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Abstract

Weakly interacting Bose gases in a disorder environment have long been a challenging topic in the field
of solid-state physics due to the intriguing interplay between superfluidity and localization. In this the-
sis we investigate theoretically the equilibrium properties of one- and three-dimensional harmonically
trapped dirty Bose-Einstein condensates (BECs). In particular we focus on the decomposition of the
total particle density into three components, namely, the condensate density, the thermal density, and
the density of fragmented local Bose-Einstein condensates within the respective minima of the random
potential landscape. In order to determine the different density components we develop a Hartree-Fock
mean-field theory for a weakly interacting trapped BEC in a random environment, then specialize it
to contact interaction and delta-correlated disorder. This non-perturbative theory is worked out on
the basis of the replica method, which represents a well-established tool to deal with disorder prob-
lems. With this we calculate the corresponding free energy at finite temperature and derive from it
the underlying self-consistency equations for the respective density components.
Then, as a first step, we investigate a quasi one-dimensional Bose-Einstein condensed gas in a har-

monic trapping potential with an additional delta-correlated disorder potential at zero temperature.
To this end we solve the self-consistency equations within the Thomas-Fermi approximation and find
the emergence of a Bose-glass region, where the condensate vanishes. We corroborate this analy-
sis by an elaborate numerical treatment, where the corresponding one-dimensional time-independent
Gross-Pitaevskii equation is numerically solved and disorder-ensemble averages of the condensate wave
function are performed. The variance of the condensate wave function quantifies the number of bosons
which condense in the local minima of the random potential. For weak disorder these mini-condensates
turn out to occur preferentially at the border of the condensate, while for intermediate disorder strength
this happens in the trap center. Additionally we use a variational ansatz in order to describe analytically
the numerically observed redistribution of the fragmented mini-condensates with increasing disorder
strength.
In close analogy to the one-dimensional case we then treat the three-dimensional dirty Bose gas

in an isotropic harmonic trap and a delta-correlated disorder potential at zero temperature using
the corresponding self-consistency equations obtained via the Hartree-Fock mean-field theory within
the Thomas-Fermi approximation. Additionally we use a variational ansatz, whose results turn out to
coincide qualitatively with those obtained from the Thomas-Fermi approximation. In particular, a first-
order quantum phase transition from the superfluid phase, where the condensate density contributes to
the total density, to the Bose-glass phase, where all particles are in the mini-condensates, is detected at a
critical disorder strength, which agrees with findings in the literature. Furthermore, in a general triaxial
harmonic trap, we investigate the geometric effect of different trap aspect ratios on the respective
properties of the dirty BEC system.
Finally, we consider the three-dimensional dirty BEC at finite temperature. This allows us to study

the impact of both temperature and disorder fluctuations on the respective components of the density
as well as their Thomas-Fermi radii. In particular, we find that the superfluid region, the Bose-glass
region, and the thermal region coexist. Furthermore, depending on the system parameters, three phase
transitions are detected, namely, one from the superfluid to the Bose-glass phase, one from the Bose-
glass to the thermal phase, and finally one directly from the superfluid to the thermal phase. All these
results could be particularly useful for a quantitative analysis of world-wide on-going experiments with
dirty bosons in quasi one-dimensional and three-dimensional harmonic traps.
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Kurzzusammenfassung

Schwach wechselwirkende Bose-Gase in einer Unordnungsumgebung sind aufgrund des interessanten
Zusammenspiels von Superfluidität und Lokalisierung seit langem ein schwieriges Thema im Gebiet
der Festkörperphysik. In dieser Arbeit untersuchen wir theoretisch die Gleichgewichtseigenschaften
eines ein- und eines dreidimensionalen harmonisch gefangenen schmutzigen Bose-Einstein-Kondensates
(BEKs). Insbesondere konzentrieren wir uns auf die Zerlegung der totalen Teilchendichte in seine
drei Komponenten, nämlich die Kondensatdichte, die thermische Dichte und die Dichte der frag-
mentierten Bose-Einstein-Kondensate innerhalb der jeweiligen Minima der zufälligen Potentialland-
schaft. Um die verschiedenen Dichtekomponenten zu bestimmen, entwickeln wir eine Hartree-Fock-
Molekularfeldtheorie für ein schwach wechselwirkendes gefangenes BEK in einer Zufallsumgebung, dann
spezialisieren wir diese auf eine Kontaktwechselwirkung und eine delta-korrelierter Unordnung. Diese
nichtstörungstheoretische Theorie wird auf der Grundlage der Replika-Methode ausgearbeitet, die eine
wohletablierte Methode zur Behandlung von Unordnungsproblemen darstellt. Damit berechnen wir
die entsprechende freie Energie bei endlicher Temperatur und leiten daraus die zugrunde liegenden
Selbstkonsistenzgleichungen für die jeweiligen Dichtekomponenten ab.
Dann untersuchen wir als ersten Schritt ein quasi eindimensionales Bose-Einstein kondensiertes Gas

in einem harmonischen Fallenpotential mit einem zusätzlichen delta-korrelierten Unordnungspoten-
tial am absoluten Temperaturnullpunkt. Hierzu lösen wir die Selbstkonsistenzgleichungen mit der
Thomas-Fermi-Näherung und finden die Emergenz einer Bose-Glas-Region, wo das Kondensat ver-
schwindet. Wir untermauern diese Analyse mit einer aufwändigen numerischen Behandlung, bei der
die entsprechende eindimensionale zeitunabhängige Gross-Pitaevskii-Gleichung numerisch gelöst wird
und Unordnungsensemble-Mittelwerte für die Kondensatwellenfunktion berechnet werden. Die Vari-
anz der Kondensatwellenfunktion quantifiziert die Zahl der Bosonen, die in den lokalen Minima des
Zufallspotentials kondensieren. Für schwache Unordnung stellt sich heraus, dass diese Minikonden-
sate bevorzugt am Rande des Kondensates auftreten, während für mittlere Unordnungsstärke dies
nur im Fallenzentrum auftritt. Außerdem verwenden wir einen Variationsansatz, um die numerisch
beobachtete Umverteilung der fragmentierten Minikondensate mit zunehmender Unordnungsstärke an-
alytisch beschreiben zu können.
In enger Analogie zum eindimensionalen Fall behandeln wir dann das dreidimensionale schmutzige

Bose-Gase in einer isotropen harmonischen Falle und einem delta-korrelierten Unordnungspotential am
absoluten Temperaturnullpunkt mit Hilfe der entsprechenden Selbstkonsistenzgleichungen, die im Rah-
men der Hartree-Fock-Molekularfeldtheorie in Thomas-Fermi-Näherung gewonnen wurden. Zusätz-
lich verwenden wir einen Variationsansatz, dessen Resultate qualitativ mit denen der Thomas-Fermi-
Näherung übereinstimmen. Insbesondere finden wir einen Quantenphasenübergang erster Ordnung
von der superfluiden Phase, wo die Kondensatdichte zur totalen Dichte beiträgt, zu der Bose-Glas-
phase, wo sich die Teilchen in den Mini-Kondensaten aufhalten, bei einer kritischen Unordnungsstärke,
die mit den Ergebnissen der Literatur übereinstimmt. Außerdem untersuchen wir in einer allgemein
tri-axialen harmonischen Falle den geometrischen Effekt verschiedener Frequenzverhältnisse auf die
entsprechenden Eigenschaften des schmutzigen BEK-Systems.
Abschließend betrachten wir ein dreidimensionales schmutziges BEK bei endlicher Temperatur. Dies

erlaubt es uns, den Einfluß sowohl von thermischen als auch von Unordnungs-Fluktuationen auf die je-
weiligen Komponenten der Dichte sowie der Thomas-Fermi-Radien zu untersuchen. Insbesondere finden
wir, dass die superfluide Region, die Bose-Glas-Region und die thermische Region koexistieren. Ferner
werden abhängig von den systemparametern drei Phasenübergänge beobachtet, nämlich einer von der
superfluiden zur Bose-Glas-Phase, einer von der Bose-Glas zur thermischen Phase, und schließlich einer
direkt von der superfluiden zur thermischen Phase. All diese Resultate könnten besonders nützlich
sein, um laufende Experimente mit schutzigen Bosonen in quasi ein- und dreidimensionalen Fallen
quantitativ zu analysieren.
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1. Introduction

Bose-Einstein condensation has long been an important topic in the field of solid-state physics and has
been intensely explored both theoretically and experimentally. The reason of this is that the Bose-
Einstein condensation is a promising tool for simulating other quantum many-body systems in the
sense of Feynman [1]. Bose-Einstein condensation in a disordered environment, known as the dirty
boson problem, represents a quite intriguing theoretical challenge because it involves many parameters
and combines the effect of both two-particle interactions and disorder. In order to tackle the dirty
boson problem in the present thesis we use a mathematical tool called replica method, which was
originally developed for analyzing the spin-glass problem.
In this chapter, we present a brief summary of the history, recent experiments, and the theoretical

description of Bose-Einstein condensation and disordered systems. Furthermore, the principle of the
replica method will be explained.

1.1. Bose-Einstein Condensates

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of weakly interacting bosons
confined in an external potential and cooled to temperatures near to absolute zero. As the density
increases or the temperature decreases, the number of accessible states per particle becomes smaller,
and at some point more particles begin to act collectively and are forced to occupy the lowest quantum
state. The latter contains then more particles than maximally allowed according to the thermal
occupation. From this point on, any extra particle added goes into the quantum mechanical ground
state. So to speak, Bose-Einstein condensation, where the quantum effects become apparent on a
macroscopic scale, appears as a saturation in the excited states population resulting from Bose-Einstein
statistics. This transition to BEC occurs for a homogeneous system below a critical temperature

Tc =
(

n
ς(3/2)

)2/3
2π~2
MkB

, where n denotes the particle density, ~ the Planck’s constant, M the atomic
mass, and kB the Boltzmann constant.

1.1.1. History

In 1924, the Indian physicist and mathematician Bose derived the Planck law for black-body radiation
from new statistical counting rules for light quanta (photons), without resorting to the results from
classical electrodynamics [2]. Einstein translated his paper into German, reviewed it, extended his work
to massive particles, and presented the basic idea of a BEC in 1925 for an ideal gas of identical atoms
which are at thermal equilibrium in a box [3]. He predicted that, at sufficiently low temperatures,
the particles would accumulate in the lowest quantum state in the box and would merge into a giant
superatom. Locked together, moving as one, this condensate of atoms would become a new state of
matter, different from solid, liquid or gas. The condition for this to happen is that the de Broglie
wavelength, λdB = h

mv , of each atom must be large enough to overlap with its neighbor. Einstein’s
new theory was criticized at the time, since all real gases were already condensed to liquids or solids.
Furthermore, the absence of interactions in the theory made his prediction difficult to test in practice
at that time.
After discovering the superfluidity of 4He, which is a boson, in 1938 by Kapitsa, London was the

one to suggest an approach for realizing a BEC by using superfluid liquid 4He. After realizing that
the predicted Tc was a good estimate of the superfluid transition in 4He and that the specific heat of
the ideal gas had a peak at Tc, he came with the idea that BEC is a possible mechanism underlying
superfluidity in liquid 4He, although this strongly interacting quantum many-body system is quite
different from the ideal gas considered by Einstein. This gave Einstein’s theory new life. Einstein’s

11



1. Introduction

Figure 1.1.: Absorption images of an expanding rubidium cloud. (a) thermal gas, T = 1.1Tc, (b) double
peak structure, with a Bose-Einstein condensate surrounded by a thermal gas, T = 0.6Tc,
and (c) almost pure condensate, T = 0.3Tc [4].

theory was extended to describe the interacting Bose gas in 1947 by Bogoliubov, who introduced a
mean-field theory to account for atom-atom interactions within a homogeneous gas [5].
In the early 1950s, the interest in finding BEC in a dilute weakly interacting Bose gas started to

develop. Yang and his collaborators considered a many-body system with hard-sphere interaction
and treated this within Bogoliubov theory at zero temperature [6, 7]. Gross and Pitaevskii derived
independently in 1961 a specialization of Bogoliubov’s theory [8, 9]. They described in mean-field
theory at zero temperature a system of N interacting bosons in an external field where the interaction
between two particles is replaced by an effective interaction. The validity of the Gross-Pitaevskii
equation is based on the condition that the s-wave scattering length is much smaller than the average
distance between the atoms and that the number of particles in the condensate is large.
Due to the developments in magnetic trapping, laser and evaporative cooling of alkali atoms in the

80’s, the experimental realization of BEC became finally possible. The laser cooling was first proposed
by Wineland and Dehmelt as well as by Hänsch and Schawlow in 1975 and became applicable by Chu,
Cohen-Tannoudji, and Phillips, who were awarded the 1997 Nobel Prize in Physics for their work on
laser cooling.
Finally, in 1995 Cornell and Wieman from the JILA group created the first BECs in trapped ultracold

dilute atomic gas 87Rb [10, 11]. A few months later, one more BEC was created with 23Na at MIT in
Ketterle’s group [12]. The Nobel Prize in Physics in 2001 was awarded to Cornell, Wieman, and Ketterle
for their achievements. One month after the first BEC’s realization another one was announced in 7Li,
which has attractive interactions, in the Rice University in Hulet’s group [13, 14]. In 1998 Kleppner
and his co-workers in MIT condensed 1H [15]. 4He was also condensed in 2001 in ENS in Aspect’s
group [16]. Fig. 1.1. shows the two-component density distribution, which is a signature of Bose-
Einstein condensation, as observed in this experiment with time-off-flight absorption pictures. The
peaked anisotropic condensate density below Tc is clearly visible in the middle of a spherical thermal
cloud.

1.1.2. Experimental Realization

Current research in BEC focuses on the creation of the condensate in dilute gases because at the
temperatures needed to produce the BEC, most media condense to liquid or solid and the localization
of the atoms/molecules prevents the BEC transition from occurring.
The process starts by trapping atoms moving in all directions. In order to counter each component

of motion for particles with either positive or negative velocity one needs six lasers. In the same
configuration as the lasers, coils are used to create magnetic fields in order to confine the gas and to
keep the atoms from hitting the walls of the apparatus and warming them up.
To cool the dilute trapped gas to a temperature of about 100 µK the laser cooling technique is

used. In this technique a laser photon hits the atom in one direction and causes it to emit photons
in all directions of a higher average energy than the one it absorbed from the laser. The energy
difference comes from thermal excitations within the atoms, and this heat from the thermal excitation
is converted into light which then leaves the atom as a photon. This operation is repeated as much as
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1.2. Disorder

Figure 1.2.: BEC apparatus: the six red lines represent lasers used for laser trapping and cooling, the
two green coils are for vertical magnetic field production and the four blue coils are for
horizontal magnetic field production. Atoms from the Rb source are trapped in the center
of this apparatus [10].

it is needed.
Laser cooling cannot bring the atoms down to the temperature needed for Bose-Einstein condensa-

tion. Evaporative cooling allows the most energetic of the trapped atoms to escape, lowering the total
energy of the resulting system. A simple BEC apparatus for trapping and cooling atoms is shown in
Fig. 1.2.
In order to distinguish between the different components in a BEC cloud, the time-of-flight (TOF)

method is used. The idea of TOF is to turn the trap off and to wait a certain amount of time before
taking a shadow image of the atoms. During this time, the atoms will drop due to gravity and expand
due to their velocity. A normal atom cloud will display a Gaussian distribution after TOF. From the
shadow image after a long enough TOF, we should observe a bimodal distribution of atoms right at
the BEC transition, see Fig. 1.3. The BEC expansions show a cloud aspect ratio inversion due to
Heisenberg principle.
Bose-Einstein condensates have already proven to be a source of inspiration for theoreticians with a

background in condensed matter, and reciprocally condensed matter has inspired many beautiful ex-
periments with ultracold gases. A Bose-Einstein condensate of an atomic gas also exhibits superfluidity.
Experiments have confirmed the superfluid behavior by demonstrating a critical velocity below which
a laser beam could be moved through the gas without causing excitations [17]. The critical velocity
is the velocity above which superfluidity is destroyed and the corresponding theory earned Landau
the Nobel Prize in physics in 1962 [18]. Another evidence for superfluidity, as it was predicted by
Onsager and developed by Feynman, is the observation of quantum vortices in a rotating BEC [19,20].
Recently, a persistent flow of Bose-condensed atoms was observed in a toroidal trap [21], which is a
striking demonstration of superfluid behavior. These characteristic properties make the BEC a model
system for superfluidity, but although the phenomenon of superfluidity is related to BEC, but it is not
identical: not all superfluids are BECs as for instance a two-dimensional weakly interacting Bose gas.

1.2. Disorder

In real systems, disorder is always present to some extent. It is described by a random external
potential which is characterized by a strength, which is the average height of its maxima and depth
of its minima, as well as a correlation length, which represents the average width of its maxima and
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Figure 1.3.: An example of a time of flight expansion of a Bose condensate [22].

Figure 1.4.: One realization of a disorder potential, which shows a random distribution of maxima and
minima.

minima, see Fig. 1.4. Thus, the theory of disordered systems has become increasingly important
over the past few decades. It describes unknown properties of a specific model with the help of
random functions and has been applied to a wide range of physical, chemical, and biological problems.
Taking into account disorder makes theoretical models for these experiments more realistic. Random
potentials find areas of application even far from its physical origins. For example, the transport in
random media and diffusion-controlled reactions can be modeled by random walks in random trapping
environments [23,24]. The dynamics of stock markets have also been modeled as a tracer in a Gaussian
random field [25]. Furthermore, the behavior of polymer chains in random media is strongly connected
to this field of study [26]. And due to the discovery of new experimental techniques, researchers are
currently able to investigate thoroughly this field.
Disorder appears either naturally as, e.g., in magnetic wire traps [27–30], where imperfections of the

wire itself can induce local disorder, or it may be created artificially and controllably as, e.g., by the
use of laser speckle fields [31–34]. The speckle effect is an interesting disorder problem. It is a result
of the interference of many waves of the same frequency, and different phases and amplitudes, which
add together to give a resultant wave whose amplitude and intensity is constant over time, but varies
randomly in space [35], see Fig. 1.5. The effects of disorder on the phases and phase transitions in
many-body quantum systems have been of intense interest for many decades.
In the context of disorder theory, the Sherrington-Kirkpatrick (SK) model describing spin-glasses,

i.e., disordered magnets where the magnetic spins of the respective atoms are not aligned in a regular
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(a) (b)

Figure 1.5.: (a) Schematic representation of speckle formation [36] and (b) typical speckle pattern [37].

pattern, is especially important as it has been studied capaciously [38]. One imagines half of the bonds
between two spins randomly chosen as ferromagnetic and the other half as antiferromagnetic. The SK
model describes this situation via an Ising model in which the spins are coupled by random infinite-
range interactions. These interactions are assumed to be independent and normally distributed [38–40].

1.3. Dirty Bosons

The dirty boson problem is defined as a system of interacting bosons in a random potential [41]. The
combined effect of disorder and interactions represents one of the most challenging problems in con-
densed matter physics due to the delicate interplay between localization and superfluidity. Cold atoms
provide a controlled realization in which the question of interacting bosons in a random environment
can be addressed in a quantitative way. Furthermore, the presence of disorder in BEC causes the
emergence of a new phase, which is called a Bose-glass phase due to the localization of bosons in
the random potential landscape. This Bose-glass phase is insulating and is characterized by a finite
compressibility, by the absence of a gap, and by an infinite superfluid susceptibility [41].
The earliest relevant experiments, which were central for motivating the research of the dirty boson

problem, dealt with superfluidity of thin films of 4He adsorbed in porous Vycor glass in the low density
limit [42]. There it was proven that despite disorder superfluidity still persists in Helium in porous
media.
An optical lattice is formed by the interference of counter-propagating laser beams, creating a

spatially periodic polarization pattern. The resulting periodic potential may trap cooled atoms in the
locations of its minima. Imposing a pseudo random potential created by a second additional lattice to
an ultra cold Bose gas in an optical lattice is shown to provide an ideal system for controlled analysis
of disordered Bose lattice gases [43]. This was, later on, realized experimentally in Hanover [44].
An optical speckle potential was also used to investigate the properties of BEC in the presence of
disorder [32], as well as the transport properties of an interacting BEC in a random potential [33].
Non-interacting particles in a random environment can be localized provided that the disorder is

sufficiently strong. This phenomenon of Anderson localization occurs as the particles are repeatedly
reflected back in the random potential, so interferences yield exponentially localized one-body wave
functions [45]. In one dimension Anderson localization was experimentally found in an ultracold Bose
gas in Refs. [46,47], where the random or quasi-random disorder potential was either produced by laser
speckles or by an incommensurable optical lattice, respectively, where the disorder is created through
two interfering laser beams with incommensurable wavelengths producing a quasi periodic potential.
One can even speak about Anderson localization of light waves [48, 49], which was experimentally
realized in 3D random media [50,51], 2D [52], and 1D [53], where the Anderson localization is observed
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in a perturbed periodic potential and is caused by random fluctuations on a photonic lattice.
Within a BEC, which is a many-particle interacting system, the presence of disorder causes the

emergence of a new phase besides the superfluid phase (SF), which is called a Bose-glass phase due to
the localization of bosons in the respective minima of the random potential landscape. Indications for
the existence of the Bose-glass phase were found, for instance, in the experiments of Refs. [32, 54, 55].
There it was shown within the superfluid phase that an increasing disorder strength yields first a
fragmentation of the condensate due to the formation of tiny BEC droplets in the minima of the
random environment. For sufficiently strong disorder the condensate then turns out to be completely
destroyed as all bosons are localized in the minima of the random potential, which represents the
Bose-glass phase. Localization inside BEC due to disorder created by atomic impurities of another
species trapped in the nodes of an optical lattice was also proposed and studied theoretically by Gavish
and Castin [56], and recently observed experimentally in Ref. [57]. In the presence of disorder a phase
transition occurring at zero temperature, as a function of some auxiliary control parameter, such as
density or magnetic field, is known as a quantum phase transition (QPT) since the particle dynamics
are provided purely by the quantum fluctuations of the ground state wave function [58]. One can say
that the disorder is so large that it destroys superfluidity. The SF-BG transition attracts a continuous
theoretical interest [59–63].
Theoretically, the dirty boson problem was treated via two complementary approaches. The first one

applies the Bogoliubov theory [5] and treats disorder, quantum, and thermal fluctuations perturba-
tively, which is only valid in systems with sufficiently small random potential and interaction strength
at low enough temperatures [64]. With this it was found that a weak random disorder potential leads
to a depletion of both the condensate and the superfluid density due to the localization of bosons in the
respective minima of the random potential. This seminal Huang-Meng theory was later on extended
in different research directions. Results for the shift of the velocity of sound as well as for its damping
due to collisions with the external field are worked out in Ref. [65]. Furthermore, the original special
case of a delta-correlated random potential was generalized to experimentally more realistic disorder
correlations with a finite correlation length, which describe, for instance, the pore size dependence of
Vycor glass. A Gaussian correlation was discussed in Ref. [66], whereas laser speckles are treated in
Refs. [67,68]. Also the disorder-induced shift of the critical temperature was analyzed in Refs. [69,70].
Furthermore, it was shown in Refs. [71–75] that dirty dipolar Bose gases yield even at zero temper-
ature characteristic directional dependences for thermodynamic quantities due to the anisotropy of
superfluidity. The recent perturbative work [76, 77] studies even in detail the impact of the external
random potential upon the quantum fluctuations. Despite all these many theoretical predictions of the
Huang-Meng theory, which also affect the collective excitations frequencies of harmonically trapped
dirty bosons [78], so far no experiment has tested them quantitatively.
On the other hand the dirty boson problem was also tackled non-perturbatively in different ways. A

major result is that, increasing the disorder strength at zero temperature, yields a first-order quantum
phase transition from a superfluid to a Bose-glass phase, where in the latter all particles reside in
the respective minima of the random potential. This prediction is achieved for three dimensions by
solving the underlying Gross-Pitaevskii equation with a random phase approximation [79] as well as by
a stochastic self-consistent mean-field approach using two chemical potentials, one for the condensated
and one for the excited particles [80, 81]. Dual to that the non-perturbative approach of Refs. [82, 83]
investigates energetically shape and size of the local minicondensates in the disorder landscape and
deduces from that at which disorder strength the Bose-glass phase becomes unstable and goes over into
the superfluid. At finite temperatures the location of superfluid, Bose-glass and normal phase in the
phase diagram was qualitatively analyzed in Ref. [84] on the basis of a Hartree-Fock mean-field theory
with the replica method. Also Monte-Carlo (MC) simulations have been applied towards the disorder
problem. Diffusive MC in Ref. [85] obtained the surprising result that a strong enough disorder yields
a superfluid density which is larger than the condensate density. Furthermore, worm MC [86, 87] was
able to determine the dynamic critical exponent of the quantum phase transition from the Bose-glass
to the superfluid in two dimensions.
Although this intriguing problem has been intensively studied for more than 20 years, many chal-

lenges remain. In particular the precise phase diagram is still under debate, and a good control, either
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analytical or numerical, on what happens for strong disorder is still lacking.

1.4. Replica Method

A standard method to deal with disorder problems is a mathematical trick called the replica method
[40, 88, 89]. It was proposed by Parisi in 1980 and has proven to be successful within the study of the
Sherrington-Kirkpatrick (SK) model, which is an Ising model with long range frustrated ferro- and
antiferromagnetic couplings, and other disorder problems. This method turned out to give the exact
mathematical solution for the SK model. The replica method is used to rewrite a model system in form
of a many-particle problem. This has the advantage of stating the problem in terms of its correlation
function instead of the random potential. Instead of treating the actual problem, one looks at N copies
of the system. The central idea of the replica trick is to analytically continue the replicated system in
the limit N → 0.
The free energy F for a fixed realization of the disorder potential of a system can be stated as
− 1
β lnZ, where Z is the grand-canonical partition function of the system, β = 1/kBT is the reciprocal

temperature, and T is the temperature. Hence, the system’s free energy F is given as the free energy
for fixed disorder potential averaged over all its realizations:

F = − 1

β
lnZ, (1.1)

where • corresponds to the disorder average over many realizations.
In general it is not possible to explicitly evaluate expression (1.1), as the two operations of averaging

with respect to the disorder potential and the nonlinear function of the logarithm do not commute:

lnZ 6= lnZ . (1.2)

The replica method, to perform the averaging procedure prescribed by (1.1), is provided by investigat-
ing the N th power of the grand-canonical partition function Z in the limit N → 0:

ZN = eN lnZ = 1 +N lnZ + . . . , (1.3)

where ZN is the replicated partition function. Thus, we deduce for the free energy (1.1):

F = − 1

β
lim
N→0

ZN − 1

N
. (1.4)

The fact that all N replicas are identical, known as replica symmetry, simplifies the calculation
further. Although the replica method has proven to be successful many times, this procedure is still
quite ambiguous from a rigorous mathematical point of view because of the N → 0 limit. After
obtaining a solution, it is important to find the area of its stability. Almeida and Thouless [90, 91]
developed a mathematical method to determine the Almeida-Thouless line, which separates the stable
solutions from the unstable ones, and thus finds the limit of stability for the RS solutions of the SK
model. The criterion to test the stability of the system is to evaluate the eigenvalues of the Hessian,
which is computed as the second derivative of the free energy with respect to the respective variational
parameters. The stability requires the eigenvalues to be positive definite. Thus, at high temperatures
or in the case of weak correlation, the replica-symmetric ansatz turns out to be intrinsically correct but
it can break down spontaneously under a critical temperature as has been shown in certain models [92],
e.g., the SK model. In order to analyze that in more detail, Parisi introduced the scheme of replica-
symmetry breaking (RSB) [39, 93–95]. This was shown to give a stable solution for the SK model for
all temperatures. His method turned out to be a major breakthrough in disorder theory. The physical
origin of RSB is the existence of many local minima of the complicated free energy, which are separated
by high barriers. The pattern of RSB depends on the range of correlations of the random potential. For
short-range correlations a one-step RSB has been found sufficient, whereas for long-ranged correlations
a continuous RSB has turned out to be necessary [95,96]. Practically one can compare the free energies
associated with the RS and RSB solutions and verify whether the free energy of the RSB solution is
smaller. If this is the case this indicates that RS has to be broken.
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Figure 1.6.: Distribution of bosons in the superfluid (SF) region, where the condensate density n0 (r),
the Bose-glass order parameter q (r) , and the thermal density nth (r) contribute to the
total density n (r) = n0 (r) + q (r) + nth (r). In the Bose-glass region the condensate
vanishes and in the thermal region all particles are in the excited states.

1.5. Outline of Thesis

In this thesis we investigate the equilibrium properties of one-dimensional and three-dimensional har-
monically trapped dirty BEC. In particular, we work out the decomposition of total particle density
into three components, namely, the condensate density, the density of fragmented local Bose-Einstein
condensates within the respective minima of the random potential landscape, and the thermal density
(see Fig. 1.6). We investigate the effect of both disorder and temperature fluctuations on the size of
these three regions. To this end, we organize the thesis as follows:
In Chapter 2, we extend the non-perturbative mean-field approach of a three-dimensional weakly

interacting homogeneous Bose gas in a delta-correlated disorder potential developed in Ref. [84] to
the experimentally relevant trapped confinement via a semi-classical approximation and to a general
number of spatial dimensions [97]. To accomplish this, we describe a trapped weakly interacting dirty
Bose gas at finite temperature, then we develop, for this model, a general Hartree-Fock mean-field
theory worked out on the basis of the replica method. At a certain level of this theory we restrict
ourselves to a delta-correlated disorder potential and contact interaction potential for the dirty BEC
model. Subsequently, we derive the free energy as well as the underlying self-consistency equations for
the three components of the particle density, namely, the condensate density, the density of fragmented
local Bose-Einstein condensates within the respective minima of the random potential landscape, and
the thermal density. In addition, both three and one spatial dimension are treated as special cases.
In Chapter 3, we investigate in detail the self-consistency equations and the free energy derived from

the Hartree-Fock mean-field theory for the quasi-one-dimensional dirty BEC at zero temperature [98].
We treat first the homogeneous case then the harmonic trap potential in Thomas-Fermi approximation
for weak disorder. To this end we determine the particle density, which turns out to be decomposed
into the condensate density and the density of fragmented minicondensates in the local minima of
the disorder potential. Afterwards, we develop a numerical treatment for solving the underlying one-
dimensional time-independent Gross-Pitaevskii equation and performing disorder-ensemble averages
of the condensate wave function. In particular, we analyze quantitatively the emergence of mini-
condensates in the local minima of the random potential, which occurs for weak disorder preferentially
at the border of the condensate, while for intermediate disorder strength this happens in the trap
center. In the intermediate disorder regime we additionally use a variational ansatz in order to describe
analytically the numerically observed redistribution of the fragmented mini-condensates with increasing
disorder strength. Furthermore, we tackle the delicate question whether a quantum phase transition
from the superfluid to the Bose-glass phase exists in the one-dimensional dirty BEC.
In Chapter 4, we consider the dirty three-dimensional BEC system at zero temperature, so the

thermal density vanishes [99]. This allows us, as a first step, to study the impact of the disorder
on only the distribution of the condensate density and the Bose-glass order parameter, which is the
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density of the bosons in the local minima of the disorder potential, as well as the corresponding
Thomas-Fermi radii. We treat first the simpler homogeneous case, then we investigate the isotropic
harmonically trapped one. Using the corresponding self-consistency equations obtained via the Hartree-
Fock mean-field theory we investigate within the Thomas-Fermi approximation the existence of the
Bose-glass phase. We additionally use a variational ansatz, whose results coincide qualitatively with
the ones obtained via the Thomas-Fermi approximation. In particular, a first-order quantum phase
transition from the superfluid phase to the Bose-glass phase is detected at a critical disorder strength,
which agrees qualitatively with the literature. We also compare qualitatively the one-dimensional and
the three-dimensional results obtained in Chapters 3 and 4, respectively. Furthermore, in a general
triaxial harmonic trap, we investigate the geometric effect of different trap aspect ratios on the different
properties of the dirty BEC system.
Then, we consider the three-dimensional BEC system to be at finite temperature in Chapter 5

[99]. We restrict ourselves first to the dirty homogeneous case, after that to the trapped clean case.
Afterwards we treat the disordered trapped case using the Thomas-Fermi approximation. This allows
us to study the impact of both temperature and disorder on the respective components of the density
as well as the Thomas-Fermi radii. In particular, three regions coexist, namely, the superfluid region,
the Bose-glass region, and the thermal region. Furthermore, three phase transitions are detected, one
from the superfluid to the Bose-glass phase, one from the Bose-glass to the thermal phase, where all
bosons are in the excited states, and finally one directly from the superfluid to the thermal phase.
In Chapter 6, finally, we summarize our thesis and present the outlook.
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2. Hartree-Fock Mean-Field Theory for Dirty
Bosons

After having introduced the problem of dirty bosons in the previous chapter, we proceed now with
describing a trapped weakly interacting Bose gas with disorder and working out its thermodynamic
properties. In order to study this model, a general Hartree-Fock mean-field theory is developed using
the replica method. At a certain level of this theory we restrict ourselves to a δ-correlated disorder
potential for our BEC model. Subsequently, the thermodynamic properties are derived from solving
the underlying self-consistency equations resulting for both three and one spatial dimension.

2.1. Disorder Potential

Usually, one studies bosons moving in a one-particle potential U (x) which is fixed by an external
magneto-optical trap. Here, however, we consider a different physical situation, where the one-particle
potential U(x) is fluctuating at each space point x (see Fig. 2.1). Such a frozen disorder potential
serves for modeling superfluid helium in porous media [42, 100–102], where the pores can be modeled
by randomly distributed local scatterers. In the following we assume for the disorder potential that it
is homogeneous after the disorder ensemble average, i.e., after having performed the average • over all
possible realizations. Thus, the average value of the disorder potential, without loss of generality, will
be assumed to vanish

U(x) = 0. (2.1)

Indeed, due to the homogeneity, the disorder ensemble average U(x) represents a constant, which
can be absorbed into the chemical potential within a grand-canonical description. Furthermore, a
homogeneous disorder potential has a correlation function, which depends on the difference of the
space points:

U(x1)U(x2) = D(x1 − x2) . (2.2)

In case of a Gaussian correlated disorder in n spatial dimensions we have

D(x1 − x2) = D
e−(x1−x2)2/2σ2

(2πσ2)n/2
, (2.3)

where its correlation length σ can be identified with the average extension of the pores [103]. If one is
not interested in a quantitative model for interpreting experimental measurements, one can neglect this
spatial extension of the pores. In the limit of a vanishing correlation length σ we obtain a qualitative
model for disordered bosons with a delta correlation:

D(x1 − x2) = D δ(x1 − x2) . (2.4)

Here the parameter D is proportional to the density of pores and represents a measure for the disorder
strength.
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x

UHxL

Figure 2.1.: Example for a realization of a frozen disorder potential U(x) with vanishing expectation
value (2.1).

