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Zusammenfassung

Das Ziel dieser Diplomarbeit besteht darin, den Quantenphasenübergang zwischen dem Mott-
Isolator und der superfluiden Phase eines homogenen Bose-Gases im optischen Gitter zu beschreiben.
In bisherigen Arbeiten wurde dafür die Rayleigh-Schrödinger Störungstheorie verwendet, die
allerdings teilweise unphysikalische Ergebnisse liefert, da die Entartung zwischen zwei benach-
barten Mott-Bereichen nicht berücksichtigt wird. Deshalb wird in dieser Arbeit die Brillouin-
Wigner Störungstheorie angewandt, die formal zwischen der nicht-entarteten und der entarteten
Störungstheorie interpoliert.
Um analytisch rechnen zu können, wird die Molekularfeld-Näherung eingeführt. Es werden de-
taillierte Rechnungen präsentiert, wie die Brillouin-Wigner-Theorie anzuwenden ist, genauso wie
ein graphischer Ansatz, der es erlaubt, die jeweiligen analytischen Terme effizient zu erfassen.
Um die Gültigkeit der Berechnungen zu beweisen, werden die Ergebnisse mit anderen Arbeiten
verglichen.
Neben dem analytischen Berechnen der Phasengrenze zwischen dem Mott-Isolator und der su-
perfluiden Phase wird noch die Kondensatdichte berechnet. Dies wird durch simultanes Lösen
von zwei algebraischen Gleichungen erreicht. Die analytischen und numerischen Ergebnisse sind
physikalisch sinnvoll und können einen Bereich der Systemparameter abdecken, der bisher noch
unzugänglich war.
Unsere Ergebnisse sind insbesondere von Interesse, wenn eine harmonische Falle zu den bisheri-
gen Rechnungen im homogenen System hinzugefügt wird, wie sie im Experiment vorliegt. Da-
her stellt die Diplomarbeit eine essentielle Vorbereitung dar, um die experimentell beobachtete
Hochzeitstorten-Struktur der Teilchendichte zu bestimmen.



Abstract

The objective of this diploma thesis is the theoretical description of the Mott-insulator to su-
perfluid quantum phase transition of a homogeneous Bose gas in an optical lattice. In former
works, the Rayleigh-Schrödinger perturbation theory was used, which yields partially unphysical
results, since the degeneracy of two adjacent Mott lobes is not taken into account. Therefore,
in this work the Brillouin-Wigner perturbation theory is applied, which formally interpolates
between non-degenerate and degenerate perturbation theory.
In order to perform the analytic calculations, the mean-field approximation is introduced. De-
tailed calculations of how to apply the Brillouin-Wigner theory are presented including a graph-
ical approach which allows to efficiently keep track of the respective analytic terms. To prove
the validity of this computation, the results are compared with other works.
Besides of the analytic calculation of the phase boundary from the Mott-insulator to the super-
fluid phase, the condensate density is determined. This is done by simultaneously solving two
algebraic equations. The analytical and numerical results turn out to be physically meaningful
and can cover a region of system parameters, which was inaccessible up to now.
Our results are of particular interest provided a harmonic trap is added to the former calculations
in a homogeneous system, in view of describing an experiment. Thus, the diploma thesis repre-
sents an essential preparatory work for determining the experimentally observed wedding-cake
structure of the particle density.
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1 Introduction

Since the very beginning of quantum mechanics at the start of the 20th century, scientists all
over the world have worked on this topic to refine this theory. And although many inventions
like the laser could be explained with the help of quantum mechanics, still many phenomena
remain challenging in the theoretical description, like the macroscopic quantum phenomena of
Bose-Einstein condensation, quantum Hall effect or high temperature superconductivity. There-
fore, as modern physics of the 21st century has, equally in experiment and theory, a strong focus
on these macroscopic quantum phenomena, their application is of great interest, so they all need
a microscopic quantum theory to be explained and understood to their full extent.
But every major theory needs to predict experimental results over a large range of system pa-
rameters, whose obtainments are often a challenging task due to the unattainability of many
of them. For instance, you cannot just turn a knob to change the interatomic spacing in your
superconductor. Therefore, a new simulation system is sought after, which yields just the same
physical behaviour as the original system, but this time with parameters that are easier to tune.
Some examples for such simulation systems are trapped ions, photonic systems or ultracold
quantum gases [1], while the latter one can be realized by fermions, bosons or different frac-
tional mixtures of both. Besides of the confining trap, an optical lattice can be added with
different lattice geometries, or even external driving. And it’s particularly these three features
that endow the ultracold quantum gases with such astounding properties, which all find their
counterparts in solid-state physics. The confining trap represents the macroscopic dimension of
a crystal, while the optical lattice reproduces the crystal lattice with all the properties like unit
cell spacing or interaction strength. Finally, impurities in the crystal can be modelled by mixing
atoms from another species into an ultracold quantum gas.
For bosons, it is possible to cool down the ultracold quantum gas under a certain critical tem-
perature, and obtain a Bose-Einstein condensate, i.e. a macroscopically occupied ground state.
This gives rise to a versatility of applications, since a Bose-Einstein condensate is much more
dense than the thermal dilute ultracold quantum gases.
In this work, we focus on a purely bosonic Bose-Einstein condensate in an optical lattice, which
is predestined to serve as a simulation system for superconductors. In this sense, the bosons
correspond to the bosonic Cooper pairs and the optical lattice corresponds to the crystalline
structure. A special focus is put on the quantum phase transition of the Bose-Einstein conden-
sate from the Mott-insulator to the superfluid phase, which simulates the transition from an
isolating material to a superconductor.
Thus, the guiding idea of this diploma thesis is the theoretical description of this quantum simu-
lator in the sense of Feynman’s words: "Nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful
problem, because it doesn’t look so easy." [2].
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1.1 Bose-Einstein Condensate

A Bose-Einstein condensate is a state of matter at very low temperature close to zero, so that
thermal effects can be neglected and quantum effects become dominant. The particles forming
the Bose-Einstein condensate enter on a large scale the lowest quantum state. Therefore, the
quantum behaviour of atoms, molecules or even photons [3] can be directly observed and mea-
sured, which is at least very difficult in other states of matter and thus makes Bose-Einstein con-
densates the perfect testing ground for almost all of quantum physics.

FIG. 1.1: Schematic illustration of atoms during
cooling process down to Bose-Einstein
condensation [4].

For the better understanding of this, we take
a look at the thermal de Broglie wavelength

λth =
h√

2πmkBT
, (1.1)

with h ≈ 6.63 × 10−34 Js the Planck con-
stant, m the mass of the condensing particle,
kB ≈ 1.38 × 10−23 J/K the Boltzmann con-
stant, and T the temperature. For high tem-
perature, λth becomes very small and there-
fore particles can be approximated as point
sized objects. This picture breaks down the
lower the temperature gets, as the de Broglie
wavelength λth increases. At some point, λth

is larger than the interatomic spacing, and
therefore the particle waves start to overlap.
This is when Bose-Einstein condensation be-
gins. This actual situation is represented in
FIG. 1.1.
The first theoretical prediction of the exis-
tence of a Bose-Einstein condensate was done
by Albert Einstein in 1925 [5], who extended
the bosonic statistics for massless bosons like
photons found by Satyendra Nath Bose to
matter [6]. Already back then, Einstein supposed a close connection between Bose-Einstein
condensation and superconductivity [5]. After this, it took 70 years up to 1995 until the first
experimental realization of a Bose-Einstein condensate by Eric Allin Cornell with Carl Edwin
Wieman [7] and Wolfgang Ketterle [8]. While Cornell and Wieman produced a Bose-Einstein
condensate of ∼ 2 × 103 atoms of rubidium-87, Ketterle generated a Bose-Einstein condensate
of ∼ 5× 105 atoms of sodium-23.
The main barrier, which rendered any previous attempt futile, was to achieve the needed tem-
perature of several nano Kelvin for the Bose-Einstein condensation to happen at all. The key
technology utterly required for this and any other ultracold experiment is the laser cooling,
which was mainly developed by Steven Chu [9], Claude Cohen-Tannoudji, and William Daniel
Phillips [10].
Without going into details, the rough idea of laser cooling is to use a near resonant laser, which
only interacts with the atoms when they move in the opposite direction of the wave vector of
photons emitted by a laser, which results in the atom being slowed down by the light. The
thereby absorbed energy is emitted randomly over space and therefore cannot sum up to a
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directional, transversal acceleration. Although there are recent results by Florian Schreck of
achieving Bose-Einstein condensation just by laser cooling [11], in most experiments not only
laser cooling is used. A second cooling is applied afterwards, namely evaporative cooling. This
cooling mechanism exploits the facts that the heat distribution of the atoms in a sample follows
the Maxwell–Boltzmann distribution, Thus, taking away the hottest atoms causes the rest of
the sample to rearrange again accordingly to the Maxwell–Boltzmann distribution, resulting in
effectively lowering the temperature of the sample. Of course, this evaporative cooling mecha-
nism yields a loss of particles, which is one of the main reasons why Bose-Einstein condensates
of large particle numbers are very difficult to obtain. Once the critical temperature of few nano
Kelvins is reached, the ultracold atoms collapse to a Bose-Einstein condensate.
An intuitive approach for the critical temperature takes the de Broglie wavelength to be of the
order of the interatomic spacing

λth ≈ n−
1
3 , (1.2)

which is depicted in FIG. 1.1 and is one necessary condition for Bose-Einstein condensation.
Formula (1.2) inserted in (1.1) yields

T ≈ h2n
2
3

2πmkB
. (1.3)

This formula gives already the right qualitative behaviour with T ∼ n
2
3 , but the quantitative

coefficients are not yet sufficient. The exact value of the critical temperature Tc for the phase
transition to a Bose-Einstein condensate can be calculated for a homogeneous Bose gas via [12]

Tc =
2π~2

mkB

[
n

ζ
(

3
2

)] 2
3

, (1.4)

with ~ ≈ 1.05× 10−34 Js the reduced Planck constant, n the particle density, and ζ
(

3
2

)
≈ 2.61

the Riemann zeta function. The critical temperature Tc rises with increasing the particle density
n, therefore high particle densities are eligible but hard to achieve due to the evaporative cooling.
In order to get some quantitative idea of the accuracy of the formula, we set in the values of the
group of Wolfgang Ketterle [8]. The mass of the sodium-23 atom is mNa = 3.82× 10−26 kg, the
used density is nNa = 1020 m−3, which yields after (1.4) as Tc,Na = 1.51×10−6 K. The measured
critical temperature 2 µK is close to this predicted value.

1.2 Optical Lattices

An optical lattice is made out of counter-propagating laser beams, forming a standing wave. This
is either achieved by two lasers pointing at each other or one laser being reflected at a mirror.
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The laser beams of such an optical lattice induce electric dipole moments in the particles, and
the resulting force pushes them back to the well or the top, depending of the detuning, much
like in optical tweezers [13], see FIG. 1.2..

(a) (b)

FIG. 1.2: The blue detuned laser (a) locks the particles at the wells, therefore the first particle
from the left feels no force from the lasers. The red detuned laser (b) locks the particles
at the top, the force from the laser on the particle pushes them in the opposite direction,
compared with the blue detuned laser. The arrows point in the direction of the force
on the particles by the laser beams.

FIG. 1.3: A two-dimensional optical lattice. The particles are locked either in the red tops or in
the blue wells.

This idea can now be expanded to two and three dimensions, resulting in a planar (see FIG. 1.3)
or a cubic optical lattice. Therefore, many other lattice geometries can be designed, each one
with unique characteristics. Some of them are shown in FIG. 1.4. Sketch (a) is the cubic lattice
in three dimensions, where the particles can move in all directions with the same probability,
thus the Hamiltonian of this system has a kinetic term which is spatial isotropic. This reduces
the complexity a lot. In sketch (b) a linear, quasi-one dimensional lattice, the particles can move
only in two directions.
The lattices in pictures (c) and (d) are two-dimensional lattices, where the first one is a triangular
lattice, while the latter one represents a Kagome lattice. In these two-dimensional lattices, the
kinetic terms are more difficult to handle. Therefore, their experimental realization is much more
difficult than of a cubic lattice, but was nevertheless done in the recent years. The triangular
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lattice was realized by the group of Klaus Sengstock [14], while the Kagome lattice was done by
the group of Dan M. Stamper-Kurn [15].
Note that these lattices can be found in real solid-state systems, like sodium chloride crystals
(a), carbon nano tubes (b), magnesium crystals (c), and herbertsmithite (d).

FIG. 1.4: Different optical lattices, the red dots mark the position of the particles [16].

Because the particles in an optical lattice are at defined positions with fixed distances between
each other, they yield a physical behaviour very similar to crystals or other condensed matter
systems, which allows to transfer many results achieved in optical lattices to condensed matter
physics. Changing a parameter like the distance between two lattice sites is quite easy, since
all the laser settings are tunable, whereas changing these parameters in a crystal happens to
be much more difficult. Therefore, optical lattices grant great support for almost all condensed
matter problems. But there are some important differences between optical lattices and real
solid-state systems, for instance there are no phonons in optical lattices.

1.3 Phase Transitions

A phase transition represents a thermodynamic phenomenon, which causes a material to change
its phase. To trigger this changing, a state variable has to go beyond a specific, critical value.
For example, the material water evaporates if the state variable temperature passes the critical
value of 373.15 K. According to the Ehrenfest classification [17], the entire diversity of phase
transitions can be categorized by the number of derivatives of the free energy which reveals the
first discontinuity.
A first-order phase transition appears if the first derivatives of the free energy are discontinuous.
This process requires a latent heat, therefore energy is absorbed by the material just to make
the phase transition happen, without changing its actual temperature. These first-order phase
transitions are widely spread in nature, like water will absorb the heat of vaporization of 40.8
kJ/mol while evaporation. This energy does not change the inner energy of the system, but
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increases the entropy, i. e. the disorder.
If all first derivatives of the free energy are continuous, but one of the second derivatives is
discontinuous, a second-order phase transition takes place. They are also called continuous phase
transitions. There are many examples of second-order phase transitions, like the ferromagnetic
transition or the superconducting transition. Even the system we work with in this thesis, namely
bosons in an optical lattice show a second-order phase transition, namely from the Mott insulator
to the superfluid phase. The Bose-Einstein condensate exists only in the superfluid phase, which
is characterized by zero viscosity and thence high mobility of the particles. Furthermore, the
spatial uncertainty is large, while the momentum uncertainty is small, just as explained in FIG.
1.5. For the Mott insulator it is the opposite way, since the particles are locked down at the
respective lattice sites. Thus, the space uncertainty is small, while the momentum uncertainty
is big.

FIG. 1.5: Time-of-flight pictures from [18]. Since these are pictures of momentum space, the
momentum uncertainty increases from (a) to (d). According to Heisenberg’s uncer-
tainty principle [19], the state in (a) is uncertain in space, and therefore has to be the
superfluid phase. The state in (d) is obviously in a localized phase, which is called the
Mott insulator.

But since the Bose gas is at T = 0, we cannot have a classical, thermally driven phase transition
[20, 21]. Therefore, this is a second-order quantum phase transition [22], which happens not
due to varying the temperature, but due to varying the depth of the wells. In our case, the
amplitude of the laser is changed to make this quantum phase transition happen. A Bose gas
in a deep optical lattice is localized at the lattice sites, which is a state called Mott insulator.
By tuning the lasers in such a way that the lattice sites become more shallow, the probability
for the particles to hop from one site to a neighbouring one increases. At some point, the Bose
gas will undergo a phase transition of second order [23] from the Mott insulating Bose gas to a
Bose-Einstein condensate in the superfluid phase, which can be detected by tilting the lattice:
if the particles stay in the lattice sites, it is in the Mott insulator phase, if it flows according to
the tilt, then it is in the superfluid phase.
This thesis focuses on this quantum phase transition between Mott insulator and superfluid,
which bears many physical properties with superconductors. At a critical temperature, super-
conductors undergo a phase transition of second order from their normal phase to the supercon-
ducting phase by their electrons forming bosonic Cooper pairs which can move without friction.
This is analogous to the Bose gas in the Mott insulator phase losing its friction when becoming
a superfluid Bose-Einstein condensate at a critical lattice site depth.
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1.4 Outline of Thesis

The diploma thesis proceeds from here on according to the following steps.

