
Thermodynamic Properties of Spinor

Bosons in Optical Lattices

Diploma Thesis by

Matthias Ohliger

Main Referee: Prof. Dr. Dr. h.c. Hagen Kleinert

submitted to the

Department of Physics

Freie Universität Berlin
May 2008



2



Contents

1 Introduction 1

1.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Optical Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Spinor Bose Gases in Optical Lattices 7

2.1 Experimental Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Details of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Bose-Hubbard Model for Spin-1 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Mott Insulator-Superfluid Transition 13

3.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 System Properties Without Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Unmagnetized Systen at Zero Temperature . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Unmagnetized System at Finite Temperature . . . . . . . . . . . . . . . . . . . 16

3.2.3 Magnetized Bose Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Mean-Field Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Decoupling of Hopping Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Phase Diagram at Zero Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Landau Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Limit of Vanishing Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Phase Diagram at Finite Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Phase Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Time-of-Flight 35

4.1 Zero Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Limit of Vanishing Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



ii CONTENTS

4.1.2 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Time-of-Flight Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.4 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Finite Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Particle Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Diagrammatic Green’s Functions Approach 49

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Scalar Bose-Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Importance of Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.3 Interaction Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.4 Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Cumulant Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Basic Diagrammatic Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Diagrammatic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Weights and Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.3 Diagrammatic Series for Partition Function . . . . . . . . . . . . . . . . . . . . 55

5.3.4 Calculation of Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.5 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.6 Particle Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.7 Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.8 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Diagrammatic Rules in Matsubara Space . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Further Development of Green’s Functions Technique 65

6.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Time-of-Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.2 Phase Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.3 Real-Time Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.4 Dispersion Relations of Excitations . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.5 Effective Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.6 Time-of-Flight from Resummed Green’s Function . . . . . . . . . . . . . . . . . 75

6.1.7 Visibibility from Resummed Green’s Function . . . . . . . . . . . . . . . . . . . 80

6.1.8 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS iii

6.1.9 Extension to Spin-1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Second Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.2 Calculation of One-Loop Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.3 One-Loop Corrected Phase Boundary at Zero Temperature . . . . . . . . . . . 89

6.2.4 Critical Properties of Mott Insulator-Superfluid Transition . . . . . . . . . . . . 90

6.2.5 One-Loop Corrected Phase Boundary at Finite Temperature . . . . . . . . . . 93

6.2.6 One-Loop Corrected Excitation Spectrum . . . . . . . . . . . . . . . . . . . . . 94

7 Summary and Outlook 97

A Properties of Spin-1 Eigenstates 99

A.1 Matrix Elements of Creation and Annihilation Operators . . . . . . . . . . . . . . . . 99

A.1.1 Further Properties of Spin Operators . . . . . . . . . . . . . . . . . . . . . . . . 100

A.1.2 Creation of Basis States from Vacuum State . . . . . . . . . . . . . . . . . . . . 100

A.1.3 Recursion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.2 Calculation of Normalization Constant of Eigenstates . . . . . . . . . . . . . . . . . . 106

A.3 Relations Between Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.4 Calculation of Matrix Elements for Unmagnetized System . . . . . . . . . . . . . . . . 109

B Correlation Function for Finite Temperature 111

Bibliography 115

List of Figures 121

Danksagung 123



iv CONTENTS



Chapter 1

Introduction

1.1 Bose-Einstein Condensation

Concerning quantum statistics, there is a fundamental difference between particles with integer and
with half-integer spin [1]. The former, called Bosons, have a symmetric total wave function and obey
the Bose-Einstein statistics while the latter, called Fermions, have an anti-symmetric wave function
and obey the Fermi-Dirac statistics. The anti-symmetry of the wave function of the Fermions leads
to the Pauli exclusion principle which prevents more than one particle to occupy the same state. This
constraint does not apply to Bosons where arbitrary occupation numbers are possible. The maybe
most prominent example for a Boson is the photon but also atoms with integer total hyperfine spin
F , like 23Na and 87Rb, are Bosonic particles. Only Bosonic atoms shall be discussed in the present
thesis.
Already in the year 1924, Satyendranath Bose and Albert Einstein predicted that, for low enough
temperatures, Bosons can macroscopically occupy their ground state state and form a collective,
coherent quantum state which was later on called a Bose-Einstein condensate or shorter just a BEC.
This transition happens when the thermal de-Broglie wave-length, i.e. the wave-length corresponding
to a particle with the mean thermal momentum p ≈

√
2MkBT , where M is the Boson mass, becomes

of the order of the mean separation between the particles. The critical wave-length reads

λc =

√

2π~2

MkBTc
≈ n−1/3 , (1.1)

where n is the particle density and Tc the critical temperature. Condition (1.1) means that the wave
functions of the atoms overlap. Then, because of the Heisenberg uncertainty principle, they can
no longer be thought of as distinct particles but must be described as a collective quantum object.
Performing a more quantitative calculation yields the critical temperature where the condensation in
a homogeneous system occurs at [2]

Tc =
2π~

2

kBM

[

n

ζ(3/2)

]2/3

(1.2)

with ζ(3/2) ≈ 2.61. The phase transition to the Bose condensed phase is very interesting because it
takes place even in an ideal gas without interaction which means that Bose-Einstein condensation is a
pure quantum-statistical effect, as discussed in detail in Ref. [3]. In contrast to that, the well-known
classical phase transitions [4,5], as for example in ferromagnets, and also the quantum phase transitions
[6] which are extensively discussed in this thesis in Chapters 3 and 6, are governed by the interplay
between the interaction energy and the thermal or quantum fluctuations. As it would facilitate the
experimental realization to have a high critical temperature, Eq. (1.2) tells us to increase the particle
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2 1.2. OPTICAL LATTICES

density as much as possible. Unfortunately, this is not favorable: Even for moderate densities, “normal”
condensation to a solid or a liquid would occur long before the BEC transition temperature is reached.
Thus, one is forced to work with very dilute gases with a density of n ≈ 1014 cm−3. Because of this,
the critical temperature (1.2) is of the order of some hundred nano-Kelvin and therefore it took more
than 70 years and the development of very sophisticated cooling and trapping methods [7] before Bose-
Einstein condensation was reached experimentally. However, an effect closely related [8] was already
observed in 1937: When Helium-4 is cooled below 2.17 K, it becomes superfluid which means that its
viscosity drops to zero. This effect can be understood by the existence of a collective wave-function for
a fraction of the liquid. But because of the large density, the interaction between the atoms is strong
and the analogy to the effect predicted by Bose and Einstein is not perfect. Even at zero temperature
less then 10% of the atoms are in the ground state, in contrast to 100% in an ideal gas of Bosons.
Bose-Einstein condensation in almost ideal gases was first realized in 1995 at JILA in Rubidium
atoms [9] and at MIT in Sodium atoms [10]. In the latter experiment, about 6 · 105 atoms were
used and the critical temperature was about 250 nK. In order to reach such ultra-low temperatures,
various cooling-methods have been employed of which two should be sketched here (see Fig. 1.1).
The first method is “laser cooling” [11]. When an atom absorbs a photon from a directed laser beam,
it experiences a recoil while the following re-emission is isotropic and, therefore, transfers zero net-
momentum. When the laser frequency is now chosen red-detuned with respect to the considered
atomic transition frequency, absorption is only possible when the atom is flying towards the laser so
that the Doppler shift compensates the detuning. Therefore, the atom gets slowed down. Using three
pairs of lasers, i.e. one pair in every spatial dimension, allows to cool the atoms in the trap down
to a few micro-Kelvin. Note that this method, which is sometimes also called “optical molasses”, is
only the simplest way of laser cooling while more sophisticated schemes are also used, e.g. Sisyphus
cooling [7,12]. For the atoms to be not only cooled but also trapped, the most commonly used device
is the magneto-optical trap [7]. The key idea behind it is to use a position-dependent magnetic field to
induce a position-dependent Zeeman-splitting. As a result, the force exercised by the lasers becomes
also position-dependent, yielding a net-force towards the center of the trap. Note that this trapping
potential, which can be well approximated as being harmonic, destroys the homogeneity of the system
so that (1.2) must be modified accordingly [2, 3]. However, when the trap is sufficiently flat, the
concept of a homogeneous system is a suitable starting point.
In order to reach even lower temperatures, the method of “forced evaporative cooling” is used [13].
The idea behind this cooling method is the same as blowing onto a cup of coffee which is too hot to
drink. The fastest atoms are removed and the remaining ones re-thermalize to a lower temperature.
In a trap the fastest atoms with highest kinetic energy are most likely to be found farer away from
the center. The magnetic trapping field induces a Zeeman splitting of the energies according to their
total spin z-component mF . When now a radio frequency wave with the frequency corresponding to
the energy splitting of the outmost atoms is irradiated, spin flips are induced. For the resulting state
the trapping field is not attractive but repulsive and, thus, the atoms are expelled from the trap. In
order to reach the critical temperature for Bose-Einstein condensation, it is necessary to loose up to
90% of the initial number of atoms. Because we have just seen that all atoms in a magnetic trap
are in the same spin state with mF = F , we do not expect any spin dynamics. The spin degrees of
freedom are said to be frozen. That is the reason why the description of the Bosons as spinless ones is
accurate and the corresponding scalar theory is applicable. We will see in the next chapter how these
spin degrees of freedom are released and how they can lead to interesting physical effects.

1.2 Optical Lattices

As discussed in the previous section, Bose-Einstein condensation is a phenomenon observable in ideal
gases. Although all real gases do, of course, interact, those interactions can be weak when the density
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Figure 1.1: Schematic depiction of cooling methods. Left: Laser cooling [14]. Right: Evaporative
cooling [15].

is sufficiently low. Therefore, they can usually be treated as a perturbation [3, 16]. The importance
of interactions is notably enhanced when confining the Bosons in an optical lattice [17, 18]. Such a
device is produced by reflected laser beams which form a standing wave. In such a standing wave
the amplitude of the electric-field oscillates but its intensity, i.e. I = |E|2, is stationary. In the
simplest setting of lasers forming right angles, which is assumed troughout all this thesis, the intensity
distribution reads

I(x) = I0

D
∑

i=1

sin2(2πxi/λ) , (1.3)

where λ is the wave-length of the lasers and D the dimension of the system. We emphasize that it
is experimentally possible to realize such settings for D = 1, 2, 3 and we will therefore address the
question of dimensionality at the points where it occurs. The lasers are far detuned from atomic
resonances and act on the atoms through the Stark effect, which means that the electric field of
the laser-light induces dipole moments on the polarizable atoms which are then experiencing a force
resulting from the gradient of the inhomogeneous electric light-field. This AC-Stark effect can be
most easily understood in a classical model which considers the atom as a harmonic oscillator with a
frequency corresponding to the atomic transition frequency next to the laser frequency. This model
can be found in any textbook on classical mechanics, see for example Ref. [19]. The same result can
also be obtained with the help of a simple semi-classical consideration, where the atom is considered as
a two-level quantum system but the laser-light as a classical electromagnetic field, as it is, for example,
discussed in Ref. [20]. If the laser-light is red-detuned, i.e. its frequency is lower than the one of the
nearest atomic transition, the atoms are pushed towards higher laser intensities. Because this effect
is proportional to the intensity of the laser light-field, the atoms experience the periodic potential

V (x) = V0

D
∑

i=1

sin2(2πxi/λ) , (1.4)

where V0 is called the lattice depth which is proportional to the intensity of the laser. The potential
(1.4) describes a D-dimensional hypercubic lattice as it is depicted in Fig. 1.2. This situation resembles
pretty much the situation in a crystal and can therefore serve as a model system for condensed-matter
physics where we call the minima of the potential (1.4) “lattice sites”. The interest in optical lattices
as a model system stems from the fact that, unlike in condensed matter, the relevant parameters
are experimentally controllable. Furthermore, there exist no defects, which make the treatment of
ordinary crystals more complicated. After having understood the pure system, i.e. without defects,
it is now possible to introduce disorder in a controlled way to study its effects [21, 22]. One detail,
which should be mentioned at this point, is the fact that in all experiments, in addition to the optical
lattice, a harmonic confining trap is used to prevent the atoms from escaping. Effects arising from
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Figure 1.2: Schematic depiction of the lattice structure produced by counter-propagating lasers in two
(a) and three (b) dimensions [30].

this additional potential are, for example, discussed in Ref. [23],
A groundbreaking accomplishment was the observation of the quantum phase transition from a super-
fluid to a Mott insulator in 2002 [17] according to a theoretical suggestion in Ref. [24]. More precisely,
a Bose-Einstein condensate, which is characterized by a delocalized collective wave-function was trans-
formed in an reversible way into a Mott insulator, which is a state with strongly localized atoms on
the lattice sites, by changing the lattice depth V0. The theoretical description of this transition is one
main aim of this thesis.
In addition to serving as a model system, quantum gases also provide opportunities to study fun-
damental quantum effects like entanglement [25] and to investigate the basic concepts of quantum
computation [26]. A further idea is to use ultra-cold atomic gases in optical lattices as a quantum
emulator, i.e. to simulate Hamiltonians which are, for example, relevant for the problem of high-Tc

superconductivity or which are discussed in quantum chromodynamics [27,28].
Quantum effects in ultra-cold gases are not restricted to Bosons but also Fermions show interesting
effects due to the formation of Bosonic Cooper pairs and their condensation [29].