As a next step we consider the probability distribution P [U ], which is a functional of the disorder
potential U(x). To this end we define expectation values such as (2.1) and (2.2) by the functional
integral:

• =

ˆ
DU • P [U ] . (2.5)

Here the functional integral stands for an infinite product of ordinary integrals with respect to all
possible values of the disorder potential U(x) at all space points x [104, Chap.1]:

ˆ
DU =

∏
x

ˆ ∞
−∞

dU(x) . (2.6)

The functional integral measure has to be chosen according toˆ
DU P [U ] = 1 , (2.7)

so that the probability distribution is normalized: 1 = 1. Provided that P [U ] is Gaussian distributed,
it is uniquely fixed by both expectation values (2.1) and (2.2) according to

P [U ] = exp

{
−1

2

ˆ
dnx

ˆ
dnx′D−1(x− x′)U(x)U(x′)

}
, (2.8)

where the integral kernel D−1(x−x′) represents the functional inverse of the correlation function (2.3):
ˆ
dnxD−1(x1 − x)D(x− x2) = δ(x1 − x2) . (2.9)

For instance, we obtain for the δ-correlation (2.4) from (2.9) the integral kernel:

D−1(x1 − x2) =
1

D
δ(x1 − x2) . (2.10)

We are interested in calculating higher moments of the probability distribution (2.8). To this end we
consider the following generating functional

I[j] = exp

{ˆ
dnx j(x)U(x)

}
, (2.11)

with the auxiliary current field j(x) which leads according to (2.5) and (2.8) to the Gaussian functional
integral

I[j] =

ˆ
DU exp

{
−1

2

ˆ
dnx

ˆ
dnx′D−1(x− x′)U(x)U(x′) +

ˆ
dnx j(x)U(x)

}
(2.12)
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with the result [104, Chap.1]

I[j] = exp

{
1

2

ˆ
dnx

ˆ
dnx′D(x− x′)j(x)j(x′)

}
. (2.13)

The respective moments of the probability distribution (2.8) follow from successive functional deriva-
tives of the generating functional (2.11) with respect to the auxiliary current field j(x). Thus, we obtain
for the first two moments

U(x1) =

ˆ
DU U(x1) exp

{
−1

2

ˆ
dnx

ˆ
dnx′D−1(x− x′)U(x)U(x′)

}
, (2.14)

U(x1)U(x2) =

ˆ
DU U(x1)U(x2) exp

{
−1

2

ˆ
dnx

ˆ
dnx′D−1(x− x′)U(x)U(x′)

}
(2.15)

by taking into account (2.12):

U(x1) =
δI[j]

δj(x1)

∣∣∣∣
j(x)=0

, (2.16)

U(x1)U(x2) =
δ2I[j]

δj(x1)δj(x2)

∣∣∣∣
j(x)=0

. (2.17)

Inserting (2.13) into (2.16) and (2.17) leads then, indeed, to (2.1) and (2.2). In a similar way also higher
correlation functions are evaluated. Whereas the expectation values of all odd products of disorder
potentials vanish, those with an even product are evaluated according to the Wick rule. So we obtain,
for instance:

U(x1)U(x2)U(x3)U(x4) = D(x1 − x2)D(x3 − x4) +D(x1 − x3)D(x2 − x4)

+D(x1 − x4)D(x2 − x3) . (2.18)

In the case that the probability distribution P [U ] is not Gaussian, its generating functional (2.11)
contains more than the second cumulant [105], so we have as a straight-forward generalization of (2.13):

I[j] = exp

{ ∞∑
i=2

(−1)i−1

i!

ˆ
dnx1 · · ·

ˆ
dnxiD

(i)(x1, . . . ,xi)j(x1) · · · j(xi)

}
, (2.19)

where D(i)(x1, . . . ,xi) denotes the ith cumulant. Indeed, Eq. (2.19) reduces with D(2)(x1,x2) =
D(x1,x2) and D(i)(x1, . . . ,xi) = 0 for i ≥ 3 to Eq. (2.13).

2.2. Bose Model

A model of a three-dimensional weakly interacting homogeneous Bose gas in a δ-correlated disorder
potential was studied within a Hartree-Fock mean-field theory in Ref. [84]. Motivated by this we
extend this theory in the present thesis for a n-dimensional Bose gas in an arbitrary trap V (x), a
generally correlated disorder landscape U(x) and a general interaction potential V (int)(x− x′) at finite
temperature T . The starting point is the functional integral for the grand-canonical partition function

Z =

˛
Dψ∗
˛
Dψe−A[ψ∗,ψ]/}, (2.20)

where the integration is performed over all Bose fields ψ∗(x, τ), ψ(x, τ) which are periodic in imaginary
time τ , i.e., ψ(x, τ) = ψ(x, τ + ~β). The Euclidean action is given in standard notation by

A [ψ∗, ψ] =

ˆ }β

0
dτ

ˆ
dnx

{
ψ∗ (x, τ)

[
}
∂

∂τ
− }2

2M
∆ + V (x) + U (x)− µ

]
ψ (x, τ)

+
1

2

ˆ
dnx′ψ∗ (x, τ)ψ (x, τ)V (int)(x− x′)ψ∗

(
x′, τ

)
ψ
(
x′, τ

)}
, (2.21)
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where M denotes the particle mass and µ the chemical potential.
Note that, in order to guarantee the normal ordering within the functional integral, we should work

with adjoint fields ψ∗(x, τ+) with a shifted imaginary time τ+ = τ+η with η ↓ 0 which is infinitesimally
later than the imaginary time τ of the fields ψ(x, τ). However, for the sake of simplicity, we mainly use
in the following the notation ψ∗(x, τ) and emphasize the normal ordering only when it is indispensable.

2.3. Replica Method

Now we apply the replica method which was already explained in Section 1.4. The N -fold replication of
the disordered Bose gas (2.20), (2.21) and a subsequent averaging with respect to the disorder potential
U(x) results in:

ZN =

{ N∏
α=1

˛
Dψ∗α

˛
Dψα

}
exp

{
−1

~

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
ψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]

× ψα(x, τ) +
1

2

ˆ
dnx′ψ∗α (x, τ)ψα (x, τ)V (int)(x− x′)ψ∗α

(
x′, τ

)
ψα
(
x′, τ

)}}

×exp

{ˆ
dnx
−1

~

ˆ ~β

0
dτ

N∑
α=1

ψ∗α(x, τ)ψα(x, τ)U(x)

}
, (2.22)

where ψ∗α(x, τ), ψα(x, τ) are the replica fields with the replica index α. Comparing (2.22) with (2.11)
shows that the averaging with respect to the disorder potential U(x) corresponds to the generating
functional (2.19) with the auxiliary current field:

j(x) =
−1

~

ˆ ~β

0
dτ

N∑
α=1

ψ∗α(x, τ)ψα(x, τ) . (2.23)

Therefore, the disordered Bose gas is described by the disorder averaged, replicated grand-canonical
partition function

ZN =

{ N∏
α=1

˛
Dψ∗α

˛
Dψα

}
e−A

(N )[ψ∗,ψ]/~, (2.24)

with the following replica action

A(N )[ψ∗, ψ] =

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
ψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]
ψα(x, τ)

+
1

2

ˆ
dnx′ψ∗α (x, τ)ψα (x, τ)V (int)(x− x′)ψ∗α

(
x′, τ

)
ψα
(
x′, τ

)}
+

∞∑
i=2

1

i!

(
−1

~

)i−1 ˆ ~β

0
dτ1 · · ·

ˆ ~β

0
dτi

ˆ
dnx1 · · ·

ˆ
dnxi

×
N∑

α1=1

· · ·
N∑

αi=1

D(i)(x1, . . . ,xi) |ψα1 (x1, τ1)|2 · · · |ψαi (xi, τi)|2 . (2.25)

For any experimental realistic disorder potential the dominant cumulant is of second order. There-
fore, it is physically justified to restrict ourselves in the following to the second cumulant, i.e., only
D(2)(x1−x2) = D(x1−x2) is assumed to contribute to the replicated action (2.25). Thus, we conclude
that, in this case, disorder leads to a residual attractive interaction between the replica fields ψ∗α(x, τ),
ψα(x, τ) which is, in general, bilocal in both space and imaginary time. With this simplification the
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replicated action (2.25) reduces to:

A(N )[ψ∗, ψ] =

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
ψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]
ψα(x, τ)

+
1

2

ˆ
dnx′ψ∗α (x, τ)ψα (x, τ)V (int)(x− x′)ψ∗α

(
x′, τ

)
ψα
(
x′, τ

)}
− 1

2~

ˆ ~β

0
dτ

ˆ ~β

0
dτ ′
ˆ
dnx

ˆ
dnx′

N∑
α=1

N∑
α′=1

D(x− x′)

×ψ∗α(x, τ)ψα(x, τ)ψ∗α′(x
′, τ ′)ψα′(x

′, τ ′) . (2.26)

2.4. Hartree-Fock Mean-Field Equations

Now we apply standard methods for developing a self-consistent mean-field approximation [106, 107]
in order to derive Hartree-Fock mean-field equations for the Bose gas in a random potential. To this
end we use the Bogoliubov approximation, i.e., we split the Bose fields ψ∗α(x, τ), ψα(x, τ) into their
background Ψ∗α(x, τ), Ψα(x, τ) describing the condensate wave function and the fluctuations δψ∗α(x, τ),
δψα(x, τ) describing the non-condensed fractions:

ψ∗α(x, τ) = Ψ∗α(x, τ) + δψ∗α(x, τ) , ψα(x, τ) = Ψα(x, τ) + δψα(x, τ) . (2.27)

Thus, the replica action (2.26) decomposes according to:

A(N )[ψ∗, ψ] =
4∑

k=0

A(N ,k)[δψ∗, δψ] , (2.28)

where A(N ,k)[δψ∗, δψ] denotes all terms that contain fluctuations δψ∗α(x, τ), δψα(x, τ) of the kth power.
Then, we approximate the higher nonlinear terms k = 3 and k = 4 within a Gaussian factorization,
where the expectation value 〈 • 〉 is determined self-consistently below. As we restrict ourselves to a
Hartree-Fock mean-field theory, we only keep normal correlations 〈δψα(x, τ) δψ∗α′(x

′, τ ′)〉 and neglect
all anomalous correlations of the form 〈δψα(x, τ) δψα′(x

′, τ ′)〉 or 〈δψ∗α(x, τ) δψ∗α′(x
′, τ ′)〉. With this we

obtain for the cubic terms in the fluctuations:

δψ∗α(x, τ) δψα(x, τ) δψα′(x
′, τ ′) ≈ 〈δψ∗α(x, τ+) δψα(x, τ)〉 δψα′(x′, τ ′) + 〈δψ∗α(x, τ) δψα′(x

′, τ ′)〉 δψα(x, τ)
(2.29)

together with its complex conjugate

δψα(x, τ) δψ∗α(x, τ) δψ∗α′(x
′, τ ′) ≈ 〈δψα(x, τ+) δψ∗α(x, τ)〉 δψ∗α′(x′, τ ′) + 〈δψα(x, τ) δψ∗α′(x

′, τ ′)〉 δψ∗α(x, τ)
(2.30)

and, correspondingly, the fourth order terms in the fluctuations reduce to:

δψ∗α(x, τ) δψα(x, τ) δψ∗α′(x
′, τ ′) δψα′(x

′, τ ′) (2.31)
≈ 〈δψ∗α(x, τ+) δψα(x, τ)〉 δψ∗α′(x′, τ ′) δψα′(x′, τ ′) + 〈δψ∗α′(x′, τ ′+) δψα′(x

′, τ ′)〉 δψ∗α(x, τ) δψα(x, τ)

+〈δψ∗α(x, τ) δψα′(x
′, τ ′)〉 δψα(x, τ) δψ∗α′(x

′, τ ′) + 〈δψα(x, τ) δψ∗α′(x
′, τ ′))〉 δψ∗α(x, τ) δψα′(x

′, τ ′)

−〈δψ∗α(x, τ+) δψα(x, τ)〉 〈δψ∗α′(x′, τ ′+) δψα′(x
′, τ ′)〉 − 〈δψ∗α(x, τ) δψα′(x

′, τ ′)〉 〈δψα(x, τ) δψ∗α′(x
′, τ ′)〉 .

Here we have used τ+ as an imaginary time which is infinitesimally later than τ in order to guar-
antee the normal ordering of the fluctuations within the respective expectation values. Therefore, the
Gaussian factorization procedure for a Hartree-Fock mean-field theory leads to an approximation of
the replica action (2.26):

A(N )[ψ∗, ψ] ≈ Ã(N ,0)[δψ∗, δψ] + Ã(N ,1)[δψ∗, δψ] + Ã(N ,2)[δψ∗, δψ] , (2.32)
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2. Hartree-Fock Mean-Field Theory for Dirty Bosons

where Ã(N ,k)[δψ∗, δψ] denotes the kth-order terms of the replica action (2.26). The fluctuations in
(2.29)–(2.31) can be expressed in terms of the following mean-fields:

Qαα′(x, τ ; x′, τ ′) = Ψα(x, τ) Ψ∗α′(x
′, τ ′) + 〈δψα(x, τ) δψ∗α′(x

′, τ ′)〉 , (2.33)
Q∗αα′(x, τ ; x′, τ ′) = Qα′α(x′, τ ′; x, τ) , (2.34)

Σα(x, τ) = Qαα(x, τ ; x, τ+) . (2.35)

The first term of the replica action (2.32) is independent of the fluctuations δψ∗α(x, τ), δψα(x, τ) and
reads:

Ã(N ,0)[δψ∗, δψ] =

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
Ψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]
Ψα(x, τ)

− 1

2

ˆ
dnx′V (int)(x− x′)

[
Ψ∗α(x, τ)Ψα(x, τ)Ψ∗α(x′, τ)Ψα(x′, τ) + Σα(x, τ) Σα(x′, τ)

− 2Σα(x, τ) Ψ∗α(x′, τ)Ψα(x′, τ) +Qαα(x, τ ; x′, τ)Q∗αα(x, τ ; x′, τ)

−Qαα(x, τ ; x′, τ)Ψα(x′, τ)Ψ∗α(x, τ)−Q∗αα(x, τ ; x′, τ)Ψα(x, τ)Ψ∗α(x′, τ)

]}

+
1

2~

ˆ ~β

0
dτ

ˆ ~β

0
dτ ′
ˆ
dnx

ˆ
dnx′

N∑
α=1

N∑
α′=1

D(x− x′) (2.36)

×

{
Ψ∗α(x, τ)Ψα(x, τ)Ψ∗α′(x

′, τ ′)Ψα′(x
′, τ ′) + Σα(x, τ) Σα′(x

′, τ ′)

− 2Σα(x, τ) Ψ∗α′(x
′, τ ′)Ψα′(x

′, τ ′) +Qαα′(x, τ ; x′, τ ′)Q∗αα′(x, τ ; x′, τ ′)

−Qαα′(x, τ ; x′, τ ′)Ψα′(x
′, τ ′)Ψ∗α(x, τ)−Q∗αα′(x, τ ; x′, τ ′)Ψα(x, τ)Ψ∗α′(x

′, τ ′)

}
,

whereas the second term of (2.32) is linear in the fluctuations δψ∗α(x, τ), δψα(x, τ):

Ã(N ,1)[δψ∗, δψ] =

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
δψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]
Ψα(x, τ)

+ Ψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]
δψα(x, τ) +

ˆ
dnx′V (int)(x− x′)

×

[
Σα(x′, τ)Ψα(x, τ)δψ∗α(x, τ) +Qαα(x, τ ; x′, τ)Ψα(x′, τ)δψ∗α(x, τ)

−Ψα(x, τ)Ψα(x′, τ)Ψ∗α(x′, τ)δψ∗α(x, τ)−Ψα(x′, τ)Ψ∗α(x, τ)Ψ∗α(x′, τ)δψα(x, τ)

+Q∗αα(x, τ ; x′, τ)Ψ∗α(x′, τ)δψα(x, τ) + Σα(x′, τ)Ψ∗α(x, τ)δψα(x, τ)

]}

− 1

~

ˆ ~β

0
dτ

ˆ ~β

0
dτ ′
ˆ
dnx

ˆ
dnx′

N∑
α=1

N∑
α′=1

D(x− x′)

×

{
Σα′(x

′, τ ′)Ψα(x, τ)δψ∗α(x, τ) +Qαα′(x, τ ; x′, τ ′)Ψα′(x
′, τ ′)δψ∗α(x, τ)

−Ψα(x, τ)Ψα′(x
′, τ ′)Ψ∗α′(x

′, τ ′)δψ∗α(x, τ)−Ψα′(x
′, τ ′)Ψ∗α(x, τ)Ψ∗α′(x

′, τ ′)δψα(x, τ)

+Q∗αα′(x, τ ; x′, τ ′)Ψ∗α′(x
′, τ ′)δψα(x, τ) + Σα′(x

′, τ ′)Ψ∗α(x, τ)δψα(x, τ)

}
, (2.37)
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and the third term of (2.32) is quadratic in the fluctuations:

Ã(N ,2)[δψ∗, δψ] =

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
δψ∗α(x, τ)

[
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

]
δψα(x, τ)

+
1

2

ˆ
dnx′V (int)(x− x′)

[
2Σα(x, τ) δψ∗α(x′, τ) δψα(x′, τ)

+Qαα(x, τ ; x′, τ) δψα(x′, τ) δψ∗α(x, τ) +Q∗αα(x, τ ; x′, τ) δψα(x, τ) δψ∗α(x′, τ)

]}

− 1

2~

ˆ ~β

0
dτ

ˆ ~β

0
dτ ′
ˆ
dnx

ˆ
dnx′

N∑
α=1

N∑
α′=1

D(x− x′)

×

{
2 Σα(x, τ) δψ∗α′(x

′, τ ′) δψα′(x
′, τ ′) +Qαα′(x, τ ; x′, τ ′) δψα′(x

′, τ ′) δψ∗α(x, τ)

+Q∗αα′(x, τ ; x′, τ ′) δψα(x, τ) δψ∗α′(x
′, τ ′)

}
. (2.38)

Following the field-theoretic background field method [108,109] the first-order terms Ã(N ,1)[δψ∗, δψ]
can be neglected as the background fields Ψ∗α(x, τ), Ψα(x, τ) are later on determined from extremising
Ã(N ,0)[δψ∗, δψ] .
Inserting (2.32) together with (2.36) and (2.38) into (2.24) leads to the replicated effective potential:

V
(N )

eff = − 1

β
lnZN , (2.39)

which is given by:

V
(N )

eff =
Ã(N ,0)[δψ∗, δψ]

~β
− 1

β
ln

{[ N∏
α=1

˛
Dδψ∗α

˛
Dδψα

]
e−Ã

(N ,2)[δψ∗,δψ]/~

}
. (2.40)

It represents a functional of all mean-fields: V (N )
eff = V

(N )
eff [Ψ∗, Ψ, Q∗, Q, Σ]. Extremising (2.40) with

respect to the mean-fields Q∗αα′(x, τ ; x′, τ ′), Qαα′(x, τ ; x′, τ ′), and Σα(x, τ) reproduces their definitions
(2.33)–(2.35), where the expectation values turn out to be calculated with respect to the fluctuation
action (2.38):

〈 • 〉 =

{ N∏
α=1

˛
Dδψ∗α

˛
Dδψα

}
• e−Ã

(N ,2)[δψ∗,δψ]/~

{ N∏
α=1

˛
Dδψ∗α

˛
Dδψα

}
e−Ã

(N ,2)[δψ∗,δψ]/~

. (2.41)

Furthermore, an extremisation of the replicated effective potential (2.40) with respect to the back-
ground fields Ψ∗α(x, τ), Ψα(x, τ) leads to the Gross-Pitaevskii equation:

{
~
∂

∂τ
− ~2

2M
∆ + V (x)− µ

}
Ψα(x, τ)−

ˆ
dnx′V (int)(x− x′)

×

[
Ψα(x, τ)Ψ∗α(x′, τ)Ψα(x′, τ)− Σα(x, τ) Ψα(x′, τ)−Qαα(x, τ ; x′, τ)Ψα(x′, τ)

]

=
1

~

ˆ ~β

0
dτ ′
ˆ
dnx′

N∑
α′=1

D(x− x′)

{[
Σα′(x

′, τ ′)−Ψα′(x
′, τ ′)Ψ∗α′(x

′, τ ′)

]
Ψα(x, τ)

+Qαα′(x, τ ; x′, τ ′)Ψα′(x
′, τ ′)

}
(2.42)
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and its complex conjugate. Indeed, we observe that Ã(N ,1)[δψ∗, δψ] in (2.37) vanishes due to the Gross-
Pitaevskii equation (2.42) and its complex conjugate which determine the background fields Ψα(x, τ),
Ψ∗α(x, τ).

2.5. Replica Symmetry

Now we apply the replica symmetry, where we assume that all the respective replica indices α contribute
in the same way. Furthermore, the dirty boson problem is translationally invariant in imaginary time.
With this we get for the background:

Ψα(x, τ) = Ψ(x), Ψ∗α(x, τ) = Ψ∗(x), Σα(x, τ) = Σ(x) (2.43)

and for the mean fields:

Qαα′(x, τ ; x′, τ ′) = Q

(
x− x′,

x + x′

2
; τ − τ ′

)
δαα′ + q

(
x− x′,

x + x′

2
; τ − τ ′

)
+ Ψ∗(x)Ψ(x) , (2.44)

Q∗αα′(x, τ ; x′, τ ′) = Q∗
(

x− x′,
x + x′

2
; τ − τ ′

)
δαα′ + q∗

(
x− x′,

x + x′

2
; τ − τ ′

)
+ Ψ∗(x)Ψ(x).(2.45)

In (2.44) and (2.45) we perform a Fourier-Matsubara decomposition with respect to the differences in
space and time, i.e., x− x′ and τ − τ ′. Furthermore, we assume within a semi-classical approximation
that the dependence on the center of mass coordinate (x + x′) /2 is smooth, so we get

Q(x− x′,
x + x′

2
; τ − τ ′) =

ˆ
dnk

(2π)n
eik(x−x′) 1

~β

∞∑
m=−∞

e−iωm(τ−τ ′)Qm(k,
x + x′

2
), (2.46)

q(x− x′,
x + x′

2
; τ − τ ′) =

ˆ
dnk

(2π)n
eik(x−x′) 1

~β

∞∑
m=−∞

e−iωm(τ−τ ′)qm(k,
x + x′

2
), (2.47)

and their complex conjugate, where ωm = 2πm/ (~β) denote the bosonic Matsubara frequencies and
k the wave vector.
Using this ansatz, we have to evaluate the expectation values in the mean-field equations (2.33)–

(2.35) and (2.42). To this end we note that the fluctuation action (2.38) is of the general form

Ã(N ,2)[δψ∗, δψ] =

ˆ ~β

0
dτ

ˆ ~β

0
dτ ′
ˆ
dnx

ˆ
dnx′

N∑
α=1

N∑
α′=1

1

2

(
δψ∗α(x, τ), δψα(x, τ)

)
G−1
αα′

(
x− x′,

x + x′

2
; τ − τ ′

)(
δψα′(x

′, τ ′)
δψ∗α′(x

′, τ ′)

)
, (2.48)

where the integral kernel decomposes according to

G−1
αα′

(
x− x′,

x + x′

2
; τ − τ ′

)
=

(
a(x− x′, x+x′

2 ; τ − τ ′) 0

0 a∗(x− x′, x+x′

2 ; τ − τ ′)

)
δαα′

+

(
b(x− x′, x+x′

2 ; τ − τ ′) 0

0 b∗(x− x′, x+x′

2 ; τ − τ ′)

)
, (2.49)

with the abbreviations

a

(
x− x′,

x + x′

2
; τ − τ ′

)
=

[
~
∂

∂τ ′
− ~2

2M
∆′ + V (x′)− µ+ Σ(x′)

ˆ
dDx′′V (int)(x′′)

]
δ(x− x′)

× δ(τ − τ ′)− 1

~
D(x− x′)

[
Q

(
x− x′,

x + x′

2
, τ − τ ′

)
+NΣ(x′)

]
+ V (int)(x− x′)δ(τ − τ ′)

×
[
Ψ∗(x)Ψ(x) + q

(
x− x′,

x + x′

2
, τ − τ ′

)
+Q

(
x− x′,

x + x′

2
, τ − τ ′

)]
(2.50)
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and

b

(
x− x′,

x + x′

2
; τ − τ ′

)
=− 1

~
D(x− x′)

[
Ψ∗(x)Ψ(x) + q

(
x− x′,

x + x′

2
, τ − τ ′

)]
. (2.51)

The corresponding Green function is determined by performing the semi-classical Fourier-Matsubara
transformation

G−1
αα′

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′) 1

~β

∞∑
m=−∞

e−iωm(τ−τ ′)G−1
αα′

(
k, ωm,

x + x′

2

)
,

(2.52)

so that the decomposition (2.49) is converted to

G−1
αα′

(
k, ωm,

x + x′

2

)
=

(
a(k, ωm,

x+x′

2 ) 0

0 a∗(k, ωm,
x+x′

2 )

)
δαα′ +

(
b(k, ωm,

x+x′

2 ) 0

0 b∗(k, ωm,
x+x′

2 )

)
,

(2.53)

where we have used the abbreviations

a

(
k, ωm,

x + x′

2

)
=− i~ωm + ε(k) + V

(
x + x′

2

)
− µ+ V (int)(k)Ψ∗

(
x + x′

2

)
Ψ

(
x + x′

2

)
− 1

~

ˆ
dnk′

(2π)n
D
(
k′
)
Qm

(
k− k′,

x + x′

2

)
−NβD (k) Σ

(
x + x′

2

)
δm,0 + Σ

(
x + x′

2

)
×
ˆ
dnx′′V (int)(x′′) +

ˆ
dnk′

(2π)n
V (int)(k′)

[
qm

(
k− k′,

x + x′

2

)
+Qm

(
k− k′,

x + x′

2

)]
,

(2.54)

b

(
k, ωm,

x + x′

2

)
= −1

~

[ˆ
dnk′

(2π)n
D
(
k′
)
qm

(
k− k′,

x + x′

2

)
+~βD (k) Ψ∗

(
x + x′

2

)
Ψ

(
x + x′

2

)
δm,0

]
, (2.55)

and the free dispersion:

ε(k) =
~2k2

2M
. (2.56)

Furthermore, D (k) and V (int)(k) are the Fourier transformed of the disorder correlation function
D(x) and the two-particle interaction potential V (int)(x), respectively:

D(x) =

ˆ
dnk

(2π)n
D(k)eikx, (2.57)

V (int)(x) =

ˆ
dnk

(2π)n
V (int)(k)eikx. (2.58)

Note that a(k, ωm,
x+x′

2 ) and b(k, ωm, x+x′

2 ) are the semi-classical Fourier-Matsubara transformations
of the quantities a(x− x′, x+x′

2 ; τ − τ ′) and b(x− x′, x+x′

2 ; τ − τ ′):

a

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′) 1

~β

∞∑
m=−∞

e−iωm(τ−τ ′)a

(
k, ωm,

x + x′

2

)
, (2.59)

b

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′) 1

~β

∞∑
m=−∞

e−iωm(τ−τ ′)b

(
k, ωm,

x + x′

2

)
, (2.60)
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Indeed, the defining equation for the Green function

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

G−1
α1α

(
x− x1,

x + x1

2
; τ − τ1

)
Gαα2

(
x2 − x,

x + x2

2
; τ2 − τ

)
= ~δ(x1 − x2)δ(τ1 − τ2)δα1α2 (2.61)

reduces with a semi-classical Fourier-Matsubara transformation to the algebraic identity:

N∑
α=1

G−1
α1α

(
k, ωm,

x + x′

2

)
Gαα2

(
k, ωm,

x + x′

2

)
= ~ δα1α2 . (2.62)

The latter is solved with a decomposition similar to (2.53):

Gαα′

(
k, ωm,

x + x′

2

)
= ~


1

a(k, ωm,
x+x′

2 )
0

0
1

a∗(k, ωm,
x+x′

2 )

 δαα′ (2.63)

− ~


b(k, ωm,

x+x′

2 )

a(k, ωm,
x+x′

2 )
[
N b(k, ωm, x+x′

2 ) + a(k, ωm,
x+x′

2 )
] 0

0
b∗(k, ωm,

x+x′

2 )

a∗(k, ωm,
x+x′

2 )
[
N b∗(k, ωm, x+x′

2 ) + a∗(k, ωm,
x+x′

2 )
]
 .

Thus, the corresponding Green function

Gαα′

(
x− x′,

x + x′

2
; τ − τ ′

)
= g1

(
x− x′,

x + x′

2
; τ − τ ′

)
δαα′ + g2

(
x− x′,

x + x′

2
; τ − τ ′

)
(2.64)

follows from evaluating the semi-classical Fourier-Matsubara transformation:

Gαα′

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′) 1

~β

∞∑
m=−∞

e−iωm(τ−τ ′)Gαα′

(
k, ωm,

x + x′

2

)
. (2.65)

As the Green function contains expectation values according to

Gαα′

(
x− x′,

x + x′

2
; τ − τ ′

)
=

(
〈δψα(x, τ)δψ∗α′(x

′, τ ′)〉 0
0 〈δψ∗α(x, τ)δψα′(x

′, τ ′)〉

)
, (2.66)

we arrive at the expression:

〈δψα(x, τ)δψ∗α′(x
′, τ ′)〉 = g1

(
x− x′,

x + x′

2
; τ − τ ′

)
δαα′ + g2

(
x− x′,

x + x′

2
; τ − τ ′

)
(2.67)

with the contributions:

g1

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′)

∞∑
m=−∞

e−iωm(τ−τ ′)

βa(k, ωm,
x+x′

2 )
, (2.68)

g2

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′)

∞∑
m=−∞

e−iωm(τ−τ ′)

βN

×

[
1

N b(k, ωm, x+x′

2 ) + a(k, ωm,
x+x′

2 )
− 1

a(k, ωm,
x+x′

2 )

]
.(2.69)

Comparing (2.33)–(2.35), (2.44), (2.46), and (2.47) with (2.67)–(2.69) yields:

Qm

(
k,

x + x′

2

)
=

~
a(k, ωm,

x+x′

2 )
, (2.70)
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qm

(
k,

x + x′

2

)
=

~
N

[
1

N b(k, ωm, x+x′

2 ) + a(k, ωm,
x+x′

2 )
− 1

a(k, ωm,
x+x′

2 )

]
(2.71)

and their complex conjugate. Eqs. (2.70), (2.71) represent due to (2.54) and (2.55) two coupled integral
mean-field equations of the quantities Qm(k, x+x′

2 ) and qm(k, x+x′

2 ). As it is not possible to solve them
analytically for a general disorder potential and a general interaction potential, we specialize now to a
δ-correlated disorder potential and a contact interaction potential.

2.6. Delta-Correlated Disorder and Contact Interaction Potential

Now we elaborate a solution of our mean-field equations for the special case of a δ-correlated disorder
potential (2.4), i.e., we assume:

D(x− x′) = Dδ(x− x′), (2.72)

which yields
D (k) = D, (2.73)

where D denotes the disorder strength. In this case formulas (2.54) and (2.55) reduce to:

a

(
k, ωm,

x + x′

2

)
=− i~ωm + ε(k) + V

(
x + x′

2

)
− µ+ Σ

(
x + x′

2

)ˆ
dnx′′V (int)(x′′)

− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0 + V (int)(k)Ψ∗

(
x + x′

2

)
Ψ

(
x + x′

2

)
+

ˆ
dnk′

(2π)n
V (int)(k′)

[
qm

(
k− k′,

x + x′

2

)
+Qm

(
k− k′,

x + x′

2

)]
(2.74)

and

b

(
k, ωm,

x + x′

2

)
= −D

~

[
qm

(
x + x′

2

)
+ ~βΨ∗

(
x + x′

2

)
Ψ

(
x + x′

2

)
δm,0

]
, (2.75)

where we have introduced the abbreviations

Qm

(
x + x′

2

)
=

ˆ
dnk′

(2π)n
Qm

(
k− k′,

x + x′

2

)
, (2.76)

qm

(
x + x′

2

)
=

ˆ
dnk′

(2π)n
qm

(
k− k′,

x + x′

2

)
. (2.77)

Furthermore, we choose a contact interaction potential

V (int)(x− x′) = gδ(x− x′), (2.78)

where g denotes the interaction coupling strength. Using the definitions (2.33), (2.35), and (2.44),
formula (2.74) reduces in this case further to

a

(
k, ωm,

x + x′

2

)
=− i~ωm + ε(k)− µ+ 2gΣ

(
x + x′

2

)
+ V

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0, (2.79)

while (2.75) does not change. Thus, (2.70) and (2.71) yield then together with (2.76) and (2.77)
algebraic mean-field equations, which we can solve.
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2.7. Schwinger Trick

Inserting (2.75) and (2.79) into (2.70) and (2.71), then inserting the resulting expressions into (2.76)
and (2.77) and taking x = x′ yield the following self-consistency equations:

Qm(x) =

ˆ
dnk

(2π)n
~

−i~ωm + ε(k)− µ+ 2gΣ(x) + V (x)− D
~ Qm(x)−NβDΣ(x) δm,0

, (2.80)

qm(x) = D

ˆ
dnk

(2π)n
qm(x) + ~βΨ∗(x)Ψ(x) δm,0

−i~ωm + ε(k)− µ+ 2gΣ(x) + V (x)− D
~ Qm(x)−NβDΣ(x) δm,0

(2.81)

× 1

−i~ωm + ε(k)− µ+ 2gΣ(x) + V (x)− D
~ Qm(x)−NβDΣ(x) δm,0 −N

[
qm(x) + ~βΨ∗(x)Ψ(x) δm,0

] .
The Fourier integral (2.81) converges for n 6 3, whereas the Fourier integral (2.80) converges only

in one dimension and has an ultraviolet divergency in the case of two and three dimensions. Therefore,
in order to deal with this ultraviolet divergency, we use the dimensional regularization method, which
consists of performing an analytic continuation of the Γ-function [110]. To this end we use Schwinger
integral:

1

aν
=

1

Γ(ν)

ˆ ∞
0

ds sν−1 e−as, (2.82)

so that the wave vector integrals become Gaussian, which can be solved explicitly. Thus, we obtain
from (2.80) and (2.81) the remaining integrals over the Schwinger parameter s:

Qm(x) = ~
(

M

2π~2

)n/2 ˆ ∞
0

ds s−n/2 exp

[
−M(x− x′)2

2~2s

]
× exp

{
−s
[
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)−NβDΣ(x) δm,0

]}
, (2.83)

qm(x) =− ~
N

(
M

2π~2

)n/2 ˆ ∞
0

ds s−n/2 exp

[
−M(x− x′)2

2~2s

]
× exp

{
−s
[
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)−NβDΣ(x) δm,0

]}
+

~
N

(
M

2π~2

)n/2 ˆ ∞
0

ds s−n/2 exp

[
−M(x− x′)2

2~2s

]
× exp

{
−s
[
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)−NβDΣ(x) δm,0

]}
× exp

{
sN D

~

[
qm(x) + ~βΨ∗(x)Ψ(x) δm,0

]}
. (2.84)

Using [111, (8.310.1)], Eqs. (2.83) and (2.84) reduce to the following mean-field equations:

Qm(x) = Γ
(

1− n

2

)
~
(

M

2π~2

)n/2 [
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)−NβDΣ(x) δm,0

]n
2
−1

,

(2.85)

qm(x) =− Γ
(

1− n

2

) ~
N

(
M

2π~2

)n/2 [
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)−NβDΣ(x) δm,0

]n
2
−1

+ Γ
(

1− n

2

) ~
N

(
M

2π~2

)n/2{
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)−NβDΣ(x) δm,0

−N D

~
[qm(x) + ~βΨ∗(x)Ψ(x) δm,0]

}n
2
−1

, (2.86)
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from which we conclude the symmetries

Q∗m(x) = Q−m(x), (2.87)

q∗m(x) = q−m(x) . (2.88)

We read off from (2.46), (2.47), (2.87), and (2.88) that Q∗(x; τ ′− τ) = Q(x; τ − τ ′) and q∗(x; τ ′− τ) =
q(x; τ − τ ′), respectively.
We note in equations (2.85) and (2.86) that the terms containing the parameter β are always mul-

tiplied by the number of replicas N . This is important because it means that in the zero temperature
case, i.e., β →∞, those terms will be eliminated in the replica limit, i.e., N → 0, otherwise they would
diverge.
The expressions of Qm(x) and qm(x) in (2.85) and (2.86) turn out to diverge in two dimensions

because of the prefactor Γ
(
1− n

2

)
, meaning that our theory in its actual form is not valid in the

two-dimensional case. In order to get valid self-consistency equations also in two dimensions, one way
would be to choose a disorder potential with a finite correlation length, e.g., a Lorentzian potential.
Then this finite correlation length would provide a regularization which yields finite self-consistency
equations. As the treatment of a Lorentzian disorder potential lies out at the scope of the present
thesis, we will restrict ourselves later on to the study of the one- and the three-dimensional cases.
Note that in the replica limit N → 0, Eqs. (2.85) and (2.86) yield

Qm(x) = Γ
(

1− n

2

)
~
(

M

2π~2

)n/2 [
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)

]n
2
−1

(2.89)

and

q(x) = DΓ
(

2− n

2

) ( M

2π~2

)n/2 q(x) + Ψ∗(x)Ψ(x)[
−µ+ 2gΣ(x) + V (x)− D

~ Q0(x)
]2−n

2

, (2.90)

where q(x) = q0(x)/~β and qm(x) = 0 for m 6= 0. Note that this last simplification occurs only in the
replica limit N → 0.
Now we insert the replica-symmetric solution ansatz (2.44), (2.46) also in the other mean-field

equations (2.35) and (2.42). In this way we obtain in the replica limit N → 0 the Gross-Pitaevskii
equation [

−µ+ 2gΣ(x) + V (x)− gn0(x)− D

~
Q0(x)− ~2

2M
∆

] √
n0(x) = 0 (2.91)

and the mean-field:

Σ(x) = q(x) + n0(x) + lim
η↓0

∞∑
m=−∞

eiωmη
Qm(x)

~β
, (2.92)

where we have set n0(x) = Ψ∗(x)Ψ(x).

