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Abstract

Focused on a deep mathematical understanding we investigate the different phases of bosons with a
long-range interaction in an optical lattice at zero temperature. These many-body quantum systems
form spatial patterns due to the long-range interaction between different lattice sites. Depending on
the experimental conditions, bosons can be localized at lattice sites or be part of a superfluid. In
particular, we investigate the unusual situation of negative hopping, which experimentalists are able
to create by periodically shaking the lattice. For this condition there are major problems for Monte
Carlo simulations, so we use the the mean-field approximation applied to the extended Bose-Hubbard
model in the hard-core limit as an analytical ansatz. With this we derive a general calculation method,
continue then to more special cases if necessary and end up with the phase diagrams for non-frustrated
and frustrated lattices for positive and negative hopping. Negative hopping provides an interesting
variety of phases especially in frustrated lattices like the triangular one including inhomogeneous
superfluids and mixtures of localized and superfluid bosons (see title images). As we will see the
superfluids at negative hopping tend to have unequal complex phases, which yields phase differences
of 180° or 120° between the condensate densities of different sites.
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Figure 1: HSV color space. “V” stands for “value” meaning “brightness”, “S” for “saturation” and “H”
for “hue” [1].

(a) solid (b) superfluid (c¢) mixture

Figure 2: Visualization examples: (a) localized particles (white) and empty spaces in between (black),
(b) condensate density of delocalized particles (colored) with varying complex phases (hue), (c) mix-
ture of localized and delocalized particles.

0.1 Visualization

We will use the HSV color space to visualize our results, hence it is shortly introduced here. The HSV
color space parameterizes all colors with the variables “V” for “value”, “S” for “saturation” and “H” for
“hue” (see Fig. . The value V regulates the brightness, the saturation S regulates, how strongly the
color can be perceived, and the circular variable H provides everywhere on the full circle a continuous
transition between all hues. For S = 0 the circular hue is not defined, which corresponds exactly to
a complex variable in polar coordinates, where the phase is not defined, when the absolute value is
zero, and where the phase is a circular variable. So we use S and H to visualize the complex value
“condensate density”. The other important value we visualize in the same picture is a density between
0 and 1. Since it is a real value, we can use the brightness V for it. So all important values can be
sensefully coded in the 3 dimensional HSV color space.

Fig. [24] shows a visualization example for localized particles arranged in a honeycomb pattern on
the triangular lattice. “Black” stands for unoccupied lattice sites and “white” for the density 1 both
without superfluid behavior, i.e. S =0. Fig. shows an example for S # 0, V # 0 (superfluid) with
different hues (complex phases). Fig. is an example, how we visualize a combination of localized
and superfluid particles.

Since our calculations take place in the “discrete space” of lattice sites and not in the continuous
space, we can just visualize results at the actual lattice sites, hence the color values between the lattice
sites not necessarily correspond to real physical values. We just visualize in the discrete space.
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Introduction
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(b) full lattice

(c) 1/2 filled, checkerboard (d) homogeneous superfluid

Figure 3: Simplified visualization of ultracold atoms in optical lattices. (a) Mott insulator (MI)
“empty lattice”, (b) Mott insulator (MI) “full lattice”?, (c) density wave (DW) “checkerboard solid”,
(d) homogeneous superfluid (SF).

1 First glimpse

In this thesis we will investigate the topic of ultracold atoms in optical lattices, which are highly
controllable and accurately observable many-body quantum systems at 7' ~ 0 temperature. Figure [3|
can serve as a first simplified visualization of one of the systems, we will analyze later. Valleys in a
periodic potential are occupied with in our case at most one boson. In addition the bosons can be
delocalized over the whole lattice as is illustrated in Fig. In other systems in this field of research
the occupation numbers can be higher, the periodic potential can be more complicated, the external
influences can be different as well as the interactions between particles.

Experimentally some properties of these systems are tunable. That makes it possible to set up
various conditions, under which localized bosons or superfluid bosons arrange in different spatial sym-
metries with different properties. Later we will also find conditions, under which both localized and
superfluid bosons coexist at the same time. The different symmetries and properties classify the pos-
sible states of the system into so called “phases”. For each experimental condition the system takes a
certain phase. All conditions (J, u, V') and the corresponding phase are illustrated in a phase diagram
as in Fig. [] and [5] showing different phases in different colors. These two figures show parts of phase
diagrams, which have already been determined (right part) |2 [3, 4], and the part we analyze in this
thesis, i.e. the unusual experimental condition of “negative hopping” (left part).
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Figure 4: Phase diagram in the mean-field approximation for non-frustrated lattices like the quadratic
lattice. Right: already determined [2] [4], left: issue of this thesis. Light gray: Mott insulator (MI)
“empty lattice”, medium gray: density wave (DW) “checkerboard solid”, dark gray: Mott insulator (MI)
“full lattice”, green: homogeneous superfluid (SF).
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Figure 5: Phase diagram in the mean-field approximation for frustrated lattices like the triangular
lattice. Right: already determined [3], left: issue of this thesis. Lightest gray: Mott insulator (MI)
“empty lattice”, medium light gray: density wave (DW) “1/3 filled solid”, medium dark gray: den-
sity wave (DW) “2/3 filled solid”, dark gray: Mott insulator (MI) “full lattice”, green: homogeneous
superfluid (SF), blue: inhomogeneous superfluid (SS).
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2 Motivation

One important application is to use ultracold atoms in optical lattices as quantum simulators (see
e.g. Ref. [5]), i.e. their properties are analyzed experimentally with the intention to understand
less observable systems, which are supposed to behave similar. In this sense one physical situation
is simulating another one. This can also have the effect, that some phenomena are observed in the
quantum simulator, which have not already been included or predicted in the theoretical descriptions.
And it could produce more accurate results than current numerical calculations. These lattice systems
are very similar to lattice structures in solid states. So one of the interesting hopes is to find new
principles to understand e.g. high temperature superconductivity [6]. Another application is the field
of quantum computing, in which small, controllable systems are needed [7].

In different phases the particle density and condensate density can have different spatial symmetries
and different superfluid properties. This way in some of these phases the translational symmetry of
the lattice is broken as well as the U (1) symmetry in the complex phase of the condensate density.

The systems we analyze in this thesis are systems of hard-core bosons with next neighbor interac-
tion. Besides the simple homogeneous phases - empty lattice (Fig. @ , full lattice (Fig.
and homogeneous superfluid (Fig. - other more interesting phenomena were already
predicted for these systems. Examples for non-superfluid phases are the inhomogeneous solids like
the checkerboard solid (Fig. in the quadratic lattice |2} 4] and two different solids (Fig.
in the triangular lattice with the spatial symmetry of a honeycomb pattern [3]. But most interesting
is an inhomogeneous superfluid (Fig. , part of a class of phases called “supersolid’ﬂ which
appears in the triangular lattice under intermediate conditions (experimental parameters) between the
honeycomb solids and the homogeneous superfluid [8]. Here the particle densities are distributed in
a honeycomb pattern like in the neighboring solids, but all lattice sites take part in the condensate
density like in the neighboring homogeneous superfluid, so all bosons are delocalized inhomogeneously
in a honeycomb pattern.

The class of phenomena called supersolidity also includes a phase of helium (without optical
lattice), which was predicted theoretically and tried to be found experimentally. But these experiments
turned out to be not successful (Ref. [9] 10, [IT]). So now it is a hope to find a supersolid phase in
optical lattices as e.g. proposed in Ref. [§].

One of the experimentally tunable condition is the probability for bosons to tunnel to other lattice
sites, in our approximation the next neighbor sites. This so called “hopping” appears in the mathematics
as the hopping strength J. Usually in contributions to our topic it is considered to be positive, since
this describes the normal behavior of our systems. But experimentalists managed to create situations,
that correspond to negative hopping [12, 13} [14], i.e. the quantum simulator was extended to a wider
range of conditions, which always has the potential for new interesting kinds of phases. For positive
hopping, Monte Carlo simulations exist based on the extended Bose-Hubbard model [§], which our
work is based on, too. But extending the Monte Carlo simulations to negative hopping turned
out to be a major problem [8]. This means, we need to find other methods for this purpose. So
finding such a method and describing phases for negative hopping is the main issue of this work.

We will develop a partially general calculation method for certain classes of lattices using the
mean-field approximation, which, although it doesn’t give very accurate quantitative results, is able
to predict a few new phases for negative hopping. And it shows some properties of the mathematical
structure, which can be helpful to understand the principles of these systems.

IThe word “supersolid” is normally used for inhomogeneous superfluids (e.g. Ref. [8]) as well as a mixture of localized
and superfluid particles (e.g. Ref. [9]), which we will later define as different classes of phases.
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Figure 6: All homogeneous phases in the quadratic lattice for positive hopping.

(a) 1/2 filled, checkerboard (a) 1/3 filled (b) 2/3 filled

Figure 7: Inhomogeneous solid in Figure 8: Inhomogeneous solids in the triangular lattice.
the quadratic lattice.

(a) empty lattice (b) full lattice (c) homogeneous SF

Figure 9: All homogeneous phases in the triangular lattice for positive hopping.

(a) inhomogeneous SF (b) inhomogeneous SF

Figure 10: Inhomogeneous superfluid phases in the triangular lattice for positive hopping. (a) close
to the 1/3 filled solid, (b) close to the 2/3 filled solid.
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3 Physical situation

Independent of the experimental realization (section the principle physical situation can be described
as follows.

We will investigate bosons at zero temperature in a periodic potential (the lattice, see Fig. ,
in which they can tunnel between the valleys (hopping). And as mentioned before the influence
of the hopping can experimentally be replaced by an opposite influence (negative hopping). As an
approximation the continuous lattice potential is reduced to a discrete space (Fig. consisting
of nodes and connections, standing for lattice sites and physical relations, i.e. next neighbor hopping
and next neighbor interaction.

Furthermore the particles underlie a very strong, approximately infinite (hard-core limit), repul-
sive contact interaction, which causes the bosons never to be at the same site at the same time.

Additionally there is a long range attractive or repulsive interaction, meaning, that bosons at
different lattice sites influence each other. In our case we are approximately considering just next
neighbor interactions.

In experiment the depth of the lattice potential, the strength of the next neighbor interaction and
the chemical potential can easily be tuned. In the competition between the forces and the hopping
tendency, the bosons arrange in different patterns depending on the relations between these parameters.
This self-organisation occurs in the spatial magnitude of the next neighbor region, since we
consider next neighbor interaction and hopping.

We will see, that the variety of phases depend on the lattice geometry, which can be e.g. in two
dimensions a quadratic or triangular lattice (Fig. or in three dimensions a cubic lattice . Most
important is a property called “frustration”. A non-frustrated lattice geometrically allows a pattern
of alternating features (Fig. , e.g. an alternating occupation number of zero or one as in the
checkerboard pattern (Fig. E[), whereas a frustrated lattice doesn’t, because e.g. in the triangular or
kagome lattice, the next neighbor sites form a triangle, which doesn’t allow an alternating distribution
of features (Fig. . We will see, that homogeneous or alternating patterns appear in the phase
diagram of our systems, unless the alternating one is geometrically forbidden, and thus allows patterns
of higher energy to appear in the ground state, which, as we will see, are much more interesting and
diverse.

Since the bosons self organize due to next neighbor effects, the next neighbor interaction is very
important for the behavior of the system. Without it the inhomogeneous superfluid phase in the
triangular lattice would not appear. We will use the so called “extended Bose-Hubbard model”, which
is including the interaction between different sites.

This thesis is based on the idea of bosons in optical lattices, but there are other systems with the
same or similar behavior, which can serve as quantum simulators, too. One example is a spin % system
in two dimensions interacting with an external magnetic field [3]. It can mathematically be mapped
to our hard-core boson system [I5] and thus has mappable results, i.e. the three components of the
spin can be translated to the real valued particle density and the complex valued condensate density.
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(a) quadratic (b) triangular

Figure 11: The periodic potential.

(a) quadratic (b) triangular

Figure 12: The “discrete space”, which the lattice is reduced to in the mathematical description. Valleys
in the potential are mapped to nodes and next neighbor relations to connections.

(a) non-frustrated (b) frustrated

Figure 13: Comparison between (a) non-frustrated and (b) frustrated lattices.
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4 Experimental realization

To realize the periodic potential usually electromagnetic standing waves are generated by coun-
terpropagating lasers or a laser, which is mirrored back to superpose with itself (Fig. . A few of
these standing waves are arranged in a certain angle to each other modeling a periodic potential (Fig.
with valleys in the magnitude of the wavelength. E.g. three standing waves perpendicular to each
other (Fig. form a cubic lattice. The examples, which this thesis is based on, but not restricted
to, are two-dimensional lattices, especially the quadratic lattice and the triangular lattice. Since the
experiments take place in a three dimensional world, for these systems a potential has to be modeled
[16], which behaves like a two dimensional lattice, i.e. in the mathematics two dimensions can be
assumed. To model the lattice geometry it is also possible to create potentials with more than one
laser frequency (see e.g. Ref [I7]), for instance two frequencies at a ratio of 1 : 2 as in Fig. In this
system different geometries can be modeled by varying phase differences (Fig. . Assuming, that
particles just occupy the deepest valleys, lattices like the kagome lattice can be realized this way (Fig.
. Allowing particles in higher valleys yield a more complex system with more tunable parameters,
which we don’t investigate in this thesis. The atoms, which are electromagnetically neutral at first,
are able to interact with the laser field due to a polarization induced by it.

The contact interaction is tuned with an external magnetic field, which can effect the scattering
length of bosons over several orders of magnitude (see Fig. . Close to a Feshbach resonance (see
Ref. [18]) the contact interaction becomes very strong and, thus, we assume it to be infinite, allowing
at most one boson at one lattice site at the same time (hard-core limit).

The origin of the next neighbor interaction is a dipolar one, either magnetic atomic or electric
molecular. It can be attractive or repulsive (Fig. .

As mentioned before experimentalists managed to create situations corresponding to negative
hopping in the mathematics. This is obtained by a fast lattice oscillation (see Ref. [12 13| [14]).

In Ref. [I9] another kind of systems was proposed, in which nuclear spins on a diamond surface
interact at room temperature. The intention in this paper is to use it as a quantum simulator.
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5 Outline

Part [IT*{Preparative_ mathematics)’

In part [[T] we describe some mathematical basics for the actual calculations in part [[TI}

In section [6] *Mathematical approach]’ we first derive the basic model for our system from
quantum field theory, the so called “extended Bose-Hubbard model“. Afterwards its simplified due to
the hard-core limit. And last we apply a mean-field approximation leading to a Hamiltonian, whose
summands just contain operators, which act on single lattice sites. This simplified Hamiltonian can
be investigated analytically for periodic patterns, which is the main issue in Part [[TI]‘{Main_part].

In section [7] "IPeriodic patterns]’ we recall, how a periodic pattern is described by a unit cell
and translational symmetry, and introduce how we reduce its properties to a matrix, containing just
the properties we need in our further calculation.

Part [T1]“{Main_part)

In part [[TT] we derive our general calculation method and end up with the final phase diagrams for
both positive and negative hopping.

In section [8‘“/General derivations in the mean-field approximation|’ we use the symmetry
of spatial periodic patterns to obtain a mean-field Hamiltonian for one unit cell, i.e. a finite number
of lattice sites. After determining the matrix representation on the occupation number basis for one
and two sites in the unit cell we will find the energy eigenvalues for both cases and a regularity in
the expressions for the energy will become guessable leading to a general formula. With this general
formula for the energy we will try to find the values of the mean-field parameters by extremizing it
leading to a set of coupled equations, which will be basic to the further calculations for more special
cases.