1.3 Outline of Thesis

The work presented in this thesis is organized as follows: In Chapter 2, we consider Bosons in optical
lattices which possess additional spinor degrees of freedom, where we focus on particles which can be
described by an effective spin F = 1. We discuss the motivation to study this system, describe the
experimental realization and derive an appropriate model, the “spin-1 Bose-Hubbard model”, for a
theoretical description.
In Chapter 3, we address the problem of the Mott insulator-superfluid transition in such a spinor
system. We generalize the mean-field approximation commonly used to describe spinless Bosons and
present the phase boundary for both zero and finite temperature. In the latter case an interesting effect
arising from the interplay between thermal fluctuations and the spin-dependent interaction between
the particles is observed.
Because it is possible [31], but experimentally difficult to perform in-situ measurements in a BEC, i.e.
without destroying it, the most commonly used observation technique is time-of-flight measurement.
It is performed by switching off the trapping potentials and letting the atoms expand freely. The aim
of Chapter 4 is to explain the observed pictures theoretically and to derive a quantitative measure,
the visibility, out of it where we again include non-zero temperature and also resolve the different spin
states.
To facilitate the following derivations and to make a connection to the large amount of existing
literature and experiments on that system, we specify our discussion in Chapter 5 to the scalar Bose-
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Hubbard model, which describes effective spinless Bosons. We derive a diagrammatic approach to
calculate both the free energy and the imaginary-time Green function perturbatively for deep lattices.
In Chapter 6, this approach will be applied to calculate various properties of the system, especially
the time-of-flight pictures, the phase boundary, and the spectrum of the excitations. For the latter,
we introduce the Green function in real-time. We introduce a diagrammatic resummation technique,
which allows us to obtain results that go beyond perturbation theory. With this technique, we cal-
culate the phase diagram and compare it both to the well known mean-field result and to findings of
other analytical and numerical methods. Furthermore, the critical properties of the quantum phase
transitions are discussed.
In Chapter 7 the presented work is summarized and a short outlook to related open questions is
given.
The appendices are devoted to the presentation of details of calculations which are too technical to be
included in the main part. In Appendix A, recursion relations for the coefficients, which arise in the
perturbative treatment of the spin-1 problem in Chapter 3, are derived and some relations between
them are stated. In Appendix B, we give some details of the calculation of the finite-temperature
correlation functions of the spin-1 Bose-Hubbard model in Chapter 4.
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Chapter 2

Spinor Bose Gases in Optical Lattices

As mentioned already in the introduction, the commonly used magneto-optical trap cannot store atoms
in different hyperfine spin states and, therefore, no spin degrees of freedom exist in such traps. In
order to observe spinor dynamics, one needs a trapping mechanism which traps atoms regardless of
their spin state. This mechanism is explained below in Section 2.1. Most work, both theoretically and
experimentally [16, 32, 33], was focused on atoms with effective spin F = 1 which we will exclusively
consider in this thesis. Two examples for such species are 23Na and 87Rb. However, there are also
efforts to understand the additional features resulting from effective spin F = 2, which can also be
realized in 87Rb, for example the existence of a cyclic phase in addition to the ferromagnetic and
anti-ferromagnetic phases known for F = 1 [34,35].

2.1 Experimental Realization

In order to see effects resulting from the spin properties, one needs a trap in which, for a given spin
multiplet F , particles with all possible projections of the spin on the z-axis mF = −F, . . . ,+F can
be stored. This is possible by reloading the gas into an all-optical trap which is sometimes also called
an optical dipole trap [36]. Here, as the name suggests, no magnetic fields but only lasers are used.
They act on the atoms with the same mechanism as an optical lattice, i.e. the Stark effect which
was described above. Thus, it is possible to trap atoms with laser beams which have a Gaussian
beam profile. In a red-detuned laser the atoms are concentrated in the center of the beam where the
intensity of the light-field is maximal. If the laser is blue detuned, the situation is vice versa, i.e.
the atoms are pushed towards smaller laser-intensities and therefore more complicated beam profiles
must be used. These two situations are schematically shown in Fig. 2.1 together with a numerically
calculated distribution of the laser light intensity. The mechanism of the interaction between the
atom and the field of the laser light does not depend on the spin state of the atom, and, therefore,
particles with arbitrary mS can be trapped and the spin degrees of freedom are not frozen anymore.
But despite of this feature of the optical dipole trap, which allows for new and interesting spin physics
to be investigated, it has also two drawbacks: At first place, optical dipole traps are very shallow,
they usually have no depths larger than one Millikelvin. The depth of a trap gives the maximal energy
which atoms are allowed to have so that they still can be trapped. The depth of a magnetic trap is
much higher and can reach more than hundred Millikelvin. The second disadvantage stems directly
from the desired feature. Because all hyperfine components can be stored, no forced evaporative
cooling is possible in an optical trap. Together with the small depth this means that it is often better
to cool down the atoms to condensation temperature in a magnetic trap first and reload them then
into an optical dipole trap. In that case it is feasible to use pulsed radio frequency in a way similar
as in nuclear magnetic resonance (NMR) to flip a certain amount of the spins. Thus, it is possible

7
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Figure 2.1: Left: Schematic illustration of red- and blue-detuned optical trap. Right: Calculated
intensity profile of red-detuned trap with Gaussian beam profile [37].

Figure 2.2: Different hyperfine components in a spinor BEC. Top and bottom are two experiments
where different states where prepared [38].

to prepare the system in an arbitrary spin state. We will later see how these states can be separated
experimentally. Two different initial states are shown in Fig. 2.2.

2.2 Details of Model

In this section, we describe more specifically the system under consideration. As it is used in most
experiments, we consider a cubic lattice. We will mainly work in three dimensions but we will at
some points also be interested in an arbitrary dimension. The optical lattice is created by three pairs
of counter-propagating laser beams where the wave-length of the laser was given by 852 nm in the
experiment described in Ref. [17] The depth of the lattice is described by V0 which is measured in
units of the recoil energy ER = ~

2k2
L/(2M) where kL = π/a is the lattice vector. Therefore, we get

the following result for the single-particle potential:

V (x) = V0

3
∑

ν=1

sin2(kLxν) . (2.1)

We note that the potential factorizes in three one-dimensional parts which is a special property of the
(hyper)cubic lattice. In the following, we will neglect the additional harmonic confining potential and
work with a translational invariant lattice with periodic boundary conditions.
It is known that the interaction potential between two atoms is quite complicated and can be best
described by the empirical Lennard-Jones potential [39]. But when we neglect long-range forces like
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c2 < 0 ferromagnetic c2 > 0 anti-ferromagnetic
example 87Rb [44] example 23Na [45]

a0 50 aB 101.8 aB

a2 55 aB 100.4 aB

Figure 2.3: Experimentally determined s-wave scattering-lengths of the two most important Bosonic
species used in optical lattice experiments. aB is the Bohr radius.

Coulomb or dipolar interactions, the behavior can be very well described by a delta-like pseudo-
potential [40]

Vint(x1,x2) =
4π~

2as

M
δ(x1 − x2) , (2.2)

where the s-wave scattering length as is a parameter to be determined experimentally. Dipolar in-
teractions are for example relevant when describing a Bose-Einstein condensate of chromium atoms
because of their large magnetic dipole moment [41,42].

Furthermore, we neglect three-body interactions which is acceptable because the particle density is
very low. When two particles with hyperfine spins F1 = F2 = 1 scatter, there are two spin channels
because the total spin Ftotal can either be 0 or 2. Note that Ftotal = 1 is forbidden [43]. The most
general two-particle time- and space-independent delta-interaction reads in second quantized form

∑

αβγδ

Ψ̂†
α(x)Ψ̂†

β(x)UαβγδΨ̂γ(x)Ψ̂δ(x) (2.3)

with the fourth rank interaction tensor Uαβγδ . Rotational invariance in spin space implies that (2.3)
has only two irreducible terms and can be brought into the form [16,43]

c0

2

∑

α,β

Ψ̂†
α(x)Ψ̂†

β(x)Ψ̂β(x)Ψ̂α(x) +
c2

2

∑

α,β,γ,δ

Ψ̂†
α(x)Ψ̂†

γ(x)Fαβ ·FγδΨ̂δ(x)Ψ̂β(x) , (2.4)

where we have used the abbreviations

c0 = 4π~
2(a0 + 2a2)/3M , c2 = 4π~

2(a0 − a2)/3M (2.5)

with the two s-wave scattering lengths a0, a2 in the respective spin channels. The first term in (2.4)
describes two Bosons coupling to total spin F = 0 while the second one corresponds to two particles
which have total spin F = 2. Furthermore, F is the vector of the three spin-1 generators of the rotation
group

F x =
1√
2





0 1 0
1 0 1
0 1 0



 , F y =
1√
2





0 −i 0
i 0 −i
0 i 0



 , F z =





1 0 0
0 0 0
0 0 −1



 , (2.6)

which fullfill the commutator relations [Fα, F β ] = i
∑

γ ǫαβγF γ and have the Casimir invariant F ·F =
F2.
Most important for the system properties is the sign of c2. If c2 < 0, i.e. a2 > a0, the repulsion of
particles with parallel spin is lower than the one between particles with antiparallel spin. Because
of this, it is energetically favorable for the spins to align, which means that the ground state is
ferromagnetic. For the opposite case c2 > 0, i.e. a2 < a0, the situation is vice versa and the ground
state is anti-ferromagnetic. The Bosons most used in experiments are 87Rb and 23Na for which the
respective scattering lengths are given in Fig. 2.3.
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2.3 Bose-Hubbard Model for Spin-1 Bosons

The Bose-Hubbard model provides the simplest way to describe the most important feature of a Bose
gas in an optical lattice. This feature is the competition between the kinetic energy, which leads to the
delocalization of the particles and to an uniform spatial distribution and the potential energy, which
localizes the particles on the lattice sites due to a minimization of the repulsion. In order to derive the
model, we start from the second quantized Hamiltonian for a spin-1 Bose gas in the grand-canonical
ensemble [43,46–48] which reads

Ĥ =
∑

α

∫

d3x Ψ̂†
α(x)

[

− ~
2

2M
∇2 + V0

3
∑

ν=1

sin2(kLxν) − µ

]

Ψ̂α(x) − η
∑

α,β

∫

d3x Ψ̂†
α(x)F z

αβΨ̂β(x)

+
c0

2

∑

α,β

∫

d3x Ψ̂†
α(x)Ψ̂†

β(x)Ψ̂β(x)Ψ̂α(x) +
c2

2

∑

α,β,γ,δ

∫

d3x Ψ̂†
α(x)Ψ̂†

γ(x)Fαβ ·FγδΨ̂δ(x)Ψ̂β(x) .

(2.7)

Here η is an additional parameter which can be interpreted for the time being as an external magnetic
field. Its exact meaning will be further explained in Subsection 3.1. Because of the Bosonic nature of
the particles, the field operators fullfill the standard commutator relations

[Ψ̂α(x), Ψ̂β(x′)] = 0 , [Ψ̂†
α(x), Ψ̂†

β(x′)] = 0 , [Ψ̂α(x), Ψ̂†
β(x′)] = δα,βδ(x − x′) . (2.8)

The first term in (2.7) results from the one-particle Hamiltonian, the second one is the Zeman energy
in the magnetic field η, the third one describes the spin-independent interaction, and the last one the
spin dependent interaction. As explained above, the lattice potential does not depend on the spin and
we can therefore expand the field operators into spin-independent, orthonormal Wannier functions
which are extensively discussed in Ref. [49]:

Ψ̂α(x) =
∑

i

âi,αw(x − xi) , Ψ̂†
α(x) =

∑

i

â†iαw∗(x − xi) (2.9)

with

[âiα, âjβ] = 0 , [â†iα, â†jβ] = 0 , [âiα, â†jβ] = δα,βδi,j . (2.10)

Here w(x) is the Wannier function of the lowest Bloch band. Wannier functions are the Fourier
transforms of the Bloch functions [23]. Because the Wannier functions are peaked on the lattices
sites, they form a set of suitable basis states when considering particles in optical lattices. We do not
consider excitations into higher bands which is reasonable because the band gap is much higher than
any other energy scale in this problem. The Wannier functions are localized and, therefore, it is valid
to say that â†iα creates a particle with mF = α on site i. Now we insert the decomposition (2.9) into
(2.7). In order to get a Hamiltonian we can work with, we must make an approximation: Because the
Wannier functions are strongly localized on the lattice sites, we consider only on-site interactions, i.e.
we assume

∫

d3x |w(x − xi)|2|w(x − xj)|2 ≈ 0 if i 6= j . (2.11)

Furthermore, we neglect all possible hopping processes which are not between the nearest neighboring
sites, i.e. also assume

∫

d3xw∗(x − xi)

[

− ~
2

2M
∇2 + V0

3
∑

ν=1

sin2(kLxν)

]

w(x − xj) ≈ 0 (2.12)
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if i and j are not nearest neighbors. Note that for i = j we only get an additional energy shift which
is not of interest and is therefore also omitted. We now define the parameter

Jij = −
∫

d3xw∗(x − xi)

[

− ~
2

2M
∇2 + V0

3
∑

ν=1

sin2(kLxν)

]

w(x − xj) . (2.13)

Because of translational invariance and the fact that we only consider nearest-neighbor hopping, all
Jij are equal and we can drop the site indices. In the following, we will refer to J as the hopping
matrix element. The interaction constants are defined by

U0,2 = c0,2

∫

d3x |w(x − xi)|4 . (2.14)

We note that the interaction constants are directly proportional to the parameter c0,2 defined in (2.5).
That means that for U2 < 0 we have a ferromagnetic and for U2 > 0 an anti-ferromagnetic ground
state. For 23Na we find the ratio U2/U0 = c2/c0 ≈ +0.04 [44]. In order to calculate J and U0,2

from the experimental parameters V0 and M , one needs to know the Wannier functions. They can
either be calculated numerically or approximated by a Gaussian. The latter, also called the harmonic
approximation, is widely used in literature but deviates quite strongly from the correct numerical
result [23]. With (2.13) and (2.14) we obtain the Hamiltonian of the Bose-Hubbard Model for spin-1
Boson which reads

Ĥ =
∑

i

[

U0

2

∑

α,β

â†iαâ†iβ âiβ âiα +
U2

2

∑

α,β,γ,δ

â†iαâ†iγFαβ · Fγδâiδâiβ

− µ
∑

α

â†iαâiα − η
∑

α,β

â†iαF z
αβ âiβ

]

− J
∑

<i,j>

∑

α

â†iαâjα , (2.15)

where
∑

<i,j> indicates the summation over all pairs of nearest neighbors. Defining the operators

n̂iα = â†iαâiα , n̂i =
∑

iα

n̂iα , (2.16)

the spin-independent interaction term becomes (U0/2)
∑

i n̂i(n̂i − 1). To simplify the spin-dependent
interaction term, we rearrange

∑

α,β,γ,δ

â†iαâ†iγFαβ · Fγδâiδâiβ =
∑

α,β,γ,δ,ν

(â†iαF ν
αβ âiβ)(â†iγF ν

αδ âiδ) −
∑

α,β,δ,ν

F ν
αβF ν

βδ â
†
iαâiδ . (2.17)