2.8. Correlation Functions and Order Parameters

In the following we fix the physical interpretation of the two order parameters n0(x) and q(x) of
our mean-field theory. To this end we follow the notion of classical and quantum spin-glass theory
[58,94,112] and investigate how these quantities are related to correlation functions.
We start with considering the grand-canonical average of the Bose field:

〈ψ(x, τ)〉 =
1

Z

˛
Dψ∗

˛
Dψ ψ(x, τ) e−A[ψ∗,ψ]/~ , (2.93)
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which represents a functional of the disorder potential U(x) due to the action (2.21). In order to
evaluate its disorder expectation value we apply again the replica method. To this end we identify
ψ(x, τ) with ψα(x, τ) and add further N − 1 Bose fields according to:

〈ψ(x, τ)〉 =
1

ZN

{
N∏

α′=1

˛
Dψ∗α′

˛
Dψα′

}
ψα(x, τ) exp

{
−1

~

N∑
α′=1

A[ψ∗α′ , ψα′ ]

}
. (2.94)

As the right-hand side is independent of the replica index α, we obtain in the replica limit N → 0:

〈ψ(x, τ)〉 = lim
N→0

1

N

N∑
α=1

{ N∏
α′=1

˛
Dψ∗α′

˛
Dψα′

}
ψα(x, τ) exp

{
−1

~

N∑
α′=1

A[ψ∗α′ , ψα′ ]

}
. (2.95)

Now we are in a position to perform the averaging with respect to the disorder potential U(x) by
applying again the generating functional (2.19) with the auxiliary current field (2.23). Thus, we obtain
the following replica representation of the grand-canonical average of the Bose field:

〈ψ(x, τ)〉 = lim
N→0

1

N

N∑
α=1

{ N∏
α′=1

˛
Dψ∗α′

˛
Dψα′

}
ψα(x, τ) e−A

(N )[ψ∗,ψ]/~ (2.96)

with the replica action (2.26). In a similar way we yield for the 2-point function:

〈ψ(x, τ)ψ∗(x′, τ ′)〉 = lim
N→0

1

N

N∑
α=1

{ N∏
α′=1

˛
Dψ∗α′

˛
Dψα′

}
ψα(x, τ)ψ∗α(x′, τ ′) e−A

(N )[ψ∗,ψ]/~ . (2.97)

In order to further evaluate n-point functions of the form (2.96) and (2.97), we introduce the generating
functional:

Z[j∗, j] =

{ N∏
α=1

˛
Dψ∗α

˛
Dψα

}
e−A

(N )[ψ∗,ψ;j∗,j]/~ , (2.98)

where each Bose field ψ∗α(x, τ), ψα(x, τ) is coupled to its own current field jα(x, τ), j∗α(x, τ) via the
action:

A(N )[ψ∗, ψ; j∗, j] = A(N )[ψ∗, ψ]−
ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

{
j∗α(x, τ)ψα(x, τ) + ψ∗α(x, τ)jα(x, τ)

}
. (2.99)

Indeed, performing successive functional derivatives with respect to the current fields jα(x, τ), j∗α(x, τ),
we obtain the 1- and 2-point function (2.96) and (2.97) from the generating functional (2.98) and (2.99)
according to:

〈ψ(x, τ)〉 = lim
N→0

~
N

N∑
α=1

δZ[j∗, j]

δj∗α(x, τ)

∣∣∣∣∣
j∗(x,τ)=0

j(x,τ)=0

, (2.100)

〈ψ(x, τ)ψ∗(x′, τ ′)〉 = lim
N→0

~2

N

N∑
α=1

δ2Z[j∗, j]

δj∗α(x, τ)δjα(x′, τ ′)

∣∣∣∣∣
j∗(x,τ)=0

j(x,τ)=0

. (2.101)

Thus, it remains to calculate the generating functional Z[j∗, j] within our mean-field theory. To this
end we perform the background expansions (2.27). Assuming again that the background fields have
the replica symmetry form (2.43), we have:

Z[j∗, j] = exp

{
−βV (N)

eff +
1

~

ˆ ~β

0
dτ

ˆ
dnx

N∑
α=1

[
j∗α(x, τ) Ψ(x) + Ψ∗(x) jα(x, τ)

]
(2.102)

+
1

~2

ˆ ~β

0
dτ

ˆ ~β

0
dτ ′
ˆ
dnx

ˆ
dnx′

N∑
α=1

N∑
α′=1

j∗α(x, τ) 〈δψα(x, τ)δψ∗α′(x
′, τ ′)〉jα′(x′, τ ′)

}
.
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Thus, inserting (2.102) into (2.100) and (2.101), yields

〈ψ(x, τ)〉 =
√
n0(x) (2.103)

and, by taking into account (2.67):

〈ψ(x, τ)ψ∗(x′, τ ′)〉 =
√
n0(x)n0(x′) + g1

(
x− x′,

x + x′

2
; τ − τ ′

)
+g2

(
x− x′,

x + x′

2
; τ − τ ′

)
. (2.104)

Now we need just to evaluate the functions g1(x − x′, x+x′

2 ; τ − τ ′) and g2(x − x′, x+x′

2 ; τ − τ ′),
respectively.
Inserting (2.75), (2.79) into (2.68), (2.69) yield:

g1(x− x′,
x + x′

2
; τ − τ ′) =

ˆ
dnk

β(2π)n
eik(x−x′)

∞∑
m=−∞

e−iωm(τ−τ ′) (2.105)

×

[
−i~ωm + ε(k)− µ+ 2gΣ

(
x + x′

2

)
+ V

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0

]−1

,

g2

(
x− x′,

x + x′

2
; τ − τ ′

)
=

ˆ
dnk

(2π)n
eik(x−x′)

∞∑
m=−∞

e−iωm(τ−τ ′) (2.106)

×
D
[
qm

(
x+x′

2

)
+ ~βΨ∗

(
x+x′

2

)
Ψ
(
x+x′

2

)
δm,0

]
~β

[
−i~ωm + ε(k)− µ+ 2gΣ

(
x+x′

2

)
+ V

(
x+x′

2

)
− D

~ Qm
(
x+x′

2

)
−NβDΣ

(
x+x′

2

)
δm,0

]

×
{
−i~ωm + ε(k)− µ+ 2gΣ

(
x + x′

2

)
+ V

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0

−N D

~

[
qm

(
x + x′

2

)
+ ~βΨ∗

(
x + x′

2

)
Ψ

(
x + x′

2

)
δm,0

]}−1

.

Note that the Fourier integral (2.106) converges in all dimensions, whereas the Fourier integral (2.105)
converges only in three dimensions but has an ultraviolet divergency in the case of one and two
dimensions. Therefore, we use again the Schwinger integral (2.82) and obtain from (2.105) and (2.106):

g1

(
x− x′,

x + x′

2
; τ − τ ′

)
=

1

β

(
M

2π~2

)n/2 ∞∑
m=−∞

e−iωm(τ−τ ′)
ˆ ∞

0
ds s−n/2 exp

{
−M(x− x′)2

2~2s

}
× exp

{
−s
[
−i~ωm − µ+ 2gΣ

(
x + x′

2

)
+ V

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0

]}
,

(2.107)

g2

(
x− x′,

x + x′

2
; τ − τ ′

)
= − 1

Nβ

(
M

2π~2

)n/2 ∞∑
m=−∞

e−iωm(τ−τ ′)
ˆ ∞

0
ds s−n/2 exp

[
−M(x− x′)2

2~2s

]
× exp

{
−s
[
−i~ωm + V

(
x + x′

2

)
− µ+ 2gΣ

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0

]}
+

1

Nβ

(
M

2π~2

)n/2 ∞∑
m=−∞

e−iωm(τ−τ ′)
ˆ ∞

0
ds s−n/2 exp

[
−M(x− x′)2

2~2s

]
× exp

{
−s
[
−i~ωm + V

(
x + x′

2

)
− µ+ 2gΣ

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)
−NβDΣ

(
x + x′

2

)
δm,0

]}
× exp

{
sN D

~

[
qm

(
x + x′

2

)
+ ~βΨ∗

(
x + x′

2

)
Ψ

(
x + x′

2

)
δm,0

]}
. (2.108)
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Using [111, (3.471.9)] and [111, (8.469.3)], Eqs. (2.107) and (2.108) reduce, after performing the replica
limit N → 0, to:

g1

(
x− x′,

x + x′

2
; τ − τ ′

)
=

√
π

β

(
M

2π~2

)n/2 [ 2~2

M(x− x′)2

]n−1
4

∞∑
m=−∞

e−iωm(τ−τ ′) (2.109)

×
[
−i~ωm + V

(
x + x′

2

)
− µ+ 2gΣ

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)]n−3
4

× exp

{
−

√
2M

~2

[
−i~ωm + V

(
x + x′

2

)
− µ+ 2gΣ

(
x + x′

2

)
− D

~
Qm

(
x + x′

2

)]
|x− x′|

}
and

g2

(
x− x′,

x + x′

2
; τ − τ ′

)
=
√
πD

(
M

2π~2

)n/2 [ 2~2

M(x− x′)2

]n−1
4

(2.110)

×
q
(
x+x′

2

)
+ Ψ∗

(
x+x′

2

)
Ψ
(
x+x′

2

)
[
V
(
x+x′

2

)
− µ+ 2gΣ

(
x+x′

2

)
− D

~ Q0

(
x+x′

2

)] 7−n
4

×

{√
M

2~2

[
V

(
x + x′

2

)
− µ+ 2gΣ

(
x + x′

2

)
− D

~
Q0

(
x + x′

2

)]
|x− x′|+ 3− n

4

}

× exp

{
−

√
2M

~2

[
V

(
x + x′

2

)
− µ+ 2gΣ

(
x + x′

2

)
− D

~
Q0

(
x + x′

2

)]
|x− x′|

}

respectively. Note that the function g2

(
x− x′, x+x′

2 ; τ − τ ′
)
turns out not to depend on τ − τ ′ at all.

Since we developed the expressions of g1

(
x− x′, x+x′

2 ; τ − τ ′
)
and g2

(
x− x′, x+x′

2 ; τ − τ ′
)
, let us

now determine the disorder average of the 4-point function:∣∣〈ψ(x, τ)ψ∗(x′, τ ′)〉
∣∣2 = 〈ψ(x, τ)ψ∗(x′, τ ′)〉 〈ψ∗(x, τ)ψ(x′, τ ′)〉 , (2.111)

which turns out to have the replica representation:

|〈ψ(x, τ)ψ∗(x′, τ ′)〉|2 = lim
N→0

~4

N (N − 1)

∑
α 6=α′

δ4Z[j∗, j]

δj∗α(x, τ)jα(x′, τ ′)δj∗α′(x
′, τ ′)jα′(x, τ)

∣∣∣∣∣∣
j∗(x,τ)=0

j(x,τ)=0

. (2.112)

Inserting the generating functional (2.102) into (2.112) leads to:

|〈ψ(x, τ)ψ∗(x′, τ ′)〉|2 =|〈ψ(x, τ)ψ∗(x′, τ ′)〉|2 + n0(x) g2(0,x′; 0) + n0(x′) g2(0,x; 0)

+ g2(0,x; 0)g2(0,x′; 0) . (2.113)

Now we are in the position to investigate the 2- and the 4-point function (2.104) and (2.113) for
special values of their spatio-temporal arguments. At first, we set τ = τ ′ and study their behavior in
the long-range limit |x − x′| → ∞. From (2.104) with (2.109) and (2.110) we obtain for the 2-point
function:

lim
|x−x′|→∞

〈ψ(x, τ)ψ∗(x′, τ)〉 =
√
n0(x)n0(x′) . (2.114)

Correspondingly, the 4-point function (2.113) leads together with (2.90) and (2.110) to:

lim
|x−x′|→∞

|〈ψ(x, τ)ψ∗(x′, τ)〉|2 = [n0(x) + q(x)]
[
n0(x′) + q(x′)

]
. (2.115)

Following the notion of classical spin-glass theory [94,112], this result justifies to consider the quan-
tities n0(x) and q(x) as the order parameters of the condensate and the Bose-glass phase, respectively.
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However, in analogy to quantum spin-glass theory [58], the Bose-glass order parameter q(x), which
has been introduced in Ref. [84] in close analogy to the Edward-Anderson order parameter of spin-
glasses [113], should also be related to the long-time limit |τ − τ ′| → ∞ of the 2-point function (2.104)
at T = 0. At T = 0 the term (2.109) vanishes, whereas (2.110) remains valid as it is temperature inde-
pendent. By setting x = x′, we consider the behavior of the 2-point function (2.104) in the long-time
limit |τ − τ ′| → ∞. From (2.90), (2.104), (2.109), and (2.110), we read off:

lim
|τ−τ ′|→∞

〈ψ(x, τ)ψ∗(x, τ ′)〉 = n0(x) + q(x) . (2.116)

Note, furthermore, that the localization of the Bose-glass states can be inferred from the spatial
exponential fall-off of the correlation function g2(x−x′, x+x′

2 ; τ−τ ′) describing correlations of the locally
condensed component. In the Bose-glass phase Eq. (2.90) yields −µ + 2gΣ(x) + V (x) − D

~ Q0(x) =[
DΓ

(
2− n

2

) (
M

2π~2
)n/2] 2

4−n . Inserting this result into the exponential part of function (2.110) allows

us to extract the temperature-independent Larkin length L = ~√
2M

[
DΓ

(
2− n

2

) (
M

2π~2
)n/2] 1

n−4 , which
is the length where this exponential fall-off, which is also found in Refs. [82, 83, 114]. Note that this
Larkin length is independent of both the densities and the interaction strength g, since the Hartree-Fock
approximation is an effective free-particle theory.

2.9. Thermodynamic Properties

Now we return to the replicated effective potential (2.40) and evaluate it for the special case of a
δ-correlated disorder potential (2.72) and contact interaction potential (2.78) at the replica-symmetric
background fields (2.43) and (2.44) by taking into account (2.46). Thus, the replicated effective po-
tential decomposes according to V (N )

eff = V
(N ,1)

eff + V
(N ,2)

eff . The first term reads

V
(N ,1)

eff = N
ˆ
dnx

{
−gΣ2(x)− g

2
Ψ∗2(x)Ψ2(x) + Ψ∗(x)

[
−µ− ~2

2M
∆ + 2gΣ(x) + V (x)− D

2~
Q∗0(x)

−D
2~
Q0(x)

]
Ψ(x) +

D

2β~2
lim
η↓0

∞∑
m=−∞

eiωmη [Q∗m(x) +Qm(x)] qm(x) +
D

2~
[Q∗0(x) +Q0(x)]

×Ψ∗(x)Ψ(x) +
D

2~2β
lim
η↓0

∞∑
m=−∞

eiωmη Qm(x)Q∗−m(x)

}
+
N 2βD

2

ˆ
dnx{

[Σ(x)−Ψ∗(x)Ψ(x)]2 +
1

(β~)2 lim
η↓0

∞∑
m=−∞

eiωmη qm(x)q∗−m(x)−Ψ∗2(x)Ψ2(x)

}
, (2.117)

where, again, the normal ordering is explicitly emphasized and the second term is given by the tracelog
of the integral kernel (2.49):

V
(N ,2)

eff =
1

2β
Tr lnG−1 . (2.118)

With the help of the Fourier-Matsubara transformation (2.52) the latter reduces to

V
(N ,2)

eff =
1

2β

ˆ
dnx

ˆ
dnk

(2π)n
lim
η↓0

∞∑
m=−∞

eiωmη ln
[
DetG−1

αα′(k, ωm,x)
]
, (2.119)

where the determinant of the matrix (2.53) yields

DetG−1
αα′(k, ωm,x) = [a(k, ωm,x)a∗(k, ωm,x)]N−1 [a(k, ωm,x) +N b(k, ωm,x)]

[a∗(k, ωm,x) +N b∗(k, ωm,x)] . (2.120)
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Inserting (2.75) and (2.79) with (2.120) into (2.119), we obtain:

V
(N ,2)

eff =
1

2β

ˆ
dnx

ˆ
dnk

(2π)n

{
N lim

η↓0

∞∑
m=−∞

eiωmη ln

[
−i~ωm + ε(k)− µ+ 2gΣ (x) + V (x)

−D
~
Qm (x)

]
+N lim

η↓0

∞∑
m=−∞

eiωmη ln

[
i~ωm + ε(k)− µ+ 2gΣ (x) + V (x)− D

~
Q∗m (x)

]

+ ln

[
1−N βD [Σ (x) + q (x) + Ψ∗ (x) Ψ (x)]

ε(k)− µ+ 2gΣ (x) + V (x)− D
~ Q
∗
0 (x)

]

+ ln

[
1−N βD [Σ (x) + q (x) + Ψ∗ (x) Ψ (x)]

ε(k)− µ+ 2gΣ (x) + V (x)− D
~ Q0 (x)

]

+ (N − 1) ln

[
1−N βDΣ (x)

ε(k)− µ+ 2gΣ (x) + V (x)− D
~ Q
∗
0 (x)

]

+ (N − 1) ln

[
1−N βDΣ (x)

ε(k)− µ+ 2gΣ (x) + V (x)− D
~ Q0 (x)

]}
. (2.121)

In Ref. [84] the replica limit is taken as soon as the replica number N appears at different steps of the
calculation. In our work, and contrary to Ref. [84], until this level of the calculation no replica limit
was performed yet for the free energy. We are taking this limit as late as possible in order to avoid any
possible loss of terms due to the performance of the replica limit in an earlier step of the calculation.
Performing the replica limit N → 0 the respective contributions to the replicated effective potential
reduce to

V
(1)

eff = lim
N→0

V
(N ,1)

eff

N
=

ˆ
dnx

{
−gΣ2(x)− g

2
Ψ∗2(x)Ψ2(x) (2.122)

+Ψ∗(x)

[
−µ− ~2

2M
∆ + 2gΣ(x) + V (x)− D

2~
Q∗0(x)− D

2~
Q0(x)

]
Ψ(x)

+
D

2~2β
lim
η↓0

∞∑
m=−∞

eiωmη Qm(x)Q∗−m(x) +
D

2~
[Q∗0(x) +Q0(x)] [q(x) + Ψ∗(x)Ψ(x)]

}

and

V
(2)

eff = lim
N→0

V
(N ,2)

eff

N
=

1

2β

ˆ
dnx

ˆ
dnk

(2π)n
(2.123){

lim
η↓0

∞∑
m=−∞

eiωmη ln

[
−i~ωm + ε(k)− µ+ 2gΣ(x) + V (x)− D

~
Qm(x)

]

+ lim
η↓0

∞∑
m=−∞

eiωmη ln

[
i~ωm + ε(k)− µ+ 2gΣ(x) + V (x)− D

~
Q∗m(x)

]

− βD [q(x) + Ψ∗(x)Ψ(x)]

ε(k)− µ+ 2gΣ(x) + V (x)− D
~ Q0(x)

− βD [q(x) + Ψ∗(x)Ψ(x)]

ε(k)− µ+ 2gΣ(x) + V (x)− D
~ Q
∗
0(x)

}
.

The remaining k-integrals of the logarithmic functions in (2.123) are UV-divergent in all dimensions,
while the k-integrals of the third and the fourth terms in (2.123) diverges in two and three dimensions
and converges only in one dimension. Thus, we evaluate (2.123) by using, again, the dimensional regu-
larization method. With the Schwinger integral (2.82) and the corresponding Schwinger representation
of the logarithm:

ln a = − ∂

∂x

[
1

Γ(x)

ˆ ∞
0

ds sx−1 e−as
]∣∣∣∣
x=0

, (2.124)
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we obtain from (2.123):

V
(2)

eff = − 1

2β

(
M

2π~2

)n/2
lim
η↓0

∞∑
m=−∞

eiωmη
ˆ
dnxΓ

(
−n

2

)
×

{[
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)

]n/2
+

[
i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Q∗m(x)

]n/2}

−D
2

ˆ
dnx [q(x) + Ψ∗(x)Ψ(x)] Γ

(
−n

2
+ 1
) ( M

2π~2

)n/2
×

{[
−µ+ 2gΣ(x) + V (x)− D

~
Q0(x)

]n
2
−1

+

[
−µ+ 2gΣ(x) + V (x)− D

~
Q∗0(x)

]n
2
−1
}
. (2.125)

The effective potential Veff = V
(1)

eff + V
(2)

eff resulting from (2.122) and (2.125) represents a function of
all degrees of freedom of the replica-symmetric background fields (2.44). It is extremal with respect
to all these variables Ψ∗(x), Ψ(x), Σ(x), Q∗m(x), Qm(x), q(x), if the mean-field Eqs. (2.89)–(2.92) are
fulfilled.
As the extremum of the effective potential yields the thermodynamic potential, we obtain from (2.122)
and (2.125) at first:

F =

ˆ
dnx

{
−gΣ2(x)− g

2
n2

0(x)−
√
n0(x)

[
µ+

~2

2M
∆− 2gΣ(x)− V (x) +

D

~
Q0(x)

]√
n0(x)

+
D

~
Q0(x) [q(x) + n0(x)] +

D

2~2β
lim
η↓0

∞∑
m=−∞

eiωmη Q2
m(x) (2.126)

−DΓ
(
−n

2
+ 1
)( M

2π~2

)n/2
[q(x) + n0(x)]

[
−µ+ 2gΣ(x) + V (x)− D

~
Q0(x)

]n
2
−1

− 1

β
Γ
(
−n

2

)( M

2π~2

)n/2
lim
η↓0

∞∑
m=−∞

eiωmη
[
−i~ωm − µ+ 2gΣ(x) + V (x)− D

~
Qm(x)

]n/2}
.

Thus, the particle density n(x) defined according to

N = −∂F
∂µ

=

ˆ
dnxn(x), (2.127)

where N denotes the particle number, turns out to coincide with the mean-field Σ(x) due to (2.89),
(2.90), and (2.92):

Σ(x) = n(x). (2.128)

Furthermore, all self-consistency equations (2.89)–(2.91) can be directly obtained by extremising
the thermodynamic potential (2.126) with respect to its variables Qm 6=0(x), Q0(x), q(x), and

√
n0(x).

Indeed, the combination of the two extremisations δF
δQm 6=0(x′) = 0 and δF

δq(x′) = 0 gives us equation (2.89),

while the extremisations δF
δQ0(x′) = 0 and δF

δ
√
n0(x′)

= 0 yield equations (2.90) and (2.91), respectively.

Now we apply our theory, which is formulated for a general n-dimensional homogeneous system, to
first the three-dimensional dirty bosons, since it is less complicated, and then to the one-dimensional
dirty bosons. The two-dimensional case can not be treated using the actual form of the theory as has
already been discussed in detail below Eq. (2.86).

2.10. Application of Hartree-Fock Mean-Field Theory in 3D

We treat first the three-dimensional case since it is less complicated than the one-dimensional case. In
three dimensions, i.e., n = 3, Eqs. (2.85) and (2.86) reduce to:
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Qm(x) = −2
√
π~
(

M

2π~2

)3/2
√
−i~ωm − µ+ 2gn(x) + V (x)− D

~
Qm(x)−NβDn(x) δm,0 , (2.129)

qm(x) =
2
√
π~
N

(
M

2π~2

)3/2
{√
−i~ωm − µ+ 2gn(x) + V (x)− D

~
Qm(x)−NβDn(x) δm,0

−
√
−i~ωm − µ+ 2gn(x) + V (x)− D

~
Qm(x)−NβDn(x) δm,0 −N

D

~
[qm(x) + ~βΨ∗(x)Ψ(x) δm,0]

}
.

(2.130)

Squaring (2.129) yields a quadratic equation for the corresponding Matsubara coefficients Qm(x) which
is solved by:

Qm(x) =− 2π~D
(

M

2π~2

)3

± 2
√
π~
(

M

2π~2

)3/2

×

√
−i~ωm − µ+ 2gn(x) + V (x) + πD2

(
M

2π~2

)3

+NβDn(x) δm,0 . (2.131)

Now we have to check whether both solutions (2.131) really solve the original algebraic equation (2.129).
To this end we reinsert (2.131) into (2.129), yielding:

Qm(x) =− 2
√
π~
(

M

2π~2

)3/2

(2.132)

×

√√√√√
√−i~ωm − µ+ 2gn(x) + V (x) + πD2

(
M

2π~2

)3

+NβDn(x) δm,0 ∓
√
πD

(
M

2π~2

)3/2
2

.

Squaring (2.129) and inserting it into (2.130) yields also a quadratic equation for the corresponding
Matsubara coefficients qm(x) which is solved by:

qm(x) =− 1

N

[
2π~D

(
M

2π~2

)3

+Qm(x)

]

± 1

N

√√√√[2π~D
(

M

2π~2

)3

+Qm(x)

]2

− 4Nπ~2βD

(
M

2π~2

)3

Ψ∗(x)Ψ(x) δm,0 . (2.133)

2.10.1. Replica Limit

Now we perform the replica limit N → 0 and, in parallel, we treat both cases m = 0 and m 6= 0
separately.
At first, we consider the case m = 0 and note that Q0(x) has to be real according to (2.87).

Furthermore, we find that the compatibility of (2.131) and (2.132) for m = 0 fixes Q0(x) to be:

Q0(x) =


−2
√
π~
(

M

2π~2

)3/2
[
√
πD

(
M

2π~2

)3/2

+
√
−µr(x)

]
; µr(x) ≤ 0

−2
√
π~
(

M

2π~2

)3/2
[
√
πD

(
M

2π~2

)3/2

−
√
−µr(x)

]
; µ

(crit)
r ≤ µr(x) ≤ 0 ,

(2.134)
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where we have introduced the renormalized chemical potential:

µr(x) = µ− V (x)− 2gn(x)− πD2

(
M

2π~2

)3

(2.135)

and the critical chemical potential is defined by:

µ(crit)
r = −πD2

(
M

2π~2

)3

. (2.136)

Thus, we obtain from (2.132) that the condition µr(x) ≤ 0 has to be fulfilled.
Now, we consider the case m 6= 0, where (2.131) and (2.132) are only compatible for the lower sign,

i.e., we conclude:

Qm(x) = −2π~D
(

M

2π~2

)3

− 2
√
π~
(

M

2π~2

)3/2√
−i~ωm − µr(x) , m 6= 0 . (2.137)

According to (2.133) q0(x) has also to be real and in the replica limit

qm(x) =

{
qm 6=0(x) m 6= 0

~βq(x) m = 0,
(2.138)

where q(x) satisfies the algebraic equation:

q(x) =


√
πD

(
M

2π~2
)3/2 n0(x)√

−µr(x)
; µr(x) ≤ 0

−
√
πD

(
M

2π~2
)3/2 n0(x)√

−µr(x)
; µ

(crit)
r ≤ µr(x) ≤ 0

(2.139)

and

qm 6=0(x) =


0 ; µr(x) ≤ 0,

lim
N→0

− 2
N

[
2π~D

(
M

2π~2
)3

+Qm(x)
]

; µ
(crit)
r ≤ µr(x) ≤ 0 .

(2.140)

Since, as it is already shown in the end of Section 2.8, q(x) is a density, i. e., it has to be positive,
so the negative solution in equation (2.139) is rejected. Furthermore, the second solution of (2.140)
has to be rejected since it diverges in the replica limit. Thus,

qm(x) =

0 m 6= 0

~β
√
πD

(
M

2π~2
)3/2 n0(x)√

−µr(x)
m = 0,

(2.141)

Due to the assumed homogeneity in time we had to put q(x− x′, x+x′

2 , τ − τ ′) in equation (2.44) to
be time dependent, but according to equation (2.141) this quantity turns out to be time independent.
We note also that the replica limit eliminates the disorder contribution with NβDn(x) δm,0 in (2.131)
and (2.133).

Taking into account (2.134) and (2.137), we get at first:

n(x) = q(x) + n0(x) +
∆Q0(x)

~β

−2
√
π

β

(
M

2π~2

)3/2

lim
η↓0

∞∑
m=−∞

eiωmη

[
√
πD

(
M

2π~2

)3/2

+
√
−i~ωm − µr(x)

]
, (2.142)

where the following abbreviation has been introduced:

∆Q0(x) = Q0(x)− lim
m→0

Qm(x) =


0 ; µr(x) ≤ 0

4
√
π~
(

M

2π~2

)3/2√
−µr(x) ; µ

(crit)
r ≤ µr(x) ≤ 0

(2.143)
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Then the remaining Matsubara sums (2.142) are evaluated by using the zeta function regularization
method [115]. The first sum in (2.142) vanishes immediately due to the Poisson formula:

∞∑
m=−∞

δ(x−m) =
∞∑

n=−∞
e−2πinx . (2.144)

In order to calculate the second sum in (2.142), we apply both the Schwinger integral (2.82) and the
Poisson formula (2.144) to obtain:

lim
η↓0

∞∑
m=−∞

eiωmη (−i~ωm + a)ν =
ζν+1

(
e−aβ

)
βν Γ(−ν)

, (2.145)

with the polylogarithmic function:

ζν(z) =
∞∑
n=1

zn

nν
. (2.146)

Thus, we result in mean-field:

n(x) = q(x) + n0(x) +
∆Q0(x)

~β
+

(
M

2π~2β

)3/2

ζ3/2

(
eβµr(x)

)
. (2.147)

2.10.2. Free Energy

The remaining Matsubara sums in the expression of the thermodynamic potential (2.126) are evaluated
in three dimensions by using, again, the zeta function regularization method. Taking into account
(2.134), (2.137), and (2.145) yields

D

2~2β
lim
η↓0

∞∑
m=−∞

eiωmη Q2
m(x) = −2πD2

(
M

2π~2

)3( M

2π~2β

)3/2

ζ3/2

(
eβµr(x)

)
− 2πD2∆Q0(x)

~β

(
M

2π~2

)3

(2.148)

and, correspondingly,

−4
√
π

3β

(
M

2π~2

)3/2

lim
η↓0

∞∑
m=−∞

eiωmη
[
−i~ωm − µ+ 2gn(x) + V (x)− D

~
Qm(x)

]3/2

= 2πD2

(
M

2π~2

)3( M

2π~2β

)3/2

ζ3/2

(
eβµr(x)

)
− 1

β

(
M

2π~2β

)3/2

ζ5/2

(
eβµr(x)

)
+

2πD2∆Q0(x)

~β

(
M

2π~2

)3

+
∆Q3

0(x)

24π~3β

(
M

2π~2

)−3

. (2.149)

Using the mean-field equation (2.91), the thermodynamic potential (2.126) is now given in three
dimensions by:

F =

ˆ
dx

{
−g n2(x)− g

2
n2

0(x)−
√
n0(x)

{
µ+

~2

2M
∆− 2gn(x)− V (x)

−2
√
πD

(
M

2π~2

)3/2
[
√
πD

(
M

2π~2

)3/2

+

√
−µ+ 2gn(x) + V (x) + πD2

(
M

2π~2

)3
]√n0(x)

− 1

β

(
M

2π~2β

)3/2

ζ5/2

(
eβµr(x)

)
+

∆Q3
0(x)

24π~3β

(
M

2π~2

)−3
}
. (2.150)
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2.10. Application of Hartree-Fock Mean-Field Theory in 3D

Note that we have according to (2.143) two solution branches of our mean-field equations for µ(crit)
r ≤

µr(x) ≤ 0, one with ∆Q0(x) = 0 and another one with ∆Q0(x) > 0. As the latter solution branch
yields via (2.150) a higher thermodynamic potential, we do no longer consider it in the following and
restrict ourselves to the minimum ∆Q0(x) = 0. With this equation (2.150) reduces to:

F =

ˆ
dx

{
−g n2(x) +

g

2
n2

0(x)− 1

β

(
M

2π~2β

)3/2

ζ5/2

(
eβµr(x)

)
+
√
n0(x)

{
−gn0(x) (2.151)

+

√πD( M

2π~2

)3/2

+

√
−µ+ 2gn(x) + V (x) + πD2

(
M

2π~2

)3
2

− ~2

2M
∆

}√
n0(x)

 .

Note that the order parameter q(x) does not explicitly contribute to the thermodynamic potential
(2.151). During the derivation of (2.151) from (2.126) the explicit dependence on q(x) drops out due
to the mean-field equation (2.129).

2.10.3. Self-Consistency Equations

Inserting (2.128) into (2.91), (2.139), and (2.147) we obtain for the particle density n(x):

n(x) = n0(x) + q(x) + nth (x) , (2.152)

as well as self-consistency equations for its three components: the order parameter of the superfluid
n0(x), which represents the density of the particles in the condensate, the order parameter of the Bose-
glass phase q(x), which stands for the density of the particles in the respective minima of the disorder
potential and which vanishes in absence of disorder, and the thermal component nth (x) which vanishes
in case of zero temperature. Thus, a boson can be in one of the following three components: in the
condensate, in the local condensate or in the thermal phase. The resulting self-consistency equations
for n0(x), q(x), and nth (x) read:

{
−gn0(x) +

[√
−µ+ d2 + 2gn(x) + V (x) + d

]2
− }2

2M
∆

}√
n0(x) = 0, (2.153)

q(x) =
dn0(x)√

−µ+ d2 + 2gn(x) + V (x)
, (2.154)

nth (x) =

(
M

2πβ}2

)3/2

ς 3/2

(
eβ [µ−d2−2gn(x)−V (x)]

)
. (2.155)

For physical reasons it is plausible to assume that particles accumulate in the center of the trap.
Thus, the differential self-consistency equation (2.153) has to be solved with the boundary conditions:

∂n (x)

∂x

∣∣∣∣∣
x=0

= 0,
∂n0 (x)

∂x

∣∣∣∣∣
x=0

= 0 (2.156)

and the normalization condition

N =

ˆ
n(x)d3x, (2.157)

where d =
√
πD

(
M/2π}2

)3/2characterizes the disorder strength. In total we have four coupled equa-
tions, among them three algebraic equations (2.152), (2.154), (2.155) and one partial differential equa-
tion (2.153). In the absence of the disorder, i.e., d = 0, the Bose-glass order parameter vanishes and
equation (2.153) reduces to the Hartree-Fock Gross-Pitaevskii equation in the clean case.
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2. Hartree-Fock Mean-Field Theory for Dirty Bosons

The self-consistency equations (2.152) and (2.153)–(2.155) are also obtained by first rewriting the
thermodynamic potential (2.151) as a function of the chemical potential µ, the condensate density
n0(x), the Bose-glass order parameter q(x) and the thermal contribution nth (x):

F =

ˆ
dx

{
−g [n0(x) + q(x) + nth (x)]2 +

g

2
n2

0(x)

− 1

β

(
M

2π~2β

)3/2

ζ5/2

(
eβ{µ−2g[n0(x)+q(x)+nth(x)]−V (x)+d2}

)
+
√
n0(x)

{
−gn0(x)

+
[
d+

√
−µ+ 2g [n0(x) + q(x) + nth (x)] + V (x)− d2

]2
− ~2

2M
∆

}√
n0(x)

}
. (2.158)

and then by performing a partial derivative with respect to µ and extremising with respect to the
condensate density, the Bose-glass order parameter, and the thermal contribution:

−∂F
∂µ

= N,
δF

δn0(x′)
= 0,

δF
δq(x′)

= 0,
δF

δnth(x′)
= 0. (2.159)

Thus, we recognize that in our mean-field theory the order parameters can be considered as varia-
tional parameters. This allows, in principle, to use a variational solution method which is a based on
the principle that, among all possible configurations of a physical system, the system realizes the one
that extremises the free energy. This method is used in physics both for theory construction and for
calculational purposes, see, for instance, the successful variational perturbation theory worked out in
Refs. [110,115–117].