In section [9] ‘{Classification_of phases and phase boundaries]’ we mention the common
classification of phases and introduce a new one and new symbols representing more appropriately the
variety of phases, we will find later.

In section ‘Mathematics for special classes of patterns|’ we will calculate the energies,
densities and condensate densities for two cases of patterns. One is the homogeneous pattern, where
the ansatz demands all properties to be the same at all sites leading to the well known empty lattice,
full lattice and homogeneous superfluid. These solutions can be expressed independently of the lattice
geometry. The other case is a whole class of patterns described by a quite general matrix with arbitrary
size at first. It will serve for all lattices and patterns, we will analyze, and we will find almost all
solutions, we need later, except for the case of the inhomogeneous superfluid in the frustrated lattices,
where we have to consider a 3 X 3 matrix in a separate section. But for all other cases using the more
general matrix we will proceed from a general derivation to special cases.

In section[11]*{Non-frustrated lattices]’ we will describe the solutions for non-frustrated lattices,
combine them to the phase diagram and find expressions for the phase boundaries. All the formulas
will have a relatively simple form in the mean-field approximation.

In section ‘“IFrustrated lattices|’ we do the same for frustrated lattices leading to a variety
of interesting phases and a non trivial phase diagram especially for negative hopping including an
inhomogeneous superfluid and a phase, in which solid sites appear together with superfluid sites.
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6 Mathematical approach

In this chapter we will derive the extended Bose-Hubbard Hamiltonian and simplify it to the hard-core
case. Afterwards we apply the mean-field approximation to it.

6.1 Derivation of the extended Bose-Hubbard model

The Hamiltonian for a many-body system of bosons at 7" = 0 in the d-dimensional space representation
including one- and two-particle energies is described by

/ dz Pt (x) Honet) ()
1 A N N A
by [t [ ) 61 ) Vi () ) ) )
where ¥ (x) denotes the bosonic field operator fulfilling the commutator relations
D). 0] =ax-x), [P0 )| =0, [P0 )] =0, (2)

Viwo (X1, X2) stands for the two particle interaction energy and ﬁone for the single-particle Hamiltonian

R 2

h
Hone = ——A ‘/one - I, 3
A Vo () B

where Vo6 (x) describes a potential energy involving one particle, in our case the influence of the
lattice potential, and p’ the chemical potential due to a grand-canonical description.

Now we transform the Hamiltonian to a polynomial of bosonic ladder operators a;, &I acting on
single lattice sites denoted by the index of the operator. This can be done by writing the field operator

Y (x) as
V(x) = Z ajw (X — x;) (4)
Px) = Y alwt (x—x) (5)
i
where a; and d;r are the bosonic ladder operators acting on lattice site ¢ and fulfilling
[al, j} =55, [aj,aj} =0, aa5) =0 (6)
and w (x — x;) are the Wannier functions, which are defined as a complete orthonormal function basis
[t x-x)wix-x) = 4 (7)

Zw*(xfxi)w(x'fxi) = d(x—x), (8)

and are localized at lattice sites.

In a spatially periodic system different energy bands exist, so there are Wannier functions for every
band. In our systems the temperature is approximately zero, so we can consider all bosons to be in
the lowest band. Otherwise we had to distinguish between different bands here.

Inserting the representation of the field operator and into the Hamiltonian yields

= szaj—i- ZVuklaaakal an 9)

zgk:l
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with the abbreviations
h2
Jij = — / dix w* (x — x;) (—ZA + Vone (x)) w(x — X;) (10)
m
and
Vigkl = /ddxw X — X;)w (X — X) {/dd (% = %) Viwo (%, x ) w (X' —x;)| . (11)

As an approximation we neglect products of Wannier functions localized at different lattice sites due
to a small overlap. These products appear in regarding the two index combinations i, k and 7, 1.
So we just have to take the matrix elements V; ;1 into account, which fulfill either i = k or j = [,
yielding a simplification of the Hamiltonian @D, ie.

H = —ZJJCALTCALJ—F ZVuaaal an (12)

with the abbreviation
Vij=Viji; = /dda: |w (x — xi)\z [/ d*z’ lw (x' — Xj)\Q Viwo (X, x’)] . (13)

For the systems, we investigate, we consider a simple on-site interaction Vi and a next neighbor
interaction Vn

Viwo (%, X') = Vit (x,X') + Vaw (x,%') (14)
and divide the interaction term of into two parts

Vig = VeVl (15)

)

with the corresponding matrix elements
v i [t ot x| [t o <) Vi ()] (16)
V= [t el | [ )l Vs (xx)] (a7)
Then the interaction term from reads

1
5D Vi dlalai vae alaa; + 1 ZvNN alalas, . (18)

6.1.1 On-site interaction

Using the simple contact interaction
Vite (%,%") = Vo sited (x — X') (19)

the matrix element becomes

VS = Voo [ % el o (- x0) )
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And again we can neglect products of Wannier functions for different lattice sites i and j due to a
small overlap. So the on-site term in simplifies to

1
3 2V dlajad, = fZVS“” lad (21)
with
|/ / A%z w (x — x;)[* . (22)

Since the integral over the whole space is always the same independent on a shift by x;, all matrix
elements VZS;“’ have to have the same value. Then becomes

U = ‘/ifite = V07site/ddl‘ ‘w (X)|4 (23)

and yields the on-site term

it At U itata a
ZVS“G aTa G0 = 5 Zajalaiai . (24)
i
Using the number operator
n; = a;a; (25)
and the operator relation
(i —1) = alalaa; (26)

valid for bosons, the on-site interaction reads
1 site AT T U PPN
§ZV a;a;a; = 52711(71171) , (27)
2,7
which is our final expression for the on-site interaction.

6.1.2 Next neighbor interaction

The sum in the next neighbor interaction term in has to involve just next neighbor combinations of
indices ¢ and j, which we denote as (i, j). Since the indices are always different in these combinations,
we can interchange ladder operators due to @, and use the number operator to express the next
neighbor interaction term in as

1 ot 1 .

3 VZI\;N a;.ra;faiaj = 3 VZI\;N M . (28)
0,J (i,4)

We consider the simple case, in which the next neighbor interaction is independent of the lattice sites,

i.e. isotropic next neighbor interaction V; ; = V' Vi, j, yielding our final expression for the next neighbor

interaction

1%
Z VAN alalaa; = 5 > iy (29)
(i.d)

In particular, this is the case, when the lattice sites have the same distance in each direction as in the
lattices, we investigate.
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6.1.3 Single particle energy

The single particle term in contains Vgne, which in our systems is the interaction with the pe-
riodic potential. Due to the periodicity of the lattice potential, we can consider an isotropic next
neighbor hopping J; ; = J V{7, j) and a self energy J; ; = —e Vi. Dividing the sum into next neighbor
combinations of indices (i, ,j) and equal indices we obtain

= gigala; = —J) ala;+ed (30)
,J (i,3) @

using the number operator . The first term describes the influence on the energy due to the
tunneling to next neighbor sites and the second term describes an energy a particle has independent
of other sites. This last term has the form of the chemical potential term in the Hamiltonian and
thus can mathematically be included in an effective chemical potential

po= p—ec. (31)

6.1.4 Extended Bose-Hubbard Hamiltonian for isotropic next neighbor relations

So the complete Hamiltonian of the extended Bose-Hubbard model including just next neighbor rela-
tions denotes

g ita IS a4+ S hhe - 0 S
H = —JZaiaJJr;Zm(nl 1)+22mn] uan, (32)
(i) i (i) i
where we have inserted , and into using and .

6.2 Hard-core limit

As mentioned before, the on-site interaction U can experimentally be tuned over several orders of
magnitude via tuning the scattering length of particles with an external magnetic field. If the on-site
interaction is a very strong repulsive one, i.e. in optical lattices close to a Feshbach resonance, we can
assume, that there is at most one particle at one lattice site at the same time, i.e. either the operator
i or 7 — 1 produces the eigenvalue zero, hence the operator # (7 — 1) has no influence and the on-site
interaction term in the Hamiltonian disappears due to this so called “hard-core limit”, yielding
the “hard-core extended Bose-Hubbard model”

H = —JZajaij%Zﬁmj—MZm, (33)
(i:d) (i.3) i

which is the Hamiltonian, we will investigate, in this thesis.

6.3 Mean-field approximation

Since the operator sums over all next neighbors are quadratic in the operators and depend on different
sites of the whole lattice, we simplify the Hamiltonian with the mean-field approximation and will
obtain a local Hamiltonian describing the energy of one lattice site [21].

In the mean-field approximation the operators a;, &I, n; are considered to be their mean-values (a;),
<dz>, (7;) plus a “small” operator dd;, 5&3, 0n;, where “small” means, that its square is approximately

zero. So with the definitions

G = (a)+da (34)
af = (al)+saf (35)

>
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we approximate the operators according to

0 ~ 6nidiy = fuiy — () oy — () i + (Rg) () (38)
and find
ala;, ~ <aj> a; + () af — <a1> (a;) 59

(i) g + (fog) oy — () (i)

= 0ily + 05N — 0i0;

§>
>

<
Q

(39)
U s+ bal — vl (40)
(41)
(42)

with the definitions of the so called mean-field parameters
v = (@) (43)
o = (ni) . (44)
The parameter g; is the particle density at lattice site 4, since it is the expectation value of the number

operator 7;, and the parameter v; is called “condensate density”, whose meaning will become clearer
later. Now the Hamiltonian can be approximated yielding the mean-field Hamiltonian

Q>

H~HM = —J )" (wfdj+¢jd1*7/f?¢j)+g > (@iﬁfr@jﬁi*&@j)*uzﬁi- (45)

<t,j> <i,j>

The sums can be rewritten as

R DI D DD I D DT ST S

i JENN; i JENN; i JENN;
% . .
+5 E Uz E 0j + E ;i E 0j — E Qi E 0j
i jJENN; i JENN; i JENN;

where NN; is the set of indices belonging to the next neighbors of site 7. In the next step using the

definitions
\I/i = Z ’(/Jj s RZ = Z Qj7 (47)

JENN; JENN;
we obtain a sum over local Hamiltonians
aMF = (48)
with
£ MF L ow At « V.. .
M= (a0 + alw - 0w + 5 (@20 — o) — i (49)

So we have found a Hamiltonian H MF “in which the operators a;, dz, n; in the summands IAIfAF depend
on just the indices of single lattice sites 4, i.e. we got rid of combinations of operators, which act on
different sites. The summands h}¥ describe the energy of one lattice site i and the influence of next

neighbor sites is now contained in the scalar mean-field values R; and ¥;. This simplification is basic
for all calculations in this thesis.
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7 Periodic patterns

7.1 Motivation for periodic patterns

As mentioned before there are already Monte Carlo simulations for positive hopping, e.g. see Ref. [§].
The results show, that periodic patterns appear with e.g. two or three lattice sites in a unit cell, which
makes sense, since we are just considering next neighbor relations. These patterns appear in g; and ¥;
for different lattice sites. Hence we use this spatial symmetry to reduce our Hamiltonian to a simpler
one. This has already been done in the mean-field approximation in e.g. Ref. [2I] and is capable to
describe negative hopping, too, as we will see below.

7.2 Describing periodic patterns

A periodic pattern is described by a translational symmetry and a unit cell. The translational symmetry
describes, how far the pattern has to be moved until it looks the same. The unit cell contains everything,
that repeats in that symmetry, i.e. in our cases the properties of one, two or three lattice sites. One
example is the two-dimensional checkerboard pattern in Fig,. which is described by two sites in the

unit cell and the translation vectors
2 1
(5) (1) )

in units of next neighbor lattice site distances. But we will not need these translational vectors.

In section [ we reduced the mathematical description such, that all operators act on the lattice
sites, i.e. our mathematics take place in a discrete space described by nodes and connections, see
Fig. 7 . For our calculations, it is not necessary to know the spatial symmetry or number of
dimensions (1D, 2D, 3D). It is just necessary to know which connections between sites are considered in
the Hamiltonian, i.e. the next neighbor connections in our approximation. The way these connections
appear in our mathematical description is the so called adjacency matrix A containing the numbers
of connections between different types of sites. The checkerboard pattern this described by:

N‘(Zé)' (51)

There are two kinds of sites, i.e. the matrix has the size 2 x 2. The first row and first column stand
for one type of site the second row and column for the second one and so on. The first row describes
the next neighbors of one type, i.e. non of the same type and four of the other type. Analogously the
second row describes the next neighbors of the second type.

For a pattern of 3 sites the matrix becomes a 3 x 3 matrix, which we need e.g. for the triangular
lattice. According to Monte Carlo simulations we have to consider the 3 site pattern shown in Fig. 23]
for this lattice. This pattern is described by

0 3 3
N = |[303]. (52)
330

When we divide these matrixes by the number of next neighbors Ny, which is the same for all
lattice sites in the cases, we will investigate, then we find normalized matrixes

N o 1[0 4Y_[(01 (53)
Nyy  4\4 0/ (10
or
0 3 3 0o 4+ 1
#:%303:%02 (54)
NN 330 3 20
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respectively, which will turn out to contain the relevant information characterizing the systems in the
mean-field approximation.

These normalized matrixes also have the advantage, that they describe different lattices in different
numbers of dimensions. E.g. the normalized matrix

N
N (0l (55)
NnN Lo
can be used for a 1D lattice (Nyy = 2), quadratic lattice (Nyy = 4), cubic lattice (Nyny = 6) and
honeycomb lattice (Nyy = 3), since all of them allow geometrically an alternating pattern, which is
exactly what the matrix describes: The next neighbors are never of the same kind and always of the

other kind. Lattices allowing this matrix/pattern are called “non-frustrated” lattices.
The other example

N

Nnn

(56)

= O
O o=

== O

can be used for the triangular (Nyy = 6) and kagome (Nyxn = 4) lattice, called “frustrated lattices”,
where the alternating pattern is geometrically forbidden, and thus another pattern has to appear,
which is described by this matrix as we will see later.
7.3 Symmetry of the adjacency matrix

In all cases we analyze the adjacency matrix N’ = (NN;;) is symmetric. So we will use
Ni; = Ny (57)

in our further calculations without mentioning it every time. The matrix is not necessarily symmetric
for all patterns. E.g. if two sites of the three site pattern have the same values, it yields a
honeycomb pattern as in Fig. 24] which could be described by

N(éé) (58)

but since it is not a symmetric matrix, the mathematics would be more complicated and so we will
use matrix (b6) and afterwards find out, that some solutions have the honeycomb symmetry.
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o

Figure 20: Discrete space for the quadratic lat-  Figure 21: Discrete space for the triangu-
tice considering just next neighbor relations. lar lattice considering just next neighbor re-
lations.

Figure 22: The checkerboard pattern for the Figure 23: The three site pattern used for the
quadratic lattice as a two dimensional example  triangular lattice.
for the alternating pattern.

Figure 24: The honeycomb pattern on the tri-
angular lattice. One kind of sites: honeycomb,
the second kind: sites inside the honeycomb
hexagons.
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8 General derivations in the mean-field approximation

In section ‘Mean-field-Hamiltonian for a unit cell of a periodical pattern]’ we will first
derive a mean-field Hamiltonian for spatially periodic patterns describing the energy of one unit cell.

In section ‘Matrix representation and energies|’ we explicitly write down its matrix
representation in the occupation number basis, which is possible, since it is acting in a state space
with a finite number of dimensions, and find the energy eigenvalues, which we will do for one and two
sites in the unit cell. The formulas for the energies show a certain regularity yielding a general formula
for an arbitrary number of sites in the unit cell.

In section ‘“Finding the mean-field parameters]’ we are looking for the mean-field pa-
rameters, which the energy formula still depends on. The idea to find their values is to minimize the
energy with respect to them. But due to a problem in the mathematics, the second derivative can not
be used to distinguish between minima and maxima. So we can just extremize the energy, i.e. we set
the first derivative equal to zero. After analyzing some details of this calculation, we come to a set of
equations coupled by the new introduced variables nx.