Chapter 2: Theoretical Basis
In chapter 2 we introduce the theoretical basis which is needed for elaborating the further thesis.
First we discuss the one-band Bose-Hubbard model, which describes bosons in an optical lattice
at zero temperature. With the Landau theory we introduce the condensate density Ψ∗Ψ, where
Ψ∗, Ψ denote the order parameter. In order to treat the Hamiltonian analytically, we simplify
the Bose-Hubbard model by applying the mean-field approximation, which means we neglect
quantum fluctuations. This makes the kinetic term directly proportional to the order parameter
Ψ∗, Ψ, which is supposedly small in the vicinity of the phase boundary and can therefore be
treated perturbatively. Afterwards we follow the literature and apply the Rayleigh-Schrödinger
perturbation theory in order to determine both the phase boundary and the order parameter.
Although we obtain the correct mean-field phase boundary, an energetic degeneracy between
every two neighbouring lobes does occur. Therefore, the order parameter turns out to be incor-
rect in the vicinity of this degeneracy, which warrants another improved approach.

Chapter 3: Perturbation Theory
In chapter 3 the Brillouin-Wigner perturbation theory is derived in detail. In order to handle the
infinite Hilbert space, we split it into two subspaces, one being finite and the other one being infi-
nite. Eliminating the infinitely large subspace leads to an effective Hamiltonian, which describes
our system with the finite subspace and takes with every perturbative order more and more of
the infinite subspace into account. This effective Hamiltonian can describe a finite subsystem
containing just one state, but we can also expand this to two states by arranging the effective
Hamiltonian as elements of a 2× 2-matrix. In this way we show that Brillouin-Wigner pertur-
bation theory contains both the non-degenerate perturbation theory of Rayleigh-Schrödinger as
well as the degenerate perturbation theory as special cases.

Chapter 4: Approximative Solutions
In chapter 4 we apply the Brillouin-Wigner theory to the Bose-Hubbard mean-field theory, which
allows us to reproduce some well-established results from other works and therefore proof the
validity of our calculations. First, we linearize our two-state approach to reproduce the re-
sults from Ref. [24], which yields a proper order parameter, but not a valid phase boundary.
While in a second calculation we transform our one-state approach into a fourth-order Rayleigh-
Schrödinger perturbation theory to reproduce the results from Ref. [23], which gives a good
phase boundary but an unphysical order parameter.

Chapter 5: Graphical Approach
In chapter 5 we introduce a graphical approach, which allows to systematically keep track of
the lengthy analytic calculations in terms of simple graphs. With this graphical approach we
are able to write down all formulas of the Brillouin-Wigner perturbation theory up to the eighth
perturbative order.

Chapter 6: Mean-Field Phase Boundary
In chapter 6 we calculate the correct mean-field phase boundary within our Brillouin-Wigner
approach. We show that it is sufficient for this to go up to second order in the Brillouin-Wigner
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perturbation theory with respect to the kinetic term. Higher order terms turn out to not con-
tribute to the mean-field phase boundary.

Chapter 7: Order Parameter
In chapter 7 we perform calculations within the Brillouin-Wigner theory to determine the con-
densate density n0 = Ψ∗Ψ. We start with presenting some basic considerations, which are
necessary in order to calculate the order parameter out of the Brillouin-Wigner perturbation
theory. Based on this, we calculate the order parameter both from the one-state approach and
from the two-state approach, where the latter two-state approach turns out to be superior. By
choosing these two states as two neighbouring Mott-lobes, we can include the degeneracy cor-
rectly.

Chapter 8: Conclusion and Outlook
In chapter 8 we sum up the previous chapters and the obtained results. As an outlook we suggest
to extend our results via Thomas-Fermi approximation in order to include a harmonic trapping
potential. This would allow to calculate the experimentally observed wedding-cake structure for
the particle density. Furthermore, we state that our results can be improved by systematically
expanding the mean-field theory to a full Landau theory.
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2 Theoretical Basis

In this chapter we describe the theoretical basis needed for the further calculations in this work.
First we present the Bose-Hubbard model to describe bosons in an optical lattice. Then we use
the Landau theory to introduce the order parameter for the condensate density Ψ∗Ψ. Afterwards,
we apply the mean-field theory to get an approximate formula, which can be treated analytically.
The analytical treatment is actually done by perturbation theory, which is described in the last
section. There we get formulas for the phase boundary and the order parameter, where the
latter turns out to be physically incorrect and thus we need another approach.

2.1 Bose-Hubbard Model

The Bose-Hubbard model, first published in 1963 by H. A. Gersch and G. C. Knollman [25],
is a bosons adapted version of the Hubbard model, which was published by J. Hubbard earlier
in 1963 [26]. The most noticeable difference is that the Bose-Hubbard model describes bosons
instead of the fermionic electrons in the Hubbard model. Two main assumptions are made for
the Bose-Hubbard model. The first one is that the temperature is so low, that it is sufficient
to take into account only the lowest energy band. The second assumption is to neglect any
long-range interaction and long-range hopping. Since we do our calculation at T = 0, these
assumptions are justified. The Hamilton operator for the Bose-Hubbard model reads

Ĥ =
1

2
U
∑
i

â†i â
†
i âiâi − J

∑
〈i,j〉

â†i âj − µ
∑
i

â†i âi , (2.1)

with U scaling the on-site interaction for U > 0 repulsive and U < 0 attractive, whereas â†i and
âi are the bosonic creation and annihilation operators at site i with the canonical commutation
relations

[
âi, â

†
j

]
−

= δi,j ,[
â†i , â

†
j

]
−

= 0 ,

[âi, âj ]− = 0 , (2.2)

with δi,j being the Kronecker-delta and the commutator
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[A,B]− = AB −BA . (2.3)

For the following, we introduce the particle number operator as

n̂i = â†i âi , (2.4)

which defines the occupation number representation via

n̂i|ni 〉 = ni|ni 〉 ,
âi|ni 〉 =

√
ni |ni − 1 〉 ,

â†i |ni 〉 =
√
ni + 1 |ni + 1 〉 . (2.5)

Furthermore, J represents the kinetic term of the Hamiltonian, which is in the Bose-Hubbard
model for optical lattices the hopping energy and namely describes the energy gain (J > 0) or
loss (J < 0) from tunnelling from one lattice site to another. The summation indices 〈i, j〉 are
nearest neighbouring lattice sites. Finally, µ is the chemical potential, determining the energy
difference for a boson in the optical lattice in comparison with a free boson without external
influences.

2.2 Landau Theory

For further treatment of our system, we choose to apply the Landau theory [27] by introducing
the order parameter, which is in our case the condensate density Ψ∗Ψ. In the Mott-phase, we
have Ψ∗Ψ = 0, while in the superfluid phase, we have Ψ∗Ψ > 0.
We start with the grand potential

F = U − TS − µN , (2.6)

with U the internal energy, T the temperature, S the entropy, µ the chemical potential, and N
the number of particles. In this thesis, we calculate at T = 0 and thus (2.6) reduces to

F = U − µN , (2.7)
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which we name the energy of our system. According to the Landau theory [27], we can represent
the energy F of our system as a function of Ψ∗ and Ψ, therefore F = F (Ψ∗,Ψ), but because of
the U(1)-symmetry of the Bose-Hubbard model (2.1), this reduces to F = F (Ψ∗Ψ). Thus we
can write the energy of our system as a Taylor expansion

F = a0 + a2Ψ∗Ψ + a4Ψ∗2Ψ2 + ... . (2.8)

Since we want to minimize the energy F , we find the extrema by differentiation

∂F
∂Ψ∗

= Ψ (a2 + 2a4Ψ∗Ψ + ...) . (2.9)

With ∂F/∂Ψ∗ = 0, this gives two possible solutions for the condensate density Ψ∗Ψ, either we
have

Ψ∗Ψ = 0 (2.10)

or

Ψ∗Ψ = − a2

2a4
+ ... . (2.11)

For the Mott insulator, we have no condensate density, and thus (2.10) describes the Mott
insulator phase. This yields the energy of the Mott-insulator according to (2.8) as

FMott = a0 . (2.12)

In order to verify the existence of a superfluid phase with a positive order parameter, we have
to insert (2.11) into (2.8) and get

FSuperfluid = a0 −
a2

2

4a4
. (2.13)

In a phase transition of first order, we have a4 < 0. In our case, we have a phase transition of
second order, and thus a4 > 0, thence FSuperfluid < a0 for Ψ∗Ψ > 0. Therefore, in order for the
energy to be minimized, we have (2.11) in the superfluid phase. Out of this we conclude, that
we are at the phase boundary for a2 = 0.
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2.3 Mean-Field Approximation

The energy F can be calculated via a field-theoretic method, where a Legendre transform of
the grand-canonical free energy gives very precise results [16, 28]. Another way is to apply
the mean-field approximation, which is quantitatively less correct, but gives a good qualitative
insight. Furthermore, the calculations are less complex and thus much faster to compute with
high precision. In order to apply the mean-field approximation, we start with rewriting (2.1)
with (2.2) and (2.4) to

Ĥ =
1

2
U
∑
i

n̂i (n̂i − 1)− J
∑
〈i,j〉

â†i âj − µ
∑
i

n̂i , (2.14)

which leaves only the kinetic term non-local, since the creation and annihilation operator act on
different sites. In order to get approximately rid of this non-local term, we perform a Bogoliubov
decomposition for these operators

â†i = Ψ∗ + δâ†i
âi = Ψ + δâi , (2.15)

where Ψ∗, Ψ represents the mean field with n0 = Ψ∗Ψ being the condensate density, whereas
δâ†i , δâi devote fluctuation corrections. Within the mean-field approximation one neglects all
quadratic fluctuations in the kinetic term of the Hamiltonian. Thus, we have

0 ≈
(

Ψ∗ − â†i
)

(Ψ− âj) , (2.16)

which can be rewritten as

â†i âj ≈ Ψ∗âj + Ψâ†i −Ψ∗Ψ . (2.17)

Now we insert (2.17) into the kinetic term of (2.14) and get the Bose-Hubbard mean-field
Hamiltonian

ĤMF =
1

2
U
∑
i

n̂i (n̂i − 1)− Jz
∑
i

(
Ψ∗âi + Ψâ†i −Ψ∗Ψ

)
− µ

∑
i

n̂i . (2.18)
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Here z devotes the number of nearest neighbours. Since (2.18) is local, we can restrict us to one
lattice site. Thus, we get the mean-field Bose-Hubbard Hamiltonian

ĤMF =
1

2
Un̂ (n̂− 1)− Jz

(
Ψ∗â+ Ψâ† −Ψ∗Ψ

)
− µn̂ . (2.19)

Note that the kinetic term of this Hamiltonian is proportional to the order parameter Ψ∗, Ψ.

2.4 Perturbation Theory

Since the condensate density Ψ∗Ψ is zero in the Mott-insulator and positive in the superfluid
phase, we can assume that the order parameter is small as long as we stay in the superfluid phase
close to the phase boundary. Since the kinetic term is proportional to the order parameter Ψ∗,
Ψ, we can calculate it with a perturbative approach.
In order to do so, we do the primal splitting of the Hamiltonian into a unperturbed ground state
energy and a small perturbation with λ being a smallness parameter. One way to do so is

Ĥ = Ĥ(0) + λV̂ ,

Ĥ(0) =
1

2
Un̂ (n̂− 1)− µn̂+ JzΨ∗Ψ ,

V̂ = −Jz
(

Ψ∗â+ Ψâ†
)
, (2.20)

with the unperturbed ground-state energy

E(0)
n = E(0)

n + JzΨ∗Ψ =
1

2
Un (n− 1)− µn+ JzΨ∗Ψ , (2.21)

which is used in [23]. Another way to split (2.19) is

Ĥ = Ĥ(0) + λV̂ ,

Ĥ(0) =
1

2
Un̂ (n̂− 1)− µn̂ ,

V̂ = −Jz
(

Ψ∗â+ Ψâ† −Ψ∗Ψ
)
, (2.22)

with the unperturbed ground-state energy
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E(0)
n =

1

2
Un (n− 1)− µn , (2.23)

which is used in [24].
The advantage of (2.20) is that the perturbative term V̂ consists of only two summands instead
of three summands in V̂ as in (2.22), simplifying an actual evaluation of this term a lot. The
advantage of (2.22) is the independency of Ĥ(0) from Ψ∗Ψ, therefore ∂E(0)

n /∂Ψ∗ = 0, which is a
derivation needed to receive the order parameter out of the energy. However, since both systems
(2.20) and (2.22) have the same Hamiltonian, the results obtained by one are equivalent to the
results from the other. Therefore, we are free to choose the primal split which facilitates our
calculations the most.

For the calculations in this chapter, we decide for the primal split according to (2.20). Thus,
we apply the Rayleigh-Schrödinger perturbation theory according to [23, 29] and get for the
eigenstate and the eigenvalue

|Ψn 〉 =

∞∑
i=0

J i|Ψ(i)
n 〉 , (2.24)

E(n) =
∞∑
i=0

J iE(i)
n . (2.25)

With the Schrödinger equation we get for the correction terms

E(p)
n = 〈Ψ(0)

n |V̂|Ψ(p−1)
n 〉 , (2.26)

|Ψ(p)
n 〉 =

∑
m6=n
|Ψ(0)

m 〉
〈Ψ(0)

m |V̂|Ψ(p−1)
n 〉

E(0)
n − E(0)

m

−
p∑
j=1

E(j)
n

∑
m 6=n
|Ψ(0)

m 〉
〈Ψ(0)

m |Ψ(p−j)
n 〉

E(0)
n − E(0)

m

, (2.27)

with the initial value for these recursion formulas

|Ψ(0)
n 〉 = |n 〉 (2.28)

and
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E(0)
n =

U

2
n (n− 1)− µn+ JzΨ∗Ψ . (2.29)

With these formulas, we can get the energy in the Landau representation up to the fourth order
as [23, (3.39)]

E(n) = a0 + a2Ψ∗Ψ + a4Ψ∗2Ψ2 + ... , (2.30)

with the Landau coefficients

a0 = E(0)
n =

U

2
n (n− 1)− µn , (2.31)

a2 = Jz + J2z2

(
n+ 1

E
(0)
n − E(0)

n+1

+
n

E
(0)
n − E(0)

n−1

)
, (2.32)

and

a4 =J4z4

 n+ 1(
E

(0)
n − E(0)

n+1

)2

(
n+ 2

E
(0)
n − E(0)

n+2

− n

E
(0)
n − E(0)

n−1

− n+ 1

E
(0)
n − E(0)

n+1

)

+
n(

E
(0)
n − E(0)

n−1

)2

(
n− 1

E
(0)
n − E(0)

n−2

− n+ 1

E
(0)
n − E(0)

n+1

− n

E
(0)
n − E(0)

n−1

) . (2.33)

In order to get the phase boundary, we calculate ∂E(n)/∂Ψ∗ = 0, set Ψ∗Ψ = 0 and solve with
respect to Jz/U to get the mean-field phase boundary (2.34) as in Ref. [30], which is shown in
FIG. 2.1:

Jz

U
= −

(
E

(0)
n − E(0)

n+1

)(
E

(0)
n − E(0)

n−1

)
U
[
E

(0)
n − E(0)

n−1 + 2nE
(0)
n − n

(
E

(0)
n+1 + E

(0)
n−1

)] . (2.34)
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FIG. 2.1: Phase boundary plot, obtained by Rayleigh-Schrödinger perturbation theory. Inside
of the lobes we are in the Mott-insulator phase, while outside of the lobes we are in
the superfluid phase. The number of particles n increases from the left to the right by
one per lobe.

It is obvious that for large Jz
U , we are in the superfluid phase, far away from the phase boundary,

since the Mott-insulator needs low hopping probabilities. Since all of our theory is based on the
assumption of being close to the phase boundary, we can’t obtain reliable results for big Jz

U deep
in the superfluid phase. Nevertheless, for Jz

U . 0.20, we assume our model to be valid. While
for Jz

U = 0, we have no superfluid phase and only Mott-insulator, we always reach the superfluid
phase by increasing Jz

U . Another way to get from the Mott-insulator to the superfluid phase
is the tuning of µ

U at Jz
U > 0. If we start in the first Mott-lobe and increase µ

U , the ordered
structure breaks down at some point and the superfluid phase is energetically more favourable
and thus realized.
After obtaining the phase boundary, we take a closer look at the lowest energies for increasing n.
In the plot of the energies (2.31) in FIG. 2.2, we see that the lowest energies have a degeneracy
at integer values of µ/U . Like in between the lobes for n = 1 (red) and n = 2 (blue) at µ

U = 1, at
this point, it is E(0)

1 = E
(0)
2 and therefore µ = Un. Analogous formula are valid between every

two neighbouring lobes. It is exactly this degeneracy which makes every algebraic treatment of
this system quite complex, but since we have only two degenerate energies, a solution can be
found.
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FIG. 2.2: The different lines correspond to different values for n with n = 1 (red), n = 2 (blue),
n = 3 (green), and n = 4 (purple). The vertical, dashed, black lines correspond to the
points of degeneracy. The solid coloured lines are the realized, lowest energy, while
the dashed coloured lines indicate the continuation of the energy line.