2.11. Application of Hartree-Fock Mean-Field Theory in 1D

Now we come to the one-dimensional case, i.e., n = 1, where the equations (2.89)–(2.92) reduce to

Qm(x) =

√
M

2

1√
−i~ωm − µ+ 2gn(x) + V (x)− D

~ Qm(x)
, (2.160)

q(x) =
D

~M
Q3

0(x)
n0(x)

1− D
~MQ

3
0(x)

, (2.161)

the Gross-Pitaevskii equation[
−µ+ 2gn(x) + V (x)− gn0(x)− D

~
Q0(x)− ~2

2M

∂2

∂x2

] √
n0(x) = 0 (2.162)

and the particle density

n(x) = q(x) + n0(x) + lim
η↓0

∞∑
m=−∞

eiωmη
Qm(x)

~β
. (2.163)

Equation (2.160) represents a cubic equation with respect to Qm(x):

−D
~
Q3
m(x) + [−i~ωm − µ+ 2gn(x) + V (x)]Q2

m(x)− M

2
= 0, (2.164)

whose result should be inserted into equations (2.161)–(2.164). To this end we have to use the Cardan
method which is a mathematical tool to solve an algebraic cubic equation exactly [118]. It is char-
acterized by a discriminant δ according to Appendix A, which has for equation (2.164) the following
form:
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2.11. Application of Hartree-Fock Mean-Field Theory in 1D

δm =
~2M

108D4

{
27D2M + 8~2 [i~ωm + µ− 2gn(x)− V (x)]3

}
. (2.165)

As the finite temperature case is too complicated to deal with, we restrict ourselves to zero temper-
ature, where only the m = 0 term contributes. In this case the discriminant δ has a real value and the
Cardan method can be applied. According to the sign of the discriminant δ0 we get the following real
solutions for Q0(x):

Q0(x) =



3

√
−q+

√
δ0

2 +
3

√
−q−

√
δ0

2 + ~
3D [−µ+ 2gn(x) + V (x)] ; δ0 > 0

3

√
−q+i

√
−δ0

2 +
3

√
−q−i

√
−δ0

2 + ~
3D [−µ+ 2gn(x) + V (x)] ; δ0 ≤ 0

e±
2iπ
3

3

√
−q+i

√
−δ0

2 + e∓
2iπ
3

3

√
−q−i

√
−δ0

2 + ~
3D [−µ+ 2gn(x) + V (x)] ; δ0 ≤ 0

(2.166)

with the abbreviation:

q = − 2~3

27D3
[−µ+ 2gn(x) + V (x)]3 +

~M
2D

. (2.167)

The correct solution of Q0(x) has, according to (2.161), to be positive and can only be selected after
choosing the form of the trap to be positive and to ensure a minimal free energy.
At zero temperature equations (2.161) and (2.162) remain the same but equation (2.163) reduces to:

n(x) = q(x) + n0(x) (2.168)

and the free energy (2.126) reduces using (2.160) to:

F =

ˆ
dx

{
−g [n0(x) + q(x)]2 − g

2
n2

0(x)

−
√
n0(x)

{
µ+

~2

2M

∂2

∂x2
− 2g [n0(x) + q(x)]− V (x) +

D

~
Q0(x)

}√
n0(x)

}
. (2.169)

After inserting (2.168) into (2.166) and then inserting the result into the free energy expression
(2.169), the three self-consistency equations (2.161), (2.162), and (2.168) can be directly obtained by
extremising the free energy with respect to its variables q(x), n0(x) and µ, i.e., −∂F

∂µ = N, δF
δn0(x′) = 0

and δF
δq(x′) = 0, respectively. So also in one dimension our mean-field theory is based on identifying the

order parameters as variational parameters.
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3. 1D Case at Zero Temperature

In this chapter we investigate in detail the self-consistency equations and the free energy derived from
the Hartree-Fock mean-field theory for the one-dimensional BEC developed in Section 2.11 at zero
temperature. We restrict ourselves to the homogeneous case and treat then a harmonic trap potential
in Thomas-Fermi approximation, where we work out the different densities as well as the respective
Thomas-Fermi radii. Furthermore, we develop a numerical treatment for solving the corresponding
one-dimensional Gross-Pitaevskii equation. The respective analytical and numerical results are quali-
tatively and quantitatively compared.

3.1. Homogeneous Case

The simplest case to discuss is the homogeneous one, which is even a prerequisite to study the trapped
one in Thomas-Fermi approximation. In the homogeneous case we have V (x) = 0, furthermore, we
distinguish two different phases, the superfluid phase and the Bose-glass phase, and both are treated
separately.

3.1.1. Superfluid Phase

In the superfluid phase both the condensate density and the Bose-glass order parameter contribute to
the total density. In this phase Eqs. (2.160)–(2.163) reduce at zero temperature to:

Q0 =

√
M

2

1√
−µ+ 2gn− D

~ Q0

, (3.1)

q =
D

~M
Q3

0

n0

1− D
~MQ

3
0

, (3.2)

−µ+ 2gn− gn0 −
D

~
Q0 = 0, (3.3)

n = q + n0 . (3.4)

Since all densities are spatially constant in the homogeneous case, we denote them in this section by
n, n0, q, and Q0, respectively.
Inserting (3.3) into (3.1) yields Q0 =

√
M

2gn0
, this allows us to get rid of the auxiliary quantity Q0

in all equations, and reduces Eqs. (3.2) and (3.3) to

q =
D

~M
n0(

2gn0

M

) 3
2 − D

~M

, (3.5)

gn0 = −µ+ 2gn− D

~

√
M

2gn0
, (3.6)

which represent together with (3.4) three coupled algebraic equations for the three respective densities.
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3. 1D Case at Zero Temperature

Figure 3.1.: Condensate fraction n0/n as function of dimensionless disorder strength D.

Inserting (3.4) into (3.5) gives us q = D
~M

(
M

2gn0

) 3
2
n. Inserting this result again into (3.4), then

dividing by n5/2 yields the following algebraic fifth order equation for the condensate fraction n0/n:(n0

n

)5/2
−
(n0

n

)3/2
+D = 0, (3.7)

where D = ξ3

L3 denotes the dimensionless disorder strength, ξ = ~√
2Mgn

the coherence length, which

is the distance over which the coherence significantly decays, and L =
(

~4
M2D

)1/3
the Larkin length

[82,119]. Figure 3.1 shows that the resulting condensate fraction decreases with increasing the disorder
strength. As more and more particles are localized in the minima of the random potential, our mean-
field theory predicts that the condensate density stops to exist at the critical value Dc = 6

25

√
3
5 '

0.185. This corresponds to the value DcFNP = 1, that was found in the non-perturbative approach of
Refs. [82,83], which investigate at which disorder strength the Bose-glass phase becomes energetically
unstable and goes over into the superfluid phase. We interpret this as a sign of the occurrence of a
first-order quantum phase transition in the homogeneous BEC from the superfluid phase, where the
particles are either condensed or in the local minima of the disorder, to the Bose-glass phase, where
there is no condensate at all and all bosons are localized in the minima of the disorder potential. Thus,
we expect that a quantum phase transition will also appear in the trapped case studied in the next
section.
Now we look for the equation of state in the superfluid phase. To this end we divide equation (3.6)

by gn, which yields:

D = −1

2

[(n0

n

)3/2
+

(
µ

gn
− 2

)√
n0

n

]
. (3.8)

Inserting this result into equation (3.7) yield the following quadratic equation with respect to n0
n(n0

n

)2
− 3

2

(n0

n

)
− µ

2gn
+ 1 = 0, (3.9)

which has two real solutions n0
n = 1

4

(
3±

√
−7 + 8 µ

gn

)
. Inserting those two solutions again into the

the condensate fraction equation (3.7) yields the algebraic fifth order equation of state:[
1

4

(
3±

√
−7 + 8

µ

gn

)]5/2

−
[

1

4

(
3±

√
−7 + 8

µ

gn

)]3/2

+D = 0. (3.10)

Equation (3.10) can be solved only numerically and has five solutions, three real ones and two complex,
and each one has the degeneracy two. Among them we chose the one which satisfies the boundary
conditions:

(
D = 0, µ = gn

)
and

(
D = Dc,

n0
n = 3

5

)
.
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3.1. Homogeneous Case

Figure 3.2.: Chemical potential µ in units of gn as function of dimensionless disorder strength D.

3.1.2. Bose-Glass Phase

In the Bose-glass phase we have n0 = 0 and n = q, in this case Eqs. (2.160), (2.161) reduce to:

Q0 =

(
~M
D

)1/3

, (3.11)

gq =
1

2

(
3D

2/3
+ µ

)
. (3.12)

By dividing the relation (3.12) by the factor gn, we get the equation of state

µ

gn
= 2− 3D

2/3
. (3.13)

The solution of equation (3.10) of the superfluid phase is combined with the equation of state of the
Bose-glass phase (3.13) and plotted in Fig 3.2. We find that the chemical potential decreases with the
disorder strength in both phases with a discontinuity in the transition region between the superfluid
and the Bose glass phase.

3.1.3. Comparison with Huang-Meng Theory

Now we check whether our results are compatible with the Huang-Meng theory [65,69,103,120], where
the Bose-glass order parameter of a homogeneous dilute Bose gas at zero temperature in case of weak
disorder regime is deduced within the seminal Bogoliubov theory. The Bose-glass order parameter in
one dimension via the Huang-Meng theory is proportional to the disorder strength and given by:

qHM =
D

8~g3/2

√
M

n
,
qHM

n
=

D

23/2
. (3.14)

To this end we deduce from (3.5) the corresponding formula of the Bose-glass order parameter in
case of weak disorder strength:

qw ≈
D

23/2~g3/2

√
M

n
,
qw
n

= D. (3.15)

Thus, from (3.15) we conclude that our result agrees qualitatively with the Huang-Meng theory, i.e.,
in the weak disorder regime the Bose-glass order parameter is, indeed, proportional to the disorder
strength D. But quantitatively the comparison of (3.14) with (3.15) reveals that a factor of 23/2 is
missing in our formula (3.15). This is due to the fact that the Hartree-Fock theory does not contain
the Bogoliubov channel, which is included in the Huang-Meng theory.
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3. 1D Case at Zero Temperature

3.2. Thomas-Fermi Approximation

After having treated the homogeneous case, we deal now with the trapped one. To this end we rewrite
the self-consistency equations at zero temperature (2.161)–(2.163) already obtained in Section 2.11:

q(x) =
D

~M
Q3

0(x)
n0(x)

1− D
~MQ

3
0(x)

, (3.16)

[
−µ+ 2gn(x) + V (x)− gn0(x)− D

~
Q0(x)− ~2

2M

∂2

∂x2

] √
n0(x) = 0, (3.17)

and

n(x) = q(x) + n0(x) , (3.18)

where the auxiliary function Q0(x) is the solution of the following cubic equation:

Q0(x) =

√
M

2

1√
−µ+ 2gn(x) + V (x)− D

~ Q0(x)
. (3.19)

So we have four coupled self-consistency equations for the densities n(x), n0(x), q(x), and Q0(x):
three algebraic ones (3.16), (3.18), and (3.19) as well as one nonlinear, differential equation (3.17).
Furthermore, we have to take into account the normalization condition:

ˆ ∞
−∞

n(x)dx = N, (3.20)

where the total number of particles N is the integral of the total density n(x) over the whole space.
The exact analytical solution of the differential equation (3.17) is impossible to obtain even in the

absence of disorder. Therefore, we approximate its solution via an approximation method, which is
based on the following consideration. If either the number of particles in a gas or the interatomic
interaction becomes large, then the kinetic energy term in equation (3.17) can be neglected. This leads
to the so-called Thomas-Fermi (TF) approximation.
It turns out that we have to distinguish between two different spatial regions: the superfluid region,

where the bosons are distributed in the condensate as well as in the minima of the disorder potential,
and the Bose-glass region, where there are no bosons in the condensate so that all bosons contribute to
the local Bose-Einstein condensates. The radius of the superfluid region RTF1 is called the condensate
radius, while the radius of the whole bosonic cloud RTF2 is called the cloud radius, and both radii
represent Thoma-Fermi radii.
Within the so-called TF approximation the algebraic equations (3.16) and (3.18) remain the same,

but the differential equation (3.17) reduces to an algebraic relation in the superfluid region:

−µ+ 2gn(x) + V (x)− gn0(x)− D

~
Q0(x) = 0. (3.21)

Outside the superfluid region, i.e., in the Bose-glass region, equation (3.17) reduces simply to n0(x) = 0.
The advantage of the TF approximation is that now we have only three coupled algebraic equations.
In order to be able to continue the calculation, we have to specify the trap potential. We choose it

to be a harmonic one, i.e., V (x) = MΩ2x2/2, where Ω denotes the trap frequency. We specify also
the interaction coupling strength to be g = 2a~ωr with the s-wave scattering length a, which has to
be positive in order to obtain a stable BEC, and ωr denotes the transversal trap frequency, which has
to be large enough in order to ensure a quasi one-dimensional setup [121,122].
Since at zero temperature we have two different regions, we treat them separately. We focus first on

the superfluid region, then we deal with the Bose-glass one.
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3.2. Thomas-Fermi Approximation

3.2.1. Superfluid Region

Comparing Eq. (3.19) with Eq. (3.21), yields Q0(x) =
√

M
2gn0(x) . Inserting this result into the self-

consistency equations (3.16), (3.18), and (3.21) eliminates their dependence on the auxiliary function
Q0(x), and reduces them in the superfluid region to:

−µ̃+ 2ñ(x̃) + x̃2 − ñ0 (x̃)− 2
D̃√
ñ0 (x̃)

= 0, (3.22)

q̃ (x̃) = D̃
ñ0 (x̃)

ñ
3/2
0 (x̃)− D̃

, (3.23)

ñ(x̃) = q̃ (x̃) + ñ0 (x̃) , (3.24)

where ñ(x̃) = n(x)/n denotes the dimensionless total density, ñ0(x̃) = n0(x)/n the dimensionless
condensate density, q̃(x̃) = q(x)/n the dimensionless Bose-glass order parameter, x̃ = x/RTF the
dimensionless coordinate, µ̃ = µ/µ̄ the dimensionless chemical potential, D̃ = ξ3

L3 the dimensionless

disorder strength, l =
√

~
MΩ the oscillator length, n = µ̄/g the maximal total density in the clean

case, ξ = l2

RTF
the coherence length in the center of the trap, and RTF = l

√
2µ̄
~Ω the TF cloud radius.

The chemical potential in the absence of the disorder µ̄ = ~ωr
(

3
2
√

2
N a

l

√
Ω
ωr

)2/3

is deduced from the
normalization condition (3.20) in the clean case, i.e., D = 0, by evaluating:

N =
1

g

ˆ RTF

−RTF

[
µ̄− 1

2
MΩ2x2

]
dx. (3.25)

Now we have three algebraic self-consistency coupled equations (3.22)–(3.24) for the dimensionless
condensate density ñ0 (x̃), the dimensionless Bose-glass order parameter q̃ (x̃) and the sum of them,
i.e., the dimensionless total density ñ(x̃). Inserting equations (3.23) and (3.24) into equation (3.21)
gives us one self-consistency equation for the condensate density in the superfluid region:

ñ3
0 (x̃) +

(
−µ̃+ x̃2

)
ñ2

0 (x̃)− D̃ñ3/2
0 (x̃)− D̃

(
−µ̃+ x̃2

)√
ñ0 (x̃) + 2D̃2 = 0. (3.26)

This equation is of the sixth order with respect to
√
ñ0 (x̃), which makes it impossible to solve ana-

lytically. Therefore, we solve it numerically and insert the result into equations (3.23) and (3.24) in
order to determine the Bose-glass order parameter q̃ (x̃) and the total density ñ(x̃), respectively.

3.2.2. Bose-Glass Region

In the Bose-glass region the condensate density vanishes, i.e., ñ0(x̃) = 0, and we conclude ñ(x̃) = q̃(x̃).
Inserting this into equation (3.16) we get Q0(x)=

(~M
D

)1/3
, which reduces equation (3.19) to:

q̃(x̃) =
1

2

(
3D̃2/3 + µ̃− x̃2

)
. (3.27)

We also need to write down the dimensionless equivalent of the normalization condition (3.20), which
reads: ˆ R̃TF2

−R̃TF2

ñ(x̃)dx̃ =
N

nRTF
=

4

3
, (3.28)

where R̃TF2 = RTF2/RTF denotes the dimensionless cloud radius, and the total density ñ(x̃) in equation
(3.28) is the combination of the total densities from both the superfluid region and the Bose-glass region.
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3. 1D Case at Zero Temperature

Figure 3.3.: Total density ñ(x̃) (dotted, blue), condensate density ñ0 (x̃) (dotted-dashed, red), and
Bose-glass order parameter q̃(x̃) (solid, green) for the dimensionless disorder strength D̃ =
0.016.

3.2.3. Thomas-Fermi Results

Before choosing any parameter for our BEC system, we have first to justify using the TF approximation
and determine the range of validity of this approximation. To this end we rewrite equation (3.17) in
the clean case, i.e., D = 0, and we divide it with µ̄

√
n̄. This yields:

[
−1 + ñ(x̃) + x̃2 −

(
ξ

RTF

)2 ∂2

∂x̃2

] √
ñ (x̃) = 0. (3.29)

Note that in the clean case, the total density coincides with the condensate one. The TF approximation

is only justified when the prefactor of the kinetic term
(

ξ
RTF

)2
is small enough that the kinetic term

can be neglected, i.e.,
ξ � RTF. (3.30)

In this chapter we perform our study for Rubidium 87Rb and for the following experimentally realistic
parameters: N = 106, Ω = 2π × 50 Hz, ωr = 2π × 179 Hz, and a = 5.29 nm. For those parameters the
oscillator length is given by l = 1.52µm, the coherence length turns out to be ξ = 45.6 nm, and the
Thomas-Fermi radius reads RTF = 50.9µm, so the assumption (3.30) for the TF approximation is,
indeed, fulfilled. Furthermore, the transverse oscillator length lr =

√
~

Mωr
= 806.04 nm is much larger

than the scattering length, i.e., a� lr, so we are in quasi one-dimensional regime [123].
Using those parameter values we solve equation (3.26) numerically. This equation has six solutions,

two complex ones and four real ones, among them only two real solutions yield a positive ñ0 (x̃) and
are, thus, physical. We insert each of the two physical solutions into equations (3.23) and (3.24), then
we combine those superfluid region solutions with equation (3.27) describing the Bose-glass region,
after that we fix the chemical potential µ̃ using the normalization condition (3.28). In the end, we
select the physical solution with the smallest free energy (2.169) and we insert it into Eq. (3.26) in
order to check whether the selected solution does satisfy (3.26). The resulting densities are combined
and plotted in Fig. 3.3, where in the superfluid region the densities are plotted with solid lines, and in
the Bose-glass region they are plotted with dotted lines.
Figure. 3.3 shows the total density ñ(x̃) being maximal in the center of the trap and decreases when

we move away from the center of the cloud until being zero at the cloud radius, with a tiny jump at the
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3.2. Thomas-Fermi Approximation

Figure 3.4.: (a) Cloud radius R̃TF2 (red) and condensate radius R̃TF1 (blue) and (b) fractional number
of condensed particles N0/N (blue) and in the disconnected local minicondensates Q/N
(red) as functions of the dimensionless disorder strength D̃ .

condensate radius. The condensate density ñ0 (x̃) is also maximal in the center of the bosonic cloud
and decreases when we move away from the center, then it jumps to zero at the condensate radius
which separates the superfluid from the Bose-glass region. The Bose-glass order parameter q̃(x̃) has
a different behavior, it is minimal in the center of the trap, then it keeps increasing when we move
away from the center until the condensate radius, where its maximum equals to the total density, then
Bose-glass order parameter and total density are on top of each other and decrease until vanishing at
the cloud radius. So the three densities turn out to be not continuous at the condensate radius, which
is an artifact of the applied Thomas-Fermi approximation.
To study the influence of the disorder on the BEC, we plot the resulting TF radii in Fig. 3.4a

as a function of the dimensionless disorder strength. The dimensionless condensate radius R̃TF1 =
RTF1/RTF is defined where the condensate density, which is the solution of equation (3.26), stops,
which corresponds to solve the equation ∂x̃

∂ñ0(x̃) |x̃=RTF1
= 0, while the dimensionless cloud radius R̃TF2

is defined by the condition that the solution of equation (3.27) equals to zero, i.e., 3D̃2/3+µ̃−R̃2
TF2 = 0.

We see that both cloud and condensate radius coincide in the clean case. The condensate radius
decreases, when we increase the disorder strength, until it vanishes at the critical dimensionless disorder
value D̃c = 0.143, which marks a quantum phase transition from the superfluid to the Bose-glass
phase. On the other side the cloud radius increases with the disorder in the superfluid phase, but it
remains constant in the Bose-glass phase at the value R̃TF2 = 1.256. This means that beyond the
critical disorder strength D̃c the bosonic cloud is not extending anymore and has a maximal size. The
same conclusion can be deduced from Fig. 3.4b, where we remark that the fractional number of the
condensate is defined via N0/N = 3

4

´ R̃TF1

−R̃TF1
ñ0 (x̃) dx̃. Here N0/N equals to one in the clean case, i.e.,

all particles are in the condensate, then it decreases with the disorder strength until it vanishes at
D̃c marking the end of the superfluid phase and the beginning of the Bose-glass phase. Conversely
the fraction in the disconnected minicondensates Q/N = 3

4

´ RTF2

−RTF2
q̃ (x̃) dx̃, where Q is the number of

particles in the disconnected minicondensates, increases with the disorder until being maximal at D̃c,
then it remains constant and equals to one in the Bose-glass phase, since all particles are in the minima
of the disorder potential.
The influence of the disorder on the chemical potential, is shown in Fig. 3.5a. In the superfluid

region the chemical potential can be obtained only numerically, while in the Bose-glass region it is
deduced from equation (3.27) as follows µ̃ = 22/3 − 3D̃2/3. The chemical potential decreases starting
from one with the disorder strength and is continuous but not differentiable at the quantum phase
transition point D̃c. As already discussed at the end of Section 2.3, the disorder leads to an effective
attractive interaction, this causes the chemical potential to decrease with increasing disorder strength.
Since the trap is quite wide, the Bose-glass order parameter in the center of the BEC q̃ (0) is

comparable to the one in the homogeneous case. Thus, the dimensionless Huang-Meng result of the
Bose-glass order parameter q̃HM = qHM/n = D̃

23/2
√
ñ(0)

, the dimensionless perturbative result of the

53



3. 1D Case at Zero Temperature

Figure 3.5.: (a) Dimensionless chemical potential µ̃ and (b) Thomas-Fermi approximated (blue), per-
turbative (red), and Huang-Meng (green) Bose-glass order parameter in the center of the
BEC as functions of the dimensionless disorder strength D̃.

Bose-glass order parameter in the weak disorder q̃w = D̃√
ñ(0)

deduced from (3.23), and the dimensionless

exact Bose-glass order parameter in the center of the cloud q̃ (0) = D̃ ñ0(0)

ñ
3/2
0 (0)−D̃

, are all plotted for the

weak disorder regime in Fig. 3.5b to illustrate the qualitative convergence of the three results.

3.3. Numerical Treatment

Now we perform a numerical study for the Bose-condensed gas in one dimension and at zero temper-
ature in a harmonic trapping potential V (x) = 1

2 M Ω2 x2. Furthermore, we assume a Gaussian
disorder potential U(x) which satisfies the following conditions:

U(x) = 0 (3.31)

and
U(x)U(x′) = D(x− x′), (3.32)

where D(x− x′) denotes the correlation function.
A one-dimensional BEC in the mean-field Hartree approximation is given by a generalized time-

independent Gross-Pitaevskii equation for the condensate wave function ψ (x):[
− ~2

2M

∂2

∂x2
− µ+ U(x) + V (x) + gψ∗(x)ψ(x)

]
ψ(x) = 0. (3.33)

Equation (3.33) represents a stochastic nonlinear differential equation which is difficult to solve
exactly, therefore we solve it numerically. To this end we have first to generate the random potential
U (x) before inserting it into equation (3.33).

3.3.1. Generating Random Potential

Motivated by Fourier series, a simple ansatz for generating a random function is performed. The po-
tential is written as a finite superposition of sin(kx) and cos(kx) terms with properly picked amplitudes
An, Bn, and wave numbers kn [124]:

U(x) =
1√
N

N−1∑
n=0

[An cos(kn x) +Bn sin(kn x)] , (3.34)

where N denotes the number of terms which should be large enough in order to obtain a good approx-
imation for the random potential. Furthermore, we assume An and Bn to be mutually independent
Gaussian random variables with zero mean and variance D(0):

AnBn = 0, AnAm = BnBm = D(0)δnm, (3.35)
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Figure 3.6.: Random potential (3.34) for Gaussian correlation (3.32) in one dimension with N = 100,
D = 1, and λ = 1.
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Figure 3.7.: Correlation U(x)U(0) (red) with N = 100 averaged over (a) M = 1000 and (b) M = 10000
sample potentials compared to D(x) in equation (3.32) with D = 1 and λ = 1 (blue).

The wave numbers kn are independent random variables as well, which are picked from the probability
distribution:

p(kn) =
S(kn)´∞

−∞ S(k′)dk′
, (3.36)

where S(k) defines the spectral density as the Fourier transform of the correlation function:

S(k) =

ˆ ∞
−∞

dxe−ikxD (x) . (3.37)

In the special case of the Gaussian correlated disorder we have

D(x− x′) =
D√
2πλ

e−
(x−x′)2

2λ2 , (3.38)

where λ denotes the correlation length, and D the disorder strength. The probability distribution
(3.36) reads in this case:

p(kn) =
λ√
2π
e−

λ2k2n
2 . (3.39)

The analytical study in Section 3.2 is done for δ-correlated disorder, but since it is impossible to
treat the δ-correlated disorder numerically, we use now the Gaussian correlated disorder (3.38), which
specializes to a δ-distributed one by taking the limit λ→ 0, i.e., limλ→0D (x) = Dδ (x) .
In order to justify the correct correlation and distribution function of the random process, we show

in Fig. 3.6 a typical example of a random potential generated by (3.34) for D = 1 and λ = 1 with
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3. 1D Case at Zero Temperature

Figure 3.8.: Particle density ñ(x̃): original data (blue), fitted curve (red), and fitted Gaussian (Green)
for (a) D̃ = 0.067, (b) D̃ = 0.603.

N = 100. The same values of D and λ are used to plot in Fig. 3.7 the correlation function U(x)U(0)
(red) sampled for N = 100 and averaged over M = 1000 and M = 10000 pseudorandomly generated
functions, respectively. The results are compared to the expected correlator D(x) plotted as a blue
line, it gives a good approximation. In order to numerically reproduce the correlation function (3.32)
to a desired accuracy two numbers have to be appropriately large enough. The first one is the number
N of terms in (3.34), the second one is the number M of realization of the disorder potential, which are
used to evaluate the disorder ensemble average (3.32). It can be shown analytically that the error in
reproducing (3.32) in the case M→∞ is of the order of 1/N (see Appendix B).

3.3.2. Numerical Results

We insert the generated disorder potential (3.34) into the Gross-Pitaevskii equation (3.33), then we use
a C computer program [125–127] that solves the time-independent Gross-Pitaevskii equation in one
space dimension in a harmonic trap using the imaginary time propagation. In this way we obtain the
numerical solution of the ground-state wave function ψ(x) of equation (3.33) for M = 1000 realizations
of the disorder potential and N = 10000. We used different values of the disorder strength D in order
to cover the range of weak and intermediate disorder regime. We have chosen the disorder correlation
length λ = 0.01 l, which is small enough in order to approach the case of δ-correlated disorder.
Performing disorder ensemble averages, we have access to the particle density n(x) = ψ(x)2, to

the condensate density n0(x) = ψ(x)2 and to the Bose-glass order parameter q(x) = n(x) − n0(x),
which thus corresponds to the variance of the condensate wave function ψ (x). In order to be able
to compare the numerical results with the analytical ones obtained in Section 3.2, we use the same
rescaling parameters for all densities, coordinates, chemical potential, and disorder strength, which
were already explained below Eq. (3.24) in order to obtain the respective dimensionless quantities.
Before discussing the various numerical results, we show first one typical example in Fig. 3.8, where the
total density ñ(x̃) is plotted for two different values of the disorder strength (blue) showing the original
data without any adjustment. We remark that the resulting density is fluctuating around a Gaussian-
like curve. Comparing Fig. 3.8a with Fig. 3.8b we conclude that the fluctuations are increasing with
the disorder strength. The origin of those fluctuations is that the M = 1000 realizations of the disorder
potential (3.34) are not sufficient to produce a smooth curve after having performed the disorder
ensemble average. One solution of this problem would be to increase the number M of the realizations
of the disorder potential, which would need longer time specially for the intermediate disorder regime,
where the numerics has to be run for a larger spatial range and needs months to be realized. Another
solution, which is the one that we adopted, is to extract a continuous smooth curve which fits to our
data as it is done in Fig. 3.8 (red). This method is applied to all numerical resulting densities in this
chapter. Furthermore, from the Gaussian fit in Fig. 3.8 (green), we remark that the original data of the
total density approach a Gaussian form in the intermediate disorder regime much better than in the
weak disorder. This can be explained with the fact that increasing the disorder reduces effectively the
repulsive interaction between the particles and approaches the case of non-interaction bosons, where
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3.3. Numerical Treatment

Figure 3.9.: Particle density ñ(x̃) for increasing disorder strengths D̃ from top to bottom.

Figure 3.10.: (a) Condensate density ñ0(x̃) and (b) fractional number of condensed particles N0/N for
increasing disorder strengths D̃ from top to bottom.

Figure 3.11.: (a) Bose-glass order parameter q̃(x̃) and (b) fractional number of particles Q/N in the
disconnected local minicondensates for increasing disorder strengths D̃ from bottom to
top.
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3. 1D Case at Zero Temperature

Figure 3.12.: (a) Particle density ñ(x̃) (black), condensate density ñ0(x̃) (blue), Bose-glass order pa-
rameter q̃(x̃) (red) and (b) blow-up of border region for D̃ = 0.604.

Figure 3.13.: Cloud radius R̃TF2 (blue) and condensate radius R̃TF1 (red) as functions of the disorder
strength D̃.

Figure 3.14.: (a) Chemical potential µ̃ and (b) the numerical (blue) and the Huang-Meng (red) Bose-
glass order parameter in the center of the BEC as functions of the disorder strength
D̃.
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3.4. Comparison Between Thomas-Fermi Approximation and Numerics

the total density is given by a Gaussian.
In Fig. 3.9 the total density is plotted for different values of the disorder strength. We remark that

ñ (x̃) is always maximal in the trap center and decreases, when we move away from the center, until
it finally vanishes. The width of the total density, which is the spatial range, where the total density
is not vanishing, is increasing with the disorder strength and the bosonic cloud is becoming larger,
while the maximal total density is decreasing with the disorder strength. Figure 3.10a presents the
condensate density ñ0 (x̃) for different disorder strengths and shows that ñ0 (x̃) has qualitatively the
same behavior as the total density in Fig. 3.9. In order to make the picture clearer, we plot in Fig. 3.10b
the fractional number of the condensate N0/N = 3

4

´
ñ0 (x̃) dx̃ as a function of the disorder strength.

This fraction decreases with the disorder strength, which means that more and more particles are
leaving the condensate while increasing D̃. Unfortunately, the employed numerical algorithm breaks
down for larger values of the disorder strength, and one would have to use other approaches in this case.
Therefore we focus on the regimes of weak to moderate disorder. The Bose-glass order parameter is
also plotted for different values of D̃ in Fig. 3.11a but it has a complete different behavior from the two
previous densities ñ (x̃) and ñ0 (x̃). In the weak disorder regime, q̃ (x̃) has a double bump structure and
it is maximal at the border of the condensate, while in the strong disorder regime it has a Gaussian-
like form. This redistribution is happening, according to Fig. 3.11a, at a disorder strength value
between D̃ = 0.151 and D̃ = 0.268, where it seems that the double bump structure disappears and
the Gaussian-like one appears. So, for small disorder local condensates are mainly at the border of
the global condensate, but for large disorder the local condensates sit more in the trap center, and
this seems to be the main difference between the weak and the intermediate disorder regimes. But in
both weak and intermediate disorder regime the width as well as the maximum of the Bose-glass order
parameter increase with the disorder. Furthermore, the fraction in the disconnected minicondensates
Q/N = 3

4

´
q̃ (x̃) dx̃ plotted in Fig. 3.11b increases with the disorder strength, i.e., with increasing the

disorder strength more and more bosons are captured in the minicondensates of the disorder potential.
Although the fraction Q/N increases with the disorder, again we have no further information whether
in the strong disorder regime all particles will be localized in the minima of the disorder or not.
In order to know if, due to the disorder, the Bose-glass region exists or not, we plot the three

densities n(x), n0(x) and q(x) together in Fig. 3.12 for the relatively strong disorder value D̃ = 0.604.
Indeed, the blow-up of the intermediate region shows clearly that at the border of the bosonic cloud
the condensate vanishes, while the Bose-glass order parameter still persists, so the superfluid and the
Bose-glass region coexist in the trap.
Figure 3.13 shows both the condensate radius and the cloud radius, which we define by the length

where the condensate density and the total density are equal to 10−4, respectively. Both are almost
identical in the weak disorder regime, then they both increase with the disorder strength. This means
that the Bose-glass region exists only for intermediate disorder and both the condensate cloud and the
bosonic cloud are expanding with D̃. On the other hand, the chemical potential decreases linearly with
the disorder strength in Fig. 3.14a, it becomes even negative in the intermediate disorder regime.
In Fig. 3.14b both the Bose-glass order parameter in the center of the BEC q̃(0) as well as the

Huang-Meng Bose-glass order parameter q̃HM in weak disorder regime are plotted together in order to
check whether the numerical results agree with the Huang-Meng theory or not. We observe the correct
qualitative behavior of the Bose-glass order parameter in the trap center q̃(0), which is proportional
to the disorder strength D̃. However, the two order parameters have two different slopes and the
linear behavior of the numerical Bose-glass order parameter q̃(0) does not agree quantitatively with
the predictions of the Huang-Meng theory in equation (3.14).

3.4. Comparison Between Thomas-Fermi Approximation and
Numerics

Now we compare all results obtained via the TF approximation in Section 3.2 with the numerical ones
from Section 3.3 in order to know how far this approximation is applicable. We start first of all by
comparing the analytical and numerical densities ñ(x̃), ñ0(x̃), and q̃(x̃) for two different values of the
disorder strength. In Fig. 3.15a and for a relative small value of the disorder strength D̃ = 0.016,
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3. 1D Case at Zero Temperature

Figure 3.15.: Numerical (solid, red) and analytical (dotted, blue) (a) total density ñ(x̃), (b) condensate
density ñ0(x̃), and (c) Bose-glass order parameter q̃(x̃) for D̃ = 0.016.

Figure 3.16.: Numerical (solid, red) and analytical (dotted, blue) (a) total density ñ(x̃), (b) condensate
density ñ0(x̃), and (c) Bose-glass order parameter q̃(x̃) for D̃ = 0.067.

60



3.4. Comparison Between Thomas-Fermi Approximation and Numerics

Figure 3.17.: Analytical (solid, blue) and numerical (dotted, red) (a) condensate radius R̃TF1 and (b)
cloud radius R̃TF2, as functions of the disorder strength D̃.