In section ‘IRewriting the energy|’ we separate the expression for the energy into a part for
solid sites, a part for superfluid sites and a part, in which both solid and superfluid sites are involved.
The solid part will involve just solid densities o3 € {0, 1}, the superfluid part just the x and the mixed
part both. We define new “normalized” energy functions, which just differ to the previous functions by
a factor of Nyn Nycsites, yielding expressions depending amongst others on the normalized adjacent

matrix % and the “normalized” chemical potential ﬁ This notation will show, that different
lattices have the same phase diagram if N./z\vf pe is the same and p is scaled by Ny .

8.1 Mean-field-Hamiltonian for a unit cell of a periodical pattern

Until now the mean-fields p; and ; can be different for every lattice site 7, i.e. a sum over all ﬁi\/IF for
every site ¢ can describe every pattern, random or periodic or anything else. As motivated in section
[7-1] we will derive the method to describe periodic patterns now.

We name the sites in the unit cell with capital letters A, B, C, ... and use X, Y, Z as placeholders
for the names A, B, C, ..., e.g. in sums. The index 7 of the general local Hamiltonian is replaced by
the names of the sites in the unit cell. To describe the energy of the whole unit cell we have to add up
all local Hamiltonians for the sites of one unit cell (UC):

7 ~ * ~ * V ~ ~
h%]/lg = Z |:—J (aX\I/X+aJ;(\le—1/JX\Ifx> +5(2anx—QxRx)—ﬁLnX . (59)
X

Via the replacement of the indices 4, j by the names of the unit cell sites X, Y the abbreviations ¥ x
and Rx in eq. are not any more directly a sum over all next neighbors, but a sum over all types
of next neighbors weighted by the number of a certain type. This number is a component Nxy of the
adjacency matrix N as defined in section @ So U x and Rx are now defined as

\IJX = ZNXYwY s RX = ZNXYQY . (60)
Y Y

And with the additional abbreviations

U=> yxlx R= oxRx (61)
X X
we can express the Hamiltonian for a unit cell as

. 1% %
e = (J\I/QR) —JZ(@X\IJ}HL;\IJX) +2) ix <2RX*2‘> , (62)
X X
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8.2 Matrix representation and energies

For the matrix representation of the Hamiltonian we use the basis vectors [n4,np,...) describing the
state of the unit cell with the occupation numbers n,np,... of the different sites in the unit cell.
The set of occupation numbers n4,np,... can be any combination of 0 and 1 for hard-core bosons.
So the dimension of the state space and the size of the matrix is 2™, where m is the number of
sites in the unit cell. The order of basis vectors we use can be described recursively vice B,,11 =
{Bm % [0),, 1 Bm % [1),,41}, Bi = {[0);,]1);}, where “x” denotes the Cartesian product yielding
every combination of elements from two sets and the index of the one-site vectors denotes the type of
lattice site in an arbitrary numbering.

B = {[0);,[1);} ={l0),[1)} (63)
By = {Bix [0}y, 5: x 1)) (64)
= {0}y, 1)1} x10)5, {10}, (1), } x [1)5} (65)
= {|070>’|170>’|071>’|171>} (66)
B; = {]0,0,0),|1,0,0),]0,1,0),|1,1,0),]0,0,1),|1,0,1),]0,1,1),]1,1,1)} (67)

This certain order of the basis vectors will be responsible for a regularity in the matrix representation
of the Hamiltonian, but it is not important for our further calculations.

8.2.1 One site in the unit cell

For one site A in the unit cell, the Hamiltonian becomes

jur (J\Il - ‘Q/R) 7 (a4 + a1 00) 4200 (ZRA - ;‘) (68)

and in the basis
B = {|0),[1)} (69)

the matrix representation reads

(0 RME 10y (0] hME |1)
<<|hMF|o> (1] e >) (70)

_J(\I/ij Y4 ) ( ZRAR>+—2’2‘(8 (1)) (71)

JU - YR —Jv,
(V20 e sm Vten g ) 7

For this 2 x 2 matrix the energy eigenvalues can be determined easily, since just the roots of a quadratic
polynomial have to be found:

E = (J\I/—‘gb‘:) + (‘Q/RA—'g> i\/(‘z/RA—g>2+(J|\IJA|)2. (73)

8.2.2 Two sites in the unit cell

For two sites A, B in the unit cell, the Hamiltonian becomes more complicated

e = (J‘I’—R> J Y (ax\If}er}\Ifx)H Y ix (‘Q/Rx—’;>. (74)

Xe{A,B} Xe{A,B}
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And since it is now acting in the four dimensional space
B = {|0a0>7|1a0>7|0’1>7|1a1>} ) (75)

the matrix representation of the Hamiltonian is a 4 x 4 matrix

(0,0 AME 10,0)  (0,0] AME[1,0) (0,0] AME(0,1) (0,0 AME [1,1)
(1,0 AME10,0) (1,00 AME 1,0) (1,01 AME [0,1) (1,0] AME [1,1)
(0, 1| AYE 10,00 (0,1 AYE 11,0) (0,1 AYE [0,1) (0,1 AR [1,1)
(1,1 AME10,0) (1,11 AME 1,00 (1,11 AME10,1) (1, 1] AME [1,1)
Vv
= (J\IJ—2R)
0 ¥y Ty 0
B 7 U (R
g 0 0 U4
0 VYp Yy 0
0 4
2(YRy -4
! i 2 (YRy — %) (7€)

2(3Ra—%) +2(3Rs - %)

In order to find the energy eigenvalues, the roots of a fourth order polynomial have to be determined.
In general they don’t have a simple form, but for our Hamiltonian the energies are simply

E = (J\IJ—ZR)
R
n (‘;RB - g) 5 \/ (‘;RB - ‘;) (W) (77)

where +4 and +p are independent signs allowing 2Vvcsites=2 = 4 different energies as expected for a
matrix of the size 2NUCsites=2 where Nycsite i the number of sites in the unit cell.

8.2.3 A general formula for the energies

The energies and have the form

E - <J\Il—‘2/R)+EX:<‘2/RX—Z)+2X:(ix)\/(ZRX—g)2+(J|@X|)2~ (78)

With the help of a computer we have also proven this formula for three sites in the unit cell. So for
all cases we analyze in the final chapters [I1] and [I2] this formula is proven. For more than three sites
in the unit cell it seems to be likely, that this formula is generally valid.

8.3 Finding the mean-field parameters
8.3.1 Derivatives of the energy with respect to mean-field parameters

To find the mean-field parameters, usually the energy is minimized with respect to them. As already
mentioned, it turns out, that the second derivatives, which should be positive for minima, do not yield
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reasonable results. So we just set the first derivative equal to zero and justify ignoring the second
derivative with the reasonable results, we will find.

First we decompose the 1’s into the absolute value |t x| and the complex phase px

bx = |px|ex (79)
vy x| e (80)

This way we can determine the derivative of the energy with respect to ¢z

0o, E = Jlpz| <22NYZ sin ¢y — ¢z) [y |
Y

>y Nxvsin(py — ¢z) [¢y]
+J (£x) , (81)
; R ET NI

and with respect to the absolute value |¢)z|

Oy B = J<QZNZX|¢X|COS(<Px—¢z)
X

+J 3 (£x) Nxz 2y NXYW’;'(;OS (v _jZ) . (82)
X VERx — )+ (T [wx])

These two derivatives and can be combined to

Wz Oy, E+i0,, B = JYg| <2ZNXZ x| ellex—e2)
X

Nxz Zy Nxvy |¢Y|ei(w—wz)
2
VG Ry ) 4 (7 ux])?

+J Z (£x)
X
and furthermore be written in a form, which will be useful later, i.e.

Nxz3Y v Nxyiy (sh)
VSR — 8 4 (7 |wx))?

ewz(|¢z|al¢z\E+i3sz) = J|vz| 2ZNXZ¢X+JZ(:|:X)
X X

The o’s are real values, because they are expectation values of the number operator, and so we can
use the real value derivatives to determine

(Srx-%)
VG R —8) + (7 [ux))?

\% \%
Do, E = 5zx:NXZ (1_2QX)+5ZX:NXZ (£x) (85)

8.3.2 Setting the derivatives to zero

Since the first derivative of the energy with respect to the mean-field parameters has to vanish, we do
this here in the following for the different derivatives, we determined in the last section.
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To fulfill 9,, F = 0 there are actually three ways

J =0 (86)
or
vzl = 0 (87)
or
_2ZNYZ |1/Jy|Sin(<py—(pZ) — JZNXZ (:l:X) ZYNXY |'¢}Y|S;n(@y_§02) ’ (88)
% ¥ VR -8 4 (7 |wx)?

but the solution J = 0 is not very interesting here, because it will be a special case of our final solutions.
So we won’t analyze it explicitly. The second condition means, that every 1z can be chosen to be
zero independently for different Z to satisfy 0,,F = 0. This also will appear later in the mathematics
again, so we will ignore it. Later we will also ignore similar conditions like V' = 0 without mentioning
it. The third condition is the important result here.

To fulfill d)y,|E = 0 and we can also fulfill

7 (|Yz| Oy, E+i0,,E) = 0, (89)

since €'#Z is never zero, the derivatives are real valued and 1 and 7 are linear independent. Using ([84))
we find the new equation

N N
0 = Jlz| [2D Nxztox +J)  (£x) s ZYQ Xy Uy =] (90)
X X (5Rx -5+ (U ux))
which by excluding J = 0 and |[¢z| = 0, since it appears later again, is equivalent to
N N
—QZNxzwx = JZ(iX) = ZZ ZYQ by = (91)
X X (SR -8+ (U 1ux)
It can be written as a vector equation
Ya
—2( Nza, Ngp ... )| ¥B
Sy Nayyy
:t Y
(a) V(¥ Ra—4)+(I|0 a])?
>y Ny vy
= J(Neay Nzp )| (£0) \/(%Rei%)Z)-i—(Jl‘I’BDZ (92)
and for different Z it can be combined to a matrix equation
Naa, Nap ... Va
—o| Na, Npp ... (2]
>y Nay vy
i Y
Naa, Nap ... (£4) \/(%RA_%>2+(J‘\PAD2
>y Ny ¥y
— J| NBa, N ... + b4 93
. . . 2 V(% Rs—4) +(I|vs))? (93)
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Now we can multiply with the inverse matrix (if it exists) and find

>y Nay vy
+4 2
Ya ( )¢(%RA—%)2+<JWA\>2
ol vs | = 5| (%m) 2y Noviy (94)

V(S Re-4) +(1ws)? |

which reduces to
JU 5

V SRz — )+ (J[04])?

In the cases, we analyze, the inverse of N' = (Nxy ) always exist. The previous condition can be
fulfilled by two cases. In the first case 1z is zero and so the other side of the equation has to vanish,
too, hence ¥  has to be zero. We exclude the other solution J = 0 here. To distinguish between the
two cases we divide the set of indices Z into a set My—o for case 1, i.e. solid sites, and a set M+ for
case 2, i.e. superfluid sites, which includes per definition all indices Z fulfilling ¢z # 0. In case 1

1

vz =

(£2) vZ . (95)

Yz = 0 VYMy— (96)
Uy, = 0 YMy_g (97)

we can rewrite the following square root by inserting

1% 2 v
(£2) \/(232 - g) +(J0z])? = (£z) o5 iz - g‘ VZ € My . (98)
In case 2 ¢z # 0 we obtain the same square root from
v 2 1w
E =Rz L) +(T19)? = —ZJ-2 VZeMyu, (99)
2 2 2 gz
since it is allowed to divide by 1z # 0 in this case. Now we define the new variables
v
nz = —2 VZ € Myx (100)
vz

for indices € Mo, because they will allow us to combine the extremalization conditions in a useful
way and will reveal some interesting properties of the mathematical structure of our systems, so we

insert into yielding

1% ? 1
(:Izz) \/<2RZ — g) + (J|\I/2|)2 = —§J’172 VZ e Mw#o s (101)

Now we can see, that the 1z have to be real values, since all other expressions in are real values,
too. And it can not be zero, since ¥z is not zero for Z € M. Because it is a real value, the phase
difference between ¥ x and Uy has to be 0° or 180°. So the ¥ x of a lattice site always has the same
or the opposite phase of the the sum over the next neighbor 1 x. This is a major result, since it was
derived for the general case.

The 7z has to fulfill the definitions of ¥y and nz (100)

Ux = Y Nxviby (102)
Y

T
nx = w—i VX € My (103)
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leading to the condition

ZNXY'(/)Y = nx¥x VX € Myxo. (104)
%

For different X it yields the matrix equation

Nx,.x;, Nx,x, --- x, nx, 0 ... ¥x,
NXz,Xl NXQ,XQ . ng — 0 Nxy, - 'll))(2 (105)
Xn € MyxVn (106)

and, thus, the nx have to fulfill

Nx,.x, Nx,x, ... nx, 0 ...
0 = det NX27X1 NXQ,X2 e _ 0 NX, e (107)

which is one of the important conditions, we have found in this section.
The last extremalization, we have to evaluate, is

9,,E = 0, (108)

which yields

2ZNXZ <QX - > ZNXZ +x) \/ (3Fx — ) (109)

(YRx — )" + (J|wx]))®

and can be simplified the same way we did for (91). And we obtain

Z
(Qx—;> = %(ix) (3Fx — 5) (110)
VG Ry — ) 4+ (7 [ux])?

8.3.3 Combining the conditions

After having derived a few conditions in the last section we will combine them now and find a set of
coupled equations as one final result of chapter [§]
We combine eq. ((110) and in the following way

1\? )
ex — 5 + x| (111)
2
_ 1 (3Rx-§) 1 T2 x| (112)
- 2
Y(YRx )"+ (J|ox])’  4(YRxy - &)+ (J[Wx])?
_ 1 : (113)

and hence have derived the important and simple relation

2
(ex-3) +lexl” = . (1)
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Figure 25: The simple circle relation between ox and |¢x|, which is valid for each lattice site X
separately.

which is equivalent to

Wx? = ox(1—ox) . (115)

It describes a semicircle in the gx-|1x|-plane, see Fig. This simple equation is so important,
because it describes a relation between px and |1 x| involving just one lattice site. It is valid for each
lattice site X separately. In particular, this means, that the number of variables can be reduced from
0x, [x/|, e for each site X in the unit cell to e.g. ox, €?X for each site X in the unit cell. Later
on we will use it to calculate | x| after we have found px. The relation is one of the important
conditions, we have found in this section.

Now we insert the square root expression for the solid case ¥ x = 0 into the px-extremalization
equation , which yields

1 1 (YRx — %)
——) = = (£x)2——2L ¥YX eMy_. 116
(ex—3) = 30 Th i - (116)
Since the expression
v
(3Rx —5) v p
S22 27 sin<R >: +r, 117
TRy — & gn| 5 Rx -3 (£Rux) (117)

is just a sign, we denote it as (£r,x). So (L16) expresses the densities for solid sites as

11
ox = 5t 5 (Ex) (Erux) VX €My (118)

Thus the px for X € M~ can have values € {0, 1}, since (118) has the form % + % We introduce
the new symbols (01)  for X € My—g

(Ol)X = ox VXEe€ M’(l):() s (119)

to express its possible values {0,1}. They depends on the combination of signs (£x)(+rux). The
second one corresponds to a condition

v
(£,x)=1 & % < 5 Rx (120)
(fux)=-1 & VRe <t (121)

2 2
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but these conditions are irrelevant, because for every Rx the energy eigenvalue can by the arbitrary
(£x) be chosen such, that we get results under both conditions, which can be combined to solutions
without these conditions. So in the case X € My—¢ the px can be chosen € {0,1} without causing
any additional conditions for J, pu or V.

