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Chapter 1

Basics of Bose-Einstein

Condensation

We give a short introduction to the theory of Bose-Einstein condensation and its experimental
realization. In particular, we report on recent experiments which have been performed in Paris
at the École Normale Supérieure (ENS) in the group of Jean Dalibard in 2003 [1,2]. They have
succeeded in setting a 87Rb condensate into fast rotation and observed the nucleation of vortices.
This fascinating experiment sets the ground for our considerations in this thesis. Finally, we
give an overview of what we want to do in this work.

1.1 History

The phenomenon known as Bose-Einstein condensation (BEC) was predicted by A. Einstein
1924 [3,4] as he reviewed and translated a work of S.N. Bose [5] about the statistics of pho-
tons. Therein, Bose derived Planck’s famous black-body radiation formula on the basis of the
thermodynamic properties of quantized massless harmonic oscillators of some frequencies gen-
erating a free electromagnetic field, i.e. the radiation field. This corresponds to the possibility
of regarding any radiation field as a linear superposition of plane waves of various frequencies.
For the electromagnetic field these massless oscillators are termed photons. Therefrom, Einstein
generalized the Bose statistics to arbitrary massive particles finding out that a system of parti-
cles satisfying both the Bose statistics and the conservation of the number of particles should
undergo a before unknown phase transition at some critical temperature. Below this critical
temperature a macroscopic fraction of all particles ”condense” into one single state of the sys-
tem, the quantum mechanical ground state. As these condensed particles do not contribute to
the entropy of the system anymore, Einstein interpreted this phenomenon as a phase transition.
Although Einstein’s prediction was for an ideal Bose gas, that is a non-interacting gas satisfying
the Bose statistics, F. London [6,7] suggested in 1938 to explain the observation of superfluidity
in liquid 4He, which is a strongly interacting gas, as a manifestation of a Bose-Einstein con-
densation. Remarkably, this is still the basis for our present understanding of superfluidity and
superconductivity. In 1995, the existence of BEC was proven experimentally in helium from
measurements of momentum distributions [8] and in semiconductors [9], where para-excitons
were found to condense.
Also in 1995, pure BEC was observed in systems very different from 4He, namely dilute alkali
gases [10,11]. Such gases were confined in a magnetic trap and cooled down to extremely low
temperatures of the order of fractions of microkelvins. The first evidence for the condensation
emerged from time-of-flight measurements. The atoms were left to expand by switching off the
confining trap and then imaged with optical methods. A sharp peak in the velocity distribution
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FIG. 1.1: Velocity distribution taken from JILA BEC Homepage [12]. The respec-
tive temperature is established by fitting two Gauss functions to the data, one for
the thermal background and one for the condensate.

was observed below a certain critical temperature, providing a clear signature for BEC, as shown
in Figure 1.1. Over the last years these systems have been the subject of a research explosion,
which has taken place both experimentally and theoretically. Many different fields of physics
like atomic collision, quantum optics, condensed matter or even astrophysics contributed ideas
and problems to these specific systems displaying the attractiveness of BEC for researchers.
Perhaps the most fascinating aspect of BEC is the possibility of describing about thousands to
millions of atoms with a single wave function. As a consequence of this, quantum effects of a
single atom which are essentially invisible may be spectacularly amplified up to a macroscopic
level. An example is the phenomenon of superfluidity and not minor spectacular is the inter-
ference of two BEC’s exhibiting the wave character of particles, see Figure 1.2. This property
makes quantum mechanics nearly touchable and will certainly keep this field interesting for years.

1.2 What is BEC?

Bose-Einstein condensation is based on the indistinguishability and wave nature of particles,
which are both basic concepts of quantum mechanics. Defining the phenomenon of Bose-Einstein
condensation in one sentence, one could say, it is the occupation of the quantum mechanical
ground state by a large number of particles. The words ”large number” imply that the parti-
cles are assumed to be bosons, satisfying the Bose-Einstein statistics allowing arbitrary many
particles to occupy one single quantum state. Fermions satisfy the Fermi-Dirac statistics and
obey the Pauli exclusion principle, which does not allow the occupation of any single quantum
state by more than one particle. To specify what is large enough, one has to look at the
approximations used to describe the system.
If many particles are in the same quantum state, these particles display state coherence. Coher-
ence occurs when the particles are strongly correlated with each other. The state coherence may
be understood applying the de Broglie duality to an ensemble of atoms in thermal equilibrium
at a temperature T . In a simplified picture, atoms in a gas may be regarded as wave packets
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(a) (b)

FIG. 1.2: Interference pattern of two BEC’s displaying the wave nature of matter, taken from
[13]. Wave-like behavior can be observed, for instance: (a) when two condensate clouds come
together, (b) regular patterns of high and low density appear, where these ‘matter waves’ interfere
constructively or destructively. This was experimentally proven in 1997 [14] and recently for an
array of independent condensates in 2004 [15].

with an extension of the order of the thermal de Broglie wavelength which is

λT =

√

2π~2

MkBT
(1.1)

for an atom of mass M with a thermal energy kBT . The thermal wavelength λT can be regarded
as the position uncertainty associated with the thermal momentum distribution, which increases
by lowering the temperature. Atoms become correlated with each other when their related waves
”overlap”, that is when λT gets comparable to the inter-atomic separation d: λT & d. Then, the
indistinguishability of particles becomes important, see Figure 1.3. At this temperature, bosons
undergo a phase transition and form a Bose-Einstein condensate. More precisely, if we put free
bosons in a volume V , the average atomic density n = N/V for N atoms is related to the mean
interatomic distance d through the equality nd3 = 1. Inserting the correlation condition λT & d
gives nλ3

T & 1, which yields a relation between the temperature and the density:

T .
2π~

2

MkB
n2/3 . (1.2)

It tells us qualitatively that the state coherence or Bose-Einstein condensation may occur if the
temperature is sufficiently low or the density of particles is sufficiently high.
Einstein considered an ideal, i.e. a non-interacting homogeneous, gas on the basis of the Bose-
Einstein distribution

n(p) =
1

exp

(

εp − µ

kBT

)

− 1

, (1.3)

describing the density of particles in the grand-canonical ensemble with a single-particle energy
εp = p2/2M for a momentum p and with a chemical potential µ. The total number of particles

N =
∑

p

n(p) (1.4)

defines the chemical potential for a given temperature. Assuming the thermodynamic limit,
i.e. N → ∞, V → ∞ with N/V = const., allows the replacement of the summation over p by
an integral. The condensation into the state with p = 0 begins, when the chemical potential
approaches the ground-state energy ε0, which defines the condensation temperature by (1.4) to

Tc =
2π~

2

MkB

[

n

ζ(3/2)

]2/3

, (1.5)



8 Basics of Bose-Einstein Condensation

High
 Temperature T:
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T=Tc:
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FIG. 1.3: Criterion for Bose-Einstein condensation, taken from Ref. [16]. At high temper-
atures atoms of a weakly interacting gas can be treated as hard balls. In the language of
quantum mechanics the balls are wave packets with an extension λdB =

√
πλT . BEC occurs at

the temperature when λT becomes comparable to the mean distance between atoms. As the
temperature approaches zero, the thermal cloud disappears leaving a pure Bose condensate.

where ζ(3/2) ≈ 2.612, so that Tc is about twice smaller than the right-hand side of inequality
(1.2). The fraction of condensed particles, that is obtained by separating the number of particles
occupying the ground state n(0) from the sum in (1.4), is given by

n0 =
n(0)

N
= 1 −

(

T

Tc

)3/2

, (1.6)

which is unity if T is zero. In an ideal gas, the Bose-Einstein condensed particles all occupy
the same ground-state wave function, which is the product of n(0) identical single-particle
ground-state wave functions. This product of single-particle wave function is also called the
condensate wave function or the macroscopic wave function. The condensate wave function
of the single-particles is obtained from solving a non-linear Schrödinger equation, the so-called
Gross-Pitaevskii equation.
Actually, the ideal gas does not exist since particles usually interact, at least ”weakly”. A system
is called weakly interacting, if the characteristic interaction radius rint is much shorter than the
mean interparticle separation d: rint � d. As above, this can be written as nr3int � 1, therefore
a weakly interacting system is called dilute. Considering a dilute gas, displaying Bose-Einstein
condensation, one finds that the condensate fraction is smaller than unity at zero temperature.
This phenomenon is termed depletion, one says that the interaction of particles depletes the
condensate.

1.3 The System

The only necessary property for Bose-Einstein condensation is that the atoms are bosonic, which
is not too restrictive: all stable elements have at least one bosonic isotope. The choice of an
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Temperature Densities (cm−3) Phase-Space density

Oven (heating) 500 K 1014 10−13

Laser cooling 50µK 1011 10−6

Evaporative cooling 500 nK 1014 1

BEC ∼ 0 − 500 nK 107

Table 1.1: Multi-stage cooling to BEC, taken from Ref. [16]. Through a combination of optical and

evaporative cooling, the temperature of a gas is reduced by a factor of 109, while the density at the BEC
transition is similar to the initial density in the atomic oven (all numbers are approximate). In each step
shown, the ground state population increases by about 106.

atom for a Bose condensation experiment is mainly determined by the trapping and cooling
techniques. Magnetic trapping requires atoms with a strong magnetic moment and therefore
unpaired electrons. Laser cooling is most efficient for atoms with strong transitions in the
spectrum of the applied laser, hence in the visible or infrared region. So far, Bose-Einstein
condensates have been realized with all alkali gases except francium. Very recently, in Stuttgart
one has succeeded to realize Bose-Einstein condensation with chromium [17]. In contrast to
alkali gases, chromium has in addition to the atomic interaction a non-vanishing dipole moment
which influences the condensate.
For the densities realized in experiments, dilute alkali gases typically condense a la Bose-Einstein
at temperatures around a few tens of nK up to some µK. To achieve the right conditions, the
atoms must be cooled, trapped and compressed. In addition, the atoms must be thermally
isolated from all material walls. This is done by trapping the atoms inside ultra high vacuum
chambers with magnetic fields or with laser light. Such traps can store atoms for seconds and
even minutes, which is enough time to condense and probe them.
It is clear that at these temperatures an atomic gas cannot be the stable thermodynamic state
of N atoms, which would certainly corresponds to a solid. The formation of a solid requires
as a first step the recombination of two atoms to form a diatomic molecule, and while this
process is obviously exothermic, with formation energies around 0.4 − 1.2 eV, it is very slow in
the absence of a third atom to carry away the surplus energy, angular momentum, etc. Thus
the dominant recombination processes are usually ”three-body” ones. The rates per atom is
typically 10−29 − 10−30 cm6sec−1 [18] giving the sample the lifetime mentioned above.

1.3.1 Cooling the Sample

The elaborated cooling techniques involved in creating a Bose condensate are of minor impor-
tance for us, since the gas is assumed to be equilibrated at the realized temperature. Therefore,
we just give a little sketch on the cooling steps and refer for the more technical details to [16,19]
and the references therein.
Pre-cooling is a prerequisite for trapping because usually the atom traps are just a few mK
deep. This is done by laser cooling in several steps leading to temperatures down to about
50µK. Among other effects, Zeeman slowing [20] and Doppler molasses [21,22] are involved.
The pre-cooled atoms are transfered into a trap and further cooled by evaporative cooling. The
evaporated atoms carry away more than the average energy, which means that the temperature
of the remaining atoms decreases. Evaporative cooling is a phenomenon familiar to everyone, it
is how coffee is cooled by blowing over the cup.
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This is enough to achieve temperatures quite below the condensation temperature so that an al-
most pure condensate is obtainable. Table 1.1 shows how the temperature of the atoms decreases
by a factor of a billion in these cooling processes.

1.3.2 Trapping Techniques

Atom traps fulfill two crucial roles in Bose-Einstein condensation: they keep the atoms tightly
compressed during the cooling processes and confine the condensate for experimental studies.
The requirements for the trap during the cooling are more stringent than they are for holding
the condensate. For cooling, the trap needs a sufficiently high depth and a large volume to
hold the pre-cooled cloud. Initially, this has been accomplished by combining magnetic trapping
and evaporative cooling and we will concentrate on such configurations. After cooling, trap
requirements are different, because the condensate is trapped more easily than hotter atoms.
Consequently, the traps can be weaker and richer in properties, such as having a high anisotropy
so that the condensate becomes quasi two or one dimensional. Traps with an additional anhar-
monicity have been created [1] to set the condensate into such a fast rotation that effectively the
trapping potential became a Mexican-hat. Even a lattice structure of the trapping potential has
been established with some lasers creating a standing wave [27]. The lattice provides a bunch
of features to analyze such as tunneling processes or effects of random potentials.
However, the major role of the magnetic trap in Bose-Einstein condensation experiment is to
confine the atoms and compress them to achieve high collision rates that makes evaporative
cooling efficient. Magnetic traps favor atoms with a strong magnetic moment, such as alkali
atoms, which have magnetic moments m in the order of a Bohr magneton due to their unpaired
electron. The interaction of a magnetic dipole with an external magnetic field is given by −µmB.
The hyperfine levels in a magnetic field are E(mF ) = gµBmFB, where g is the nuclear g factor
and mF the quantum number of the projection of the total atomic spin F = J + I on the axis
of the magnetic field B.
If the system remains in one single mF quantum state, the angle θ between the magnetic field
B and the magnetic moment µm is constant, giving an interaction energy µmB = µmB cos θ.
This is in close analogy to the classical picture of fields and moments.
An atom trap requires a local minimum of the magnetic energy E(mF ). States with gmF > 0
minimize the magnetic energy in a local magnetic field minimum and are therefore called weak-
field seeking states. States with gmF < 0 requires a local maximum of the magnetic field to
minimize E(mF ), so they are termed high-field seeking states. Due to Maxwell’s equations only
a local magnetic field minimum is possible in free space so that only weak-field-seeking states
can be trapped. The trap is only stable if the magnetic moments of atoms follow the direction
of the magnetic field adiabatically. This means that the change of the direction of the magnetic
field must be slower than the precession of the magnetic moment

dθ

dt
<
µm|B|

~
= ωLarmor . (1.7)

The upper bound for dθ/dt in a magnetic trap is the trapping frequency. Because of this
adiabatic condition there is no need to specify a direction of the magnetic field and we can
concentrate on the magnitude of the field. So far, most magnetic traps used in Bose-Einstein
condensation experiments are rotation-symmetric and are well approximated by

|B(x)| = B0 +
1

2
B⊥r

2 +
1

2
Bzz

2 , (1.8)

where {r, z, φ} are cylindrical coordinates. Hence, the trapping potential can be re-written as

Vtrap(x) = const +
M

2
ω2
⊥r

2 +
M

2
ω2
zz

2 , (1.9)

where we have introduced the atom mass M and trap frequencies in an obvious way.
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1.4 Paris Experiment

A fascinating experiment has been performed at the École Normale Supérieure (ENS) in Paris
[1,2]. The group of Jean Dalibard succeeded in setting a Bose-Einstein condensate of 87Rb atoms
into fast rotation. In this regime a dramatic change occurs in the appearance of the quantum
gas. Due to centrifugal forces the rotation changes the shape of the trapping potential from
parabolic to Mexican hat shape. Crucial for the achievement of such fast rotation speeds was
a superimposed quartic potential to the magnetic trap. The Bose gas is confined in a magnetic
trap to which a focused, off-resonant Gaussian laser beam is superimposed.
The additional laser propagates along the z-direction and creates a quartic potential via

U(r) = U0 exp

(

−2r2

w2

)

≈ U0 −
2U0

w2
r2 +

2U0

w4
r4 , (1.10)

where r2 = x2 +y2. The laser’s waist is w = 25µm and the constant U0 = kB×90 nK represents
a shift of the energy scale. Approximation (1.10) is valid for r . w/2. The magnetic trap Vm is
well approximated by a harmonic potential

Vm(x) =
M

2
ω

(0)2
⊥ r2 +

M

2
ω2
zz

2 , (1.11)

where M is the atom mass and ω
(0)
⊥ , ωz are trapping frequencies. Hence, the combined magnetic-

laser trap can be written as

Vens(x) =
M

2
ω2
⊥r

2 +
M

2
ω2
zz

2 +
k

4
r4 , (1.12)

which contains the following notations

ω2
⊥ = ω

(0)2
⊥ − 4U0

Mw2
, k =

8U0

w4
. (1.13)

The gas in this trap is cooled down to about 15 nK so that it is initially a quasi pure condensate.
Then the condensate is set into rotation with another additional laser beam acting as a stirrer,
which propagates along the z-direction and is the rotation axis. This stirring laser creates an
anisotropic potential in the xy-plane which rotates with frequency Ωstir. The rotation injects an
angular momentum into the system and modifies the trap by centrifugal forces. In the corotating
frame the trapping potential can be written as

Vrot(x,Ω) =
M

2
(ω2

⊥ − Ω2)r2 +
M

2
ω2
zz

2 +
k

4
r4 , (1.14)

which is depicted in Figure 1.5 for different rotation speeds Ω. Hence, the first term of (1.14)
changes sign if Ω > ω⊥. For the critical rotation speed Ω = ω⊥, the trap (1.14) is purely quartic
in the radial component.
To exceed fast rotation speeds in the order of the trap frequency Ω ≈ ω⊥, two excitation phases

are used. First the rotation frequency is chosen to be Ω
(1)
stir ≈ ω⊥/

√
2, so that the stirring laser

resonantly excites the transverse quadrupole mode of the condensate at rest. The duration of
the first excitation is 300 ms and then the condensate relaxes in the trap for 400 ms.
At this rotation speed typically 15 vortices appear. In the second phase the stirrer creates

a rotation frequency Ω
(2)
stir close to or above ω⊥. It lasts for 600 ms, followed by 500 ms to

equilibrate again. At this state about 3 · 105 atoms are in the trap. Due to the relaxation time
the effective rotation frequency Ω might differ significantly from the excitation frequency Ωstir.
The effective rotation speed Ω is determined by analyzing the Thomas-Fermi distribution

n(x) =
M

4π~2a
[µ− Vrot(x,Ω)] , (1.15)
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(b) (c) (f)(e)(d) (g) (h)

62 64 65 66 67 68 6960

(a)

FIG. 1.4: Pictures of the rotating gas taken along the rotation axis, taken from Ref. [1]. The

numbers below the pictures times 2π corresponds to the stirring frequency Ω
(2)
stirr during the

second phase of excitation. The real vertical size of each image is 306 µm.

where a is the s-wave scattering length and µ the chemical potential.
The act of probing is destructively by switching off the trap, letting the cloud expand during
t = 18 ms and performing absorption imaging. For the quantitative analysis it is assumed
that the expansion of the condensate out of the anharmonic trap is well approximated by the
expansion of a condensate out of a harmonic trap where the initial distribution is scaled by
a factor (1 + ω2

⊥t
2)1/2 [26]. Figure 1.4 shows pictures of the rotating condensate. With this

procedure, effective rotation speeds have been realized from zero up to Ω ≈ 1.04 × ω⊥.
At rotation speeds Ω . ω⊥ a regular lattice of vortices is visible, which breaks for higher
frequencies while the number of vortices seems to decrease. This is astonishing, since one
usually assumes that the lattice structure is stable for all rotation frequencies and with higher
rotation speeds the number of vortices just increases. To give some possible explanations, we
note that the disordering of the lattice of vortices and the formation of a central hole for high
rotation speeds might be interpreted as a melting process taking place with the developing of a
double well. However, the determination of the effective rotation speed Ω, as described in the
experiment [1], has shown that the visibility of vortices gets worse for increasing rotation speed.
On the other hand, the central hole also might be interpreted as a giant vortex [23–25]. We
summarize the experimental data of the experiment in the Table 1.2 To this end we introduce
the harmonic oscillator length az as a length scale and an energy εz for the energy scale with
respect to the z-component of the system, because the effective trapping frequency in the xy-
plane changes with Ω while in z direction the trapping frequency is fixed. The scaling is given
by

εz = ~ωz ≈ 7.291 · 10−33 J , az =

√

~

Mωz
≈ 3.245µm , (1.16)

with which we re-write (1.14) as

Vrot(x,Ω) =
εz
2

[

λ2η
r2

a2
z

+
z2

a2
z

+
κ

2

r4

a4
z

]

, (1.17)

where we have introduced the dimensionless parameters

λ = ω⊥/ωz ≈ 6 , η = 1 − Ω2

ω2
⊥

, κ =
ka4

z

εz
≈ 0.4 (1.18)

for the anisotropy, the rotation, and the anharmonicity, respectively.
In the beginning, when the condensate is at rest Ω = 0, we have η = 1 and the anharmonicity κ
is small compared to the anisotropy λ2η. Then, the condensate is cigar shaped. The anisotropy
of the xy-plane to the z-direction has been around λ ≈ 6 with a residual anisotropy in the
xy-plane <1%. For rotation speeds close to the critical rotation Ω ∼ ω⊥, the condensate was
nearly spherical, and it remained stable for Ω . 1.05ω. Near the upper limit, the condensate
exhibited a definite local minimum in the central density, confirming the Mexican hat shape of
the trapping potential. .
With decreasing η the anharmonicity will not be small all the time compared to the anisotropy.
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FIG. 1.5: Paris trap (1.17) in one direction of the xy-plane for the rotation speeds
Ω1 = 0, Ω2 = ω⊥ and Ω3 = 1.04 × ω⊥. The latter is the highest experimentally
realized rotation speed.
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It will become more and more important. Physical quantities show a strong dependence on the
rotation speed Ω. Therefore, we choose it as a control parameter for the quantities which we
analyze in this theses in order to illustrate the effect of rotation.