With this degeneracy in mind, we draw our attention to the order parameter. First, we plot (2.11)

with (2.32) and (2.33). Since a4 approaches infinity for µ = Un, where we have E(0)
n = E

(0)
n+1

according to (2.31), the condensate density Ψ∗Ψ tends to zero at the degeneracy between two
adjacent lobes, which indicates a phase boundary there, although there is none. This unphysical
behaviour is depicted in FIG. 2.3.

0.8 0.9 1.0 1.1 1.2
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0.10
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0.20

0.25

0.30

FIG. 2.3: The order parameter from [23], using (2.11) with (2.32) and (2.33). For this plot is
Jz
U = 0.08. The left part origins from n = 1 and the right part from n = 2. The order
parameter is zero at the phase boundary and shows a physical behaviour close to the
phase boundary. In the vicinity of the degeneracy, the Rayleigh-Schrödinger result
breaks down. The value Ψ∗Ψ = 0 at µ

U = 1 implies a false phase boundary there.
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Therefore, we need another approach. We stay in a perturbative picture, which already succeeded
in reproducing the phase boundary, but in order to get the order parameter as well, we will not
apply the well-known Rayleigh-Schrödinger perturbation theory, but the less common Brillouin-
Wigner perturbation theory.
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3 Perturbation Theory

The best known perturbation theory is the Rayleigh-Schrödinger perturbation theory. More
precisely, there is the normal Rayleigh-Schrödinger perturbation theory and the degenerate
Rayleigh-Schrödinger perturbation theory. If a parameter ranges over degenerate parts and
non-degenerate parts, both perturbation theories are needed.
In contrast to that the less known Brillouin-Wigner perturbation theory describes degenerate
parts as well as non-degenerate parts with one and the same approach. In case of the Bose-
Hubbard model we do have a degeneracy between every two adjacent Mott lobes, but want
smooth parameters over the entire regime of all lobes.
Thus, we will use the Brillouin-Wigner perturbation theory in this work, which is derived and dis-
cussed in this chapter. By doing this, we show how to get the well-known Rayleigh-Schrödinger
perturbation theory out of the Brillouin-Wigner perturbation approach.

3.1 Basic Considerations and Projection Operator Formalism

Before we start with the real derivation of the Brillouin-Wigner perturbation theory, we have
to take a look at the basic, required structures of our Hamilton operator and our Hilbert space.
We will find projection operators as a crafty way to handle both in one formalism.
In order to do any kind of perturbation theory, we choose our Hamilton operator is such a way,
that it can be split as follows:

Ĥ = Ĥ(0) + λV̂ . (3.1)

Here Ĥ denotes the Hamilton operator of the whole, perturbed system, Ĥ(0) represents the
unperturbed Hamilton operator, and V̂ stands for the operator of the perturbation. Furthermore,
we have introduced λ as a smallness parameter, thus the perturbation is considered to be small
in comparison with the unperturbed Hamilton operator.

3.1.1 Unperturbed Hamilton Operator and Energy States

The time-independent Schrödinger equation represents the eigenvalue problem of the unper-
turbed Hamilton operator Ĥ(0) and involves the unperturbed energy eigenvalues E(0)

n as well as
the unperturbed energy states |Ψ(0)

n 〉:
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Ĥ(0)|Ψ(0)
n 〉 = E(0)

n |Ψ(0)
n 〉 . (3.2)

Here the quantum number n enumerates all states of the system, which are assumed to be discrete
without loss of generality. Furthermore, the unperturbed energy states obey the completeness
relation

∑
n

|Ψ(0)
n 〉〈Ψ(0)

n | = 1 (3.3)

and the orthonormality relation

〈Ψ(0)
n |Ψ(0)

m 〉 = δn,m , (3.4)

where δn,m represents the Kronecker delta.
Now we introduce projection operators for the respective unperturbed energy states:

P̂n = |Ψ(0)
n 〉〈Ψ(0)

n | . (3.5)

Due to (3.4) they fulfil the property

P̂nP̂n′ = δn,n′P̂n . (3.6)

This means that for n 6= n′ two projector operators project into different subspaces, whereas
for n = n′ (3.6) represents the idempotent property of a projection operator. With (3.5) the
unperturbed Hamilton operator can be written as

Ĥ(0) =
∑
n

E(0)
n P̂n (3.7)

in accordance with (3.2).
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3.1.2 Hilbert Space

We split the underlying Hilbert space into two parts by using the projection operators P̂ and
Q̂:

Q̂+ P̂ = 1 . (3.8)

Here we assume that P̂ is given by:

P̂ =
∑
k∈N

P̂k (3.9)

for some set N of quantum numbers. Thus, we conclude from (3.8) and (3.9)

Q̂ = 1−
∑
k∈N

P̂k , (3.10)

which can be summarized as

Q̂ =
∑
k∈Ñ

P̂k (3.11)

with Ñ being the complement of N .
With this we obtain from (3.6) and (3.9) that P̂ fulfils, indeed, the idempotent property of a
projection operator

P̂ 2 = P̂ , (3.12)

which is also valid for Q̂ due to (3.10)

Q̂2 = Q̂ . (3.13)

Furthermore, we conclude
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P̂ Q̂ = Q̂P̂ = 0 , (3.14)

which states that P̂ and Q̂ project into disjunct subspaces of the Hilbert space.
With this, we calculate that the commutator between Ĥ(0) and P̂

[
Ĥ(0), P̂

]
−

=Ĥ(0)P̂ − P̂ Ĥ(0) (3.15)

vanishes due to (3.6), (3.7), and (3.9):

[
Ĥ(0), P̂

]
−

=Ĥ(0)P̂ − P̂ Ĥ(0) =
∑
n

E(0)
n P̂n

∑
k∈N

P̂k −
∑
k∈N

P̂k
∑
n

E(0)
n P̂n

=
∑
n

∑
k∈N

E(0)
n

(
P̂nP̂k − P̂kP̂n

)
= 0 . (3.16)

Taking into account (3.10) then yields

[
Ĥ(0), Q̂

]
−

= 0 . (3.17)

From (3.14), (3.16), and (3.17) we also conclude

P̂ Ĥ(0)Q̂ = Q̂Ĥ(0)P̂ = 0 . (3.18)

3.2 General Derivation

In the following, we derive an effective Hamiltonian for the Hilbert subspace, which is character-
ized by the projection operator P̂ . To this end we have to eliminate the complementary Hilbert
subspace, which is characterized by the projection operator Q̂.
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3.2.1 Schrödinger Equation with Projection Operators

Since we have now the two projection operators P̂ and Q̂, we need two conditions to define the
respective Hilbert subspaces. For this, we start with reformulating the full time-independent
Schrödinger equation

Ĥ|Ψn 〉 = En|Ψn 〉 (3.19)

with the help of the projection operators. To this end we insert the unity operator 1 and get

Ĥ1|Ψn 〉 = En1|Ψn 〉 . (3.20)

Applying (3.8) leads to

Ĥ
(
P̂ + Q̂

)
|Ψn 〉 = En

(
P̂ + Q̂

)
|Ψn 〉 , (3.21)

which yields

ĤP̂ |Ψn 〉+ ĤQ̂|Ψn 〉 = EnP̂ |Ψn 〉+ EnQ̂|Ψn 〉 . (3.22)

Multiplying (3.22) from the left with P̂ and using both (3.12) and (3.14) gives then

P̂ ĤP̂ |Ψn 〉+ P̂ ĤQ̂|Ψn 〉 = EnP̂ |Ψn 〉 . (3.23)

Correspondingly multiplying (3.22) from the left with Q̂ and using (3.13) and (3.14), we obtain

Q̂ĤP̂ |Ψn 〉+ Q̂ĤQ̂|Ψn 〉 = EnQ̂|Ψn 〉 . (3.24)
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3.2.2 Eliminating a Subspace

Now we try to find a single equation for P̂ |Ψn 〉 in a shape similar to the time-independent
Schrödinger-equation, which necessitates eliminating Q̂|Ψn 〉 from (3.23). To this end, we start
with (3.24) and use (3.13):

Q̂ĤP̂ |Ψn 〉+ Q̂ĤQ̂2|Ψn 〉 = EnQ̂|Ψn 〉 . (3.25)

From rearranging and factoring out follows:

Q̂ĤP̂ |Ψn 〉 =
(
En − Q̂ĤQ̂

)
Q̂|Ψn 〉 . (3.26)

Thus, a formal solution with respect to Q̂|Ψn 〉 yields

Q̂|Ψn 〉 =
(
En − Q̂ĤQ̂

)−1
Q̂ĤP̂ |Ψn 〉 . (3.27)

A further multiplication with Q̂ from the left gives then with (3.13)

Q̂|Ψn 〉 = Q̂
(
En − Q̂ĤQ̂

)−1
Q̂ĤP̂ |Ψn 〉 . (3.28)

Inserting (3.28) in (3.23), we get a single equation for P̂ |Ψn 〉 :

P̂ ĤP̂ |Ψn 〉+ P̂ ĤQ̂
(
En − Q̂ĤQ̂

)−1
Q̂ĤP̂ |Ψn 〉 = EnP̂ |Ψn 〉 . (3.29)

Using (3.1) allows to rewrite (3.29) according to

P̂ ĤP̂ |Ψn 〉+ P̂
(
Ĥ(0) + λV̂

)
Q̂
(
En − Q̂ĤQ̂

)−1
Q̂
(
Ĥ(0) + λV̂

)
P̂ |Ψn 〉 = EnP̂ |Ψn 〉 . (3.30)

At first we expand only the first bracket:

30



P̂ ĤP̂ |Ψn 〉

+ P̂ Ĥ(0)Q̂
(
En − Q̂ĤQ̂

)−1
Q̂
(
Ĥ(0) + λV̂

)
P̂ |Ψn 〉

+ P̂ λV̂ Q̂
(
En − Q̂ĤQ̂

)−1
Q̂
(
Ĥ(0) + λV̂

)
P̂ |Ψn 〉 = EnP̂ |Ψn 〉 . (3.31)

By using (3.18), the second line vanishes and we expand the last bracket:

P̂ ĤP̂ |Ψn 〉

+ P̂ λV̂ Q̂
(
En − Q̂ĤQ̂

)−1
Q̂Ĥ(0)P̂ |Ψn 〉

+ P̂ λV̂ Q̂
(
En − Q̂ĤQ̂

)−1
Q̂λV̂ P̂ |Ψn 〉 = EnP̂ |Ψn 〉 . (3.32)

We use again (3.18), so that the second line vanishes, and get finally

P̂ ĤP̂ |Ψn 〉+ P̂ λV̂ Q̂
(
En − Q̂ĤQ̂

)−1
Q̂λV̂ P̂ |Ψn 〉 = EnP̂ |Ψn 〉 . (3.33)

A subsequent reordering yields

P̂

[
Ĥ + λV̂ Q̂

(
En − Q̂ĤQ̂

)−1
Q̂λV̂

]
P̂ |Ψn 〉 = EnP̂ |Ψn 〉 . (3.34)

This represents a single equation for P̂ |Ψn 〉, which is the basis for the Brillouin-Wigner pertur-
bation theory.

3.3 Brillouin-Wigner Perturbation Theory

Now we reformulate (3.34) in terms of a matrix representation within the Hilbert subspace
defined by the projection operator P̂ . Afterwards, we specialize to the cases that P̂ consists of
one and two states, respectively.

3.3.1 Resolvent

The resulting equation (3.34) for P̂ |Ψn 〉 is of the form of a time-independent Schrödinger-
equation
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P̂ Ĥeff P̂ |Ψn 〉 = EnP̂ |Ψn 〉 , (3.35)

where we have introduced the effective Hamiltonian

Ĥeff = Ĥ + λ2V̂ Q̂
(
En − Q̂ĤQ̂

)−1
Q̂V̂ . (3.36)

Since Ĥeff is sandwiched by P̂ , everything that goes in or out of Ĥeff must involve the Hilbert
subspace P̂ projects into. However, Ĥeff contains also the projection operator Q̂, so one has to
go beyond the Hilbert subspace P̂ projects into.
Another way to represent Ĥeff is by inserting (3.1) into (3.36), so we obtain

Ĥeff =Ĥ(0) + λV̂ + λ2V̂ Q̂
(
En − Q̂Ĥ(0)Q̂− λQ̂V̂ Q̂

)−1
Q̂V̂ . (3.37)

Here the resolvent

R̂(En) =
(
En − Q̂Ĥ(0)Q̂− λQ̂V̂ Q̂

)−1
=
[
En − Q̂

(
Ĥ(0) + λV̂

)
Q̂
]−1

(3.38)

can be expanded in a Taylor series with respect to λ with the help of a geometric series:

R̂(En) =
(
En − Q̂Ĥ(0)Q̂

)−1
∞∑
s=0

[
λQ̂V̂ Q̂

(
En − Q̂Ĥ(0)Q̂

)−1
]s
. (3.39)

Note the crucial property of (3.39) that it contains the full energy eigenvalue En, and not just
the unperturbed energy eigenvalue E(0)

n .
We can now insert (3.38) in (3.37):

Ĥeff =Ĥ(0) + λV̂ + λ2V̂ Q̂R̂(En)Q̂V̂ . (3.40)

In the limit λ → 0 this reproduces the unperturbed Schrödinger equation (3.2). The essential
property of (3.40) is, however, the non-linear appearance of En in the resolvent R̂(En) from
(3.38).
Take heed of the first perturbative order λV̂ in (3.40), which is not contained by the resolvent
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R̂(En), but directly emanates from the perturbed Hamilton operator Ĥ in (3.1). In contrast to
that all higher orders in (3.40) originate from the resolvent term, more precisely s = 0 gives the
second perturbative order, s = 1 goes up to the third perturbative order, s = 2 goes up to the
fourth perturbative order, and so on. Thus, the perturbative order is always twice larger than
s.
This fundamental difference of origin of perturbative orders is already evident in (3.22), where
the term ĤP̂ gives rise to the zeroth and the first perturbative order, and the term ĤQ̂ gives rise
to all higher orders. In other words, the zeroth and the first perturbative order are within the
Hilbert subspace P̂ projects into, whilst for all higher orders, the Hilbert subspace Q̂ projects
into must be taken into account.
Now we calculate exemplarily all correction terms of the effective Hamiltonian up to λ4. To do
so, we take the sum over s in the resolvent (3.39) up to s = 2 and insert this into (3.40)

Ĥeff =Ĥ(0) + λV̂

+ λ2V̂ Q̂R̂(0)(En)Q̂V̂

+ λ3V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂

+ λ4V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂ . (3.41)

Here we have introduced the resolvent with the perturbed energy

R̂(0)(En) =
(
En − Q̂Ĥ(0)Q̂

)−1
, (3.42)

which allows us to rewrite Ĥeff by index shifting (3.39) according to

Ĥeff = Ĥ(0) + λV̂
∞∑

s=−1

[
λQ̂R̂(0)(En)Q̂V̂

]s+1
. (3.43)

Now we specialize to the respective projection operators P̂ and Q̂ given by (3.9) and (3.11).
With this we show that the matrix element of the resolvent (3.42) yields

1

En − E(0)
l

= 〈Ψ(0)
l |R̂

(0)(En)|Ψ(0)
l 〉 , (3.44)

with l ∈ Ñ and n ∈ N .
In order to proof this, we start with multiplying (3.42) from the left with 〈Ψ(0)

l |
(
En − Q̂Ĥ(0)Q̂

)
and from the right with |Ψ(0)

` 〉, which gives due to (3.4)
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〈Ψ(0)
l |

(
En − Q̂Ĥ(0)Q̂

)
R̂(0)(En)|Ψ(0)

` 〉 = 〈Ψ(0)
l |Ψ

(0)
` 〉 = δl,` , (3.45)

which yields after an expansion

En〈Ψ(0)
l |R̂

(0)(En)|Ψ(0)
` 〉 − 〈Ψ

(0)
l |Q̂Ĥ

(0)Q̂R̂(0)(En)|Ψ(0)
` 〉 = δl,` . (3.46)

Now we insert (3.11)

En〈Ψ(0)
l |R̂

(0)(En)|Ψ(0)
` 〉

− 〈Ψ(0)
l |

∑
l′∈Ñ

|Ψ(0)
l′ 〉〈Ψ

(0)
l′ |Ĥ

(0)
∑
l′′∈Ñ

|Ψ(0)
l′′ 〉〈Ψ

(0)
l′′ |R̂

(0)(En)|Ψ(0)
` 〉 = δl,` , (3.47)

and gives after reordering the sums

En〈Ψ(0)
l |R̂

(0)(En)|Ψ(0)
` 〉

−
∑

l′,l′′∈Ñ

〈Ψ(0)
l |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |Ĥ

(0)|Ψ(0)
l′′ 〉〈Ψ

(0)
l′′ |R̂

(0)(En)|Ψ(0)
` 〉 = δl,` . (3.48)

Due to the orthonormality (3.4) and the eigenvalue problem (3.2) we get

En〈Ψ(0)
l |R̂

(0)(En)|Ψ(0)
` 〉 −

∑
l′,l′′∈Ñ

δl,l′δl′,l′′E
(0)
l′ 〈Ψ

(0)
l′′ |R̂

(0)(En)|Ψ(0)
` 〉 = δl,` . (3.49)

Evaluating the Kronecker symbol yields due to ` ∈ Ñ

En〈Ψ(0)
l |R̂

(0)(En)|Ψ(0)
` 〉 − E

(0)
l 〈Ψ

(0)
l |R̂

(0)(En)|Ψ(0)
` 〉 = δl,` . (3.50)

We factor out and obtain

(
En − E(0)

l

)
〈Ψ(0)

l |R̂
(0)(En)|Ψ(0)

` 〉 = δl,` , (3.51)
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so dividing by
(
En − E(0)

l

)
yields, indeed, the final result (3.44).

