
Bose-Hubbard model with even higher accuracy. It should also be emphasized
that these methods are not restricted to the Bose-Hubbard model, but should
be adaptable in a straightforward manner to other models.
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