1.5 Thesis Plan

After this report on the fascinating experiment by Dalibard [1], we are prepared to give an
overview of what we want to investigate in this theses. On the basis of the Paris experiment,
we consider a rotating Bose gas in an anharmonic.
In Chapter 2 we discuss the thermodynamic properties of an ideal bosonic gas rotating in the
anharmonic trap (1.17) as a grand-canonical ensemble. Since the gas is rotating, the rotation
speed Ω enters explicitly in the Hamiltonian of the system and ends up in all quantities of interest
as a variable control parameter. We analyze the critical temperature, at which the condensation
process occurs, and the temperature dependence of the heat capacity, which is an indicator for
the stability of the system. The parameters of the Paris experiment allow us to derive these
quantities within the semiclassical approximation. In two special limits, namely as the rotation
speed Ω tends to towards the critical value ω⊥, and a infinite fast rotation speed Ω → ∞, the
results reduce to simple analytic expressions.
Furthermore, we investigate corrections to the critical temperature which are due to the finite
size of the system and due to the interaction between the bosons. The interaction is assumed
to be a two-body δ-interaction and is treated perturbatively. This is justified by the diluteness
of the gas. Of course, both corrections depend on the rotation speed Ω.
Chapter 3 deals with the dynamics of the condensate at zero temperature. The coherent wave
function Ψ of the condensed particles then obeys a non-linear Schrödinger equation, which has
been found by Gross [29] and Pitaevskii [30]. The non-linearity accounts for the δ-interaction of
the particles and is cubic in Ψ. We transform this equation into the corotating frame by a coordi-
nate transformation which leads to an additional centrifugal force in the Hamiltonian. Analyzing
in detail the transformed Gross-Pitaevskii equation, we discuss collective oscillations of the con-
densate, first in the hydrodynamic limit and second by a variational approach. To describe the
oscillations in the hydrodynamic limit , i.e. the collective modes, we use the Thomas-Fermi
approximation, which neglects the kinetic energy of the particles . The variational approach
does not make use of this approximation but reproduces the results of the hydrodynamic collec-
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mass of rubidium 87Rb M = 1.445 · 10−25 kg

number of condensed particles N = 3 · 105

s-wave scattering length a = 5.2 nm a=1.6 · 10−3 az

trap frequency (z direction) ωz = 2π · 11.0 Hz

trap frequency (xy plane) ω⊥ = 2π · 65.6 Hz ω⊥ = 5.96ωz

anharmonicity (xy plane) k = 2.6(3) · 1011 Jm−4 k = 0.39 εz/a
4
z

rotation speed variation Ω = 0 . . . 68 Ω = 0 . . . 1.04ω⊥

energy shift from laser U0 = 90 kBnK U0 = 17 εz

laser’s waist w = 25 µm w = 7.7 az

Table 1.2: List of data. The values are taken from the experiment of Bretin [1].

tive modes in the limit of a strong δ-interaction, which means that the kinetic energy is small
compared to the interaction energy.
Finally, in Chapter 4, we draw conclusions and discuss some perspectives for future investiga-
tions.



Chapter 2

Thermodynamic Properties of Bose

Gases in Traps

To simplify calculations, we shall assume an infinite number of particles to be present (ther-
modynamic limit), although the experimental situation is different. This means, we determine
the quantities of interest within the grand-canonical ensemble. In experiments the number of
particles N within a trap is large but finite, it is about some hundred thousands. Therefore, the
thermodynamic limit N → ∞ is never reached. However, the results found in this way agree
astonishingly well with the experiments. We determine the critical temperature at which the
condensation of the Bose gas into its ground state begins within the semiclassical approximation
as well as he heat capacity of the gas, which characterizes the order of the phase transition
according to the Ehrenfest definition. We elaborate the known discussion for an ideal Bose gas
in a harmonic trap, so that we can establish the same for a Bose gas in an anharmonic rotating
trap. The finite-size effect is considered for the harmonically trapped Bose gas and we compare
the semiclassical approximation in the low temperature limit with an exact calculation. Finally,
we discuss the perturbative influence of a weak two particle δ-interaction in dilute gases.

2.1 Grand-Canonical Ensemble

In the grand-canonical ensemble, one describes an open system which exchanges both particles
and energy with the environment. It is characterized by the grand-canonical partition function
which is determined by the microstates ν of the system. The states are characterized through
the population nn of the one-particle states n:

ν = (nn) . (2.1)

Since the particles of an ideal gas are not interacting, the energy Eν and the number of particles
Nν of the microstate ν are given by the sum of the one-particle energies En and the occupation
numbers nn:

Eν =
∑

n

nnEn , Nν =
∑

n

nn . (2.2)

Thus, the grand-canonical partition function reads

ZG =
∑

ν

e−β(Eν−µNν) =
∏

n

∑

nn

e−βnn(En−µ) , (2.3)

where β = 1/kBT is an inverse temperature. For the grand-canonical partition function (2.3)
being finite we have to obey En ≥ E0 > µ. The energy in the exponential of (2.3) depends on
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the energy of the microstate Eν and the energy of the exchanged particles µNν . The quantum
of energy µ corresponds to the exchange of one particle which is taken from (µ > 0) or given to
(µ < 0) the environment. This distinguishes the grand-canonical from the canonical ensemble,
where no particles can be exchanged. Hence, there is no chemical potential in the latter ensemble
.
The grand-canonical free energy is related to the grand-canonical partition function ZG (2.3)
according to

FG = − 1

β
lnZG . (2.4)

The grand-canonical free energy FG obeys the thermodynamic relation

FG = U − TS − µN . (2.5)

Here U denotes the internal energy, T the temperature, S the entropy, µ the chemical potential,
and N the number of particles. For thermodynamic processes the total differential of the grand-
canonical free energy FG = FG (T, V, µ) is given by

dFG = −SdT − pdV −Ndµ . (2.6)

If the grand-canonical free energy is known, it determines the entropy S, the pressure p, and
the number of particles N according to

S(T, V, µ) = − ∂FG(T, V, µ)

∂T

∣

∣

∣

∣

V,µ

, (2.7)

p(T, V, µ) = − ∂FG(T, V, µ)

∂V

∣

∣

∣

∣

T,µ

, (2.8)

N(T, V, µ) = − ∂FG(T, V, µ)

∂µ

∣

∣

∣

∣

T,V

. (2.9)

Furthermore the internal energy U allows to calculate the heat capacity at constant volume V

CV =
∂U

∂T

∣

∣

∣

∣

N,V

. (2.10)

It is related to the grand-canonical free energy according to

CV =
∂FG
∂T

∣

∣

∣

∣

N,V

+ S + T
∂S

∂T

∣

∣

∣

∣

N,V

+N
∂µ

∂T

∣

∣

∣

∣

N,V

. (2.11)

Inserting the grand-canonical partition function (2.3) into the free energy (2.4) we obtain

FG = − 1

β

∑

n

ln

[

∑

nn

e−βnn(En−µ)

]

. (2.12)

Since the occupation number for bosons may be any natural number nn = 0, 1, 2, . . . the geo-
metric series in (2.12) can be evaluated and yields

FG =
1

β

∑

n

ln
[

1 − e−β(En−µ)
]

. (2.13)

If we consider the limit µ ↑ E0, the first term diverges, while all other terms of the sum are
finite. To further investigate this term, we separate it from the sum:

FG =
1

β
ln
[

1 − e−β(E0−µ)
]

+
1

β

∑

n6=0

ln
[

1 − e−β(En−µ)
]

. (2.14)
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Let us consider the number of particles (2.9), which reads:

N =
1

eβ(E0−µ) − 1
+
∑

n6=0

1

eβ(En−µ) − 1
. (2.15)

The first term in Eq. (2.15) also diverges if µ ↑ E0, while the second is finite. This means
that the ground state is more and more populated when the chemical potential tends to the
ground-state energy. Hence, we state that the ground state is occupied by a number of particles

N0 =
1

eβ(E0−µ) − 1
, (2.16)

which needs not necessarily to be finite as we work in the grand-canonical ensemble. Then, the
sum in (2.15) yields the number of particles Ne occupying the excited states n 6= 0. Thus, the
total number of particles decomposes to

N = N0 +Ne . (2.17)

Quantities derived in the grand-canonical ensemble always have to be associated with the ther-
modynamic limit to provide results independently from the number of particles. The limit is
taken by assuming a process where the number of particles N tends to infinity without changing
the characteristics of the ensemble. In the thermodynamic limit, Eq. (2.17) implies that the
fraction of ground state particles

N0

N
= 1 − Ne

N
(2.18)

vanishes for µ < E0 and is a finite quantity for µ = E0. This means that the number of particles
occupying the ground state is finite, if µ < E0, or of the order of N , if µ = E0. If N0 is
of the order of N , it is termed to be macroscopically large and the phenomenon of having a
macroscopically amount of particles in the ground state is called Bose-Einstein condensation.
Analogously to the number of Particles (2.17) we write for the grand-canonical free energy (2.14)

FG = F0 + Fe , (2.19)

where we have introduced the notation

F0 =
1

β
ln
[

1 − e−β(E0−µ)
]

, Fe =
1

β

∑

n6=0

ln
[

1 − e−β(En−µ)
]

. (2.20)

Similarly, we consider the entropy to decompose to S = S0 +Se and derive with (2.7) and (2.19)
the ground state entropy S0 according to

S0 = −kB ln
[

1 − e−β(E0−µ)
]

+
E0 − µ

T [ eβ(E0−µ) − 1]
. (2.21)

Inserting (2.16) and (2.19) into (2.21) leads to

F0 = −TS0 +N0(E0 − µ) . (2.22)

At T = 0, all particles of the system are supposed to occupy the ground state and the entropy
vanishes according to the third law of thermodynamics. Therefore, it is reasonable to say that
the ground-state entropy S0 does not contribute to the total entropy of the system. Hence, the
grand-canonical free energy (2.14) reads with (2.22)

FG = N0 (E0 − µ) +
1

β

∑

n6=0

ln
[

1 − e−β(En−µ)
]

. (2.23)

Within the thermodynamic limit, we have neglected in fact the contribution of the ground state
to the free energy (2.19), since either N0 = 0 or µ = E0.
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FIG. 2.1: Schematic view of the semiclassical approximation a la Bose-Einstein. For a better
visibility, the ground state is not correctly mirrored, since it is ~ω/2. From the left to the right
we note that the level spacing is small in the trap. The usual semiclassical or Thomas-Fermi
approximation is to take the limit ~ → 0 and to integrate over the phase-space. However, the
integral treats the ground-state energy as a zero. The Bose-Einstein semiclassical approxima-
tion consists in separating the ground state from the integral, which in fact is not zero.

2.2 Semiclassical Approximation

Our goal now is to evaluate the grand-canonical free energy (2.14) within some approximations.
The semiclassical approximation, roughly speaking, corresponds to the conversion of a sum into
an integral. The name ”semiclassical” arises from the analogy to classical mechanics. In classical
mechanics the energy levels of a bounded system are continuous, so that the grand partition
function (2.3) is a sum of infinitesimal small steps. Such a sum can be converted into a Riemann-
Stieltjes integral that is defined on a closed interval [a, b] for real-valued bounded functions f(x)
and α(x) by the Riemann sum

∫ b

a
f(x) dα(x) :=

N−1
∑

i=0

f(ξi) [α(xi+1) − α(xi)] (2.24)

for a partition by points a = x0 < x1 < ... < xN = b and with ξi ∈ [xi, xi+1] and f(x) ∈
C1[x0, xN ], if the sum tends to a fixed number I as max (xi+1 − xi) → 0.
The new feature in quantum mechanics is that in a bounded system the energy levels are dis-
crete and can be labeled with quantum numbers. For instance, a point particle trapped in a
harmonic one-dimensional potential V (x) = Mω2x2/2, has the well-known energy eigenvalues
En = ~ω(n + 1/2), see Figure 2.1. Beside this discrete and equidistant levels, there is another
important difference between classical and quantum mechanics. The ground state E0 lies clas-
sically at the minimum of the trapping potential, which means that the particle is at rest. But
in quantum mechanics this is not possible, because of the Heisenberg uncertainty principle. In
fact the ground state is shifted a little.
If the level spacing is a small quantity, i.e for the harmonic trap this implies β~ω � 1, it is
reasonable to apply the semiclassical approximation and integrate according to (2.24)

Fsc = N0(µc − µ) +
1

β

∫

d3xd3p

(2π~)3
ln
{

1 − e−β[H(p,x)−µ]
}

, (2.25)

where we have replaced the the ground-state energy E0 by the semiclassical critical chemical
potential µc at which the condensation develops. By this, we take into account that the ground
state does not contribute to the grand-canonical free energy. We have also identified the energy
eigenvalues with the Hamiltonian of the system which reads in the standard notation

H(p,x) =
p2

2M
+ V (x) , (2.26)
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where p denotes the momentum and V an external potential. However, the inverse temperature
is involved in the smallness condition so that the semiclassical approximation gets worse with
decreasing temperature and fails in the limit T ↓ 0.
In general, regarding (2.12), all one needs to calculate the grand-canonical free energy is to
know the energy eigenvalues of the one-particle Hamiltonian H. But within the semiclassical
approximation one only needs to verify that the level spacing is small compared to the thermal
energy.

2.3 Finite-Size Correction

One would like to know whether the semiclassical approximation is appropriate or not. Surely,
one can test it afterwards by comparing the results with numerical ones or with experimental
data. But obviously, one can expect this approximation to be suitable, if the condition of the
average level spacing is fulfilled.
For having a more mathematical argument, we remark that in general sums can be transformed
into more manageable sums or integrals [31–33]. One method is called partial summation, that
is transforming the sum into a Riemann-Stieltjes integral and then integrate by parts. In this
way one derives [34] the Euler-MacLaurin summation formula [35]

∑

a≤k≤b

f(k) =

∫ b

a
dt f(t) +

1

2
[f(a) + f(b)] +

n
∑

m=1

B2m

(2m)!

[

f (2m−1)(b) − f (2m−1)(a)
]

+

∫ b

a
dt P2n+1(t)f

(2n+1)(t) . (2.27)

Here n ≥ 0 is a fixed integer, f(x) ∈ C2n+1[a, b], Bm denotes the mth Bernoulli number and Pm
is the mth periodic Bernoulli function defined by Pm(x) = Bm(x− [x]). Here Bm(x) is the mth
Bernoulli polynomial following from

zexz

ez − 1
=

∞
∑

m=0

Bm(x)
zm

m!
(|z| < 2π), (2.28)

so that Bm = Bm(0), B1(x) = x− 1/2, B2(x) = x2 −x+ 1/6, and so on. The bracket [...] in the
Bernoulli polynomials denotes the floor function.
We provide a prove of the Euler-MacLaurin formula (2.27) in the Appendix A. Comparing with
the semiclassical approach, we see that the first term of (2.27) is identical with the semiclassic,
so that the reminder terms can be regarded as corrections.

2.4 Bose Gas in Harmonic Trap

We consider a harmonic trap of the form

V (x) =
M

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

. (2.29)

Most magnetic traps used in experiments are well approximated by such a harmonic potential.
The trap frequencies fi = ωi/2π with i = 1, 2, 3 typically are of the order of 100 Hz. The spacing
of the energy levels hf̄ , with the arithmetic meanf̄ = (f1 + f2 + f3)/3, is small compared to the
typical temperature T = 100 nK at which the condensation begins:

hf̄

kBT
≈ 0.048 � 1 . (2.30)
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Therefore, the semiclassical approximation is applicable and we calculate thermodynamic quan-
tities from the grand-canonical free energy (2.25). With the Taylor series of the logarithm for

ln (1 − z) = −
∞
∑

j=1

zj

j
(2.31)

and the Hamiltonian (2.26) and (2.29), we find for the grand-canonical free energy

FG = N0(µc − µ) −
∞
∑

j=1

1

βj

∫

d3xd3p

(2π~)3
exp

{

−βj
[

p2

2M
+
M

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

− µ

]}

.

(2.32)
Thus, performing the Gaussian integrals leads to

FG = N0(µc − µ) − 1

β(β~ω̃)3

∞
∑

j=1

ejβµ

j4
, (2.33)

where ω̃ = (ωxωyωz)
1/3 is the geometric average of the trap frequencies. We can shorten the

notation by generalizing the Riemann zeta-function

ζ(ν) :=

∞
∑

j=1

1

jν
(2.34)

to the polylogarithmic function

ζν(z) :=
∞
∑

j=1

zj

jν
. (2.35)

Then, the grand-canonical free energy takes the form

FG = N0(µc − µ) − ζ4(e
βµ)

β(β~ω̃)3
. (2.36)

2.4.1 Critical Temperature and Heat Capacity

In the semiclassical approximation of the grand-canonical free energy (2.36) the number of
particles in the ground state is zero unless µ = µc. So the population of the ground state starts
at a critical point, which defines a critical temperature. Therefore, we determine the number of
particles N according to the thermodynamic relation (2.9)

N = N0 +
ζ3(e

βµ)

(β~ω̃)3
, (2.37)

and assume a temperature T ≥ Tc , so that N0 = 0. If we consider the limit µ ↑ µc = 0, Eq.
(2.37) defines the critical temperature Tc as

Tc =
~ω̃

kB

(

N

ζ(3)

)1/3

≈ 0.72

(

ω̃

100Hz

)

N1/3 nK . (2.38)

The proportionality to N1/3 is remarkable, because it is problematic in the limit of N → ∞. In
order to observe Bose-Einstein condensation, we have to define a proper thermodynamic limit:

N → ∞ , ω̃ → 0 , Nω̃3 <∞ . (2.39)
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With this definition the transition temperature (2.38) is well defined in the thermodynamic limit.
In the limit ω̃ → 0 we expect to recover the results of the free gas. Considering the harmonic
oscillator length aω̃ =

√

~/Mω̃ as the scale for the elongation of the condensate we obtain

N

V
=
N

a3
ω̃

∝ Nω̃3/2 . (2.40)

This is, of course, a consequence of the fact that the Bose gas in a harmonic trap condenses
in the phase-space, not in real space, whereas the free particles are said to condense in the
momentum space. Inserting (2.38) into (2.37) one gets the T dependence of the condensate
fraction for T < Tc :

N0

N
= 1 −

(

T

Tc

)3

. (2.41)

Relation (2.37) can also define a critical number of particles Nc at a given temperature T :

Nc = ζ(3)

(

kB
~ω̃

)3

T 3 ≈ 2.7

(

100Hz

ω̃

)3

T 3/(nK)3 . (2.42)

It is interesting to express the critical temperature (2.38) in terms of the particle density at the
origin x = 0, which is at the critical point µ = 0 due to (2.9) and (2.32)

N(0) = ζ(3/2)

(

kBTc
2π~ω̃

)3/2

. (2.43)

From this we obtain with no(0) = N(0)/a3
ω̃

kBTc =
2π~

2ω̃

ω̃M

[

no(0)

ζ(3/2)

]2/3

=
2π~

2

M

[

no(0)

ζ(3/2)

]2/3

. (2.44)

Comparing this with the critical temperature of the free Bose gas (1.5), we see that they coincide.
Therefore, the condensation begins at the origin of the trap, when the critical density of the free
gas is reached.
In order to determine the temperature dependence of the heat capacity (2.11) we have to discuss
the two regimes T < Tc and T > Tc separately. We begin the discussion with the latter regime.
The grand-canonical free energy (2.36) reduces to

FG = − ζ4(e
βµ)

β(β~ω̃)3
, (2.45)

so the particle number (2.7) reads

N =
ζ3(e

βµ)

(β~ω̃)3
(2.46)

and the entropy (2.9) is given by

S = kB

[

ζ4(e
βµ)

(β~ω̃)3
− βµ

ζ3(e
βµ)

(β~ω̃)3

]

. (2.47)

For the internal energy (2.5) we get
U = −3FG . (2.48)

Therefore, we can determine the heat capacity from (2.10) to be

CV
kB

= 12
ζ4(e

βµ)

(β~ω̃)3
+

3

(β~ω̃)3
∂(βµ)

∂T

∣

∣

∣

∣

N,V

[

∂ζ4(e
βµ)

∂(βµ)

]

. (2.49)



22 Thermodynamic Properties of Bose Gases in Traps

The inner derivative is obtained via deriving (2.46) with respect to T for constant N and V ,
which means constant ω̃. This yields

0 = 3
kB

β2(~ω̃)3
ζ3(e

βµ) +
ζ2(e

βµ)

(β~ω̃)3
∂(βµ)

∂T

∣

∣

∣

∣

N,V

, (2.50)

so that we find

∂(βµ)

∂T

∣

∣

∣

∣

N,V

= −3kBβ
ζ3(e

βµ)

ζ2(eβµ)
. (2.51)

Inserting this into (2.49) and using (2.46) leads to

CV
kBN

= 12
ζ4(e

βµ)

ζ3(eβµ)
− 9

ζ3(e
βµ)

ζ2(eβµ)
. (2.52)

In the high temperature limit T → ∞ the ζ-functions are approximated by ζν(e
βµ) ≈ eβµ � 1,

so that the heat capacity (2.52) obeys the Dulong-Petit law for the three-dimensional harmonic
oscillator

lim
T→∞

CV
kBN

= 3 . (2.53)

At the critical point µc = 0 we get

lim
T↓Tc

CV
kBN

= 12
ζ(4)

ζ(3)
− 9

ζ(3)

ζ(2)
≈ 4.228 . (2.54)

Secondly, we have to discuss the case T < Tc. From the grand-canonical free energy (2.36) we
know that the condensed particles do not contribute to the free energy, since µ = µc for T < Tc.
Therefore, the internal energy U (2.48) still holds and simplifies by inserting µc = 0 and the
number of particles (2.37) with N0 = 0 to

U = 3kBTcN
ζ(4)

ζ(3)

(

T

Tc

)4

, (2.55)

so that the heat capacity becomes

CV
kBN

= 12
ζ(4)

ζ(3)

(

T

Tc

)3

. (2.56)

At the critical point T = Tc we now have

lim
T↑Tc

CV
kBN

= 12
ζ(4)

ζ(3)
≈ 10.805 . (2.57)

Hence, the heat capacity is discontinuous and we denote the jump at the critical temperature
by

Dis = lim
T↑Tc

CV
kBN

− lim
T↓Tc

CV
kBN

≈ 6.577 . (2.58)

The discontinuity at the critical point characterizes the phase transition to be of second order ac-
cording to the Ehrenfest definition. Furthermore, we observe that the heat capacity (2.56) obeys
the third law of thermodynamics, which demands a vanishing heat capacity at zero temperature.
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FIG. 2.2: Condensate fraction versus reduced temperature. Both pictures are taken from
[55].(a) Circles are the experimental results of Ensher et al. [37], while the dashed line is Eq.
(2.41). (b) The circles corresponds to the exact quantum calculation for N = 1000 atoms in
a trap with spherical symmetry and the solid line to the finite-size corrected Eq. (2.64). The
dashed line refers to the thermodynamic limit (2.41).