Taking into account (3.11) and (3.44) in (3.41), we obtain for n ∈ N

Ĥeff =Ĥ(0) + λV̂

+ λ2
∑
l∈Ñ

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂

En − E(0)
l

+ λ3
∑
l,l′∈Ñ

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂(

En − E(0)
l

)(
En − E(0)

l′

)
+ λ4

∑
l,l′,l′′∈Ñ

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂ |Ψ

(0)
l′′ 〉〈Ψ

(0)
l′′ |V̂(

En − E(0)
l

)(
En − E(0)

l′

)(
En − E(0)

l′′

) + ... . (3.52)

This representation of the effective Hamiltonian Ĥeff has no operators anymore in the denomi-
nators, and thus can be used for further calculations.

3.3.2 Matrix Representation

Now we determine an equation for determining the perturbed ground-state energy Em. To this
end, we choose n, n′ ∈ N and reformulate (3.35) with (3.9) to

∑
n,n′∈N

|Ψ(0)
n 〉〈Ψ(0)

n |Ĥeff |Ψ
(0)
n′ 〉〈Ψ

(0)
n′ |Ψm 〉 = Em

∑
n′∈N

|Ψ(0)
n′ 〉〈Ψ

(0)
n′ |Ψm 〉 . (3.53)

Now we multiply from the left with 〈Ψ(0)
n |

∑
n,n′∈N

〈Ψ(0)
n |Ĥeff |Ψ

(0)
n′ 〉〈Ψ

(0)
n′ |Ψm 〉 = Em

∑
n,n′∈N

〈Ψ(0)
n |Ψ

(0)
n′ 〉〈Ψ

(0)
n′ |Ψm 〉 , (3.54)

which gives

〈Ψ(0)
n′ |Ψm 〉

∑
n,n′∈N

(
〈Ψ(0)

n |Ĥeff |Ψ
(0)
n′ 〉 − Emδn,n′

)
= 0 . (3.55)
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In order to obtain a non-trivial solution 〈Ψ(0)
n′ |Ψm 〉 6= 0 from (3.55), we conclude:

Det
(
〈Ψ(0)

n |Ĥeff |Ψ
(0)
n ′ 〉 − Emδn,n ′

)
= 0 . (3.56)

Note that the determinant in (3.56) has to be performed with respect to n, n′ ∈ N .

3.3.3 One State

We consider now the special case that P̂ contains only one state, namely

P̂ = P̂n . (3.57)

With this, (3.56) simplifies with n = n′ = m

En = 〈Ψ(0)
n |Ĥeff |Ψ(0)

n 〉 . (3.58)

Inserting (3.52) in (3.58) we get

En =〈Ψ(0)
n |Ĥ(0)|Ψ(0)

n 〉+ λ〈Ψ(0)
n |V̂ |Ψ(0)

n 〉

+ λ2
∑
l∈Ñ

〈Ψ(0)
n |

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂

En − E(0)
l

|Ψ(0)
n 〉

+ λ3
∑
l,l′∈Ñ

〈Ψ(0)
n |

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂(

En − E(0)
l

)(
En − E(0)

l′

) |Ψ(0)
n 〉

+ λ4
∑

l,l′,l′′∈Ñ

〈Ψ(0)
n |

V̂ |Ψ(0)
l 〉〈Ψ

(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂ |Ψ

(0)
l′′ 〉〈Ψ

(0)
l′′ |V̂(

En − E(0)
l

)(
En − E(0)

l′

)(
En − E(0)

l′′

) |Ψ(0)
n 〉+ ... . (3.59)

Due to (3.2) and (3.4) we have

E(0)
n = 〈Ψ(0)

n |Ĥ(0)|Ψ(0)
n 〉 . (3.60)

Furthermore, we define the matrix element of the perturbed part of the Hamiltonian
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Vn,m = 〈Ψ(0)
n |V̂ |Ψ(0)

m 〉 . (3.61)

With (3.60) and (3.61) we rewrite (3.59) as

En =E(0)
n + λVn,n

+ λ2
∑
l∈Ñ

Vn,lVl,n

En − E(0)
l

+ λ3
∑
l,l′∈Ñ

Vn,lVl,l′Vl′,n(
En − E(0)

l

)(
En − E(0)

l′

)
+ λ4

∑
l,l′,l′′∈Ñ

Vn,lVl,l′Vl′,l′′Vl′′,n(
En − E(0)

l

)(
En − E(0)

l′

)(
En − E(0)

l′′

) + ... . (3.62)

Note that, due to the non-linearity in En, equation (3.62) represents a self-consistency equation
for the energy eigenvalue En. Furthermore, we observe up to fourth that every order in λ consists
of only one single term. Since we have n 6= l, l′, l′′, the denominator is never zero and thence no
divergency occurs in this perturbative expansion of the perturbed ground-state Energy En.

3.3.4 Two States

Now we consider the case that P̂ consists of two states, namely

P̂ = P̂n + P̂n′ . (3.63)

We insert this into (3.35):

(
P̂n + P̂n′

)
Ĥeff

(
P̂n + P̂n′

)
|Ψm 〉 = Em

(
P̂n + P̂n′

)
|Ψm 〉 . (3.64)

Expanding yields

(
P̂nĤeff P̂n + P̂nĤeff P̂n′ + P̂n′Ĥeff P̂n + P̂n′Ĥeff P̂n′

)
|Ψm 〉 =

(
EmP̂n + EmP̂n′

)
|Ψm 〉 . (3.65)

We multiply from the left with 〈Ψ(0)
n | and expand
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〈Ψ(0)
n |P̂nĤeff P̂n|Ψm 〉+ 〈Ψ(0)

n |P̂nĤeff P̂n′ |Ψm 〉+ 〈Ψ(0)
n |P̂n′Ĥeff P̂n|Ψm 〉

+ 〈Ψ(0)
n |P̂n′Ĥeff P̂n′ |Ψm 〉 = 〈Ψ(0)

n |EmP̂n|Ψm 〉+ 〈Ψ(0)
n |EmP̂n′ |Ψm 〉 . (3.66)

Taking into account (3.4)–(3.6) this reduces to

〈Ψ(0)
n |Ĥeff |Ψ(0)

n 〉〈Ψ(0)
n |Ψm 〉+ 〈Ψ(0)

n |Ĥeff |Ψ
(0)
n′ 〉〈Ψ

(0)
n′ |Ψm 〉 = Em〈Ψ(0)

n |Ψm 〉 . (3.67)

With defining the matrix elements

Heff,n,n′ = 〈Ψ(0)
n |Ĥeff |Ψ

(0)
n′ 〉 , (3.68)

(3.67) reduces to

Heff,n,n〈Ψ(0)
n |Ψm 〉+Heff,n,n′〈Ψ

(0)
n′ |Ψm 〉 = Em〈Ψ(0)

n |Ψm 〉 . (3.69)

Now we multiply (3.65) from the left with 〈Ψ(0)
n′ | and obtain, correspondingly

〈Ψ(0)
n′ |Ĥeff |Ψ(0)

n 〉〈Ψ(0)
n |Ψm 〉+ 〈Ψ(0)

n′ |Ĥeff |Ψ
(0)
n′ 〉〈Ψ

(0)
n′ |Ψm 〉 = Em〈Ψ(0)

n′ |Ψm 〉 . (3.70)

which reduces with (3.68) to

Heff,n′,n〈Ψ(0)
n |Ψm 〉+Heff,n′,n′〈Ψ

(0)
n′ |Ψm 〉 = Em〈Ψ(0)

n′ |Ψm 〉 . (3.71)

We combine (3.69) and (3.71) in form of

Heff,n,n〈Ψ
(0)
n |Ψm 〉 Heff,n,n′〈Ψ

(0)
n′ |Ψm 〉

Heff,n′,n〈Ψ
(0)
n |Ψm 〉 Heff,n′,n′〈Ψ

(0)
n′ |Ψm 〉

 = Em

〈Ψ
(0)
n |Ψm 〉

〈Ψ(0)
n′ |Ψm 〉

 . (3.72)

In matrix notation this gives
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Heff,n,n Heff,n,n′

Heff,n′,n Heff,n′,n′


〈Ψ

(0)
n |Ψm 〉

〈Ψ(0)
n′ |Ψm 〉

 = Em

〈Ψ
(0)
n |Ψm 〉

〈Ψ(0)
n′ |Ψm 〉

 , (3.73)

which corresponds to


Heff,n,n Heff,n,n′

Heff,n′,n Heff,n′,n′

− 1Em

〈Ψ

(0)
n |Ψm 〉

〈Ψ(0)
n′ |Ψm 〉

 = 0 . (3.74)

As the vector in (3.74) is supposed to be non-zero, we conclude

Det

Heff,n,n − Em Heff,n,n′

Heff,n′,n Heff,n′,n′ − Em

 = 0 . (3.75)

Note that

Γ =

Heff,n,n Heff,n,n′

Heff,n′,n Heff,n′,n′

 =

A B

C D

 (3.76)

represents a 2× 2 matrix, since the projection operator P̂ in (3.63) consists of two states. The
elements A, B, C and D of the matrix Γ can be calculated up to any order in λ, just as in
subsection 2.3.1.

3.4 Rayleigh-Schrödinger Perturbation Theory

In this section, we show how to get the well-known Rayleigh-Schrödinger perturbation theory
out of the Brillouin-Wigner perturbation theory. We will do this first for the non-degenerate
case, and then for the degenerate case.
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3.4.1 Non-Degenerate Case

We obtain the non-degenerate Rayleigh-Schrödinger perturbation theory from the Brillouin-
Wigner perturbation theory by performing a Taylor expansion in λ for the energy eigenvalue
En. We do this explicitly for the one-state example of equation (3.62). We start with the Taylor
expansion of the full energy eigenvalue

En =
∑
σ

λσE(σ)
n . (3.77)

Since we have in (3.62) evaluated the energy eigenvalue up to fourth order in λ, i. e. the
resolvent up to second order in λ, we do not get any reliable correction terms if we now go to
any higher order in λ than 4. Therefore, we insert the expansion (3.77) up to the second order
in λ in (3.62) with Ñ = n, thus no degeneracy is considered

En =E(0)
n + λVn,n

+ λ2
∑
l 6=n

[
Vn,lVl,n

(
E(0)
n + λE(1)

n + λ2E(2)
n − E

(0)
l

)−1
]

+ λ3
∑
l,l′ 6=n

{
Vn,lVl,l′Vl′,n

[(
E(0)
n + λE(1)

n + λ2E(2)
n − E

(0)
l

)
×
(
E(0)
n + λE(1)

n + λ2E(2)
n − E

(0)
l′

)]−1
}

+ λ4
∑

l,l′,l′′ 6=n

{
Vn,lVl,l′Vl′,l′′Vl′′,n

[(
E(0)
n + λE(1)

n + λ2E(2)
n − E

(0)
l

)
×
(
E(0)
n + λE(1)

n + λ2E(2)
n − E

(0)
l′

)(
E(0)
n + λE(1)

n + λ2E(2)
n − E

(0)
l′′

)]−1
}

+ ... . (3.78)

We simplify now the denominators by neglecting all terms, which lead to higher orders in λ than
4:

En =E(0)
n + λVn,n

+ λ2
∑
l 6=n

Vn,lVl,n

E
(0)
n − E(0)

l + λE
(1)
n + λ2E

(2)
n

+ λ3
∑
l,l′ 6=n

Vn,lVl,l′Vl′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)
+ λE

(1)
n

(
2E

(0)
n − E(0)

l − E
(0)
l′

)
+ λ4

∑
l,l′,l′′ 6=n

Vn,lVl,l′Vl′,l′′Vl′′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)(
E

(0)
n − E(0)

l′′

) . (3.79)
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We can now extract the respective corrections for the energy term. To do so, we have to sort
the correction terms in orders of λ, for which we have to get the λ out of the denominator into
the numerator. So we do a Taylor approximation according to

En =E(0)
n + λVn,n

+ λ2
∑
l 6=n

Vn,lVl,n

E
(0)
n − E(0)

l

1

1 + λ E
(1)
n

E
(0)
n −E

(0)
l

+ λ2 E
(2)
n

E
(0)
n −E

(0)
l

+ λ3
∑
l,l′ 6=n

Vn,lVl,l′Vl′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

) 1

1 + λ
E

(1)
n

(
2E

(0)
n −E

(0)
l −E

(0)

l′

)
(
E

(0)
n −E

(0)
l

)(
E

(0)
n −E

(0)

l′

)
+ λ4

∑
l,l′,l′′ 6=n

Vn,lVl,l′Vl′,l′′Vl′′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)(
E

(0)
n − E(0)

l′′

) + ... , (3.80)

which yields

En =E(0)
n + λVn,n

+ λ2
∑
l 6=n

Vn,lVl,n

E
(0)
n − E(0)

l

 1− λ E
(1)
n

E
(0)
n − E(0)

l

+ λ2

( E
(1)
n

E
(0)
n − E(0)

l

)2

− E
(2)
n

E
(0)
n − E(0)

l


+ λ3

∑
l,l′ 6=n

Vn,lVl,l′Vl′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)
1− λ

E
(1)
n

(
2E

(0)
n − E(0)

l − E
(0)
l′

)
(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)


+ λ4
∑

l,l′,l′′ 6=n

Vn,lVl,l′Vl′,l′′Vl′′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)(
E

(0)
n − E(0)

l′′

) + ... . (3.81)

From this we can read off the first-order correction

E(1)
n = Vn,n , (3.82)

the second-order term

E(2)
n =

∑
l 6=n

Vn,lVl,n

E
(0)
n − E(0)

l

, (3.83)

as well as the third order
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E(3)
n =

∑
l,l′ 6=n

Vn,lVl,l′Vl′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

) −∑
l 6=n

Vn,lVl,nVn,n(
E

(0)
n − E(0)

l

)2 . (3.84)

Note that (3.82)–(3.84) agree with [31, (3.516)]. Corresponding, the fourth-order result reads

E(4)
n =

∑
l,l′,l′′ 6=n

Vn,lVl,l′Vl′,l′′Vl′′,n(
E

(0)
n − E(0)

l

)(
E

(0)
n − E(0)

l′

)(
E

(0)
n − E(0)

l′′

)
−
∑
l,l′ 6=n

Vn,lVl,l′Vl′,nVn,n

(
2E

(0)
n − E(0)

l − E
(0)
l′

)
(
E

(0)
n − E(0)

l

)2 (
E

(0)
n − E(0)

l′

)2

+
∑
l 6=n

Vn,lVl,n

E
(0)
n − E(0)

l

( Vn,n

E
(0)
n − E(0)

l

)2

−
Vn,lVl,n(

E
(0)
n − E(0)

l

)2

 , (3.85)

which coincides with [32]. Note that we have more terms here than in the Brillouin-Wigner
perturbation theory up to the same order in λ.