Figure 3.18.: Analytical (solid, blue) and numerical (dotted, red) (a) chemical potential µ̃ and (b)
Bose-glass order parameter in the center of the BEC q̃(0), as functions of the disorder
strength D̃.

the analytical and the numerical total densities agree well, except for the kink of the first one. In
Fig. 3.15b the analytical and the numerical condensate density are compatible in the center of the
BEC with a tiny discrepancy at the borders of the trap due to the sudden jump of the analytical
condensate density. The double bump structure exists in both numerical and analytical Bose-glass
order parameter in Fig. 3.15c, also the density is quite similar in the center of the bosonic cloud, the
only discrepancy is the maximal value, as the analytical one turns out to be quite high due to the
discontinuity caused by the TF approximation. Since the Bose-glass order parameter is quite small in
comparison with the condensate and the total density, this discrepancy is not that important. For a
higher value of the disorder strength D̃ = 0.067, the analytical and the numerical total density plotted
in Fig. 3.16a still agree with each other, but for the condensate this is no longer the case. Figure 3.16b
shows that there is a tiny deviation between the analytical and the numerical ñ0(x̃) in the trap center,
but there is a significant difference when we move away from the center due to the analytical jump,
which increases with the disorder strength. In Fig. 3.16c the same problem still exists for the Bose-glass
order parameter: the analytical bumps are much higher than the numerical ones. With increasing the
disorder, the Bose-glass order parameter is becoming more important and of the order of the two other
densities ñ(x̃) and ñ0(x̃), and such a discrepancy can no longer be ignored.
In Fig. 3.17a the analytical and the numerical condensate radius agree only in the small disorder

regime, but elsewhere they contradict each other. The TF approximation predicts the existence of the
Bose-glass phase, where the numerics does not. The same can be remarked for Fig. 3.17b, i.e., the
numerical and the analytical cloud radius agree only for vanishing disorder, while in the small disorder
regime they agree only qualitatively since both of them are increasing with the disorder strength. In
the intermediate disorder regime, the analytics even shows that the size of the bosonic cloud becomes
constant, while for the numerics the cloud keeps expanding. Both the analytical and the numerical

61



3. 1D Case at Zero Temperature

chemical potential in Fig. 3.18a are decreasing with the disorder and are compatible, with a total match
occurring only in the weak disorder regime. The same can be said about the Huang-Meng Bose-glass
order parameter in Fig. 3.18b.
Thus, from the above comparison we conclude that the TF approximation is valid only in the weak

disorder regime specially in the center of the trap, where the kinetic energy can be neglected, but it
does not represent a good approximation for intermediate disorder. The origin of this invalidity is
the fact that ξ becomes a function of the disorder strength and of the order of the Thomas-Fermi
radius specially at the border of the bosonic clouds. Furthermore, the quantum fluctuations are more
dominating in lower dimensions, this also makes the TF approximation in one dimension not that
good. In order to have a global picture of the behavior of the dirty BEC, not only in the presence of
weak disorder but also in the presence of intermediate and strong one, we use in the following section
another approximation method to treat our problem: the variational method.

3.5. Variational Method

As already explained in the end of Section 2.11, we can apply the variational method to our problem.
But since the free energy (2.169) involves the solutions (2.166) of the function Q0(x) any variational
ansatz yields analytically insolvable integrals, we choose to make use of the form (2.126) of the free
energy, which is simpler and fits better to the variational treatment at hand. First of all we rewrite
the free energy (2.126) for the one-dimensional case at zero temperature and for the harmonic trap
potential:

F =

ˆ
dx

{
−g [q(x) + n0(x)]2 − g

2
n2

0(x)−
√
n0(x)

{
µ+

~2

2M

∂2

∂x2
− 2g [q(x) + n0(x)]− 1

2
MΩx2

+
D

~
Q0(x)

}√
n0(x) +

D

~
Q0(x) [q(x) + n0(x)]

−D
~

√
M

2

[q(x) + n0(x)]√
−µ+ 2g [q(x) + n0(x)] + 1

2MΩx2 − D
~ Q0(x)

 . (3.40)

Now and in order to be able to compare the variational results with the analytical and the numerical
ones obtained in Section 3.2 and Section 3.3, respectively, we use the same rescaling parameters already
explained below equation (3.24) for all densities, coordinates, chemical potential and disorder strength.
To this end, we have to multiply (3.40) with the factor 1/ (µ̄nRTF) to obtain:

F̃ =

ˆ
dx̃

{
− [q̃ (x̃) + ñ0 (x̃)]2 − 1

2
ñ2

0 (x̃)−
√
ñ0 (x̃)

{
µ̃+

(
ξ

RTF

)2 ∂2

∂x̃2
− 2 [q̃ (x̃) + ñ0 (x̃)]− x̃2

+2D̃Q̃0(x̃)

}√
ñ0 (x̃) + 2D̃Q̃0(x̃) [q̃ (x̃) + ñ0 (x̃)]

−2D̃
q̃ (x̃) + ñ0 (x̃)√

−µ̃+ 2 [q̃ (x̃) + ñ0 (x̃)] + x̃2 − 2D̃Q̃0(x̃)

 , (3.41)

where F̃ = F/ (µ̄nRTF) denotes the dimensionless free energy and Q̃0(x̃) =
√

2µ̄
MQ0(x).

Motivated by the analytical and the numerical results presented in Sections 3.2 and 3.3, respectively,
we suggest the three following ansatz for the condensate density ñ0 (x̃), the Bose-glass order parameter
q̃ (x̃), and the auxiliary function Q̃0(x̃):

ñ0 (x̃) = αe−σx̃
2
, (3.42)

q̃ (x̃) + ñ0 (x̃) = γe−θx̃
2
, (3.43)

62



3.5. Variational Method

Q̃0(x̃) =
q̃ (x̃) + ñ0 (x̃)

D̃
−
(
ζ + ηx̃2

)
, (3.44)

where α, σ, γ, θ, ζ, and η denote the respective variational parameters. The parameters α and
γ are proportional to the number of particles in the condensate and the total number of particles,
respectively, while the parameters σ and θ represent the width of the condensate density and the total
density, respectively.
Inserting the ansatz (3.42)–(3.44) into the free energy (3.41) and performing the integral over the

space yields:

F̃ =
√
π

{
γ2

√
2θ

+
α

2σ3/2
− α

4
√
σ

(
4µ̃+

√
2α
)

+

(
ξ

RTF

)2 α
√
σ

2

+D̃

(
2αζ√
σ

+
αη

σ3/2
− γ (η + 2ζθ)

θ3/2

)
− 2D̃γ√

1 + 2D̃η
e

2D̃ζ−µ̃
2+4D̃η

θ
K0

(
2D̃ζ − µ̃
2 + 4D̃η

θ

) , (3.45)

where K0 (s) represents the modified Bessel function of the second kind. The free energy (3.45) has
now to be extremised with respect to the variational parameters α, σ, γ, θ, ζ, and η. This yields the
following six algebraic equations:

√
π

2σ3/2

[
1− 2µ̃σ −

√
2ασ +

(
ξ

RTF

)2

σ2 + 4D̃σζ + 2D̃η

]
= 0, (3.46)

√
πα

8σ5/2

[
−6 + 4µ̃σ +

√
2ασ + 2

(
ξ

RTF

)2

σ2 − 8D̃σζ − 12D̃η

]
= 0, (3.47)

√
π

θ3/2

[√
2γθ − D̃ (η + 2ζθ)

]
− 2D̃√

1 + 2D̃η
e

2D̃ζ−µ̃
2+4D̃η

θ
K0

(
2D̃ζ − µ̃
2 + 4D̃η

θ

)
= 0, (3.48)

√
πγ

4θ5/2

(
6D̃η −

√
2γθ + 4D̃ζθ

)
−D̃γ

√
2D̃ζ − µ̃(

1 + 2D̃η
)3/2

e
2D̃ζ−µ̃
2+4D̃η

θ

[
K0

(
2D̃ζ − µ̃
2 + 4D̃η

θ

)
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2 + 4D̃η

θ

)]
= 0,

(3.49)
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√π
(
α√
σ
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2 + 4D̃η
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)
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(
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2 + 4D̃η
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(3.50)
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2D̃ζ − µ̃(
1 + 2D̃η
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2 + 4D̃η
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e
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2+4D̃η

θ
K0

(
2D̃ζ − µ̃
2 + 4D̃η

θ

)
= 0. (3.51)

Note that the additional dimensionless particle number equation, which follows from the thermody-
namic condition −∂F̃

∂µ̃ = 4
3 , gives us a seventh equation:

√
π
α√
σ
− D̃ γθ(

1 + 2D̃η
)3/2

e
2D̃ζ−µ̃
2+4D̃η

θ

[
K0

(
2D̃ζ − µ̃
2 + 4D̃η

θ

)
−K1

(
2D̃ζ − µ̃
2 + 4D̃η

θ

)]
=

4

3
. (3.52)
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3. 1D Case at Zero Temperature

Figure 3.19.: Particle density ñ(x̃) for increasing disorder strengths D̃ from the top to the bottom.

Figure 3.20.: (a) Condensate density ñ0(x̃) and (b) fractional number of condensed particles N0/N for
increasing disorder strengths D̃ from the top to the bottom.

Figure 3.21.: (a) Bose-glass order parameter q̃(x̃) and (b) fractional number of particles Q/N in the
disconnected local minicondensates for increasing disorder strengths D̃ from the bottom
to the top.
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3.5. Variational Method

Figure 3.22.: (a) Particle density ñ(x̃) (black), condensate density ñ0(x̃) (blue), Bose-glass order pa-
rameter q̃(x̃) (red) and (b) blow-up of border region for D̃ = 0.386.

Figure 3.23.: Cloud radius R̃TF2 (blue) and condensate radius R̃TF1 (red) as functions of the disorder
strength D̃.

Figure 3.24.: (a) Chemical potential µ̃ and (b) the variational (blue) and the Huang-Meng (red) Bose-
glass order parameter in the center of the BEC, as a function of the disorder strength
D̃.
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3. 1D Case at Zero Temperature

Thus, we have now seven coupled equations (3.46)–(3.52) for seven variables α, σ, γ, θ, ζ, η, and
µ̃. Those equations can not be solved analytically, so we solve them numerically. Furthermore, they
have more than one solution, which necessitates to select only the physical one. In order to be able
to compare later on the variational results with the numerical ones, we use the same values of the
disorder strength used previously in Section 3.3. For each value of the disorder strength, we solve the
coupled Eqs. (3.46)–(3.52) numerically, then we insert the resulting variational parameters α, σ, γ,
and θ into the variational ansatz (3.42) and (3.43) in order to get the variational total density ñ(x̃),
the variational condensate density ñ0(x̃), and the variational Bose-glass order parameter q̃(x̃).
In Fig. 3.19 the total density ñ(x̃) is plotted for different disorder strengths, where we see that

the density of bosons is always maximal in the center of the cloud, then it decreases when we move
away from the center until vanishing at the cloud radius R̃TF2. The maximal value of the total
density decreases with the disorder strength, while its width increases. The condensate density ñ0(x̃)
in Fig. 3.20a has a similar qualitative behavior as the total density in Fig. 3.19 and vanishes at the
condensate radius R̃TF1. The response of the condensate density to disorder can also be seen in
Fig. 3.20b, where the fractional number of condensed particles N0/N is plotted as a function of the
disorder strength. In the clean case all particles are in the condensate, but when we increase the
disorder strength more and more particles leave the condensate. Starting from the disorder strength
value D̃ = 0.393, Eqs. (3.46)–(3.52) turn out to have only complex solutions, the variational approach
does not provide any information about our system for higher disorder strengths. So we can not
predict if, at a certain critical disorder strength, the condensate density vanishes or remains constant.
The Bose-glass order parameter q̃(x̃) in Fig. 3.21a has a similar shape as the two previous densities
ñ(x̃) and ñ0(x̃), it is maximal in the center of the BEC and decreases when we move away from the
center. When we increase the disorder strength, the maximal value of the Bose-glass order parameter
density as well as its width increase. A better understanding of the influence of the disorder on the
local minicondensates can be deduced from Fig. 3.21b, where the fractional number of particles Q/N
in the disconnected local minicondensates is zero in the clean case, then increases with the disorder
strength. This means that more bosons are going into the local minima of the disorder potential when
we increase the disorder strength. Here again and due to the fact, that physical solutions exist only
in a limited range of the disorder strength, we are not able to predict if there exists a critical disorder
strength value, where either all particles leave the condensate and fill the local minicondensates, or the
number of the localized particles remains constant.
In order to know whether the bosonic cloud contains beside the superfluid region also a Bose-glass

region, we plot the total density ñ(x̃), the condensate density ñ0(x̃), and the Bose-glass order parameter
q̃(x̃) together in Fig. 3.22 for the disorder strength value D̃ = 0.386. The blow-up of the border region
in Fig. 3.22b shows clearly that the condensate density vanishes, while the Bose-glass order parameter
still persists, which is the definition of the Bose-glass region. The cloud radius R̃TF2 and the condensate
radius R̃TF1 are defined by the length, where the total density and the condensate density are equal
to 10−4, respectively. Both radii are identical in the weak-disorder regime in Fig. 3.23, and both are
increasing with the disorder strength. But we have no idea, if for higher disorder strengths they will
keep increasing, remain constant, or the condensate radius R̃TF1 vanishes, i.e., we can not say if a
quantum phase transition exists or not. The chemical potential µ̃ decreases with the disorder strength
in Fig. 3.24a. In the end we plot the Bose-glass order parameter in the center of the BEC q̃ (0) together
with the Huang-Meng result q̃HM = D̃

23/2
√
ñ0

in Fig. 3.24b in order to know if the variational results
are compatible with the Huang-Meng theory for weak disorder. In the weak disorder regime, q̃ (0) is
linearly proportional to the disorder strength, which agrees qualitatively with the Huang-Meng theory
but not quantitatively, since there is a significant discrepancy between both results.

3.6. Comparison of Analytical, Numerical and Variational Results

Now we compare the physical quantities obtained via the three different methods, the TF approxima-
tion, the numerical method, and the variational method. We start first of all with the densities: the
total density ñ(x̃), the condensate density ñ0(x̃), and the Bose-glass order parameter q̃(x̃) are plotted
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3.6. Comparison of Analytical, Numerical and Variational Results

Figure 3.25.: (a) Total density ñ(x̃), (b) condensate density ñ0(x̃), (c) Bose-glass order parameter q̃(x̃):
variational (solid, green), numerical (solid, red), analytical (dotted, blue) for D̃ = 0.016.

Figure 3.26.: (a) Total density ñ(x̃), (b) condensate density ñ0(x̃), (c) Bose-glass order parameter q̃(x̃):
variational (solid, green), numerical (solid, red), analytical (dotted, blue) for D̃ = 0.067.
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3. 1D Case at Zero Temperature

Figure 3.27.: (a) Total density ñ(x̃), (b) condensate density ñ0(x̃), (c) Bose-glass order parameter q̃(x̃):
variational (solid, green), numerical (solid, red), analytical (dotted, blue) for D̃ = 0.386.

for three disorder strength values D̃ = 0.016, D̃ = 0.067, and D̃ = 0.386 in Figs. 3.25–3.27, respectively,
in order to cover the range of the weak disorder regime as well as the intermediate disorder regime.
For D̃ = 0.016 the three total densities ñ(x̃) in Fig. 3.25a agree qualitatively well, but quantitatively
the TF approximated total density ñ(x̃) represents still the best approximation for the numerical total
density, especially in the center of the bosonic cloud, where the variational result has some discrep-
ancy. The same can be remarked for the condensate density ñ0(x̃) in Fig. 3.25b. For the Bose-glass
order parameter q̃(x̃) in Fig. 3.25c the double bump structure, which exists in both numerical and TF
approximated results, is missing in the variational result, which has just a bell form. This makes again
the TF approximated Bose-glass order parameter q̃(x̃) the best approach to the numerical one. For
a higher value of the disorder strength D̃ = 0.067, Fig. 3.26a shows that the variational, numerical,
and TF approximated total densities ñ(x̃) agree well, except from the deviation of the first one in the
center of the BEC. In Fig. 3.26b, and due to the considerable jump of the TF approximated condensate
density ñ0(x̃), the TF approximation breaks down as we know already from the discussion in Section
3.4. So we focus our comparison only between the numerical condensate density and the variational
one, which turn out to fit well despite the tiny shift in the center of the trap. The TF approximated
Bose-glass order parameter q̃(x̃) in Fig. 3.26c has the advantage to have qualitatively the same double
bump structure as the numerical one, while the variational Bose-glass order parameter has just a bell
form. Physically this means that, according to both the TF approximation and the numerics, the
density of the bosons in the local minima of the disorder potential is maximal at the border of the
trap, but according to the variational result this density is maximal in the center of the trap.
For the intermediate disorder strength D̃ = 0.386, the resulting densities are plotted in Fig. 3.27.

The TF approximated total density ñ(x̃) in Fig. 3.27a is still the best approximation to the numerical
one in the center of the bosonic cloud, while at the border of the trap the variational and the numerical
total density agree well. According to Fig. 3.4 at the disorder strength value D̃ = 0.386, we are in the
Bose-glass phase, thus, the TF approximated condensate density ñ0(x̃) in Fig. 3.27b is zero, which is
not the case for both the numerical and the variational condensate densities, which are compatible and
match at the borders of the trap. The variational Bose-glass order parameter q̃(x̃) also agrees well with
the numerical one and both have the same bell shape, while the TF approximated Bose-glass order
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3.6. Comparison of Analytical, Numerical and Variational Results

Figure 3.28.: Analytical (solid, blue), numerical (dotted, red), and variational (dotted, green) (a) con-
densate radius R̃TF1 and (b) cloud radius R̃TF2, as functions of the disorder strength
D̃.

Figure 3.29.: Analytical (solid, blue), numerical (dotted, red), and variational (dotted, green) (a) chem-
ical potential µ̃ and (b) Bose-glass order parameter in the center of the BEC q̃(0), as
functions of the disorder strength D̃.

parameter has a significant deviation, which is expected since the TF approximation breaks down in
the intermediate disorder regime. The TF approximated, the numerical, and the variational Thomas-
Fermi radii are plotted together in Fig. 3.28 for comparison. In Fig. 3.28a the variational and the
numerical condensate radius R̃TF1 have the same qualitative behavior, both increase with the disorder
strength contrarily to the analytical condensate radius, which decreases with D̃. Furthermore, the
analytical R̃TF1 indicates the existence of a quantum phase transition, while the variational and the
numerical treatments break down at a certain critical value of the disorder strength before it could be
deduced whether the quantum phase transition exists at larger disorder strength, or does not exist at
all. In the weak disorder regime, the analytical and the numerical condensate radii converge, while in
the intermediate disorder regime the variational and the numerical condensate radii are the ones which
converge. Fig. 3.28b shows that in the weak disorder regime, the variational, the numerical, and the
analytical cloud radii agree qualitatively, since the three of them increase with the disorder strength,
with a convergence between the variational and the numerical radii. In the intermediate disorder
regime the analytical cloud radius remains constant, but both the variational and the numerical cloud
radii keep increasing with the disorder strength then converge and, due to the lack of information for
higher D̃, we do not know if they will keep increasing or they will become constant.
Concerning the chemical potential, the variational, the numerical, and the analytical chemical poten-

tials agree well in Fig. 3.29a specially for weak disorder where they match. The three of them decrease
with the disorder strength. Finally, we plot the variational, numerical, and analytical Bose-glass order
parameter in the center of the trap q̃(0) as functions of the disorder strength in Fig. 3.29b for com-
parison. The three of them are linearly proportional to the disorder strength and agree qualitatively
with the Huang-Meng theory for weak disorder, with a total match between the numerical and the
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3. 1D Case at Zero Temperature

analytical order parameters, while the variational one has a greater slope which causes a discrepancy
with the two other numerical and the analytical Bose-glass order parameters.
From the discussion above, we conclude that the TF approximation is producing satisfying results

in the weak disorder regime, which agree well with the numerical ones, especially in the center of the
bosonic cloud, where the kinetic energy can be neglected, however it breaks down in the intermediate
disorder regime being unable to describe the BEC system properly. On the other side the variational
method within the ansatz (3.42)–(3.44) turns out to be a good approximation to describe the BEC
system in the intermediate disorder regime and works there better than in the weak one, specially
at the border of the cloud where the Bose-glass region is located. This is due to the fact that a
stronger disorder reduces the repulsive interaction between the particles and approaches the case of
non-interacting bosons, where the densities are Gaussian as in our ansatz. Although the variational
method does not provide us physical results for higher disorder strengths, it still treats an important
range of the disorder strength. The combined application of the TF approximation for the weak
disorder regime together with the application of the variational method for the intermediate disorder
regime covers a significant range of disorder strengths. The main difference between the weak and the
intermediate disorder regime is where the Bose-glass region appears within the harmonic trap. The
detailed numerical simulations show that the Bose-glass region emerges at the edge of the atomic cloud
for small disorder strengths, while in the intermediate disorder regime it is located in the trap center.
The main question, which still has to be answered, concerns the possible existence of the quantum
phase transition from the superfluid to the Bose-glass phase. In view of Ref. [83] the disorder has
to overcome energetically the interaction in order to yield such a quantum phase transition. But,
according to the numerical and variational results displayed in Fig. 3.28, this turns out to be not the
case neither in the weak nor in intermediate disorder regime. Thus it remains to investigate the strong
disorder regime in order to be able to detect a possible quantum phase transition, which is beyond the
scope of this thesis.
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4. 3D at Zero Temperature

In this chapter we consider the dirty three-dimensional BEC system to be at zero temperature, so
the thermal density vanishes, i.e., nth (x) = 0. This allows us, as a first step, to study the impact of
the disorder on only the distribution of the condensate density and the Bose-glass order parameter as
well as the corresponding Thomas-Fermi radii. In particular, two harmonic potential traps are treated
in detail, the first one is isotropic and the second one is anisotropic. The latter allows us to study
the geometric effect of the trap aspect ratios on the different properties of the dirty BEC system.
Furthermore, we qualitatively compare the one- and three-dimensional results.

4.1. Homogeneous Case

We start, again, with the homogeneous case since it is the simplest one, where in the absence of the
trap we have V (x) = 0. We distinguish between two different phases, namely, the superfluid phase,
where the condensate density contributes to the total density, and the Bose-glass phase, where the
condensate vanishes, which we treat separately.

4.1.1. Superfluid Phase

At zero temperature, where nth (x) = 0, we only need Eqs. (2.152)–(2.154), which reduce in the
superfluid phase to:

n = n0 + q, (4.1)

gn0 =
(√
−µ+ d2 + 2gn+ d

)2
, (4.2)

q =
dn0√

−µ+ d2 + 2gn
. (4.3)

In this section we drop the spatial dependency of all densities due to the homogeneity. Inserting
equations (4.2) and (4.3) into equation (4.1), then dividing by √gn3/2 gives us the following algebraic
third order equation for the condensate fraction n0/n:

(n0

n

)3/2
−
√
n0

n
+ d = 0. (4.4)

Here d = ξ
L denotes the dimensionless disorder strength, where ξ = ~√

2Mgn
stands for the coherence

length, and L = 2π~4
M2D

represents the Larkin length [82, 119]. Figure 4.1 shows that the condensate
fraction decreases with increasing disorder strength d. As more and more particles are localized in
the minima of the random potential, our mean-field theory predicts that the condensate density stops
to exist at the critical value dc =

√
1
3 −

(
1
3

)3/2 ' 0.384. We interpret this as a sign that a first-
order quantum phase transition occurs in the homogeneous BEC from the superfluid phase, where the
particles are either condensed or in the local minima of the disorder, to the Bose-glass phase, where
there is no condensate at all and all bosons are localized in the minima of the disorder potential. This
suggests that a corresponding quantum phase transition will also appear in the trapped case, which is
studied in the next section.
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4. 3D at Zero Temperature

Figure 4.1.: Condensate fraction n0/n as function of dimensionless disorder strength d.

Now we look for the equation of state in the superfluid phase. To this end we divide equation (4.2)
by the factor gn, which yields:

n0

n
=

(√
− µ

gn
+ d

2
+ 2 + d

)2

. (4.5)

Inserting this result into the condensate fraction equation (4.4) yields the following algebraic cubic
equation of state: (√

− µ

gn
+ d

2
+ 2 + d

)3

−
√
− µ

gn
+ d

2
+ 2 = 0, (4.6)

Equation (4.6) is solved using the Cardan method (see Appendix A) and turns out to have three real
solutions. Among them we choose the one which satisfies the physical conditions that µ = gn for d = 0
and n0/n = 1/3 for d = dc.

4.1.2. Bose-Glass Phase

In the Bose-glass phase we have n0 = 0 and n = q, so we need only equation (2.154), which reduces
to:

gn =
µ− d2

2
. (4.7)

Dividing relation (4.7) by the factor gn, we get the equation of state
µ

gn
= 2 + d

2
. (4.8)

Finally, the equation of state of the superfluid phase (4.6) is combined with the equation of state of the
Bose-glass phase (4.8) and plotted in Fig. 4.2. It shows that the chemical potential increases with the
disorder strength d in both phases with a discontinuity in the transition region between the superfluid
and the Bose-glass phase:

lim
d↑dc

µ

gn
− lim
d↓dc

µ

gn
=

1

3

(
1−
√

3 dc

)2
=

1

27
' 0.037. (4.9)

4.1.3. Comparison with Literature

First we check whether our results are compatible with the Huang-Meng theory [65,69,103,120], where
the Bose-glass order parameter of a homogeneous dilute Bose gas at zero temperature in case of weak
disorder regime is deduced within the seminal Bogoliubov theory. The Bose-glass order parameter in
three dimensions via the Huang-Meng theory is proportional to the disorder strength:

qHM =
d√
2

√
n

g
,

qHM√
n/g

=
d√
2
. (4.10)
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4.2. Thomas-Fermi Approximation

Figure 4.2.: Chemical potential µ in units of gn as function of dimensionless disorder strength d.

In order to compare with (4.10) we deduce from (4.3) the formula of the Bose-glass order parameter
in case of weak disorder strength:

qw ≈ d
√
n

g
,

qw√
n/g

= d. (4.11)

Thus, from (4.11) we conclude that our result agrees qualitatively with the Huang-Meng theory, i.e.,
in the weak disorder regime the Bose-glass order parameter is, indeed, proportional to the disorder
strength d. But quantitatively the comparison of (4.10) with (4.11) reveals that a factor of

√
2 is

missing in our formula (4.11). This is due to the fact that the Hartree-Fock theory does not contain
the Bogoliubov channel, which is included in the Huang-Meng theory. Note that in the one-dimensional
case, as discussed in Subsection 3.1.3, a factor 23/2 was missing, while in the three-dimensional case
only a factor of

√
2 is missing. This means that our Hartree-Fock theory is more compatible with the

literature in higher dimensions than in lower ones.
In Ref. [79] a non-perturbative approach for dirty bosons using the random phase approximation is

developed and also a first-order phase transition is found. According to Ref. [79] the disorder strength
value corresponding to the quantum phase transition is dcNPG = 0.53. Thus, our quantum phase
transition disorder value dc = 0.384 is of the same order as the one in Ref. [79], but again we miss a
factor of

√
2 in our result.

Furthermore, we compare the disorder strength critical value dc with the one obtained in Refs. [82,83].
There a non-perturbative approach is worked out in order to to study the trapped dirty BEC, which
starts from the Bose-glass phase and goes towards the superfluid phase for decreasing disorder strength,
whereas our approach starts from the superfluid phase and ends up in the Bose-glass phase for increasing
disorder strength. In those references the quantum phase transition from the superfluid to the Bose-
glass is predicted at the disorder strength value dcFNP =

√
3

8π ' 0.345, which is of the same order as

our dc = 0.384.

4.2. Thomas-Fermi Approximation

After having treated the homogeneous case, we deal now with the trapped one. In the three-dimensional
case we have also, as it has been done for one dimension, to distinguish between two different regions:
the superfluid and the Bose-glass region.
In the superfluid region we rewrite at zero temperature the self-consistency equations (2.152)–(2.155)

already obtained in Subsection 2.10.3:

n(x) = n0(x) + q(x), (4.12)
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4. 3D at Zero Temperature

{
−gn0(x) +

[√
−µ+ d2 + 2gn(x) + V (x) + d

]2
− }2

2M
∆

}√
n0(x) = 0, (4.13)

q(x) =
dn0(x)√

−µ+ d2 + 2gn(x) + V (x)
. (4.14)

So we have three coupled self-consistency equations for the densities: two algebraic ones (4.12) for
the total density n(x) and (4.14) for the Bose-glass order parameter q(x) as well as one nonlinear,
partial differential equation (4.13) for the condensate density n0(x). Furthermore, we have to take into
account the normalization condition: ˆ ∞

−∞
n(x)dx = N. (4.15)

Since (4.13) represents a nonlinear, partial differential equation, the exact solution is hard to obtain
even in the absence of the disorder. In the following we approximate its solution via the Thomas-
Fermi approximation already introduced and explained in Section 3.2. Within the Thomas-Fermi
approximation the algebraic equations (4.12) and (4.14) remain the same, but the kinetic energy term
in the differential equation (4.13) is neglected and the equation reduces to an algebraic relation in the
superfluid region:

gn0(x) =
[√
−µ+ d2 + 2gn(x) + V (x) + d

]2
. (4.16)

Inserting this result into Eqs. (4.12) and (4.14) yields:

gq(x) =
d√

−µ+ d2 + 2gn(x) + V (x)

[√
−µ+ d2 + 2gn(x) + V (x) + d

]2
, (4.17)

gn(x) =
1√

−µ+ d2 + 2gn(x) + V (x)

[√
−µ+ d2 + 2gn(x) + V (x) + d

]3
. (4.18)

Note that (4.18) is a self-consistency equation just for the total density n(x), and inserting its solution
into (4.16) and (4.17) gives us directly the condensate density n0(x) and the Bose-glass order parameter
q(x), respectively. The advantage of the Thomas-Fermi approximation is that in the superfluid region
we have only three coupled algebraic equations, which can be solved.
Outside the superfluid region, i.e., in the Bose-glass region, equation (4.13) is solved by n0(x) = 0

and equations (4.12) and (4.14) reduce to n(x) = q(x) and q(x) =
[
µ− d2 − V (x)

]
/2g, respectively.

Now, and in order to be able to go further in the calculation, we have to specify the trap potential
V (x). We first treat the case of a harmonic isotropic trap potential in Section 4.3, then we study the
case of a general anisotropic trap in Section 4.4.

4.3. Isotropic Trap

In this section we consider the bosons to be in an isotropic harmonic trap V (x) ≡ V (r) = MΩ2r2/2,
where Ω denotes the trap frequency and r = |x| the radial coordinate. In this case the dirty BEC
model is spherically symmetric. We specify also the two-particle interaction coupling strength in three
dimensions to be g = 4π}2a/M with the s-wave scattering length a, which has to be positive in order to
obtain a stable BEC. Since at zero temperature we have two different regions, we treat them separately.
We focus first on the superfluid region, then we deal with the Bose-glass region.

4.3.1. Superfluid Region

For an isotropic harmonic trap, Eqs. (4.16)–(4.18) can be written dimensionless as:

ñ0 (r̃) =
[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]2
, (4.19)
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4.3. Isotropic Trap

Figure 4.3.: Sign of discriminant δ from Eq. (4.23), where r̃1, r̃2, and r̃3 are respective roots of equation
δ = 0.

q̃ (r̃) =
d̃√

−µ̃+ 2ñ(r̃) + r̃2

[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]2
, (4.20)

ñ (r̃) =
1√

−µ̃+ 2ñ(r̃) + r̃2

[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]3
, (4.21)

where ñ(r̃) = n(r)/n denotes the dimensionless total density, ñ0(r̃) = n0(r)/n the dimensionless
condensate density, q̃(r̃) = q(r)/n the dimensionless Bose-glass order parameter, r̃ = r/RTF the
dimensionless radial coordinate, µ̃ = (µ − d2)/µ̄ the dimensionless chemical potential, d̃ = ξ

L the

dimensionless disorder strength, ξ = l2

RTF
the coherence length in the center of the trap, l =

√
~
MΩ the

oscillator length, n = µ̄/g the maximal total density in the clean case, and RTF = l
√

2µ̄/~Ω the clean

TF cloud radius. The chemical potential in the absence of the disorder µ̄ = 152/5

2

(
aN
l

)2/5
}Ω, which

serves here as the underlying energy scale, is deduced from the normalization condition (4.15) in the
clean case, i.e., d = 0, by evaluating:

4π

g

ˆ RTF

0

(
µ̄− 1

2
MΩ2r2

)
r2dr = N. (4.22)

Now we have three algebraic self-consistency coupled equations (4.19)–(4.21) for the dimensionless
condensate density ñ0 (r̃), the dimensionless Bose-glass order parameter q̃ (r̃) and the sum of them, i.e.,
the dimensionless total density ñ(r̃). Equation (4.21) is of the third order with respect to the expression√
−µ̃+ 2ñ(r̃) + r̃2, therefore, we use the Cardan method to solve it analytically. The discriminant δ

for equation (4.21) has according to Appendix A the following form:

δ =− 4µ̃3

27
+

4µ̃2d̃2

3
+ 8µ̃d̃4 + 4d̃6 +

(
4µ̃2

9
− 8µ̃d̃2

3
− 8d̃4

)
r̃2 +

(
−4µ̃

9
+

4d̃2

3

)
r̃4 +

4

27
r̃6. (4.23)

The sign of the discriminant δ determines the number and the kind of the solutions, i.e., whether
they are real or complex. Figure 4.3 shows that there are four different spatial regions, where we have
to look for the solutions of equation (4.21). Note that this figure is general and independent from the
specific parameter values of the BEC system. Those four regions are characterized by the sign of the
discriminant δ being positive or negative and are separated with borders, where the discriminant δ
vanishes. Regions with δ < 0 have three real solutions, while the regions with δ > 0 have two complex
solutions and only one real solution. In the first region only one solution is physically accepted, the
two others have to be rejected: one because its corresponding condensate density ñ0(r̃) is larger than
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4. 3D at Zero Temperature

the total density ñ(r̃), which can not be true due to ñ(r̃) = ñ0(r̃) + q̃(r̃), and the other because its
corresponding condensate density ñ0(r̃) is too small even for an extremely weak disorder strength. In
the second region the unique real solution can not be accepted since the total density has an unphysical
upward jump after having decreased in the first region. In the third region we have three real solutions
for ñ(r̃) but again none of them is physical: the total density is either jumping upwards, increasing, or
negative. The solution of the fourth and last region can also not be retained because it yields a negative
density. So, as a conclusion only one solution from the first region can be physically accepted as a
solution for equation (4.21). This means that the first region coincides with the superfluid region and
outside we have the Bose-glass region. To determine the condensate radius R̃TF1 , where the solution
of (4.21) vanishes, we have to solve the cubic equation δ = 0 with respect to r̃2 using again the Cardan

method and then select the smallest solution, which yields R̃TF1 =
√
µ̃− 3d̃2 − 6

√
3d̃2 cos

(
π
18

)
. Now

we have just to insert the obtained particle density ñ(r̃) into the two other equations (4.19) and (4.20)
in order to get both the condensate density ñ0(r̃) and the Bose-glass order parameter q̃(r̃), respectively.

4.3.2. Bose-Glass Region

In the Bose-glass region the condensate vanishes, i.e., ñ0(r̃) = 0 and ñ(r̃) = q̃(r̃), and the self-
consistency equation (4.14) reduces to:

q̃(r̃) =
µ̃− r̃2

2
. (4.24)

This Bose-glass region vanishes at the cloud radius R̃TF2 =
√
µ̃. We also need to write down the

dimensionless equivalent of the normalization condition (4.15), which reads:
ˆ R̃TF2

0
ñ(r̃)r̃2dr̃ =

2

15
, (4.25)

where the total density ñ(r̃) in equation (4.25) is the combination of the total densities from both the
superfluid region and the Bose-glass region. The purpose of Eq. (4.25) is to determine the chemical
potential from the respective system parameters.

4.3.3. Thomas-Fermi Results

Before choosing any parameters for the BEC system, we have first to justify using the TF approximation
and determine the range of validity of this approximation. To this end we rewrite equation (4.13) in
the clean case, i.e., d = 0 and we divide it by the factor µ̄

√
n̄. This yields:

[
−1 + ñ(r̃) + r̃2 −

(
ξ

RTF

)2 1

r̃2

∂

∂r̃

(
r̃2 ∂

∂r̃

)] √
ñ (r̃) = 0. (4.26)

Note that in the clean case, the total density coincides with the condensate one. We read off from
Eq. (4.26) that the TF approximation in three dimensions is only justified when ξ � RTF.
In this Section we perform our study for 87Rb atoms and for the following experimentally realistic

parameters: N = 106, Ω = 2π × 100 Hz, and a = 5.29 nm. For those parameters the oscillator length
reads l = 1.08µm, the coherence length turns out to be ξ = 115 nm, and the Thomas-Fermi radius
is given by RTF = 10.21µm. Thus, the assumption ξ � RTF for the TF approximation is, indeed,
fulfilled.
Using those parameter values we solve for the superfluid region equation (4.21) for the total density

and insert the result into equations (4.19) and (4.20) to get the condensate density and the Bose-glass
order parameter, respectively. This has to be combined with equation (4.24) for the Bose-glass region.
After that we fix the chemical potential µ̃ using the normalization condition (4.25). The resulting
densities are combined and plotted in Fig. 4.4, where the densities in the superfluid region are plotted
with solid lines, and in the Bose-glass region they are depicted with dotted lines.
In Fig. 4.4 the three densities are maximal in the center of the trap and decrease when we move

away from the center until the condensate radius R̃TF1, where a downward jump of the dimensionless
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4.3. Isotropic Trap

Figure 4.4.: Total density ñ(r̃) (black), condensate density ñ0(r̃) (blue), Bose-glass order parameter
q̃(r̃) (red) as function of radial coordinate r̃ for dimensionless disorder strength d̃ = 0.175
both for superfluid region (solid) and Bose-glass region (dashed).