(a) (b)

2.4.2 Finite-Size Correction

The number of atoms N that can be put into the traps is not truly macroscopic. In most
experiments they range between about 105 and 107 atoms. Consequently, the thermodynamic
limit N → ∞, in which the micro-canonical, canonical and grand-canonical ensembles are sup-
posed to provide the same results, is never reached exactly and their equivalence is not ensured.
Therefore, we have to consider finite-size corrections.
It is also possible to carry out an exact calculation of the condensate fraction for N nonin-
teracting particles, see Figure 2.2 part (b). The numerical calculation, done by Ketterle and
van Druten [36], shows, that finite-size effects are significant only for rather small values of N ,
less than about 104. The condensate fraction N0/N , obtained in this way, is smaller than the
prediction of (2.41) and the transition at the critical temperature is rounded off.
Analytically, the finite-size effect can be obtained by taking the first two terms of the Euler-
MacLaurin formula (2.27) into account [31–33]. The grand-canonical free energy (2.23) then
reads with (2.29), (A.11), and (2.35)

FG = N0(µc − µ) − 1

β(β~ω̃)3

[

ζ4(e
βµ) +

3

2
~ω̄β ζ3(e

βµ)

]

, (2.59)

where ω̄ = (ωx+ωy +ωz)/3 is the arithmetic and ω̃ = (ωxωyωz)
1/3 is the geometric mean of the

trap frequencies. Furthermore, we have used the level spacing βEn = ~ωiβ = xi and interpreted
xi as a continuous variable. From the free energy (2.59) we find for the number of particles (2.9)

N = N0 +
1

(~βω̃)3

[

ζ3(e
βµ) +

3

2
~βω ζ2(e

βµ)

]

. (2.60)

We obtain at the critical point N0 = 0 and µ = µc = 0 for the critical temperature Tc:

N =

(

kBTc
~ω̃

)3 [

ζ(3) +
3ζ(2)~ω

2kBTc

]

. (2.61)

For Tc = T
(0)
c [1 + ∆Tc/T

(0)
c ], where T

(0)
c denotes the semiclassical critical temperature (2.38) of

the previous Section, Eq. (2.61) yields in first order of β~ω̄

Tc =
~ω̃

kB

[

N

ζ(3)

]1/3 [

1 − ζ(2)ω

2ζ2/3(3)ω̃N1/3

]

. (2.62)
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The correction term
∆Tc

T
(0)
c

= − ζ(2)ω

2ζ2/3(3)ω̃N1/3
≈ −0.7275

ω

ω̃N1/3
. (2.63)

lowers the critical temperature with respect to the thermodynamic limit. It decreases with
N−1/3 for large N . Therefore, it is called the (first order) finite-size correction. For an isotropic
trap, where ω̄ = ω̃, and for about N = 3 ·105 particles it is of the order of 1.6 %, but for N = 10
it is about 34 %. Hence, the semiclassical approximation is exact in the thermodynamic limit.
The condensate fraction obtained from (2.60) reads

N0

N
= 1 −

(

T

T
(0)
c

)3

− 3ω̄ζ(2)

2ω̃[ζ(3)]2/3

(

T

T
(0)
c

)2

N−1/3 . (2.64)

The finite-size effect is shown in Figure 2.2 and is compared with experimental results Ref. [37].
The trap, used in the experiment [37], has the frequencies f1 = f2 and f3 =

√
8f1 = 373 Hz, so

that the geometric and arithmetic mean is given by

f̃ =
f3

2
= 186.5Hz and f̄ =

2 +
√

2

6
f3 ≈ 212.25 Hz. (2.65)

For N = 40000 atoms of 87Rb this leads to a critical temperature

T (0)
c = 287nK . (2.66)

The measurement of the critical temperature is estimated to be T
(exp)
c = 0.94(5)T

(0)
c . A part of

this deviation is due to the finite-size effect (2.63):

∆Tc

T
(0)
c

≈ 2.4% . (2.67)

The remaining discrepancy of about 3.1 % is due to the neglected two-particle interaction. In
Figure 2.2 it is shown (a) an evaluation of (2.41) and it is compared to experimental results of
[37]. The rather rough semiclassical approximation fits astonishingly well to experimental data.
But an important discrepancy is also visible, i.e. the calculated critical temperature is to high
compared with the experimental one. In part (b) of Figure 2.2 the semiclassical approximation
is compared to an exact quantum calculation [36] and the finite-size corrected semiclassical ap-
proximation.
We are prepared now to examine the finite-size effect for the heat capacity. In the high temper-
ature regime T > Tc, the internal energy (2.48) obtained from (2.59) reads

U =
1

β(β~ω̃)3

[

3ζ4(e
βµ) +

9

2
~ω̄β ζ3(e

βµ)

]

. (2.68)

Inserting (2.60) with N0 = 0 into (2.68) yields in first order of ~ω̄β

U =

{

3ζ4(e
βµ)

ζ3(eβµ)
+

9

2
~βω

[

1 − ζ4(e
βµ)ζ2(e

βµ)

ζ2
3(eβµ)

]}

kBTN . (2.69)

Therefore, the heat capacity (2.10) is given by

CV
kBN

=
3ζ4(e

βµ)

ζ3(eβµ)
+ Te−βµ

∂eβµ

∂T

∣

∣

∣

∣

N,V

[

3

(

1 − ζ4(e
βµ)ζ2(e

βµ)

ζ2
3 (eβµ)

)

−9

2
~βω

(

ζ2(e
βµ)

ζ3(eβµ)
+
ζ4(e

βµ)ζ1(e
βµ)

ζ2
3 (eβµ)

− 2
ζ4(e

βµ)ζ2
2 (eβµ)

ζ3
3 (eβµ)

)]

. (2.70)
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FIG. 2.3: Heat capacity in harmonic trap. The horizontal solid gray line corresponds to the
Dulong-Petit law (2.53). The dashed curve is the semiclassical heat capacity (2.52) and (2.56)
for an ideal gas in the harmonic trap of the Paris experiment (1.17) with κ = 0. The dashed
curve is the first order finite-size corrected heat capacity (2.72) and (2.75) for the same trap.

The inner derivative is obtained from (2.60) by a derivation with respect to T for constant N ,
V , and N0 = 0 implying

−T
3
e−βµ

∂eβµ

∂T

∣

∣

∣

∣

N,V

=
ζ3
(

eβµ
)

ζ2 (eβµ)
+

3

2
~βω

[

1 − ζ3
(

eβµ
)

ζ1
(

eβµ
)

ζ2
2 (eβµ)

]

. (2.71)

Inserting (2.71) into (2.70) results in

CV
kBN

= 12
ζ4
(

eβµ
)

ζ3 (eβµ)
− 9

ζ3
(

eβµ
)

ζ2 (eβµ)
− 27

2
~βω

[

ζ4
(

eβµ
)

ζ2
(

eβµ
)

ζ2
3 (eβµ)

− ζ3
(

eβµ
)

ζ1
(

eβµ
)

ζ2
3 (eβµ)

]

. (2.72)

In the high temperature limit this reproduces the Dulong-Petit law (2.53). The first two terms
in (2.72) correspond to the zeroth order semiclassical approximation (2.52), the remaining term
is the finite-size correction to it. At the critical point, the finite-size contribution in (2.72) causes
a divergency, because of the function ζ(1) so that

lim
T↓Tc

CV
kBN

= ∞ . (2.73)

For the low temperature regime T < Tc, we have to take the chemical potential at its critical
value µc = 0. Since the condensed particles do not contribute to the grand-canonical free energy,
the internal energy (2.69) is still valid and reads due to the critical temperature (2.62) and the
critical chemical potential µc = 0:

U = kBTcN

{

3ζ(4)

ζ(3)

(

T

Tc

)4

+
9ωζ1/3(3)

2ω̃N1/3

[

(

T

Tc

)3

− ζ(2)ζ(4)

ζ2(3)

(

T

Tc

)4
]}

. (2.74)

From this we obtain the heat capacity (2.10)

CV
kBN

=
12ζ(4)

ζ(3)

(

T

Tc

)3

+
27ωζ1/3(3)

2ω̃N1/3

[

(

T

Tc

)2

− 4ζ(2)ζ(4)

3ζ2(3)

(

T

Tc

)3
]

. (2.75)
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In the low temperature limit T ↓ 0, the heat capacity (2.75) tends to zero as it should according
to the third law of thermodynamics. At the critical point T ↑ Tc it tends to the finite value

lim
T↑Tc

CV
kBN

=
12ζ(4)

ζ(3)
+

27ωζ1/3(3)

2ω̃N1/3

[

1 − 4ζ(2)ζ(4)

3ζ2(3)

]

≈ 10.8047 − 8.67828
ω

ω̃N1/3
, (2.76)

thus the finite-size effects lead to a small decrease. For the trap frequencies (2.65) of Ensher’s
experiment [37] this yields

lim
T↑Tc

CV
kBN

≈ 10.5159 . (2.77)

We show an evaluation of the heat capacity (2.52) and (2.56) and the finite-size correction (2.72)
and (2.75) to it in Figure 2.3 for the values of the Paris experiment, see Table 1.2. For N = 3×105

particles the effect is rather small, so that we can expect the semiclassical approximation to be
applicable also in the anharmonic trap.

2.4.3 Low Temperature Limit of the Semiclassical Approximation

In order to investigate the accuracy of the semiclassical approximation, we determine the low
temperature behavior of a Bose gas in an isotropic harmonic trap. The trapping potential is
given by

V (x) =
Mω2

0

2

(

x2 + y2 + z2
)

, (2.78)

so that the energy eigenvalues of the Hamiltonian (2.26) read

En = ~ω0 (nx + ny + nz + 3/2) . (2.79)

The numbers nx, ny, nz are the quantum numbers and run from zero to infinity. For the reduced
chemical potential µr = µ− 3~ω0/2, the grand-canonical free energy (2.13) simplifies to

βFG = ln
[

1 − eβµr

]

+

∞
∑

n6=0

ln
[

1 − e−β[~ω0(n1+n2+n3)−µr ]
]

. (2.80)

The reduced chemical potential is defined implicitly over the number of particles for which we
obtain with (2.9)

N =
1

e−βµr − 1
+

∞
∑

n6=0

[

eβ[~ω0(n1+n2+n3)−µr ] − 1
]−1

(2.81)

To obtain Bose-Einstein condensation the occupation number of the ground state has to become
macroscopically large, which implies that the chemical potential mets with µr ↑ 0−. At zero
temperature T = 0, all particles are supposed to occupy the ground state so that the chemical
potential has to be of the form

µr =
1

β
ln

(

N

N + 1

)

+ δµr (2.82)

to preserve the number of particles. The correction term in (2.82) has to tend faster in the low
temperature limit to zero than 1/β, that is βδµr → 0 for T → 0. Inserting (2.82) into (2.81) we
obtain

N =
N

(N + 1)e−βδµr −N
+

∞
∑

n6=0

[

N + 1

N
eβ[~ω0(n1+n2+n3)−δµr ] − 1

]−1

(2.83)

In the low temperature limit the leading contribution reads

0 = N(N + 1)(1 − e−βδµr ) +
N

N + 1
e−β~ω0 , (2.84)
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where we have expanded the first term on the right hand side with respect to the small value
1 − e−βδµr . The solution of (2.84) yields an exponentially small correction term

δµr ∼ e−β~ω0 (2.85)

to the chemical potential (2.82). In order to calculate the heat capacity, we have to determine
the internal energy given by

U =
∂βFG
∂β

+

(

µr +
3

2
~ω0

)

N . (2.86)

For low temperatures, the internal energy (2.86) yields with (2.80)

U ≈ −µr
1 − eβµr

+

(

µr +
3

2
~ω0

)

N (2.87)

up to exponentially vanishing terms. By inserting (2.82) into (2.87) we obtain by using (2.84)
and (2.85) also exponentially vanishing correction terms to the ground state energy in the low
temperature limit proportional to e−β~ω0 . Therefore, with the internal energy also the heat
capacity (2.10) is for low temperatures corrected by an exponentially small amount proportional
to e−β~ω0 . The same applies to the condensate fraction (2.18) with (2.83) due to the chemi-
cal potential (2.85). However, the semiclassical approximation predicted for both quantities a
power law approach to zero, namely with the power T 3. Hence, we note that the semiclassical
approximation fails in describing the low temperature behavior correctly. This is due to the non
fulfiled smallness condition of the level spacing β~ω0 � 1 for low temperatures which ensures
the validity of the semiclassical approximation, see discussion below Eq. (2.24).

2.5 Bose Gas in a Rotating Anharmonic Trap

We consider a rotating anharmonic trap of the form (1.17) with a quadratic and quartic potential
which has been employed in the Paris experiment [1]. The Hamiltonian (2.26) of such a system
is given by

H =
p2

2M
+
εz
2

[

λ2η
r2

a2
z

+
z2

a2
z

+
κ

2

r4

a4
z

]

. (2.88)

Here r =
√

x2 + y2 and z denote the space coordinates, whereas εz = ~ωz sets the energy scale
and az =

√

~/(Mωz) the length scale. As in Chapter 1, we have introduced dimensionless pa-
rameters setting an anisotropy λ = ω⊥/ωz, an anharmonicity κ = a4

zk/εz > 0, and a deformation
of the harmonic potential η = 1−Ω2/ω2

⊥ which depends on the rotation speed Ω and can change
its sign.
Inserting (2.88) into the semiclassical approximation for the grand-canonical free energy (2.25)
and integrating the momentum and the z-dependency yields

FG = N0(µc − µ)

−
∞
∑

j=1

(

M

2π~2β

)3/2 a3
z(2π)3/2

j3β
√
βεz

∫ ∞

0
du exp

[

−jβεzκ
(

u2 +
λ2η

κ
u− µz

κ

)]

. (2.89)

We have performed a change of variables azζ = z and 2a2
zu = r2 as well as introduced the

dimensionless temperature and the reduced chemical potential:

βεz =
1

Tz
, µ = µzεz . (2.90)
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For the Paris experiment, the real temperature is obtained by T = 0.524 × Tz nK. Performing
the remaining integral in (2.89) leads to:

∫ ∞

0
du exp

[

−jβεzκ
(

u2 +
λ2η

κ
u− µz

κ

)]

=

√
π

2
√
jβεzκ

exp

[

jβεz

(

µz +
λ4η2

4κ

)]

erfc

(

λ2η

2
√
κ

√

jβεz

)

, (2.91)

where erfc(z) is the complementary error function

erfc(z) =
2√
π

∫ ∞

z
dt e−t

2
. (2.92)

Then, the grand-canonical free energy (2.89) reads

FG = N0(µc − µ) − εz

∞
∑

j=1

√
π

2
√
κ

(

Tz
j

)7/2

exp

[(

µz +
λ4η2

4κ

)

j

Tz

]

erfc

(

λ2η

2
√
κ

√

j

Tz

)

. (2.93)

In analogy to the treatment of the harmonic trap we define a new ζ-function, which will shorten
the notation:

ζν(z, x) :=

∞
∑

j=1

zj

jν
Eσ (xj) , (2.94)

where we used σ = sign(η) and defined

Eσ(x) :=
√
πx exp (x)erfc

(

σ
√
x
)

. (2.95)

Thus, with σ = +1 and σ = −1 we denote the undercritical rotation ω⊥ > Ω and the overcritical
rotation Ω > ω⊥ respectively. The function (2.95) is related to more general functions, for
instance to the Mittag-Leffler function [38–40] and therefore also to hypergeometric functions
[41,42]. Many properties of the ζ-functions (2.94) are reviewed in the Appendix B. With this
the grand-canonical free energy (2.89) takes the compact form

FG = N0(µc − µ) − εz
σT 4

z

λ2η
ζ4(z, β̃) , (2.96)

with the notations

z = eµz/Tz , β̃ =
λ4η2

4κTz
. (2.97)

Here, z denotes the fugacity whereas β̃ is a dimensionless inverse temperature scaled by a factor
accounting for the trap geometry. We note that both arguments of the ζ-function in (2.96)
depend on the temperature. The harmonic limit κ → 0 is related to the limit β̃ → ∞. The
special case of a critical rotation Ω = ω⊥, where η = 0, has to be treated carefully within this
notation, since one formally divides by zero. But according to (2.93), which is equivalent to
(2.96), we know that no singularity occurs at the critical rotation speed η = 0. Hence, the
grand-canonical free energy (2.96) is a well-behaved function for any rotation speed.
However, for the critical rotation speed Ω = ω⊥ the effective trapping potential in (2.88) is
purely quartic in the xy-plane. Thus, this case can be investigated analytically.
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FIG. 2.4: Critical temperature versus rotation speed Ω/ω⊥. The highest lying line (black
solid) corresponds to the data of the Paris experiment [1], see Table 1.2, with κ = 0.4. For the
deeper lying lines we varied the anharmonicity parameter κ: (a) κ = 0.04 (long dashes), (b)
κ = 0.004 (short dashes), and (c) the harmonic limit κ = 0 (gray solid).

2.5.1 Critical Temperature

Now we determine the number of particles (2.9) which simply leads to

N = N0 +
σT 3

z

λ2η
ζ3(z, β̃) . (2.98)

At the critical temperature Tz,c, where the condensation begins, the chemical potential is equal
to the classical ground-state energy. This means, the critical chemical potential has the value
of the minimum of the trapping potential (1.17), see Figure 1.5, so that for the classical ground
state p = 0 the condition H − µ > 0 is fulfilled. Therefore, the critical chemical potential is
given by

µz,c =







0 for Ω ≤ ω⊥ ,

−λ
4η2

4κ
for Ω > ω⊥ .

(2.99)

Thus, Eq. (2.98) reduces with N0 = 0, (2.94) and (2.95) to

N =

√
π

2
√
κ

∞
∑

j=1

(

Tz,c
j

)5/2

exp

[

λ4η2j

4κTz,c
Θ(η)

]

erfc

[

λ2η
√
j

2
√

κTz,c

]

, (2.100)

where Θ is the unit step function, which is a discontinuous function also known as the Heaviside
step function. Considering the thermodynamic limit, we find here that with N → ∞ also κ
must go to zero in such a way that N

√
κ remains finite. In this limit κ → 0 while η > 0, we

should re-obtain the results of the harmonic trap. Indeed, we find with (B.10)

N → ζ(3)

λ2η
T 3
z,c , (2.101)

which reproduces within the right dimensions (1.16) the previous result (2.38).
Figure 2.4 shows a plot of the critical temperature following from (2.100) for various anhar-
monicities κ. Remarkable is the saturation of the critical temperature in the limit of a infinite
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Figure 2.5: Condensate fraction versus reduced temperature. In part (a) the temperature is normed
to the critical temperature for the non-rotating condensate Ω = 0 in the anharmonic trap of the
Paris experiment [1], see Table 1.2. The condensate fraction (2.106) is evaluated for various rotation
speeds, the lines correspond to Ω = 0 (solid), Ω = ω⊥/

√
2 (short dashes), Ω = ω⊥ (longer dashes),

and Ω =
√

3ω⊥/
√

2 (long dashes). In part (b) the temperature is normed to the corresponding
fraction displaying the different temperature dependence. The solid line corresponds to the rotation
speed Ω = 0 and the dashed line corresponds to the critical Ω = ω⊥.
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rotation speed Ω → ∞. In the limit of infinite fast rotation Ω → ∞, the number of particles
reduces to the following analytical expression

N =

√

π

κ
T 5/2
z,c ζ(5/2) , (2.102)

which leads for the Paris trap to an critical temperature

lim
Ω→∞

Tc = 48.24 nK . (2.103)

Furthermore, for the critical rotation speed Ω = ω⊥, Eq. (2.100) simplifies to

N =

√

π

4κ
T 5/2
z,c ζ(5/2) , (2.104)

which leads for the anharmonicity κ = 0.4 of the Paris trap (1.18) to the critical temperature

lim
Ω→ω⊥

Tc = 63.66 nK . (2.105)

We can also calculate the condensate fraction from (2.98):

N0

N
= 1 − σ T 3

z

λ2ηN
ζ3(zc, β̃) , (2.106)

where the critical fugacity is zc = exp (µz/Tz) with the critical chemical potential given by
(2.99). The condensate fraction (2.106) can be approximated for low temperatures Tz � Tz,c
due to (B.10) by

N0

N
=



















1 − ζ(3)

λ2ηN
T 3
z +

2κ ζ(4)

λ6η3N
T 4
z + . . . for Ω < ω⊥ , Tz � Tz,c

1 −
√
π√
κ
ζ(5/2)T 5/2

z +
ζ3(zc)

λ2|η|N T 3
z + . . . for Ω ≥ ω⊥ , Tz � Tz,c

. (2.107)

Due to (B.10) and (B.11), the condensate fraction (2.106) in the limit of infinite fast rotation
Ω → ∞ and in the limit of the critical rotation Ω → ω⊥ respectively reduces to the analytic
expression

N0

N
= 1 −

√
π√
κ
ζ(5/2)T 5/2

z . (2.108)
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Comparing (2.102), (2.104) and (2.108), we note that the limits T ↓ 0 and η → 0 do not
commute with each other. We show an evaluation of (2.106) in Figure 2.5. In part (a) of
Figure 2.5 we show the dependence of the condensate fraction (2.106) on the rotation speed
Ω. With increasing Ω the condensate fraction moves to lower temperatures which is due to the
normalization of the temperature to the non-rotating critical temperature. In part (b) we show
the change in the temperature dependence of the condensate fraction for undercritical rotation
(Ω = 0) and overcritical rotation (Ω = ω⊥).