3.4.2 Degenerate Case

In this subsection, we derive the energy correction terms of the degenerate Rayleigh-Schrödinger
perturbation theory up to first order. For this, we start with the two-state matrix (3.76) and
take every entry up to first order in λ

Γ(1) =

 〈n |E(0)
n + λV̂ |n 〉 〈n |E(0)

n+1 + λV̂ |n+ 1 〉

〈n+ 1 |E(0)
n + λV̂ |n 〉 〈n+ 1 |E(0)

n+1 + λV̂ |n+ 1 〉

 =

 E
(0)
n λVn,n+1

λVn+1,n E
(0)
n+1

 . (3.86)

Out of this matrix, obtained by Brillouin-Wigner perturbation theory, the same results can be
calculated as from degenerate Rayleigh-Schrödinger perturbation theory.

42



4 Approximative Solutions

The perturbed ground-state energy En obtained by Brillouin-Wigner perturbation theory, cannot
be solved explicitly for En, and therefore numerical methods are needed for further calculations.
Another approach is to apply approximations, like the two presented in this chapter.
The first approximation is a linearization of the two-state approach, which reproduces [24]. This
gives a good qualitative insight into the condensate density Ψ∗Ψ, but the phase boundary is
quite imprecise.
The second approximation is based on applying a Taylor series on the fourth-order Brillouin-
Wigner perturbation theory for the two-state approach, which gives the fourth-order Rayleigh-
Schrödinger perturbation theory, just as shown in the previous section. This reproduces [23],
which yields the phase-boundary in the mean-field approximation, but gives a non-physical order
parameter like in FIG. 2.3.
However, these approximations allow us to reproduce with our theory two established results,
which indicates that our theory is right.

4.1 Linearized Approach

In this section, the problem, that the perturbed ground-state Energy En is only obtained self-
consistently in Brillouin-Wigner perturbation theory, is simplified a lot by linearization. This
allows to maintain a fully analytical solution, which bears some astounding qualitative insights,
but is, however, quantitatively quite inaccurate.

We start within the two-state approach by taking the matrix Γ from (3.76), and calculate its
entries up to the first order. To do so, we consider λ being small, so that all orders in λ2 or
higher can be neglected. This leads to the linearized matrix

Γ(1) =

A B

C D

 , (4.1)

where the matrix entries are calculated from the effective Hamiltonian. For the diagonal matrix
element Heff,n,n according to (3.68), we obtain by using the primal split (2.20)
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A = Heff,n,n = 〈n |Ĥ(0)|n 〉+ λ〈n |V̂|n 〉
= E(0)

n − λJzΨ∗〈n |â|n 〉 − λJzΨ〈n |â†|n 〉 . (4.2)

Note that the algebraic relations from (2.5) prescribe how the operators â and â† are applied to
the state |n 〉. With the orthonormality relation 〈m |n 〉 = δm,n the formula is simplified, and
since m 6= n, the final result is obtained

A = E(0)
n = E(0)

n + JzλΨ∗Ψ . (4.3)

A similar calculation yields for D

D = Heff,n+1,n+1 = E
(0)
n+1 + JzλΨ∗Ψ . (4.4)

For the off-diagonal matrix elements, we calculate

B = Heff,n,n+1 = −λJzΨ∗
√
n+ 1 , (4.5)

while a similar calculation yields for C

C = Heff,n+1,n = −λJzΨ
√
n+ 1 . (4.6)

We insert these results in (3.75) with m = n to get

Det

E
(0)
n + JzλΨ∗Ψ− En −λJzΨ∗

√
n+ 1

−λJzΨ
√
n+ 1 E

(0)
n+1 + JzλΨ∗Ψ− En

 = 0 . (4.7)

Now we calculate the determinant and bring the result in a polynomial shape

E2
n + En

(
−E(0)

n − E
(0)
n+1 − 2JzλΨ∗Ψ

)
+ E(0)

n

(
E

(0)
n+1 + JzλΨ∗Ψ

)
+JzλΨ∗Ψ

[
E

(0)
n+1 + Jzλ (Ψ∗Ψ− n− 1)

]
= 0 , (4.8)
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which yields with inserting E(0)
n = 1

2Un (n− 1) − µn and E(0)
n+1 = 1

2Un (n+ 1) − µ (n+ 1) the
solutions

En± =λJzΨ∗Ψ +
1

2

[
1

2
Un (n− 1)− µn+

1

2
Un (n+ 1)− µ (n+ 1)

]
± 1

2

√
(µ− Un)2 + 4λ2J2z2Ψ∗Ψ (n+ 1) . (4.9)

Now we extremize the energy (4.9) with respect to the condensate density Ψ∗Ψ by applying
1
Ψ

∂
∂Ψ∗ , while taking into account ∂En

∂Ψ∗ = 0 and yield

0 = λJz ± λ2J2z2 (n+ 1)√
(µ− Un)2 + 4λ2J2z2Ψ∗Ψ (n+ 1)

. (4.10)

Solving with respect to Ψ∗Ψ we get

Ψ∗Ψ =
λ2J2z2 (n+ 1)2 − (µ− Un)2

4λ2J2z2 (n+ 1)
=

(n+ 1)

4
− (µ− Un)2

4λ2J2z2 (n+ 1)
, (4.11)

which turns out to coincide with the formula of Ref. [24].

At the degeneracy we have J = 0, which would lead to a quadratic divergent term in (4.11). But
since for the degeneracy E(0)

n = E
(0)
n+1, we get µ−Un = 0, which appears as well in the numerator

in second order in (4.11). Thus we have no divergence problems here. Since µ = Un is only
valid for the exactly degenerate case, we expand this to µ = Un+ ε the nearly-degenerate case.
If ε = 0, we are at the degeneracy, for positive and negative small ε, we are nearly degenerate
and can describe the direct vicinity of the degeneracy like in [24] with

Ψ∗Ψ =
(n+ 1)

4
− ε2

4λ2J2z2 (n+ 1)
. (4.12)

4.2 Fourth-Order Rayleigh-Schrödinger Approach

In this section, we will first go up to the fourth order in the Brillouin-Wigner perturbation
theory for the two-state approach, and then perform a Taylor series expansion, which brings us
effectively back to the Rayleigh-Schrödinger result of fourth order.
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To do so, we have to calculate Heff,n,n, Heff,n,n′ , Heff,n′,n and Heff,n′,n′ up to the fourth order in
λ. We use the primal split of the Hamiltonian according to (2.20). For the first matrix element,
we have to evaluate

Heff,n,n = 〈n |Ĥeff |n 〉 =〈n |E(0)
n |n 〉+ λ〈n |V̂|n 〉+ λ2

∑
l∈Ñ

〈n |V̂| l 〉〈 l |V̂|n 〉
En − E(0)

l

+ λ3
∑
l,l′∈Ñ

〈n |V̂| l 〉〈 l |V̂| l′ 〉〈 l′ |V̂|n 〉(
En − E(0)

l

)(
En − E(0)

l′

)
+ λ4

∑
l,l′,l′′∈Ñ

〈n |V̂| l 〉〈 l |V̂| l′ 〉〈 l′ |V̂| l′′ 〉〈 l′′ |V̂|n 〉(
En − E(0)

l

)(
En − E(0)

l′

)(
En − E(0)

l′′

) . (4.13)

Here the matrix elements read

〈 l |V̂|n 〉 = −Jz
(
Ψ∗
√
n δl,n−1 + Ψ

√
n+ 1 δl,n+1

)
. (4.14)

Since the sum takes only l ∈ Ñ into account, and thus l 6= n, n+ 1, we can simplify (4.14) to

〈 l |V̂|n 〉 = −JzΨ∗
√
n δl,n−1 , (4.15)

which necessitates for a non-zero solution l = n − 1. By consecutively applying this procedure
to (4.13), we get for the respective matrix elements

Heff,n,n = E(0)
n + λ2J

2z2Ψ∗Ψn

En − E(0)
n−1

+ λ4 J4z4Ψ∗2Ψ2 (n− 1)n(
En − E(0)

n−1

)2 (
En − E(0)

n−2

) , (4.16)

Heff,n,n′ = −λJzΨ∗
√
n+ 1 , (4.17)

Heff,n′,n = −λJzΨ
√
n+ 1 , (4.18)

Heff,n′,n′ = E(0)
n+1 + λ2J

2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2

+ λ4 J
4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

) . (4.19)
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We evaluate now the determinant (3.75) with m = n

Det

Heff,n,n − En Heff,n,n′

Heff,n′,n Heff,n′,n′ − En

 = 0 , (4.20)

which is

(Heff,n,n − En)
(
Heff,n′,n′ − En

)
−Heff,n′,nHeff,n,n′ = 0 , (4.21)

and leads to the polynomial

E2
n − En

(
Heff,n,n +Heff,n′,n′

)
+Heff,n,nHeff,n′,n′ −Heff,n′,nHeff,n,n′ = 0 . (4.22)

By inserting the respective matrix elements of the effective Hamiltonians (4.16)–(4.19) we get

E2
n − En

E(0)
n + λ2J

2z2Ψ∗Ψn

En − E(0)
n−1

+ λ4 J4z4Ψ∗2Ψ2 (n− 1)n(
En − E(0)

n−1

)2 (
En − E(0)

n−2

)
+E(0)

n+1 + λ2J
2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2

+ λ4 J
4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)


+

E(0)
n + λ2J

2z2Ψ∗Ψn

En − E(0)
n−1

+ λ4 J4z4Ψ∗2Ψ2 (n− 1)n(
En − E(0)

n−1

)2 (
En − E(0)

n−2

)


×

E(0)
n+1 + λ2J

2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2

+ λ4 J
4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)


−
(
−λJzΨ

√
n+ 1

) (
−λJzΨ∗

√
n+ 1

)
= 0 . (4.23)

We simplify by taking into account that we only have to consider orders of λ up to four
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E2
n − EnE(0)

n − λ2En
J2z2Ψ∗Ψn

En − E(0)
n−1

− λ4En
J4z4Ψ∗2Ψ2 (n− 1)n(

En − E(0)
n−1

)2 (
En − E(0)

n−2

)
− EnE(0)

n+1 − λ
2En

J2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2

− λ4En
J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)
+ E(0)

n E
(0)
n+1 + λ2E(0)

n

J2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2

+ λ4E(0)
n

J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)
+ λ2E(0)

n+1

J2z2Ψ∗Ψn

En − E(0)
n−1

+ λ4 J4z4Ψ∗2Ψ2n (n+ 2)(
En − E(0)

n−1

)(
En − E(0)

n+2

)
+ λ4E(0)

n+1

J4z4Ψ∗2Ψ2 (n− 1)n(
En − E(0)

n−1

)2 (
En − E(0)

n−2

) − λ2J2z2ΨΨ∗ (n+ 1) = 0 . (4.24)

In this formula, λ turns out to appear only in the power two and four. This motivates to perform
a corresponding Taylor series for En as

En ≈ E(0)
n + λ2E(2)

n + λ4E(4)
n , (4.25)

and therefore follows

1

En − E(0)
n−1

≈ 1

E(0)
n − E(0)

n−1

− λ2E
(2)
n(

E(0)
n − E(0)

n−1

)2 (4.26)

and

1

En − E(0)
n+2

≈ 1

E(0)
n − E(0)

n+2

− λ2E
(2)
n(

E(0)
n − E(0)

n+2

)2 . (4.27)

We insert (4.25)–(4.27) into (4.24) and neglect again all terms of λ higher than four.
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(
E(0)n + λ2E(2)

n + λ4E(4)
n

)2
−
(
E(0)n + λ2E(2)

n + λ4E(4)
n

)
E(0)n

− λ2
(
E(0)n + λ2E(2)

n

)
J2z2Ψ∗Ψn

 1

E(0)n − E(0)n−1

− λ2E
(2)
n(

E(0)n − E(0)n−1

)2


− λ4E(0)n

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)n − E(0)n−1

)2 (
E(0)n − E(0)n−2

) − (E(0)n + λ2E(2)
n + λ4E(4)

n

)
E(0)n+1

− λ2
(
E(0)n + λ2E(2)

n

)
J2z2Ψ∗Ψ (n+ 2)

 1

E(0)n − E(0)n+2

− λ2E
(2)
n(

E(0)n − E(0)n+2

)2


− λ4E(0)n

J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
E(0)n − E(0)n+2

)2 (
E(0)n − E(0)n+3

) + E(0)n E
(0)
n+1

+ λ2E(0)n J2z2Ψ∗Ψ (n+ 2)

 1

E(0)n − E(0)n+2

− λ2E
(2)
n(

E(0)n − E(0)n+2

)2


+ λ4E(0)n

J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
E(0)n − E(0)n+2

)2 (
E(0)n − E(0)n+3

) + λ4
J4z4Ψ∗2Ψ2n (n+ 2)(

E(0)n − E(0)n−1

)(
E(0)n − E(0)n+2

)

+ λ2E(0)n+1J
2z2Ψ∗Ψn

 1

E(0)n − E(0)n−1

− λ2E
(2)
n(

E(0)n − E(0)n−1

)2


+ λ4E(0)n+1

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)n − E(0)n−1

)2 (
E(0)n − E(0)n−2

) − λ2J2z2ΨΨ∗ (n+ 1) = 0 . (4.28)

We expand, neglecting orders of λ higher than four
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E(0)2n + λ4E(2)2
n + 2λ2E(0)n E(2)

n + 2λ4E(0)n E(4)
n − E(0)2n − λ2E(2)

n E(0)n − λ4E(0)n E(4)
n

− λ2 J
2z2Ψ∗ΨnE(0)n

E(0)n − E(0)n−1

− λ4 J
2z2Ψ∗ΨnE

(2)
n

E(0)n − E(0)n−1

+ λ4
J2z2Ψ∗ΨnE

(2)
n E(0)n(

E(0)n − E(0)n−1

)2
− λ4E(0)n

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)n − E(0)n−1

)2 (
E(0)n − E(0)n−2

) − E(0)n E
(0)
n+1 − λ2E

(0)
n+1E

(2)
n − λ4E(0)n+1E

(4)
n

− λ2 J
2z2Ψ∗Ψ (n+ 2) E(0)n

E(0)n − E(0)n+2

− λ4 J
2z2Ψ∗Ψ (n+ 2)E

(2)
n

E(0)n − E(0)n+2

+ λ4
J2z2Ψ∗Ψ (n+ 2)E

(2)
n E(0)n(

E(0)n − E(0)n+2

)2
− λ4E(0)n

J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
E(0)n − E(0)n+2

)2 (
E(0)n − E(0)n+3

) + E(0)n E
(0)
n+1

+ λ2
E(0)n J2z2Ψ∗Ψ (n+ 2)

E(0)n − E(0)n+2

− λ4 E
(0)
n E

(2)
n J2z2Ψ∗Ψ (n+ 2)(
E(0)n − E(0)n+2

)2
+ λ4E(0)n

J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
E(0)n − E(0)n+2

)2 (
E(0)n − E(0)n+3

) + λ4
J4z4Ψ∗2Ψ2n (n+ 2)(

E(0)n − E(0)n−1

)(
E(0)n − E(0)n+2

)
+ λ2

E(0)n+1J
2z2Ψ∗Ψn

E(0)n − E(0)n−1

− λ4
E(0)n+1E

(2)
n J2z2Ψ∗Ψn(

E(0)n − E(0)n−1

)2
+ λ4E(0)n+1

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)n − E(0)n−1

)2 (
E(0)n − E(0)n−2

) − λ2J2z2ΨΨ∗ (n+ 1) = 0 . (4.29)

We simplify and reorder

λ2

[
E(0)
n E(2)

n − E
(0)
n+1E

(2)
n − J2z2ΨΨ∗ (n+ 1)− J2z2Ψ∗ΨnE(0)

n

E(0)
n − E(0)

n−1

+
E(0)
n+1J

2z2Ψ∗Ψn

E(0)
n − E(0)

n−1

]

+ λ4

E(2)2
n + E(0)

n E(4)
n − E

(0)
n+1E

(4)
n −

J2z2Ψ∗ΨnE
(2)
n

E(0)
n − E(0)

n−1

+
J2z2Ψ∗ΨnE

(2)
n E(0)

n(
E(0)
n − E(0)

n−1

)2

− E(0)
n

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)
n − E(0)

n−1

)2 (
E(0)
n − E(0)

n−2

) − J2z2Ψ∗Ψ (n+ 2)E
(2)
n

E(0)
n − E(0)

n+2

−
E(0)
n+1E

(2)
n J2z2Ψ∗Ψn(

E(0)
n − E(0)

n−1

)2 +
J4z4Ψ∗2Ψ2n (n+ 2)(

E(0)
n − E(0)

n−1

)(
E(0)
n − E(0)

n+2

)
+E(0)

n+1

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)
n − E(0)

n−1

)2 (
E(0)
n − E(0)

n−2

)
 = 0 . (4.30)
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In order for this to be zero, each bracket has to be zero. From the vanishing of the first bracket
in (4.30) we extract E(2)

n :

E(2)
n =

J2z2ΨΨ∗ (n+ 1)

E(0)
n − E(0)

n+1

+
J2z2Ψ∗Ψn

E(0)
n − E(0)

n−1

=
J2z2ΨΨ∗ (n+ 1)

E
(0)
n − E(0)

n+1

+
J2z2Ψ∗Ψn

E
(0)
n − E(0)

n−1

. (4.31)

Note that we used here that the denominators only contain differences of energies, so we can
simplify e.g.