Figure 4.5.: Ratio of ñ0(R̃TF1) and ñ0(0) as function of dimensionless disorder strength d̃.

condensate density ñ0(r̃), and an upward jump of the Bose-glass order parameter q̃(r̃) occur in such a
way that the total density ñ(r̃) remains continuous but reveals a discontinuity of the first derivative.
In the Bose-glass region both the total density and the Bose-glass parameter coincide and decrease
until vanishing at the cloud radius R̃TF2. The Thomas-Fermi approximation captures the properties of
the system in both the superfluid and the Bose-glass region but not in the transition region. This is an
artifact of the applied Thomas-Fermi approximation. In order to know for which range of the disorder
strength the TF approximation is valid, we plot the ratio of the jump of the condensate density at the
condensate radius ñ0(R̃TF1) with respect to the condensate density at the center of the BEC ñ0(0)
as a function of the dimensionless disorder strength in Fig. 4.5. As only a moderate density jump of
about 50% should be reasonable, our approach is restricted to a disorder strength of about d̃ ' 0.3.
For larger disorder strength d̃ one would have to go beyond the Thomas-Fermi approximation and take
the influence of the kinetic energy in equation (4.13) into account.
The resulting Thomas-Fermi radii are plotted in Fig. 4.6a. When the disorder strength increases, the

condensate radius increases barely, then decreases until being zero, which corresponds to a quantum
phase transition occurring at d̃c = 21/5√

3+6
√

3 cos( π18)
w 0.315. This critical value of the disorder strength

is obtained by setting the cloud radius R̃TF1 to be zero. Thus, superfluidity is destroyed in our model
at a critical disorder strength d̃c, where approximately our Thomas-Fermi approximation breaks down.
Let us now compare this critical value of the disorder strength with the one obtained in Refs. [82,83],
where a non-perturbative approach is used, which investigates energetically shape and size of the
local minicondensates in the disorder landscape. With this, it is determined for a decreasing disorder
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4. 3D at Zero Temperature

Figure 4.6.: (a) Condensate radius (blue) and cloud radius (red) as well as (b) fractional number of
condensed particles N0/N (blue) and in disconnected local minicondensates Q/N (red),
as function of dimensionless disorder strength d̃.

strength, when the Bose-glass phase becomes unstable and goes over into the superfluid phase. In
this reference the quantum phase transition is predicted for the dimensionless disorder strength value
d̃ = 0.115, which is of the same order as our d̃c.
Contrary to the condensate radius, the cloud radius increases with the disorder strength until it

becomes constant, so that in the strong disorder regime the bosonic cloud reaches its maximal radius
of lim

d̃→∞
R̃TF2 = 21/5 w 1.148. This limiting value is obtained by inserting the Bose-glass region density

(4.24) into the normalization condition (4.25).
The same physical conclusion can be deduced from Fig. 4.6b, where the fractional number of the con-

densate is defined via N0/N = 15
2

´ R̃TF1

0 r̃2ñ0 (r̃) dr̃ and plotted as a function of the disorder strength.
We remark that N0/N equals to one in the clean case, i.e., all particles are in the condensate, then it
decreases with the disorder strength until it vanishes at d̃c, marking the end of the superfluid phase and
the beginning of the Bose-glass phase. Conversely, the fraction in the disconnected minicondensates
Q/N = 15

2

´ RTF2

0 r̃2q̃ (r̃) dr̃, where Q is the number of particles in the disconnected minicondensates,
increases with the disorder strength until being maximal at d̃c. Then it remains constant and equals to
one in the Bose-glass phase, since all particles are distributed in the respective minima of the disorder
potential.
The influence of the disorder on the chemical potential is shown in Fig. 4.7a. In the superfluid

phase the chemical potential can only be obtained numerically, while in the Bose-glass phase it is
deduced from inserting equation (4.24) into equation (4.25) yielding µ̃′ = µ/µ̄ = 22/5 + d̃2. The
dimensionless chemical potential increases starting from one with increasing the disorder strength and
is not differentiable at the quantum phase transition point d̃c.
Since the trap is quite wide, the Bose-glass order parameter in the center of the BEC q̃ (0) is

comparable to the one in the homogeneous case. Therefore, the dimensionless Huang-Meng result of

the Bose-glass order parameter obtained in equation (4.10) q̃HM = qHM/n =
d̃
√
ñ(0)√
2

, the dimensionless

perturbative result of the Bose-glass order parameter in the weak disorder q̃w = d̃
√
ñ (0) deduced

from (4.20), and the dimensionless exact Bose-glass order parameter in the center of the cloud q̃ (0) =

d̃√
−µ̃+2ñ(0)

[√
−µ̃+ 2ñ(0) + d̃

]2
are all plotted for the weak disorder regime in Fig. 4.7b to illustrate

the qualitative convergence of the three results.
From Fig. 4.4 we conclude that the TF approximation is valid only in the center of the trap, where

the kinetic energy can be neglected. This is due to the fact that the coherence length ξ is proportional
to 1/

√
n(r), thus, it becomes larger at the border of the bosonic cloud and the TF approximation

condition is not fulfilled anymore. But still we can conclude that the TF approximation is giving
better results in three dimensions in Chapter 4 than in one dimension in Chapter 3 due to the fact
that the fluctuations are more virulent in lower dimensions. Furthermore, we conclude from Fig. 4.5
that the TF approximation turns out to be valid only in the weak disorder regime. In order to have a
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4.3. Isotropic Trap

Figure 4.7.: (a) Dimensionless chemical potential µ̃′ and (b) Thomas-Fermi approximated (blue), per-
turbative (red), and Huang-Meng (green) Bose-glass order parameter in center of the BEC,
as function of dimensionless disorder strength d̃.

global picture of the behavior of the dirty BEC, not only in the presence of weak disorder but also in
the presence of intermediate and strong one, we use in the following subsection another approximation
method to treat our problem: the variational method.

4.3.4. Variational Method

As already explained in the end of Subsection 2.10.3, we can apply the variational method to our
three-dimensional problem. But since the free energy (2.158) involves a root, any variational ansatz
yields analytically insolvable integrals. Therefore, we use instead the form (2.126) of the free energy,
which is simpler and fits better to the variational treatment at hand. First of all we rewrite the free
energy (2.126) for the three-dimensional case at zero temperature and for the isotropic harmonic trap
potential:

F = 4π

ˆ ∞
0

drr2

{
−g [q(r) + n0(r)]2 − g

2
n2

0(r)−
√
n0(r)

{
µ+

~2

2M

1

r2

∂

∂r

(
r2 ∂

∂r

)
− 2g [q(r) + n0(r)]

− 1

2
MΩ2r2 +

D

~
Q0(r)

}√
n0(r) +

D

~
Q0(r) [q(r) + n0(r)]

−2D
√
π

(
M

2π~2

)3/2

[q(r) + n0(r)]

√
−µ+ 2g [q(r) + n0(r)] +

1

2
MΩ2r2 − D

~
Q0(r)

}
. (4.27)

In order to be able to compare the variational results with the analytical ones obtained in the previous
Subsection, we use the same rescaling parameters already introduced above equation (4.22) for all
densities, radial coordinate, and disorder strength. To this end, we have to multiply (4.27) with the
factor 1/

(
µ̄nR3

TF

)
to obtain:

F̃ = 4π

ˆ ∞
0

dr̃r̃2

{
− [q̃ (r̃) + ñ0 (r̃)]2 − 1

2
ñ2

0 (r̃)−
√
ñ0 (r̃)

{
˜̃µ+

(
ξ

RTF

)2 1

r̃2

∂

∂r̃

(
r̃2 ∂

∂r̃

)

−2 [q̃ (r̃) + ñ0 (r̃)]− r̃2 + d̃Q̃0(r̃)

}√
ñ0 (r̃) + d̃Q̃0(r̃) [q̃ (r̃) + ñ0 (r̃)]

−2d̃ [q̃ (r̃) + ñ0 (r̃)]

√
−µ̃′ + 2 [q̃ (r̃) + ñ0 (r̃)] + r̃2 − 2d̃Q̃0(r̃)

}
, (4.28)

where F̃ = F/
(
µ̄nR3

TF

)
denotes the dimensionless free energy, µ̃′ = µ/µ̄ the dimensionless chemical

potential, and Q̃0(r̃) = 1
~
√
πµ̄

(
2π~2
M

)3/2
Q0(r).
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4. 3D at Zero Temperature

Motivated by the analytical results presented in Subsection 4.3.3, we suggest the three following
expressions for the condensate density ñ0 (r̃), the Bose-glass order parameter q̃ (r̃), and the auxiliary
function Q̃0(r̃):

ñ0 (r̃) = αe−σr̃
2
, (4.29)

q̃ (r̃) + ñ0 (r̃) = γe−θr̃
2
, (4.30)

Q̃0(r̃) = 2
q̃ (r̃) + ñ0 (r̃)

d̃
−
(
ζ + ηr̃2

)
, (4.31)

where α, σ, γ, θ, ζ, and η denote the respective variational parameters. The parameters α and γ are
proportional to the number of particles in the condensate and the total number of particles, while the
parameters σ and θ represent the width of the condensate density and the total density, respectively.
Inserting the ansatz (4.29)–(4.31) into the free energy (4.28) and performing the integral yields:

F̃ = π3/2

{√
2γ2

4θ3/2
+ 3

α

2σ5/2
− α

8σ3/2

(
8µ̃′ +

√
2α
)

+

(
ξ

RTF

)2 3α

2
√
σ

+d̃

(
αζ

σ3/2
+

3αη

2σ5/2
− γ (3η + 2ζθ)

2θ5/2

)}
+

2πd̃γ
(
d̃ζ − µ̃′

)
θ

√
1 + d̃η

e
d̃ζ−µ̃′

2+2d̃η
θ
K1

(
d̃ζ − µ̃′

2 + 2d̃η
θ

)
, (4.32)

where K1 (s) represents the modified Bessel function of second kind. The free energy (4.32) has now to
be extremised with respect to the variational parameters α, σ, γ, θ, ζ, and η. This yields the following
six algebraic equations:

π3/2

4σ5/2

[
6− 4µ̃′σ −

√
2ασ + 6

(
ξ

RTF

)2

σ2 + 4d̃σζ + 6d̃η

]
= 0, (4.33)

3π3/2α

16σ7/2

[
−20 + 8µ̃′σ +

√
2ασ − 4

(
ξ

RTF

)2

σ2 − 8d̃σζ − 20d̃η

]
= 0, (4.34)

π3/2

2θ5/2

[√
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]
+
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(
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√
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)
= 0, (4.35)
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= 0, (4.36)
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4.3. Isotropic Trap

Note that the additional dimensionless particle number equation, which follows from the thermody-
namic condition − ∂F̃

∂µ̃′ = 4
3 , yields a seventh equation:

π3/2 α

σ3/2
− d̃

πγ
(
−d̃ζ + µ̃′

)
(

1 + d̃η
)3/2

e
d̃ζ−µ̃′

2+2d̃η
θ

[
K0

(
d̃ζ − µ̃′

2 + 2d̃η
θ

)
−K1

(
d̃ζ − µ̃′

2 + 2d̃η
θ

)]
=

2

15
. (4.39)

Thus, we have now seven coupled equations (4.33)–(4.39) for seven variables α, σ, γ, θ, ζ, η, and µ̃′.
Those equations can not be solved analytically, so we solve them numerically for different values of the
dimensionless disorder strength d̃. Furthermore, they turn out to have more than one solution, which
necessitates to select only the physical one. For each value of the dimensionless disorder strength d̃, we
solve the coupled Eqs. (4.33)–(4.39) numerically, then we insert the resulting variational parameters
α, σ, γ, and θ into the variational ansatz (4.29)–(4.31) in order to get the variational total density
ñ(r̃), the variational condensate density ñ0(r̃), and the variational Bose-glass order parameter q̃(r̃),
respectively.
In Fig. 4.8 the total density ñ(r̃) is plotted for different disorder strengths, where we see that the

density of bosons is always maximal in the center of the cloud, then it decreases when we move away
from the center until it vanishes at the cloud radius R̃TF2. The maximal value of the total density
decreases with the disorder strength. The condensate density ñ0(r̃) in Fig. 4.9a has a similar qualitative
behavior as the total density, i.e., it is also maximal in the center of the trap and decreases when we
move away from the center until it vanishes at the condensate radius R̃TF1. The maximal value of
the condensate density decreases also with the disorder strength. The response of the condensate to
disorder can be clearly seen in Fig. 4.9b, where the fractional number of condensed particles N0/N
is plotted as a function of the dimensionless disorder strength d̃. In the clean case all particles are
in the condensate, but, when we increase the disorder strength, more and more particles leave the
condensate until the condensate vanishes at the critical dimensionless disorder strength d̃c = 0.5183.
The Bose-glass order parameter q̃(r̃) in Fig. 4.10a has a similar shape as the two previous densities
ñ(r̃) and ñ0(r̃), it is maximal in the center of the BEC and decreases when we move away from the
center. When we increase the disorder strength, the maximal value of the Bose-glass order parameter
also increases. Better understanding of the influence of the disorder on the local minicondensates can
be deduced from Fig. 4.10b, where the fractional number of particles Q/N in the disconnected local
minicondensates is zero in the clean case then increases with the disorder strength until being one.
This means that more and more bosons go into the local minima of the disorder potential when we
increase the disorder strength. At the critical disorder strength value d̃c = 0.5183 all particles are
in the minicondensates. In order to know whether the bosonic cloud contains besides the superfluid
region also a Bose-glass region, we plot the total density ñ(r̃), the condensate density ñ0(r̃), and the
Bose-glass order parameter q̃(r̃) in the same Fig. 4.11a for the disorder strength value d̃ = 0.35. The
blow-up of the border region in Fig. 4.11b shows clearly that the condensate density vanishes, while
the Bose-glass order parameter still persists, which is the definition of the Bose-glass region. The cloud
radius R̃TF2 and the condensate radius R̃TF1 are defined by the length, where the total density and the
condensate density are equal to 10−4, respectively. Both radii are increasing with the disorder strength
in the weak disorder regime in Fig. 4.12. In the intermediate disorder regime, the cloud radius keeps
increasing with the disorder strength, while the condensate radius vanishes at the critical disorder value
d̃c = 0.5183, which marks the location of a quantum phase transition. For larger disorder strengths
d̃ > d̃c Eqs. (4.33)–(4.39) turn out to have negative solutions for the condensate density. So we do not
know if for stronger disorder the cloud radius keeps increasing or remains constant, i.e., whether the
bosonic cloud continues to extend or whether it has a maximal size. Note that the chemical potential
µ̃′ increases with the disorder strength in Fig. 4.13a. In the end we plot the Bose-glass order parameter
in the center of the BEC q̃ (0) = γ−α together with the dimensionless Huang-Meng result obtained in

(4.10) q̃HM =
d̃
√
ñ(0)√
2

in Fig. 4.13b in order to know if the variational results are compatible with the
Huang-Meng theory for weak disorder. In the weak disorder regime, q̃ (0) is linearly proportional to
the disorder strength, which agrees qualitatively with the Huang-Meng theory but not quantitatively,
since there is a significant discrepancy of

√
2 of the respective slopes.
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4. 3D at Zero Temperature

Figure 4.8.: Particle density ñ(r̃) for increasing dimensionless disorder strengths d̃ from top to bottom.

Figure 4.9.: (a) Condensate density ñ0(r̃) and (b) fractional number of condensed particles N0/N for
increasing dimensionless disorder strengths d̃ from top to bottom.

Figure 4.10.: (a) Bose-glass order parameter q̃(r̃) and (b) fractional number of particles Q/N in dis-
connected local minicondensates for increasing dimensionless disorder strengths d̃ from
bottom to top.
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4.3. Isotropic Trap

Figure 4.11.: (a) Particle density ñ(r̃) (black), condensate density ñ0(r̃) (blue), Bose-glass order pa-
rameter q̃(r̃) (red) and (b) blow-up of border region for d̃ = 0.35.

Figure 4.12.: Cloud radius R̃TF2 (blue) and condensate radius R̃TF1 (red) as functions of dimensionless
disorder strength d̃.

Figure 4.13.: (a) Chemical potential µ̃′ and (b) variational (blue) and Huang-Meng (red) Bose-glass
order parameter in the center of the BEC, as function of dimensionless disorder strength
d̃.
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4. 3D at Zero Temperature

Figure 4.14.: (a) Total density ñ(r̃), (b) condensate density ñ0(r̃), (c) Bose-glass order parameter q̃(r̃):
variational (solid, red), analytical (dashed, blue) for d̃ = 0.2.

Figure 4.15.: (a) Condensate radius R̃TF1 and (b) cloud radius R̃TF2: analytical (dashed, blue) and
variational (dotted, red), as functions of the dimensionless disorder strength d̃.
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4.3. Isotropic Trap

Figure 4.16.: Analytical (solid, blue) and variational (dotted, red) (a) chemical potential µ̃′ as well as
(b) Bose-glass order parameter in center of the BEC q̃(0) as functions of dimensionless
disorder strength d̃.

4.3.5. Comparison Between TF Approximation and Variational results

Now we compare the physical quantities obtained via the two different methods, i.e., the TF approxi-
mation and the variational method. We start first of all with the densities: the total density ñ(r̃), the
condensate density ñ0(r̃), and the Bose-glass order parameter q̃(r̃) are plotted for the disorder strength
value d̃ = 0.2 in Fig. 4.14. We know already from the conclusion at the end of Chapter 3 that the TF
approximation describes well the weak disorder regime, while the variational method is suitable to de-
scribe the intermediate disorder regime. Based on this conclusion our comparison is more a qualitative
than a quantitative one. The total densities ñ(r̃) in Fig. 4.14a agree qualitatively well, they are both
maximal in the center of the bosonic cloud and decrease when we move away from the center. The
same can be remarked for the condensate density ñ0(r̃) in Fig. 4.14b, except from the jump in the TF
approximated condensate density. For the Bose-glass order parameter q̃(r̃) in Fig. 4.14c we observe
that, according to the TF approximation, the density of the bosons in the local minima of the disorder
potential is maximal at the border of the trap, but according to the variational result this density is
maximal in the center of the trap. The TF approximated and the variational Thomas-Fermi radii are
compared with each other in Fig. 4.15. In Fig. 4.15a the variational and the TF approximated conden-
sate radius R̃TF1 have the same behavior, both increase first barely with the disorder strength d̃ in the
weak disorder regime, then decrease with it in the intermediate disorder regime until they vanish at the
quantum phase transition. Thus, both analytical and variational condensate radii R̃TF1 indicate the
existence of a quantum phase transition, but at two different values of the disorder strength, namely
d̃c = 0.315 and d̃c = 0.5183, respectively. Thus, the variational quantum phase transition happens at a
larger disorder strength than the TF approximated one. Figure 4.15b shows that, in the weak disorder
regime, the variational and the analytical cloud radii R̃TF2 increase with the disorder strength. In
the intermediate disorder regime the analytical cloud radius remains constant, while the variational
one keeps increasing with the disorder strength, and due to the lack of information for higher disorder
strengths d̃, we do not know if the variational cloud radius keeps increasing or remains constant.
Concerning the chemical potential, the variational and the analytical chemical potentials agree qual-

itatively well in Fig. 4.16a. Both of them increase with the dimensionless disorder strength d̃. Finally,
we compare the variational and analytical Bose-glass order parameter in the center of the trap as
functions of the dimensionless disorder strength d̃ in Fig. 4.16b. Both of them are linearly proportional
to the disorder strength and agree qualitatively with the Huang-Meng theory for weak disorder, but
the variational one has a larger slope, which causes a discrepancy with the analytical Bose-glass order
parameter.
From the discussion above, we conclude that the TF approximation and the variational method are

producing similar qualitative results in contrast to the one-dimensional case of Chapter 3, where the
TF approximated results and the variational ones disagree totally. In particular, a first-order quantum
phase transition from the superfluid phase to the Bose-glass phase is detected at a critical disorder
strength, whose value is of the same order as the one determined in Refs. [82,83]. Quantitatively, and
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4. 3D at Zero Temperature

motivated by the conclusion in the end of Chapter 3 for the one-dimensional case, we can say that
the TF approximation produces satisfying results in the weak disorder regime, while the variational
method is a good approximation to describe the BEC system in the intermediate disorder regime.
Furthermore, it has the advantage to be able to describe the border of the cloud where the Bose-
glass region is situated, and where the TF approximation fails. Although the variational method does
not provide us physical results for higher disorder strengths, its combination together with the TF
approximation for the weak disorder regime covers a significant range of the disorder strength.

4.3.6. Qualitative Comparison Between 1D and 3D Results

In this subsection we compare the one-dimensional results obtained in Chapter 3 with the three-
dimensional ones obtained in this chapter and discuss the points, where they qualitatively agree or
disagree.
We start first with the homogeneous case where, according to Figs. 3.1 and 4.1, a quantum phase

transition from the superfluid to the Bose-glass phase exists in one dimension as well as in three dimen-
sions, respectively. Perturbative Bose-glass order parameters in both one and three dimensions given
by equations (3.15) and (4.11) agree qualitatively with the Huang-Meng theory. But quantitatively
there is a discrepancy of 2

√
2 in one dimension and only

√
2 in three dimensions, which indicates

that the mean-field theory works better in higher dimensions. The chemical potential decreases with
the disorder strength in one dimension in Fig. 3.2 but increases with the disorder strength in three
dimensions in Fig. 4.2. This can probably be traced back to the third line of the free energy expression
(2.126), which changes its sign.
In the presence of the trap we applied first the TF approximation to the corresponding self-consistency

equations. It turned out that the TF approximation breaks down at the critical disorder strength
D̃c = 0.143 in one dimension and d̃c = 0.315 in three dimensions. We conclude that the disorder valid-
ity range is larger in three dimensions than in one dimension. In addition to the TF approximation we
also applied a variational ansatz to the free energy. However the TF-approximated and the variational
results disagreed totally in one dimension, as shown in Section 3.6, while they agreed qualitatively
well in three dimensions according to Subsection 4.3.5. Furthermore, we showed the existence of the
Bose-glass region in both dimensions, but in three dimensions it is always localized in the center of
the trap, while in one dimension it moves from the border to the center of the trap with increasing
the disorder strength. Finally the existence of a quantum phase transition from the superfluid to the
Bose-glass phase was confirmed in three dimensions in the intermediate disorder regime in Fig. 4.15a,
but could not be detected in one dimension in Fig. 3.28a neither in the weak nor in the intermediate
disorder regime. In order to be able to find this quantum phase transition in one dimension, we would
have to investigate the strong disorder regime, which is beyond the scope of the present thesis.

4.4. Anisotropic Trap

In this section we consider the general case, where the harmonic trap is a general anisotropic one:

V (r) ≡ V (x, y, z) = M
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
/2, (4.40)

with the trap frequency ωi along the i = x, y, z axis. In this case Eqs (4.16)–(4.18) of the superfluid
region are written as follows:

gn0(x, y, z) =

[√
−µ+ d2 + 2gn(x, y, z) +

M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ d

]2

, (4.41)

gq(x, y, z) =
d
[√
−µ+ d2 + 2gn(x, y, z) + M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ d
]2

√
−µ+ d2 + 2gn(x, y, z) + M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
) , (4.42)
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gn(x, y, z) =

[√
−µ+ d2 + 2gn(x, y, z) + M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

+ d
]3

√
−µ+ d2 + 2gn(x, y, z) + M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
) . (4.43)

Thus, Eq. (4.43) serves for determining the total density n(x, y, z). Inserting the solution of this
equation into (4.41) and (4.42) gives us directly the condensate density n0(x, y, z) and the Bose-glass
order parameter q(x, y, z), respectively. In the Bose-glass region we have instead n0(x, y, z) = 0. In the
following we distinguish again between two different regions: the superfluid and the Bose-glass region.

4.4.1. Superfluid region

We transform first our equations into dimensionless ones. To this end we divide equations (4.41)–
(4.43) by the value of the chemical potential in the absence of the disorder, which is given by µ̄ =

152/5

2

(
aN

(lxlylz)1/3

)2/5
~ (ωxωyωz)

1/3. This value is straightforwardly deduced from the normalization
condition (4.15) in the clean case, i.e., d = 0, by evaluating:

1

g

ˆ xTF

−xTF

ˆ yTF

−yTF

ˆ zTF

−zTF

[
µ̄− 1

2
MΩ2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)]
dxdydz = N, (4.44)

where li =
√

}/Mωi represents the oscillator length and iTF =
√

2µ̄
Mω2

i
the TF cloud radius, along the

i = x, y, z axis, respectively.
With this Eqs. (4.41)–(4.43) lead the following dimensionless self-consistency equations:

ñ0(x̃, ỹ, z̃) =
[√
−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2 + d̃

]2
, (4.45)

q̃(x̃, ỹ, z̃) =
d̃
[√
−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2 + d̃

]2

√
−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2

, (4.46)

ñ(x̃, ỹ, z̃) =

[√
−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2 + d̃

]3

√
−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2

, (4.47)

where ñ(x̃, ỹ, z̃) = n(x, y, z)/n̄ denotes the dimensionless total density, ñ0(x̃, ỹ, z̃) = n0(x, y, z)/n̄ the
dimensionless condensate density, q̃(x̃, ỹ, z̃) = q(x, y, z)/n̄ the dimensionless Bose-glass order param-
eter, n̄ = µ̄

g the density in the homogeneous clean case, k = ωy/ωx and λ = ωz/ωx the trap aspect
ratios, µ̃ = (µ − d2)/µ̄ the dimensionless chemical potential, and d̃ = d/

√
µ̄ the dimensionless disor-

der strength. Furthermore, x̃ =
√
Mω2

x/2µ̄ x, ỹ =
√
Mω2

x/2µ̄ y, and z̃ =
√
Mω2

x/2µ̄ z denote the
dimensionless coordinates along the x, y, and z axis, respectively.
In order to solve the coupled self-consistency equations (4.45)–(4.47) one should first solve the cubic

equation (4.47) with respect to the expression
√
−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2 using the Cardan

method of Appendix A and substitute the result into equations (4.45) and (4.46). To this end we
calculate the discriminant δ of the cubic equation (4.47), which has the following form:

δ =− 4µ̃3

27
+

4µ̃2d̃2

3
+ 8µ̃d̃4 + 4d̃6 +

(
4µ̃2

9
− 8µ̃d̃2

3
− 8d̃4

)(
x̃2 + k2ỹ2 + λ2z̃2

)
+

(
−4µ̃

9
+

4d̃2

3

)(
x̃2 + k2ỹ2 + λ2z̃2

)2
+

4

27

(
x̃2 + k2ỹ2 + λ2z̃2

)3
. (4.48)

Figure 4.17 shows that there are four different spatial regions where we have to look for the solu-
tions of equation (4.47). Those regions are characterized by the sign of the discriminant δ in (4.48)
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4. 3D at Zero Temperature

.

.

Figure 4.17.: Sign of the discriminant δ from equation (4.48), where x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2 and x̃3, ỹ3, z̃3

are the respective semiaxes of the ellipsoid solving the equation δ = 0.

being positive or negative and are separated by the border, where the discriminant δ vanishes. After
performing an analysis similar to the one in Fig. 4.3, we conclude that equation (4.47) has only one
physical solution in the first region, where the discriminant δ is negative. This means that the first
region coincides with the superfluid region and coincides outside with the Bose-glass region.
Now we have just to insert the resulting particle density ñ(x̃, ỹ, z̃) into the two other equations (4.45)

and (4.46) in order to get both the condensate density ñ0(x̃, ỹ, z̃) and the Bose-glass order parameter
q̃(x̃, ỹ, z̃), respectively.
To determine the border of the superfluid region, i.e., the condensate radii x̃TF1, ỹTF1, and z̃TF1,

where the solution of equation (4.47) vanishes, we have to solve the cubic equation δ = 0 with respect
to x̃2+k2ỹ2+λ2z̃2 using again the Cardan method, then select the smallest solution, which corresponds
to x̃2 +k2ỹ2 +λ2z̃2 = µ̃−3d̃2−6

√
3d̃2 cos

(
π
18

)
. This solution has a form of an ellipsoid, whose semiaxes

are the condensate radii x̃TF1 =
√
µ̃− 3d̃2 − 6

√
3d̃2 cos

(
π
18

)
, ỹTF1 = x̃TF1/k, and z̃TF1 = x̃TF1/λ along

the x̃-, ỹ-, and z̃-axis, respectively.

4.4.2. Bose-glass region

In this region the condensate vanishes, i.e., ñ0(x̃, ỹ, z̃) = 0, and we have q̃(x̃, ỹ, z̃) = ñ(x̃, ỹ, z̃). The
self-consistency equation (4.46) is then substituted by

−µ̃+ 2ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2 = 0. (4.49)

The bosonic cloud has the form of an ellipsoid which satisfies the relation x̃2 + k2ỹ2 + λ2z̃2 = µ̃ and
whose semiaxes are the cloud radii x̃TF2 =

√
µ̃, ỹTF2 = x̃TF2/k, and z̃TF2 = x̃TF2/λ along the x̃-, ỹ-,

and z̃-axis, respectively. From this we conclude that the BEC has a pancake shape in the case when
λ < k and λ < 1, otherwise it has a cigar shape.
We also need to write down the dimensionless equivalent of the normalization condition (4.15), which

reads:
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ˆ x̃TF2

−x̃TF2

ˆ ỹTF2

−ỹTF2

ˆ z̃TF2

−z̃TF2

ñ(x̃, ỹ, z̃)dx̃dỹdz̃ =
8π

15
, (4.50)

where the total density ñ(x̃, ỹ, z̃) in equation (4.50) is the combination of the total densities from both
the superfluid and the Bose-glass region.

4.4.3. Thomas-Fermi Results

Before choosing any parameters for our BEC system, we have first to justify using the TF approximation
in the anisotropic trapped case and determine the range of validity of this approximation. To this end
we rewrite equation (4.13) in the clean case, i.e., d = 0, and we divide it by the factor µ̄

√
n̄. This

yields:

[
−1 + ñ(x̃, ỹ, z̃) + x̃2 + k2ỹ2 + λ2z̃2 −

(
ξx
xTF

)2( ∂2

∂x̃2
+

∂2

∂ỹ2
+

∂2

∂z̃2

)] √
ñ (x̃, ỹ, z̃) = 0, (4.51)

where ξx = l2x
xTF

denotes the coherence length along the x-axis and xTF =
√

2µ̄/Mω2
x the TF radius

along the x-axis. The TF approximation in the anisotropic trapped case is only justified when ξx �
xTF.
In this Section we perform our study for Rubidium 87Rb and for the following experimentally realistic

parameters: N = 106, ωx = 2π × 160 Hz, k =
√

2, λ = 2, and a = 5.29 nm. For those parameters the
oscillator lengths read lx = 0.85µm, ly = 0.72µm, and lz = 0.60µm, the coherence length along the
x-axis turns out to be ξx = 70.95 nm, and the TF radius along the x-axis is given by xTF = 10.41µm.
So the assumption ξx � xTF for the TF approximation is, indeed, fulfilled. Furthermore, we have a
cigar shaped BEC.
Using those parameter values we solve in the superfluid region equation (4.47) for the total density

and insert the result into equations (4.45) and (4.46) to get the condensate density and the Bose-glass
parameters, respectively. This has to be combined with equation (4.49) in the Bose-glass region. After
that we fix the chemical potential µ̃ by using the normalization condition (4.50). The resulting densities
are plotted in Fig. 4.18, where in the superfluid region the densities are plotted with solid lines, and
in the Bose-glass region they are plotted with dashed lines.
In Fig. 4.18a the three cuts along the respective axis of the total density coincide in the center of

the trap. Furthermore, we remark the proportionality between them. This proportionality depends on
the choice of the trap aspect ratios k and λ. Since in our example we have chose λ > k > 1, the x-cut
of the total density is the largest one, then comes the y-cut, and the smallest one is the z-cut. As a
consequence, the z-cut of the total density vanishes first, then the y-cut, and in the end the x-cut. The
same can be remarked for the condensate density in Fig. 4.18b and for the Bose-glass order parameter
in Fig. 4.18c.
The corresponding Thomas-Fermi radii are plotted in Fig. 4.19 as functions of the disorder strength

d̃. Here again we remark the proportionality between the three components of each radius, namely the
condensate radius and the cloud radius. Since we have used in our plot λ > k > 1, the condensate
radius along x-axis is the largest one, followed by the one along y-axis, and the smallest one is the one
along z-axis. The same can be said about the three components of the cloud radius.
Furthermore, we observe that the three components of the condensate radius turn out to vanish

at the same critical disorder strength value d̃c = 21/5√
3+6
√

3 cos( π18)
w 0.315, which corresponds to the

location of a quantum phase transition. This critical value of the disorder strength is obtained by
setting one of the components of the cloud radius to zero: x̃TF1 = 0, ỹTF1 = 0, or z̃TF1 = 0. Contrary
the three components of the cloud radius increase with the disorder strength d̃ in the superfluid phase
until they become constant in the Bose-glass phase, where the bosonic cloud has maximal radii of
lim
d̃→∞

x̃TF2 = 21/5 w 1.148, lim
d̃→∞

ỹTF2 = x̃TF2/k w 0.811, and lim
d̃→∞

z̃TF2 = x̃TF2/λ w 0.574, which are

obtained by inserting the Bose-glass region density (4.49) into the normalization condition (4.50).
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4. 3D at Zero Temperature

Figure 4.18.: (a) Total density along x-axis ñ(x̃, 0, 0) (blue), y-axis ñ(0, ỹ, 0) (red), and z-axis ñ(0, 0, z̃)
(green), (b) condensate density along x-axis ñ0(x̃, 0, 0) (blue), y-axis ñ0(0, ỹ, 0) (red), and
z-axis ñ0(0, 0, z̃) (green), and (c) Bose-glass order parameter along x-axis q̃(x̃, 0, 0) (blue),
y-axis q̃(0, ỹ, 0) (red), and z-axis ñ(0, 0, z̃) (green), for d̃ = 0.107 both for superfluid region
(solid) and Bose-glass region (dashed).

Figure 4.19.: Condensate radii (solid) and cloud radii (dashed) along the x̃- (blue), ỹ- (red), and z̃-
(green) axis as functions of dimensionless disorder strength d̃.
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5. Dirty Bosons in 3D at Finite Temperature

In this chapter we consider a three-dimensional BEC system at finite temperature, so that also the
thermal density nth (x) has to be taken into account. After having discussed the homogeneous case,
we deal with an isotropic harmonic trap V (r) = 1

2MΩ2r2 in TF approximation. At first we restrict
ourselves to the clean case, then we treat the disordered one, where we work out the different densities
as well as the respective Thomas-Fermi radii. This allows us to study the impact of both temperature
and disorder on the distribution of the densities as well as the respective Thomas-Fermi radii.

First of all we rewrite the four self-consistency equations (2.152)–(2.155) obtained in Subsection
2.10.3 for the considered three-dimensional case at finite temperature:

n(r) = n0(r) + q(r) + nth (r) , (5.1){
−gn0(r) +

[√
−µ+ d2 + 2gn(r) + V (r) + d

]2
− }2

2M

1

r2

∂

∂r

(
r2 ∂

∂r

)}√
n0(r) = 0, (5.2)

q(r) =
dn0(r)√

−µ+ d2 + 2gn(r) + V (r)
, (5.3)

nth (r) =

(
M

2πβ}2

)3/2

ς 3/2

(
eβ [µ−d2−2gn(r)−V (r)]

)
, (5.4)

as well as the corresponding normalization condition

N = 4π

ˆ ∞
0

r2n(r)dr. (5.5)

5.1. Homogeneous Case

We start with briefly reviewing the homogeneous case, since it is the simplest one, where we have
V (x) = 0, which was already treated in Ref. [84]. We distinguish between three different phases,
namely, the superfluid phase, where the condensate density contributes to the total density, the Bose-
glass phase, where the condensate vanishes, and the thermal phase, where all bosons are in the excited
states. We treat each phase separately.