2.5.2 Heat Capacity

Now we determine the temperature dependence of the heat capacity. In the high temperature
regime T > Tc the grand-canonical free energy (2.96) becomes

FG = −εz
σT 4

z

λ2η
ζ4(z, β̃) . (2.109)

In order to calculate the entropy (2.9), we need the derivative of the ζ-function (2.94) with
respect to the temperature. Since both arguments z, β̃ (2.97) of the ζ-function depend on the
temperature, we obtain

∂ζν(z, β̃)

∂Tz
=

(

∂

∂Tz

µz
Tz

)

ζν−1(z, β̃) − 1

2Tz
ζν(z, β̃) +

λ4η2

4κT 2
z

[

σζν−1(z) − ζν−1(z, β̃)
]

. (2.110)

The entropy reads due to (2.7), (2.98) with N0 = 0, and (2.110)

S = kB

[

7

2

σT 3
z

λ2η
ζ4(z, β̃) +

λ2ηT 2
z

4κ
ζ3(z) −

N

Tz

(

µz +
λ4η2

4κ

)]

. (2.111)

And the internal energy (2.11) reads due the number of particles (2.98) with N0 = 0 and the
entropy (2.111)

U = εzN

[

5Tz
2

ζ4(z, β̃)

ζ3(z, β̃)
+
λ4η2

4κ

σζ3(z) − ζ3(z, β̃)

ζ3(z, β̃)

]

. (2.112)

Then, the heat capacity (2.10) above Tc reads due to the derivative of the ζ-function (2.110)
and the internal energy (2.112)

C>
kBN

=
5ζ4(z, β̃)

2ζ3(z, β̃)
+

5Tz

2ζ3(z, β̃)

{

Dζ3(z, β̃) − 1

2Tz
ζ4(z, β̃) +

λ4η2

4κT 2
z

[

σζ3(z) − ζ3(z, β̃)
]

}

−5Tzζ4(z, β̃)

2ζ2
3 (z, β̃)

{

Dζ2(z, β̃) − 1

2Tz
ζ3(z, β̃) +

λ4η2

4κT 2
z

[

σζ2(z) − ζ2(z, β̃)
]

}

+
λ4η2

4κ

σDζ2(z)
ζ3(z, β̃)

−λ
4η2

4κ

σζ3(z)

ζ2
3 (z, β̃)

{

Dζ2(z, β̃) − 1

2Tz
ζ3(z, β̃) +

λ4η2

4κT 2
z

[

σζ2(z) − ζ2(z, β̃)
]

}

, (2.113)

wherein occurs the inner derivative

D ≡ ∂

∂Tz

µz
Tz

∣

∣

∣

∣

N,V

. (2.114)

The derivative of the chemical potential with respect to the temperature at constant volume V
and constant number of particles N is determined by taking the derivative of (2.98), yielding

D = − 5

2Tz

ζ3(z, β̃)

ζ2(z, β̃)
− λ4η2

4κT 2
z

σζ2(z) − ζ2(z, β̃)

ζ2(z, β̃)
. (2.115)
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FIG. 2.6: Heat capacity versus temperature,

reduced to the critical temperature T
(h)
c of the

harmonic trap (1.17) with κ = 0. The dashed
line corresponds to the harmonic trap heat ca-
pacity (2.52), (2.56) for the Paris trap (1.17)
with κ = 0, see Table 1.2. The black solid
line is the heat capacity (2.116), (2.127) for
the anharmonic Paris trap (1.17) with no ro-
tation, Ω = 0. The horizontal lines correspond
to the Dulong-Petit law: harmonic trap (2.53)
(dashed) and anharmonic trap (2.118) (gray).
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FIG. 2.7: Heat capacity (2.116) and (2.127)
versus temperature, reduced to the critical

temperature T
(a)
c of the anharmonic trap (1.17)

with κ = 0.4 for varying rotation speeds. The
lines correspond to Ω = 0 (solid), Ω = ω⊥ (long
dashes), and Ω = 2ω⊥ (short dashes). The
gray solid line corresponds to the Dulong-Petit
law (2.118). We note that for Ω = 2ωbot and
T > Tc the heat capacity crosses the Dulong-
Petit limes.

Inserting (2.115) into (2.113) results in

C>
kBN

=
35

4

ζ4(z, β̃)

ζ3(z, β̃)
− 25

4

ζ3(z, β̃)

ζ2(z, β̃)
+
σλ4η2

8κTz

[

11
ζ3(z)

ζ3(z, β̃)
− 10

ζ2(z)

ζ2(z, β̃)

]

− λ8η4

16κ2T 2
z

[

ζ2(z) − σζ2(z, β̃)

ζ3(z, β̃)

ζ2(z)

ζ2(z, β̃)

]

. (2.116)

At first we show that this formula reproduces the result of the harmonic trap. Therefore, we
take the limit κ→ 0, which is equivalent to β̃ → ∞ while Ω > ω⊥, and use (B.10) to find

C>
kBN

=
35

4

ζ4(z)

ζ3(z)
− 25

4

ζ3(z)

ζ2(z)
+

[

11

4

ζ4(z)

ζ3(z)
− 10

4

ζ3(z)

ζ2(z)
− 1

4

ζ3(z)

ζ2(z)
+

2

4

ζ4(z)

ζ3(z)

]

(2.117)

which leads indeed to the known result of the harmonic trap in (2.52). The next interesting
case for the heat capacity (2.116) is the high temperature limit in which β̃ = λ4η2/(4κTz) → 0.
Using (B.11) we find

lim
T→∞

C>
kBN

=
5

2
, (2.118)

which represents the Dulong-Petit law in our anharmonic trap and is 1/2 smaller than the
corresponding one in the harmonic trap.
In Figure 2.6 we compare the harmonic heat capacity (2.52) with the anharmonic one (2.116)
for the values of the Paris experiment. The latter is shifted a little to the right compared to
the harmonic heat capacity and the jump at T = Tc is lower. Furthermore, the Dulong-Petit
law has changed and the convergence to it is slower than in the harmonic trap. In Figure 2.7
we investigate the dependence of the heat capacity of the Bose gas in the anharmonic trap of
the Paris experiment on the rotation speed. The jump at the critical point seems to decrease
for increasing rotation speed. Furthermore, we note that the heat capacity above Tc crosses the
Dulong-Petit law for an overcritical rotation speed. In order to investigate the approach to this
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Dulong-Petit law, we use (B.11) and expand the ζ-function for large Tz as

ζν

(

z,
λ4η2

4κTz

)

≈ z





√

πλ4η2

4κTz
− 2σ

λ4η2

4κTz
+ ...



+
z2

2ν





√

2πλ4η2

4κTz
− 4σ

λ4η2

4κTz
+ ...



+ ... . (2.119)

From the number of particles (2.98) we get in first order by inserting (2.119) the fugacity

z ≈ 2
√
κN

√
π T

5/2
z

. (2.120)

Inserting (2.119) and (2.120) into (2.116) and performing a large Tz expansion yields

C>
kBN

=
5

2
+

λ2η

4
√
πκTz

+
λ6η3 (π − 4)

32 (πκTz)3/2
. (2.121)

Hence, with the first η depending term in (2.121) the approach changes its behavior, from being
larger (Ω < ω⊥) than the limit to being smaller (Ω > ω⊥). In Figure 2.8 we show the approach of
the heat capacity of a Bose gas in the anharmonic trap to the Dulong-Petit law (2.118) together
with the high temperature approximation (2.121). For temperatures about six times larger
than the critical temperature, the approximation agrees very well with the exact semiclassical
approximation.
We note that in both limits of the critical Ω → ω⊥ and the infinite fast Ω → ∞ rotation, the
heat capacity (2.116) reduces with (B.10) and (B.11), respectively, to

C>
kBN

=
35

4

ζ7/2(z̃)

ζ5/2(z̃)
− 25

4

ζ5/2(z̃)

ζ3/2(z̃)
, (2.122)

where we have replaced z = z̃ exp (−β̃) in (B.10), which is due to the decomposition of the
chemical potential according to µ = µ̃+ µc. The critical values for the fugacity and the scaled
inverse temperature are denoted by

zc =











1 Ω ≤ ω⊥

exp

(

−λ
4η2

4κTz

)

Ω > ω⊥

, β̃c =
λ4η2

4κTz,c
. (2.123)
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We note that in the overcritical rotation regime Ω > ω⊥, the critical fugacity zc still depends on
the temperature. Therefore, we denote the critical fugacity at the critical temperature as

z̄c = exp (−β̃c) . (2.124)

Furthermore, we write for the heat capacity above Tc at the critical point

C>,c ≡ lim
Tz↓Tz,c

C> = C>(z̄c, β̃c) . (2.125)

Hence, at the critical point z̃ = 1 and in both limits Ω → ω⊥ and Ω → ∞ the heat capacity
(2.122) has the value

C>
kBN

=
35

4

ζ(7/2)

ζ(5/2)
− 25

4

ζ(5/2)

ζ(3/2)
≈ 4.14 . (2.126)

In the condensate regime Tz < Tz,c, we have to return to the internal energy U (2.112) to
determine the heat capacity. With the critical values (2.123), (2.124), and the number of particles
(2.98) with N0 = 0 we obtain for the heat capacity (2.10)

C<
kBN

=

(

Tz
Tz,c

)3
{

35

4

ζ4(zc, β̃)

ζ3(z̄c, β̃c)
+
λ4η2

4κTz

[

11σζ3(zc)

2ζ3(z̄c, β̃c)
− 5Θ(η)

ζ3(zc, β̃)

ζ3(z̄c, β̃c)

]

+
λ8η4

16κ2T 2
z

[

Θ(−η) σζ2(zc)
ζ3(z̄c, β̃c)

− Θ(η)
σζ2(zc) − Θ(η)ζ2(zc, β̃)

ζ3(z̄c, β̃c)

]}

. (2.127)

In the low temperature limit T ↓ 0, the heat capacity (2.127) tends to zero with the following
power-law behavior

C<
kBN

≈























35

4

ζ(4)

ζ3(z̄c, β̃c)

(

Tz
Tz,c

)3

for Ω < ω⊥ , Tz � Tz,c

35

2

ζ(7/2)

ζ ′3(z̄c, β̃c)

(

Tz
Tz,c

)5/2

for Ω ≥ ω⊥ , Tz � Tz,c ,

(2.128)

where the prime on the ζ-function denotes
√
πxcζ

′
3(z̄c, β̃c) = ζ3(z̄c, β̃c). We note that the low

temperature behavior of the heat capacity (2.128) is the same as the corresponding one of the
condensate fraction (2.107). In the harmonic limit κ→ 0, the heat capacity (2.127) reduces due
to (B.9) to the previous result (2.56). In the limit of the critical rotation Ω → ω⊥ and in the
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limit of infinite fast rotation Ω → ∞, the heat capacity (2.127) reduces with (B.11) and (B.10)
respectively to

C<
kBN

=
35

4

ζ(7/2)

ζ(5/2)

(

Tz
Tz,c

)5/2

. (2.129)

At the critical point T = Tc and µ = µc, we denote the heat capacity below Tc by

C<,c ≡ lim
Tz↑Tz,c

C< = C<(z̄c, β̃c) , (2.130)

which reduces in both limits Ω → ω⊥ and Ω → ∞ to the analytical expression

C<,c
kBN

=
35

4

ζ(7/2)

ζ(5/2)
≈ 7.35 . (2.131)

For the values of the Paris experiment we show in Figure 2.9 and Figure 2.10 the dependence of
the heat capacity (2.130) and (2.125) on the rotation speed. For increasing rotation speeds Ω, we
have a remarkable strong dependence of the heat capacity around the critical rotation Ω = ω⊥.
Below the critical temperature Tc, the heat capacity (2.130) shows a similar developing as the
critical temperature itself, see Figure 2.4, except for the appearance of a minimum slightly above
the critical rotation speed Ω = ω⊥. In the limit Ω → ∞ the heat capacity (2.130) approaches
the constant (2.131). Above the critical temperature, the heat capacity (2.125) has a little peak
around the critical rotation speed but tends also to constant value in the limit of an infinite fast
rotation.
The jump at the critical point, which characterizes the discontinuity of the heat capacity is
denoted by

Dis(Ω) = C<,c −C>,c . (2.132)

It tends in the limit of the critical rotation Ω → ω⊥ and in the limit of a infinite fast rotation
Ω → ∞ to the value

Dis(Ω)

kBN
= 3.21 , (2.133)

which is smaller than that of the harmonic trap (2.58). In Figure 2.11 we show an evaluation
of the discontinuity at the critical point. It is always positive, indicating that the Bose gas
undergoes for all rotation speeds a second-order phase transition according to the Ehrenfest
definition.
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2.6 BEC on a Cylinder

The critical temperature (2.100) of a Bose gas in the anharmonic trap (1.17) as well as the heat
capacity at the critical point tends to a constant value if Ω → ∞. This phenomenon might be
explained by an intuitive consideration [43].
When the minimum of the trapping potential in the xy-plane is deep enough, it is approximately
a ring with radius rm. The valley around the circular minimum of the trapping potential has
nearly the curvature of a harmonic oscillator. Hence, effectively in this case, the Bose gas has
two oscillatory degrees of freedom, namely the z-direction and the radial direction, plus the
freedom to ’walk’ around the circle like a free particle in a one-dimensional box of the length

L = 2πrm . (2.134)

For η < 0, the radius rm is given by the minimum of the trapping potential (1.17) in the xy-plane
and reads

rm =

√

λ2|η|
κ

. (2.135)

The curvature γr of the trapping potential is given by the second derivative, which we have to
evaluate at the radius (2.135) yielding

γr = 2λ2|η|εz . (2.136)

Hence, we can approximate the trapping potential (1.14) for a fast rotation speed Ω by

V (x,Ω) ≈ Vcyc(x,Ω) =
εz
2

[

2λ2|η|δr
2

a2
z

+
z2

a2
z

+

(

ξ

az

)s ]

, (2.137)

where we have introduced ξ for the degree of freedom of the gas moving around the circle as
free particles in a box and δr for the deviation from the radius of the circular minimum, i.e.
r = rm + δr. The number of the non-condensed particles (2.9) is then due to the semiclassical
approximation (2.25) given by

N =

∞
∑

j=1

∫

d3p

(2π~)3)

∫ ∞

−∞

dδr dz

∫ L

0
dξ exp

{

−βj
[

p2

2M
+ Vcyc(x,Ω) − µ̃z

]}

, (2.138)

Performing the integrals results in

N =

∞
∑

j=1

zj

j3/2λ3
T

√

2a2
zπTz
j

√

a2
zπTz
λ2|η|j az2πrmΓ(1 + 1/s) . (2.139)

Taking the limit s→ ∞, we obtain for the number of particles (2.139) with the scaling (1.16)

N =

√

π

κ
ζ5/2(z̃)T

5/2
z , (2.140)

where z̃ = exp (−µ̃z/Tz) denotes the fugacity. At the critical point z̃c = 1 the number of particles
(2.140) leads to the critical temperature

Tz,c =
(κ

π

)1/5
[

N

ζ(5/2)

]2/5

, (2.141)

which coincides with the previous result (2.102). For the number of particles the intuition led
to the right solution. Thus, all thermodynamic quantities calculated so far can be checked in
the limit of an infinite fast rotation in the same way.
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Nearly the same integrals as in (2.138) lead to the grand-canonical free energy, we just have to
divide the integrand by βj, so that we find

FG = −εzT 7/2
z

√

π

κ
ζ7/2(z̃) . (2.142)

We obtain the entropy from (2.7) with (2.142) according to

S

kB
=

7

2
T 5/2
z

√

π

κ
ζ7/2(z̃) − µzT

3/2
z

√

π

κ
ζ5/2(z̃) . (2.143)

From (2.5) we find for the internal energy

U = −5

2
FG . (2.144)

The value 5/2 can be interpreted now as the sum of the degree of freedoms, 1 for each oscillator
dimension and 1/2 for one box dimension. Above the critical temperature T > Tc, the heat
capacity (2.10) of an ideal Bose gas on a cylinder reads with (2.144)

C>
kBN

=
35

4

ζ7/2(z̃)

ζ5/2(z̃)
− 25

4

ζ5/2(z̃)

ζ3/2(z̃)
, (2.145)

which is indeed the same result as (2.122). For temperatures below T < Tc, we take the chemical
potential at its critical value z̃c = 1 and insert the number of particles (2.140) into (2.144):

U = εzN
5

2
Tz,c

ζ(7/2)

ζ(5/2)

(

Tz
Tz,c

)7/2

. (2.146)

Then, the heat capacity (2.10) below Tc reads

C<
kBN

=
35

4

ζ(7/2)

ζ(5/2)

(

Tz
Tz,c

)5/2

, (2.147)

which again coincides with the previous result (2.129).
However, we should mention that considering the limit of very fast or even infinite fast rotation
speeds Ω conflicts with the Paris experiment [1]. In particular, we can also use (2.135) to calculate
the maximum rotation speed ΩM for which the expansion (1.10) of the trapping potential of the
Paris experiment is valid:

ΩM = 1.08ω⊥ . (2.148)

Hence, considering an infinite fast rotation speed Ω → ∞ in such an anharmonic trap is not
suitable for this experiment.

2.7 Effect of Interaction

Within the ideal gas model particle interactions are neglected. In the following, we investigate a
two-particle interaction perturbatively within the path integral formalism [45]. This is justified
due to the diluteness of the gas. For dilute gases the inter-atom interaction is well approximated
by a two particle δ-interaction. The grand-canonical free energy FG (2.13) from the ideal gas is
regarded as the zeroth order approximation and we now deduce the first order correction to it.
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2.7.1 Grand-Canonical Free Energy

For T > Tc, the grand-canonical partition function in the path integral formalism is given by

Z =

∫

Dψ∗

∫

Dψ e−A[ψ∗,ψ]/~ , (2.149)

where the functional integral is performed over all bosonic fields ψ(x, τ) and its complex con-
jugate ψ∗(x, τ), that is they are periodic in imaginary time τ ∈ [0,~β]. The Euclidean action
decomposes according to

A[ψ∗, ψ] = A(0)[ψ∗, ψ] + A(int)[ψ∗, ψ] . (2.150)

Here the interaction-free contribution reads

A(0)[ψ∗, ψ] = ~

∫

~β

0
dτ

∫

~β

0
dτ ′
∫

d3x

∫

d3x′ ψ∗(x, τ)G(0)−1(x, τ ;x′, τ ′)ψ(x′, τ ′) , (2.151)

with the integral kernel

G(0)−1(x, τ ;x′, τ ′) =
1

~
δ(x − x′)δ(τ − τ ′)

{

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

}

, (2.152)

where M denotes the particle mass, V (x) the trap potential, and µ the chemical potential, as
in the previous Sections. Due to the diluteness of the Bose gas, we can restrict ourselves to deal
with a two-particle interaction and have

A(int)[ψ∗, ψ] =
1

2

∫

~β

0
dτ

∫

d3x

∫

d3x′ V (int)(x− x′)ψ∗(x, τ)ψ∗(x′, τ)ψ(x, τ)ψ(x′ , τ) , (2.153)

where V (int)(x − x′) denotes the interaction potential. By expanding the functional integral
(2.149)–(2.153) in powers of V (int)(x − x′), the expansion coefficients of the grand-canonical
partition function consist of interaction-free expectation values. These are evaluated with the
help of Wick’s rule as a sum of Feynman integrals, which are pictured as diagrams constructed
from lines and vertices. A straight line with an arrow represents the interaction-free correlation
function

x,τ x′,τ ′ ≡ G(0)(x, τ ;x′, τ ′) , (2.154)

which follows from solving

∫

~β

0
dτ ′′

∫

d3x′′G(0)−1(x, τ ;x′′, τ ′′)G(0)(x′′, τ ′′;x′, τ ′) = δ(x − x′) δ(τ − τ ′) (2.155)

with periodic boundary conditions in imaginary time. Treating the trap potential V (x) semi-
classically we are led to the Fourier representation [45]

G(0)(x, τ ;x′, τ ′) =

∫

d3p

(2π~)3
e

i
~
p(x−x′)

2 sinh β
2

[

p2

2M + V
(
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2

)

− µ
]

×
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Θ(τ − τ ′) e
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»

p2

2M
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2

”
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2 )
+ Θ(τ ′ − τ) e

− 1
~

»

p2

2M
+V

“

x+x′

2

”

−µ

–

(τ−τ ′+ ~β

2 )
}

.