Defining Ŝi =
∑

α,β â†iαFαβ âiβ and using F ·F = 2, Eq. (2.15) simplifies to [50]

Ĥ =
∑

i

[

1

2
U0n̂i(n̂i − 1) +

1

2
U2(Ŝ

2
i − 2n̂i) − µn̂i − ηŜz

i

]

− J
∑

α

∑

<i,j>

â†iαâjα . (2.18)

The reason why we have introduced the operator Ŝi is the fact that it behaves like an angular mo-
mentum or spin operator. In order to see this, we first write down its components explicitly:

Ŝx
i =

1√
2
(â†i0âi1 + â†i1âi0 + â†i−1âi0 + â†i0âi−1) ,

Ŝy
i =

1√
2
(â†i0âi1 − â†i1âi0 + â†i−1âi0 − â†i0âi−1) ,

Ŝz
i = â†i1âi1 − â†i−1âi−1 . (2.19)
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The defining property of a spin operator is its commutator relation [Ŝα
j , Ŝβ

k ] = iδjk
∑

γ ǫαβγŜγ
j . It

is easy to prove with the help of (2.10) and (2.19) that these relations are, indeed, fullfilled by our
operator Ŝi. We also note that Ŝi, Ŝx

i and n̂i commute with each other and therefore have common
eigenstates which we will denote in complete analogy to the usual problems from atomic physics as
|Si,mi, ni〉 with mi = −Si,−Si + 1, . . . , Si − 1, Si. There is a restriction on the values of Si which
has interesting physical consequences worth to be discussed: If we add the two spins s1 and s2, the
resulting total spin s can have all integer values from |s1 − s2| to s1 + s2. Therefore we must have
Si ≤ ni. If ni = 1, we must of course have Si = 1. But because of the Bosonic nature of the system,
Si must be even if ni is even and odd if ni is odd. Therefore, sites with odd ni can not be in a spin
singlet state, a fact which will have interesting and important consequences later on. The eigenvalue
equations, which define these states |Si,mi, ni〉, are

Ŝ2
i |Si,mi, ni〉 = Si(Si + 1)|Si,mi, ni〉 ,

Ŝz
i |Si,mi, ni〉 = mi|Si,mi, ni〉 ,

n̂i|Si,mi, ni〉 = ni|Si,mi, ni〉 . (2.20)

Furthermore, the states |Si,mi, ni〉 are orthonormal, i.e.

〈Si,mi, ni|S′
i,m

′
i, n

′
i〉 = δSi,S′

i
δmi,m′

i
δni,n′

i
. (2.21)

The eigenvalue equations (2.20) allow us solve the Hamiltonian (2.18) in the limit J = 0 exactly which
is discussed in the next Chapter.



Chapter 3

Mott Insulator-Superfluid Transition

In this chapter, we discuss the behavior of a spin-1 system, which is described by the Bose-Hubbard
model, at first place for T = 0 and later on for finite temperature. In the former case, we have
three relevant energies describing the system, i.e. the spin-independent and spin-dependent on-site
interaction energies U0 and U2 and, furthermore, the hopping energy J . As this is the situation of
experimental relevance (see Fig. 2.3), we will focus in the following on the situation U0 ≫ |U2|. If the
spin-independent interaction energy U0 dominates, the particles will be localized on the lattice sites
in order to minimize the repulsive energy. This state is called a Mott insulator. If the kinetic term
J , which corresponds to the hopping process, becomes important, the particles tend to delocalize and
form a superfluid. An important difference between these two phases can be seen in their respective
excitation spectrum. In the Mott-insulator phase, the spectrum is gapped, which can be easily under-
stood for the following reason: If all Bosons are localized, it requires a finite energy to move a particle
from one lattice site to another. In the limit J → 0, this energy is just the interaction energy U0. If
a delocalized superfluid is present, the spectrum is gapless and long wavelength excitations with arbi-
trary low energy are possible. In the case of the system discussed here, the presence of an additional
spin-dependent interaction will lead to interesting new effects in the case of an anti-ferromagnetic
interaction. Although it is very weak, i.e. U2 ≪ U0, the phase diagram will be affected in a qualitative
way because of the formation of stabilized hyperfine spin singlet pairs. Another possible excitation in
a spinor system is to flip one spin which is also gapped in the Mott phase with the energy scale of the
gap given by U2.
When temperature enters the situation, there exists a fourth relevant energy which is the mean thermal
energy kBT . Therefore, we examine in this chapter also how thermal fluctuations affect the quantum
phase diagram. In the rest of this thesis we will, for reasons of convenience, always use units with
~ = kB = 1.

3.1 Thermodynamics

In this section, we briefly review thermodynamics as far as it is needed for our present discussion.
Because it is much simpler, we will work throughout all this thesis in the grand-canonical ensemble.
The thermodynamic potential used in this formalism is the grand-canonical free energy F . It is
connected to the inner energy U via

F = U − TS − µN , (3.1)

where µ is the chemical potential [51]. Its physical meaning is the following: In the grand-canonical
ensemble, there is a heat bath around the system, exactly like in the canonical ensemble. Additionally,
the system is also coupled to a particle bath. The chemical potential µ is the energy needed to add

13
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a particle from the particle bath to the system. For this reason, we have already included the term
−µN in the definition of our Hamiltonian (2.3). From (3.1) we can see that the total particle number
N is given by

N = −∂F
∂µ

, (3.2)

which provides a relation between the chemical potential µ and the mean particle number N . This
allows us to fix the average particle number N by tuning µ. When we now take the limit T → 0 of

(3.2) and use the fact that the inner energy becomes the ground state energy, i.e. U
T→0−→ EG, we

obtain from Eq. (3.1):

N = −∂EG

∂µ
. (3.3)

Motivated by the idea of a variable particle number and a chemical potential, we extend our grand-
canonical approach even more by putting some kind of “magnetization bath” around our system. This
is achieved by changing

F → F − ηM , (3.4)

which we have also already done when defining our Hamiltonian (2.3). In analogy to the meaning of
µ, the parameter η is the energy needed to change the magnetization of the system by one. For this
reason we shall call η the “magneto-chemical potential” [16]. From (3.4) we obtain

M = −∂F
∂η

, (3.5)

which reduces in the zero-temperature limit to

M = −∂EG

∂η
. (3.6)

There is one notable difference between the chemical and the magneto-chemical potential. The former
has no experimental realization, at least not in the homogeneous system which we consider here. This
means that there is no knob we can turn to change µ. But for the latter we do have this knob. It is
an external magnetic field, and in this situation η corresponds to the Zeeman splitting between two
states differing by ∆mF = 1. This interpretation of η was used in Refs. [43, 52–54]. We will switch
between those two different interpretations of η whenever it becomes necessary.
The thermal average of an arbitrary operator can be calculated as

〈Ô〉 =
1

ZTr{Ôe−βĤ} , (3.7)

where β = 1/T is the inverse temperature. The grand-canonical partition function occurring in (3.7)
reads

Z = Tr{e−βĤ} . (3.8)

There is an important connection between the grand-canonical free energy and the partition function
which reads

F = − 1

β
logZ . (3.9)

This allows to calculate N and M also from thermal averages. From (3.2), (3.8), and (3.9) we conclude

N = −∂F
∂µ

=
1

β

∂

∂µ
logZ =

1

βZ
∂

∂µ
Z =

NS

Z Tr{n̂e−βĤ} = NS〈n̂〉 , (3.10)

where n̂ is the operator of the particle number per site and NS the number of lattice sites. The
calculation for M is exactly analogous and yields M = NS〈Ŝz〉.
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3.2 System Properties Without Hopping

Before considering the effects arising from hopping, we first have a look at the system in the absence
of tunneling, i.e. for J = 0. This corresponds to a situation with infinite high potential walls between
the lattice sites. For this situation, the Bose-Hubbard Hamiltonian (2.18) reduces to

ˆ̃H0 =
∑

i

[

1

2
U0n̂i(n̂i − 1) +

1

2
U2(Ŝ

2
i − 2n̂i) − µn̂i − ηŜz

i

]

. (3.11)

Because all sites are equivalent, we can drop the sum as well as the site index i and consider only the
local Hamiltonian

Ĥ0 =
1

2
U0n̂(n̂ − 1) +

1

2
U2(Ŝ

2 − 2n̂) − µn̂ − ηŜz . (3.12)

We now determine the eigenstates and eigenvalues of this Hamiltonian. We know from Section 2.3
that n̂, Ŝ2, and Ŝz commutes and, therefore, we choose eigenstates of these three operators as a basis
of the Hilbert space as already discussed above. The respective eigenvalues are given by Eq. (2.20).
Thus, the eigenstates of the Hamiltonian (3.12) are

Ĥ0|S,M,n〉 = ES,m,n|S,m, n〉 (3.13)

with the eigenvalues

ES,m,n =
1

2
U0n(n − 1) +

1

2
U2 [S(S + 1) − 2n] − µn − ηm . (3.14)

3.2.1 Unmagnetized Systen at Zero Temperature

Because it is an interesting special case we will focus at first place on the case of a non-magnetized
system, which corresponds to η = 0, and discuss later on modifications which occur when considering
η 6= 0. In the former case, the eigenenergies (3.14) do not depend on the magnetic quantum number
m, and therefore all eigenstates are (2S + 1) – fold degenerated. The nature of the ground state of
the system crucially depends on the sign of U2. An anti-ferromagnetic interaction is characterized by
U2 > 0, thus, in order to minimize the ground-state energy, S must be minimal according to (3.14).
Therefore, the ground state is |0, 0, n〉 for even n and |1,m, n〉 with m = 0,±1 for odd n.
Correspondingly, a ferromagnetic interaction is present for U2 < 0, so S must be maximal in this case.
This is realized by the state |n,m, n〉 with m = −n, . . . , n irrespectively of n being even or odd. In
order to obtain a relation between the chemical potential µ and the particle number n, we consider
the cases of even and odd n separately, but restrict ourselves to the anti-ferromagnetic case. If n is
even we have E1,n−1 < E0,n < E1,n+1 and we conclude

(n − 1)U2 − 2U2 ≤ µ ≤ n U0 . (3.15)

In the opposite case that n is odd, we have E0,n−1 < E1,n < E0,n+1, which leads to

(n − 1)U0 ≤ µ ≤ nU0 − 2U2 . (3.16)

Note that (3.16) implies for anti-ferromagnetic interaction that there are no states with odd n when
U2 > U0/2. Together, the two inequalities (3.15) and (3.16) allow us to plot the equation of state
n = n(µ) as done in Fig. 3.1. The dependence of S on the chemical potential follows directly from the
result for n because S = 0 for even and S = 1 for odd n.
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Figure 3.1: Dependence of the particle number per site on the chemical potential for the unmagnetized
system at zero temperature. Left: U2 = 0. Right: U2 = 0.2U0.

3.2.2 Unmagnetized System at Finite Temperature

In this subsection, we calculate at first place the mean particle number in dependence of the chemical
potential for finite temperature. To perform this calculation, we use the known eigenstates of (3.12)
as a base of the Hilbert space. Therefore, the partition function (3.8) reduces to

Z(0) =

∞
∑

n=0

∑

S

(2S + 1)e−βES,n , (3.17)

where the factor 2S + 1 accounts for the degeneracy with respect to the magnetic quantum number
m and we have to keep in mind that S must be even (odd) when n is even (odd). We calculate the
resulting thermal expectation value of the particle number per site according to (3.7)

〈n̂〉 =

∑

n,S(2S + 1)n e−βES,n

∑

n,S(2S + 1)e−βES,n
, (3.18)

and also the total spin per site

√

〈Ŝ2〉 =

√

√

√

√

∑

n,S(2S + 1)S(S + 1)e−βES,n

∑

n,S(2S + 1)e−βES,n
. (3.19)

When we plot the particle number per site against the chemical potential (see Fig. 3.2), we can clearly
see that for an anti-ferromagnetic interaction, i.e. U2 > 0, states with an even number of particles are
favored. For ferromagnetic interaction, i.e. U2 < 0, no even-odd dependence exists. This all agrees
with the previously discussed case of T = 0. We note, furthermore, that the thermal fluctuation
smooth out the respective curve, which was a step-function for T = 0 (see Fig. 3.2), and the equation
of state 〈n̂〉 = 〈n̂〉(µ) becomes a continuous, bijective function. In Fig. 3.3 (right), where the total spin
per site is plotted, one can see that for low temperature this quantity is approximately zero in the
regions which correspond to an even particle number per site and approximately one for odd particle
number. This is expected as the respective zero-temperature ground state (2.20) is |0, 0, n〉 for the
former and |1,m, n〉, m = 0,±1 for the latter case. For larger temperature this even-odd dependence
gets weaker. This effect is important also for the phase-boundary and will be explained in detail later
on.
To get the zero temperature limit β → ∞, we notice that, for large β, the main contribution to the
sum in (3.18) results from the term with the smallest energy in the exponential function. In order to
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Figure 3.2: Dependence of the particle number per site on the chemical potential for the unmagnetized
system, i.e. η = 0. Left: kBT/U0 = 0.05 and U2/U0 = 0 (red), U2/U0 = 0.25 (black), and U2/U0 = 0.5
(blue). Right: U2/U0 = 0.25 and kBT/U0 = 0.1 (red), kBT/U0 = 0.05 (black), and kBT/U0 = 0.005
(blue).

see this, we write (3.18) as

〈n̂〉 =
n0(2S0 + 1)e−βES0,n0 [1 +

∑′

n,S n(2S + 1)e−β(ES,n−ES0,n0
)]

(2S0 + 1)e−βES0,n0 [1 +
∑′

n,S(2S + 1)e−β(ES,n−ES0,n0
)]

, (3.20)

where n0 and S0 minimize the ground state energy EG for a given chemical potential, and the prime
on the sum denotes summation over all states but the ground state. Note that then ES,n −ES0,n0

> 0
holds and, therefore, these terms vanish when β tends to infinity. This gives us the result

〈n̂〉 T→0−→ n0 (3.21)

for the particle number per site at T = 0. The same argument also holds for the total spin per site S.