5.1.1. Superfluid Phase

Equations (5.1)–(5.4) reduce in the superfluid phase to:

n = n0 + q + nth, (5.6)

gn0 =
[√
−µ+ d2 + 2gn+ d

]2
, (5.7)

q =
dn0√

−µ+ d2 + 2gn
, (5.8)

nth =

(
M

2πβ}2

)3/2

ς 3/2

(
eβ (µ−d2−2gn)

)
. (5.9)

Note that we drop in this section the spatial dependence of all densities due to the homogeneity. In-
serting equations (5.7)–(5.9) into equation (5.6), then dividing by gn3/2 gives us the following algebraic
equation for the condensate fraction n0/n:
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5. Dirty Bosons in 3D at Finite Temperature

Figure 5.1.: Condensate fraction n0/n as function of dimensionless disorder strength d for (a) γ =
0.0007, T/T 0

c = 0.6 (blue) and (b) γ = 0.2366, T/T 0
c = 0.6 (green), as well as T = 0 (red).
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= 0. (5.10)

Here d = ξ
L denotes the dimensionless disorder strength, γ = na3 is the gas parameter, and T 0

c =

2π}2
MkB

(
n

ς( 3
2)

)2/3

abbreviates the critical temperature of the ideal Bose gas, where ξ = ~√
2Mgn

stands

for the coherence length, and L = 2π~4
M2D

represents the Larkin length [82, 119]. Note that at zero
temperature equation (5.10) reduces to (4.4). Figure 5.1 shows that the condensate fraction generically
decreases with increasing disorder strength d. Furthermore, our mean-field theory predicts that the
condensate density stops to exist at a critical value dc. We interpret this as a sign that a phase
transition occurs in the homogeneous BEC from the superfluid to the Bose-glass phase. If we compare
in Fig. 5.1a between the blue line, which corresponds to a finite temperature, and the red line, which
corresponds to the zero-temperature case of Section 4.1, we observe that dc1 ' 0.30 < dc3 ' 0.384 and
conclude that the critical disorder strength dc decreases with increasing temperature T . Comparing at
fixed temperature the blue line from Fig. 5.1a for weakly interacting 87Rb gas, which corresponds to
the gas parameter being about γ = 0.0007 according to Ref. [128], with the green line from Fig. 5.1b for
a strongly interacting 4He, which corresponds to the gas parameter being about γ = 0.2366 according
to Ref. [129], yields that dc1 ' 0.30 < dc2 ' 0.331. But in order to make a quantitative statement
about the impact of the interaction strength, one has to take into account that the gas parameter γ is
included in the definition of the dimensionless disorder strength d = d√

gn . With this it turns out that
dc1 > dc2 , i.e, the critical disorder strength dc decreases with increasing the gas parameter γ. All these
findings suggest that a corresponding phase transition will also appear in the trapped case, which is
studied later on in Section 5.4.
Now we determine the equation of state in the superfluid phase. To this end we divide equation

(5.7) by the factor gn, which yields:

n0

n
=

(√
− µ

gn
+ d

2
+ 2 + d

)2

. (5.11)

Inserting this result into the condensate fraction equation (5.10) we obtain the following algebraic
equation of state:
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(√
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√
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2
+ 2ς 3/2

(
e
−2

T0
c
T
ς( 3

2)
2/3

γ1/3
[
− µ
gn

+d
2
+2
])

= 0 (5.12)

5.1.2. Bose-Glass Phase

In the Bose-glass phase we have n0 = 0, so we only need equations (5.1), (5.3), and (5.4), which reduce
to:

n = q + nth, (5.13)

gn =
µ− d2

2
, (5.14)

nth =

(
M

2πβ}2

)3/2

ς

(
3

2

)
. (5.15)

Dividing relation (5.14) by the factor gn, we get the corresponding equation of state in the Bose-glass
phase

µ

gn
= 2 + d

2
. (5.16)

5.1.3. Thermal phase

In the thermal phase we have n0 = q = 0 and n = nth, so we need only equation (5.4), which reduces
to:

1 =

(
T

ς
(

3
2

)2/3
T 0

c

)3/2

ς 3/2

(
e

2
T0
c
T
ς( 3

2)
2/3

γ1/3
(
µ
gn
−d2−2

))
. (5.17)

Equation (5.17) represents an implicit relation for the equation of the state in the thermal phase.

5.1.4. Phase Diagram

To illustrate our results further, we plot the phase diagram, which is spanned by both the temperature
and the disorder strength in Fig. 5.2. The first-order phase transition line between the superfluid and
the non-superfluid phase is obtained by solving (5.10) and by evaluating ∂d

∂ n0/n
= 0 from (5.10), i.e,

3

2

√
n0

n
− 1

2
√
n0/n

+
1

2
√
n0/n

(
T

ς
(

3
2

)2/3
T 0

c

)3/2

ς 3/2

(
e
−2

T0
c
T
ς( 3

2)
2/3

γ1/3
[√

n0
n
−d
]2)

− 2γ1/3√
n0/n

√
T

ς
(

3
2

)2/3
T 0

c

(√
n0

n
− d
)2

ς 1/2

(
e
−2

T0
c
T
ς( 3

2)
2/3

γ1/3
[√

n0
n
−d
]2)

= 0. (5.18)

The phase diagram in Fig. 5.2a corresponds to a weakly interacting 87Rb gas, while the phase diagram
in Fig. 5.2b corresponds to strongly interacting 4He. The critical disorder strength dc decreases with
increasing the temperature T . In the clean case d = 0 there is a critical temperature Tc at which the
superfluid, which is stable for T < Tc, and the thermal Bose-gas, which is stable for T > Tc, coexist.
Note that, due to the weak repulsive interaction, this critical temperature Tc turns out to be larger
than the critical temperature of the ideal Bose gas T 0

c by about

∆Tc = Tc − T 0
c ' 1.3 γ1/3T 0

c . (5.19)
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5. Dirty Bosons in 3D at Finite Temperature

Figure 5.2.: Phase diagram in disorder strength-temperature plane for (a) weakly interacting 87Rb gas
with γ = 0.0007 and (b) strongly interacting 4He with γ = 0.2366. Thick and thin lines
represent first-order and continuous phase transitions, respectively.

Note that the result (5.19) is non-trivial as it involves a resummation of an infrared divergent
perturbation series, which has been worked out on the basis of variational perturbation theory in
Refs. [130, 131]. Furthermore, (5.19) was confirmed by high-precision Monte Carlo simulations in
Ref. [132]. For the weakly interacting Bose gas in Fig. 5.2a we read off Tc/T

0
c = 1.103, which agrees

well with the result obtained using formula (5.19) yielding Tc/T
0
c ' 1.115. The same can be remarked

for the strongly interacting Bose gas in Fig. 5.2b, where we have Tc/T
0
c = 1.65, which agrees well with

the result obtained using formula (5.19) Tc/T
0
c ' 1.796. Furthermore, there is a triple point dT, where

all three phases coexist and which is characterized by T = T 0
c and µc = 2gn = 2g

(
MkBT

0
c

2π}2

)3/2
ς
(

3
2

)
.

Thus, within the Hartree-Fock theory of dirty bosons T 0
c turns out to be the critical temperature for

the appearance of the Bose-glass phase. For γ = 0.0007 we have dT = 0.111, while for γ = 0.2366
we obtain dT = 0.234. Below the triple point temperature we have a first-order phase transition from
the superfluid to the Bose-glass phase, while above the triple point temperature a first-order phase
transition from the superfluid to the thermal phase occurs. Below the triple point disorder we have
a first-order phase transition from the superfluid to the thermal phase, while above the triple point
disorder we observe a first-order phase transition from the superfluid to the Bose-glass phase, which
is followed by a second-order phase transition from the Bose-glass to the thermal phase. At T = 0 we
are in the zero temperature case, which was already treated in Section 4.1.

5.1.5. Chemical Potential

In Fig. 5.3 we plot the equation of state of the dirty Bose system for the gas parameter γ = 0.0007. In
Fig. 5.3a for increasing disorder strength we fix the temperature at T = 0.6T 0

c , which corresponds in
Fig. 5.2a to the region below the triple point temperature, i.e, we have only two phases, namely, the
superfluid and the Bose-glass phase. Therefore, the equation of state of the superfluid phase (5.12) is
combined with the equation of state of the Bose-glass phase (5.16) and plotted together in Fig. 5.3a.
We read off that the chemical potential increases with the disorder strength d with a discontinuity
in the transition region between the superfluid and the Bose-glass phase, which occurs at the critical
disorder strength dc:

lim
d↑dc

µ

gn
− lim
d↓dc

µ

gn
' 0.037. (5.20)

Thus, the transition between the superfluid and the Bose-glass phase is, indeed, of first order as
indicated in Fig. 5.2a.
In Fig. 5.3b for increasing temperature we fix the disorder strength at d = 0.3, which corresponds

in Fig. 5.2a to the region above the triple point disorder, i.e, we have three phases, namely, the
superfluid, the Bose-glass, and the thermal phase. Thus, the three corresponding equations of state,
namely, equations (5.12), (5.16), and (5.17), are combined and plotted together in Fig. 5.3b. In the
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5.2. Thomas-Fermi Approximation

Figure 5.3.: Chemical potential fraction µ in units of gn for γ = 0.0007 as function of (a) dimensionless
disorder strength d for T/T 0

c = 0.6 and (b) dimensionless temperature T/T 0
c for d = 0.3.

superfluid phase the chemical potential increases with the temperature with a discontinuity at the
critical temperature Tc, where the transition region between the superfluid and the Bose-glass phase
is located:

lim
T↑Tc

µ

gn
− lim
T↓Tc

µ

gn
' 0.032. (5.21)

In the Bose-glass phase the chemical potential stays constant, then decreases with the temperature in
the thermal phase. This phase transition occurs continuously at the critical temperature T 0

c . So, we
have a first-order phase transition from the superfluid to the Bose-glass phase, which is followed by a
second-order phase transition from the Bose-glass to the thermal phase in agreement with Fig. 5.2a.

5.2. Thomas-Fermi Approximation

After having treated the homogeneous case we investigate now the trapped one. First of all we trans-
form equations (5.1)–(5.4) into dimensionless ones by dividing equations (5.1), (5.3), and (5.4) by the
maximal value of the density in the clean case at zero temperature n̄ = µ̄/g and dividing equation
(5.2) by the factor µ̄

√
n̄. This yields:

ñ (r̃) = ñ0 (r̃) + q̃ (r̃) + ñth (r̃) , (5.22)

q̃ (r̃) =
d̃ñ0 (r̃)√

−µ̃+ 2ñ(r̃) + r̃2
, (5.23)

{
−ñ0 (r̃) +

[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]2
−
(

ξ

RTF

)2 1

r̃2

∂

∂r̃

(
r̃2 ∂

∂r̃

)}√
ñ0 (r̃) = 0, (5.24)

ñth (r̃) =
1

n̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
. (5.25)

Here ñ0(r̃) = n0(r)/n̄ denotes the dimensionless condensate density, q̃(r̃) = q(r)/n̄ the dimensionless
Bose-glass order parameter, ñth(r̃) = nth(r)/n̄ the dimensionless thermal density, ñ(r̃) = n(r)/n̄
the dimensionless total density, r̃ = r/RTF the dimensionless radial coordinate, µ̃ = (µ − d2)/µ̄ the

dimensionless chemical potential, d̃ = ξ
L the dimensionless disorder strength, l =

√
~

MΩ the oscillator
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length, RTF =
√

2µ̄/MΩ2 the TF cloud radius at zero temperature, and ξ = l2

RTF
the coherence length

in the center of the trap at zero temperature. The chemical potential in the absence of the disorder at

zero temperature µ̄ = 152/5

2

(
aN
l

)2/5
}Ω is deduced from the normalization condition (5.5) in the clean

case by evaluating:

4π

g

ˆ RTF

0

(
µ̄− 1

2
MΩ2r2

)
r2dr = N. (5.26)

We also need to write down the dimensionless equivalent of the normalization condition (5.5), which
reads: ˆ ∞

0
ñ(r̃)r̃2dr̃ =

2

15
. (5.27)

For the total density ñ(r̃), the condensate density ñ0(r̃), the Bose-glass parameter q̃(r̃), and the
thermal density ñth(r̃) we have three algebraic equations: (5.22), (5.23), and (5.25) and one nonlinear
partial differential equation (5.24), which is impossible to solve analytically. Thus, we use here again
the TF approximation, so we neglect the kinetic term in the self-consistency equation (5.24), which
reduces in the superfluid region to

ñ0 (r̃) =
[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]2
, (5.28)

whereas equations (5.22), (5.23), and (5.25) remain the same. Outside the superfluid region equation
(5.24) is solved by ñ0 (r̃) = 0.
In the following, we treat first in Section 5.3 the simple clean case, where we have no disorder, in

order to study, as a first step, only the impact of thermal fluctuations on the BEC system. Afterwards
in Section 5.4 then we treat the general case, where disorder and temperature occur simultaneously.

5.3. Clean Case

Even the simpler clean case represents a challenge and has to be treated in the literature either
perturbatively [133] or numerically [134]. In the clean case we have no Bose-glass contribution, as
we can reduce q̃ (r̃) = 0 from (5.23), but a thermal contribution ñth (r̃) to the total density ñ (r̃).
Therefore, in this section two different cases can be distinguished: in the first one the bosons can be in
the condensate or in the excited states, which corresponds to the superfluid region, in the second one
all bosons are in the excited states and there is no condensate any more, so this is the thermal region.
In the following, we treat those two regions separately.

5.3.1. Superfluid region

In the superfluid region the TF approximated equations (5.22), (5.25), and (5.28) reduce to:

ñ(r̃) = ñ0 (r̃) + ñth (r̃) , (5.29)

ñth (r̃) =
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
, (5.30)

ñ0 (r̃) = µ̃− 2ñth (r̃)− r̃2. (5.31)

We have now three coupled algebraic self-consistency equations for the condensate density ñ0 (r̃),
the thermal density ñth (r̃), and the sum of them, i.e., the total density ñ (r̃). Those equations can be
straightforwardly decoupled by first inserting equations (5.29) and (5.31) into equation (5.30) in order
to get one self-consistency equation for the thermal density:

ñth (r̃) =
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [−µ̃+2ñth(r̃)+r̃2]

)
. (5.32)
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Inserting again equation (5.31) into equation (5.32), we get one self-consistency equation for the con-
densate density:

ñ0 (r̃) = µ̃− r̃2 − 2g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
e−βµ̄ñ0(r̃)

)
. (5.33)

Inserting equation (5.31) into equation (5.29) yields ñth (r̃) = µ̃ − ñ (r̃) − r̃2. By implementing the
latter result into equation (5.32), we obtain one self-consistency equation for the total density

ñ(r̃) = −µ̃+ 2ñ(r̃) + r̃2 +
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
, (5.34)

Equations (5.32)–(5.34) contain the polylogarithmic function ς 3/2, which makes them impossible to
solve analytically. Therefore, we solve those equations numerically, but due to the polylogarithmic
function ς 3/2, the numerically obtained densities turn out to be fluctuating in the transition region,
which separates the superfluid region from the thermal one [135]. The physical origin of those fluctu-
ations is the Poisson sum formula (2.144), where a series is transformed into another one. It represent
a duality transformation, where the right-hand side of (2.144) is valid for high temperatures, while its
left-hand side is valid for low temperatures [136]. Thus, in view of an analytic treatment, we apply the
Robinson formula [115,137]:

ς ν (ex) = Γ (1− ν) (−x)ν−1 +

∞∑
k=0

xk

k!
ς (ν − k) , x < 0. (5.35)

Close to the transition boundary the condensate density vanishes, so according to equation (5.31)
the expression µ̃− 2ñ (r̃)− r̃2 goes to zero, which motivates to truncate the Robinson expansion at the
first order:

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
≈Γ

(
−1

2

)√
−βµ̄ [µ̃− 2ñ (r̃)− r̃2] + ς

(
3

2

)
+ βµ̄

[
µ̃− 2ñ (r̃)− r̃2

]
ς

(
1

2

)
. (5.36)

Using this approximation, equations (5.29)–(5.31) can be written as follows:

ñ(r̃) = ñ0 (r̃) + ñth (r̃) , (5.37)

ñth (r̃) =
µ̃− ñ0 (r̃)− r̃2

2
, (5.38)

ñ0 (r̃) ≈ µ̃− r̃2 − 2g

µ̄

(
M

2πβ}2

)3/2 [
Γ

(
−1

2

)√
βµ̄ ñ0 (r̃) + ς

(
3

2

)
− βµ̄ ñ0 (r̃) ς

(
1

2

)]
. (5.39)

Equation (5.39) represents a quadratic equation with respect to
√
ñ0 (r̃) and has, thus, two solutions:

ñ0 (r̃) =

[
−1 + 2gβ

(
M

2πβ}2

)3/2

ς

(
1

2

)]−2{
−2g

µ̄

(
M

2πβ}2

)3/2√
πβµ̄ (5.40)

±

√√√√4πβg2

µ̄

(
M

2πβ}2

)3

− 4

[
1

2
− βg

(
M

2πβ}2

)3/2

ς

(
1

2

)][
−µ̃+ r̃2

2
+
g

µ̄

(
M

2πβ}2

)3/2

ς

(
3

2

)]
2

.

We choose the one with the positive sign, which corresponds to the numerical solution of equation
(5.33), i.e., to the one without Robinson approximation. We insert the chosen solution of condensate
density ñ0 (r̃) into equation (5.38) in order to get the thermal density ñth (r̃), and the sum of them
then represents the particle density ñ(r̃). The condensate radius R̃TF1, which separates the superfluid

97



5. Dirty Bosons in 3D at Finite Temperature

region from the thermal region, is obtained by differentiating equation (5.39) with respect to ñ0 (r̃),

then setting ∂r̃
∂ñ0(r̃)

∣∣∣∣∣
r̃=R̃TF1

= 0. The resulting condensate density ñ0

(
R̃TF1

)
should be inserted again

into equation (5.39) in order to get the analytical expression of the condensate radius

R̃TF1 =

√√√√√µ̃− 2g

µ̄

(
M

2πβ}2

)3/2

ς

(
3

2

)
+

1

µ̄

(
M

2πβ}2

)3 4πβg2

1− 2gβ
(

M
2πβ}2

)3/2
ς
(

1
2

) . (5.41)

5.3.2. Thermal region

In the thermal region the condensate vanishes, i.e., ñ0(r̃) = 0 and ñth (r̃) = ñ(r̃). In that case the
self-consistency equation (5.25) reduces to:

ñ (r̃) =
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
. (5.42)

Equation (5.42) contains the polylogarithmic function ς 3/2 and, thus, can not be solved analytically.
Furthermore, the Robinson formula (5.36) can not be applied in the thermal region, since it gives a
diverging density, which can not be accepted as a physical solution. Thus, the density of the thermal
region (5.42) can only be treated numerically. The cloud radius R̃TF2, where the thermal density
and, as a consequence, the total density vanish is defined here by the length, where the dimensionless
thermal density ñ (r̃) is equal to 10−5.

5.3.3. Thomas-Fermi Results

In this Section we perform our study for 87Rb atoms and for the following experimentally realistic
parameters: N = 106, Ω = 100 Hz, and a = 5.29 nm. For those parameters the oscillator length
reads l = 2.72µm, the coherence length in the center of the trap turns out to be ξ = 348.89 nm
and the Thomas-Fermi radius is given by RTF = 21.29µm, so the assumption ξ � RTF for the TF
approximation is, indeed, fulfilled.
Using those parameter values, we solve the superfluid region equation (5.39) for the condensate

density ñ0 (r̃) and insert the result into equations (5.38) and (5.37) to get the thermal density ñth (r̃)
and the total density ñ (r̃), respectively. This has to be combined with equation (5.42) for the thermal
region. After that the chemical potential µ̃ has to be fixed using the normalization condition (5.27),
where the total density ñ (r̃) is the combination of the total densities from both the superfluid region
and the thermal region. The integral over the superfluid region in equation (5.27) is done analytically,
while the integral over the thermal region is done using a method for numerical integration called
Simpson’s rule [138], which is a numerical approximation of definite integrals. The principle of this
method is to decompose the interval of the integral of a function f (x) into mini intervals [a, b] where:

ˆ b

a
f (x) dx ≈ b− a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
. (5.43)

The resulting densities are combined and plotted in Fig. 5.4 for the temperature T = 60 nK, where in
the superfluid region the densities are plotted with solid lines, and in the thermal region with dotted
lines.
Figure 5.4 shows that the condensate density ñ0(r̃) is maximal at the center of the cloud and

decreases when we move away from the center until the condensate radius R̃TF1, where it jumps to
zero. For the chosen parameters the jump is too small to be visible but it exists as shown in the
blow-up. The thermal density ñth (r̃) is behaving oppositely: it is increasing with increasing r̃ until
attending its maximum at the condensate radius R̃TF1, then for r̃ > R̃TF1 it decreases exponentially
to zero. The total density ñ(r̃) is maximal in the center of the trap and decreases when we move
away from it until vanishing. Note that in the thermal region the total density ñ(r̃) and the thermal
density ñth (r̃) coincide. Although both the condensate density ñ0(r̃) and the thermal density ñth (r̃)
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5.3. Clean Case

Figure 5.4.: Total density ñ(r̃) (black), condensate density ñ0(r̃) (blue), and thermal density ñth (r̃)
(red) with blow-up of transition region as a function of radial coordinate r̃ for T = 60 nK in
superfluid region (solid lines) and in thermal region (dotted lines), where chemical potential
results in µ̃ = 0.566.

are discontinuous at the condensate radius R̃TF1, the total density ñ (r̃) remains continuous but reveals
a discontinuity of the first derivative. We conclude from Fig. 5.4 that the condensate is situated in the
center of the trap, while the bosons in the excited states are located at the border of the trap.
In order to know how the temperature changes the Thomas-Fermi radii, we plot them in Fig. 5.5a

as functions of the temperature T . This figure reveals the existence of two phases, a superfluid phase,
where the bosons are either in the condensate or in the excited states, and a thermal phase, where all
particles are in the excited states. The condensate radius R̃TF1 decreases with the temperature until
it vanishes at the critical temperature Tc marking a phase transition. The critical temperature Tc is
the solution of the equality R̃TF1 = 0, i.e.,[

µ̃c −
2g

µ̄

(
MkBTc

2π}2

)3/2

ς

(
3

2

)][
1− 2g

√
Tc

kB

(
MkB
2π}2

)3/2

ς

(
1

2

)]
+

4πg2T 2
c

µ̄kB

(
MkB
2π}2

)3

= 0, (5.44)

where µ̃c is the critical chemical potential at the phase transition, whose first-order correction follows
from (5.42)

µ̃c = 2ñ(0) =
2g

µ̄

(
MkBTc

2π}2

)3/2

ς

(
3

2

)
. (5.45)

For our chosen parameters we obtain from solving (5.44) and (5.45) Tc = 65.71 nK and µ̃c = 0.08,
the former agreeing with Fig. 5.5a. The critical temperature can be compared with the first-order
correction with respect to g

Tc − T 0
c

T 0
c

= −1.33
a

l
N1/6, (5.46)

where T 0
c = ~Ω

kB

(
N
ς(3)

)1/3
denotes the critical temperature for the non-interacting BEC. Equation (5.46)

is obtained by inserting (5.42) and (5.45) into the normalization condition (5.27) and by expanding
the result up to the first order with respect to the contact interaction strength g [133,139]. We read off
from (5.46) that the repulsive interaction reduces the critical temperature. For our chosen parameters
we get T 0

c = 71.87 nK. According to the formula (5.46) the critical temperature for the interacting
case has the value Tc = 70.01 nK, which is nearly the one obtained above and in Fig. 5.5a. On the
other hand the cloud radius R̃TF2 turns out to increase with the temperature.
In Fig. 5.5b the fractional number of the condensate is defined via N0/N = 15

2

´ R̃TF1

0 r̃2ñ0 (r̃) dr̃ and
is plotted as a function of the temperature T . We remark that N0/N equals to one at zero temperature,
i.e., all particles are in the condensate, then it decreases with the temperature until it vanishes at Tc,
marking the end of the superfluid phase and the beginning of the thermal phase. Conversely, the

99



5. Dirty Bosons in 3D at Finite Temperature

Figure 5.5.: (a) Condensate radius R̃TF1 (blue) and cloud radius R̃TF2 (red) and (b) fractional num-
ber of condensed particles N0/N (blue) and in excited states Nth/N (red) as function of
temperature T .

Figure 5.6.: (a) Dimensionless chemical potential µ̃ and (b) Ratio of ñ0(R̃TF1) and ñ0(0) as function
of temperature T .

fractional number of the particles in the thermal states Nth/N = 15
2

´ R̃TF2

0 r̃2ñth (r̃) dr̃, where Nth is
the number of particles in the excited states, increases with the temperature until being maximal at
Tc, then it remains constant and equals to one in the thermal phase since all particles are in the excited
states.
The influence of the temperature on the chemical potential is shown in Fig. 5.6a. In both the

superfluid phase and the thermal phase the chemical potential can only be obtained numerically. The
chemical potential decreases with the temperature slowly in the superfluid phase and faster in the
thermal phase. In order to know for which temperature range the TF approximation is valid, we plot
the ratio of the jump of the condensate density at the condensate radius ñ0(R̃TF1) with respect to the
condensate density at the center of the BEC ñ0(0) as a function of the temperature in Fig. 5.6b. We
remark that this ratio is negligible for T < Tc and has a sudden jump for T ≈ Tc. This means that the
TF approximation is valid in the superfluid phase but not at the transition region, where one would
have to go beyond the Thomas-Fermi approximation and take the influence of the kinetic energy in
equation (5.24) into account.

5.4. Disordered Case

In this section we consider the BEC system to be in a disordered landscape and at finite temperature.
We investigate the effect of both temperature and disorder on the properties of the system, in particular
on the respective densities and Thomas-Fermi radii. Thus, we have to solve the dimensionless algebraic
equations (5.22), (5.23), (5.25), (5.28) and the normalization condition (5.27).
In the following we distinguish between three different regions: the superfluid region, where the
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bosons are distributed in the condensate as well as in the minima of the disorder potential and in the
excited states, the Bose-glass region, where there are no bosons in the condensate so that all bosons
contribute to the local Bose-Einstein condensates or to the excited states, and the thermal region,
where all bosons are in the excited states, see Fig. 1.6. To this end, we treat each region separately.
We start first with the thermal region and the Bose-glass region, since they are easier to treat, then
we focus on the superfluid region, which is more complicated.

5.4.1. Thermal Region

In the thermal region only the thermal component contributes to the total density, so we have ñ0(r̃) =
q̃ (r̃) = 0 and ñth (r̃) = ñ(r̃). In this case we need just equation (5.25), which reduces to

ñth (r̃) =
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñth(r̃)−r̃2]

)
, (5.47)

and can be solved only numerically. The cloud radius R̃TF3, which characterizes the end of the thermal
region, is determined here by setting ñth

(
R̃TF3

)
= 10−5 in equation (5.47).

5.4.2. Bose-Glass Region

In the Bose-glass region the condensate vanishes, i.e., ñ0(r̃) = 0, and we need only the self-consistency
equations (5.22), (5.23), and (5.25), which reduce to:

ñ(r̃) =
µ̃− r̃2

2
, (5.48)

q̃ (r̃) =
µ̃− r̃2

2
− g

µ̄

(
M

2πβ}2

)3/2

ς

(
3

2

)
, (5.49)

ñth (r̃) =
g

µ̄

(
M

2πβ}2

)3/2

ς

(
3

2

)
. (5.50)

Note that the self-consistency equation (5.50) reveals that the thermal density in the Bose-glass region
remains spatially constant, which we consider to be an artifact of the TF approximation. The Bose-

glass radius R̃TF2 =

√
µ̃− 2 gµ̄

(
M

2πβ}2

)3/2
ς
(

3
2

)
, which characterizes the end of the Bose-glass region

and the beginning of the thermal region, is determined by setting q̃
(
R̃TF2

)
= 0 in equation (5.49).

5.4.3. Superfluid Region

In the superfluid region all densities contribute to the total density and the four algebraic coupled
equations (5.22), (5.23), (5.25), and (5.28) have to be taken into account. As a first step, we decouple
them in order to get for each density its own self-consistency equation. Inserting equations (5.23),
(5.25), and (5.28) into equation (5.22) yields the following self-consistency equation for the total density
ñ(r̃):

ñ (r̃) =

[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]3

√
−µ̃+ 2ñ(r̃) + r̃2

+
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
. (5.51)

From equation (5.28) we deduce the expression of the total density ñ(r̃) as a function of the condensate
density ñ0(r̃) as follows:

ñ(r̃) =

[√
ñ0(r̃)− d̃

]2
+ µ̃− r̃2

2
. (5.52)
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This result can be inserted in equation (5.51) in order to get the self-consistency equation for the
condensate density ñ0(r̃):[√

ñ0(r̃)− d̃
]2

+ µ̃− r̃2 − 2ñ
3/2
0 (r̃)√

ñ0(r̃)− d̃
− 2g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

(
e
−βµ̄

[√
ñ0(r̃)−d̃

]2)
= 0. (5.53)

Inserting equation (5.52) into equation (5.23) yields a quadratic equation with respect to
√
ñ0(r̃):

ñ0(r̃)− q̃ (r̃)

d̃

√
ñ0(r̃) + q̃ (r̃) = 0. (5.54)

Since
√
ñ0(r̃) should always be positive, equation (5.54) has just one physical solution:

√
ñ0(r̃) =

q̃ (r̃)

2d̃
+

1

2

√
q̃2 (r̃)

d̃2
− 4q̃ (r̃). (5.55)

Inserting expression (5.55) into equation (5.53) yields the self-consistency equation for the Bose-glass
order parameter q̃ (r̃):

d̃2

2q̃2 (r̃)

 q̃ (r̃)

2d̃
+

1

2

√
q̃2 (r̃)

d̃2
− 4q̃ (r̃)

4

− q̃ (r̃)

d̃

 q̃ (r̃)

2d̃
+

1

2

√
q̃2 (r̃)

d̃2
− 4q̃ (r̃)


+
µ̃− r̃2

2
− g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

e−βµ̄ d̃2

q̃2(r̃)

[
q̃(r̃)

2d̃
+ 1

2

√
q̃2(r̃)

d̃2
−4q̃(r̃)

]4 = 0. (5.56)

Implementing equation (5.25) into equation (5.51) yields the following equation:[
−µ̃+ 2ñ(r̃) + r̃2

]3/2
+ 6d̃

[
−µ̃+ 2ñ(r̃) + r̃2

]
+
[
2ñth (r̃)− µ̃+ r̃2 + 6d̃2

]√
−µ̃+ 2ñ(r̃) + r̃2 + 2d̃3 = 0, (5.57)

which is a cubic equation with respect to the expression
√
−µ̃+ 2ñ(r̃) + r̃2 and can be solved exactly

using the Cardan method (see Appendix A). The discriminant δ (r̃) of the cubic equation (5.57) has
the form:

δ (r̃) =
4

27

{
27d̃6 + 54d̃4

[
µ̃− 2ñth (r̃)− r̃2

]
+ 9d̃2

[
−µ̃+ 2ñth (r̃) + r̃2

]
2

−
[
µ̃− 2ñth (r̃)− r̃2

]
3
}
. (5.58)

For the parameters used later on it turns out to be negative, so equation (5.57) has three real solutions.
However, we choose the only that solution which satisfies the condition

√
−µ̃+ 2ñ(r̃) + r̃2 > 0, which

is:

√
−µ̃+ 2ñ(r̃) + r̃2 =

3

√
6d̃2 + µ̃− 2ñth (r̃)− r̃2 + i

√
−δ (r̃)

2

+
3

√
6d̃2 + µ̃− 2ñth (r̃)− r̃2 − i

√
−δ (r̃)

2
− 2d̃. (5.59)

Inserting the solution (5.59) into equation (5.25) gives us the self-consistency equation for the thermal
density ñth (r̃):

ñth (r̃) =
g

µ̄

(
M

2πβ}2

)3/2

ς 3/2

e−βµ̄
[

3

√
6d̃2+µ̃−2ñth(r̃)−r̃2+i

√
−δ(r̃)

2
+

3

√
6d̃2+µ̃−2ñth(r̃)−r̃2−i

√
−δ(r̃)

2
−2d̃

]2 .

(5.60)
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Figure 5.7.: Sign of discriminant δ in equation (5.62), where r̃1, r̃2 and r̃3 are respective roots of
equation δ = 0.

Finally we obtained four algebraic decoupled self-consistency equations (5.51), (5.53), (5.56), and
(5.60) for the total density ñ(r̃), the condensate density ñ0(r̃), the Bose-glass order parameter q̃(r̃),
and the thermal density ñth (r̃), respectively. We should now solve those equations in order to get the
explicit expression of each density as a function of the spatial coordinate. All those self-consistency
equations (5.51), (5.53), (5.56) and (5.60) contain the polylogarithmic function ς 3/2 which makes them
impossible to solve analytically. Therefore, we solve them numerically, but we obtain non-physical
oscillating densities around the first transition region, which separates the superfluid region from the
Bose-glass region due to the Poisson sum formula (2.144) as already explained above equation (5.35).
Thus, in view of an analytic treatment, we apply again the Robinson formula (5.35). Note that it is
not necessary to solve all the self-consistency equations (5.51), (5.53), (5.56) and (5.60), it is enough
to solve one of them and to insert the result into other algebraic equations. In the following we choose
to solve for the condensate density ñ0(r̃).
At the transition boundary the condensate density ñ0(r̃) reaches its minimal value, so from equation

(5.28) we deduce that the quantity µ̃ − 2ñ (r̃) − r̃2 goes to zero. Thus, we can approximate the
polylogarithmic function with the help of the Robinson formula (5.35) as follows:

ς 3/2

(
e
−βµ̄

[√
ñ0(r̃)−d̃

]2)
≈ Γ

(
−1

2

)√
βµ̄
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]

+ ς

(
3

2

)
−βµ̄

[√
ñ0(r̃)− d̃

]2
ς

(
1

2

)
. (5.61)

Using approximation (5.61), equation (5.53), which determines the condensate density, can be rewritten
approximatively as follows:

0 =
[√

ñ0(r̃)− d̃
]3
[

1− 2gβ
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2πβ}2
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(
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]

×
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+
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(
3
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)
+ 6d̃2 − µ̃+ r̃2

] [√
ñ0(r̃)− d̃

]
+ 2d̃3, (5.62)

which is a cubic equation with respect to
√
ñ0(r̃).

Still we have to rewrite the other densities as functions of the condensate density ñ0(r̃). To this end
we insert equation (5.52) into equation (5.23), which yields:

q̃ (r̃) =
d̃ñ0 (r̃)√
ñ0(r̃)− d̃

. (5.63)

Inserting (5.52) into (5.25) and applying the Robinson formula (5.61) yields

ñth (r̃) =
g

µ̄

(
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2πβ}2

)3/2{
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)√
βµ̄
[√
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]2
ς

(
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)}
.

(5.64)
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5. Dirty Bosons in 3D at Finite Temperature

Figure 5.8.: Total density ñ(r̃) (black), condensate density ñ0(r̃) (blue), Bose-glass order parameter
q̃(r̃) (green), and thermal density ñth (r̃) (red) as functions of the radial coordinate r̃, for
d̃ = 0.088 for superfluid region (solid lines), Bose-glass region (dotted lines), and thermal
region (dashed lines). Since N is fixed, µ̃ can be deduced and results in µ̃ = 0.535.

Now we can solve the cubic self-consistency equation for the condensate density (5.62) via the Cardan
method (see Appendix A) and insert the solution into equations (5.52), (5.63), and (5.64) in order to
get directly ñ(r̃), q̃ (r̃), and ñth (r̃), respectively.