(2.156)
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Furthermore, two vertices connected by a dashed line picture spatio-temporal integrals over the
two-particle interaction potential

τ
x x′ ≡ −1

~

∫

~β

0
dτ

∫

d3x

∫

d3x′ V (int)(x − x′) . (2.157)

In the following we apply these Feynman rules and determine the grand-canonical partition
function within first-order perturbation theory for the anharmonic trap (1.17) of the Paris ex-
periment. The two-body δ-interaction is given by

V (int)(x − x′) = gδ(x − x′) , (2.158)

where the two-particle coupling constant is given by

g =
4π~

2a

M
, (2.159)

wherein the s-wave scattering length a occurs. The coupling constant may be derived within
the pseudo-potential method which was established by Enrico Fermi [46]. For δ-interactions, we
have to remove the dashed lines in the Feynman diagrams and glue the dots together, so that
the diagram (2.157) reduces to

τx = −g
~

∫

~β

0
dτ

∫

d3x . (2.160)

We start with the connected vacuum diagrams which contribute to the grand-canonical free
energy

FG = − 1

β
lnZ . (2.161)

Up to the first order in the two-particle δ-interaction it reads

FG = − − 1

β
+ . . . . (2.162)

By passing we note that all higher-order connected vacuum diagrams together with their proper
weights follow from solving a graphical recursion relation [47]. The zeroth-order term in (2.162)
stands for

F (0)
G ≡ − =

1

β
Tr lnG(0)−1 , (2.163)

where the tracelog of an operator G is defined by the sum over the logarithms of its eigenvalues
gi

Tr lnG =
∑

i

ln gi . (2.164)

A semiclassical treatment of the trapping potential V (x) leads to

F (0)
G = − 1

βλ3
T

∫

d3x ζ5/2

(

eβ[µ−V (x)]
)

. (2.165)

Here, we have used the thermal de Broglie wave length (1.1) and the polylogarithmic function
(2.35). For the parameters of the Paris trap, see Table 1.2, this leads to the previous result
(2.96) with N0 = 0:

F (0)
G = −εz

T 4
z

λ2|η|ζ4(z, β̃) (2.166)
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The first-order diagram in (2.162) corresponds to

F (1)
G ≡ − 1

β
=

g

~β

∫

~β

0
dτ

∫

d3xG(0)(x, τ ;x, τ)G(0)(x, τ ;x, τ) . (2.167)

It contains the interaction-free correlation function with equal imaginary times

G(0)(x, τ ;x, τ) = lim
τ ′↓τ

G(0)(x, τ ;x, τ ′) (2.168)

which has, due to Eq. (2.156), the series representation

G(0)(x, τ ;x, τ) =
1

λ3
T

∞
∑

n=1

enβµ

n3/2
exp [−nβV (x)] (2.169)

Inserting (2.169) into (2.167) we obtain

F (1)
G =

g

λ6
T

∞
∑

n=1

∞
∑

n′=1

e(n+n′)βµ

(2πnn′)3/2

∫

d3x e−(n+n′)βV (x) . (2.170)

For the Paris trap (1.17), we obtain for the first order diagram (2.170)

F (1)
G =

g

λ6
T

∞
∑

n=1

∞
∑

n′=1

e(n+n′)βµ

(nn′)3/2

√
2π2Tza

3
z√

κ(n+ n′)
exp

(

λ4η2(n+ n′)

4κTz

)

erfc

(

λ2η
√
n+ n′

2
√
κTz

)

. (2.171)

Inserting (1.1) and (2.159), we can re-write (2.171) as

F (1)
G = εz

√
2 aT

9/2
z√

π az λ2|η| ζ 3
2
, 3
2
, 3
2
(z, β̃) , (2.172)

where we have introduced the new ζ-function

ζa,b,c(z, β̃) =

∞
∑

n=1

∞
∑

n′=1

zn+n′

nan′b(n+ n′)c
Eσ[(n+ n′)x] . (2.173)

The exponential function E is given by the Eq. (B.4). Above the critical temperature T > Tc,
the grand-canonical free energy up to the first order takes with (2.165) and (2.172) the form

FG = −εz
[

T 4
z

λ2|η|ζ4(z, β̃) −
√

2aT
9/2
z√

πazλ2|η|ζ 3
2
, 3
2
, 3
2
(z, β̃)

]

. (2.174)

2.7.2 Self-Energy

Including interaction in the Hamiltonian adds an extra energy to the system and therefore
influences its eigenvalues, in particular the ground state. As a consequence, we have to consider
also the effect of the interaction to the critical point which consists in finding the critical chemical
potential .
The phase transition from a Bose gas to a Bose-Einstein condensate occurs when the correlation
function

G(x, τ ;x′, τ ′) =
1

Z

∫

Dψ∗

∫

Dψ ψ(x, τ)ψ∗(x′, τ ′) e−A[ψ∗,ψ]/~ (2.175)

diverges. Therefore, we determine its functional inverse G−1(x, τ ;x′, τ ′) analogously to (2.155)
from

∫

~β

0
dτ ′′

∫

d3x′′G−1(x, τ ;x′′, τ ′′)G(x′′, τ ′′;x′, τ ′) = δ(x − x′) δ(τ − τ ′) (2.176)
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and investigate when it vanishes. Due to the two-particle interaction, the integral kernel (2.152)
is modified by the self-energy Σ(x, τ ;x′, τ ′) according to

G−1(x, τ ;x′, τ ′) = G(0)−1(x, τ ;x′, τ ′) − Σ(x, τ ;x′, τ ′) . (2.177)

A Fourier-Matsubara decomposition

G−1(x, τ ;x′, τ ′) =
1

~β

∞
∑

m=−∞

e−iωm(τ−τ ′)

∫

d3p

(2π~)3
e

i
~
p(x−x′)G−1(p, ωm;x) , (2.178)

with the Matsubara frequencies ωm = 2πm/~β leads with (2.152) and (2.177) to

G−1(p, ωm;x) =
1

~

{

−i~ωm +
p2

2M
+ V (x) − µ

}

− Σ(p, ωm;x) , (2.179)

where the Fourier-Matsubara transformed of the self-energy follows from

Σ(p, ωm;x) =

∫

~β

0
dτ

∫

d3x′ eiωmτ−
i
~
px′

Σ(x, τ ;x − x′, 0) . (2.180)

A zero of G−1(p, ωm;x) can only occur for vanishing momentum p = 0 and for vanishing
Matsubara frequency ωm = 0. This motivates to define the effective potential according to

Veff(x, µ) = ~G−1(0, 0;x) , (2.181)

which decomposes due to (2.179) according to

Veff(x, µ) = V (x) − µ− ~ Σ(0, 0;x) . (2.182)

The zero point of this effective potential defines the critical value of the chemical potential µc
according to

µc = min
x

[

V (x) − ~ Σ(0, 0;x)
]

. (2.183)

Thus, for a vanishing two-particle interaction, we obtain from (2.182) with Σ = 0 and (2.183)

the critical chemical potential µ
(0)
c from the minimal value of the trap potential:

µ(0)
c = min

x
V (x) ≡ Vmin . (2.184)

Now, we elaborate how this criterion changes to first-order in perturbation theory. Once the
connected vacuum diagrams of the grand-canonical free energy are known, we can follow Refs.
[48,49] so that amputating a line leads to the one-particle irreducible diagrams of the self-energy:

Σ(x, τ ;x′, τ ′) =
x,τ x′,τ ′

+ . . . . (2.185)

Its analytical expression up to first order in the two-particle δ-interaction reads

Σ(x, τ ;x′, τ ′) =
−2g

~
δ(τ − τ ′)δ(x − x′)G(0)(x, τ ;x′, τ) . (2.186)

The associated Fourier-Matsubara transformed (2.180) is given by

Σ(p, ωm;x) =
−2g

~
G(0)(x, τ ;x, τ) . (2.187)
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Inserting (2.169) yields

Σ(p, ωm;x) =
−2g

~λ3
T

∞
∑

n=1

enβµ

n3/2
e−nβV (x) . (2.188)

According to (2.183) the critical chemical potential is obtained up to the first order by

µc = Vmin +
2g

λ3
T

∞
∑

n=1

enβµc

n3/2
e−nβVmin . (2.189)

Inserting the critical chemical potential (2.184) into (2.189) it can be approximated up to the
first order in g by

µc ≈ µ(0)
c +

2g

λ3
T

ζ(3/2) . (2.190)

We note, the shifting of the critical chemical potential is independent on the trapping potential,
but depends on the temperature and the interaction strenght g.
For the trap (1.14) of the Paris experiment we have the scaling (1.16) and the interaction strength
(2.159), thus we can write (2.190) dimensionless as

µz,c ≈ µ(0)
z,c +

4a√
2πaz

T 3/2
z ζ(3/2) , (2.191)

with the semiclassical critical chemical potential (2.99).

2.7.3 Critical Temperature

From the free energy (2.174) we determine the critical temperature Tc below which the Bose gas
forms a condensate. Due to (2.9), the number of particles is given by

N =
T 3
z

λ2|η|ζ3(z, β̃) −
√

2

π

aT
7/2
z

azλ2|η|ζ 3
2
, 3
2
, 1
2
(z, β̃) . (2.192)

At the critical point, we denote the fugacity and the inverse temperature as

z̄c = eµz,c/Tz,c , β̃c =
λ4η2

4κTz,c
. (2.193)

Inserting the critical values (2.193) with the critical chemical potential (2.191) into (2.192) and

performing a Taylor expansion around µ
(0)
z,c up to the first order in a/az yields

N =
T 3
z,c

λ2|η|ζ3(z
(0)
c , β̃c) +

a

az

√

2

π

T
7/2
z,c

λ2|η|
[

2ζ(3/2)ζ2(z
(0)
c , β̃c) − ζ 3

2
, 3
2
, 1
2
(z(0)
c , β̃c)

]

, (2.194)

where z
(0)
c = exp (µ

(0)
z,c/Tz,c) is the semiclassical critical chemical potential. For the interaction

free gas, a = 0, the transition temperature T
(0)
z,c is determined through (2.100). For a non-

vanishing interaction, we expand Tz,c around T
(0)
z,c

Tz,c = T (0)
z,c

(

1 +
∆Tz,c

T
(0)
z,c

)

(2.195)
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increases the cδ. For very fast rotation it satu-
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and insert it into (2.194) to get in first order of a/az and ∆Tz,c

N =
T

(0) 3
z,c

λ2|η|

{

ζ3(z
(0)
c , β̃(0)

c ) −
[

µ
(0)
z,c

T
(0)
z,c

ζ2(z
(0)
c , β̃(0)

c ) − 5

2
ζ3(z

(0)
c , β̃(0)

c )

− β̃(0)
c

(

σζ2(z
(0)
c ) − ζ2(z

(0)
c , β̃(0)

c )
)

]

∆Tz,c

T
(0)
z,c

}

+
a

az

√

2

π

T
(0) 7/2
z,c

λ2|η|
[

2ζ(3/2)ζ2(z
(0)
c , β̃(0)

c )

−ζ 3
2
, 3
2
, 1
2
(z(0)
c , β̃(0)

c )
]

. (2.196)

Here, β̃
(0)
c = λ4η2/(4κT

(0)
z,c ) is the semiclassical inverse temperature. Using (2.98) with N0 = 0

equation (2.196) leads to
∆Tz,c

T
(0)
z,c

= − a

λ
(0)
T

· cδ(Ω) , (2.197)

where the thermal de Broglie wave length is λ
(0)
T = az

√

2π/T
(0)
z,c and the coefficient

cδ(Ω) =
8
(

ζ(3/2)ζ2(z
(0)
c , β̃

(0)
c ) − ζ 1

2
, 3
2
, 3
2
(z

(0)
c , β̃

(0)
c )
)

5ζ3(z
(0)
c , β̃

(0)
c ) − 2

[

µ
(0)
z,c

T
(0)
z,c

ζ2(z
(0)
c , β̃

(0)
c ) − β̃

(0)
c

(

σζ2(z
(0)
c ) − ζ2(z

(0)
c , β̃

(0)
c )
)

] . (2.198)

Note that we have made use of the fact

ζ a,b,c−1(z, β̃) = ζ a−1,b,c (z, β̃) + ζ a,b−1,c (z, β̃) , (2.199)

which follows immediately from (2.173).
Although the critical chemical potential (2.191) is not influenced by the anharmonicity κ, the
coefficient of the shift to the temperature (2.198) does depend on it. But this is only due to the

involved ζ-functions. In the harmonic trap limit, i.e. β̃
(0)
c → ∞, equation (2.198) reduces to

cδ =
4

3
·
[

ζ(3/2)ζ(2) − ζ 1
2
, 3
2
, 3
2
(1)
]

≈ 3.427 , (2.200)

where we have introduced in close analogy to (2.173)

ζ a,b,c (1) =
∞
∑

n=1

∞
∑

n′=1

1

nan′b(n+ n′)c
. (2.201)
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Figure 2.14: Shift of the critical temperature due to interaction versus rotation speed.
The dashed line is the zeroth order semiclassical approximation, the solid line the first
order corrected semiclassical critical temperature.

Eq. (2.200) was first derived by S. Giorgini et al. [50] for a non rotating harmonic trap and was
experimentally confirmed by A. Aspect et al. [51] in 2004 with a Bose-Einstein condensate of
87Rb.
For the non rotating (Ω = 0) trap of the Paris experiment (1.17), the coefficient (2.198) has the
value

cδ(0) ≈ 3.52 . (2.202)

Hence, the anharmonicity κ increases the coefficient compared to that of the harmonic trap.
In Figure 2.12, we show the dependency of the coefficient (2.198) on the rotation speed Ω.
There is a strong dependence and we ask if the interaction still can be treated perturbatively.
In Figure 2.13 we see that the first order correction to the critical temperature (2.197) ranges
between 2.5% and 3.3%, hence this is consistent with perturbational treatment of the interaction.
Surprisingly, the shift of the critical temperature (2.197) decreases with increasing rotation
speed. This effect s due to the critical temperature itself, since the coupling constant cδ (2.198)
in fact increases. Next, we should certainly concern two further limits, the limit Ω → ω⊥ and
the limit Ω → ∞ for which in both cases we find

cδ =
4 ζ(3/2)2

5 ζ(5/2)
≈ 4.07 , (2.203)

where we have used

ζ a,b,0 (1) =

∞
∑

n=1

∞
∑

n′=1

1

nan′b
= ζ(a)ζ(b) . (2.204)

We note that the constant (2.198) in the limit Ω → ∞ is larger than that of a pure harmonic
trap.
In Figure 2.14 we present the semiclassical critical temperature and the first order corrected one
according to the δ-interaction for a Bose gas of 87Rb and the values of the Paris experiment,
see Table 1.2. We note that in the fast rotation regime both temperatures are very close to each
other.



Chapter 3

Dynamics of a Trapped Condensate

In the first Sections 3.1 and 3.2 of this Chapter we derive the hydrodynamic equations for the
condensate wave function, which are similar to the equations of a perfect fluid. The reason
for this similarity is that they are related with conservation laws for particle number and for
total momentum. In Section 3.3 of this chapter we describe a rotating trap in the corotating
frame by performing a coordinate transformation. By this we get an effective trapping potential,
which depends on the rotation frequency Ω of the trap. In the Sections 3.4–3.7 we investigate
the hydrodynamic collective oscillations for various traps and analyze their dependence on the
rotation speed Ω. We compare the results of Section 3.4 with a variational consideration in
Section 3.8. Finally, we determine in Section 3.9 the free expansion of the cloud after switching
off the trap which is important for analyzing experimental data.

3.1 General Formalism

From the theoretical point of view a Bose-Einstein condensate at zero temperature is described
by the Gross-Pitaevskii equation, which is a generalization of the Schrödinger equation:

{

i~
∂

∂t
+

~
2

2M
∆ − V (x, t) − g|Ψ|2

}

Ψ = 0 . (3.1)

Here M denotes the atomic mass, V (x, t) the trapping potential and g the interaction strength
(2.159). The normalization condition for the condensate wave function Ψ(x, t) is given by

∫

d3x |Ψ|2 = N0, (3.2)

where N0 is the mean number of atoms occupying the ground state. The time-dependent Gross-
Pitaevskii equation (3.1) may be derived from the principle of minimal action

δA[Ψ∗,Ψ] = 0 , (3.3)

where the star denotes the complex conjugation and the Gross-Pitaevskii action is given by

A[Ψ∗,Ψ] =

∫ t2

t1

dt

∫

d3x L , (3.4)

with the Lagrangian density

L = i~Ψ∗∂Ψ

∂t
− ~

2

2M
∇Ψ∗

∇Ψ − V (x, t)Ψ∗Ψ − g

2
(Ψ∗Ψ)2. (3.5)
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Indeed, the minimal action principle (3.4) yields the Euler-Lagrange equation

∂L
∂Ψ∗

− ∇
∂L

∂∇Ψ∗
− ∂

∂t

∂L

∂
∂Ψ∗

∂t

= 0 , (3.6)

which leads with (3.5) to the time-dependent Gross-Pitaevskii equation (3.1).

3.2 Hydrodynamic Equations

One obtains the continuity equation of the condensate by multiplying the time-dependent Gross-
Pitaevskii equation (3.1) with Ψ∗(x, t) and subtracting the complex conjugate of the resulting
equation. So the continuity equation reads

∂

∂t
|Ψ|2 + ∇ ·

[

~

2Mi
(Ψ∗

∇Ψ − Ψ∇Ψ∗)

]

= 0 , (3.7)

which coincides with that of the Schrödinger equation. This is due to the fact that the non linear
term in the Gross-Pitaevskii equation (3.1) is real. Introducing the particle density n = |Ψ|2
Eq. (3.7) may be re-written as

∂

∂t
n+ ∇ · (nv) = 0 , (3.8)

where the velocity of the condensate is defined by

v =
~

2iMn
(Ψ∗

∇Ψ − Ψ∇Ψ∗) . (3.9)

If we decompose the complex wave function Ψ in its amplitude η and phase ϕ according to

Ψ = ηeiϕ , (3.10)

we find simple expressions for the density n and the velocity of the condensate v:

n = η2 , v =
~

M
∇ϕ . (3.11)

If ϕ is non-singular, it follows immediately that the condensate is irrotational, since v is a
gradient field, i.e. ∇×v = 0. Therefore, the flow of the condensate is more restricted than that
of a classical fluid.
The hydrodynamic aspect of the condensate is reflected by the equations of motion for η and
ϕ. They may be found by inserting (3.10) into (3.1) and separating the real and the imaginary
parts. We obtain from the real part

−~
∂ϕ

∂t
= − ~

2

2M

[

∆η

η
− (∇ϕ)2

]

+ V (x, t) + gη2 (3.12)

and from the imaginary part we get

~

η

∂η

∂t
=

~
2

2M

[

2∇ϕ
∇η

η
+ ∆ϕ

]

. (3.13)

The latter equation (3.13) is again the continuity equation (3.7). To see this we multiply (3.13)
with 2η2 and arrive at

∂η2

∂t
+ ∇ ·

(

η2 ~

M
∇ϕ

)

= 0 . (3.14)
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With Eqs. (3.9) and (3.11) we make out the equivalence of (3.14) with (3.7).
From the real part (3.12) we derive the equation of motion for the velocity field (3.11). To this
end we take the gradient of equation (3.12) and have with (3.11):

∂v

∂t
= −∇ ·

[

v2

2
− ~

2

2M2

∇
2√n√
n

+
V (x, t) + gn

M

]

. (3.15)

We compare the equations (3.14) and (3.15) with the hydrodynamic equations for a perfect fluid,
which are the continuity equation (3.7) and the Euler equation, see [52]

n

[

∂v

∂t
+ (v · ∇)v

]

= nf − ∇p , (3.16)

where f is the force and p the pressure.
Since

(v · ∇)v =
1

2
∇v2 − v × (∇ × v) , (3.17)

we can rewrite the Euler equation (3.16) as

∂v

∂t
− v × (∇ × v) = f − 1

2
∇ v2 − ∇ p

n
. (3.18)

Thus the equations (3.15) and (3.18) are very similar, if we identify

f =
1

M
∇[V (x, t) + gn], p = − ~2

2M2

√
n∇

2√n . (3.19)

But there are two important differences between (3.15) and (3.18). The first is that the Euler
equation (3.18) contains the additional term v × (∇ × v). However, since the velocity field of
the superfluid (3.11) corresponds to a potential flow, ∇ × v = 0, the term v × (∇ × v) does
not contribute to the Euler equation (3.18). Actually, the latter term corresponds to a friction
force from which an ideal fluid is not infected. Nevertheless, this is only true if ϕ is not singular,
which applies here but fails in the discussion of the motion of vortices.
Hence, the more crucial difference between (3.15) and (3.18) is the term we identified with the
pressure p to which we refer to as the quantum pressure. It describes forces due to the spatial
variations in the magnitude of the wave function for the condensed state. We remark that if
the spatial scale of variations of the condensate wave function is l, the quantum pressure p is of
order ~

2(2M2l5)−1 while the pressure corresponding to the term gM−1η2 is of order g(Ml3)−1.
Therefore, we can neglect the quantum pressure p if l is large enough.

3.3 Rotating Trap

Consider a three-dimensional vector space which is spanned by the unit vectors {uα} with
α ∈ {x, y, z}. We suppose that the trap is rotating about an axis with a frequency Ω and is
constant in time elsewise so that in the corotating frame (u′, t) we have V (x, t) = V (x′). Note
that x′ depends on t. Without loss of generality, we may also assume that the trapping potential
V (x, t) rotates about the z-axis with the rotation vector Ω = Ωuz.
Then, the transformation is given by the rotation matrix

R(t) =





cos Ωt − sin Ωt 0
sinΩt cos Ωt 0

0 0 1



 . (3.20)
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The unit vectors transform like u′
α(t) = R(t)uα. Thus, the time derivative of the unit vectors

u′
α(t) becomes

d

dt
u′
α(t) = Ṙ(t) · uα = Ṙ(t) · RT (t) · u′

α(t) . (3.21)

To shorten notation, we write R̃(t) = Ṙ(t) ·RT (t), which reads due to (3.20)

R̃(t) = Ω





0 −1 0
1 0 0
0 0 0



 . (3.22)

We note that R̃(t) is an antisymmetric matrix. This is a general fact, since for any rotation
matrix R(t) ·R(t)T = 1 is valid from which follows by a derivation with respect to the time t that
Ṙ(t) ·RT (t)+[Ṙ(t) ·RT (t)]T = 0. Furthermore, the rotation matrix R̃(t) is a total antisymmetric
matrix, which can be expressed by the rotation vector Ω

R̃ij(t) = −εijkΩk , (3.23)

where we have used Einstein’s sum convention. With εijk we denote the total antisymmetric
Levi-Cività tensor which is related to the vector-cross product via

εijk R̃k ·
(

u′
α(t)

)

j
=
(

u′
α(t) × Ω

)

i
. (3.24)

Therefore, we can write for (3.21)

d

dt
u′
α(t) = −u′

α(t) × Ω . (3.25)

An arbitrary vector b(t) can be expressed either in the frame (u, t) or in (u′, t):

bi(t)ui = b′i(t)u
′
i(t) . (3.26)

But for the time derivative of such a vector b(t) holds with(3.25):

d

dt
b(t) =

d

dt
bi(t)ui =

d b′i(t)

dt
u′
i(t) + Ω× b(t) . (3.27)

We apply this transformation to the Lagrange density (3.5) with the assumption that the primed
frame is the corotating one. Hence, the primed coordinates are constant in time. With Ψ(x, t) =
Ψ′(x′, t) the derivation with respect to the time t yields according to the chain rule

∂

∂t
Ψ(x, t) =

∂

∂t
Ψ′(x′, t) +

(

Ω × x′
)

∇
′Ψ′(x′, t) , (3.28)

where the first derivation on the right hand side of (3.28) is due to the second argument of the
wave function. The transformation R(t) is not depending on the spatial coordinates, therefore
the gradient remains unchanged in the new frame

∇ → ∇
′ = ∇ . (3.29)

Inserting (3.28) and (3.29) into the Lagrange density (3.5) yields

L = Ψ′?i~

[

∂

∂t
+ (Ω × x′) · ∇′

]

Ψ′ − ~
2

2M
∇

′Ψ′?
∇

′Ψ′ − V (x′)Ψ′?Ψ′ − g

2
(Ψ′?Ψ′)2. (3.30)

We omit the primes and use
i~(Ω × x) · ∇ = −ΩL̂ , (3.31)
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where L̂ = ~/i (x× ∇) is the first quantized one-particle angular momentum operator which
reduces here for Ω = Ωuz to L̂uz = L̂z. Inserting the angular momentum L̂z into (3.30) and
performing a partial integration on the kinetic term, with the assumption that the border of
integration does not contribute, we arrive at

L = Ψ∗

[

i~
∂

∂t
− ΩL̂z

]

Ψ +
~

2

2M
Ψ∗∆Ψ − V (x)Ψ∗Ψ − g

2
(Ψ∗Ψ)2 . (3.32)

In order to eliminate the extra (linear) spatial derivative ΩL̂z, we perform a phase shift to the
wave function and choose a proper phase in the end. The transformation is given by

Ψ = Ψ′eiϕ(x) , (3.33)

where ϕ(x) is real. Then, the Lagrange density (3.32) becomes omitting the primes

L = Ψ∗

[

i~
∂

∂t
− ΩL̂z − iΩ(L̂zϕ)

]

Ψ − V (x)Ψ∗Ψ − g

2
(Ψ∗Ψ)2

− ~
2

2M
Ψ∗
[

∆Ψ + 2i(∇ϕ)(∇Ψ) + (∇ϕ)2Ψ
]

. (3.34)

We specify the phase ϕ(x) by assuming

i
~

2

M
Ψ∗(∇ϕ)(∇Ψ) = −Ψ∗i~ΩL̂zΨ = −Ψ∗i~ (Ω × x) ∇Ψ , (3.35)

which implies

∇ϕ(x) = −M
~

(Ω× x) =
MΩ

~





y
−x
0



 . (3.36)

Hence, it is not a integrable function and we conclude that the phase ϕ(x) has to be singular as

∇ × ∇ϕ(x) =
MΩ

~
2uz 6= 0 . (3.37)

Thus, the phase ϕ(x) can not be derivated twice continuously. Inserting (3.35) and (3.36) into
(3.34) we arrive at

L = Ψ∗i~
∂Ψ

∂t
− ~

2

2M
∇Ψ∗

∇Ψ − V (x,Ω)Ψ∗Ψ − g

2
(Ψ∗Ψ)2 , (3.38)

where we denote the rotating trap according to

V (x,Ω) = V (x) − MΩ2

2
(x2 + y2) . (3.39)

Thus, in the corotating frame the rotating trap obtains an additional repulsive harmonic poten-
tial in the xy-plane of the corotating frame.