For the second case ¥x # 0 we insert the square root expression into the px-extremalization

equation (110 yielding

1) 1(5Rx — %)
ox— =) = = VZ € My - (122)
( 2 2 —Liny .

Using the definition of Rx the relation (122]) becomes

v 1 I
3N — - B 12
Jnxox + 22 YXO0Y 2J77x+ > (123)

For the sum ZY Ny x 0y we now have to distinguish between the two cases ¢x = 0 and 1 x # 0, since
different gy appear, which can be either of the solid or superfluid case. So we divide the set of indices
X into My—o and Myg. This way we obtain two sums

\% \%4 1 7
J — N — N = -J - 124
nxex + 5 Z yxey + 5 Z YX0v 57X T35 (124)
Y €My —o Y €My 20
and after a rearrangement and expressing the gx for solid sites as (01) , we find
v 1 wo Vv
Jnxox + 5 Z Nyxey = Slix+5 -5 Z Nyx (01)y . (125)
Y eMy+o YeMy—o
For different X it can be combined to the matrix equation
nx, 0 v NXl,Xl NXl,XQ 00X,
J 0 ’I7X2 _’_5 NXQ,Xl NX2,X2 QX2 (126)
3Jnx, +5 =530, Ny, x, (01)y,
= 3Jnx, +5 % 225 Ny, x, (Ol)Yj (127)
using the indices
Y, € My (129)

to distinguish between solid and superfluid sites. Inverting the matrix yields an expression for the px

-1

0x;, nx, 0 ... v Nxixi Nxix.
0X; = gl 0 mx. - |4 3 Nx,xy Nxox, - (130)
3Inx, + 45— %2, Ny;x, (01)y
x| 3Imx 5 =52 Nyx, (0L)y, | (131)

So now we have expressions for all px, some of them depending on the nx. This expression ((130) for
the particle densities px is another important result of this section.



8.3 Finding the mean-field parameters 37

8.3.4 Vector and matrix notations

A few previous formulas included matrix operations. To write them in a more compact way, we
introduce new vectors and matrices. Denoting the indices according to X; € Myxo Vi and Y €
My—o Vj they are defined as follows.

e concerning just solid sites, i.e. vx =0

— Solid site densities

T 4% (01>Y1
o5 ={on) = (7" = ((OTS) — | ow | = (01), (132)
— Solid site condensate densities
. 0
— —
vE= (%) = |0 (133)
— Connections between solid sites
NY1 Y1 NY1 , Y2
NS o= | Vv Mwyw - (134)
e concerning just superfluid sites, i.e. ¥x # 0
— Superfluid site densities
0x,
T
9 = (T = 0X, (135)
— Superfluid site condensate densities
- N T ¢X1
W SF = <¢SF) = VX, (136)
— Connections between superfluid sites
NXth NX17X2
NSF = Nx,xi Nxox, - (137)
— Superfluid site nx’s as a diagonal matrix (diagonal dash “\”)
Ubel 0
no= 0 nx, - (138)
and a vector
nx,

=" = 11X (139)
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e concerning the interconnection between solid and superfluid sites
— Connections between solid and superfluid sites

NYl,Xl NY17X2

AmiE . Ny, x, Ny,x, ... (140)
e miscellaneous:
— useful vector
. 1
T _ (?) — 1 (141)

— A scalar added to a matrix is meant to be the scalar multiplied by a unity matrix and then
added to the matrix

10 ...
n+N = | 01 oy (142)

8.3.5 Summary

Using these vector and matrix notations, we can summarize all relevant formulas from this section in
the following way:

e general relations (115

Wx® = ox(1-ox) (143)
e concerning solid sites (119)),
7% = (01 (144)

¢S = 0 (145)
e concerning superfluid sites (130), (105))
1 v : 14 !
75F = <2J7 + g? - Q?SNT"”> (Jﬁ + QNSF) (146)
— =
NSFYSF — ySF (147)

The formulas for the superfluid part still depend on undetermined variables 17x. So until now we
have not found unique solutions by extremizing the energy with respect to the original mean-field
parameters, which means either there is a relation, we have not found, yet, or the equation system is
under-determined.
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8.4 Rewriting the energy

We will now rewrite the energy using the relations, we have found so far. First we collect a few relations
and combinations of them by using both cases Mly—¢ and M. The term %R x — 5 can be rewritten

for the case Mo according to (122)

(5rx-%) - (fc i) e (148)
—Jnx (ex —3) X € Myxo

which is equivalent to

1% YR , X € My
LRy = {7 . v=0 (149)
—Jnx (QX—§)+§ X € My
This can be used to determine R =3 oxRx
\% 1% 1 1
R = — - S 2 1
5 B 2 > oxRx+ Y, [ Jnxox <QX 2) +QX2:| (150)
XEMy—o X €My 20
Expressing U x as
0 X e M-
Uy = 4 € My=o (151)
nx¥x X € My
and using (100)) allows us to write J¥ as
JU = J > axluxl. (152)
XeMy 20
And with the semicircle relation (143]) we obtain
JU = T Y mxox(1-ox) - (153)
XeMyzo
The other expressions, we need, are the following square root terms, which can be rewritten as
v 2 +x) |[YRx — 4 X € My
oy (Fre—8) + ot = JEDIFE I
2 2 —3Jnx , X € My

and

14 2 2 v 1
ZX: (£x) \/<2RX - g) +(J|¥x|)” = Z (£x) ‘2RX - g‘ — 57 Z nx 5 (155)

XeMy—o XeMy =0

where we have used and (101)).
To rewrite the mean-field parameter dependent energies

B - (@_R>+Z( X—>+Zix \/( X—g‘)2+(J|wx>2 (156)
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we first insert (153)), (150), (148) and (155

E = J Z nxox (1 — ox)

XEMy 0
1 I V

- Z <—J77XQX <QX - 2) + QX2) - Z 5 0xfix

XeMy~o XeMy—o

1

+ z < RX>J Z 77X<QX2>

XEMy—o X EMy 20
£ Y () ‘RX—‘—J S (157)

X€EMy—o X EMyxo

After rearranging the sums

F o e 3 (D) X eofimed

XeMy—o XeEMy—o XEeMy—o
1 Iz
+7 Y mxex(I—ox)— Y <J77XQX <QX - 2) + QX2)
X EMy 20 XEMy 20
1 1
-7 > nx (QX - 2> — 37 > x (158)
X eMy =0 XeMy 20

and combining certain sums

v _ K
e 3 s 3 (e (e i)

XeMy—o X eMy—o 2
1 %
J 1- —=])-=
+J > nxox (( ox) + (QX 2)) 5 D ox
XeMyzo XeMyzo
1 1
DS (QX - 2) — 57 > nx (159)
XeMyzo X €My o0

we obtain an expression, where the term

v w
YRy — ,|
4 (y) 12RX 8 (160)
(3 Bx — %)
occurs, which we already know from (116f). It is twice the densities px for X € My—o
1%
VR, &
14 (£x) |3X72| = 20x for X € My (161)
(3Rx - %)
according to (L19]). So we replace this term in the energy and evaluate the other terms further
= —— Z oxRx + Z ( Rx—>29X
XEMw XEMy—o
1
>, oex—5J D nxex (162)

XeMy 20 XeMy =0
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and rewrite it again

E = > Rxox—n Y, ox

XGMw:o XeMy—g
1
- > ex <2J77x+';> : (163)
XGMw#o

As the last step, we resolve Rx using its definition and disassembling the sum into the two cases
sz() and Mw#o

|4
E =3 > > Nxvor+ Y, Nxvov|ox—p Y, ox
XEMy—o \YEMy—o Y €My 20 XEMy—o
1
- Z 0x (2J77x+';>~ (164)
X €My 20

Now we can express the energy F as a sum consisting of three energies, E° involving just indices
€ My—o, ESF involving just indices € My2o and E™** containing a double sum, which combines
indices of both sets

E = g Z Z Nxyovox —p Z 0x

X€EMy=o YEMy=0 XeMy—o

=:ES

+g > > Nxvovoex

XeMy=0 YEMy 20

—.fpmiz
1
) Z ox (Jnx + p) (165)
X€eMyxo0
= ESF
E = ES4E™® 1 E5F (166)

This expression describes the energy of a unit cell and thus depends on the ansatz, which includes just
one spatial symmetry. But in principle it is possible, that different patterns occur in the ground state,
which need a different number of sites in the unit cell. In this situation the energies E for different
patterns are not directly comparable. But they become comparable, by calculating the average energy
per unit cell site, i.e. the energy E has to be divided by the number of sites in the unit cell Nycosites-
This way we will find the same formulas for the homogeneous superfluid in an ansatz with one site
in the unit cell and in an ansatz with more than one site in the unit cell as one of the solutions. We
also divide the energy E by the number of next neighbors Ny . The reason is not so obvious here,
but it turns out, that we can use the same formulas for different lattices, if we do this. It yields the
“normalized” energy

E
£ = — = 167
NnNNucsites (167)

again separated into parts concerning solid sites (£°), superfluid sites (£°F) and interconnections
between them (£77)
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1 v N
& = —— |3 ny evex— NL 2 ex Hes)
UC'sites XEMy_o YEMy_o NN NN XEMy—o
_ 1 v N
gmiz Ni 5 XY 0y 0x (169)
UC'sites XeMy—o YEMyo
1 1 nx H
T (J o 170
NUCsites 2 XeM - NNN NNN ( )
Y£0
£ = &5 ygmiz g gSF .

Using the vector and matrix notation and

doox = > (01)y =Ny (172)

X€eMy—o X €My —o
yields
1 1% NS W
e = —— (= Si&S—N: ) 173
Nycsites (2 7 Nnn ¢ ='Nyn (173)
Nycsites (2 7 Nnn ¢ (174)

eSF _ 1 (_;?SF< i+7 1)) (175)

Nucsites Nyn  Nyn

In this “normalized” energy £ the matrix A/ now occurs in its normalized version NN see subsection
[2l Furthermore nx and p occur as “normalized” by Nyx. Later we will see, that the energy &,
the particle densities px and the condensate density 1 x are almost independent of Ny except the

scaling of u, which leads to the same phase diagram in the ﬁ—%-plane for different lattices, if the
normalized matrix sz\v[ ~ s the same for the patterns in the ground state.
As a last step we insert the particle densities for superfluid sites ?SF from ([146|) into the energy

formulas £™% ([I74) and £5F (175) and summarize including £ (173)

1 Vv NS W
e = — ( S %5 N — ) 176
Nycsites 2? Nnn ¢ ='Nyn (176)
. 1 mix \ 1% SF\ —
Nucsites | 4 Nnn Nnyn 2 Nyn
7 poe o mnT
X|\Jo—+—1-V 177
< Nnyny  Nnn NnN ¢ (177)
1 1 m'LI
ESF [ — |:_ (J7_|_ ?SN )
Nycsites Nnn NNN Ny

(o LAy (J‘Mg] a8)

Nnyy 2 Nyn Nnyny  Nnn

The energy £° involves just solid sites and interconnections. Every occupied site has an influence
in the amount of p to the energy and the next neighbor interaction has an influence of % for every
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connection between two occupied sites. The energy £™® consists just of the next neighbor interaction
between solid and superfluid sites. Since solid sites have occupation number 0 or 1 and the densities
are multiplied in the energy, effectively £™ consists of next neighbor interactions between occupied
solid and superfluid sites. The energy £9F has a more complicated form with not so obvious terms.

The advantage of these energy formulas is, that the only undetermined values are the parameters
Nx, i.e. one for each superfluid lattice site. Before the extremalization the energy depended on
ox and ¥x for all lattice sites, respectively. Although one can expect to find unique values via an
extremalization, it is still a useful simplification to have less dependencies.
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9 Classification of phases and phase boundaries

9.1 Phases

Usually the phases are classified in the following way:

’ \ densities \ condensate densities \
Mott insulator (MI) ox =0 VX Yy =0 VX homogeneous solid
Density wave (DW) | 3X,Y ox # oy X inhomogeneous solid
Superfluid (SF) ox =0 VX vx =1 #0 VX homogeneous superfluid
Supersolid (SS) AXY ox #oy | XY Ux £y everything else

These four classes are not very satisfying to describe the variety of phases we will find. So we define
new classes, subclasses, phases and corresponding symbols.

’ Classes and subclasses H Phases

geih S"fo MI, empty lat.tice
Seol MI, full lattice
. Se0T DW, 1/2 filled solid
Solids: 5 qoin e DW, 1/3 filled solid
SoUil DW, 2/3 filled solid
SFIfU:lfLOO homogeneous SF
oh SFE cor ?
Speh SEpin SFEJLEEO ;
Superfluids: SF :
SFﬁ’fih not in our results ?
SFE. S
SFesih SFpi .
:z.h .
SFQ(;“.Lh SF;?d:O" 180° SS
pd:i
50 4 SF;’%’OQ SS
1 o:h
) ' Sg;h + SFQ:h SQ —+ Sde:Oo SS
h h : 4
¢ + SF¢ T Se0 T eEen sS
Mix: S+ SF Set + SFpg(fww SS
Seh SFIfC:th not in our results SS
geth 4 gpeih Seh 4 SF;’;:Z not in our results SS
Seh SF;;?,L not in our results SS

The different parts of the symbols have the following meaning
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] Symbol \ meaning
o:h homogeneous density and condensate density
o:ih inhomogeneous density and condensate density
o:n homogeneous with occupation number n
0:MNiNg,... inhomogeneous with occupation numbers ny, no, ...
pd : h phase differences are always the same (homogeneous)
pd : ih phase differences are not always the same (inhomogeneous)
pd : phase differences are always a (homogeneous)
pd: o, Qo,. .. phase differences are aq, ag, ... (inhomogeneous)

The symbols contain properties of the particle density ¢ and the phase differences pd, but not
properties of the absolute value of the condensate density |1, because it is not necessary. According
to the semi-circle law ([143])

x| = ox(1-ox) (179)

homogeneous/inhomogeneous px yield directly homogeneous/inhomogeneous |[¢)x|. So we just need
to denote the spatial symmetry of the ox in our symbols.

9.2 Phase diagram

For different experimental parameters the system can take a different phase, which is always the one
with the lowest energy. Distinguishing between the phases in the space of parameters yields the phase
diagram. In our case this space has the three dimensions J, ;4 and V. But all solutions can be expressed
in terms of ]\’,‘NN and % So we have just to deal with a two dimensional space.

Phase boundaries distinguish between the phases and are classified by the order of phase transition.
Phase boundaries of first kind are defined as discontinuities in properties of the system (ox (J, u, V),
¥x (J,u, V) along the axes for experimental conditions (J, u, V). Or in other words the first derivative
of in our case px (J, 1, V) and ¥x (J, u, V) with respect to J, u, V' is not defined at the phase boundary.

Phase boundaries of second kind have an undefined second derivative at the phase boundary, i.e.
the first derivative with respect to J, 4, V has a discontinuity and ox (J, i, V') and ¢x (J, u, V') show
a continuous transition with a cant at the phase boundary.
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10 Mathematics for special classes of patterns

In the last section we were investigating the general mathematics of our mean-field Hamiltonian,
whereas in this section we have to go on with less general situations, i.e. certain classes of patterns,
and exclude difficult cases, if we don’t need it for the final results.

In section [10.1] ‘{Calculation procedure]’ we first describe the principle calculation procedure,
which we used in a computer calculation leading to the special cases of the following sections.