3.2.3 Magnetized Bose Gas

Until now, we have considered a system with no magnetization where all states with the same total
spin quantum number S are degenerated with respect to their magnetic quantum number m. When
a finite magnetization exists, this degeneracy is lifted and the lowest energy state for given n and S
is |S, S, n〉. We now consider the effect of the additional parameter η on the system properties. For a
ferromagnetic interaction there is nothing interesting happening because the ground state is the state
with maximal S for a given n as it is in the case without η which can be seen from Eq. (3.14). The
only thing which changes is that, as discussed above, the degeneracy with respect to m is lifted, so
the ground state becomes

EG = |n, n, n〉 . (3.22)

For an anti-ferromagnetic interaction, things are more complicated. When η is large compared to U2,
it is energetically favorable to align all spins in the z-direction and, therefore, the ground state is a
high spin state again. When η is small against U2, the minimal energy is realized by pairing as many
spins as possible, which leads to the ground state |0, 0, n〉 for even, and |1, 1, n〉 for odd n. We already
note that, when we apply perturbation theory later on, the limit η → 0 turns out to be non-trivial.
The reason for that is that, for η = 0, the ground state for odd particle numbers per site is threefold
degenerated and one has to use the degenerated perturbation theory which leads to different results.
When η and U2 are of the same order of magnitude, ground states with all allowed spin quantum
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Figure 3.3: Dependence of the total spin per site on the chemical potential for the unmagnetized
system, i.e. η = 0. U2/U0 = 0.04. kBT/U0 = 0.01 (red), kBT/U0 = 0.02 (blue), and kBT/U0 = 0.05
(green)

numbers between 0 and n are possible. To find the realized one, it is necessary to minimize ES,S,n for
given parameters µ and η.
There is another special case where one has to be careful with degeneracies. This happens when the
energies of two states with equal particle number but different total spins become equal. In order to
find the corresponding values of η we set

ES,S,n = ES+2,S+2,n . (3.23)

Inserting (3.14) into (3.23) yields
η

U2
= S +

3

2
. (3.24)

At this critical η, which, of course, corresponds to a critical magnetization, we, therefore, expect some
effect arising from the degeneracy of the states with the same particle number but different spin. This
means, that spin flips are possible which do not cost any energy. Thus, we see that even in the limit
of an infinitely deep lattice we have gapless excitations. We must, therefore, make the definition of
a Mott insulator more precise and demand only that the particle and hole excitations, which move
particles from one site to another, should have a gap.
For finite temperature, one can calculate the thermal averages of Ŝz and n̂ according to (3.7) as

M =〈Ŝz〉 =
1

Z(0)

∞
∑

n=0

∑

S

S
∑

m=−S

m e−βES,m,n , (3.25)

〈n̂〉 =
1

Z(0)

∞
∑

n=0

∑

S

S
∑

m=−S

n e−βES,m,n , (3.26)

where the partition function (3.8) is given by

Z(0) =
∞
∑

n=0

∑

S

S
∑

m=−S

e−βES,m,n . (3.27)
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Figure 3.4: Dependence of the magnetization per site on the chemical potential for kBT/U0 = 0.05
and η/U0 = 2. Left: U2/U0 = 0.5. Right: U2/U0 = 0.6.
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Figure 3.5: Dependence of the magnetization per particle on the magneto-chemical potential for
kBT/U0 = 0.05, µ/U0 = 5, and U2/U0 = 0.4.

One can see in Fig. 3.4 that small changes in the spin-dependent interaction strength U2 change the
magnetic behavior in a qualitative way, while they change the mean particle number only quantita-
tively (see Fig. 3.2). We have also plotted the magnetization per particle against the magneto-chemical
potential for a fixed µ in Fig. 3.5. Here one can see how η must be chosen to get the desired magne-
tization. The zero-temperature limit follows exactly as discussed in Subsection 3.2.2.

3.3 Mean-Field Hamiltonian

In this section, we introduce a crucial approximation to the hopping part of the Hamiltonian (2.18)
which allows us to introduce a quantity which describes the collective behavior of the delocalized
Bosons forming the superfluid.

3.3.1 Decoupling of Hopping Term

When we consider the Bose-Hubbard model in the strong-coupling limit, i.e. J = 0, we see that the
unperturbed Hamiltonian (3.12) is local while the perturbation

Ĥ1 = −J
∑

<i,j,>

∑

α

â†iαâjα (3.28)
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is non-local which means that it couples different lattice sites. To simplify this term and to introduce
an order parameter in view of the Landau theory [55,56], we decompose the creation and annihilation
operators into their expectation values and fluctuations around them:

âiα = 〈âiα〉 + δâiα , â†iα = 〈â†iα〉 + δâ†iα . (3.29)

Rearranging (3.29) yields

δâ†iαδâjα = â†iαâjα − 〈â†iα〉〈âjα〉 − 〈â†iα〉δâjα + 〈âjα〉δâ†iα . (3.30)

We now assume the fluctuations to be small and, therefore, neglect the term which is quadratic in
them, i.e. the one on the left-hand side in (3.30). This is known as the mean-field approximation. We
also remember that our system is translationally invariant, so the expectation value of the operators
must not depend on the site index i. Because of that, we can introduce the order parameters

Ψα = 〈âiα〉 , Ψ∗
α = 〈â†iα〉 (3.31)

and get from (3.30)

â†iαâjα ≈ Ψαâ†iα + Ψ∗
αâjα − Ψ∗

αΨα . (3.32)

When we now insert this mean-field approximation into (2.18) and perform the summation over j, we
get the Bose-Hubbard mean-field Hamiltonian

ĤMF = NSĤ0 − Jz
∑

i

∑

α

(Ψαâ†iα + Ψ∗
αâiα − Ψ∗

αΨα) , (3.33)

where z = 2D is the number of nearest neighbors in the D-dimensional cubic lattice. As the mean-field
Hamiltonian (3.33) is local, we can drop again drop the index i and the sum over it and consider an
effective one-site problem.

3.3.2 Perturbation Theory

In order to be able to apply perturbation theory, we must know how the one-site mean-field pertur-
bation Hamiltonian

Ĥ1MF = −Jz
∑

α

(Ψαâ†α + Ψ∗
αâα − Ψ∗

αΨα) (3.34)

acts on an eigenstate of the unperturbed Hamiltonian (3.12). Because the components of the order

parameter Ψα, Ψ∗
α are c-numbers and not operators, this boils down to the calculation of â†α|S,m, n〉

and âα|S,m, n〉. For doing this, it is useful to recall what the creation and annihilation operators do

in a physical sense. The creator â†α creates a spin-1 particle with its spin orientation specified by α.
Because the z-component of the magnetic moment and, therefore, also of the spin is conserved, we
have â†α|S,m, n〉 ∝ |S±1,m+α, n+1〉. The quantum number of the total spin changes by ±1 because
one spin-1 particle is added. Correspondingly, âα annihilates a spin-1 particle. Therefore, we have
âα|S,m, n〉 ∝ |S ± 1,m − α, n − 1〉. Thus, the results can be written in the following form:

â†α|S,m, n〉 = Mα,S,m,n|S + 1,m + α, n + 1〉 + Nα,S,m,n|S − 1,m + α, n + 1〉 , (3.35)

âα|S,m, n〉 = Oα,S,m,n|S + 1,m − α, n − 1〉 + Pα,S,m,n|S − 1,m − 1, n − 1〉 , (3.36)

where the respective coefficients M , N , O, and P are calculated recursively in detail in Appendix A.
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3.4 Phase Diagram at Zero Temperature

The aim of this section is to calculate the phase boundary for the transition between a Mott insulator
and a superfluid phase at zero temperature. We stress again that this is a pure quantum effect which
is driven by quantum fluctuations in contrary to thermal phase transitions, like the melting of a
crystal, which are driven by thermal fluctuations. This is the reason why it is called a quantum phase
transition [6].

3.4.1 Landau Expansion

For the calculation of the phase diagram we use the Landau theory of phase transitions [4, 55]. In
order to do this, we need an order parameter which is zero in one phase, i.e. the non-ordered phase,
and finite in the other one, i.e. the ordered phase. In (3.31), we have introduced three complex order
parameters Ψα, which can be combined to a complex vector

Ψ = (Ψ−1,Ψ0,Ψ1) . (3.37)

The quantity Ψ is a good choice for describing the Mott-insulator superfluid phase transition, because
a non-zero Ψ means that there are particles which do not belong to one particular site but are
delocalized over the whole system and form a superfluid. We keep in mind that our order parameter
has three components because of the three different hyperfine states m = 0,±1. We now write the
energy of the system as a function of the order parameter and look for the minimum. Therefore, we
expand the ground state energy EG in powers of Ψ up to quadratic order and obtain

EG(Ψ) = A(0) + A(1) ·Ψ +
∑

α

A(2)
α |Ψα|2 + O(Ψ4) . (3.38)

We will see later on that there is no contribution to the energy which is linear in Ψ, so the leading

contribution is of the order Ψ2. To find the phase boundary, we set A
(2)
α = 0 because a change of the

sign of this coefficient means that the minimum of the energy shifts from zero to a finite value of the
order parameter as it can bee seen in Fig. 3.6 (left). We work with a magnetized system as described in
Subsection 3.2.3 and discuss the difficulties of the non-magnetized limit η → 0 later on. We calculate
the energy shifts to the eigenvalues (3.14) of the unperturbed Hamiltonian (3.12). Because many
different ground states are possible as discussed in Subsection 3.2.3, we do this for the general state
Φ0 = |S, S, n〉. We consider the mean-field hopping term (3.34) as a perturbation.
In order to get the first-order correction in Ĥ1MF, we use the orthonormality of our basis states (2.21)
and obtain

E
(1)
S,S,n = 〈S, S, n|Ĥ1MF|S, S, n〉 = Jz

∑

α

Ψ∗
αΨα . (3.39)

The second-order corrections read with the abbreviation
∑

φ′ =
∑

(S′,m′,n′)6=(S,S,n)

E
(2)
S,S,n =

∑

φ′

|〈S′,m′, n′|Ĥ1MF|S, S, n〉|2
ES′,m′,n′ − ES,S,n

= J2z2
∑

α

∑

φ′

|〈S′,m′, n′|Ψαâ†α + Ψ∗
αâα|S, S, n〉|2

ES′,m′,n′ − ES,S,n
+ . . . .

(3.40)
Using now (3.35) and (3.36), one can see that for every spin component all but four terms of the sum
vanish. This leads to

E
(2)
S,S,n = J2z2

∑

α

Ψ∗
αΨα

(

M2
α,S,S,n

ES+1,S+α,n+1 − ES,S,n
+

N2
α,S,S,n

ES−1,S+α,n+1 − ES,S,n

+
O2

α,S,S,n

ES+1,S−α,n−1 − ES,S,n
+

P 2
α,S,S,n

ES−1,S−α,n−1 − ES,S,n

)

+ . . . . (3.41)



22 3.4. PHASE DIAGRAM AT ZERO TEMPERATURE

Thus, we see that there are two contributions to the second order in Ψ. Putting them together yields

EG = ES,S,n +
∑

α

A
(2)
α,S,S,n|Ψα|2 + O(Ψ4) , (3.42)

where the coefficients are given by

A
(2)
α,S,S,n = Jz − J2z2

(

M2
α,S,S,n

ES+1,S+α,n+1 − ES,S,n
+

N2
α,S,S,n

ES−1,S+α,n+1 − ES,S,n

+
O2

α,S,S,n

ES+1,S−α,n−1 − ES,S,n
+

P 2
α,S,S,n

ES−1,S−α,n−1 − ES,S,n

)

(3.43)

and we have used that the third order vanishes for symmetry reasons. When the first of the three
coefficients (3.43) vanishes, the ground state of the system (3.42) changes from a state with Ψ = 0 to
one where one component Ψα is non-zero. From this, one can also see which of the three hyperfine
spin components is populated first in the respective superfluid phase. In order to be able to plot a
phase diagram we set

A
(2)
α,S,S,n

!
= 0 . (3.44)

The critical hopping parameter for the transition to a superfluid with a specified spin α reads

zJc,α(µ) =

(

M2
α,S,S,n

ES+1,S+α,n+1 − ES,S,n
+

N2
α,S,S,n

ES−1,S+α,n+1 − ES,S,n

+
O2

α,S,S,n

ES+1,S−α,n−1 − ES,S,n
+

P 2
α,S,S,n

ES−1,S−α,n−1 − ES,S,n

)−1

. (3.45)

To find the transition, which is realized for the given parameters, one has to look for the minimum of
(3.45) with respect to the spin index α:

zJc(µ) =
min
α

zJc,α(µ) . (3.46)

Note that our theory can only describe the transition from a Mott insulator to a superfluid. It is not
capable to describe the transition between different phases within the superfluid which differ in the
occupation of the three spin states. Therefore, it is not reasonable to interpret (3.46) for different α
but one should consider only the minimum (3.46) as we have done.
For any finite η, the phase boundary always describes a transition to a superfluid with Ψ1 6= 0 or
Ψ−1 6= 0. We have calculated these phase boundaries for U2/U0 = 0.04 which is the value realized in
23Na and plotted them in Fig. 3.7. In order to resolve the kinks in the phase boundary better, we con-
sider a situation where the anti-ferromagnetic interaction is much stronger, i.e. U2/U0 = 0.5, and also
the magneto-chemical potential is larger. The phase boundary corresponding to this situation is shown
in Fig. 3.8. It is not realized in the commonly used alkali-metal gases but it is known that the scattering
length and, therefore, also the interaction strength can be changed by using Feshbach resonances [57].
The origin of the kinks in the phase boundary is the fact that the transition changes qualitatively at
this point between a superfluid phase with Ψ1 6= 0 and a corresponding one with Ψ−1 6= 0. Thus, we
have a tricritical point where three phases coincide. The reason for this behavior, which was also found
in Ref. [50], is the following: Normally, we would expect, that the spin-component, which is aligned
parallel to the magnetic field η, makes the transition to the superfluid phase first, i.e. for the lowest
values of the hopping parameter J , because its energy is lowest. But when the chemical potential has
a certain value, the energy gained is large when relaxing the condition that the spins per site S must
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be odd for an odd particle number per site n. Then it is energetically favorable for the component
aligned anti-parallel to the quantization axis to form a superfluid. Note also that the ground state of
the second lobe in Fig. 3.8 is |2, 2, 2〉 and not the also allowed |0, 0, 2〉.
Now we describe the situation which is realized in experiments with a magnetic trap. As already dis-
cussed in the introduction, magnetic traps can capture only one hyperfine spin component. Therefore
the situation to be considered is the limit of a fully polarized gas. As discussed in Subsection 3.2.3,
the ground state for this situation is |n, n, n〉. We read off the needed coefficients from Appendix A.1:

M1,n,n,n =
√

n + 1 , M0,n,n,n = 1 , (3.47)

M−1,n,n,n =

√

1

2n + 1
, N1,n,n,n = 0 , (3.48)

N0,n,n,n = 0 , N−1,n,n,n = −
√

2n

2n + 1
, (3.49)

Oα,n,n,n = 0 , for all α , P1,n,n,n =
√

n , (3.50)

P0,n,n,n = 0 , P−1,n,n,n = 0 . (3.51)

When we now plug these coefficients into (3.45) and use (3.14), we find

zJc,1 =

[

n + 1

n(U0 + U2) − (η + µ)
+

n

(1 − n)(U2 + U0) + (η + µ)

]−1

. (3.52)

When one does the same for zJc,0 and zJc,−1 one can see that both are always larger than zJc,1.
Therefore we have zJc = zJc,1.We simplify further by defining a new interaction strength by

U = U0 + U2 . (3.53)

Furthermore, we can remove the magneto-chemical potential, which is no more needed in the fully
polarized gas, by redefining the chemical potential according to

µ + η → µ . (3.54)

Inserting (3.53) and (3.54) into (3.52) yields finally

zJc =

[

n + 1

nU − µ
+

n

(1 − n)U + µ

]−1

, (3.55)

which is exactly the mean-field result of the scalar Bose-Hubbard model in Ref. [58].
When we have performed the Landau expansion (3.42) and used (3.44) in order to find the phase
boundary, we have implicitly assumed that the order parameter changes continuously from zero to a
finite value. This is the characteristic of a second-order phase transition and it is surely true if the

fourth-order coefficient in the Landau expansion (3.42), i.e. A
(4)
α , is positive [55]. But this is not the

only possibility: If A(2) > 0, A(4) < 0 and A(6) > 0, the order parameter changes discontinuously
from zero to a finite value Ψc when changing A(4) through the critical value, a behavior which is
characteristic for a first-order phase transition [55]. There are some arguments that our system does,
at least in some part of its phase diagram, show such a transition [50,59]. In Fig. 3.6, the two situations
are shown schematically. The left picture corresponds to a second-order phase transition, while the
right picture corresponds to a first-order one. Note that for simplicity reasons, we have only shown
one scalar component of the order parameter. In order to clarify which situation is realized in the case

discussed here, we have to calculate A
(4)
α .
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Figure 3.6: Dependence of the ground-state energy on the order parameter. Left: A(4) > 0 and
A(2) = 1 (black), A(2) = 0 (blue) and A(2) = −0.5 (red). Right: A(2) > 0 and A(6) > 0. A(4) = −1.9
(black), A(4) = −2 (blue) and A(4) = −2.1 (red).
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Figure 3.7: Zero-temperature phase boundary for the parameters U2/U0 = 0.04 and η/U0 = 0.05.

3.4.2 Limit of Vanishing Magnetization

Calculating the limit of vanishing magnetization, which corresponds to the limit of η → 0, is straight-
forward for even particle numbers per site. The energy eigenvalues (3.14) do no longer depend on
m and we can drop this index. The ground state for J = 0 is |0, 0, n〉 as discussed in Section 3.2.
Therefore, we get from (3.45)

zJc,α(µ) =

[

M2
α,0,0,n

E1,n+1 − E0,n
+

O2
α,0,0,n

E1,n−1 − E0,n

]−1

, (3.56)

which can be further evaluated with (3.14), and the matrix elements from Appendix A to

zJc = zJc,α = 3/

[

n

−µ + U0(n − 1) − 2U2
+

n + 3

µ − U0n

]

. (3.57)

Equation (3.57) is consistent with the result in Ref. [60], where only unmagnetized systems were
discussed. One can easily see that the critical hopping approaches zero when one of the energy
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Figure 3.8: Zero-temperature phase boundary for the parameters U2/U0 = 0.5 and η/U0 = 0.9.

differences in the denominators vanishes. This gives us the values of the chemical potential for which
no Mott phase exists:

µ1 = U0n , (3.58)

µ2 = U0(n − 1) − 2U2 . (3.59)

When we compare this with the dependence of the particle number on the chemical potential discussed
in Subsection 3.2.1, we see that µ1 in (3.58) is exactly the value of µ where the particle number increases
by one. This means that it does not cost any energy to add another particle which, therefore, forms a
superfluid even at infinitesimal hopping. Correspondingly, µ2 in (3.59) indicates the boundary to the
Mott lobe with n − 1 Bosons per site, from which also the addition of one particle costs no energy.
The critical value (3.57) does not depend on α. That means that we can say nothing about the
symmetry of the superfluid. We do not know which spin component is populated.
For odd particle numbers per site, the calculation of the phase diagram is not that simple because in
the limit of η → 0 the ground state for an odd number of particles per site is threefold degenerated,
as the states |1, 0, n〉 and |1,±1, n〉 have the same energy. Therefore, one has to use degenerated
perturbation theory which yields a different result for the phase boundary. This is a quite exhausting
task because it involves diagonalizing a 3x3-matrix [60]. However, we can obtain the same result in a
much easier way: Because of the degeneracy, the ground state is a superposition of the form

|Φ0〉 = C1|1, 1, n〉 + C0|1, 0, n〉 + C−1|1,−1, n〉 , (3.60)

where the respective coefficients have to fullfill the normalization condition

|C1|2 + |C0|2 + |C−1|2 = 1 . (3.61)

We consider these three terms separately and calculate the phase boundaries corresponding to them.
The aim of this consideration is to find the role played by the ground states |1, 0, n〉 and |1,−1, n〉
which were not taken into account when performing the calculation for finite η. Thus, we use (3.45)
not only for m = 1 but also for m = 0 and m = −1. Doing this yields

zJcα;m=0,±1(µ) =

[

M2
α,S,m,n

E2,n+1 − E1,n
+

N2
α,S,m,n

E0,n+1 − E1,n
+

O2
α,1,m,n

E2,n−1 − E1,n
+

P 2
α,1,m,n

E0,n−1 − E1,n

]−1

. (3.62)
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Figure 3.9: Zero-temperature phase boundary for vanishing magnetization and U2/U0 = 0.04.

The next step is to determine for which m the value of the critical hopping is minimal. When one also
takes the minimum with respect to α, as done in (3.46), one can both determine which component of
the ground state makes the transition and what kind the superfluid is. It turns out that the component
with m = 0 forms the superfluid which has Ψ0 6= 0. This result is different from the one for finite η
where we had Ψ1 6= 0 or Ψ−1 6= 0. Thus, we get from (3.62) with the matrix elements from Appendix
A the phase boundary

zJc =

{

4(n + 4)

15(−µ + U0n + U2)
+

n + 1

3(−µ + U0n − 2U2)

+
4(n − 1)

15[µ − (n − 1)U0 + 3U2]
+

n + 2

3[µ − (n − 1)U0]

}−1

, (3.63)

which is plotted in Fig. 3.9. From (3.63) we expect a Mott lobe with a given particle number to
have four points where the critical hopping is zero. But one has to keep in mind that (3.63) is
only meaningful, when the particle number n minimizes the ground-state energy for a given chemical
potential µ, as given by the inequalities (3.15) and (3.16).
In Fig. 3.10 we have plotted the first Mott lobe which has one particle per site and S = 1 both for
zero and for very small magnetization. We clearly see, that a discontinuity occurs there. The reason
for this feature is that for any finite η we assumed the ground state in the Mott-insulator phase to
be |1, 1, n〉, which is of course true. But the states |1, 0, n〉 and |1,−1, n〉 have an only slightly higher
energies. The energy difference to the former one is

∆E = E1,0,n − E1,1,n = η . (3.64)

Thus, when η is small, there will be some particles in this state because of quantum fluctuations.
Therefore, we have found that our perturbative mean-field theory is not reliable in this regime. But
other methods, e.g. the Gutzwiller variational ansatz do not have this problem [50,53]. They predict
a smooth behavior of the phase-boundary in the limit of vanishing magnetization. Unfortunately, they
do not yield analytical, but only numerical result.
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Figure 3.10: First Mott lobe (S = 1, n = 1) for U2/U0 = 0.04, η/U0 = 10−5 (blue) and η = 0 (red).

3.5 Phase Diagram at Finite Temperature

In the previous section, we have found the phase boundary between the Mott insulator and the
superfluid phase at zero temperature. Because all experiments are, of course, performed at small
but finite temperatures, it is desirable to extend our results in this respect. As all thermodynamic
properties can be derived from the partition function (3.8), our first step is to calculate this important
statistical quantity.

3.5.1 Partition Function

The definition of the partition function (3.8) involves the full Hamiltonian (2.18). Because we do not
know its eigenstates, we use the Dirac picture in imaginary time to calculate Z at least perturbatively.
In the Dirac picture, the time evolution of the operators is only determined by the unperturbed part
of the Hamiltonian (3.12) and therefore easy to handle as

ÂD(τ) = eĤ0(τ−τ0)ÂeĤ0(τ0−τ) . (3.65)

The time evolution of the states is given by

|ΨD(τ)〉 = ÛD(τ, τ ′)|ΨD(τ ′)〉 , (3.66)

where the Dirac picture 4ution operator is given by [61]

ÛD(τ, τ ′) = Û−1
0 (τ, τ0)Û(τ, τ ′)Û0(τ

′, τ0) . (3.67)

This evolution operator satisfies the differential equation

d

dτ
ÛD(τ, τ0) = −Ĥ1MF,D(τ)ÛD(τ, τ0) , (3.68)

where Ĥ1MF,D is the Dirac picture representation of the mean-field hoping Hamiltonian (3.34). We
transform Eq. (3.68) into an integral equation, while using the initial value condition

ÛD(τ0, τ0) = 1 , (3.69)
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and get

ÛD(τ, τ0) = 1 −
τ
∫

τ0

dτ1Ĥ1MF,D(τ1)ÛD(τ1, τ0) . (3.70)

This can be solved by iteration. Doing this up to second order yields

ÛD(τ, τ0) = 1 −
τ
∫

τ0

dτ1Ĥ1MF,D(τ1) + (−1)2
τ
∫

τ0

dτ1

τ1
∫

τ0

dτ2Ĥ1MF,D(τ1)Ĥ1D(τ2) + O(Ĥ1)
3 . (3.71)

From this, one can easily write down the n-th order as

Û
(n)
D (τ, τ0) = (−1)n

τ
∫

τ0

dτ1

τ1
∫

τ0

dτ2 . . .

τn−1
∫

τ0

dτnĤ1MF,D(τ1)Ĥ1MF,D(τ2) . . . Ĥ1MF,D(τn) . (3.72)

With the help of the imaginary-time ordering operator

T̂
[

Â(τ1))Â(τ2)
]

= Θ(τ1 − τ2)Â(τ1)Â(τ2) + Θ(τ2 − τ1)Â(τ2)Â(τ1) , (3.73)

one can transform the respective integrals in a way that they all have the same boundaries of integra-
tion. Thus, Eq. (3.72) becomes

Û
(n)
D (τ, τ0) =

1

n!
(−1)n

τ
∫

τ0

dτ1

τ
∫

τ0

dτ2 . . .

τ
∫

τ0

dτnT̂
[

Ĥ1MF,D(τ1)Ĥ1MF,D(τ2) . . . Ĥ1MF,D(τn)
]

. (3.74)

The factor n! accounts for all the possible permutations of the n occurring operators. In the next step
we transform the formula for the partition function (3.8). Multiplying it in a suitable way with an
unity factor yields

Z = Tr
{

e−βĤ0eβĤ0e−(β−0)Ĥe−Ĥ0·0
}

, (3.75)

which can be written with the formula for the Dirac time-evolution operator (3.67) as

Z = Tr
{

e−βĤ0ÛD(β, 0)
}

. (3.76)

Eq. (3.76) allows us to calculate the partition function perturbatively with the help of the Dyson series
in (3.74). With the definition of the thermal average (3.7) and the notation, that the superscript (0)

indicates averaging with respect to the unperturbed Hamiltonian (3.12), the partition function becomes

Z(n) =
1

n!
Z(0)(−1)n

β
∫

0

dτ1

β
∫

0

dτ2 . . .