3.4 Collective Modes in Traps

We consider the equilibrium of the condensate described by the Gross-Pitaevskii equation (3.1).
The equilibrium wave function is constant in time wherefore we separate the condensate function
according to

Ψ(x, t) = Ψ(x)e−iµt/~ , (3.40)
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with a constant chemical potential µ. The chemical potential plays the same role as the en-
ergy eigenvalue does in the ordinary linear Schrödinger theory. With the separation (3.40) the
stationary Gross-Pitaevskii equation reads in the corotating frame

{

µ+
~

2

2M
∆ − V (x) − g|Ψ(x)|2

}

Ψ(x) = 0 . (3.41)

In the Thomas-Fermi approximation, which consists in neglecting the kinetic energy, the sta-
tionary Gross-Pitaevskii equation (3.41) simplifies to

[

V (x) + g|Ψ(x)|2
]

Ψ(x) = µΨ(x) . (3.42)

We note that the Thomas-Fermi approximation is closely related to the semiclassical approx-
imation, since it is related with the classical limit ~ → 0. The Thomas-Fermi approximation
(3.42) of the Gross-Pitaevskii equation (3.41) yields an algebraic equation for the density

nTF ≡ |Ψ(x)|2 =
µ− V (x)

g
. (3.43)

In the Thomas-Fermi approximation, the chemical potential µ is due to the normalization con-
dition (3.2) obtained from (3.43) by a spatial integration over the positive integrand.
We extend the Thomas-Fermi approximation to the Euler Equation (3.15) by taking the limit
~ → 0 which results in neglecting the kinetic energy and the spatial variations of the density
according to the quantum pressure p (3.19)

M
∂v

∂t
= −∇ ·

[

v2

2
+ V (x) + gn

]

, (3.44)

where the velocity field is given through (3.9). We note that the Thomas-Fermi approximated
density (3.43) and a vanishing velocity field are the equilibrium solutions of the Euler equation
(3.44)

neq =
µ− V (x)

g
, veq = 0 , (3.45)

We are interested in periodic solutions of the Gross-Pitaevskii equation (3.1) which oscillate
around the equilibrium state of the condensate, the hydrodynamic collective modes. Therefore,
we decompose the density n into the equilibrium density neq and a small deviation from it δn
and analogously the velocity field v. We write explicitly

n = neq + δn , v = veq + δv . (3.46)

We linearize the continuity equation (3.8) and the Euler equation (3.44) with respect to the
departures from the equilibrium δn and δv. For the continuity equation (3.8) insertion of (3.46)
together with (3.45) yields

∂ δn

∂t
= −∇

[

µ− V (x)

g
δv

]

. (3.47)

Inserting (3.46) with (3.45) into the Thomas-Fermi approximated Euler equation (3.44) leads to

M
∂ δv

∂t
= −g∇δn . (3.48)

Combining the two coupled partial differential equations (3.47) and (3.48) by taking the time
derivative of (3.47) we obtain the equation of motion for the deviation from the equilibrium
density (3.45)

M
∂2δn

∂t2
= [µ− V (x) ] ∇2 δn− ∇V (x) · ∇δn , (3.49)
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where we have used the fact that µ is constant under stationary conditions so that ∇µ = 0.
We consider oscillations around this equilibrium density with a time dependence δn = δn(x) eiωt.
Then, the equation of motion (3.49) takes the form

Mω2δn(x) = − [µ− V (x) ] ∇2 δn(x) + ∇V (x) · ∇δn(x) . (3.50)

For any trap V (x), Eq. (3.50) represents a partial differential equation for the deviation δn of
the equilibrium density (3.43) in the Thomas-Fermi approximation. In the following subsections
we discuss some solutions of (3.50) for harmonic and anharmonic trapping potentials.

3.5 Harmonic Trap with Spherical Symmetry

We consider a harmonic, isotropic trap with the trapping potential

V (x) =
Mω2

0

2
(x2 + y2 + z2) . (3.51)

The geometry of the trap suggests to work in spherical coordinates, where the gradient and the
Laplacian reads

∇ = ur
∂

∂r
+ uθ

1

r

∂

∂θ
+ uφ

1

r sin θ

∂

∂φ
, (3.52)

∇
2 =

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
, (3.53)

where we have transformed the Cartesian coordinates {x, y, z} into spherical {r, θ, φ} ones. The
equilibrium density (3.45) is due to the Thomas-Fermi approximation in the harmonic trap
(3.51) given by

neq =
2µ−Mω2

0r
2

2g
(3.54)

and is a positive quantity. Since µ is a constant in stationary conditions, Eq. (3.54) sets a
maximal radius R at which the equilibrium density (3.54) vanish:

R2 =
2µ

Mω2
0

. (3.55)

This maximal radius R is called the Thomas-Fermi radius and describes under stationary con-
ditions the elongation of the condensate. Here, the condensate cloud is a ball of the radius R.
Inserting (3.55 into the equation of motion (3.50) we obtain

Ĝs δn(x) = γ2 δn(x) , (3.56)

with the differential operator

Ĝs = r
∂

∂r
− 1

2
(R2 − r2)∇2 , (3.57)

whereas γ = ω/ω0 denotes the square root of the eigenvalue of Ĝs. Because of the spherical
symmetry, the angular and the radial part of the solution can be separated according to

δn(x) = A(r)Ylm(θ, φ) , (3.58)

where Ylm(θ, φ) are the spherical harmonics. With this ansatz (3.58), we obtain from (3.56)
with (3.57) an ordinary differential equation for A(r):

γ2A(r) = rA′(r) − 1

2

(

R2 − r2
)

{

∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

}

A(r) , (3.59)
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where a prime denotes a derivation with respect to r. We remark that the first term in (3.57)
preserves the power of r but the second does not. In order to find the general solution it is
convenient to separate out the radial dependence due to the centrifugal barrier l(l + 1)/r2 by
defining the new radial function B(r) = A(r)/rl. The resulting ordinary differential equation
for B(r) reads

γ2B(r) = lB(r) + rB′(r) − 1

2

(

R2 − r2
)

[

B′′(r) +
2(l + 1)B′(r)

r

]

. (3.60)

We introduce a new dimensionless variable u = r2/R2 so that (3.60) simplifies to

u(1 − u)B′′(u) +

(

2l + 3

2
− 2l + 5

2
u

)

B′(u) +
γ2 − l

2
B(u) = 0 , (3.61)

where a prime now denotes a derivation with respect to u. This differential equation (3.61) is
of the form

{

u(1 − u)
∂2

∂u2
+ [c− (a+ b+ 1)u]

∂

∂u
− ab

}

F (a, b; c;u) = 0 (3.62)

which is known as the hypergeometric differential equation. One of the two solutions of the
hypergeometric differential equation (3.62) is the hypergeometric series

F (a, b; c;u) =

∞
∑

ν=0

(a)ν(b)ν
(c)ν

uν

ν!
= 1 +

ab

c
u+

a(a+ 1)b(b+ 1)

c(c+ 1)

u2

2
+ . . . , (3.63)

where (a)ν denotes the Pochhammer symbol

(a)ν = a(a+ 1) . . . (a+ ν − 1) =
Γ(a+ ν)

Γ(a)
. (3.64)

We list some properties of the hypergeometric function in Appendix C. The second solution
(C.2) of (3.62) must be neglected to avoid possible divergencies at the origin of the trap. This is
necessary for the conservation of the number of particles and the smallness condition δn/n� 1.
The function (3.63) is behaved in the limit r → ∞ and u → ∞ respectively, if it reduces to a
finite sum. Therefore, either a or b must be a negative integer −nr. Because of the symmetry
F (a, b; c;u) = F (b, a; c;u) we can choose freely and set a = −nr. Comparing the coefficients of
(3.61) and (3.62), one sees that c = l + 3/2 and b = nr + l + 3/2. , while for the eigenvalue
γ = ω/ω0 one finds

ω = ω0

√

l + 3nr + 2nrl + 2n2
r . (3.65)

The normal modes of the cloud are sums of terms of the form

δn(x) = δn(nr, l,m) = CrlF

(

−nr, nr + l +
3

2
; l +

3

2
;
r2

R2

)

Ylm(θ, φ) . (3.66)

For nr = 0 and with increasing l, the modes (3.66) become more localized near the surface of
the cloud, since δn ∝ rl with the restriction δn/neq � 1. Therefore, they are referred to as
surface waves. The l = 0 mode is trivial. It represents a change of the density which is constant
everywhere. The resulting change of the chemical potential is likewise the same everywhere
inside the cloud. Therefore, there is no restoring force and the frequency of the mode is zero.
The three l = 1 modes correspond to a translation of the cloud with no change in the internal
structure.
For the mode l = 1, m = 0, the density variation is proportional to r cos θ = z. In equilibrium,
the density profile (3.54) is with (3.55) neq(r) ∝ (1− r2/R2). If the center of the cloud is moved
in the z direction a distance ζ, the change in the density is given by δn = −ζ∂neq/∂z ∝ z.
They behave like particles in an external harmonic potential. The motion of the center of mass
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l m δn(0, l,m) γ

2 0 r2
√

5

16π
(3 cos2 θ − 1)

√
2

2 ±1 r2
√

5

24π
3 sin θ cos θ e±iφ

√
2

2 ± 2 r2
√

5

96π
3 sin2 θ e±i2φ

√
2

l ± l rl sinl θ e±ilφ
√
l

l m δn(1, l,m) γ

0 0

(

1 − 5r2

3R2

)

1√
4π

√
5

1 0

(

r − 7r3

5R2

)

√

3

4π
cos θ

√
8

1 ±1

(

r − 7r3

5R2

)

√

3

8π
sin θ e±iφ

√
8

l m

(

rl − 2l + 5

2l + 3

rl+2

R2

)

Ylm(θ, φ)
√

3l + 5

Table 3.1: Both Tables show special solutions of (3.56) and the corresponding eigenvalue
γ. The left-hand Table is for nr = 0. These are the quadrupole surface modes, they have
no nodes. In the right-hand Table is nr = 1. Here, the l = 0 is the breathing mode.

rcm is that of a free particle of mass N0M moving in a potential N0Mω2
0r

2
cm/2 with the same

frequency ω2
0 that a single particle would have. The center of mass and the relative motions are

separable for interactions that depend only on the relative coordinates of the particles.
For nr = 1 only the l = 0 mode has a special name. It is spherical symmetric and, as one can
see from equation (3.48) with the Thomas-Fermi approximation (3.45), the radial velocity field
has the same sign everywhere. That is, the cloud looks like a breathing balloon. Therefor it is
referred to as the breathing mode. A survey of these special modes is given in Table 3.1.

3.6 Harmonic Trap with Cylindrical Symmetry

We discuss some solutions for a cylindrical symmetric harmonic trap potential. This special
trap symmetry is realized in many experiments and has been solved completely by M. Fliesser
[57] in 1997. We write the potential in the form

V (x) =
M

2
ω2
z(λ

2r2⊥ + z2) , (3.67)

where r⊥ =
√

x2 + y2 is the radius in the xy-plane and λ = ω⊥/ωz is the anisotropy parameter.
For such a trap the equilibrium density in the Thomas-Fermi approximation (3.45) is given by

n =
µ

g

(

1 − λ2r2⊥
R2

− z2

R2

)

. (3.68)

The condensate is an ellipsoid with a semi-axes in z-direction according to µ− V (0, 0, R) of the
length

R2 =
2µ

Mω2
z

. (3.69)

In cylindrical coordinates the the gradient and the Laplace operator read

∇ = ur
∂

∂r⊥
+ uθ

1

r⊥

∂

∂φ
+ uz

∂

∂z
, (3.70)

∇
2 =

1

r⊥

∂

∂r⊥
r⊥

∂

∂r⊥
+

1

r2⊥

∂2

∂φ2
+

∂2

∂z2
. (3.71)
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Thus, equation (3.50) reads
Ĝc δn = γ2 δn , (3.72)

with the differential operator for the cylindrical trap

Ĝc = λ2r⊥
∂

∂r⊥
+ z

∂

∂z
− 1

2

(

R2 − λ2r2⊥ − z2
)

∇
2 . (3.73)

and the eigenvalue γ = ω/ωz similar to (3.56). Because of the axial symmetry there are solutions
proportional to eimφ, where m is an integer. One simple class of solutions is of the form

δn ∝ rl⊥e
±ilφ = (r sin θ)le±ilφ ∝ rlYl,±l(θ, φ) . (3.74)

The first proportionality in the above relation is given in cylinder coordinates, while in the
second relation we have used spherical coordinates. Furthermore, we take into account the
relation Yl,±l(θ, φ) ∝ sin θl, since the spherical harmonics are defined by

Yl,m(θ, φ) = Nm
l P

m
l (cos θ)eimφ , (3.75)

where the associated Legendre polynomials Pml are given by

Pml (x) =
(−1)m

2ll!

(

1 − x2
)m/2 dl+m

(

x2 − 1
)l

dxl+m
(3.76)

and the normalization coefficient Nm
l reads

Nm
l =

√

2l + 1

4π

(l −m)!

(l +m)!
. (3.77)

We transform Eq. (3.72) for the eigenfrequencies into spherical coordinates with r⊥ = r sin θ
and use (3.53) to obtain

Ĝs(λ
2) δn = γ2 δn , (3.78)

with differential operator

Ĝs(λ
2) =

(

λ2 sin2 θ + cos2 θ
)

r
∂

∂r
+ sin θ cos θ(λ2 − 1)

∂

∂θ
− 1

2
Q(µ)∇2 . (3.79)

As a abbreviation we have introduced

Q(µ) = R2 − (λ2 sin2 θ + cos2 θ)r2. (3.80)

In the limit λ = 1, Eq. (3.79) reproduces the spherical differential operator (3.56).
In the special case m = ±l, we have ∇

2δn = 0 for the deviation δn of the ansatz (3.75). Thus,
we obtain with (C.5) from (3.78) the eigenfrequencies γ

ω =
√
l λωz . (3.81)

Another simple solution is obtained by the ansatz

δn = CrlYl,±(l−1)(θ, φ) , (3.82)

for which we find with (3.75) and (C.5) as well as (C.6)

r
∂

∂r
δn = lδn , (3.83)

∂

∂θ
δn =

[

cos θ

sin θ
(l − 1) − sin θ

cos θ

]

δn . (3.84)
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Inserting (3.83) and (3.84) into (3.79) gives

ω =
√

(l − 1)λ2 + 1ωz . (3.85)

More generally, we insert the solution of the isotropic trap

δn(0, l,m) = Nm
l r

lYl,m(θ, φ) (3.86)

into the differential equation for the eigenmodes (3.78). With help of (C.5) and ( C.6) we
eliminate the cos θ terms in (3.79) and we find for l − 2 ≥ m:

Gs(λ
2) δn(0, l,m) =

(

l2 − l +m2

2l − 1
λ2 +

l2 −m2

2l − 1

)

δn(0, l,m)

+
(1 − λ2)(l +m)(l +m− 1)

2l − 1
r2

Nm
l

Nm
l−2

δn(0, l − 2,m) , (3.87)

Note that the above discussed special cases m = ±l, ±(l − 1) are such solutions for which the
term proportional to D in (3.87) vanishes. Furthermore, we note that we obtain for spherical
symmetry λ2 = 1 the same eigenfrequencies (3.65) with nr = 0 for the cloud as before .
Regarding the case l = 2, m = 0, the deviation from the equilibrium density is δn = ar⊥+bz with
the decomposition of the radius r in spherical coordinates into cylinder components r2 = r2⊥+z2

and some constants a, b. From (3.87) we obtain with δn = ar⊥ + bz

Ĝs(λ
2)
(

ar2⊥ + bz2
)

= cr2⊥ + dz2 , (3.88)

with some constants a, b, c, d. Since this is nearly a solution of the eigenvalue problem we reenter
(3.79) with the ansatz

δn = a+ br2⊥ + cz2 . (3.89)

Insertion of (3.89) into (3.79) yields three algebraic equations for a, b, and c which have non
trivial solutions if, in matrix notation, the determinant of the matrix vanishes. We find, in
matrix notation, the following set of equations











ω 2R2ω2
z R2ω2

z

0 ω2 − 4λ2ω2
z λ2ω2

z

0 2ω2
z ω2 − 3ω2

z





















a

b

c











=











0

0

0











. (3.90)

The determinant of the matrix in (3.90) vanishes for ω = 0, which is the trivial mode, or for

ω2 = ω2
± = 2ω2

z

(

3

4
+ λ2 ±

√

λ4 − λ2 +
9

16

)

. (3.91)

In the isotropic limit λ2 = 1 these two eigenfrequencies are

ω− =
√

2ωz ω+ =
√

5ωz , (3.92)

which makes it reasonable to interpret these two frequencies ω2
± as a coupling of the two modes

(0, 2, 0) and (1, 0, 0) in the isotropic trap. The solutions we have found are compared with the
spherical modes in Table 3.2.
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nr l m isotrop anisotrop

0 2 ±2 ω =
√

2ω0 ω =
√

2λωz

0 2 ±1 ω =
√

2ω0 ω =
√

1 + λ2 ωz

0 2 0 ω =
√

2ω0 ω = ω−

1 0 0 ω =
√

5ω0 ω = ω+

0 l ±l ω =
√
l ω0 ω =

√
l λωz

0 l ±(l − 1) ω =
√
l ω0

√

1 + (l − 1)λ2 ωz

Table 3.2: Hydrodynamic collective modes in cylindrical harmonic trap. We face the
lowest lying modes of the cylindrical harmonic trap with corresponding modes of a
trap with spherical symmetry. The modes ω± are given by (3.91).