In section [10.2] ‘{Homogeneous pattern)’ we investigate the simple homogeneous pattern, i.e.
one site in unit cell, yielding formulas, which are valid for every lattice geometries included in out
Hamiltonian and which are always a special case of every pattern. The results are the two homogeneous
solids “empty lattice” and “full lattice” as well as the density- and phase-homogeneous superfluid.

In section [10.3] ‘{Other most common patterns]’ we use a quite general adjacency matrix N,
whose special cases describe all patterns, we need later. We will find quite simple formulas in the case
of nx = n VX including some phase boundaries. In the case of the inhomogeneous superfluid we need
the help of a computer, since most of the formulas have no simple form except for the phase boundaries.
The other interesting results like the densities are plotted in order to indicate the important features.

10.1 Calculation procedure

We have found a few relations between the particle densities and the condensate densities coupled
via the new variables nx (see section and a new formula for the energy involving all nx (see
section [8.4]). The next steps are based on calculations for certain patterns, which we can handle
without computer calculations for most of the cases and with the help of a computer for the case of
the inhomogeneous pure superfluid phases (see section [10.3.5). The simple cases are of cause special
cases of the general computer analysis and so we can use the computer results to justify the important
case nx =1 (see section [10.3.2)).

For the case of pure superfluids including the inhomogeneous ones, we just need the energy
([178) without the ¢S term, since we don’t have solid sites in this case. This energy just depends on
the parameters nx. The next step should be minimizing the energy again, this time with respect to
the nx, but it turns out, that we can just set the first derivative equal to zero and ignore the second
derivatives in order to distinguish between minima and maxima. It is not unusual, that the same
problem appears here, since the nx are just a substitution for px and ¥ x. The results will be senseful,
so we use this method here without a reasonable explanation for this sattlepoint problem.

We let a computer find the values of the parameters 7 this way. The solutions are simple formulas
for nx = n describing a lot of phases and complicated formulas for the inhomogeneous superfluids,
which we don’t explicitly write down here, since they are too complicated to recognize any structure
in it, at least, we haven’t found a simple way to express them. For nnx = n we don’t simply use the
final computer results for the formulas, we will derive them in section after replacing nx — 7,
which is the only step, we justify with the computer calculation.

After having determined the parameters nx, they just have to be inserted into the formula for
ox and afterwards gx can be inserted into the formula for |[¢x| (see section . Now we have
everything except the phase factor e?#%, which can be found via the equation system . This
calculation procedure yields quite simple equations for nxy = 1 and again more complicated formulas
for the inhomogeneous superfluid.

ESF

10.2 Homogeneous pattern

First we make the simplest ansatz, i.e. the ansatz for a homogeneous distribution of all features of
lattice sites. Or in other words we use one site in the unit cell

0x =0 vX ) fle = 1/) VXv NUCsites =1. (180)
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Although this distribution is always a special case of all other patterns, so we will find it later on anyway,
we will do this calculation here, since it is valid for all lattice geometries and patterns included by our
Hamiltonian, so it can also be used for lattices, we don’t include in this thesis, e.g. some 3D lattices,
which are more complicated than the cubic one.

Since the next neighbors in the homogeneous pattern are always of the same kind and since there
are always Nyn of them, the adjacency matrix A has just one entry:

N = (Nanv ). (181)

With these basic properties of the homogeneous distribution, we can now derive expressions for the
two classes of phases included in this ansatz, i.e. the homogeneous solids S¢" and the density- and
phase-homogeneous superfluid SF}ffOo.

10.2.1 Homogeneous solids

For the homogeneous solid states the density o of the only site in the unit cell can be chosen € {0,1}
so the number of ¢’s, which have the value 1 is also

Nyoy € {0,1} . (182)

The relevant connections between lattice sites are simply described by the one component matrix

NS =N = ( Nyn) (183)
for homogeneous solids. The energy £° (176) is the only one we need here for solid phases, yielding
. . \%
E[S9"] NnnNucsites = €5 [S"] NynNucsites = EQQNNN — No—1pt (184)

with the two special cases

0 (185)
\%4 "

- - 1

2  Nyn'’ (186)

which represent the “empty lattice” and the “full lattice”, respectively.

10.2.2 Density- and phase-homogeneous superfluid

For the homogeneous superfluid we have to find one 7 via the matrix equation ((147)), which becomes
a simple equation here, since N' = N°F has just one component

SF SF
This yields
Ui
— =1 188
Nun (188)

and by inserting it into the formula for the density (146) we find

J_‘_L
SF NnN
VNN 1
¢ 2J+V (189)

causing a restriction to the domain of J, g and V' due to the condition 0 < o <1

J+ <L

s < 1. (190)

0<
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The only energy, we need here for the pure superfluid case, is £ (178)). Since the occuring vectors
have just one component, the energy simplifies to

: 1 (Jn+p’
sk [SF‘Q"LO} NnnNNycsites —_ . 191
pd:0 NNTUCsit 22J?7+VNNN ( )
And inserting ﬁ =1 and Nycsites = 1 yields the final energy expression
J b
: : 1 ( + T)
o:h _ oSF o:h _ NN
& [sFely| =57 [sEgly| = Ry e (192)
for the homogeneous superfluid.
So we have found formulas for all homogeneous phases, which are valid for every lattice.
10.3 Other most common patterns
10.3.1 Basic properties
We will investigate here the patterns described by the quite general matrix
A N N .- 1 e 1 11
N A N 1 1 1 1
N = | NN 4 =(A-N) 1 N1 11 ; (193)

since it contains all special cases, we use later. The solid and superfluid part of the matrix have the

same form
A N N
Xl[ ]X N AN
N = NP =N N 4 : (194)

but a different size (symbolized by the different number of components above). If we don’t describe a
mixture of solid and superfluid sites, one of these matrixes has of course no component. The mixed
part of the matrix has just the value N as entries, since the diagonal value A of N is never part of it,
so it is

An important relation is the following one between the components of the matrix and the number of
next neighbors. The sum over all entries of a row in A has to yield the number of next neighbors Ny

A+ N (Nucsites —1) = Nyn . (196)
So we can express N as

NNN—A
N = — . 197
NUCsites_l ( )

There will be several steps in the mathematics, where we insert this N to include the relation between
N and A.
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We can also simplify the energy £° (176)) by inserting the adjacency matrix (193

5SNNNNUCsites
1 1 1 1
v 1 111
= F70°|(A-N) 1 N[ 111 9% = Npsip (198)
and then use
1
s 1 s
7 1 0° = Ny (199)
1 1 1
1 1 1
75111 29 = (N’ (200)
to obtain
s V
E°NNNNyucsites = 5Ng:1 (A +N (Ngzl - 1)) - Ng:l/l . (201)
In a similar way the energy £ (174]) can be simplified using
11 1 ---
?S 1 1 1 ?SF — NQ:IT)(ESF (202)

yielding a simplified expression for the energy concerning connections between solid and superfluid
sites

NN, T%5F . (203)

EmszNNNUCsites =

vl <

10.3.2 All combinations of solid phases and density-homogeneous superfluids

A lot of solutions, in fact almost all solutions for the 3 x 3 matrix we will use later, have the property
nx =1 VX € My=o. These solutions can be found by the general calculation procedure described in
section so it is justified to use it here to simplify the equations.

10.3.2.1 Unique values for 7,
Most important is the simplification for (147), which becomes an eigenvalue equation for N:

— —
NSEGSE = o SF (204)
So we just have to solve

det (N5 —p) = 0. (205)
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The matrix N°¥, describing the connections between superfluid sites,

A N N

- N A N
N = N N A 7 (206)

has the size Nyo X Ny-o. There are always just two simple eigenvalues, if the size of the matrix is at
least two

n € {A — N, A+ N (N¢¢0 - 1)} for 2 < Nw#o R (207)

where the first term is not degenerated and the second term Ny — 1 times. So we have found unique
values for 7). In the general case allowing different 7x, we would not find unique values, but one relation
between all nx. But the unique values n can be simply inserted into the other equations without any
additional mathematical problems, which is a major advantage.

10.3.2.2 Particle densities of superfluid sites
For the particle densities ?SF of the superfluid sites (146 we find the simplification due to nx =
n VX

1 14 : 14 -
I = (T + BT - Lgsnmia) [y ZNSF : (208)
2 2 2 2
Now the matrix Jn + %N SF has the same entries on its diagonal and the conditions for g5 can be

written as:
-1

Jn+ AY YN YN
Qi; UKNQ Jni_AZ iN %‘hH'%_%NNFl
Qi _ & Voar 2 25 Lo+ 8 — VYNN,_,; 209
2 = YN YN n+AY 2 27 2 e (209)

where again Ny.g is the size of the matrix and ?S./\/m” = N N,—1, since the matrix components of
N™ are always N and the solid gx, which can be zero or one, yield the factor N,—;. Because the
inverse of a symmetric matrix is again a symmetric one and all components of the vector %J nl +

%

%
51 — % 1 N Ny are the same, all Q§(F become the same

o = o9 vX. (210)

This way we can find a formula for ¢°F, since we obtain

Jn+AY VN YN
Nl i ¢ 0" 3N+ 5= YN Nooy
QN J77+A2 2N SF 1J “ &NN
N YN Jn+AY 0 = | 2/n T2 N Ne=t | (210)

which leads to the same equation for each row in the matrix

1% 1% 1 1%
Jn+ A=) 05F + =N (Nywo —1)05F = —on+E - LINN,_y, (212)
2 2 2 2 2
and we obtain
1 %4
SF = 30+ 5 = 5N No=t (213)

Jn+ 5 (A+ N (Nyxo—1))
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where again Ny is the size of the matrix. Using eq. (197)) to replace N, using Nyxo = Nucsites —
Ny—o and the new definitions

NNN —A
= N ZZ N 214
i NUCsites 1 o=t ( )
Nyny — A
vy = Nyy— —N "2 Ny (215)

we find a simple expression for the densities of superfluid sites

n n V1
SF  _ JNNN+NNN VNNN 216
07t = Y T T : (216)
NnnN + NnnN

So ¢°F is almost determined. Just 7 has to be inserted at last. We could do this here, but since the
formula (216]) just gets more unclear without any real advantage, we won’t do it. It is more useful to
calculate 7 for a special case and afterwards inserting it into the formula for o5F .

10.3.2.3 Absolute value of condensate density at superfluid sites
The absolute value |¥ x| is related to gx via the semicircle law (143]). So if all Q§(F are the same
then all |\I/§<F| have to be the same

2 2
BT =l = o (- o) e
Inserting oF (216)) yields
n 1% v n 1% vitv
|1/}SF|2 _ (JNNN + Nnn VNZ\11N> (JNNN 72NNN +V ]izNN2> ' (218)
n v
(2J—NNN + VNNzN)

So we can also describe WSF ‘ in one expression without any complicated mathematics left. All
parameters are already determined.

10.3.2.4 Complex phases of condensate density at superfluid sites

The second thing, we have to do, is finding the complex phases e!?X of ¢x = |[¢x|e¥*. The
equation, we use, is again (147). Inserting nx = n and |¢x| = [¢| and dividing by || simplifies it to
the eigenvalue equation

A N N ... el xy elrxy
N A N elPx2 e¥x2
N N A ei‘f’XS = n eigoxg (219)
A—n N N e giva
N A-n N el
N N A-n elve =0 (220)

Since the matrix has the same values on its diagonal, we get analogous equations for every row Z

N Y e = (n-A)e¥r VZ (221)
n

X, #7Z
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To analyze this relation further, we have to insert the two solutions for 7.
In case of n = A+ N (Nyxo — 1) we find

S = (N — 1) € (222)
n
X, #Z
with the absolute value
Yo €] = Ny—1. (223)
n
X, £ 2Z

The number Ny-o — 1 on the right side is also the number of summands on the left side, since it is
a sum over all Ny indices of superfluid sites except one (X # Y'). Imagining the complex phases
exn as 2-dimensional arrows with length 1, the last condition means: A sum over arrows with length
1 has to have a length, which is the number of arrows. And the only solution is, that they all point in
the same direction, i.e.:

vx, = ¢ ¥n. (224)

So here we have found a state of our system with the same complex phase of 1x, = || e¥Xn = |1)| €!?
for each lattice site.
In case of n = A — N we find instead

D e = 0, (225)

meaning, that all complex phases in the unit cell have to cancel out. For two sites in the unit cell it
means, that there is a phase difference of 180° and for three sites, there is a phase difference of 120°.

10.3.2.5 Energy
The energy £ (201)) can not be simplified here, since it doesn’t contain 1, ¢°For ¢°F. But the

energy E™i* (203)

; V —
5mmNNNNUCSites 5-]\[ N,Q:l 1 (?SF (226)
contains the densities ?SF , which are all the same as derived before and we can insert it from (216]),
yielding

14 Jn+p—Vi

E™TNNyNNycsites = —N Ny—1N,
NNINUCsit o=14Vyp=£0 200 + Vi

5 (227)

where we have used

N
1 (ESF _ N't/);éOQSF )

So now we have an expression for the mixed part £ of the energy, where all remaining constants
are all defined by choosing a certain pattern or are already calculated before.
For the superfluid part of energy £9F (175)

1 —
ESF NynNucsites = *§?SF (JW +pl ) (228)
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we can also insert the density o5F | and find

1 (Jn+p—Vui) (Jn+p)
ESFNNNNycsites = —=N, . 229
NNINUCsit B P#0 2Jn+ Vs ( )

So adding up all energies £° (201), £™* (227) and £9F (229) yields the complete final energy & for
nx =nVX:

1%
& NNNNucsites = ENgzl (A4+ N (Ny=1 —1)) — Np—1pt (230)

v IJn+p—Viy
—N N,y—1Nyypg——— 231

TN Ne=1Nuro o5y, (231)
1 (Jn+p—Vuvi)(Jn+p)

——= . 232
g WF0 201+ Vs (232)

In this final expression which is valid for all S + SF¢" phases, the remaining constants are all defined
by choosing a certain pattern or are already calculated before, i.e. n was found in section [10.3.2.1]

10.3.2.6 Phase boundaries of second order

The second order phase transitions appear, when the formula for the particle density o°% leaves
its allowed interval 0 < ¢°F < 1. It has to be clipped at 0 and 1. Or in other words, when we
replace ¢°F by 0 or 1 for a phase of the class S + SF2" we find the phase boundary to the solid
phases, which are like S + SF¢" except, that the superfluid sites are replaced by solid sites, i.e.
o € {0,1}. E.g. for S99 + SF%" by replacing o°" — 1 we can find a phase transition to an
inhomogeneous solid, since the sites described by S stay the same and the other sites change at the
phase transition from the homogeneous superfluid SF¢" into a homogeneous solid with densities of
1 and the combination yields the inhomogeneous solid. For the phase transition we will symbolically
write (Sl + SFQ:h) > (51 + Sg:h), where S stand for the part, which is solid before the transition.
The simplest case is, that there is no S;. Then we have the transition from a density-homogeneous
superfluid to the empty of the full lattice: SFoh « §0h,

So the phase transition (51 + SFQ:h) & (51 + SQZO), which occurs, when the superfluid disappears

at the boundary, is described by

0= QSF — JNZZIN + Nll\llfN _;‘//NTVIN , (233)
2] - + V2

NN~ NnN

which yields the phase boundary

n 2! p
J—— =V - 234
NNN NNN NNN ( )

And the phase transition (51 + SFQ:h) > (51 + 59:1), which occurs, when the superfluid sites trans-
form to occupied solid sites at the boundary, is described by

n n v
JNNN + NnnN v

1= 0% - TN (235)
2JNNN + VNJ\?N
which leads to the phase boundary
] v+ H
—J—— = - —. 236
Nnw Nnyn Nan (236)

Since n and all other parameters are independent of J, u and V', we have found a linear function in

these variables, which appears in the phase diagram on the 1 A‘,LNN—%—plane as a straight line.
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10.3.3 Solids
Choosing ¥ x = 0 VX justified in yields the non-superfluid states. The matrixes N™* and N5F
have no entry and thus £° (201) is the only energy needed here

|4
ESNNNNUC’sites = 5 921[A+N(N9=1—1)]—Ng=1,u. (237)

Inserting N (197)) yields

Nucsites—1

£ =

v A+M(Ng:171) Ngzl u (238)
N, — )

2°°¢ NnNNucsites Nucsites NNn

The densities o5 = (01)y can be chosen arbitrarily € {0,1} for solid sites according to (144). Every
combination yields a certain N,—; and thus an energy. So all parameters are determined for a certain
pattern.