The cubic equation (5.62) is characterized by a discriminant δ whose sign determines the number
and the kind of the solutions, i.e., whether they are real or complex. This method allows us to get a
unique physical solution for the equation (5.62) as it is shown in detail in Fig. 5.7 for the condensate
density ñ0(r̃). Figure 5.7 shows that there are four different spatial regions, where we have to look
for the solutions of equation (5.62). Those regions are characterized by the sign of the discriminant δ
being positive or negative and are separated with borders, where the discriminant δ vanishes. After
performing an analysis similar to the one in Fig. 4.3, we conclude that equation (5.62) has only one
physical solution in the first region, where the discriminant δ is negative. This means that the first
region coincides with the superfluid region and outside we have the Bose-glass region as well as the
thermal region. In order to determine the border of the superfluid region, i.e., the condensate radius
R̃TF1, where the solution of equation (5.62) vanishes and which characterizes the end of the superfluid
region as well as the beginning of the Bose-glass region, we derive equation (5.62) with respect to

ñ0 (r̃), then we set ∂r̃
∂ñ0(r̃)

∣∣∣∣∣
r̃=R̃TF1

= 0, which yields:
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+ 6d̃2 − µ̃+ R̃2

TF1

]
= 0, (5.65)

The result (5.65) is inserted again into equation (5.62) in order to get the analytical expression of the
condensate radius R̃TF1. As the final formula for R̃TF1 is too involved, it is not displayed here.
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5.4.4. Thomas-Fermi Densities

In this Section we perform our study for 87Rb atoms and for the following experimentally realistic
parameters: N = 106, Ω = 100 Hz, and a = 5.29 nm. For those parameters the oscillator length reads
l = 2.72µm, the coherence length turns out to be ξ = 348.89 nm, and the Thomas-Fermi radius is
given by RTF = 21.29µm, so the assumption ξ � RTF for the TF approximation is, indeed, fulfilled.
Using those parameter values and choosing the temperature to be T = 60 nK as well as the di-

mensionless disorder strength d̃ = 0.088 we solve for the superfluid region equation (5.62) for the
condensate density ñ0 (r̃) and insert the result into equations (5.52), (5.63), and (5.64) in order to get
the other densities ñ(r̃), q̃(r̃), and ñth (r̃), respectively. This has to be combined with equation (5.47)
for the thermal region as well as equations (5.48)–(5.50) for the Bose-glass region. After that we fix
the chemical potential µ̃ using the normalization condition (5.27), where the total density ñ(r̃) is the
combination of the total densities from the superfluid region, the Bose-glass region, and the thermal
region according to (5.34). The resulting densities are combined and plotted in Fig. 5.8, where in the
superfluid region the densities are plotted with solid lines, in the Bose-glass region with dotted lines,
and in the thermal region with dashed lines.
Figure 5.8 shows that the condensate density ñ0(r̃) is maximal at the center of the cloud, then it

decreases until attending its minimum at the condensate radius R̃TF1 = 0.506. The Bose-glass order
parameter q̃(r̃) is also maximal in the center of the cloud, it decreases until the condensate radius
R̃TF1, where is jumps upward, then it decreases until attending its minimum at the Bose-glass radius
R̃TF2 = 0.588. The thermal density ñth (r̃) is behaving differently: it is increasing until attending its
maximum at the condensate radius R̃TF1, it stays constant until the Bose-glass radius R̃TF2, then it
decreases exponentially to zero. Note that in the thermal region the thermal density coincides with
the total density. The fact that the thermal density remains constant in the Bose-glass region is an
artifact of the TF approximation. The total density ñ(r̃) is maximal in the center of the trap and
decreases when we move away from the center until it vanishes at the cloud radius R̃TF3 = 4.642.
We note also that, at the condensate radius R̃TF1, a downward jump of the condensate density ñ0(r̃),
an upward jump of the Bose-glass order parameter q̃(r̃), and an upward jump of the thermal density
ñth (r̃) occur in such a way that the total density ñ(r̃) remains continuous but reveals a discontinuity of
the first derivative. The Thomas-Fermi approximation captures the properties of the system within the
superfluid region, the Bose-glass region, and the thermal region but not in the transition between two
regions, namely, between the superfluid region and the Bose-glass region and between the Bose-glass
region and the thermal region. This represents another artifact of the applied TF approximation.
In the following we investigate separately the impact of increasing the temperature T and the dis-

order strength d̃ on the properties of the dirty boson system, namely, the Thomas-Fermi radii, the
chemical potential, and the fractional number of condensed particles N0/N , in the disconnected local
minicondensates Q/N , and in the excited states Nth/N .

5.4.5. Temperature Influence

We start first with studying the influence of the temperature on the dirty boson system. To this end,
we fix the disorder strength to be d̃ = 0.088 and increase the temperature T . The Thomas-Fermi
radii, namely, the condensate radius R̃TF1, the Bose-glass radius R̃TF2, and the cloud radius R̃TF3, are
plotted as functions of the temperature T in Fig. 5.9. Figure 5.9a shows that both the condensate
radius R̃TF1 and the Bose-glass radius R̃TF2 decrease with the temperature T until they vanish. The
blow-up in Fig. 5.9b reveals that the condensate radius R̃TF1 vanishes at Tc1 = 64.625 nK, which
corresponds to a phase transition from the superfluid to the Bose-glass phase. This critical value of the
temperature is obtained by setting the condensate radius R̃TF1 to be zero. The Bose-glass radius R̃TF2

vanishes at Tc2 = 65.625 nK, which corresponds to a phase transition from the Bose-glass phase to
the thermal phase. This critical value of the temperature is obtained by setting the Bose-glass radius
R̃TF2 to zero. The existence of two phase transitions means that we are qualitatively above the triple
point introduced in Fig. 5.2. Note that the difference of both critical temperatures 4Tc = Tc2 − Tc1

is quite small, which is expected, since from (5.47) one can deduce that the shift 4T goes quadratic
with the disorder strength d̃, which means that the linear temperature shift vanishes in agreement with
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5. Dirty Bosons in 3D at Finite Temperature

Figure 5.9.: (a) Condensate radius R̃TF1 (blue) and Bose-glass radius R̃TF2 (red), (b) blow-up of Bose-
glass phase, and (c) cloud radius R̃TF3 (black) as functions of temperature T .

Figure 5.10.: (a) Fractional number of condensed particles N0/N (blue), in disconnected local mini-
condensates Q/N (red), and in excited states Nth/N (green), (b) blow-up of fractional
number Q/N , and (c) blow-up of Bose-glass phase as functions of temperature T .
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Figure 5.11.: (a) Dimensionless chemical potential µ̃′ = µ
µ̄ and (b) ratio ñ0(R̃TF1)/ñ0(0) as functions of

temperature T .

Ref. [140]. Contrarily, the cloud radius R̃TF3 increases with the temperature T in Fig 5.9c.
The fractional number of the condensate N0/N = 15

2

´ R̃TF1

0 r̃2ñ0 (r̃) dr̃, in the disconnected mini-

condensates Q/N = 15
2

´ R̃TF2

0 r̃2q̃ (r̃) dr̃, and in the excited states Nth/N = 15
2

´ R̃TF3

0 r̃2ñth (r̃) dr̃ are
plotted in Fig. 5.10a as functions of the temperature T . We remark that in the superfluid phase N0/N
decreases with the temperature T until vanishing at the critical Tc1 marking the end of the superfluid
phase and the beginning of the Bose-glass phase as is illustrated in the blow-up in Fig 5.10c. Con-
versely, in Fig 5.10b the fraction Q/N increases with the temperature T until being maximal at about
T = 50 nK, then decreases until vanishing at the critical temperature Tc2 marking the end of the
Bose-glass phase and the beginning of the thermal phase as it is shown in the blow-up in Fig 5.10c. In
Fig. 5.10a the fraction Nth/N increases starting from zero with the temperature T until being equal
to one at the critical temperature Tc2 , then it remains constantly equal to one. We conclude that with
increasing the temperature until about T = 50 nK, more and more particles are leaving the condensate
towards the local minicondensates or the excited states. For the temperature range 50 nK < T < Tc1

the particles are leaving both the condensate and the local minicondensates towards the excited states.
When the condensate vanishes at the critical temperature Tc1 , the particles keep leaving the local
minicondensates towards the excited states until the critical temperature Tc2 , where all particles are
in the excited states.
The influence of the temperature on the chemical potential is shown in Fig. 5.11a. In the three

phases, namely, the superfluid phase, the Bose-glass phase, and the thermal phase , the chemical
potential can be obtained only numerically via the normalization condition (5.27). It decreases with
the temperature T slowly in the superfluid phase and faster in the Bose-glass as well as the thermal
phase.
In order to know for which range of the temperature T the TF approximation is valid, we plot the

ratio of the jump of the condensate density at the Thomas-Fermi condensate radius ñ0(R̃TF1) with
respect to the condensate density at the center of the BEC ñ0(0) as a function of the temperature T
in Fig. 5.11b. We remark that this ratio is negligible for T < Tc1 and has a sudden jump for T ≈ Tc.
This means that the TF approximation is valid in the superfluid phase but not at the transition region
from the superfluid to the Bose-glass phase, where one would have to go beyond the TF approximation
and take the influence of the kinetic energy in equation (5.24) into account.

5.4.6. Disorder Influence

Now we study the influence of increasing the disorder strength d̃ on the dirty boson system for the
fixed temperature T = 60 nK. The influence of the disorder on the chemical potential is shown
in Fig. 5.12a. In both the superfluid phase and the Bose-glass phase the chemical potential can be
obtained only numerically via the normalization condition (5.27). In the weak disorder regime, located
in the superfluid phase, the chemical potential decreases with the disorder strength d̃, then in the
intermediate and strong disorder regime, located partially in the superfluid phase and in the Bose-
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Figure 5.12.: (a) Dimensionless chemical potential µ̃′ = µ
µ̄ and (b) ratio ñ0(R̃TF1)/ñ0(0) as functions of

disorder strength d̃.

Figure 5.13.: (a) Condensate radius R̃TF1 at T = 60 nK (solid, blue) and at T = 0 (dotted, blue),
Bose-glass radius R̃TF2 at T = 60 nK (solid, red) and at T = 0 (dotted, red) and (b)
cloud radius R̃TF3 at T = 60 nK (solid, black) as functions of disorder strength d̃.

Figure 5.14.: Fractional number of condensed particles N0/N (blue), in disconnected local miniconden-
sates Q/N (red), and in excited states Nth/N (green), as functions of disorder strength
d̃.
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glass phase, it increases with the disorder strength d̃ with a discontinuity of the first derivative at the
critical disorder d̃c = 0.181. This is due to the combined effect of disorder and temperature. According
to the zero-temperature result in Fig. 4.7a the chemical potential increases with the disorder strength
d̃, while the clean result in Fig. 5.6a reveals that the chemical potential decreases with the temperature
T . Thus, in the weak disorder regime the influence of the temperature on the bosonic system is stronger
than the influence of the disorder potential, which makes the chemical potential to decrease with the
disorder strength. In the intermediate and strong disorder regime the disorder turns out to have a
stronger influence on the dirty boson system than the temperature, which makes the chemical potential
increase with the disorder strength.
In order to know for which range of the disorder strength d̃ the TF approximation is valid, we plot

the ratio of the jump of the condensate density at the Thomas-Fermi condensate radius ñ0(R̃TF1) with
respect to the condensate density at the center of the BEC ñ0(0) as a function of the disorder strength
d̃ in Fig. 5.12b. As only a moderate density jump of about 50% should be reasonable, our approach is
restricted to a dimensionless disorder strength of about d̃ ' 0.11. For larger disorder strength d̃ one
would have to go beyond the TF approximation and take the influence of the kinetic energy in (5.24)
into account.
The Thomas-Fermi radii, namely, the condensate radius R̃TF1, the Bose-glass radius R̃TF2, and the

cloud radius R̃TF3, are plotted as functions of the disorder strength d̃ in Fig. 5.13. According to the
behavior of the Thomas-Fermi radii, we distinguish two different disorder regimes, namely, the weak
disorder regime and the intermediate one. The existence of those two different regimes is due to the
combined effect of disorder and temperature as already explained above for the chemical potential.
Figure 5.13a shows that, when the disorder strength d̃ increases, the condensate radius R̃TF1 increases
barely, then decreases until being zero, which corresponds to a phase transition at about d̃c = 0.181.
This critical value of the disorder strength is obtained by setting the cloud radius R̃TF1 to zero.
Thus, superfluidity is destroyed in our model at a critical disorder strength, where approximately our
TF approximation breaks down. Contrarily, the Bose-glass radius R̃TF2 decreases when the disorder
strength d̃ increases in the weak disorder regime, then increases in the intermediate disorder regime
until the phase transition, then it becomes constant, so that the bosonic cloud has a maximal Bose-
glass radius of lim

d̃→∞
R̃TF2 = 0.647. Figure 5.13a shows also that in the weak disorder regime the

condensate radius R̃TF1 and the Bose-glass radius R̃TF2 coincide, i.e., there is no Bose-glass region,
only the superfluid and the thermal regions coexist. Furthermore, the comparison of the condensate
radius R̃TF1 and the Bose-glass radius R̃TF2 at finite temperature with the ones at zero temperature,
respectively, reveals that increasing the temperature decreases the critical disorder strength value d̃c,
where the phase transition is taking place. In Fig 5.13b the cloud radius R̃TF3 decreases with the
disorder strength d̃ in the weak disorder regime, then increases with it in the intermediate disorder
regime until becoming constant at the phase transition, so that the bosonic cloud has a maximal size
of lim

d̃→∞
R̃TF3 = 4.649.

In Fig. 5.14 the fractional number of the condensate N0/N , in the disconnected minicondensates
Q/N , and in the excited states Nth/N are plotted as functions of the disorder strength d̃. We remark
that in the superfluid phase N0/N decreases with the disorder strength d̃ until vanishing at d̃c marking
the end of the superfluid phase and the beginning of the Bose-glass phase. Conversely, Q/N and
Nth/N increase with the disorder strength d̃, i.e., more and more particles are leaving the condensate
towards the local minicondensates or the excited states. In the Bose-glass phase, both fractions Q/N
and Nth/N remain constant.
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6. Summary and Outlook

The dirty boson problem represents a challenging quantum many-body system due to the combined
effect of disorder and two-particle interaction, which can lead to localization and superfluidity. A quite
recent non-perturbative investigation of the dirty boson problem was worked out in Ref. [84], where the
model of a three-dimensional weakly interacting homogeneous Bose gas in a delta-correlated disorder
potential at finite temperature was studied within the Hartree-Fock mean-field theory by applying the
Parisi replica method. The major result was to qualitatively locate the superfluid, the Bose-glass,
and the normal phase in the disorder-temperature phase diagram. To this end a Bose-glass order
parameter was introduced in close analogy to the Edwards-Anderson order parameter of spin glasses,
which quantifies in the disorder ensemble average the number of bosons being localized in the respective
minima of the random landscape. Motivated by this, we extended in our thesis the theory of Ref. [84]
to the experimentally relevant trapped confinement and to a general number of spatial dimensions and
applied it to the quasi one-dimensional and to the three-dimensional dirty BEC.

6.1. Summary

Our thesis begun with Chapter 1, where we briefly discussed the experimental and theoretical history
of BEC in general and the physics of dirty bosons in particular. In Chapter 2 we followed Ref. [97],
where we described at first the underlying dirty BEC model, and showed that the disorder ensemble
average of the grand-canonical free energy could be calculated by using the Parisi replica method. This
led to the replicated action (2.25), where the disorder-induced interaction turns out to be nonlocal in
both space and time. After that we made use of the Bogoliubov approximation (2.27), where we
split the Bose fields into their background, which stands for the condensate wave function, and the
fluctuations describing the non-condensed fraction. Furthermore, we assumed replica symmetry, i.e., we
treated all replica fields in the replicated action (2.25) on equal footing and we applied the semiclassical
approximation due to the harmonic trapping confinement. In Section 2.6, we specialized the general
formalism to a delta-correlated disorder potential and to a contact interaction potential. We physically
interpreted the order parameters of our theory as off-diagonal long-range orders of certain correlation
functions. In this way we showed that the condensate density as the superfluid order parameter is
related to the 2-point correlation (2.114), whereas the Bose-glass order parameter follows from the
4-point correlation (2.115). In this way, and after applying the replica limit, we were able to derive
the grand-canonical free energy (2.126) as well as the corresponding self-consistency equations (2.89)–
(2.92) of the dirty boson model for a general spatial dimension. Finally, we specialized our formalism
to three dimensions in Section 2.10 and to one dimension in Section 2.11. In the latter case we had
to restrict ourselves to zero temperature due to the limitation of the Cardan method, which was
introduced in Appendix A. Note that the two-dimensional case is not treated here, since the Hartree-
Fock mean-field theory turned out to diverge in two dimensions, which warrants both a regularization
and a renormalization and, thus, lies out of the scope of the present thesis.

Chapter 3 followed Ref. [98] and investigated analytically and numerically the quasi one-dimensional
dirty BEC at zero temperature. The preliminary treatment of the homogeneous case in Section 3.1
revealed a qualitative compatibility with the Huang-Meng theory [64] in the weak disorder regime,
where the Bose-glass order parameter is linearly proportional to the disorder strength. After having
treated the homogeneous case, we investigated the trapped one via three different approaches. Due
to the nonlinearity of the generalized Gross-Pitaevskii (GP) equation (3.17), the first approach in
Section 3.2 is based on applying the Thomas-Fermi (TF) approximation to the underlying set of self-
consistency equations. We had to distinguish between two different regions, namely, the superfluid and
the Bose-glass one, and treated both separately. In addition, it turned out that the range of validity of
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the TF approximation is restricted to weak disorder. We corroborated the analytical treatment with
a second numerical approach in Section 3.3, where we generated the random potential according to
Eq. (3.34) and inserted it into the corresponding time-independent GP equation (3.33) of the dirty
boson model. After solving the latter equation using a C program [126], we performed the disorder
ensemble averages of the wave function as well as identified its first and second cumulant with the
condensate density and the Bose-glass order parameter, respectively. In Section 3.4 we compared the
Thomas-Fermi approximated densities and their radii with the numerical ones in Figs. 3.15–3.17. This
confirmed the fact that the mini-condensates in the local minima of the random potential occur for
weak disorder preferentially at the border of the condensate and that the TF approximation is only
valid in the weak disorder regime, especially in the center of the trap. This motivated us to perform
in Section 3.5, for the intermediate disorder regime, a third variational approach within the ansatz
(3.42)–(3.44), where we optimized width and particle number in the global condensate and the local
mini-condensates. The final comparison between the three approaches, namely, the TF approximation,
the numerics, and the variational method in Section 3.6 yielded the conclusion that there is no quantum
phase transition between the superfluid and the Bose-glass phase in the weak and intermediate disorder
regime in one dimension. Furthermore, we concluded that the variational method within the ansatz
(3.42)–(3.44) describes well the intermediate disorder regime especially at the border of the trap, and
that the mini-condensates in the local minima of the random potential occur for intermediate disorder
strength preferentially in the trap center according to the TF approximation. So the combination of
those two analytical methods covered a significant range of the disorder strengths and allowed us to
understand the numerically observed redistribution of the local mini-condensates in the trap.

Chapter 4 investigated the three-dimensional dirty boson system at zero temperature [99], where
the thermal density vanishes. The preliminary treatment of the homogeneous case in Section 4.1
revealed in Fig. 4.1 the existence of a first-order quantum phase transition from the superfluid phase
to the Bose-glass phase at a critical disorder strength, which qualitatively agrees with Ref. [83]. The
qualitative compatibility with the Huang-Meng theory [64] was proven in the weak disorder regime,
where the Bose-glass order parameter is linearly proportional to the disorder strength. On the basis of
the homogeneous case we dealt with the harmonically trapped confinement in Section 4.2 by applying
the TF approximation to the corresponding self-consistency equations obtained via the Hartree-Fock
mean-field theory (4.12)–(4.14). Then we specialized to an isotropic trap in Section 4.2, where we
distinguished between two regions in Fig. 4.4, namely, the superfluid and the Bose-glass region, which
were treated separately. The TF approximation turned out to give better results in three dimensions
than in one dimension due to the fact that the fluctuations are more virulent in lower dimensions.
In analogy with the one-dimensional case treated in Chapter 3, we additionally inserted a variational
ansatz (4.29)–(4.31) for the three-dimensional dirty BEC into the corresponding free energy (4.28). The
respective densities and their radii obtained via the TF approximation and the variational method were
compared in Subsection 4.3.5 and turned out to coincide qualitatively contrary to the one-dimensional
case. In particular, in both cases a first-order quantum phase transition from the superfluid phase to
the Bose-glass phase is detected in Fig. 4.15 at critical disorder strengths, whose values are of the same
order as the one given by Ref. [83].

After that we made in Subsection 4.3.6 a detailed qualitative comparison between the one-dimensional
results obtained in Chapter 3 and the three-dimensional ones obtained in Chapter 4. In particular, the
Bose-glass region in three dimensions is located in the center of the trap, while in one dimension it is
situated in the border of the trap in the weak disorder regime and in the center in the intermediate dis-
order regime. Furthermore, we found a quantum phase transition from superfluid to Bose-glass phase
in three dimensions in the intermediate disorder regime. But in one dimension this phase transition
could not be detected neither in the weak nor in the intermediate disorder regime. In order to be able
to see the phase transition, the disorder has to overcome the interaction, which is possible only in the
strong disorder regime and this is beyond the scope of this thesis.

Considering an anisotropic trap potential in Section 4.4 we found out in Fig. 4.18 that the cuts
of each density along the respective axis are proportional to each other. We remarked also the same
proportionality between the corresponding Thomas-Fermi radii in Fig. 4.19, which turned out to depend
on the trap aspect ratios.
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In Chapter 5 we considered the three-dimensional BEC system to be at finite temperature [99].
We restricted ourselves as previously first to the homogeneous case in Section 5.1, where the disorder-
temperature phase diagram is plotted in Fig. 5.2 for both weak and strong interacting dirty Bose
models. The location of the corresponding first- and second-order phase transitions were discussed in
detail. After having treated the homogeneous case, we investigated as a next step the trapped clean
one in Section 5.3 using the Thomas-Fermi approximation and the Robinson approximation (5.36). We
distinguished between two regions, the superfluid and the thermal one, and we treated them separately.
A phase transition from the superfluid phase to the thermal phase was found in Fig. 5.5 at a critical
temperature, whose value agrees approximately with the one in Refs. [133, 139]. Finally, we treated
the full disorder problem, where both temperature and disorder fluctuations occur. In particular, as
already schematically indicated in Fig. 1.6, three regions coexist in Fig. 5.8, namely, the superfluid,
the Bose-glass, and the thermal one. In order to investigate the temperature impact only, we fixed
in Subsection 5.4.5 the disorder strength to be larger and considered an increasing temperature. Two
phase transitions were detected in Fig. 5.9, namely, a first-order transition from the superfluid to the
Bose-glass phase and a second-order transition from the Bose-glass to the thermal phase. In contrast
to that we studied in Subsection 5.4.6 only the disorder impact, therefore we fixed the temperature to
be smaller and considered an increasing disorder strength. This yielded a first-order phase transition
from the superfluid phase to the Bose-glass phase as shown in Fig. 5.13.
All these theoretical predictions concerning the dirty boson problem still have to be checked quanti-

tatively in experiments, but in order to make this possible, further refinements and extensions of this
work are necessary.

6.2. Outlook

In this thesis we studied the dirty Bose gas in equilibrium, but in view of experiments it is mandatory to
study also how the system evolves in time. On the one hand, TOF absorption pictures and their disorder
ensemble averages have to be calculated. The findings in the present thesis suggest that, instead of the
usual bimodal density distribution, a tri-modal distribution occurs as sketched in Fig. 1.6. A detailed
analysis of the three components should make it possible to determine how many bosons are in the
disorder ensemble average in the global condensate, in the local minicondensates, and in the thermal
states. On the other hand, also the disorder impact on collective excitation frequencies should be
investigated, as they are accessible to a high accuracy experimentally. Based on the results of our
Hartree-Fock mean-field theory we expect reasonable predictions for the intermediate disorder regime,
thus improving the preliminary results within the Huang-Meng theory of weak disorder in Ref. [78].
One can even think about reconciling our Hartree-Fock theory with the Huang-Meng one by finding
a way to include the Bogoliubov channel in the Hartree-Fock theory. Furthermore, in this thesis we
restricted ourselves in Section 2.6 to the contact interaction and the delta-correlated disorder, but one
could, in principle, use the Hartree-Fock mean-field theory also for a general interaction potential and
an experimentally relevant disorder potential with finite correlation length like the Gaussian or the
Lorentzian correlated disorder.
The Hartree-Fock mean-field theory was applied in this thesis to the one-dimensional and the three-

dimensional dirty Bose gas systems within the TF approximation, but one can also go beyond the
TF approximation and take the kinetic term in the generalized Gross-Pitaevskii equation (2.91) into
account. This should yield smoothened density plots. Furthermore, the one-dimensional case was
treated at zero temperature only, but one can look for a mathematical tool to deal with the cubic
equation (2.164) and study the one-dimensional finite-temperature case as well. The two-dimensional
case, which was not considered here, could also be investigated within the Hartree-Fock mean-field
theory by taking care of the divergency within a suitable renormalization procedure. It would also
be interesting to calculate some further physical properties of the dirty Bose model like superfluidity
and to investigate it for increasing disorder strength or temperature or both. In addition, and in close
analogy to the disorder-temperature phase diagram of the homogeneous Bose in Subsection 5.1.4, it
remains open how the disorder-temperature phase diagram looks like for the dirty trapped Bose gas.
Finally, and as already explained in Section 1.4, one has to verify the stability of our replica symmetry
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solutions, therefore the Hessian would have to be computed. In addition, the replica symmetry can,
in principle, also be broken either in discrete steps or even continuously. Practically one would have
to compare the free energies associated with the RS and RSB solutions and check whether the free
energy of the RSB solution is smaller. If this is the case, this would proof that RS is, indeed, broken.
In the case of dirty bosons it is still unknown whether RSB lowers the free energy or not.
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A. Cardan Method

One meets often the problem of solving a cubic equation, which is an equation of the form

az3 + bz2 + cz + d = 0, (A.1)

where the coefficients a, b, c and d are nonzero and assumed to be real.
The mathematical tool to deal with such equations is the Cardan method [118]. One has first to

reduce the cubic equation by performing the following variable transformation:

y = z − b

3a
(A.2)

in order to get the reduced cubic equation

y3 + py + q = 0, (A.3)

where we have introduced the abbreviations
p = − b2

3a2
+ c

a

q = b
27a(2b2

a2
− 9c

a ) + d
a

(A.4)

As a solution ansatz, we set:
y = u+ v. (A.5)

Since one can freely dispose of one of the unknown quantities u or v, they can be chosen such that
they satisfy: {

u3 + v3 = −q
u3v3 = −p3

27

. (A.6)

Thus, we conclude that both u3 and v3 solve the quadratic equation:

x2 + qx− p3

27
= 0. (A.7)

The discriminant of this quadratic equation is

δ = q2 +
4

27
p3 (A.8)

and their solutions are: 
u3 = −q+

√
δ

2 and v3 = −q−
√
δ

2 if δ is positive

u3 = −q+i
√
−δ

2 and v3 = −q−i
√
−δ

2 if δ is negative

u3 = v3 = − q
2 if δ is zero

(A.9)

Now we just need to associate the three cubic roots of u3 and v3 in order to obtain three couples (u, v)
such that uv = −p

3 is fulfilled, which follows from (A.6), then we substitute the three couples of u and
v in the expression (A.5) and finally we insert the obtained results into the expression (A.2). In this
way, we obtain the three following solutions of the cubic equation (A.1) as functions of the discriminant
δ:
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• If δ > 0 equation (A.1) has one real solution and two complex conjugate solutions:

x1 =
3

√
−q+

√
δ

2 +
3

√
−q−

√
δ

2 − b
3a

x2 = e
2iπ
3

3

√
−q+

√
δ

2 + e−
2iπ
3

3

√
−q−

√
δ

2 − b
3a

x3 = e−
2iπ
3

3

√
−q+

√
δ

2 + e
2iπ
3

3

√
−q−

√
δ

2 − b
3a

• If δ < 0 equation (A.1) has only real solutions:

x1 =
3

√
−q+i

√
−δ

2 +
3

√
−q−i

√
−δ

2 − b
3a

x2 = e
2iπ
3

3

√
−q+i

√
−δ

2 + e−
2iπ
3

3

√
−q−i

√
−δ

2 − b
3a

x3 = e−
2iπ
3

3

√
−q+i

√
−δ

2 + e
2iπ
3

3

√
−q−i

√
−δ

2 − b
3a

• If δ = 0 equation (A.1) all solutions are real, but two are degenerate:

x1 = 3q
p −

b
3a and x2,3 = − 3q

2p −
b

3a

Since it is not evident to recognize the real solutions, it is more appropriate to write them in their
trigonometric form:

• δ > 0

x1 = 2
√

p
3 sinh

[
1
3 sinh−1

(
− 3q

2p

√
3
p

)]
− b

3a if p > 0

x1 = 2
√

p
3 sinh

[
1
3 sinh−1

(
− 3q

2p

√
3
p

)]
− b

3a if p < 0

x2 = e
2iπ
3

3

√
−q+

√
δ

2 + e−
2iπ
3

3

√
−q−

√
δ

2 − b
3a

x3 = e−
2iπ
3

3

√
−q+

√
δ

2 + e
2iπ
3

3

√
−q−

√
δ

2 − b
3a

• δ < 0 equation (A.1) has only real solutions:

x1 = 2
√
−p

3 cos
[

1
3 arccos

(
− q

2

√
−27
p3

)]
− b

3a

x2 = 2
√
−p

3 cos
[

1
3 arccos

(
− q

2

√
−27
p3

)
+ 2π

3

]
− b

3a

x3 = 2
√
−p

3 cos
[

1
3 arccos

(
− q

2

√
−27
p3

)
− 2π

3

]
− b

3a

• δ = 0

x1 = 3q
p −

b
3a and x2,3 = − 3q

2p −
b

3a
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B. Numerical Appendix

In Section 3.3 we reviewed an efficient method to generate a one-dimensional Gaussian random potential
U(x) whose first moment vanishes according to (3.31) and whose second moment is given by some
correlation function D(x − x′) via (3.32). To this end one writes U(x) as a finite superposition of
sin(kx) and cos(kx) terms with properly randomly picked amplitudes An, Bn, and wave numbers
kn [124]:

U(x) =
1√
N

N−1∑
n=0

[An cos(kn x) +Bn sin(kn x)] . (B.1)

Here N denotes the number of terms, which should be large enough in order to obtain a good approx-
imation for the random potential. Furthermore, we assume An and Bn to be mutually independent
Gaussian random variables with zero mean and variance D(0):

AnBn = 0, AnAm = BnBm = D(0)δnm. (B.2)

The wave numbers kn are independent random variables as well, which are picked from the probability
distribution:

p(kn) =
S(kn)´∞

−∞ S(k′)dk′
, (B.3)

where S(k) defines the spectral density as the Fourier transform of the correlation function:

S(k) =

ˆ ∞
−∞

dxe−ikxD (x) . (B.4)

This method to generate a random potential U(x) can be used to calculate expectation values
approximately as is visualized in Fig. 3.7. In this appendix, we show quantitatively, that the choice
of the parameter N allows to tune the accuracy of this approximation [141]. For the considerations to
follow we will introduce the average with respect to the wave number k as a new abbreviation:

〈•〉k =

ˆ ∞
−∞

dk p(k) • . (B.5)

For instance, we obtain for due to spectral density (B.4) and the probability distribution (B.3)

〈eikx〉k = 〈e−ikx〉k = D(x)/D(0) . (B.6)

Here we have assumed that the correlation function D(x) is symmetric, i.e., D(x) = D(−x), which
implies that the correlation function (B.4) is even, i.e., S(k) = S(−k).
Calculating the 2-point correlation of the random potential, we get with definition (B.1)

U(x)U(x′) =
1

N

N−1∑
n=0

N−1∑
m=0

[
〈AnAm cos(knx) cos(kmx

′)〉k + 〈BnBm sin(knx) sin(kmx
′)〉k

+〈AnBm cos(knx) sin(kmx
′)〉k + 〈BnAm sin(knx) cos(kmx

′)〉k
]
. (B.7)

Using the property (B.2) this simplifies to

U(x)U(x′) =
D(0)

N

N−1∑
n=0

[
〈cos(knx) cos(knx

′)〉k + 〈sin(knx) sin(knx
′)〉k
]
. (B.8)
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Using (B.6), we finally get the result

U(x)U(x′) =
D(0)

N

N−1∑
n=0

〈cos[kn(x− x′)]〉k = D(x− x′) . (B.9)

The result (B.9) of the 2-point correlation is valid for any N and no limit N → ∞ is needed. So no
error occurs for approximating the 2-point correlation. But note that the accuracy of approximating
the 2-point correlation still depends on the number M of sample potentials, as is illustrated in Fig. 3.7.
Let us consider now the 4-point correlation, for which we would expect, if U(x) is a normal distributed

function, Wick’s theorem to be satisfied:

U(x1)U(x2)U(x3)U(x4) = D(x1 − x2)D(x3 − x4) +D(x1 − x3)D(x2 − x4)

+D(x1 − x4)D(x2 − x3). (B.10)

Inserting (B.1) using (B.2) yields after some calculation

U(x1)U(x2)U(x3)U(x4) = D(0)2

N2

∑
n,m〈cos[kn(x1 − x2)] cos[km(x3 − x4)] + cos[kn(x1 − x3)]

× cos[km(x2 − x4)] + cos[kn(x1 − x4)] cos[km(x2 − x3)]〉. (B.11)

In order to calculate the expectation values, one has to carefully distinguish between two cases. For
the N(N− 1) terms in the sum with n 6= m, one gets

〈cos(knx) cos(kmx
′)〉 = 〈cos(knx)〉kn〈cos(kmx

′)〉km
= 〈eiknx〉kn〈eikmx

′〉km
= D(x)D(x′)/D(0) . (B.12)

For the N terms with n = m, however, the average is slightly different:

〈cos(knx) cos(knx
′)〉 =

1

2
〈cos

[
kn(x− x′)

]
+ cos

[
kn(x+ x′)

]
〉kn

=
1

2
〈eikn(x+x′) + eikn(x−x′)〉kn

=
[
D(x− x′) +D(x+ x′)

]
/2D(0)2 . (B.13)

Therefore, Eq. (B.11) yields a form that is straightforwardly comparable with (B.10)

U(x1)U(x2)U(x3)U(x4) = D(x1 − x2)D(x3 − x4) +D(x1 − x3)D(x2 − x4)

+D(x1 − x4)D(x2 − x3) + 1
N
∆(x1, x2, x3, x3). (B.14)

It is seen that Wick’s theorem (B.10) is satisfied in the limit N→∞ as the deviation

∆(x1, x2, x3, x4) = −D(x1 − x2)D(x3 − x4)−D(x1 − x3)D(x2 − x4)−D(x1 − x4)D(x2 − x3)

+
D (0)

2

{
D
[
(x1 − x2)− (x3 − x4)

]
+D

[
(x1 − x2) + (x3 − x4)

]
+D

[
(x1 − x3)− (x2 − x4)

]
+D

[
(x1 − x3) + (x2 − x4)

]
+D

[
(x1 − x4)− (x2 − x3)

]
+D

[
(x1 − x4) + (x2 − x3)

]}
(B.15)

is suppressed by a factor 1/N.
In the special case of Gaussian correlated disorder we have

D(x− x′) = D (0) exp
{
− (x−x′)2

2λ2

}
, D (0) =

D√
2πλ

, (B.16)

where λ denotes the correlation length and D the disorder strength. The computation of the error
(B.15) due to the randomization parameter N in the Gaussian correlated disorder case yields
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Figure B.1.: Numerical generation of U(0)2U(x)2 according to (B.1) (dotted, red) compared to Wick’s
Theorem (B.10) (solid, green) for Gaussian correlated disorder (B.16) with the parameters
D (0) = 25, λ = 1, and N = 30.

∆(x1, x2, x3, x4) =

{
D(x1 − x2)D(x3 − x4)

[
cosh

(
(x1 − x2)(x3 − x4)

λ2

)
− 1

]
+D(x1 − x3)D(x2 − x4)

[
cosh

(
(x1 − x3)(x2 − x4)

λ2

)
− 1

]
+D(x1 − x4)D(x2 − x3)

[
cosh

(
(x1 − x4)(x2 − x3)

λ2

)
− 1

]}
. (B.17)

As seen in Fig. B.1, the deviation of the expected 4-point correlation is small, as it scales with 1/N.
In this appendix it was shown, that, using the straight-forwards ansatz (B.1), it is possible to generate

random functions. The numerically generated expressions resemble the imposed properties of normally
distributed random functions with a given correlation function quite well. Thus, we expect simulations
of physical quantities due to randomness to be quite accurate.
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