3.7 Anharmonic Trap with Cylindrical Symmetry

Now we add to the anisotropic harmonic trapping potential an additional anharmonic term and
treat the latter as a small perturbation. The trap of the Paris experiment [1] is of that form
(1.17). Without rotation, the anharmonicity of this trap is small, about 1% of the harmonic
part. But with increasing rotation speed Ω the situation changes and the anharmonicity becomes
very large compared to harmonic potential. Therefore, in the fast rotation regime perturbation
theory is not applicable. However, we have the golden tool of variational perturbation theory [58]
to treat even strong couplings perturbatively and to overcome these problems. This systematic
extension of a variational approximation has been proposed for path integrals by R.P. Feynman
and H. Kleinert [59]. Thus, we can investigate two regimes, the first is the slow rotation and
the second is the fast rotation regime.
We write in spherical coordinates the cylindrical symmetric anharmonic trapping potential as

V (x) =
Mω2

z

2

(

λ2η r2 sin2 θ + r2 cos2 θ +
k

2
r4 sin4 θ

)

, (3.93)

where k = εzκ/a
4
z is the anharmonicity, λ = ω⊥/ωz the anisotropy and η = 1 − Ω2/ω2

⊥ the
rotation parameter similar to (1.18). Then, the differential equation (3.50) reads

Ĝa δn = γ2 δn , (3.94)

with γ = ω/ωz as before. The differential operator Ĝa decomposes as

Ĝa = Ĝs(λ
2η) + k Ĝp , (3.95)

into the unperturbed cylindrical differential operator Ĝs from (3.79) and the perturbative con-
tribution

Ĝp = r2 sin2 θ

[

sin2 θr
∂

∂r
+ sin θ cos θ

∂

∂θ

]

− 1

2

(

a2
zR

2 − 1

2
r4 sin4 θ

)

∇
2 (3.96)

The Thomas-Fermi radius R is determined by the normalization condition (3.2) within the
Thomas-Fermi approximation (3.45). The Thomas-Fermi radius R in (3.96) can be obtained
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according to A.L. Fetter [60] in the following way. The normalization condition (3.2) takes in
the Thomas-Fermi approximation (3.45) the form

N0 =
µ

g

∫

d3x

[

1 − V (x)

µ

]

Θ [µ− V (x)] , (3.97)

where Θ(x) denotes the Heaviside function, i.e. the integral is to be taken over the volume of
the cloud. The normalization condition (3.97) in cylinder coordinates yields

N0 =
µ

g

∫ r0

0
dr⊥ r⊥

∫ 2π

0
dφ

∫ z0

−z0

dz

[

1 − λ2η r2⊥
l2ωz

− z2

l2ωz

− k r4⊥
2 l2ωz

]

, (3.98)

where we have introduced

lωz =

√

2µ

Mω2
z

(3.99)

and the radius of the cloud along the z-axis z0, which is given by

z0 =

(

l2ωz
− λ2η r2⊥ − k

2
r4⊥

)1/2

. (3.100)

Integrating out the φ and the z dependence yields

N0 =
4πµ

g

∫ r0

0
dr⊥ r⊥

[(

1 − λ2η r2⊥
l2ωz

− k r4⊥
2l2ωz

)

z − z3

3l2ωz

]z0

0

. (3.101)

Inserting (3.100) into (3.101 we get to

N0 =
8πµ lωz

3g

∫ r0

0
dr⊥ r⊥

(

1 − λ2η r2⊥
l2ωz

− k r4⊥
2 l2ωz

)3/2

. (3.102)

With the substitution u = (k/2l2ωz
)1/2r2⊥ we can re-write (3.102) as

N0 =
8πµ l2ωz

3g

√

2

k
f(ξ) , (3.103)

where we have written the remaining integral in (3.102) as

f(ξ) =

∫ u0

0
du

(

1 − 2ξu− u2
)3/2

(3.104)

and the radius at which the integrand vanishes as u0 = −ξ + (1 + ξ2)1/2. Furthermore, we have
introduced a geometric parameter

ξ =
λ2η

lωz

√
2k

. (3.105)

It is very similar to the geometric parameter x (2.97) from Section 2.5, which has been the
second argument of the generalized ζ-function (B.3). This integral (3.104) is easily solved or
can be found i.e. in [61, (246)] and yields

f(ξ) =
3π

16

(

1 + ξ2
)2

[

1 − 2

π
arcsin

ξ
√

1 + ξ2

]

− 5ξ

8
− 3ξ3

8
. (3.106)
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For small or for large η compared to λ2/(l2ωz

√
2κ), also the parameter ξ becomes small or large

and we can expand f(ξ) according to

f(ξ) ≈



































1

5 ξ
− 1

35 ξ3
for ξ � 1

3π

16

(

ξ2 + 1
)2 − ξ − ξ3 for |ξ| � 1

3π

8

(

ξ2 + 1
)2 − 1

5 ξ
for ξ � −1

. (3.107)

Inserting the interaction strength g (2.159), the length lωz (3.99), and the approximation (3.107)
into the normalization condition (3.103) yields in lowest order

N0 =















































2 az
15λ2η a

(

2µ

~ωz

)5/2 [

1 − 2κ

7λ4η2

(

2µ

~ωz

)]

for η � 1

πaz

8
√

2κ a

(

2µ

~ωz

)2
[

1 − 16λ2η

3π
√

2κ

√

~ωz
2µ

]

for |η| � 1

πaz
40λ2ηa

(

2µ

~ωz

)5/2
[

λ2η√
2κ

√

~ωz
2µ

+
λ4η2

√
2κ

(

~ωz
2µ

)

− 16

3π

]

for η � −1

, (3.108)

where we have, similar to (1.16) and (1.18), introduced the quantities

az =

√

~

Mωz
, κ =

k

a2
z

. (3.109)

To find µ we have to invert equation (3.108). For ξ � 1 we have to treat κµ as a small quantity
and perform a Taylor expansion, which yields in first order

µ

~ωz
=

(

15λ2η aN0

8
√

2 az

)2/5

+
3κa

7
√

2λ2η az

(

15λ2η aN0

8
√

2 az

)2/5

(3.110)

In analogy to (3.55) Eq. (3.110) defines with (3.109) a radius of the cloud according to

R2 ≡ R2
0 + κR2

1 = 2

[

(

15λ2η aN0

8
√

2 az

)2/5

+
3κa

7
√

2λ2η az

(

15λ2η aN0

8
√

2 az

)2/5
]

a2
z (3.111)

with an obvious identification of R2
0 with the first term on the right-hand side and so on. In

the beginning we wanted to determine the eigenmodes of the condensate in an anharmonic trap.
Unfortunately, we could not find the solution for this problem.

3.8 Low Energy Excitation

We present a variational approach to determine the collective oscillations which is based on
Ritz’s method. This method has been applied for a harmonic trap in 1996 [62]. We apply this
method to the anharmonic trap (1.17) and recover the results for the harmonic trap in the limit
of a vanishing anharmonicity.
It is convenient to use dimensionless harmonic-oscillator units (1.16) for the Gross-Pitaevskii
action with ωz setting the scale for frequency and energy and az =

√

~/Mωz setting the scale

for the length. The condensate wave function can be chosen as Ψ =
√

N0/a3
z ψ and the normal-

ization condition (3.2) becomes

a3
z

∫

d3x |ψ|2 = 1 . (3.112)
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We perform a change of variables t′ = ωzt and x′ = x/az in the Gross-Pitaevskii action (3.4).
To this end we have to obey

dt =
1

ωz
dt′ , d3x = a3

z d3x′ ,

∂

∂t
= ωz

∂

∂t′
, ∇ =

1

az
∇

′ .

(3.113)

Inserting this into (3.4), we have obtain the dimensionless Gross-Pitaevskii action

A[Ψ∗,Ψ] = ~

∫ t2

t1

dt′
∫

d3x′ L′[ψ∗, ψ] , (3.114)

where the dimensionless Lagrangian reads with (1.17)

L′ = iψ∗ ∂

∂t
ψ +

1

2
∇

′ψ∗
∇

′ψ − 1

2

[

λ2ηr′ 2 + z′ 2 +
κ

2
r′ 4
]

|ψ|2 − g′

2
|ψ|4 . (3.115)

Note, that the prime denotes a dimensionless quantity so that z′ = z/az and so on. The
dimensionless interaction strength is given by g′ = 4πN0a/az. In the following we omit the
primes.
To obtain the evolution of the condensate wave function, we extremize A within a set of trial
functions. The basic idea is to take a fixed shape trial function with some free time-dependent
parameters. This is a variational method analogous to Ritz’s optimization procedure. Hence,
a proper choice of ψ is crucial to obtain good approximations. A natural choice is a Gaussian,
since in the non interacting case, it is precisely the ground state of the Schrödinger equation:

ψ(x, t) =
1

√

π3/2W1(t)W2(t)W3(t)
exp

{

−
3
∑

k=1

[

1

2W 2
k (t)

+ iSk(t)

]

x2
k

}

. (3.116)

At a given time t this ansatz defines a Gaussian distribution centered at the position (x01, x02, x03).
It is clear that in (3.115) the coordinates are denoted by r =

√

x2
1 + x2

2 and z = x3. The time
dependent dimensionless variation parameters are the widths Wk and the slopes Sk of the con-
densate wave function.
Performing the spatial integral in the Gross-Pitaevskii action A (3.114) with the Lagrangian
(3.115) using the trial functions (3.116), we obtain an effective Lagrangian L =

∫∞

−∞
d3xL with

four terms L = Ltime + Lkin + Lpot + Lint. We have a term stemming from the time derivative

Ltime = i

∫ ∞

−∞

d3xψ∗ ∂

∂t
ψ =

1

2

3
∑

k=1

W 2
k Ṡk , (3.117)

a term corresponding to the kinetic energy

Lkin = −1

2

∫ ∞

−∞

d3x∇ψ∗
∇ψ = −1

2

3
∑

k=1

{

1

2W 2
k

+ 2S2
kW

2
k

}

, (3.118)

a term for the trapping potential (1.17) in the dimensionless form

Lpot = −
∫ ∞

−∞

d3xV (x)|ψ|2 = −1

2

{

2
∑

k=1

λ2η

2
W 2
k +

1

2
W 2

3 +
3κ

4

[

W 4
1 +

2

3
W 2

1W
2
2 +W 4

2

]

}

,

(3.119)
and, last but not least, an interaction term

Lint = −g
2

∫ ∞

−∞

d3x |ψ|4 = − g

4π
√

2πW1(t)W2(t)W3(t)
. (3.120)
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The integrals are all simple Gauss integrals, which we have calculated with the help of
∫ ∞

−∞

dxx2n exp

(

−ξ x
2

a2

)

= (−1)n
[

∂n

∂ξn
ξ−1/2

]

ξ=1

a2n+1√π. (3.121)

The action (3.4) is extremized according to the variation parameters Wk and Sk of the trial
function (3.116) by the respective Euler-Lagrange equations

∂L

∂Wi
− d

dt

∂L

∂Ẇk

= 0 ,
∂L

∂Sk
− d

dt

∂L

∂Ṡk
= 0 . (3.122)

Thus, we get the equations of motion for the parameters

−W1Ṡ1 + 2W1S
2
1 = −λ

2η

2
W1 +

1

2W 3
1

+
P

W 2
1W2W3

− κ

2

[

3W 3
1 +W1W

2
2

]

, (3.123)

S1 = − Ẇ1

2W1
, (3.124)

where we have introduced the dimensionless interaction parameter P =
√

2/πN0a/a0, who
indicates the strength of the interaction. It can be positive or negative depending on the sign
of the s-wave scattering length a. There are similar equations for W2,3 and S2,3. Finally, by
eliminating the Sk with (3.124) we receive the equations of motion for the widths Wk of the
condensate

d2

dt2
W1 = −λ2ηW1 +

1

W 3
1

+
P

W 2
1W2W3

− κ
(

3W 3
1 +W1W

2
2

)

, (3.125)

d2

dt2
W2 = −λ2ηW2 +

1

W 3
2

+
P

W1W
2
2W3

− κ(3W 3
2 +W 2

1W2) , (3.126)

d2

dt2
W3 = −W3 +

1

W 3
3

+
P

W1W2W 2
3

, (3.127)

which are decoupled from the other variational parameters Sk, but are unfortunately coupled
non-linearly among each other. We remark that the 1/W 3

k -terms correspond to the kinetic
energy which is important to know for the Thomas-Fermi approximation.
The Euler-Lagrange equations are of the form

Ẅk(t) = −∂Veff

[

W1(t),W2(t),W3(t)
]

∂ Wk(t)
. (3.128)

They can be regarded as the motion of a classical point particle moving in the effective potential

Veff

(

W1, W2, W3

)

=
λ2η

2
W 2

1 +
λ2η

2
W 2

2 +
1

2W 2
1

+
1

2W 2
2

+
κ

4
(3W 4

1 + 2W 2
1W

2
2 + 3W 4

2 )

+
1

2
W 2

3 +
1

2W 2
3

+
P

W1W2W3
. (3.129)

Thus, we can look now at low energy excitations of the stationary points. They are found either
by searching for the minima of the potential (3.129) or from the equilibrium points W0k of the
equations of motion (3.125)–(3.127) which are constant in time.
Eqs. (3.125) and (3.126) are identical under exchange of W01 and W02. Thus, Eq. (3.126) just
tells us that both width are equal, i.e. W01 = W02, wherefore we can neglect it. Then the
equations of motion (3.125)–(3.127) reduce to

λ2ηW01 =
1

W 3
01

+
P

W 3
01W03

− 4κW 3
01 , (3.130)

W03 =
1

W 3
03

+
P

W 2
01W

2
03

. (3.131)
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The solutions of (3.130) and (3.131) depend on λ2η, κ and P . For η and P > 0 there is only one
stable stationary point W0k, since the width Wk are all positive. For η < 0 and P > 0, there is
a ring of stable points. In this case, the Gaussian ansatz (3.116) must be modified according to
the ring shape.
Now we are able to expand the effective potential (3.129) via Wk = W0k + δWk and get

Veff (W ) = Veff (W 0) +
1

2
δW H δW T + . . . , (3.132)

where we have shorten the notation with W = (W1,W2,W3) and analogous W 0 and δW . The
Hesse matrix in the expansion (3.132) reads

H=

























λ2η +
3

W 4
01

+ 10κW 2
01 +

2P

W 4
01W03

2κW 2
01 +

P

W 4
01W03

P

W 3
01W

2
03

2κW 2
01 +

P

W 4
01W03

λ2η +
3

W 4
01

+ 10κW 2
01 +

2P

W 4
01W03

P

W 3
01W

2
03

P

W 3
01W

2
03

P

W 3
01W

2
03

1 +
3

W 4
03

+
2P

W 2
01W

3
03

























.

The square-root of the eigenvalues of H are the low excitation frequencies. For Hesse matrix H
(3.133), we find the three eigenfrequencies

ωa =
√

2
√

λ2η + 5κW 2
01 − 2P4,1, (3.133)

ωb,c =
√

2

√

1 + λ2η + 6κW 2
01 − P2,3 ±

√

[

1 − λ2η − 6κW 2
01 + P2,3

]2
+ 8P 2

3,2 − 4P2,3 , (3.134)

where the upper (plus) sign stands for the frequency ωb and the lower (minus) sign stands for
the frequency ωc. To shorten notation, we have introduced the new symbol

Pi,j =
P

4W i
01W

j
03

. (3.135)

Similar equations were found by T.K. Gosh in 2004 [?]. For a large number of atoms we perform
the Thomas-Fermi approximation by neglecting the 1/W 3

k -term in (3.130) and (3.131), which
then reduce to

P = W 2
01W

3
03 , W 2

03 = W 2
01

(

λ2η + 4κW 2
01

)

. (3.136)

With help of the Thomas-Fermi approximation (3.136), the oscillation frequencies (3.133) and
(3.134) specialize to

ω(TF)
a =

√
2
√

λ2η + 6κW 2
01 , (3.137)

ω
(TF)
b,c =

√
2

√

√

√

√

3

4
+ λ2η + 6κW 2

01 ±

√

(

3

4
+ λ2η + 6κW 2

01

)2

− 1

2
(32κx2 + 5λ2η) . (3.138)

A numeric evaluation of (3.133) and (3.134) and the Thomas-Fermi approximation of them
(3.137) and (3.138) are shown in Figure 3.1. The stationary width W0k are found numerically
from the effective potential (3.129) by finding the minimum value of it. We show the dependence
of the eigenfrequencies on the parameters κ and P in a cylindrical trap with an anisotropy
λ2η = 36. We have chosen (a) the harmonic limit κ = 0 and (b) a ten times larger anharmonicity
than that of the Paris experiment, κ = 4. We note a characteristic change in the behavior of the
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FIG. 3.1: Eigenfrequencies versus s-wave scattering length. In part (a) we show the harmonic limit
κ = 0 for the frequencies (3.133) and (3.134) (grey solid) and the Thomas-Fermi approximation
(3.137) and (3.138), (dashed lines). In part (b) we show a plot for the anharmonicity κ = 4. The
influence of the anharmonicity is small but significant. It increases the eigenfrequencies and leads to
a divergency in the Thomas-Fermi limit. In both figures, from top to bottom, the frequencies are:
ωb, ωa, and ωc. The stationary widths W0k are determined numerically from finding the minimum
of the effective potential (3.129).

eigenfrequencies. They increase with increasing interaction strength and diverge in the Thomas-
Fermi limit while in the harmonic trap they tend to a constant.
To further analyze the eigenfrequencies, we expand formulas (3.137) and (3.138) for small κ� 1
and small 0 < λ2η � 1

ω(TF)
a =























√

2λ2η +
3
√

2W 2
01

λ
√
η

κ+ O(κ2) for κW 2
01 � λ2η

2
√

3κW 2
01 +

λ2η

2
√

3κW 2
01

+ O(λ3η3/2) for λ2η � κW 2
01

(3.139)

ω
(TF)
b,c =



























√
2

√

3

4
+ λ2η ±

√

9

16
− λ2η + λ4η2 + O(κ) for κW 2

01 � λ2η

√
2

√

3

4
+ 6κW 2

01 ±
√

9

16
− 7κW 2

01 + 36κ2W 4
01 + O(λ2η) for λ2η � κW 2

01 .

(3.140)

We note that for small κ we obtain in zeroth order the equations of [62] for the frequencies. In
the isotropic case λ2η = 1 they reduces to

Ωa =
√

2, Ωb =
√

5 Ωc =
√

2 , (3.141)

which was derived by S. Stringari in [63].
For the trap (1.14) of the Paris experiment [1], the condensate, at rest Ω = 0, in the harmonic
confinement has been cigar shaped, and the strength of the quartic admixture was κ ≈ 0.4.
The interaction parameter P is proportional to the s-wave scattering length a. For 87Rb which
has been condensed in the Paris experiment, the scattering length is about a = 5.2 nm. The
anisotropy of the xy-plane to the z-direction has been around λ ≈ 6 with a residual anisotropy in
the xy-plane <1%. For rotation speeds close to the critical rotation Ω ∼ ω⊥, the condensate was
nearly spherical, and it remained stable for Ω . 1.05ω. However, theoretical, both numerical
and analytical [?], there is no reason for a limited angular velocity Ω. Furthermore, for large Ω
the condensate is expected to become annular with a giant vortex in the center.



3.9 Free Expansion 63

0.3 0.6 0.9 1.2

3

6

9

12

0.3 0.6 0.9 1.2

1.6

1.65

1.7

Ω/ω⊥

ω
a
,b
,c
/ω

z

FIG. 3.2: Eigenfrequencies versus rotation speed. For the values of the Paris experiment, i.e.

the anharmonicity κ = 0.4, the anisotropy λ2 = 36, and the s-wave scattering length a = 5.2
nm. The small Figure is a zoom to the lowest lying frequency. The axes labeling is the same
as for the big frame. From top to bottom, the frequencies are: ωb, ωa, and ωc.

In Figure 3.2 we see the dependence of the frequencies on the rotation speed Ω. Although the
Gaussian trial function (3.116) is only reasonable up to the critical rotation speed, we have plot-
ted a larger range of the rotation speed. We note that the frequencies in this regime Ω � ω⊥

diverges in the limit of an infinite fast rotation speed Ω, which disagrees with our experience so
far with the thermodynamic quantities. They all tend to a constant value in the limit of infinite
fasts rotation. This shows that the Gaussian trial function (3.116) is not a proper choice in
that fast rotation regime. A natural extension to this discussion is to modify the Gaussian trial
function (3.116) accounting for the ring shape of the condensate. In the overcritical rotation
regime Ω > ω⊥, this corresponds to a Gaussian centered on a circle around the origin with a
radius r0 as a variational parameter. However, this has to be left for future research.

3.9 Free Expansion

Since the gas can not be trapped forever, it is interesting to investigate the dynamics of the
expansion of the gas, following the switching off the trap. This is an important issue because
many informations on these Bose condensed gases are gained experimentally by taking images
of the expanded atomic cloud after a time of flight. In particular, one can determine the s-wave
scattering length, the release energy and the aspect ratio of the velocity distribution. For a har-
monic trap, this problem has been analyzed by Y. Castin and R. Dum [26] in 1996. This work
has been the basis for the evaluation of the data of the Paris experiments, although this trap
is anharmonic. They have assumed the effect of the anharmonicity to be small for all rotation
speeds. However, in the fast rotation regime Ω ∼ ω⊥, the influence of the anharmonicity gets
more important and it is questionable if could still be neglected. Hence, for an improved quan-
titative evaluation it is necessary to study the expansion of the condensate from an anharmonic
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trap.
In the previous Section 3.8 we have derived the equations of motion (3.125)–(3.127) for the
width of a Gaussian trial function (3.116) to minimize the Gross-Pitaevskii action (3.4). We
have considered oscillations around the stationary solution of these equations of motion. Now,
we consider the dynamic of the width of the condensate when the trap is switched off at the
time t = 0. The switching off mechanism is described by

ω⊥(t) = ω⊥Θ(−t) , ωz(t) = ωzΘ(−t) , κ(t) = κΘ(−t) , (3.142)

where Θ denotes the Heaviside function. We re-write the equations of motion (3.125)–(3.127)
in the following way:

b̈⊥ =
1

W 4
⊥b

3
⊥

−
(

ω2
⊥(t)

ω⊥
− Ω2

ω2
⊥

)

b⊥ − 4κ(t)W 2
⊥b

3
⊥ +

P

W 3
⊥Wz b3⊥bz

, (3.143)

b̈z =
1

W 4
z b

3
z

− ωz(t)

ωz
bz(t) +

P

W 2
⊥W

3
z b

2
⊥b

2
z

, (3.144)

where we have set W⊥ = W01 = W02 and Wz = W03, and introduced the scaling

b⊥(t) =
W⊥(t)

W⊥
, bz(t) =

Wz(t)

Wz
. (3.145)

The initial conditions for the scaling parameters b⊥ and bz are given by

b⊥(0) = bz(0) = 1 , ḃ⊥(0) = ḃz(0) = 0 . (3.146)

The initial velocities ḃ⊥ and ḃz vanish at t = 0 due to the equilibrium condition. We per-
form the Thomas-Fermi approximation for the equations of motion (3.143) and (3.144) in the
following way. We expect the terms corresponding to the kinetic energy 1/W 3

⊥ and 1/W 3
z to

be initially small. With the expansion the scaling parameters increase, i.e. b⊥(t) ≥ b⊥ and
bz(t) ≥ bz. Therefore, we neglect the kinetic energy terms. In the Thomas-Fermi approximation
the equations of motion (3.143) and (3.144) reduces with (3.136) to

b̈⊥ = Ω̃2b⊥ +
λ2η + 4κW 2

⊥

b3⊥bz
(3.147)

b̈z =
1

b2⊥b
2
z

, (3.148)

where Ω̃ = Ω/ω⊥ denotes the reduced rotation frequency. We can approximate the width in
the radial direction W⊥ by the Thomas-Fermi radius (3.111). For slow rotation Ω̃ � 1 and the
parameters of the Paris experiment, the term proportional to κ in Eq. (3.147) is of the order
∼ 0.3 and the anisotropy is λ2 ≈ 36 � 1. Therefore, we assume that the expansion of the cloud
in z-direction is much slower than in the radial direction. We approximate the scaling parameter
in z-direction according to bz = 1 + ε with a small time depending ε.
Then, the differential equations for the scaling parameters in the Thomas-Fermi approximation
(3.147) and (3.148) reduces in zeroth order to

b̈⊥ = Ω̃2b⊥ +
λ2η + 4κW 2

⊥

b3⊥
, (3.149)

ε̈ =
1

b2⊥
(3.150)

The initial conditions for the deviation ε are due to (3.146) given by

ε(0) = 0 , ε̇(0) = 0 . (3.151)
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We obtain the solution of (3.149) in zeroth order of ε by multiplying it with ḃ⊥ and using
relations like

ḃ⊥b̈⊥ =
1

2

d

dt
ḃ2⊥ . (3.152)

Then, (3.149) reduces to

1

2

d

dt
ḃ2⊥ = Ω̃2 1

2

d

dt
b2⊥ +

(

λ2η + 4κW 2
⊥

) 1

2

d

dt

(

− 1

b2⊥

)

. (3.153)

Integration over the time t yields

ḃ2⊥ = Ω̃2 b2⊥ −
(

λ2η + 4κW 2
⊥

) 1

b2⊥
+ C1 , (3.154)

where C1 = λ2η + 4κW 2
⊥ − Ω̃2 is the integration constant obtained from the initial conditions

(3.146). Taking the square root of (3.154) and separating the variables leads with the initial
conditions (3.146) to the remaining integral

∫ b⊥(t)

1
db⊥

b⊥
√

Ω̃2 b4⊥ +
(

λ2η + 4κW 2
⊥ − Ω̃2

)

b2⊥ − λ2η − 4κW 2
⊥

= t . (3.155)

Integrating [61, (241)] and inverting (3.155) results in

b⊥ =
1√
2 Ω̃

√

Ω̃2 − λ2η − 4κW 2
⊥ +

(

Ω̃2 + λ2η + 4κW 2
⊥

)

cosh (2Ω̃t) (3.156)

Next, we insert (3.156) into (3.150) to obtain the time evolution of the deviation ε of the scaling
parameter bz

ε =

∫ t

0
dt′
∫ t′

0
dt′′

2 Ω̃2

Ω̃2 − λ2η − 4κW 2
⊥ +

(

Ω̃2 + λ2η + 4κW 2
⊥

)

cosh (2Ω̃t)
(3.157)

The first integration in (3.157) over t′′ [35, (2.443.3)] yields

ε =
1

√

λ2η + 4κW 2
⊥

∫ t

0
dt′ arctan

[

√

λ2η + 4κW 2
⊥

tanh (Ω̃t′)

Ω̃

]

. (3.158)

The remaining integral (3.158) is not so easy to solve analytically. Therefore, we perform a Taylor
expansion of the integrand for small Ω � ω⊥ and for small Ω ≈ ωz. Then, the integration in
(3.158) in zeroth order results in

ε ≈



























t arctan
(√

λ2η + 4κW 2
⊥ t
)

√

λ2η + 4κW 2
⊥

− ln
[

1 +
(

λ2η + 4κW 2
⊥

)

t2
]

2λ2η + 4κW 2
⊥

for Ω̃ � 1 ,

ln
(

cosh Ω̃t
)

for Ω̃ ≈ 1 .