10.3.3.1 Important special case: adjacency matrix diagonal elements zero
Especially important will be the case A = 0, i.e. the diagonal elements of A are zero, and the energy
becomes

V[ Net(Npy—1) 1)] p [ Np-1 } (239)

ES = — —
2 NUCsites (NUCsites - NNN NUCsites

This energy expression describes all solid phases we will find later in the phase diagram.

10.3.4 Density-homogeneous superfluids

Choosing nx = n VX and ¥x = ¢ # 0 VX yields the pure superfluid states with homogeneous particle
density ¢ and homogeneous absolute value of the condensate density || as we have shown in section
10.3.2L Due to ¢y = 1 # 0 VX the matrixes N*° and A™* have no entry and thus £ ([229) is the
only energy needed here

£SF L Nyzo (Jn+p—Vui) (Jn+p)

_ 1 240
2-N'NN]VUC'sz'tes 2J77+VV2 ( )

Since all sites are chosen to be superfluid, g is never 1 due to WX|2 = ox (1 — px) and thus Ny— =0
and Ny—o = 0, which simplifies v; and v, as follows

UCsites —
Nyy — A
Vo = NNN—%N#):O:NNN. (242)
UCsites —

With these v1 and v and the number of superfluid sites Ny-o = Nycsites the energy simplifies further:

2
esr _ _L (JNZNJFNiN) (243)
) 2= +V

At last the parameter ﬁ has to be determined from (207)). Using Ny-o = Nycsites (all sites in the
unit cell are superfluid) and inserting N (197) we find

1— A

NnN NnN  Nucsites —

These two cases yield the following two density-homogeneous superfluids SFI%?OQ and SF 5&;00.
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10.3.4.1 Density- and phase-homogeneous superfluid
Choosing +— = 1 leads to the energy of the density- and phase-homogeneous superfluid SFQCZLOQ
NN pa:

2
. : 1 (J T )
oh | _ oSF oh _ NN
elsmiln] =€ [sEiy] = 5 v (245)
the corresponding particle density
J+ i
:h N,
o |SF| = G (246)
and the condensate density
(J+ £ )(J— £ +V)
[ [SEh | = Moo oo . (247)
: (2J4+V)
As derived before in section the complex phases of ¥x are all the same
px = ¢, (248)

i.e. the phase differences are always 0° and thus the ¥ x are completely the same, not just the absolute
value. In section we have already derived this solution using one site in the unit cell. So this is
a prove of concept. The complicated ansatz includes the homogeneous phase as a special case.

Since our Hamiltonian can be mapped to a spin-3 system (see e.g. Ref. [3]), we mention here, that
this solution corresponds to parallel spin components along the two-dimensional lattice plane.

10.3.4.2 Density-homogeneous and phase-inhomogeneous superfluid
A

I .
Choosing NZN = NﬁN — Nchﬁ 2 leads to the density-homogeneous superfluid SF 5&;00, which has

non-zero phase differences. We don’t explicitly insert n here, since the formulas become unnecessarily
unclear, but we list them here as a result for this phase.

n b\
| - | (Tt + W)

& [SFoly| = €57 |SFely Ry (249)

o|SFELy| = J;ﬁiz:ﬁ; (250)

ol [sFely] = Ut + ) (s~ e +7) (251)
v (2752 + V)

»oex =0 (252)
X

In the spin % this solution corresponds to as non-parallel as possible spin components along the two
dimensional lattice plane.

10.3.5 Density-inhomogeneous superfluids

We haven’t found a simple calculation method for the inhomogeneous pure superfluids SF2% of the
N, we use in this section. Just for a 3 x 3 matrix with A = 0 we have done the calculation with the
computer, since we need it for the triangular lattice.
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10.3.5.1 Special case: 3 sites in unit cell, adjacency matrix diagonal elements zero
Here the computer calculations show, that two of the three nx are always the same, e.g. n4 = np =:
NaB, i.e. we always find a honeycomb pattern in the triangular lattice. The equation (147)) yields

nanpne = naN®+npN? +ncN? +2N° (253)
via the determinant equation

det (N5 —3) = 0. (254)
Using this relation and 4 = ng =: nap the energy £5F, which is the only one, we need here, can be
expressed depending just on one 1y, e.g. nap. The next step is to set the first derivative of the energy
with respect to this one variable to zero. And again we do not investigate the second derivative (see
section [10.1). This way the computer can find four solutions. One is simply

na_ _ "B _ Mo
Nnyy  Nnn  Niawn

=1 (255)

describing the homogeneous superfluid with 0° phase differences, which we have already found in
section

The others are new solutions describing the inhomogeneous superfluids. As mentioned before the
formulas for the 7, ox and 1 x are too complicated to write them down here explicitly.

Later we want to find out, which phase appears in the ground state. This means, we will determine,
which phase has the lowest energy in which domain of J, p and V. Since the formulas are complicated
here, we have done this with a computer analysis, too. Not all branches of the solution for inhomoge-
neous superfluids appear in the ground state, so we will describe here just, what is important for the
ground state.

There are three separate regions in the domain of J, ; and V. One lies between the two inhomoge-
neous solids and the homogeneous superfluid in the %-ﬁ phase diagram for 0 < % . The density
distributions o4 = pp and g¢ in Fig. and change in 37*—-direction between 0 and 1 and

NN~
show a discontinuity at J\?NN = % So here we have found a phase transition of first order dividing
this region of the phase diagram into two phases. In the example of the triangular lattice the pattern
jumps from Fig. to Fig. The formulas for the densities have defined values also beyond
0 < px < 1, but since it is not physically allowed, we have to cut the functions there, i.e. they are
restricted to a certain domain of J, y and V. Cutting a density function due to 0 < pox < 1 always
means, we have found a transition of first order to a solid, in this case the two inhomogeneous solids.

These two phase boundaries can be expressed in the two simple formulas

J . ou \ p 1
2 — 4- 2
( v VNNN) Vaeny T TV (256)

and

J ? p p
2 _ 1) = 10 — _3. 2
( V. ViNaw ) Vaen T Ty ) 8 (257)

Both form ellipses on the - % ]\/;;\I pe -plane, but just a part of them appear in the phase diagram as phase

boundaries, since the energy of the corresponding phase has to be the lowest in comparison to all other
phases. At % = i the formulas for the densities have a non-vanishing imaginary part and thus have
no physical interpretation any more. So here a phase transition has to occur, which turns out to be
a discontinuous transition to the homogeneous superfluid. The |¢x| are directly connected to the ox

via the semicircle law |¢x | = ox (1 — ox) and thus reveal nothing new. The phase differences of the
1¥x are always 0° in these two phases independent of J, u or V', although the complete set of solutions
include phase differences varying with J, p or V, but they never appear in the ground state. After this
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1ih :ih
(a) SFEN, (b) SE&M,

Figure 26: Spatial distributions of inhomogeneous superfluids in the triangular lattice for positive
hopping. (a) close to the 1/3 filled solid, (b) close to the 2/3 filled solid.

:ih
(a) SF;deO“,lso"

Figure 27: Spatial distributions of inhomogeneous superfluids in the triangular lattice for negative
hopping. (a) between empty lattice and 1/3 filled solid, (b) between 2/3 filled solid and full lattice.
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i
VNyn

Figure 28: Densities of the inhomogeneous superfluid SFpg;ge for positive hopping illustrating the

discontinuous phase transition at WVHN_N = % and the continuous transitions to the inhomogeneous

solids. Red: two equal densities o4 = op, green: third density oo # 04,05, gray: density reached its
limits 0 < px < 1.

1.0

0.8

0.6

0x

0.4

0.2

0.0 \

-0.5 0.0 0.5 1.0 1.5

K

Figure 29: Densities of the inhomogeneous superfluid SF;’(ZSQ for positive hopping at % = 0.2 (color
according to section 0.1).
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0.0
e ~05
VNun

Figure 30: Densities of the inhomogeneous superfluid SF]féfg°7180° for negative hopping illustrating
the continuous transitions to the solids. Red: two equal densities o4 = op, green: third density
oc # 04, 0B, gray: density reached its limits 0 < px < 1.
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Figure 31: Densities of the inhomogeneous superfluid SF;f;gamm for negative hopping at % =-04

(color according to section 0.1).
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analysis the previous two phases should be called inhomogeneous superfluids with phase differences of
0°, hence the symbol SFIfczgo.

The other two phases are located in the phase diagram at 7] < 0 between the homogeneous solids,
the nearest inhomogeneous solid and a homogeneous superfluid with phase differences of 120°, which
we will completely describe in chapter [[2 We just mention it here to describe all phase boundaries.

Again in these two phases the formulas for the density leave the allowed values 0 < px < 1, see
Fig. (30) and ), which gives us directly the second order phase transitions for these inhomogeneous
superfluids to the corresponding solids. Again these phase boundaries can be expressed in two simple
formulas, but they are the same as before, see and (257). Just a different part of these two
ellipses appear in the phase diagram.

The density oc changes in A’,LNN—direction between 0 and 1, whereas the densities p4 = op just
change a little bit and come back to their previous value at the transition to the solid, see Fig.
and And again the |1 x| yield nothing new. For the triangular lattice the spatial distributions are
shown in Fig. [27a] and 27D]

As mentioned before varying phase differences appear in the complete solution set, but also in the
phases, that appear for % < 0 in the ground state, the complex phase of the 1 x is not changing with
J, por V. In these states it is 0° or 180°. So this phase should be called inhomogeneous superfluids
with phase differences of 0° and 180°, hence the symbol SF}f;ge’lgoo.
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11 Non-frustrated lattices

Within the mean-field approximation several different lattices lead to the same phase diagram, when
1 is taken in units of the number of next neighbors Ny, i.e. ﬁ Or in other words they only differ
in a scaling of the p-axis.

One class of lattices are the non frustrated ones, i.e. they allow a pattern with alternating properties
for the next neighbor sites. These patterns with two sites in the unit cell are in the mean-field
approximation all described by the normalized matrix

N
2 (0 ) (258)
Nnw Lo
since it expresses, that the next neighbors are all of the other type. It can be used for a 1D lattice
(Nnyn = 2), quadratic lattice (Nyx = 4), cubic lattice (Nyx = 6) or honeycomb lattice (Nyy = 3),

since all of them allow an alternating pattern. This is a special case of (193 so we can use all results
from section [10.3] The alternating pattern is then determined by

A=0 |, N = Nyn (259)
and the size of the matrix
NUCsites = 2. (260)

There are other patterns, which have to be considered at first, like e.g. a stripe pattern on the
quadratic lattice described by
2 2
N = ( 5 o ) , (261)

which means
A=2 | N =2 (262)
and again
Nucsites = 2 (263)

or a 3 site pattern on the 1D lattice described by

0 1 1
N = 1 01 (264)
1 1 0
with
A=0 |, N=1 (265)
and
NUCsites = 3. (266)

These patterns are all included in the calculation method and results of section [I0.3] so we can simply
calculate all relevant properties and find out, whether these patterns occur in the ground state. It
turns out, that they don’t. Just the alternating pattern is relevant for the non-frustrated lattices, so
we just describe this pattern in the following sections.

Furthermore, we have not found a mixture S+ SEF2" an inhomogeneous superfluid SF2" or more
complicated phases in the ground state, so we will not mention them any more in the following. We
just describe the phases, which appear in the ground state.
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11.1 Phases
11.1.1 Solids
For pure solids, we need the energy £° [S] (239) for A = 0 and Nycsites = 2

1 1 I
s
5 [S] = 5 [S] = Z o=1 (NQ:l - 1) V - §N221m . (267)
Since we have two sites in the unit cell, N,—; can be chosen
N,=1 € {0,1,2} (268)

yielding all properties of all solid phases

’ phase \ No=1 \ 04 \ 0B \ YA =Yg \ & [phase] \ domain of J,u,V

5e0 0 JoJo 0

. 0 [1

:01 1 p
Se 1 0 0 BERETS R
Set 2 11 T - N

As mentioned before these results are valid for different lattices. E.g. the S9! appears in the 1D
lattice simply as a 1D alternating pattern, in the quadratic lattice as the checkerboard pattern and
in a cubic lattice as the 3D version of a checkerboard. The other phases are simply the homogeneous
distribution of empty or occupied sites, respectively.

11.1.2 Density- and phase-homogeneous superfluid

For the homogeneous superfluid with 0° phase differences the results were already determined in section

[L0.2.2 and [10.3.4.1| by the equations (245)), (246|) and (247) yielding

£ [SFQ:" } = _ELNNN)Q (269)
pd:0° 2 2J+V
J+ 5
— 2
¢ 27 +V (270)

(271)

with the equal phases
YA = ¥B- (272)

11.1.3 Density-homogeneous and phase-inhomogeneous superfluid

The density-homogeneous and phase-inhomogeneous superfluid is basically the result from section
0343 Using

A= 0 ) NUCsites =2 (273)
A 1— _A

2 = - Now = ] (274)

NnN NnN  Nucsites — 1




11.2 Phase boundaries

for the alternating pattern the equations (249)), (250 and (251) yield

€ [SFpQ:i}:lwm} =

(-7 + 57 (

—J—FL
—2J4+V

NnN

—J—LJFV)

W =

(—2J +V)?

And the condition (252)) leads directly to phase differences of 180°

etvra

YA —¥YB =

— ,eW’B

180°.

63

(275)

(276)

(277)

(278)
(279)

So here we have found a density-homogeneous and phase-alternating superfluid. The alternating
phases can just appear here, since the alternating pattern is per definition geometrically allowed in
non-frustrated lattices.

11.1.4 Summary

In order to have an overview over all properties of the phases, we summarize them in the following
table including the condition 0 < px < 1, which restricts J,u and V to a certain domain. We use the
abbreviations “p.d.” for “phase differences” and “n.d.” for "not defined”.

phase ‘ 04 ‘ 0B ‘ lwal> = [vs|° ‘ p.d. ‘ & [phase] ‘ domain of J,u,V
o0 0 0
. 0] 1 )
Se:01 i 5 0 n.d. — I Nn R
Sot 1 7 - N
:h J+ x5 (“H'N“ )(J_Nu +V) o I(J"FN“ J+ -
SFpgd:0° 2TV NZ\ZQJ+V)2NN 0 2 20741:&1/V U< v =1
h — T4 (7J+NN )(7J7Nu +V) . 1(7‘]+N“ By S
SFpgd:wo“ =P éV—Q,]-i,-V)Z = 180" | —3 72Jf\1/V 0s —5v =1
11.2 Phase boundaries
11.2.1 Continuous transitions
The second order transitions are all included in ([234))
U Z 1
J— = - — 280
NNN NNN NNN ( )
and (236))
IO % 2 ST (251)

NyN

Nnn

Nyn -
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Since we don’t have S 4+ SF mixed phases and thus N,—; = 0 and Ny—o = 0 for the superfluid states,

v1 in (214) and vy in (215) become simply

NNN —A
- WL N, =0 282
= Nucsites — 1 et ( )
Nyy — A
vs = Nyy—————— Ny—o=Nyn (283)

n 1Y
. 284
Nnn Nnn (284)
and
n 1%
- = V= e 285
Nnn Nnn (285)

Now we just have to insert ﬁ for the two superfluid phases yielding four phase boundaries between
a superfluid and a solid respectively.