E(0)
n − E

(0)
n+1 = E(0)

n + λJzΨ∗Ψ− E(0)
n+1 − λJzΨ

∗Ψ = E(0)
n − E

(0)
n+1 . (4.32)

In the very same way, we get E(4)
n from the vanishing of the second bracket in (4.30):

E(4)
n =− E

(2)2
n(

E(0)
n − E(0)

n+1

) +
J2z2Ψ∗ΨnE

(2)
n(

E(0)
n − E(0)

n−1

)(
E(0)
n − E(0)

n+1

) − J2z2Ψ∗ΨnE
(2)
n E(0)

n(
E(0)
n − E(0)

n−1

)2 (
E(0)
n − E(0)

n+1

)
+ E(0)

n

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)
n − E(0)

n−1

)2 (
E(0)
n − E(0)

n−2

)(
E(0)
n − E(0)

n+1

) +
J2z2Ψ∗Ψ (n+ 2)E

(2)
n(

E(0)
n − E(0)

n+2

)(
E(0)
n − E(0)

n+1

)
+

E(0)
n+1E

(2)
n J2z2Ψ∗Ψn(

E(0)
n − E(0)

n−1

)2 (
E(0)
n − E(0)

n+1

) − J4z4Ψ∗2Ψ2n (n+ 2)(
E(0)
n − E(0)

n−1

)(
E(0)
n − E(0)

n+2

)(
E(0)
n − E(0)

n+1

)
− E(0)

n+1

J4z4Ψ∗2Ψ2 (n− 1)n(
E(0)
n − E(0)

n−1

)2 (
E(0)
n − E(0)

n−2

)(
E(0)
n − E(0)

n+1

) . (4.33)

Inserting E(2)
n from (4.31) into (4.33) yields after expanding

E(4)
n =− J4z4Ψ2Ψ∗2 (n+ 1)2(

E
(0)
n − E(0)

n+1

)3 − J4z4Ψ2Ψ∗2n (n+ 1)(
E

(0)
n − E(0)

n+1

)2 (
E

(0)
n − E(0)

n−1

)
+

J4z4Ψ∗2Ψ2 (n+ 1) (n+ 2)(
E

(0)
n − E(0)

n+2

)(
E

(0)
n − E(0)

n+1

)2 −
J4z4Ψ2Ψ∗2 (n+ 1)n(

E
(0)
n − E(0)

n−1

)2 (
E

(0)
n − E(0)

n+1

)
− J4z4Ψ∗2Ψ2n2(

E
(0)
n − E(0)

n−1

)3 +
J4z4Ψ∗2Ψ2 (n− 1)n(

E
(0)
n − E(0)

n−1

)2 (
E

(0)
n − E(0)

n−2

) . (4.34)

Thus, we conclude from (4.25), (4.31), and (4.34) together with (2.29) that we reproduce the
result (2.30) with the Landau coefficient (2.31)–(2.33). Note that the derivation in section
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2.4 used the Rayleigh-Schrödinger perturbation theory, whereas here we applied the Brillouin-
Wigner perturbation theory.
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5 Graphical Approach

In this chapter a graphical approach is presented which allows us to get much faster the corre-
sponding correction terms for higher orders of λ in the matrix (3.76). The first case uses the
primal split (2.20) and gives only few terms, which implicitly depend on Ψ∗Ψ. In contrast to
this, the second case uses the primal split (2.22), gives rise to many more terms, but they only
explicitly depend on Ψ∗Ψ.

5.1 Implicit Case

{
{
{
n
n+1
n+2
n+3
n+4
n+5
n+6

n-1
n-2
n-3
n-4
n-5

P

Q

Q

1 4 6 82

FIG. 5.1: This is the implicit graphical approach for the matix elements up to eighth order of
the two-state approach. It uses the primal split (2.20).

In the first row of FIG. 5.1, we have the orders of λ for the respective correction terms. In the
first column, we have the different states, here from n − 5 up to n + 6. Within the two-state
matrix approach, we choose P̂ to be n and n+ 1, just as in the previous chapters. Note that the
columns for uneven λ give the off-diagonal matrix elements, while the columns for even λ give
the diagonal matrix elements. As long as P̂ consists of only two states, the only off-diagonal
element is the one with λ = 1.
In order to obtain all possible graphs in FIG. 5.1, we have to take into account the following
rules:

• According to l ∈ Ñ and thus l 6= n in (3.62), the state we start in and the state we end in
mustn’t be reached in between.

• Since out interaction operator V̂ is linear in â and â† (2.22), we can only get from one
state to its nearest neighbouring states.
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• Because the effective Hamiltonian Ĥeff (3.36) contains only the projection operator Q̂, but
is sandwiched by the projection operator P̂ according to (3.35), it is only allowed that the
first and the last state is within P̂ . This rule actually only occurs for the terms in the
diagonal matrix elements.

We interpret each graph according to the following rules:

• For every graph we draw, the starting point corresponds to

S (η) = En − E(0)
η , (5.1)

with η denoting the state we start the graph with.

• For every line we draw, we get the following terms. For an ascending line, we get

LA (ν) = −λJzΨ
√
ν + 1

En − E(0)
ν

, (5.2)

with ν representing the state the line started in. For every descending line we draw, we
get

LD (ν) = −λJzΨ∗
√
ν

En − E(0)
ν

, (5.3)

with ν standing for the state the line started in.

• For the whole correction term, we must now multiply S (η) with all the LA (ν) and LD (ν)
we draw in our graph. The number of lines we draw gives us the exponent of λ, which has
to stand in front of our correction term.

In order to illustrate the applicability of these graphical rules we start in the column for λ with
the interaction from n + 1 to n, which yields the matrix element 〈n + 1 |Ĥeff |n 〉. We can now
apply â on n+ 1, which leads us directly to n and finishes our diagram. If we now apply instead
â† on n+ 1, we would end up in n+ 2, but in order to end up in n, we would reach in between
n + 1, which isn’t allowed. So we can directly see that this is the only term for the matrix
element 〈n+ 1 |Ĥeff |n 〉 which occurs.
We translate now the graph into a formula as follows:

S (n+ 1)LD (n+ 1) =
(
En − E(0)

n+1

)(
−λJzΨ∗

√
n+ 1

En − E(0)
n+1

)
= −λJzΨ∗

√
n+ 1 , (5.4)
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which is exactly the same result as the explicit calculation yields.
For the other graph in the column for λ, we get correspondingly

S (n)LA (n) =
(
En − E(0)

n

)(
−λJzΨ

√
n+ 1

En − E(0)
n

)
= −λJzΨ

√
n+ 1 . (5.5)

The column with the graphs for λ2 has to be read as follows: The graph starting in n, going
downwards, gives us the correction terms for the matrix element 〈n |Ĥeff |n 〉, the formula is
then

S (n)LD (n)LA (n− 1) =
(
En − E(0)

n

)(
−λJzΨ∗

√
n

En − E(0)
n

)(
−λJzΨ

√
n

En − E(0)
n−1

)

=λ2J
2z2Ψ∗Ψn

En − E(0)
n−1

. (5.6)

The graph starting in n+1, going upwards, gives us the correction terms for the matrix element
〈n+ 1 |Ĥeff |n+ 1 〉, the formula is then

S (n+ 1)LA (n+ 1)LD (n+ 2) =
(
En − E(0)

n+1

)(
−λJzΨ

√
n+ 2

En − E(0)
n+1

)(
−λJzΨ∗

√
n+ 2

En − E(0)
n+2

)

=λ2J
2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2

. (5.7)

Correspondingly the column with the graphs for λ4 yields the formulas

S (n)LD (n)LD (n− 1)LA (n− 2)LA (n− 1)

=
(
En − E(0)

n

)(
−λJzΨ∗

√
n

En − E(0)
n

)(
−λJzΨ∗

√
n− 1

En − E(0)
n−1

)
(
−λJzΨ

√
n− 1

En − E(0)
n−2

)(
−λJzΨ

√
n

En − E(0)
n−1

)

=λ4 J4z4Ψ∗2Ψ2 (n− 1)n(
En − E(0)

n−1

)2 (
En − E(0)

n−2

) (5.8)

and
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S (n+ 1)LA (n+ 1)LA (n+ 2)LD (n+ 3)LD (n+ 2)

=
(
En − E(0)

n+1

)(
−λJzΨ

√
n+ 2

En − E(0)
n+1

)(
−λJzΨ

√
n+ 3

En − E(0)
n+2

)
(
−λJzΨ∗

√
n+ 3

En − E(0)
n+3

)(
−λJzΨ∗

√
n+ 2

En − E(0)
n+2

)

=λ4 J
4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

) . (5.9)

It is easy to see from this graphical point of view, that every correction term with λ to an odd
power cannot give a contribution to the diagonal matrix elements.
In the column with the graphs for λ6, we have two different graphs for the matrix element
〈n |Ĥeff |n 〉. In order to get the corresponding λ6 correction term correctly, we must translate
both graphs into a formula and just add both formulas then, yielding

S (n)LD (n)LD (n− 1)LD (n− 2)LA (n− 3)LA (n− 2)LA (n− 1)

+ S (n)LD (n)LD (n− 1)LA (n− 2)LD (n− 1)LA (n− 2)LA (n− 1)

=S (n)LD (n)LD (n− 1)

[LD (n− 2)LA (n− 3) + LA (n− 2)LD (n− 1)]

LA (n− 2)LA (n− 1) (5.10)

=λ6 J6z6Ψ∗3Ψ3n (n− 1) (n− 2)(
En − E(0)

n−1

)2 (
En − E(0)

n−2

)2 (
En − E(0)

n−3

) + λ6 J6z6Ψ∗3Ψ3n (n− 1)2(
En − E(0)

n−1

)3 (
En − E(0)

n−2

)2 .

In the same way we get the λ6 term for the matrix element 〈n+ 1 |Ĥeff |n+ 1 〉 as

S (n+ 1)LA (n+ 1)LA (n+ 2)LA (n+ 3)LD (n+ 4)LD (n+ 3)LD (n+ 2)

+ S (n+ 1)LA (n+ 1)LA (n+ 2)LD (n+ 3)LA (n+ 2)LD (n+ 3)LD (n+ 2)

=S (n+ 1)LA (n+ 1)LA (n+ 2)

[LA (n+ 3)LD (n+ 4) + LD (n+ 3)LA (n+ 2)]

LD (n+ 3)LD (n+ 2)

=λ6 J6z6Ψ∗3Ψ3 (n+ 2) (n+ 3) (n+ 4)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)2 (
En − E(0)

n+4

) + λ6 J
6z6Ψ∗3Ψ3 (n+ 2) (n+ 3)2(
En − E(0)

n+2

)3 (
En − E(0)

n+3

)2 . (5.11)

In the column with the graphs for the order λ8, we have already five different diagrams, which
we have to add up for the right λ8 correction term. But due to symmetry reasons the third and
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fourth graph turn out to be equivalent. Thus we can just translate one of them into a formula,
and multiply the result by two.
For the correction term of the matrix element 〈n |Ĥeff |n 〉 we get

S (n)LD (n)LD (n− 1) [LD (n− 2)LD (n− 3)LA (n− 4)LA (n− 3)

+LD (n− 2)LA (n− 3)LD (n− 2)LA (n− 3) + LA (n− 2)LD (n− 1)LD (n− 2)LA (n− 3)

+LD (n− 2)LA (n− 3)LA (n− 2)LD (n− 1) + LA (n− 2)LD (n− 1)LA (n− 2)LD (n− 1)]

LA (n− 2)LA (n− 1)

=S (n)LD (n)LD (n− 1) [LD (n− 2)LD (n− 3)LA (n− 4)LA (n− 3)

+LD (n− 2)LA (n− 3)LD (n− 2)LA (n− 3) + 2LA (n− 2)LD (n− 1)LD (n− 2)LA (n− 3)

+LA (n− 2)LD (n− 1)LA (n− 2)LD (n− 1)]LA (n− 2)LA (n− 1)

=λ8 J8z8Ψ∗4Ψ4n (n− 1) (n− 2) (n− 3)(
En − E(0)

n−1

)2 (
En − E(0)

n−2

)2 (
En − E(0)

n−3

)2 (
En − E(0)

n−4

)
+ λ8 J8z8Ψ∗4Ψ4n (n− 1) (n− 2)2(

En − E(0)
n−1

)2 (
En − E(0)

n−2

)3 (
En − E(0)

n−3

)2

+ 2λ8 J8z8Ψ∗4Ψ4n (n− 1)2 (n− 2)(
En − E(0)

n−1

)3 (
En − E(0)

n−2

)3 (
En − E(0)

n−3

) + λ8 J8z8Ψ∗4Ψ4n (n− 1)3(
En − E(0)

n−1

)4 (
En − E(0)

n−2

)3 , (5.12)

and for the correction term of the matrix element 〈n+ 1 |Ĥeff |n+ 1 〉 we get

S (n+ 1)LA (n+ 1)LA (n+ 2) [LA (n+ 3)LA (n+ 4)LD (n+ 5)LD (n+ 4)

+LA (n+ 3)LD (n+ 4)LA (n+ 3)LD (n+ 4) + LD (n+ 3)LA (n+ 2)LA (n+ 3)LD (n+ 4)

+LA (n+ 3)LD (n+ 4)LD (n+ 3)LA (n+ 2) + LD (n+ 3)LA (n+ 2)LD (n+ 3)LA (n+ 2)]

LD (n+ 3)LD (n+ 2)

=S (n+ 1)LA (n+ 1)LA (n+ 2) [LA (n+ 3)LA (n+ 4)LD (n+ 5)LD (n+ 4)

+LA (n+ 3)LD (n+ 4)LA (n+ 3)LD (n+ 4) + 2LD (n+ 3)LA (n+ 2)LA (n+ 3)LD (n+ 4)

+LD (n+ 3)LA (n+ 2)LD (n+ 3)LA (n+ 2)]LD (n+ 3)LD (n+ 2)

=λ8 J8z8Ψ∗4Ψ4 (n+ 2) (n+ 3) (n+ 4) (n+ 5)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)2 (
En − E(0)

n+4

)2 (
En − E(0)

n+5

)
+ λ8 J8z8Ψ∗4Ψ4 (n+ 2) (n+ 3) (n+ 4)2(

En − E(0)
n+2

)2 (
En − E(0)

n+3

)3 (
En − E(0)

n+4

)2

+ 2λ8 J8z8Ψ∗4Ψ4 (n+ 2) (n+ 3)2 (n+ 4)(
En − E(0)

n+2

)3 (
En − E(0)

n+3

)3 (
En − E(0)

n+4

) + λ8 J8z8 (n+ 2) (n+ 3)3(
En − E(0)

n+2

)4 (
En − E(0)

n+3

)3 . (5.13)

Note that these high perturbative orders for the matrix elements are much faster obtained by
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the graphical approach than by doing the actual analytical calculation. While this graphical ap-
proach has the advantage of yielding a relative small number of diagrams, the resulting formulas
have the condensate density Ψ∗Ψ in the denominator.