(3.159)

The scaling parameters (3.145) of the width of the Gaussian trial function (3.116) simplifies for
slow rotation speeds Ω � ω⊥ to

b⊥ =
√

1 +
(

λ2η + 4κW 2
⊥

)

t2 , (3.160)

bz = 1 +
t arctan

(√

λ2η + 4κW 2
⊥ t
)

√

λ2η + 4κW 2
⊥

− ln
[

1 +
(

λ2η + 4κW 2
⊥

)

t2
]

2λ2η + 4κW 2
⊥

, (3.161)
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FIG. 3.3: Aspect ratio of the condensate versus reduced time for the values of the Paris experiment.
In part (a) we show for a non rotating condensate Ω = 0 the effect of the anharmonicity for varying κ.
The dashed line corresponds to the harmonic trap κ = 0 [26]. The lines above the dashed from bottom
to top correspond to κ = 0.4 and κ = 4. The gray solid line corresponds to the interaction free Bose gas
in the non rotating Paris trap with κ = 0.4. In part (b) we show the influence of the rotation speed Ω
for fixed anisotropy and anharmonicity corresponding to the Paris experiment. The Dashed line is the
same as in part a). For the lines above the dashed one we vary the rotation parameter η = 1...0 in steps
of 0.1. The inlet in part (b) is a zoom to the first 18 ms. The axes labels are the same as for the bigger
plot.

which reproduces the results of Castin and Dum [26] for a vanishing anharmonicity κ = 0. In
the fast rotating regime Ω ≈ ω⊥, we obtain for the scaling parameters in zeroth order

b⊥ =
2

1 + cosh 2Ω̃t
, (3.162)

bz =
ln
(

cosh Ω̃t
)

Ω̃2
. (3.163)

For the general solution of the integral (3.158) we will perform a numerical integration. The
aspect ratio of the cloud is given by

W⊥(t)

Wz(t)
=
b⊥(t)W⊥

bz(t)Wz
, (3.164)

where the width W⊥ and Wz are determined through the stationary Eqs. (3.130) and (3.131) for
the trap of the Paris experiment [1] and for the s-wave scattering length of 87Rb, see Table 1.2.
An interesting special situation is the interaction free Bose gas. In this case the Gross-Pitaevskii
equation (3.1) reduces to a linear Schrödinger equation and the equations of motion (3.143)
and (3.144) for the width decouples since the interaction parameter P = 0 vanishes. Then,
the equations of motion are very similar to the Thomas-Fermi approximated ones (3.149) and
(3.150):

b̈⊥ =
1

W 4
⊥ b

3
⊥

+ Ω̃b⊥ , (3.165)

b̈z =
1

W 4
z b

3
z

. (3.166)

Similarly to the above calculation, we obtain for the width the exact solution

b⊥ =
1√

2Ω̃W 2
⊥

√

Ω̃2W 4
⊥ − 1 +

(

1 + Ω̃2W 4
⊥

)

cosh
(

2Ω̃t
)

, (3.167)

bz =

√

W 4
z + t2

W 2
z

. (3.168)
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We show a plot of the aspect ratio in Figure 3.3. In part (a) of the Figure we show the effect of
varying anharmonicities. The anharmonicity influences the aspect ratio just a little. It increases
the expansion in the xy-plane compared to the harmonic trap. Also in part (a) we show the
aspect ratio for an interaction free Bose gas in the anharmonic trap of the Paris experiment
[1]. Its character differs significantly from the Thomas-Fermi approximated aspect ratio. This
characteristic difference can be utilized to determine the s-wave scattering length by a fit to
the experimental data. In part (b) we show for the trap of the Paris experiment the effect of
increasing rotation speeds. In the first 100 ms of the expansion, the change of the aspect ratio
is only little. From there on the change is drastically. The rotation increases the velocity of the
expansion in the xy-plane very much. Hence, this effect can also be utilized to determine the
speed of rotation.
In the Paris experiment [1], the condensate has been probed by switching off the confining
potential, letting the cloud expand during 18 ms and performing absorption imaging. For a
quantitative analysis of the pictures, they have assumed that the expansion of the cloud out
of an anharmonic trap is approximately the same as the expansion out of a harmonic trap.
However, the time evolution of the cloud does depend strongly on the speed of rotation, even
in the first few ∼20 ms, as shown in the inlet of Figure 3.3b. Hence, the evaluation of the
experimental data could be improved with our calculations.
For instance, one problem has been to determine the effective rotation speed Ω. One method has
been to measure the density of the cloud in the xy-plane and to compare it with the initial atomic
distribution. The initial Thomas-Fermi approximated density (3.45) varying in the xy-plane like
the integrand in (3.104). This initial distribution is scaled with the scaling parameter (3.160)
and κ = 0. Then, the scaled Thomas-Fermi approximated density is fitted to the measured
atomic distribution choosing the chemical potential µ and the rotation speed Ω as adjustable
parameters. Unfortunately, the agreement of this fit has not been as well as for a condensate
confined in a purely harmonic trap and has led to some speculations.
Although, our calculation is only valid up to the critical rotation speed Ω = ω⊥, we could expect
it to be a good approximation even slightly above the critical rotation speed, since then most
atoms are still close to the center of the trap.





Chapter 4

Conclusions and Outlook

In the following we recapitulate the results of our thesis and the questions arising from them. In
Chapter 2 we have examined the critical temperature Tc at which the condensation of an ideal
bosonic gas occurs in the anharmonic trap. Surprisingly, our established critical temperature
Tc ≈ 64 nK for the critical rotation speed Ω = ω⊥ is about three times smaller than measured
in the Paris experiment. Actually we have expected the semiclassical approximation to give
very good results like it does for a pure harmonic trap [55,51]. Sabine Stock, a PhD student of
the Jean Dalibard, agreed with us that the transition temperature should indeed be lower than
stated in Ref. [1].
In particular, we have compared the thermodynamic properties of an ideal Bose gas in an
anharmonic with a harmonic trap. For instance, we have observed the critical temperature Tc
in the anharmonic trap to be larger than it would be in the harmonic trap. This is initially clear
because the ground-state energy is larger. The difference between both temperatures amounts
to only 3% for slow rotation speeds Ω, because the anharmonicity is small, however for fast
rotation Ω ∼ ω⊥ they are totally different, see Figure 2.4. The critical temperature Tc in the
anharmonic trap tends to a finite constant value for Ω → ∞, while for the harmonic trap the
regime Ω ≥ ω⊥ certainly does not exist. In the limit of an infinite fast rotation speed, this
constant corresponds to the transition temperature of a Bose-Einstein condensate living on a
cylindrical ring. In order to improve the semiclassical approximation of the critical temperature
Tc, we have determined perturbatively two corrections, which are due to the finite size of the
system and due to the two-body δ-interaction. Both effects lower the transition temperature Tc
in the order of about 2.5% to 3.3% and depend strongly on the rotation speed Ω. It would be
challenging to observe both effects in experimental measurements.
Furthermore, we have determined the heat capacity of the ideal, i.e. non-interacting, bosonic
gas. In the high temperature regime T > Tc we obtain the Dulong-Petit law of the heat capacity
per particle which is 0.5 smaller in the anharmonic trap than in a harmonic one. The rotation
effect in that regime is rather small, since the high energy levels of the trap well above the
ground state do not ”feel” the bottom of the trap and its effective harmonic contribution, which
depends on the rotation speed Ω. But we have found a characteristical change in the approach
of the Dulong-Petit law. In the undercritical rotation regime Ω < ω⊥, the heat capcity is always
larger than the Dulong-Petit law, while in the overcritical regime Ω > ω⊥ it crosses the Dulong-
Petit limit. At zero temperature, the heat capacity tends to zero for all rotation speeds, so that
we are not in conflict with the third law of thermodynamics. However, the approach to zero
is different in the case of undercritical rotation speeds Ω < ω⊥ compared to overcritical speeds
of rotation Ω > ω⊥. In both cases the approach is a power-law behavior in T , but the power
changes from three in the under-critical regime to 5/2 in the over-critical regime.
Another quantity of interest, which one likes to examine in this context, is the compressibility
of the system. It corresponds to density fluctuations and is like the heat capacity a good test
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for the stability of the regarded system. However, the determination of this quantity is left for
future investigations.
Summarizing we can state that the thermodynamic properties investigated in this work are rather
influenced by the rotation speed Ω than by the anharmonicity κ, although the anharmonicity
made both the analytical and the numerical calculation a lot more complicated.
In Chapter 3 we have elaborated some dynamical aspects of the condensate in the anharmonic
Paris trap. First we examined the influence of the rotation to the Hamiltonian of the system by
transforming the Gross-Pitaevskii equation, which describes the ground-state wave function of
the system, into the corotating reference frame. In this way we obtained an effective additional
centrifugal term, which is quadratic, perpendicular to the rotation axis, and oppositely orientated
to the trapping potential.
Then we have investigated the collective modes of the Bose condensed gas at zero temperature
T = 0 within the hydrodynamical limit, which consist of availing the fact that the Gross-
Pitaevskii equation fulfil the continuity equation and a modified Euler equation. This can be
used to analyze density oscillations within the Thomas-Fermi approximation, where the quantum
pressure and the kinetic energy are neglected. However, the solution for the anharmonic trap is
still an open question.
We have also analyzed the density oscillations directly within a variational approach, which
is due to Ritz’s method. We have chosen a Gaussian trial function with parameters for the
shape and the momentum of the ground-state wave function and have minimized the energy
according to these parameters. We have found three eigenmodes which strongly depend on both
the anharmonicity κ and the rotation speed Ω. Compared to the same modes in the harmonic
trap they are very different. In the harmonic trap the eigenfrequencies tend to a finite value in
the limit of infinite strong interaction a→ ∞, where a denotes the s-wave scattering length. In
the anharmonic trap the frequencies tend to infinity for strong interaction a → ∞. Because of
the chosen shape of the Gaussian trial function our results are only valid in the undercritical
regime Ω < ω⊥, which could be improved by a new trial function which accounts for the ring
shape of the condensate in the overcritical regime Ω > ω⊥.
Finally, we have examined the free expansion of the condensate after switching off the trap. This
expansion is essential for evaluating time of flight pictures and could improve the experimental
analysis.
At this stage it is necessary to mention that we have neglected during the whole work the
nucleation of vortices. The Paris experiment showed that there are quite a lot of quantized
vortices visible, especially in the fast rotation regime, see Figure 1.4. The vortices are arranged
in an Abrikosov lattice which is slightly disturbed and seems to melt in the middle, when the
rotation speed Ω approaches the trap frequency ω⊥. The nucleation of vortices should influence
both the thermodynamic and the dynamic properties of the system. However, the task to
incorporate vortices into the calculations must be delayed to future investigations.



Appendix A

Euler-MacLaurin Formula

The general Euler-MacLaurin formula is (for simplicity a and b shall be integers)

b
∑

n=a

f(n) =

∫ b

a
f(x)dx+

1

2

(

f(a) + f(b)
)

+
m
∑

k=1

B2k

(2k)!

(

f (2k−1)(b) − f (2k−1)(a)
)

−
∫ b

a

B2m+1([1 − t])

(2m+ 1)!
f (2m+1)(t)dt , (A.1)

which is sometimes called the Euler-MacLaurin formula with remainder. To derive this formula
we will follow [65]. The prove is presented in the non-standard calculus method, which works
with small quantities that are smaller than any number but greater than zero. Simply put, it is
ordinary calculus without taking limits.

Definition. Consider an arbitrary function f(x). Its h-differential is

dhf(x) = f(x+ h) − f(x) , (A.2)

and a h-derivative of f is denoted by

Dhf(x) =
dhf(x)

dhx
=
f(x+ h) − f(x)

h
. (A.3)

Note that

D0 ≡ lim
h→0

Dhf(x) =
df(x)

dx
, (A.4)

if f(x) is differentiable.

The advantage of the nonstandard formulation is to avoid infinitesimals, which can be rather
confusing and need an elaborate explanation. Without going to much into details, the function
F (x) is called an antiderivative of f(x), if DhF (x) = f(x).

Definition. If b− a ∈ hN, we define the definite h-integral to be

∫ b

a
f(x)dhx = h

(

f(a) + f(a+ h) + . . .+ f(b− h)
)

. (A.5)

The fundamental theorem of ordinary calculus applies also here. SupposeDhF (x) = f(x). Using
the ordinary Taylor formula, we have

F (x+ h) =

∞
∑

n=0

F (n)(x)hn

n!
=

(

∞
∑

n=0

hnDn
0

n!

)

F (x) , (A.6)
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so that formally,
F (x+ h) = ehD0F (x) , (A.7)

hence, we have

f(x) =
F (x+ h) − F (x)

h
=
ehD0 − 1

h
F (x) ,

or

F (x) =
hD0

ehD0 − 1

∫

f(x)dx . (A.8)

Definition The Bernoulli polynomials appear as coefficients in the Taylor expansion

zezx

ez − 1
=

∞
∑

n=0

Bn(x)

n!
zn , (A.9)

which give the Bernoulli numbers Bn = Bn(0) for n ≥ 0.

Using Bernoulli numbers, (A.8) gets

F (x) =

∞
∑

n=0

bn
n!

(hD0)
n

∫

f(x)dx . (A.10)

As we know that Bn = 0 for odd integers if n ≥ 3 and B1 = −1/2, we get the Euler-MacLaurin
formula (without remainder)

F (x) =

∫

f(x)dx− h

2
f(x) +

∞
∑

n=0

B2nh
2n

(2n)!
f (2n−1)(x) . (A.11)

Suppose h = 1 and b−a ∈ N. Using the fundamental theorem of calculus F (b)−F (a) =
∫ b
a dxf(x)

and (A.5) we have

b−1
∑

n=a

f(n) =

∫ b

a
f(x)dx− 1

2

(

f(b) − f(a)
)

+
∞
∑

n=0

B2n

(2n)!

(

f (2n−1)(b) − f (2n−1)(a)
)

, (A.12)

which is the Euler-MacLaurin formula without remainder (A.1), if we add f(b). To get the
formula with the remainder (A.1), we should replace the infinite sum by a finite and find for the
rest an integral representation. This can be found in e.g. [34,65] and is a more sophisticated
problem. However, studying the remainder is crucial for convergence tests and the applicability
of the approximation via the Euler-MacLaurin formula.



Appendix B

Generalized ζ-Functions and

Relations

As an overview of the introduced ζ-functions in Chapter 2, we summarize the definitions and
list useful relations for these new functions. Because of their close relation to the Bose-Einstein
condensation they are sometimes called Bose-Einstein functions, however for special arguments
they reproduce also the Riemann ζ-function, which plays an important role in complex analysis.

B.1 First Generalization

The Riemann ζ-function is defined for complex ν by

ζ(ν) =

∞
∑

j=1

1

jν
, (B.1)

with Re(ν) > 1. The semiclassical treatment of a harmonic trap leads to the following general-
ization of (B.1)

ζν(z) =
∞
∑

j=1

zj

jσ
, (B.2)

for |z| ≤ 1. The variable z could be real or complex, but for the condensate it is of course
real, it is the fugacity z = exp (βµ). Since the chemical potential satisfies the relation µ < 0,
the ζ-function (B.2) has no singularities. Formula (B.2) reproduces the Riemann ζ-function for
z = 1, which marks the transition point of the Bose gas.

B.2 Second Generalization

The next generalization of (B.1) is inspired by the treatment of the anharmonic trap (1.17) and
leads to

ζν(z, x) =

∞
∑

j=1

zj

jν
Eσ(xj) , (B.3)

where
Eσ(x) =

√
πxexerfc(σ

√
x) . (B.4)

Here, σ can have the value 1 or −1, corresponding to an undercritical or overcritical rotation of
the trap.
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The functions Eσ in (B.3) play an important role in fractional kinetic theory [41] and are related
to generalized Mittag-Leffler functions [38,39]. They can be regarded as a generalization of the
exponential function, which becomes clear if we regard the Taylor expansion of (B.4)

Eσ(x) =
√
πx

(

1 − σ2

√

x

π
+ x− σ

4

3

√

x3

π
+
x2

2
∓ . . .

)

=
√
πx

∞
∑

j=0

(−σ√x)j

Γ
(

1 + j
2

) . (B.5)

If we consider the Γ-function as the analytic continuation of the factorial function, the Taylor
expansion (B.5) is closely related to the exponential function.
In particular, two limits are of special interest, namely the high and the low temperature limit.
They correspond to the limits x→ 0 and x → ∞ respectively. For the asymptotic behavior we
have for σ = 1 the formula

E1(x) ≈ 1 − 1

2x
+

3

4x2
− . . .+

(2j − 1)!!

(−2x)j
+ . . . x→ ∞ . (B.6)

For the other case σ = −1, however, we have due to the relation erfc(−x) = 2 − erfc(x):

E−1(x) ≈ 2
√
πxex −

(

1 − 1

2x
+

3

4x2
− . . .+

(2j − 1)!!

(−2x)j
+ . . .

)

x→ ∞ . (B.7)

B.3 Some Special Limits

For the Bose gas in an anharmonic trap of the form (1.14) the second variable x in (B.3) depends
on the anharmonicity κ, the rotation speed Ω, and the temperature T . Physically important
limits are given by

x→























0 for

{

T → ∞ high temperature limit
Ω → ω⊥ critical rotation

∞ for

{

T → 0 low temperature limit
κ → 0 harmonic trap .

(B.8)

Relevant for us are the two regimes above and below the critical temperature. Below the critical
temperature we are interested in the low temperature limit. Here, we have the asymptotic
expansions

ζν(zc, x) =















ζ(ν) − 1

2x
ζ(ν + 1) + . . .+

(2k − 1)!!

(−2)kxk
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2
√
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1
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ζν+1(zc) ∓ . . . ; x→ ∞ , σ = −1 .

(B.9)
Above the critical temperature the expansions read

ζν(z, x) =
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(B.10)
For the high temperature regime we have

ζν(z, x) =
√
πx

[

ζν−1/2(z) − 2σ

√

x

π
ζν−1(z) ± . . .

]

for x→ 0 . (B.11)

Below the critical temperature we have to replace z by the critical fugacity zc in the above
equation.
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Hypergeometric Function

C.1 Comment on the hypergeometric differential equation

1. The hypergeometric differential equation (3.62) possesses two linearly independent solu-
tions. These solutions have analytic continuations to the entire complex plane except
possibly for the three points 0,1 and ∞. Generally speaking the points u = 0, 1,∞ are
branch points of at least one of the branches of each solution of the hypergeometric differ-
ential equation.

2. Every second-order ordinary differential equation with at most three regular singular points
can be transformed into the hypergeometric differential equation.

3. If c is not an integer, the linearly independent solutions F1(u) and F2(u) of (3.62) are given
by

F1(u) = F (a, b; c;u) (C.1)

F2(u) = u1−cF (a− c+ 1, b− c+ 1; 2 − c;u) (C.2)

For c > 1 the second solution F2(u) is singular at the origin.

4. The hypergeometric series is convergent for arbitrary a, b, and c within the unit circle
|u| < 1, and for u = ±1 if c > a+ b.

5. Goursat [66] and Erdélyi et al. [67] give many hypergeometric transformation formulas,
including several cubic transformations. Many functions of mathematical physics can be
expressed as special cases of the hypergeometric functions. For example, the Legendre
polynomial Pl(z) is recovered according to

F (−l, l + 1; 1; (1 − z)/2) = Pl(z) . (C.3)

C.2 Legendre polynomials

We state without proof some useful relations of the associated Legendre polynomials, which are
defined by

Pml (x) =
(−1)m

2ll!
(1 − x2)m/2

d l+m

dx l+m
(x2 − 1)l. (C.4)

With x = cos θ, we have for the derivative with respect to θ

∂

∂θ
Pml (x) =

1√
1 − x2

[

lxPml (x) − (l +m)Pml−1(x)
]

. (C.5)
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The associated Legendre polynoms also obey the following recurrence relations

(2l + 1)xPml (x) = (l +m)Pml−1(x) + (l −m+ 1)Pml+1(x) (C.6)

and

P−m
l (x) = (−1)m

(l −m)!

(l +m)!
Pml (x) . (C.7)
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