’ NLN ‘ SF state ‘ solid state | transition line
o:h ge? J=- NM
1 Sde:0° ngl —_J=V — L
o JH
:h S Y = " Nux
-1 SF;?d:lSO“ GoT J=V —Ni‘LN
Nyn

11.2.2 Discontinuous transitions

The first-order transitions occur between the two superfluid states and the inhomogeneous solid. Since
this happens, when the energies are the same, we set the energies of the superfluid states equal to the
energy of the inhomogeneous solid to find the phase boundaries. Both yield the same result

elsFaly] =€5e™ . £[SFale] = €[5 (286)
\ (287)
J\? [ 1\° 1\?
R R = — 2
(V) " (VNNN 2> (2> ’ (288)
which describes a circle in the %- V]\tvLNN phase diagram. Its center lies at (%7 V]\'L[LNN) = (07 %) and

the radius is 1. In the ground state the phase boundaries to SFpQ(ZLOc and SF;)d:{llsoe occur for 0 < %

and VI < 0, respectively. So in summery all first-order transitions for the non-frustrated lattices are

’ N ‘ SF state ‘ solid state ‘ transition line
NN
A 2 2 2
1| sEEh | g | @)+ () =) 0<d
] 2 2 2
1| SEEh )+ (vt —3) =) ¥ <




11.3 Phase diagram 65

11.3 Phase diagram

Finally, the formulas for the phase boundaries enable us to plot the phase diagram for positive and
negative hopping on non-frustrated lattices, see Fig. and which was one of the two major goals
of this thesis. The other one is the phase diagram for frustrated lattices, which we will find in the
next chapter. One example of non-frustrated lattices is the quadratic one. The spatial distributions
of the particle density and the condensate density in this case are illustrated in Fig. [34] and [35 using
the visualization method of section [0.11

For positive hopping our obtained phase diagram is the same as in [2| 4]. So our general calculation
method works for the well-known phases. The new phase appearing at negative hopping in the non-
frustrated lattices is the alternating superfluid SFpglelsoo.
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Figure 32: The final phase diagram for non-frustrated lattices. Grayscales: solid phases, colored:
superfluid phases. Light gray: S%°, medium gray: S°', dark gray: S%'. Green: SFfooo, red:
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Figure 33: Phase boundaries for the non-frustrated lattices. Green dotted: continuous transition
(second order transition), red solid: discontinuous transition (first order transition).
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(a) SQ:O (b) SQ:OI (C) Sg:l

Figure 34: Spatial distributions of solids in the quadratic lattice for positive and negative hopping.
(a) empty lattice, (b) checkerboard solid (alternating occupation numbers), (c) full lattice.
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Figure 35: Spatial distribution of the only superfluid in the quadratic lattice for positive hopping. (a)
homogeneous superfluid with 0° phase differences.

:h
(a) SFde:ISO"

Figure 36: Spatial distribution of the only superfluid in the quadratic lattice for negative hopping.
(a) density-homogeneous superfluid with 180° phase differences (alternating phases).
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12 Frustrated lattices

In frustrated lattices an alternating pattern is per definition geometrically not possible, i.e. patterns
with this symmetry can not appear in the ground state. These forbidden states are the half filled
solid S9°! and the alternating homogeneous superfluid SFPQZLBOO (see chapter . Since they are not
allowed in this case, the question is, what patterns have the lowest energy now. The pattern described

by

N

NyN

(289)

= ONj—
(@) NI

N[=ol= O

is geometrically allowed on the triangular lattice (Nyn = 6) and the kagome lattice (Nyy = 4). As
a special case of (193] the adjacency matrix (289) is determined by

1
A=0 |, N:§NNN (290)
and the matrix size
NUCsites = 3. (291)

Beyond the patterns described by this adjacency matrix, we have not found any other relevant one for
positive or negative hopping. Another pattern we tested for the triangular lattice is a stripe pattern

described by
2 4
N = (4 2) , (292)

which means

N=4 (293)

NUCsites = 2. (294)

This pattern is also included in the calculation method and results of section [10.3] but doesn’t appear
in the ground state. So the further calculations describe just patterns included in ([289)).

12.1 Phases
12.1.1 Solids

As in the case of the non-frustrated lattice, we can use eq. (239) for the solid phases inserting A = 0
and NUCsites =3

I

1 Vo1
E[S]=E°[S] = —Npmi(Ngm1—1) = = 2 N1 —— . 295
S)= 58] = GNomt (Noma = 1) 5 = 5 Nomi o (295)
Since we have three sites in the unit cell, Ny—; can be chosen as
Nop—1 € {0,1,2,3}, (296)

yielding all properties of all solid phases:
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] phase \ No—1 \ 0A \ 0B \ oc \ ha =vp = Yo \ & [phase] \ domain of J,u,V ‘

50 0 0 0
0 0 1
: 1
Se 001 1 3-) (1) 8 -3 NI/»\’;N
1 1 0 0 R
s |2 [TT0 [ LY -t
1
: Vv
Set 3 1 T - N

So here we have found four solids, the homogeneous solids, empty lattice S2° and full lattice S9!,
and the two inhomogeneous solids, the 1/3 filled solid S¢%°! and the 2/3 solid S¢:1L.

12.1.2 Density- and phase-homogeneous superfluid

As mentioned before, the formulas in sections|[10.2.2|and[10.3.4.1|for the density- and phase-homogeneous
superfluid are the same for all lattices, i.e. (245)), (246)), and (247)

< {SF@:hQ} _ _ELNNNY (297)
pd:0 2 274V
J+
= Z_Nuwy 208
¢ 27 +V (298)

WP = (JJ”&N(Q)J(i;;_%), (299)

YA = ¢B=¥C- (300)

The only difference between two different lattices can be the number of next neighbors Ny, which
corresponds to a scaling of the p axis.

12.1.3 Density-homogeneous and phase-inhomogeneous superfluid

The density-homogeneous superfluid with phase differences unequal 0° is more interesting, since it dif-

fers from the corresponding phase in the non-frustrated lattices. Here NZN is not —1, which influences

the J-dependence in a way, that we don’t get an energy, that is simply the energy of S F;fg}flo° mirrored
in J-direction. This is the reason, why the phase diagram will not be symmetric to the ﬁ—axis.
Using

A=0 ) NUCsites =3 (301)
A

n _ A _ 1- NN~ _ _1 (302)

NnN NnnN  Nucsites — 1 27

we determine the properties of this phase by the formulas (249), (250), and (251))

1 (-3 + %)2
e|srhar] = v (509
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vy ST
2 NN~
= = ONN 304
¢ TtV (304)

> = <_§J+sz)j;ijv_NgN> . (305)

And the condition 252]
€A 4 eiPP felve = 0 (306)
can just be fulfilled by phase differences of 120°.

12.1.4 Solids coexisting with density-homogeneous superfluids

The next interesting phases are combinations of solid sites and superfluid sites. The mathematical
reason, why this is possible, is that the 3 x 3 matrix

N 03 ¢
- |10l (307)
Nyn i1}
2 2
can be divided into the matrixes
NS
= 0 308
NnN (0) (308)
Nmiz L L
Ny — (2 2) (309)
NSF 1
= (V2 (310)
NyN 5 0
by the ansatz, that one gx is € {0, 1}, i.e. it describes a solid site. The others are chosen to be superfluid
in this ansatz. The only entry in % is 0. But this does not mean, that there are no solutions. It just
means, that there is no connection between solid sites, which could have an influence on the energy.

Nmim
Ny~

0 and thus have an effect on the energy. And finally the matrix %Tsfy describes connections between
superfluid sites. The entries are not all 0 and thus a delocalization via the corresponding lattice sites
is possible within this ansatz. In the example of the triangular lattice this disassembly of the matrix
divides the triangular spatial symmetry into a superfluid honeycomb part and a part for solid sites in
the middle of the honeycomb hexagons.

The important formulas for the mixture of a density-homogeneous superfluid and a solid have been
derived in section Two different n occur for these phases. Using

The matrix describes the connections between solid and superfluid sites and the entries are not

A= 07 Nﬂ):O = ]-7 Nucsites = 3 (311)

and (|197) and inserting it into the expressions for 7 in (207)) yields

n 11
e o =4 12
L e { 2,2} (312)
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according to (

o)) the negative n corresponds to 180°,

71

since both solutions fulfill the matrix equation

According to ([224]) the positive 7 corresponds to a phase with 0° phase differences in the superfluid and

(147)

,(/}SF
> ( wSF

7N
V= O
O NI=

ei‘PXI ) n (
7 = N
e'PXa NNN

wS’F
wS’F

eiwxl
ei(t@Xz

0 % elPxy B :I:l elPxy
% 0 eirxa - 2\ elvxe

Since we have a S 4+ SF mixed phase, we have to use the complete energy formula (232)

E[SFeh+ 8] = &9 [SFo" + 8] + &M [SFeM + 8] + £5F [SFoh + §]
with the respective energy contributions
S o:h 14
E% [SF¥" + S| NunNucsites = 5N9:1 (A+ N (No=1 —1)) = Np=1pt,
; . 1% IJn+upu—Vi
EMiT [SFMh + S| NynNucsites = =N NpmiNypo e
[ + ] NNLVUCsites 2 0=14V)=£0 2J77 n VVQ
- L(Jn+p=Vu)(In+p)
gSF SFQ'h S| N Nucsites = —2 :
[ + ] NNNUCsit B 201 + Vi
And using
AZO& N:%NNNv Nycsites = 3
Na/):O = 1, Nw;ﬁo =2
1
o= NNNo=1
S NnN
g 2
yields
. 1V N,—
S :h o=1 1%
Fe = —— Nymy (Npmy — 1) — —/——
€ [S + S] 6 2 o=1 ( o=1 ) 3 NNN ’
1
Smiw [SFg:h +S] _ EK 71JN17\],N + Nll:;N - §VNQ:1
3277 2J 5=+ 5V
NN

1
1 (s + s~ 3VNe) (T + i)

gSF [SF‘Q}L—FS] _

3 14
Now we can insert NZN € {f%, %} by expressing it as ﬁ = :I:%
Al [SFQ:h +8] = é% No=1 (No=1 — 1) — N§:1 ﬁ ,
gmic [SFeh 4 5] = 1V QZIi%J—Fﬁ:%VNg:l 7
32 +J+ 3V

el [sFeh 1+ 5] =

1 1 1
1(i§J4-N%;-§VA@ﬂ)(i§J4-N%;)

3

+J+ 3V

(313)

(314)

(315)

(316)
(317)

(318)

(319)

(320)

(321)

(322)

(323)

(324)

(325)

(326)
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And in the last step we use
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NQ:1 € {07 ]-} ) (327)
which leads to the final energy expressions for four phases
£% [phase]
phase N | No= +E™ [phase]
phase]
2
Sngh + o0 0 NNN)
pd:0° J+%V
1 £
SFeh . 4 gel 2 1 1y
pd:0 + erV%V
(e ) (1)
3 +iv .
:h . +x5
SF;fd;180° + g0 0 — 7‘”]\;;\[)
1 :Ll‘
. ) NN
Sinileso" +set ’ 1 41 Ny 2V
3 —J+iv
| (S40+ V) (-7t vy
~3 Tiv
For the density ¢°F" we need the formula (216
7 2 v
QSF JNNN + Nyn Ve (328)
n
2JNNN + VNNN
and for ¢ the formula (218)
n M _ v M v1+v
= (Vs + v V) (Ul — e HVRE2) (329)
(2JK£E—+‘/4&L
All parameters are already determined by now
1
v 1
NNlN = 5N (331)
%] 1
Now 2 (332)
and so we find
1 1
SF ii‘]"" NfiN - §VNg:1
Y i (333)
+J+35V
(57 + e = 3VNpr) (357 — 25 +V (ENpm + 1))
s = A LA : (334)

(+J +1v)?

So now we can express the final densities of the following four phases



12.2 Phase boundaries 73

phase ‘ Nom ‘ Nyt ‘ o°F domain of J,u,V
K 1J+ 2] lJJ’,L
oh 0:0 27T NN 2 TNNN
Sde:OQ—&-S % 0 JTIV 0< TV <1
K LAy ST LR Vg LAy ST A i i
o:h o:l 2 TNy T2 2 T NNy 27
Sde;o°+S 1 J+iv 0< J+3V <1
. R Ay 3 [ Ny
o:h 0:0 2 NNN 2 NNN
SFE,is0e TS - 0 LV 0< —J+1V <1
) Ry U — 7 I E IV
o:h o:1 _ 2" TNyN 27 2° T NNy 2
SF,q1s00 T 5 1 “I+1v 0< iV <1
as well as the condensate densities
z B
phase ‘ N ‘ No=1 ‘ |1/JSF| ‘ domain of J,u,V
1 © 17___u 1 1 w
SFQ:he—l—S‘Q:O 0 (2J+NNN><2J NNN+2V) 0< 2J+NNN <1
pd:0 % (J+%V)2 = J+iv =
1 w1 1, _» 1 w1
SFg:ha—l—SQ:l 1 (2J+NNN QV)(QJ NNN+V) 0< R Al <1
pd:0 (J-Q—%V)z — .]+%V —
_1 i 15w 1 1 A
SE%M e + 590 1 0 Ciremz)( QJQNNN+2V) 0< 2N <
pd:180 -3 (—J—&-%V) - —J+3V =
_1 w1 _15__n _1 w1
SFQih + SQ:I 1 ( 2J+NNN 2V)( 2/ NN N +V) 0< 2J+NNN 3V <1
pd:180° (,J+%V)2 - —J+iv =

Although the energies for these four states can be calculated, the two SF]f(:ifL0° + S phases will not
appear in the ground state, because other energies are lower for the whole phase diagram, as we will see
later. So we will just find the SF ;;Q(:i;hwo" + S phases with alternating phases in the superfluid part. For
the triangular lattice this is an alternating honeycomb superfluid with an empty site or one localized
boson in the center of the honeycomb hexagons.

12.1.5 Density-inhomogeneous superfluids

The other interesting class of phases are those with 3X,Y nx # ny yielding 3X,Y o3 # oyf and
X, Y Wf{F’ #* W%}F‘. This means, that we can’t use the simplifications of section any more.
As already described in section we have used a computer to find the solutions for the ground
state, including particle densities 04 = op and o, condensate densities ¥4 = ¥p and Yo as well as
phase boundaries. But only the functions determining the phase boundaries have a simple form. The
other values can not be written down here explicitly.

12.1.6 Summary

In order to have an overview over all properties of the phases, we summarize them in table [1| not
including the domain of J,u,V due to the lack of space, but it is not necessary, since it is always
determined by the condition 0 < px < 1.