β
∫

0

dτn

〈

T̂
[

Ĥ1D(τ1)Ĥ1D(τ2) . . . Ĥ1D(τn)
]〉(0)

, (3.77)

where the unperturbed partition function is given by (3.17). The standard technique in many-body
theory to calculate correlation functions, like the ones occurring on the right-hand side of Eq. (3.77),
is to use Wick’s theorem [62, 63] which allows to decompose the arising n-point correlation functions
into sums of products of 2-point correlation functions. Unfortunately, we cannot use this important
theorem here because Wick’s theorem is only valid if the unperturbed Hamiltonian is linear in the
occupation number operator n̂, i.e. the unperturbed system behaves like a harmonic oscillator

Ĥ0har = ωn̂ . (3.78)
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This is not the case for the Bose-Hubbard Hamiltonian in the limit J = 0 (3.12), because it contains
terms which are quadratic in n̂. Therefore, we have to got back to (3.71), insert it into (3.76) and
calculate the three arising terms separately. The first term just yields the unperturped partition
function (3.17) again

Z(0) =
∑

S,m,n

〈S,m, n|e−βĤ0 |S,m, n〉 =
∑

S,m,n

e−βES,m,n , (3.79)

while the second one gives the contribution

Z(1) = −〈S,m, n|e−βĤ0

β
∫

0

dτ1Jz
∑

α

|Ψα|2|S,m, n〉 = −Jzβ
∑

α

|Ψα|2
∑

S,m,n

e−βES,m,n . (3.80)

The most interesting and complicated contribution stems from the third term. It reads

Z(2) =
∑

S,m,n

〈S,m, n|e−βĤ0

β
∫

0

dτ1

τ1
∫

0

dτ2Ĥ1D(τ1)Ĥ1D(τ2)|S,m, n〉 . (3.81)

Because we are only interested in terms up to quadratic order in the order parameter Ψ, we skip the
arising quartic term in (3.81). Therefore, we get

Z(2) = z2J2
∑

S,m,n

e−βES,m,n

β
∫

0

dτ1

τ1
∫

0

dτ2〈S,m, n|e−Ĥ0τ1

×
∑

α

(Ψ∗
αâα + Ψαâ†α)eĤ0τ1e−Ĥ0τ2

∑

β

(Ψ∗
β âβ + Ψβ â†β)eĤ0τ2 |S,m, n〉 + . . . . (3.82)

To simplify (3.82) further, we use the fact that the respective matrix elements have the properties

〈S,m, n|âαâ†β |S,m, n〉 ∝ δαβ ,

〈S,m, n|â†αâβ |S,m, n〉 ∝ δαβ ,

〈S,m, n|âαâβ |S,m, n〉 = 〈S,m, n|â†αâ†β|S,m, n〉 = 0 , (3.83)

which are simple consequences of (3.35), (3.36), and the orthonormality of the states (2.21). Using
(3.83) in (3.82) yields

Z(2) = z2J2
∑

S,m,n

e−βES,m,n

β
∫

0

dτ1

τ1
∫

0

dτ2

∑

α

|Ψα|2
[

〈S,m, n|e−Ĥ0τ1 âαeĤ0(τ1−τ2)â†αe−Ĥ0τ2 |S,m, n〉

+ 〈S,m, n|e−Ĥ0τ1 â†αeĤ0(τ1−τ2)âαe−Ĥ0τ2 |S,m, n〉
]

. (3.84)

Now we remember from quantum mechanics, that one can act with operators on the left-hand site of
a scalar product by taking the adjoint operator [61]. Doing this and using (3.35), (3.36) again, one
obtains

Z(2) =z2J2
∑

S,m,n

e−βES,m,n

β
∫

0

dτ1

τ1
∫

0

dτ2e
ES,m,n(τ2−τ1)

∑

α

|Ψα|2
[

M2
α,S,m,neES+1,m+α,n+1(τ1−τ2) (3.85)

+ N2
α,S,m,neES−1,m+α,n+1(τ1−τ2) + O2

α,S,m,neES+1,m−α,n−1(τ1−τ2) + P 2
α,S,m,neES−1,m−α,n−1(τ1−τ2)

]

.
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The next step is to calculate the following elementary imaginary-time integrals,

IS,m,n;S′,m′,n′ =

β
∫

0

dτ1

τ1
∫

0

dτ2 eES,m,n(τ2−τ1)eES′,m′,n′(τ1−τ2) , (3.86)

yielding

IS,m,n;S′,m′,n′ =
e−β(ES′,m′,n′−ES,m,n) − 1

(ES′,m′,n′ − ES,m,n)2
+

β

ES′,m′,n′ − ES,m,n
. (3.87)

Plugging (3.86) in (3.85), we get

Z(2) = z2J2
∑

α

|Ψα|2
∑

S,m,n

e−βES,m,n
(

M2
α,S,m,nIS,m,n;S+1,m+α,n+1 + N2

α,S,m,nIS,m,n;S−1,m+α,n+1

+ O2
α,S,m,nIS,m,n;S+1,m−α,n−1 + P 2

α,S,m,nIS,m,n;S−1,m−α,n−1

)

. (3.88)

Inserting (3.87) there is one term which is proportional to β and a term which is independent of β.
When performing the summation in (3.88), it turns out that the contribution arising from the latter
vanishes. This can be shown by rearranging the terms and shifting summation indices suitably. Thus,
the second-order result (3.88) becomes

Z(0) = z2J2
∑

α

|Ψα|2
∑

S,m,n

e−βES,m,n

(

M2
α,S,m,n

ES+1,m+α,n+1 − ES,m,n
+

N2
α,S,m,n

ES−1,m+α,n+1 − ES,m,n

+
O2

α,S,m,n

ES+1,m−α,n−1 − ES,m,n
+

P 2
α,S,m,n

ES−1,m−α,n−1 − ES,m,n

)

. (3.89)

3.5.2 Phase Boundary

From the connection between the partition function and the grand-canonical free energy (3.9), the
latter can be easily obtained to:

F =
1

β
logZ(0) − 1

β
log

[

1 +
Z(1) + Z(2) + . . .

Z(0)

]

. (3.90)

Using the Taylor series of the logarithm function up to quadratic order in its argument, one gets

F = − 1

β
logZ(0) − 1

β

Z(1) + Z(2)

Z(0)
− 1

β

Z(1)2

2Z(0)2
+ . . . . (3.91)

With this formula, it is possible to write down the grand-canonical free energy as a series in the order
parameter Ψ, exactly as done with the ground-state energy in (3.42). The series reads

F(β) = − 1

β
logZ0 +

∑

α

A(2)
α (β)|Ψα|2 + O(Ψ4) (3.92)

with the coefficients

A(2)
α (β) =

1

Z(0)

∑

S,m,n

e−βES,m,n

[

−Jz + J2z2

(

M2
α,S,m,n

ES+1,m+α,n+1 − ES,m,n
+

N2
α,S,m,n

ES−1,m+α,n+1 − ES,m,n

+
O2

α,S,m,n

ES+1,m−α,n−1 − ES,m,n
+

P 2
α,S,m,n

ES−1,m−α,n−1 − ES,m,n

)]

. (3.93)
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Setting Eq. (3.93) equal to zero, the phase boundary follows in a completely analogous way to the
zero-temperature case, yielding

zJc,α(µ, β) =

∑

S,m,n e−βES,m,n

∑

S,m,n e−βES,m,n

[

M2
α,S,m,n/(ES+1,m+α,n+1 − ES,m,n) + . . .

] . (3.94)

Before discussing this result, a few remarks on the phase diagram for the spinless or scalar Bose-
Hubbard Model, which is shown in Fig. 3.11, should be made [64, 65]. It follows due to a similar
reasoning as in Section 3.4 from (3.94) as the limit of a fully polarized system. The respective formula
reads

zJc =

∑∞
n=0 e−βEn

∑∞
n=0

[

n+1
nU−µ + n

(1−n)U+µ

]

e−βEn

. (3.95)

The phase boundaries in (3.11) are smeared out with higher temperature. This effect is especially
visible in the space between the Mott lobes. In contrast to our zero-temperature result, there exists
a Mott phase even for integer values of µ/U . This is easily understood. At finite temperature, the
average value of the particle number per site in the Mott phase (see Fig. 3.2) is not integer anymore
due to thermal fluctuations. Therefore, the addition of one particle does not change the situation as
dramatically as in the zero-temperature case. In a rough estimate, the hopping must be of the order
of the thermal energy kBT to form a superfluid. This can be easily seen by looking at the minima
of the phase boundary in Fig. 3.11. On the tips of the lobes, the effect induced by temperature is
much weaker because the avarge particle number per site is almost integer and thermal fluctuations
are small.
After this excursion, we return to the system of spin-1 Bosons. We have plotted this result (3.94) in
Fig. 3.12 for different temperatures but otherwise equal parameters as in Fig. 3.7. The shift of the
phase boundary in the region between the lobes results from the same effect as in the scalar case and
does not deserve further discussion. The interesting new feature is the fact that the phase boundaries
for different temperature cross. The clear difference between odd and even particle numbers, which
occurs for zero temperature, continuously vanishes for higher temperatures. To explain this, we recall
the reason for this even-odd asymmetry. The stabilization of the Mott lobes with an even particle
number per site is a result of the formation of spin-singlet pairs. The energy scale for their formation
is given by the spin asymmetric interaction energy U2. If now the thermal energy is larger than U2,
the singlet pairs are destroyed by thermal fluctuations, i.e. they melt. In Fig. 3.13, the phase diagram
is shown for the same temperatures but much larger spin asymmetric interaction U2. Here this effect
is of course much weaker because the spin-dependent interaction is much larger and a substantial
melting of the singlet pairs would only occur at much higher temperature.

We investigate now if our results reproduce correctly the zero-temperature limit of T → 0. As already
discussed in Subsection 3.2.2, the main contribution to the sums in (3.94) comes from the ground
state. Let the ground state be |S, S, n〉. With the help of (3.20) we get from (3.94)

zJc,α(µ, β) → e−βES,m,n

e−βES,m,n

(

M2
α,S,m,n

ES+1,m+α,n+1−ES,m,n
+ . . .

) , (3.96)

which yields

zJc,α(µ, T = 0) =

(

M2
α,S,m,n

ES+1,m+1,n+1 − ES,m,n
+ . . .

)−1

. (3.97)

Thus, we have reproduced our zero-temperature result (3.45). As an interesting special case one can
consider now the limit of vanishing magnetization η → 0. In this case the unperturbed energies and
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Figure 3.11: Phase diagram for effectively spinless Bosons for kBT/U0 = 0.01 (red), kBT/U0 = 0.02
(blue), and kBT/U0 = 0.05 (green).

also the integrals (3.87) only depend on the quantum numbers S and n. We introduce the definition

M̃α,S,n =
∑

m

M2
α,S,m,n (3.98)

and similar ones for the other matrix elements N , O, P . When we now rearrange the sums in (3.89),
we can write the result in the more compact form

Z2 = J2z2
∑

α

|Ψα|2
∑

S,n

e−βES,n

(

M̃α,S,nIS,n;S+1,n+1 + Ñα,S,nIS,n;S−1,n+1

+Õα,S,nIS,n;S+1,n−1 + P̃α,S,nIS,n;S−1,n−1

)

. (3.99)

Explicit formulas for M̃ , Ñ , Õ, and P̃ are given in Eq. (A.92). It turns out that they are equal for
all spin components (e.g. M̃α,S,n = M̃β,S,n). This means that also the Landau coefficients A(2) in
Eq. (3.93) do not depend on α, a result which is expected from the zero-temperature calculation.
Therefore, it seems that the superfluid does not have only a single component, as for finite η, where
we had Ψ1 6= 0 or Ψ−1 6= 0. To find out what the symmetry of the superfluid phase is in this special
situation one has to calculate the next term in the Landau expansion (3.92), which is A(4).
Note, that we have exclusively discussed the transition to a superfluid phase. We have not considered
different kinds of Mott phases which can be characterized by their magnetic properties and which were
already discussed in Ref. [66].
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Figure 3.12: Phase boundary for the parameters U2/U0 = 0.04, η/U0 = 0.05, as well as kBT/U0 = 0.01
(red), kBT/U0 = 0.02 (blue), and kBT/U0 = 0.05 (green).
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Figure 3.13: Phase boundary for the parameters U2/U0 = 0.5, η/U0 = 0.9, and kBT/U0 = 0.01 (red),
kBT/U0 = 0.02 (blue), and kBT/U0 = 0.05 (green).
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Chapter 4

Time-of-Flight

In the previous chapter we have calculated the phase boundary between a Mott insulator and a
superfluid phase. Unfortunately, the respective results are not comparable with experiments. As Bose-
Einstein condensates are very small, they are hard to investigate directly. In spite of the fact that there
are nevertheless possibilities to measure some properties by non-destructive in-situ measurements like
phase-contrast imaging [31], the standard experimental technique to investigate them is a time-of-
flight measurement. The key idea behind it is the following [67]: When the optical lattice and also the
additional confining trap is turned off, the gas expands. After some holding time of approximately
100 ms, an absorption image of the cloud is taken. Because the size of the trapped gas is much smaller
than the size of the expanded cloud, the initial system can be well approximated as being point-
like. Furthermore, because of the low density, interactions after switching off the lattice can also be
neglected. Under these assumptions, the time-of-flight picture stems from the initial momentum-space
density n(k). The faster a particle is, the farer it gets during a given expansion time. Of course the
images are only two-dimensional and we, therefore, have to integrate n(k) over one axis in order to
get pictures which are comparable with the experimental data, see for example in Ref. [17].
The fact that we are dealing here with spinor Bosons, which have the three hyperfine spin components
m = 0,±1, provides an interesting way of getting additional information out of a time-of-flight picture.
Because the different hyperfine spin components have different magnetic moments, as µz = mµB with
the Bohr magneton µB, it is possible to separate the components during the expansion time by an
additional inhomogeneous magnetic field [68, 69]. This is in complete analogy to the famous Stern-
Gerlach experiment in which the quantum nature of magnetic moments and the existence of spin was
discovered and which is extensively discussed in Ref. [70]. Our next goal should, therefore, be to
calculate the spin resolved momentum space density nα(k).

4.1 Zero Temperature

In this section, we consider a system at zero-temperature. Thus, we are dealing with pure quantum
physics which is not obfuscated by thermal fluctuations.