An alternative graphical approach is needed if the other primal split is used. FIG. 5.2 sketches
the graphical approach to get the correction terms of higher λ in the matrix according to the
primal split (2.22).

5.2 Explicit Case

FIG. 5.2: This is the explicit graphical approach for the matix elements up to eighth order of
the two-state approach. It uses the primal split (2.22).

In the first row of FIG. 5.2, we denote the orders of λ for our correction terms. In the first
column, we have our different states, here from n − 3 up to n + 4. We choose P̂ to be n and
n + 1, just as in the previous chapters. Basically, all the rules apply which we used in the
previous graphical approach, just that we are now allowed to draw horizontal lines as well:

• For every graph we draw, the starting point corresponds to

S (η) = En − E(0)
η , (5.14)

with η being the state we start the graph in.

• For every line we draw, we get the following terms. For an ascending line, we get

LA (ν) = −λJzΨ
√
ν + 1

En − E(0)
ν

, (5.15)

with ν being the state the line started in. For every descending line we draw, we get
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LD (ν) = −λJzΨ∗
√
ν

En − E(0)
ν

, (5.16)

with ν being the state the line started in.

• For a horizontal line, we get

LH(ν) =
λJzΨ∗Ψ

En − E(0)
ν

, (5.17)

with ν being the state the line started in.

In the column for λ, we get for the off-diagonal matrix elements

S(n+ 1)LD(n+ 1) = −λJzΨ∗
√
n+ 1 , (5.18)

S(n)LA(n) = −λJzΨ
√
n+ 1 . (5.19)

In the column for λ, we get for the diagonal matrix elements

S(n+ 1)LH(n+ 1) = λJzΨ∗Ψ , (5.20)

S(n)LH(n) = λJzΨ∗Ψ . (5.21)

In the column for λ2, we get

S(n+ 1)LA(n+ 1)LD(n+ 2) = λ2J2z2Ψ∗Ψ
n+ 2

En − E(0)
n+2

, (5.22)

S(n)LD(n)LA(n− 1) = λ2J2z2Ψ∗Ψ
n

En − E(0)
n−1

. (5.23)
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In the column for λ3, we get

S(n+ 1)LA(n+ 1)LH(n+ 2)LD(n+ 2) = λ3J3z3Ψ∗2Ψ2 n+ 2(
En − E(0)

n+2

)2 , (5.24)

S(n)LD(n)LH(n− 1)LA(n− 1) = λ3J3z3Ψ∗2Ψ2 n(
En − E(0)

n−1

)2 . (5.25)

In the column for λ4, we get

S(n+ 1)LA(n+ 1) [LA(n+ 2)LD(n+ 3) + LH(n+ 2)LH(n+ 2)]LD(n+ 2)

= λ4J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

) + λ4J4z4Ψ∗3Ψ3 n+ 2(
En − E(0)

n+2

)3 , (5.26)

S(n)LD(n) [LD(n− 1)LA(n− 2) + LH(n− 1)LH(n− 1)]LA(n− 1)

= λ4J4z4Ψ∗2Ψ2 n (n− 1)(
En − E(0)

n−1

)2 (
En − E(0)

n−2

) + λ4J4z4Ψ∗3Ψ3 n(
En − E(0)

n−1

)3 . (5.27)

In the column for λ5, we get

S(n+ 1)LA(n+ 1) [LA(n+ 2)LH(n+ 3)LD(n+ 3) + LH(n+ 2)LH(n+ 2)LH(n+ 2)

+ 2LA(n+ 2)LD(n+ 3)LH(n+ 2)]LD(n+ 2)

= λ5J5z5Ψ∗3Ψ3 (n+ 2) (n+ 3)(
En − E(0)

n+2

)2 (
En − E(0)

n+3

)2 + λ5J5z5Ψ∗4Ψ4 n+ 2(
En − E(0)

n+2

)4

+ 2λ5J5z5Ψ∗3Ψ3 (n+ 2) (n+ 3)(
En − E(0)

n+2

)3 (
En − E(0)

n+3

) , (5.28)

S(n)LD(n) [LD(n− 1)LH(n− 2)LA(n− 2) + LH(n− 1)LH(n− 1)LH(n− 1)

+ 2LD(n− 1)LA(n− 2)LH(n− 1)]LA(n− 1)

= λ5J5z5Ψ∗3Ψ3 n (n− 1)(
En − E(0)

n−1

)2 (
En − E(0)

n−2

)2 + λ5J5z5Ψ∗4Ψ4 n(
En − E(0)

n−1

)4

+ λ5J5z5Ψ∗3Ψ3 n (n− 1)(
En − E(0)

n−1

)3 (
En − E(0)

n−2

) . (5.29)
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With the explicit graphical approach, we have more terms, but the denominator is independent
of Ψ∗Ψ.

We now compare the results for the matrix entries calculated by the implicit and by the explicit
graphical approach, respectively. If both approaches are executed up to the same order, they
yield the same result. For instance, up to fourth order the implicit approach yields (5.4)–(5.9)
which coincides with the results of the explicit approach (5.18)–(5.27), provided all denominators
are expanded in λ by taking into account (2.21).
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6 Mean-Field Phase Boundary

The mean-field phase boundary was already shown in FIG. 2.1 obtained from the Rayleigh-
Schrödinger perturbation theory. Here we will reproduce this result within the Brillouin-Wigner
perturbation theory. In principle, the mean-field phase boundary can be obtained out of the
one-state approach as well as the two-state approach. Here, we restrict ourselves to the two-state
approach. In order to calculate the mean-field phase boundary, we start with the determinant
of the matrix (3.76) with m = n

Det
(

Γ(4)
)

=

[
E(0)
n + λJzΨ∗Ψ− En + λ2 J2z2Ψ∗Ψn

En − E(0)
n−1 − λJzΨ∗Ψ

+λ4 J4z4Ψ∗2Ψ2n (n− 1)(
En − E(0)

n−1 − λJzΨ∗Ψ
)2 (

En − E(0)
n−2 − λJzΨ∗Ψ

)


×

[
E

(0)
n+1 + λJzΨ∗Ψ− En + λ2 J2z2Ψ∗Ψ (n+ 2)

En − E(0)
n+2 − λJzΨ∗Ψ

+λ4 J4z4Ψ∗2Ψ2 (n+ 2) (n+ 3)(
En − E(0)

n+2 − λJzΨ∗Ψ
)2 (

En − E(0)
n+3 − λJzΨ∗Ψ

)


− λ2J2z2Ψ∗Ψ (n+ 1) + ... . (6.1)

In order to get the phase boundary, we calculate the function

f (Ψ∗Ψ) =
1

Ψ

∂

∂Ψ∗
Det

(
Γ(4)

)
, (6.2)

which depends on the condensate density Ψ∗Ψ and evaluate this at Ψ∗Ψ = 0. We show now in
a general way that we can neglect all terms with λ of the order 3 or higher. To do so, we use
the exemplary formula ϕ (Ψ∗Ψ), which has the same structure as f (Ψ∗Ψ):

ϕ (Ψ∗Ψ) =
1

Ψ

∂

∂Ψ∗

α+ Ψ∗Ψβ +
Ψ∗Ψγ0

γ1 + Ψ∗Ψγ2
+

∞∑
m≥2

(Ψ∗Ψ)m km
P (Ψ∗Ψ)

 . (6.3)
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The coefficients α, β, γ1, γ2, γ3, and km are independent of Ψ∗Ψ, while m is a natural number
and P is a polynomial in Ψ∗Ψ. All terms in (6.1) independent of Ψ∗Ψ are represented by α, the
terms linear in Ψ∗Ψ by β, and so on. Performing the differentiation in(6.3) yields

ϕ (Ψ∗Ψ) =β +
γ0γ1

(γ1 + Ψ∗Ψγ2)2

+

∞∑
m≥2

m (Ψ∗Ψ)m−1 kmP (Ψ∗Ψ)− (Ψ∗Ψ)m km
1
Ψ

∂
∂Ψ∗P (Ψ∗Ψ)

P (Ψ∗Ψ)2 , (6.4)

with

ϕ (0) = β +
γ0

γ1
. (6.5)

Because of the similar structure in ϕ (Ψ∗Ψ) and f (Ψ∗Ψ), we read off the result from (6.5) and
obtain

f (0) =λJz
[(
E(0)
n − En

)
+
(
E

(0)
n+1 − En

)
− λJz (n+ 1)

]
+ λ2J2z2

(n+ 2)
(
E

(0)
n − En

)
En − E(0)

n+2

+
n
(
E

(0)
n+1 − En

)
En − E(0)

n−1

 . (6.6)

We put f (0) = 0, solve with respect to Jz
U , and get

Jz

U
=

−
(

2En − E(0)
n − E(0)

n+1

)(
En − E(0)

n+2

)(
En − E(0)

n−1

)
λnU

(
En − E(0)

n+1

)(
En − E(0)

n+2

)
+ λU

[
(n+ 1)

(
En − E(0)

n+2

)
+ (n+ 2)

(
En − E(0)

n

)] . (6.7)

This is the mean-field phase boundary. All higher order corrections drop out of the formula if
we set Ψ∗Ψ = 0. Thus, the phase boundary does not change even if higher orders in λ are taken
into account. To determine En in (6.7), we take (6.1) and set Ψ∗Ψ = 0, which results effectively
in calculating the matrix up to zeroth order. We set this equal to zero and get

Det
(

Γ(0)
)

=
(
E(0)
n − En

)(
E

(0)
n+1 − En

)
= 0 . (6.8)

This gives two solutions for En, namely En,1 = E
(0)
n and En,2 = E

(0)
n+1.

Thus, the mean-field phase boundary (6.7) agrees with the previous result (2.34). By using
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E(0)
n =

1

2
Un (n− 1)− µn (6.9)

and

E
(0)
n+1 =

1

2
Un (n+ 1)− µ (n+ 1) (6.10)

together with µ = Un+ ε gives for n = 1

E1 = (−1− ε)U (6.11)

and

E2 = (−1− 2ε)U . (6.12)

These two energies are depicted in FIG. 6.1 and yield the lowest energies, corresponding to the
two Mott lobes. For −1 < ε

U < 0, E1 is the minimal energy, while for 0 < ε
U < 1 it is E2.

-2 -1 1 2

ε

U

-3

-2

-1

1

E(0)

U

FIG. 6.1: The red line corresponds to E1 in (6.11), and the blue line corresponds to E2 in (6.12).
The solid parts present the lowest energy.

To get the phase boundary, we insert E1 in (6.11) and E2 in (6.12) into (6.7). According to FIG.
6.1, E1 gives rise to the first lobe, and E2 to the second. Therefore, we obtain the Mott lobes
in FIG. 6.2, which were already discussed via FIG. 2.1.
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FIG. 6.2: Mott lobes which represent the mean-field phase boundary.
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7 Order Parameter

In this chapter, we calculate explicitly the order parameter, whose absolute square defines the
condensate density Ψ∗Ψ. While the one-state approach (3.52) gives a discontinuous order pa-
rameter, the two-state approach yields a continuous order parameter. Nevertheless, both give
the right mean-field phase boundary and are non-zero at the degeneracy µ = Un, unlike the
order parameter obtained out of the Rayleigh-Schrödinger perturbation theory, depicted in FIG.
2.3. For both approaches, we have to extremalize the perturbed energy En with respect to the
order parameter Ψ∗, Ψ.

7.1 General Considerations

Generally, the Brillouin-Wigner perturbation theory enables us to obtain a polynomial repre-
sentation of the unperturbed ground-state energy En and the condensate density Ψ∗Ψ in orders
of λ, which is of the following form:

0 =A0(En) +A1(En,Ψ
∗Ψ)λ+A2(En,Ψ

∗Ψ)λ2 +A3(En,Ψ
∗Ψ)λ3

+A4(En,Ψ
∗Ψ)λ4 +A5(En,Ψ

∗Ψ)λ5 + ... . (7.1)

By applying 1
Ψ

∂
∂Ψ∗ to (7.1) and using the condition ∂En

∂Ψ∗ = 0, another polynomial is obtained

0 =B1(En,Ψ
∗Ψ) +B2(En,Ψ

∗Ψ)λ+B3(En,Ψ
∗Ψ)λ2

+B4(En,Ψ
∗Ψ)λ3 +B5(En,Ψ

∗Ψ)λ4 + ... , (7.2)

with

Bi(En,Ψ
∗Ψ) =

1

Ψ

∂Ai(En,Ψ
∗Ψ)

∂Ψ∗
. (7.3)

Now we evaluate both equations (7.1) and (7.2) up to second order in λ and get

0 = A0(En) +A1(En,Ψ
∗Ψ)λ+A2(En,Ψ

∗Ψ)λ2 (7.4)
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as well as

0 =B1(En,Ψ
∗Ψ) +B2(En,Ψ

∗Ψ)λ+B3(En,Ψ
∗Ψ)λ2 . (7.5)

Note that due to the derivative with respect to Ψ∗, the third-order coefficient B3 appears in the
second order of λ. The two equations (7.4) and (7.5) define the two variables, i. e. the perturbed
ground-state energy En and the condensate density Ψ∗Ψ. Generically we have to solve them
numerically by iteration. In the next two sections, this is done for the one-state approach and
for the two-state approach, respectively.

7.2 One-State Approach

We consider the subspace of the Hilbert space which is just spanned by one eigenstate |Ψ(0)
n 〉

of the unperturbed Hamiltonian Ĥ(0). Any state vector is projected into that subspace by the
projector

P̂ = |Ψ(0)
n 〉〈Ψ(0)

n | . (7.6)

Therefore, according to (3.52) we calculate the expectation value of the ground-state energy
En = 〈Ψ(0)

n |Ĥeff |Ψ
(0)
n 〉 up to third order in λ:

En =〈Ψ(0)
n |Ĥ(0)|Ψ(0)

n 〉+ λ〈Ψ(0)
n |V̂ |Ψ(0)

n 〉+ λ2
∑
l 6=n

〈Ψ(0)
n |V̂ |Ψ(0)

l 〉〈Ψ
(0)
l |V̂ |Ψ

(0)
n 〉

En − E(0)
l

+ λ3
∑
l,l′ 6=n

〈Ψ(0)
n |V̂ |Ψ(0)

l 〉〈Ψ
(0)
l |V̂ |Ψ

(0)
l′ 〉〈Ψ

(0)
l′ |V̂ |Ψ

(0)
n 〉(

En − E(0)
l

)(
En − E(0)

l′

) , (7.7)

where the restriction l, l′ ∈ Ñ allows to sum over all l, l′ 6= n. Inserting Ĥ(0) and V̂ from (2.22)
yields

En =E(0)
n + λJzΨ∗Ψ + λ2J2z2Ψ∗Ψ

(
n

En − E(0)
n−1

+
n+ 1

En − E(0)
n+1

)

+ λ3J3z3 (Ψ∗Ψ)2

 n(
En − E(0)

n−1

)2 +
n+ 1(

En − E(0)
n+1

)2

 , (7.8)
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with the unperturbed ground-state energy E(0)
n from (2.23) being independent of Ψ∗Ψ.

Note that the non-perturbative result (7.8) contains up to second order in λ two important
special cases, which have been previously discussed in the literature. On the one hand, by
approximating the ground-state energy En on the right-hand side of (7.8) with the unperturbed
ground state energy En ≈ E

(0)
n , we reobtain (2.30) [23, 30] up to second order in λ, which is

compatible with the mean-field phase boundary. On the other hand, by considering n

En−E(0)
n−1

to

be negligible, we get directly (4.8), and thus all results of Ref. [24].

To get the condensate density within the one-state approach, we determine 1
Ψ
∂En
∂Ψ∗ = 0 from (7.8)

after dividing by λJz:

0 =1 + λJz

(
n

En − E(0)
n−1

+
n+ 1

En − E(0)
n+1

)

+ λ22J2z2Ψ∗Ψ

 n(
En − E(0)

n−1

)2 +
n+ 1(

En − E(0)
n+1

)2

 , (7.9)

which corresponds to (7.5). Furthermore, by evaluating (7.8) up to second order in λ, we get

0 =E(0)
n − En + λJzΨ∗Ψ + λ2J2z2Ψ∗Ψ

(
n

En − E(0)
n−1

+
n+ 1

En − E(0)
n+1

)
, (7.10)

which corresponds to (7.4). Multiplying (7.9) with
(
En − E(0)

n−1

)2 (
En − E(0)

n+1

)2
and (7.10)

with
(
En − E(0)

n−1

)(
En − E(0)

n+1

)
yields

-0.2 -0.1 0.0 0.1 0.2
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U
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Ψ Ψ
*

FIG. 7.1: Condensate density from one-state approach for n = 1 (green) and n = 2 (cyan). The
green part origins from n = 1 and the cyan part from n = 2.