12.2 Phase boundaries
12.2.1 Continuous transitions

The second-order phase transitions for density-homogeneous phases, i.e. nx = 7, are all included in
(1234)

(335)
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2 ) )
phase | oa=08 | oc] [Yal” = [¢5] | el || ¢ vca | vas | & [phase]
50 0 0
rm.m:ccH 0 1 — I @
- 0 0 n.d. n.d. 3 N
01T TV 32
%mmé 1 0 3 W — M\w/\t .
5 ! 2 Ny
2
gpeh It (k) (U+V—wi) o | (Twky)
pd:0° 2J+V (2J+V)? T2 2J+V
2
%mﬂéu? —3J+ N AIW,N+2%WZVAIW.~+<I ZMZV 120° 1 Alw.r. ZMZV
pd:120° IV (—J+V)? 2 —J+V
mm%mw n.s. n.s. n.s. n.s. 0° n.s.
mm‘%&&w 180° n.s. n.s. n.s. n.s. 180° 0° n.s.
1 : 1 u 1 o1 1 w2
o:h :0 —3Jty AIM,I.Z VAImkIZ +m<v HAIN&.TZ v
mm‘ﬁ&;moc + ym:m i D >:N|.N+W<vm AN D 5.&. H%Oo ‘W%
_1I _p
o o1 || T3t wEE o3V (27w —3V) (47— whs+V) . ANy,
@@u@&“wmoc + S \rTWWZA\ 1 A\prywﬂ\vm 0 n.d. 180 +WW 3 \.NWWZA\ 2
_1 AIW,~+ Nan Iw<v Alw&.__. ZMZV
3 —J+iv

Table 1: Summary for all phases in the frustrated lattices, pxy is the complex phase difference between lattice site X and Y. “n.d.”: “not
defined” (complex phase not defined due to a zero absolute value), “n.s.”: “not simple” (no simple formula found).
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and (236])

1 =+ Vo
Nyn

o

b
Nnn

Sy - (336)

Nnw

which are the same formulas, we used for the non-frustrated lattices. But now we also have S + SF

mixed phases, so that v in (214) and v, in (215

1
vV = §NNN NQ:1 (337)
1
Vo = NNN (1 - 5 N¢_0> (338)

have different values for different states. This yields the following transition lines

’ Ny=o ‘ No=1 ‘ Nox ‘ T | Mo ‘ SF state ‘ solid state ‘ transition line
0:0 = —
1 Sngho S - J = NNN
0 0 0 | 1 ! Shi I =V-ma
1 o:h SQ:O J = - NM
2 Sde 120° Sg:l N I
0:0 e not in ground st]\:;te
0 0 SEZ! pd:1s0° TS GotOTT T7=1
1 _% % 00T 2 — 2 I
: Se —sJ =35V — F—
1 1 SFM 4 geil 2 2 Ny
2 pd:180° T St not in ground state

For the inhomogeneous superfluids (3X,Y nx # ny) there are also continuous transitions to solid
phases. We have found them with the help of a computer as described in section [10.3.5] In summary
the phase boundaries are

’ phase \ phase transition line ‘
2
:001 o
SFQ:ih SQ (2 + VNNN> - V]\A/NN ( VNNN)
pd:0° P Z
:011 _
500U | (29 — e +1) = g (10— 7o) - 3
:0 T _ N
Se —%J = —va
o:th :001 J
Sdeo 180° Se (ZV + V]\I;LNN> V]\ATLNN ( VNNN)
2z
:011 J _
$e01 | (24 — e +1) = s (10— 7o) -3
SeoT %J =V - £
N

12.2.2 Discontinuous transitions

The discontinuous phases were again determined by setting the energies equal or by computer calcu-
lation, see section [10.3.5|for the transitions of SFPQ(;SO. The resulting transition lines are
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phase phase transition line ‘
P)
: J _
o peh Ge:001 (_3V — v )z = VN (6 - SVJ#NN)
d:0° . " o
» geotl (73% + s - 1) — (10 . 87V;NN) P
SFpio: T_1
1th
oth SF a0 150° (_E’Oth) J X
SFpasizo- S + SFyiisoe V=2
S0 SFE 0
: :h : h
s¢ 0 + SszidL:180° S¢ ' + SFI?d:18O° V]\/{L _ %
SFyo- (within the phase) NN

A special case is the discontinuity within SFI%QO (see section [10.3.5). This could be a reason to
define different symbols for the two parts and call them different phases, but it seems to be overdone,
so we don’t do it.

12.3 Phase diagram

With these formulas for the phase boundaries, we can now visualize the phase diagram for positive
and negative hopping in Fig. and which was the second major goal of this thesis. One example
of the frustrated lattices is the triangular one. The spatial distributions of the particle density and the
condensate density are illustrated in Figs. , , , and using the visualization method of
section [0.11

For positive hopping our obtained phase diagram is the same as in [3]. So our general calculation
method also works for the inhomogeneous superfluid. The new phases appearing at negative hopping
in the frustrated lattices consist of a whole variety phases, whereas the non-frustrated lattices offer just
one new. We have found a density-homogeneous superfluid with 120° phase differences, inhomogeneous
superfluids with 0° and 180° phase differences at the same time as well as solids coexisting with density-
homogeneous superfluids. The latter one comes closest to the supersolid phase in helium [9] T0] and
thus a similar configuration, i.e. small negative hopping relative to the next neighbor interaction, could
possibly serve as a quantum simulator for helium.

Numerical results were found for positive hopping in the triangular lattice in [22] via the CMF-10
method and in [§] via Monte Carlo simulations. Figure shows these two numerical results for the
phase diagram overlayed with ours. In both numerical calculations the regions in the phase diagram for
the inhomogeneous solids are smaller than in our results, which could be caused by the inaccuracy of the
mean-field approximation due to neclegted quantum fluctuations or it could be systematic problems of
the numerical methods, e.g. due to the finite lattice size in a simulation. The discontinuous transition
within the inhomogeneous superfluid at A’,‘NN = % was also found in [22], without any recognizable
difference to our result. As mentioned before, extending the Monte Carlo simulations to negative
hopping is a major problem, but in the mean-field approach there is no such problem. The difficulties
of the calculations are almost the same for both positive and negative hopping, which is especially
regarding the inhomogeneous superfluid.




12.3 Phase diagram 7

K
VN~ 0.5

o
o

0.5 1.0

-1.0 -0.5

<~

Figure 37: The final phase diagram for frustrated lattices. Grayscales: solid phases, colored: superfluid
or mixed phases. Lightest gray: S0, medium light gray: SQ:QM, medium dark gray: S, dark gray:
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Figure 38: Phase boundaries for the frustrated lattices. Green dotted: continuous transition (second
order transition), red solid: discontinuous transition (first order transition).
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(a) SQ:O (b) SQ:OOI

Figure 39: Spatial distributions of solids in the triangular lattice for positive and negative hopping.
(a) empty lattice, (b) 1/3 filled solid, honeycomb empty sites, (c) 2/3 filled solid, honeycomb occupied
sites, (d) full lattice.

| | X
| | )
| | )
| | )
| | )
| | )
sssssssnsssss \ d
(a) SFE),. (b) SEZ0.

Figure 40: Spatial distributions of superfluids in the triangular lattice for positive hopping. (a)
homogeneous superfluid, (b) inhomogeneous superfluid close to the 1/3 filled solid, (¢) inhomogeneous
superfluid close to the 2/3 filled solid.

(a) SFE 50 (b) SE&) g0 + SE (c) SFE oo + 5S¢0
Figure 41: Spatial distributions of phases with density-homogeneous superfluids in the triangular
lattice for negative hopping. (a) superfluid with 120° phase differences, (b) alternating honeycomb
superfluid and occupied solid sites, (c) alternating honeycomb superfluid and empty sites.
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Figure 42: Spatial distributions of inhomogeneous superfluids in the triangular lattice for negative
hopping. (a) between empty lattice and 1/3 filled lattice, (b) between 2/3 filled lattice and full
lattice.
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<f=

(a) CMF-10

(b) Monte Carlo

Figure 43: Phase diagram for the triangular lattice (Nyy = 6) for positive hopping from (a) a CMF-10
calculation [22] and (b) a Monte Carlo simulation [§] both overlayed with our results. “empty”, lightest
gray: S0, “1/3 solid”, medium light gray: 59:001_, “2/8 solid”, medium dark gray: Se°N. “full”, dark
gray: S, “SF”, green: SFIfCZLOo, “SS”, blue: SFI%Q“ “SF” in (b) belongs to the SF;’(ZLOO phase from the
Monte Carlo calculation, not to the blue SF;’:ZSZ region from our results.
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13 Summary

In this thesis we developed a general calculation approach for periodic patterns within the mean-field
approximation for hard-core dipolar bosons in optical lattices. Within this method we derived the
particle densities and the condensate wave functions at the respective sites in the unit cell as well as
the energies for all phases occurring for both positive and negative hopping. Most of the obtained
expressions had a simple form except those for the inhomogeneous superfluids, where the analytically
derived expressions had to be evaluated with the help of a computer due to their complex form . These
results lead to the complete phase diagrams of non-frustrated and frustrated lattices for both positive
and negative hopping in Figs. and Figs. respectively.

A major step was finding a general formula for the energies depending on the mean-field
parameters, which can easily be proven for one and two sites in the unit cell, and which we have
proven for three sites with the help of a computer. For more complex patterns it should be possible
to prove it with a computer, too.

Finding the mean-field parameters turned out to lead to some equations, see section |8.3.5] involving
the new variables nx := % (I100), describing the relation between the condensate wave function 1 x
of a lattice site and the sum over the next neighboring 1 x denoted by ¥x. This relation turned out to
yield a real valued nx and so the phase difference to the sum over the next neighboring ¥y is always
0° or 180° yielding the sign of nx. In all results for both the non-frustrated and frustrated lattices the
180° phase difference occurs just for negative hopping in the ground state. We haven’t proven it, but
it could be a general principle. Definitely related to this is the observation that nx always occurs as
a prefactor of J.

The definition of the nx lead to the matrix equation , which becomes an eigenvalue equation
for nx = 1 VX being valid for a lot of phases, see section This is simplifying the mathematics
significantly and especially for the quite general class of patterns, we investigated in section [10.3] it
is including all patterns with nx = n VX, which we needed later. Furthermore, the equations can be
simplified to equations without matrix operations, which is a major advantage.

In the other cases, i.e. 3X,Y nx # ny, see section [10.3.5 we determined our results analytically,
but with the help of a computer, yielding the inhomogeneous superfluids. Therefore, the derived energy
E9F in , which depends just on the parameters nx, was combined with the determinant equation
and setting two nx equal, which is justified by a computer calculation, where we have used all
nx without this simplification. Extremizing with respect to the remaining nx was yielding all results
for the inhomogeneous superfluids, which could not be expressed in a simple formula.

Another result, which is also from the general calculations, is the semi-circle law . It is valid
for all lattice sites independently. One consequence of it is, that there is no delocalization at a lattice
site, when the density is 0 or 1, i.e. px € {0,1} implies ¥x = 0.

The total system energy (171 was divided into one energy concerning the solid sites , one
concerning superfluid sites nd one concerning the influences between solid and superfluid sites
(I77). The sum of them yields the complete energy and for the phases with just solid or just
superfluid sites, just one of these energies have to be used, which is also a major advantage within the
general derivations.

For the homogeneous pattern and the other class of patterns from section described by the
adjacency matrix we have derived formulas, which are almost the final formulas for the special
cases. Just a few constants have to be inserted, which are determined by considering a certain special
case. This means, we have described a whole class of patterns almost completely, hence it could at
least partially be applied to lattices we have not investigated in this thesis. E.g. the description of the
homogeneous superfluid with 0° phase differences, see section which was already derived in section
just depends on the number of next neighbors Ny scaling the ﬁ—axis, but can within our
approximations be applied to every lattice not directly dependent on the lattice geometry or number
of dimensions, which is an important result due to its generality. One other example is, that for large
negative hopping the complex phases of the 1x are at their maximum. For the non-frustrated lattices
this yields phase differences of 180°, see section [I1.1.3] and for the frustrated lattices 120°, see section
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To obtain the phase diagram, we compared all energies occurring for a certain pattern and de-
termined the phase with the lowest energy for the different experimental conditions, which the phase
diagram is representing. This lead to simple formulas for all phase boundaries of both kinds of con-
sidered lattices.

We have found the phase diagram for non-frustrated lattices shown in Figs. and or in
other words for lattices, which geometrically allow an alternating pattern. This phase diagram is not
directly restricted to a certain lattice geometry or number of dimensions. It is just restricted to the
“not frustrated” property. E.g. a 1D, a quadratic, a cubic or a honeycomb lattice fulfill this condition
and, thus, they have the same phase diagram within our approximations. The only difference would
be a scaling of the {;-axis by the factor Ny, but we got rid of this factor by expressing everything

in terms of ¢7*— in the phase diagram.

The phase boundaries of the non-frustrated lattices are mirror symmetrical to % = 0. The difference
between positive and negative hopping are the phase differences in the superfluid, which are 0° for
positive hopping and 180° for negative hopping corresponding to a positive and negative 7, respectively,
as mentioned before. The phase boundaries between the superfluid phases and the inhomogeneous solid
simply form an ellipse or a circle in the right scaling of axes.

The phase boundaries of the frustrated lattices shown in Figs. [37)and [38]are not mirror symmetrical
to % = 0. For positive hopping we have reproduced all phases and phase boundaries already determined
in Ref. [3]. The most interesting phase, the inhomogeneous superfluid between the inhomogeneous
solids and the homogeneous superfluid, always has 0° phase differences and consists of two parts divided
by a discontinuity, i.e. a first order transition, at A’,‘N — = % For negative hopping we have found an
interesting variety of phases, which are a density-homogeneous superfluid with 120° phase differences,
two inhomogeneous superfluids with 180° phase differences and a mixture of sites with localized bosons
and other sites with superfluid bosons, hence a solid-superfluid mixture with 180° phase differences in
the superfluid. This mixture is, what comes closest to the supersolid phase of helium [9, [11], and may
be a hint or even a foundation to understand, how to construct and configure quantum simulators for
helium in the supersolid phase.

In summary the general mean-field calculation, we developed, was successful. Especially the vari-
ables nx := ‘I’—j; express important properties of the phases and have an important role in the math-
ematical description. Furthermore, we determined the well-known results for positive hopping as well
as a variety of interesting phases for negative hopping including inhomogeneous superfluids and solids
coexisting with superfluids.

14 Outlook

This thesis is based on the idea to find the phase diagrams for negative hopping due to the sign
problem using Monte Carlo simulations [8], so the following possible extensions are especially meant
to be applied to negative hopping.

The Hamiltonian, we used, is relatively simple. It includes just next neighbor interactions, we used
the hard-core limit and it is just valid, if the hopping J and the long range interaction V' is the same for
every connection between sites, which depends e.g. on possibly different depths of different potential
valleys and different distances between the connection for next neighbors, 2nd next neighbors and so
on. So the first idea for an extension, especially as far as possible in the general calculation method,
is to include more than just the next neighbors, applying it for the soft-core case and using different
hopping energies J; ; for different connections between sites ¢ and j.

Since we just consider two-particle interactions another possible extension is to include three, four
and so on particle interactions, which could presumably not be treated analytically.

Until now we have considered the temperature to be T' = 0, so investigating the thermodynamical
behavior of our systems is also a possibility.
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We have investigated the non-frustrated and frustrated lattices until now. For the first one a
pattern of two different types of sites is needed, for the second a pattern of 3 different types of sites.
The nearby question is, if there could be a lattice, which needs 4 types of sites to describe the patterns
in the next neighbor approximation. It may be possible, that this is the case in a sphere packing,
since there are always four sites next to each other, which are all connected to all the other three,
respectively. This geometrically forbids the 3 site pattern we had to use e.g. for the triangular lattice,
since there are three sites next to each other, which are all connected to all other two, respectively. It
may be possible, that this yields three inhomogeneous solids in the phase diagram.

The lattices we included in our calculation all have the same number of next neighbors for every
site. Different Ny for different lattice site could be included in the mathematics and experimentally
realized using different laser frequencies for an optical lattice. Besides the implementation as a quantum
simulator the mathematics could correspond to a physical system, which can not be observed very well,
e.g. in solid states.

In Ref. [24] a variational method was used for bosons in optical lattices without long-range interac-
tion. It has the mean-field result as a zeroth order solution and refines it in higher orders by including
the impact of quantum fluctuations. This method applied to our system, i.e. including long-range
interaction, is another possibility to extend our calculations.
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