4.1.1 Limit of Vanishing Interaction

Until now, we have considered the Bose-Hubbard model in the limit of strong interactions, which
means that J ≪ U0. This allowed us to treat the hopping term in (2.18) as a perturbation. We will
continue this consideration in the next subsection but in order to get some information about the
system properties deep in the superfluid phase, we will in this section briefly discuss the opposite limit

35



36 4.1. ZERO TEMPERATURE

U0,2 → 0. For this situation the Hamiltonian (2.18) reads

ĤU0=U2=0 = −µ
∑

i

∑

α

â†iαâiα − J
∑

<i,j>

∑

α

â†iαâjα − η
∑

i

Ŝz
i . (4.1)

Using (2.19) and defining

µα =







µ + η, α = 1
µ, α = 0
µ − η, α = −1

, (4.2)

we can write (4.1) as

ĤU0=U2=0 = −
∑

α

µα

∑

i

â†iαâiα − J
∑

<i,j>

∑

α

â†iαâjα . (4.3)

This Hamiltonian can be diagonalized by performing a Fourier transformation [71]. To this end, we
write the creation and annihilation operators as

âiα =
1√
NS

∑

k

âkαe−ik·ri , â†iα =
1√
NS

∑

k

â†
kαeik·ri , (4.4)

where NS is the number of lattice sites. Note that we have to sum k over all vectors of the reciprocal
lattice which are in the first Brillouin zone. Inserting (4.4) into (4.3) yields

ĤU0=U2=0 = −
∑

α

∑

k

[J(k) + µα] â†
kαâkα (4.5)

with the lattice-dispersion relation

J(k) = 2J

3
∑

ν=1

cos(kνa) . (4.6)

Introducing the density operators in momentum space, which read n̂kα = â†
kαâkα, Eq. (4.5) becomes

ĤU0=U2=0 = −
∑

α

∑

k

[J(k) + µα] n̂kα . (4.7)

The natural basis of eigenstates of this Hamiltonian is the momentum-space occupation number re-
presentation. The corresponding states will be denoted as

|(nk1,1, nk2,1, . . . , nkm,1), (nk1,0, nk2,0, . . . , nkm,0), (. . . , . . . , . . . )〉 , (4.8)

which we can shorten to |nk,1,nk,0,nk,−1〉. The respective eigenvalues are

Enk,1,nk,0,nk,−1
= −

∑

α

∑

k

(ǫk + µα)nkα . (4.9)

Because we are dealing here with Bosons, there is nothing like the Pauli principle, and at T = 0 all
particles are in the ground state. From (4.9) we see that the energy has its minima at the maxima of
J(k) in Eq. (4.6). Thus, we get

kα =
2π

a





hα

kα

lα



 ; hα, kα, lα = 0, 1, . . . . (4.10)
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Therefore, we can see that, for T = 0, all particles occupy the states given by (4.10). Thus, the
time-of-flight picture is just an image of the reciprocal lattice. For the simple cubic lattice discussed
here, the reciprocal lattice is also a simple cubic one [72] as it is shown in Fig. 4.3. We want to mention
here the similarity to X-ray diffraction where also sharp peaks at the reciprocal lattice points exist
which are called Bragg peaks. These peaks stem from the constructive interference of electromagnetic
waves scattered at the atoms on the lattice sites while the peaks in our case stem from the interference
of matter waves. The former are really non-interacting, while for the latter we have only used this
assumption as a rough approximation deep in the superfluid phase. We will see in the next subsection
that in the Mott phase, where interactions are important, the situation changes dramatically and the
analogy with Bragg scattering gets destroyed.
Note that it is also, at least in principle, possible to take the limit of vanishing interaction as a
starting point and consider the effects which are due to the interaction perturbatively. However, this
approach does not yield a quantum phase transition, i.e. the system is superfluid for every value of
the interaction strengths as discussed in Ref. [71]. Furthermore, there is some additional issue when
considering the Bose-Hubbard model in the weak-coupling limit. When we have decomposed the wave
function in (2.9), we have used the Wannier functions which are sharply peaked around the lattice
sites. This enabled us to neglect all but the on-site interactions and all but the nearest neighbor
hopping processes. These assumptions are surely no longer true when the optical lattice is switched
off completely. This situation corresponds to a homogeneous Bose gas where all atoms are known to
occupy the state with k = 0 for T = 0 [73,74]. Thus, we expect the sharp interference peaks which are
shown in Fig. 4.3 to be existent only for not too low lattice depths. For even lower lattices all peaks
but the one in the middle, i.e. the one corresponding to k = 0, should become weaker and completely
disappear for vanishing lattice depth V0 → 0. This theoretical prediction is also confirmed by the
experimental observations in Ref. [17].

4.1.2 Correlation Functions

After having roughly examined the limit of vanishing interaction, we now come back to the strong-
coupling limit. In a first step, we calculate the correlation function of the creation and annihilation
operators 〈â†kαâlα〉, which is first done for zero temperature and in the next subsection generalized
to finite temperatures. For T = 0, the symbol 〈·〉 denotes the quantum mechanical expectation
value over the ground state of the system. The mean-field approach, which has been successfully
employed to calculate phase boundaries, is not suitable here. The reason for this is the fact that the
Hamiltonian (3.33) is local and, therefore, correlations between different lattice sites are zero in the
whole Mott phase. A far better and conceptually even easier idea is to take the full Bose-Hubbard
Hamiltonian (2.18) and employ the so-called strong-coupling expansion [75]. Here we use the hopping
term (3.28) as a perturbation to calculate shifts to the eigenenergies and eigenstates with the help
of Rayleigh-Schrödinger perturbation theory. Because we are dealing with a non-local Hamiltonian
now, we have to find a convention for denoting states with different values of S, m, and n on different
lattice sites. Because the unperturbed Hamiltonian (3.12) is local, the ground state of Ĥ0 has the same
quantum numbers on every site, which we will denote by {S,m,n}. When some sites have different
quantum numbers, these will be stated explicitly. For example, the state |{S,m,n}, {Si,mi, ni}〉 has
the quantum numbers Si, mi, ni on the lattice sites i while the other sites have the quantum S, m, n.
Note that our approach is restricted to the case η 6= 0 because for η = 0 we have a degenerated ground
state for an odd particle number per site. Therefore, the undegenerated perturbation theory does
not apply and we would have to consider degenerated perturbation theory instead. However, we will
not carry out these calculations here because the finite-temperature approach described later on will
provide us with tools to consider this situation in a much easier way. In order to find the correlation
functions which read

〈â†kαâlα〉 = 〈Φ|â†kαâlα|Φ〉 , (4.11)
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where Φ is the ground state of the system, we need to find the shifts to the energies first. The first
order shifts read

E
(1)
{S,m,n} = 〈{S,m,n}|Ĥ1|{S,m,n}〉 = −Jz

∑

α

∑

<i,j>

〈{S,m,n}|â†iαâjα|{S,m,n}〉 = 0 . (4.12)

The corresponding first-order shifts to the eigenstates are given by

|{S,m,n}(1)〉 =
∑

{S,m,n}′ 6={S,m,n}

〈{S,m,n}′|Ĥ1〉{S,m,n}〉
E{S,m,n} − E{S,m,n}′

|{S,m,n}′〉

=J
∑

<i,j>

[

Mα,S,m,nOα,S,m,n

U0 + (2S + 2)U2
|{S,m,n}, {Sj +1,mj +α, nj−1}, {Si+1,mi−α, ni−1}〉

+
Nα,S,m,nOα,S,m,n

U0 + U2
|{S,m,n}, {Sj−1,mj +α, nj−1}, {Si+1,mi−α, ni−1}〉

+
Mα,S,m,nPα,S,m,n

U0 + U2
|{S,m,n}, {Sj +1,mj +α, nj−1}, {Si−1,mi−α, ni−1}〉

+
Nα,S,m,nPα,S,m,n

U0 − 2SU2
|{S,m,n}, {Sj−1,mj +α, nj−1}, {Si−1,mi−α, ni−1}〉

]

.

(4.13)

Inserting (4.13) into (4.11), we can calculate

〈â†kαâlα〉 =
(

〈{S,m,n}| + 〈{S,m,n}(1)| + . . .
)

â†kαâlα

(

|{S,m,n}〉 + |{S,m,n}(1)〉 + . . .
)

=〈{S,m,n}|â†kαâlα|{S,m,n}〉 + 〈{S,m,n}|â†kαâlα|{S,m,n}(1)〉
+ 〈{S,m,n}(1)|â†kαâlα|{S,m,n}〉 + O(J2) . (4.14)

From the denominators in (4.13) we see that the result does depend neither on the chemical nor on the
magneto-chemical potential. The reason for this is that we are considering processes where one particle
is created and another one annihilated, thus leaving the total particle number constant. Furthermore,
these particles both carry mF = α, thus leaving also the magnetization constant. The values of η and
µ are nevertheless important because they determine the ground state of the system as described in
Section 3.2. Using the orthonormality of the unperturbed eigenstates (2.21), we get the result

〈â†kαâlα〉 = δklnα + δd(k,l),12JCα + O(J2) (4.15)

with the coefficients
nα = O2

α,S,m,n + P 2
α,S,m,n (4.16)

and

Cα =
M2

α,S,m,nO2
α,S,m,n

U0 + (2S + 2)U2
+

M2
α,S,m,nP 2

α,S,m,n

U0 + U2
+

N2
α,S,m,nO2

α,S,m,n

U0 + U2
+

N2
α,S,m,nP 2

α,S,m,n

U0 − 2SU2
. (4.17)

In a magnetized gas with η > 0, there is always m = S for a system in the ground state and we
can, therefore, use the formulas for the matrix elements in Appendix A to write down the expansion
coefficients in a more explicit form:

n1 =
n + (n + 2)S + S2

3 + 2S
, (4.18)

C1 =
(n − S)(S + 1)(n + S + 3)

(2S + 1)(2S + 3)2[U0 + (2S + 2)U2]
+

(n + S + 3)(n + S + 1)(S + 1)S

[4(S + 2)S + 3](U0 + U2)
. (4.19)
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The other two components are calculated in a completely analogous way. The respective results are:

n0 =
n − S

2S + 3
, (4.20)

C0 =
2(n − S)(n + S + 3

(2S + 3)2[U0 + 2(S + 2)U2]
(4.21)

for the component with α = 0 and

n−1 =
(n − S)(S + 1)

2S + 3
, (4.22)

C−1 = 2(n − S)(S + 1)

{

(n − S + 2)S

[3 + 4S(S + 2)](U0 + U2)
+

n + S + 3

(2S + 1)(2S + 3)2[U0 + 2(S + 1)U2]

}

(4.23)

for the one with α = −1. When we sum (4.18), (4.20), and (4.22) we obtain the relation

n1 + n0 + n−1 = n , (4.24)

which is of course also obvious on physical ground because the sum of the particle number in the
different hyperfine spin components must just be the total particle number. Because of its connection
to the scalar Bose-Hubbard model, as discussed above, we briefly consider the limit of a fully polarized
gas. In order to obtain a result in this limit, we remember that for this special situation, we have
n = S and put this together with U = U0 + U2 into (4.18) to obtain n1 = n, C1 = n(n + 1). From
(4.17) we get in this special situation, furthermore, n0 = n−1 = C0 = C−1 = 0. This is exactly the
result obtained by directly considering the Bose-Hubbard model for scalar Bosons as done in Ref. [23].
To find out more about the correlations, we have a closer look at (4.15). The first term is local, it is
just the boson number per site in the state mF = α. The second term is proportional to the hopping
element and describes correlations between sites which are nearest neighbors. Because of the simple
perturbation theory which we have applied, there are no correlations between sites which are more
than one lattice spacing away. In general, we can say that, if we neglect terms of the order Jn, then

〈â†kαâlα〉 = 0 for d(k, l) ≥ n . (4.25)

From this fact, one can see that this simple strong-coupling expansion breaks down near the critical
point where we expect correlations on all length scales [5, 76]. To get the phase boundary from the
strong-coupling expansion, a resummation is necessary, which will be done for the special case of
spinless Bosons in Subsection 6.1.2.
The ratio between Cα and nα in (4.15) is a good measure for the strength of the correlations between
different lattice sites. In Fig. 4.1 we have plotted this ratio against U2. Note that here we did not,
like in the previous presentations, normalize to U0 but to Utotal = U0 + U2. The reason for this is that
we want to see the effects resulting from the spin asymmetric interaction and not the trivial lowering
of the correlations with higher total interaction.

4.1.3 Time-of-Flight Pictures

Now we turn to the calculation of the momentum space density generalizing the approach used in
Ref. [23] for the scalar Bose-Hubbard model. It reads

nα(k) = 〈Ψ̂†
α(k)Ψ̂α(k)〉 , (4.26)

where the field-operators in momentum-space Ψ̂†
α(k) and Ψ̂(k)α are the Fourier transforms of the

field-operators in real-space, i.e. Ψ̂†(x)α and Ψ̂(x)α, which occur in (2.7). With the definition of the
Fourier transform and the Wannier decomposition (2.9) we obtain from (4.26)

nα(k) =
1

(2π)3

∑

i,j

∫

d3x

∫

d3x′eikxw∗(x)e−ikx′

w(x′)eik(xi−xj)〈â†iαâjα〉 . (4.27)
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Figure 4.1: Relative amount of correlations between nearest-neighbor sites depending on the spin
asymmetric interaction.

Now we introduce the explicit form of the Fourier transform of the Wannier function in the harmonic
approximation

w(k) =
a3

π9/2

√

Ṽ0
3

exp

(

− a3

π2
√

Ṽ0

k2

)

(4.28)

with the dimensionless lattice depth Ṽ0 = V0/ER. Inserting this together with the quasi-momentum
distribution

Sα(k) =
∑

i,j

〈â†iαâjα〉eik(xi−xj) (4.29)

into (4.27) allows us to write
nα(k) = |w(k)|2Sα(k) . (4.30)

Inserting (4.15) into (4.29) yields the result

Sα(k) = NS

[

nα + 4JCα

3
∑

ν=1

cos(kνa) + . . .

]

. (4.31)

Because the experimental absorption pictures are only two-dimensional, we must integrate our result
for the momentum-space density (4.30) over one axis, which is here chosen to be the z-axis. Having a
closer look at Eqs. (4.29)–(4.30) we see that the only contribution which does not only yield an overall
prefactor is

∞
∫

−∞

dkz exp

(

− 1

π2
√

Ṽ0

k2

)

cos kza =
π3/2Ṽ

1/4
0

a
exp

(

−π2
√

Ṽ0

4

)

. (4.32)

We note that for large lattice depths, i.e. Ṽ0 ≫ 1, the contribution from (4.32) in negligible. This
means that, deep in the Mott regime, we can drop the term with cos(kza) in (4.29) and skip the
integration over the z-axis. Thus, we can consider an effective two-dimensional system. However, for
shallow lattices the contribution (4.32) becomes important. Therefore, we have taken it into account
when calculating the pictures, which we have plotted in Fig. 4.2.
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Figure 4.2: Theoretically calculated time-of-flight pictures for S = 1, n = 3, and U2 = 0.04U0. From
left to right: n1(k), n0(k), n−1(k), n(k). Lattice depth: V0 = 30ER (First line), V0 = 14ER (Second
line), V0 = 8ER (Third line).