69



0 =
(
En − E(0)

n−1

)2 (
En − E(0)

n+1

)2
+ λJz

[
n
(
En − E(0)

n−1

)(
En − E(0)

n+1

)2

+ (n+ 1)
(
En − E(0)

n−1

)2 (
En − E(0)

n+1

)]
+ λ22J2z2Ψ∗Ψ

[
n
(
En − E(0)

n+1

)2
+ (n+ 1)

(
En − E(0)

n−1

)2
]

(7.11)

and

0 =
(
En − E(0)

n−1

)(
En − E(0)

n+1

)(
E(0)
n − En + λJzΨ∗Ψ

)
+ λ2J2z2Ψ∗Ψ

[
n
(
En − E(0)

n+1

)
+ (n+ 1)

(
En − E(0)

n−1

)]
. (7.12)

Both equations (7.11) and (7.12) are now used to calculate the ground-state energy En and the
condensate density Ψ∗Ψ. They are numerically solved by iteration and the condensate density
is plotted in FIG. 7.1 for µ = Un + ε, λ = 1 and Jz

U = 0.08. The order parameter obtained
by Brillouin-Wigner perturbation theory from the one-state approach according to FIG. 7.1
is better than the one obtained by Rayleigh-Schrödinger perturbation theory, where the order
parameter vanishes at the degeneracy as seen in FIG. 2.3. Nevertheless, the order parameter
plotted in FIG. 7.1 still is unphysically discontinuous at ε

U = 0.

7.3 Two-State Approach

In the previous section it was shown that the Brillouin-Wigner perturbation theory in the one-
state approach up to second order in λ cannot provide a proper condensate density. Therefore,
the Brillouin-Wigner two-state approach is used now. In order to do so, we consider the subspace
of the Hilbert space which is just spanned by two eigenstates |Ψ(0)

n 〉 and |Ψ(0)
n+1 〉 of the unper-

turbed Hamiltonian Ĥ(0). Any state vector is projected into that subspace by the projector

P̂ = |Ψ(0)
n 〉〈Ψ(0)

n |+ |Ψ
(0)
n+1 〉〈Ψ

(0)
n+1 | . (7.13)

Therefore, according to (3.75) we calculate the expectation value of the perturbed ground-state
energy Em = En similar to the previous section from the condition

Det
(

Γ(2)
)

= 0 , (7.14)

where the matrix entries are evaluated up to third order in λ
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Γ(2) =

E
(0)
n − En + λ2 J2z2Ψ∗Ψn

En−E(0)n−1

−λJzΨ∗
√
n+ 1

−λJzΨ
√
n+ 1 E(0)

n+1 − En + λ2 J
2z2Ψ∗Ψ(n+2)

En−E(0)n+2

 . (7.15)

We multiply (7.14) with the denominators En − E(0)
n−1 and En − E(0)

n+2, then we apply 1
Ψ

∂
∂Ψ∗ ,

divide by λJz and neglect then all orders in λ higher than 2. With this we get

E(0)
n E

(0)
n+1

(
E

(0)
n+2 + E

(0)
n−1

)
+ E

(0)
n+2E

(0)
n−1

(
E(0)
n + E

(0)
n+1

)
− 2En

[(
E(0)
n + E

(0)
n+1

)(
E

(0)
n+2

+ E
(0)
n−1

)
+ E(0)

n E
(0)
n+1 + E

(0)
n+2E

(0)
n−1

]
+ 3E2

n

(
E(0)
n + E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1

)
− 4E3

n

+ λJz
({

2Ψ∗Ψ
[(
E(0)
n + E

(0)
n+1

)(
E

(0)
n+2 + E

(0)
n−1

)
+ E(0)

n E
(0)
n+1 + E

(0)
n+2E

(0)
n−1

]
−E(0)

n−1

[
E(0)
n (n+ 2) + E

(0)
n+2 (n+ 1)

]
− nE(0)

n+1E
(0)
n+2

}
+ En

[
−6Ψ∗Ψ

(
E(0)
n + E

(0)
n+1

+E
(0)
n+2 + E

(0)
n−1

)
+ E(0)

n (n+ 2) + E
(0)
n+1n +E

(0)
n+2 (2n+ 1) + E

(0)
n−1 (2n+ 3)

]
− 3E2

n [n

−4Ψ∗Ψ + 1]) + λ2J2z2
{

3Ψ∗2Ψ2
(
E(0)
n + E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1

)
− 2Ψ∗Ψ

[
E(0)
n (n+ 2)

+E
(0)
n+1n+ E

(0)
n+2 (2n+ 1) + E

(0)
n−1 (2n+ 3)

]
+ 12En

[
(n+ 1)Ψ∗Ψ−Ψ∗2Ψ2

]}
= 0 , (7.16)

which corresponds to (7.5). Furthermore, we multiply (7.14) with the denominators En − E(0)
n−1

and En − E(0)
n+2 and neglect then all orders in λ higher than 2, which yields

E4
n + E(0)

n E
(0)
n+1E

(0)
n+2E

(0)
n−1 − En

[
E(0)
n E

(0)
n+1E

(0)
n+2 + E

(0)
n+1E

(0)
n+2E

(0)
n−1 + E(0)

n E
(0)
n−1

(
E

(0)
n+1 + E

(0)
n+2

)]
+ JzλΨ∗Ψ

(
E(0)
n E

(0)
n+1E

(0)
n+2 + E(0)

n E
(0)
n+1E

(0)
n−1 + E(0)

n E
(0)
n−1E

(0)
n+2 + E

(0)
n−1E

(0)
n+1E

(0)
n+2

−Jzλ
{
nE

(0)
n+1E

(0)
n+2 +

[
(2 + n)E(0)

n + E
(0)
n+2 + nE

(0)
n+2

]})
+ JzλEnΨ∗Ψ

(
−2
[
E

(0)
n+1E

(0)
n+2

+
(
E

(0)
n+1 + E

(0)
n+2

)
E

(0)
n−1 + E(0)

n

(
E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1

)]
+ Jz

{
(2 + n)E(0)

n + E
(0)
n+2

+3E
(0)
n−1 + n

[
E

(0)
n+1 + 2

(
E

(0)
n+2 + E

(0)
n−1

)]})
− 3J2z2λ2EnΨ∗2Ψ2

(
E(0)
n + E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1

)
+ J2z2λ2Ψ∗2Ψ2

[
E

(0)
n+1E

(0)
n+2 + E

(0)
n−1

(
E

(0)
n+1 + E

(0)
n+2

)
+ E(0)

n

(
E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1

)]
− E3

n

(
E(0)
n + E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1 + 4JzλΨ∗Ψ

)
+ E2

n

{
E(0)
n E

(0)
n+1 + E(0)

n E
(0)
n+2 + E

(0)
n+1E

(0)
n+2

+ E(0)
n E

(0)
n−1 + E

(0)
n+1E

(0)
n−1 + E

(0)
n+2E

(0)
n−1 + 3JzλΨ∗Ψ

[
E(0)
n + E

(0)
n+1 + E

(0)
n+2 + E

(0)
n−1 − Jzλ (n+ 1)

]
+6J2z2λ2Ψ∗2Ψ2

}
= 0 , (7.17)

which corresponds to (7.4). Both the condensate density Ψ∗Ψ and the perturbed ground-state
energy En are determined by solving (7.16) and (7.17) iteratively. The same procedure can be
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done while taking λ into account up to other orders than just 2. For the plots FIG. 7.2–7.4,
we set µ = Un + ε, λ = 1 and n = 1. Between two points is always the distance ε

U = 0.005.
The graphs for the condensate density have always a maximum at ε

U > 0, and they always go
from the phase boundary of the Mott lobe with n = 1 up to the phase boundary of the Mott
lobe with n = 2. Note that these different values for n are already taken into account by the
structure of the matrix, therefore we evaluate the whole matrix with the numerical value n = 1,
but get the physical result for the right half of the Mott lobe n = 1 and for the left half of the
Mott lobe n = 2.
FIG. 7.2 shows for different plots of the condensate density Ψ∗Ψ over ε

U . It is depicted in
a graphical way that the results converge for higher orders in λ. This is shown numerically
in TAB. 7.1. There we see that the two-state approach converges faster than the one-state
approach. Furthermore, the difference of the condensate density from the two-state approach in
λ4 to λ6 is about 0.0016%, which justifies to truncate the perturbative series at fourth order in
λ.
In FIG. 7.3 the ground-state energy En is depicted against ε

U , but only for the superfluid regions
between the Mott-lobes. Since this region is more shallow for small values of JzU , the energy plot
is shorter for these values. The energy En decreases with increasing ε

U .
FIG. 7.4 illustrates the condensate density Ψ∗Ψ over ε

U for 20 different values of JzU . For Jz
U = 0,

we get the black point at Ψ∗Ψ = 0.5. For Jz
U = 0.01 (pink) up to Jz

U = 0.09 (purple) we get an
approximately parabola shaped graph. For JzU = 5−2

√
6 ≈ 0.101 (blue), we hit the second Mott

lobe at its tip, and the graph touches the ε
U -axis in just one point for positive ε

U . For
Jz
U = 0.11

(pink) up to Jz
U = 0.16, the part of the graph with positive ε

U has still a minimum, while the
negative parts intersect the ε

U -axis. For Jz
U = 3 − 2

√
2 ≈ 0.172 (orange), which is the tip of

the first lobe, the part for negative ε
U touches the ε

U -axis. For
Jz
U = 0.18 (red) up to Jz

U = 0.20
(blue), which is just in the superfluid phase without touching any phase boundary, the whole
graph is monotonically increasing. Note that this is a representation of the condensate density
Ψ∗Ψ which gives a non-zero, continuous result at the degeneracy, which was neither obtained by
the Rayleigh-Schrödinger perturbation theory (see FIG. 2.3) [23] nor by the Brillouin-Wigner
one-state approach (see FIG. 7.1) [24]. Therefore, for all future calculations, the condensate
density out of the Brillouin-Wigner two-state matrix approach should be used.
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FIG. 7.2: Condensate density ΨΨ∗ as a function of ε
U for Jz

U = 0.02 (a), Jz
U = 0.08 (b), and

Jz
U = 0.101 (c) up to the order λ (red), λ2 (blue), λ3 (green), and λ4 (purple). For
small values of Jz

U and thus close to the degeneracy, like in (a), the green and purple
dots coincide. The three purple plots from (a)–(d) are depicted in (d), thus all 3 plots
are up to λ4 with Jz

U = 0.02 (green), Jz
U = 0.08 (red) and Jz

U = 5 − 2
√

6 ≈ 0.101
(blue), where at the latter case the second lobe hits exactly its tip.
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FIG. 7.3: Perturbed ground-state energies En up to λ4 between the Mott lobes for different
values of Jz

U : Jz
U = 0.02 (green), Jz

U = 0.08 (red) and Jz
U = 5 − 2

√
6 ≈ 0.101 (blue).

At Jz
U = 5− 2

√
6 the second lobe hits exactly its tip.
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Powers in λ

λ2 λ4 λ6

One-State Approach
E1
U -1.0108081 -1.0102528 -1.0090297

Ψ∗Ψ 0.19862639 0.24896610 0.25601384

Two-State Approach
E2
U -1.0100015 -1.0104087 -1.0104088

Ψ∗Ψ 0.56303521 0.54132128 0.54131277

Table 7.1: Values for ground-state energy En and condensate density Ψ∗Ψ at the degeneracy, i.
e. µ = Un+ ε, ε = 0, λ = 1 and Jz

U = 0.02. The first two rows are obtained through
the one-state approach, while the last two rows originate from the two-state matrix
approach. Columns give values for formulas evaluated up to second, fourth, and sixth
order in λ.
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FIG. 7.4: Condensate density Ψ∗Ψ up to λ4 between the Mott lobes for different values of Jz
U ,

between Jz
U = 0 and Jz

U = 0.20 with a step size of 0.01 for Jz
U .
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8 Conclusion and Outlook

This diploma thesis deals with the problem how to determine the condensate density for a ho-
mogeneous Bose gas in an optical lattice within mean-field theory. As in the vicinity of the
mean-field phase boundary the condensate density is supposedly small, the standard approach
starts with the mean-field Hamiltonian (2.19) and determines the ground-state-energy with non-
degenerate perturbation theory [23]. However, the resulting Landau expansion (2.30) yields a
condensate density, which turns out to vanish between two adjacent Mott lobes according to
FIG. 2.3 and has, therefore, to be considered as unphysical. The origin for this unphysical
result stems from the fact that between adjacent Mott lobes, i. e. at µ = Un, a degeneracy
occurs, so that there the non-degenerate perturbation theory is no longer valid. This deficiency
was recognized, for instance, in Ref. [24] and solved tentatively by determining the condensate
density with degenerate perturbation theory. Although this allowed to obtain a non-vanishing
condensate density between two adjacent Mott lobes, the result is inconsistent insofar as the
condensate density does not vanish at the mean-field phase boundary. Thus, the fundamental
problem remained how to combine the results from non-degenerate [23] and degenerate [24] per-
turbation theory in order to obtain a consistent mean-field result for the condensate density.
The present diploma thesis solves this problem by using the Brillouin-Wigner perturbation the-
ory [33]. It is based on a projector formalism, which allows to eliminate a larger fraction of
the Hilbert space in order to obtain an effective eigenvalue problem for the remaining smaller
subspace. The resulting effective Hamiltonian (3.36) can then be systematically expanded in a
power series of the perturbation. In this way it turns out that the Brillouin-Wigner perturba-
tion theory formally interpolates between the non-degenerate and the degenerate perturbation
theory, see section 3.4. In the context of the Bose-Hubbard mean-field theory, chapter 4 shows
that the results of Ref. [23] are reproduced by evaluating the effective Hamiltonian (3.36) up to
fourth order in the one-state approach, whereas the results of Ref. [24] follow from restricting
the effective Hamiltonian (3.36) to first order in the two-state approach. In chapter 7, however,
we even demonstrate that evaluating the effective Hamiltonian (3.36) systematically to higher
perturbative orders in the two-state approach yields fast converging results for the mean-field
condensate density, see TAB. 7.1. In addition, the fourth perturbative order FIG. 7.4 shows a
consistent mean-field condensate density as it vanishes at the mean-field phase boundary.
This new availability of the condensate density, above the mean-field phase boundary of FIG.
2.1 offers various possibilities of further insights into the physics of bosons in an optical lattice.
For instance, in an experiment an additional harmonic trapping potential occurs, which gives rise
to a wedding-cake like structure for the particle density [18, 34, 35]. In order to understand this
theoretically, the Bose-Hubbard Hamiltonian has to be extended with such a harmonic confine-
ment, making the chemical potential local within the Thomas-Fermi approximation. Although
an initial crude calculation was performed for vanishing hopping J = 0 in Refs. [23, 24], the
results of this diploma thesis allow to tackle the generic case of finite hopping. But in view of
analyzing experimental results quantitatively, also the temperature has to be implemented into
the calculation [23, 36]. Since both a finite temperature and the harmonic trapping potential
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have the tendency to smoothen the Mott-lobes within the wedding-cake like density distribution,
one needs to take both effects into consideration. In principle it should be possible to deduce the
temperature from the experimentally observed smoothness of the density distribution. Thus, the
implementation of temperature in addition to the confining trap would provide experimentalists
with the required theory in order to establish a thermometer for bosons in optical lattices.
Another well-known problem is the quantitative inaccuracy of the mean-field approximation. For
instance, the mean-field phase boundary differs from the result of extensive Quantum Monte-
Carlo simulations up to 25% in three dimensions [37]. This discrepancy can be reduced by
extending the mean-field theory to a full Landau theory according to Refs. [16, 28]. A sys-
tematic hopping expansion of the Landau theory allows to calculate the phase boundary to an
accuracy which is comparable to the Quantum-Monte Carlo results [38, 39, 40, 41, 42]. The
accuracy is so high that it is even possible to determine critical exponents from the hopping
expansions [43]. Therefore, it is plausible to predict that also the condensate density could be
calculated with a similar accuracy by applying the Brillouin-Wigner perturbation theory to this
Landau theory.
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