Figure 4.3: Momentum-space density for the limit of vanishing interaction. Note that the black spots
are infinitely small.
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One can clearly see from these pictures that, for deep lattices, there are no structures. This is
understandable because in the deep Mott regime the particles on different sites are completely isolated
from each other. Their relative phases are random and there exists no coherence between them.
Therefore, one should not expect any interferences. When the lattice is made shallower, more tunneling
takes places and interferences occur which lead to the dark spots visible in Fig. 4.2. We want to stress
here again that the used strong-coupling expansion is only valid in the Mott phase and it is quite a
crude approximation to use it, for example, in Fig. 4.2 where the value V0 = 8ER clearly corresponds
to a system in the superfluid phase. Therefore, the very sharp peaks seen in experiments [17,77] and
which are calculated in Section 4.1.1 are not reproduced by the theory presented here.
The effects arising from the spin-dependent interaction are not clearly visible in Fig. 4.2, because they
change the situation not in a qualitative, but only in a quantitative way, as it is already expected
from Eqs. (4.30) and (4.31). The main intensity is concentrated in the spin-component parallel to the
external field, while the other components are populated less and also show less correlations, as also
seen in Fig. 4.1.

4.1.4 Visibility

The time-of-flight pictures, which were discussed above, are difficult to compare with experimental
data in a quantitative way because of various unknown factors. For example, the pictures crucially
depend on the sensitivity of the used detector. To overcome this problem, it is useful to define
a quantity, which is independent of normalization, but incorporates the essential feature, i.e. the
difference between dark and bright spots. The quantity, which is chosen conveniently, is called the
visibility. It was used in the experimental work for spinless Bosons in Refs. [77, 78]. We extend this
definition to the spin-1 case and write

Vα =
nαmax − nαmin

nαmax + nαmin
, (4.33)

where nαmax and nαmin are the maximal and minimal densities in the kx − ky – plane. Restricting
ourselves to deep lattices allows us to use the two-dimensional approximation described in Subsection
4.1.2. Thus, we can cancel the Fourier transform of the Wannier function arising from (4.30) and
rewrite (4.33) as

Vα =
Sα(kmax) − Sα(kmin)

Sα(kmax) + Sα(kmin)
, (4.34)

where kmax = (2π/a, 0) and kmin = (
√

2π/a,
√

2π/a) are the positions of the first maximum and
minimum in the two-dimensional kx − ky-plane.
Because the different hyperfine states enter (4.31) only via the coefficients nα and Cα, the extremal
values of the wave vectors Sα(kmax) and Sα(kmin) do not depend on the spin index α. The maximal
value of the relevant cosine factor in the kx − ky – plane, i.e.

cos(kxa) + cos(kya) , (4.35)

is cos(2π) + cos(2π) = 2 while the minimal value is cos(
√

2π) + cos(
√

2π) ≈ −0.53. Inserting these
values into (4.34) yields

Vα =
nα + 8JzCα − [nα + 8JzCα] cos(

√
2π) + . . .

nα + 8JzCα + [nα + 8JzCα] cos(
√

2π) + . . .
. (4.36)

In order get the final first-order result, we must expand (4.36) for small J . Doing this yields

Vα = 4zJ
[

1 − cos(
√

2π)
] Cα

nα
+ O(J2) . (4.37)

We see, that the result in (4.37) is directly proportional to the quantity Cα/nα which we have already
plotted in Fig. 4.1 as a function of the spin-dependent interaction.
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4.2 Finite Temperature

In the previous section, we have calculated the correlation functions for T = 0, from which we were
able to derive the corresponding time-of-flight pictures. In this section, we investigate how they are
affected by finite temperature.

4.2.1 Correlation Functions

In this subsection, we calculate the correlation function for finite temperature up to first order in the
hopping parameter J . In order to do this, we will employ exactly the same formalism which was also
used for the calculation of the grand-canonical free energy in mean-field approximation in Section 3.5.
The correlation function for finite temperature is defined as the thermal average

〈â†kαâlα〉 =
1

Z̃
Tr
{

â†kαâlα e−βĤ
}

, (4.38)

where Z̃ is the partition function of the full non-local Hamiltonian (2.18). Now we write Eq. (4.38) in
complete analogy to (3.76) as

〈â†kαâlα〉 =
1

Z̃
Tr
{

â†kαâlα e−βĤ0UD(β, 0)
}

, (4.39)

where the Dirac time-evolution operator is given by the Dyson series (3.72) with the perturbation
operator (3.28) which reads in the Dirac picture:

Ĥ1D(τ) = −J
∑

<i,j,>

eĤ0τ
∑

α

â†iαâjα e−Ĥ0τ . (4.40)

Note that in the denominator in (4.39), we have the full partition function Z̃ which must be also
calculated as a power series in the hopping matrix element J . Because the diagonal matrix elements
of the perturbation Hamiltonian (3.28) vanish, which stems from the fact that

〈{S,m,n}|â†iαâjα|{S,m,n}〉 = 0 , i 6= j , (4.41)

there is no first-order contribution to the partition function. Thus, we can replace the full partition
function Z̃ in (4.39) by the unperturbed partition function Z̃(0) which is connected to the known
partition function of the local system in Eq. (3.27) by

Z̃(0) =
[

Z(0)
]NS

. (4.42)

Now we take (3.72) up to first order and insert it into (4.39). When we now write the trace in a more
explicit form, we obtain for the zeroth order

〈â†kαâlα〉(0) = δk,l〈n̂α〉(0) =
δk,l

Z(0)

∑

S,m,n

〈S,m, n|â†αâα|S,m, n〉e−βES,m,n , (4.43)

where it is worth noting that this result, unlike its zero-temperature analog, does depend on the
chemical and the magneto-chemical potential. The reason for this is obvious: Because for finite
temperature no integer average particle number or magnetization exists, the parameters µ and η are
needed to control those quantities. With the help of (A.89), Eq. (4.43) can be simplified to

〈â†kαâlα〉(0) =
δk,l

Z(0)

∑

S,m,n

[

O2
α,S,m,n + P 2

α,S,m,n

]

e−βES,m,n . (4.44)
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The first order in J yields for the correlation function

〈â†kαâlα〉(1) =
∑

{S,m,n}

J

Z̃(0)
〈{S,m,n}|â†kαâlα e−βĤ0

∑

γ

∑

<i,j>

β
∫

0

dτ â†iγ âjγ|{S,m,n}〉 . (4.45)

Because we only sum over diagonal elements, we must have equal numbers of creation and annihilation
operators on every sites. Together with the same argument for the magnetic quantum number m,
Eq. (4.45) becomes

〈â†kαâlα〉(1) =
δd(l,k),1J

Z(0)

∑

{S,m,n}

〈{S,m,n}|â†kαâlα e−βĤ0

β
∫

0

dτ â†kαâlα|{S,m,n}〉 . (4.46)

With the matrix elements from Appendix A and the energy eigenvalues of the unperturbed Hamiltonian
(3.14) we obtain from (4.46)

〈â†kαâlα〉(1) =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

×
[

M2
α,Sk,mk,nk

O2
α,Sl,ml,nL

β
∫

0

e−τ(ESl,ml,nl
+ESk,mk,nk

)e(τ−β)(ESl+1,ml−α,nl−1+ESk+1,mk+α,nk+1)

M2
α,Sk,mk ,nk

P 2
α,Sl,ml,nl

β
∫

0

e−τ(ESl,ml,nl
+ESk,mk,nk

)e(τ−β)(ESl−1,ml−α,nl−1+ESk+1,mk+α,nk+1)

N2
α,Sk,mk,nk

O2
α,Sl,ml,nl

β
∫

0

e−τ(ESl,ml,nl
+ESk,mk,nk

)e(τ−β)(ESl+1,ml−α,nl−1+ESk−1,mk+α,nk+1)

N2
α,Sk,mk,nk

P 2
α,Sl,ml,nl

β
∫

0

e−τ(ESl,ml,nl
+ESk,mk,nk

)e(τ−β)(ESl−1,ml−α,nl−1+ESk−1,mk+α,nk+1)

]

. (4.47)

The following calculation is rather tedious but neither mathematically or physically enlightening and,
therefore, deferred to Appendix B. Its final result (B.12) reads

〈â†kαâlα〉(1) =
δd(l,k),12J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

e−β(ESk,mk,nk
−ESl,ml,nl

)

×
[

M2
α,Sk,mk,nk

O2
α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sk + Sl + 2)
+

M2
α,Sk,mk,nk

P 2
α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sl − Sk + 1)

+
N2

α,Sk,mk,nk
O2

α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sk − Sl + 1)
+

N2
α,Sk,mk,nk

P 2
α,Sl,ml,nl

U0(nk − nl + 1) − U2(Sk + Sl)

]

. (4.48)

When we take the zero-temperature limit of (4.48), we can easily see that we get back (4.17) which
is the result we calculated directly with ordinary T = 0 perturbation theory. Therefore, our finite
temperature calculation is consistent with our previous result.

4.2.2 Particle Number

Before we come to the discussion of the temperature dependence of the correlation function, it is
instructive to consider the thermal averages of the on-site particle numbers in the three hyperfine
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Figure 4.4: Thermal average of particle number per site for the different hyperfine states for the
parameters U2/U0 = 0.05, η/U0 = 0.05 (left), and U2/U0 = 0.5, η/U0 = 0.9 (right). Blue: 〈n̂1〉. Red:
〈n̂0〉. Green: 〈n̂−1〉. Black: total, 〈n̂〉.

components with respect to the unperturbed Hamiltonian (3.12). These quantities are given by (4.44).
Note that in Fig. 3.1 we have only shown the total particle number per site, while we now want to
resolve the different spin components. When we consider a non-magnetized system, i.e. η = 0, all
hyperfine components have the same particle numbers, i.e

〈n̂1〉 = 〈n̂0〉 = 〈n̂−1〉 =
1

3
〈n̂〉 , (4.49)

where we have omitted the index (0). This is also clear for symmetry reasons. When the system is
magnetized, i.e. η > 0, the situation becomes more interesting because the occupation numbers of
the different hyperfine components differ from each other and change also in a non-trivial way with
the chemical potential µ. This effect stems again from the competition between the Zeeman energy η,
the spin-dependent interaction energy U2, and the thermal energy kBT . In Fig. 4.4, we have plotted
this dependence for the parameter values which were also used when discussing the phase boundary
in Chapter 3.

4.2.3 Visibility

Because of the structure of (4.15), temperature can not change the time-of-flight pictures in a qua-
litative way. The only quantities which are affected are the coefficients nα and Cα in (4.17). The
first-order expression for the correlation function (4.15) now reads

〈â†kαâlα〉 = δklnα(T ) + δd(k,l),12JCα(T ) + O(J2) . (4.50)

Comparing (4.43) and (4.48) with (4.31) we can write the temperature-dependent coefficients in (4.50)
as

nα(T ) =〈â†kαâlα〉(0) =
1

Z(0)

∑

S,m,n

〈S,m, n|â†kαâkα|S,m, n〉e−βEs,m,n

=
1

Z(0)

∑

S,m,n

[

O2
α,S,m,n + P 2

α,S,m,n

]

e−βES,m,n (4.51)



46 4.2. FINITE TEMPERATURE

and

Cα(T ) =
1

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

e−β(ESk,mk,nk
+ESl,ml,nl

)

×
[

M2
α,Sk,mk,nk

O2
α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sk + Sl + 2)
+

M2
α,Sk ,mk,nk

P 2
α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sl − Sk + 1)

+
N2

α,Sk,mk,nk
O2

α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sk − Sl + 1)
+

N2
α,Sk,mk,nk

P 2
α,Sl,ml,nl

U0(nk − nl + 1) − U2(Sk + Sl)

]

. (4.52)

Thus, the temperature-dependent visibility becomes

Vα(T ) = 4zJ
[

1 − cos(
√

2π)
] Cα(T )

nα(T )
+ O(J2) . (4.53)

Furthermore, we define the total visibility as

V(T ) = 4zJ
[

1 − cos(
√

2π)
]

∑

α Cα(T )
∑

α nα(T )
+ O(J2) . (4.54)

From (4.53) we see, that both the dependence of the visibility on the spin and its temperature depen-
dence is contained in the ratio Cα(T )/nα(T ) whose zero-temperature analog we have already shown in
Fig. 4.1. Before turning to the general spinor case, we consider at first place the limiting case of a fully
polarized system which is, as already discussed in Chapter 3, equivalent to the scalar Bose-Hubbard
model. In Fig. 4.5, we have plotted (4.53) only for α = 1 as the other components vanish. Comparing
the left and the right side in Fig. 4.5, one notes that the visibility is larger for integer than for frac-
tional fillings. The reason for this is the following: For fractional filling, the thermal fluctuations are
larger. This is explained in more detail in Subsection 6.1.4. Thus, the quantum correlations between
the sites, which produce the characteristic intensity distribution measured by the visibility, get more
suppressed.
After having understood this special case, we now come back to our main problem. For a spinor system
without magnetization, the visibility prefactors are the same for all hyperfine components. They get
reduced for higher spin-dependent interaction as already encountered for the zero-temperature case in
Fig. 4.1. Again, the situation is more interesting for a magnetized system. In Fig. 4.6 we have plotted
the visibility prefactors for the three hyperfine components, while we have used the same parameters
as in the discussion of the phase transition in Chapter 3. The most striking feature is the fact that
the visibility for the components with α = 0 and α = −1 is not a monotonically decreasing function
of the temperature. This seems a bit strange at first sight but becomes understandable after recalling
that the zero temperature ground state for the used parameters is |1, 1, 3〉. Thus the components with
m = 0 and m = −1 are not occupied at all for T = 0. Thermal fluctuations lead to an occupation of
these states which results in an increasing visibility. But of course the competing process also takes
place, i.e. the thermal fluctuations destroy the quantum correlations. For higher temperatures this
process becomes dominant which results in a decreasing visibility.
To conclude the discussion of this chapter, we make the following remark: We have only considered
the correlation function 〈â†iαâjα〉 but, of course, there also exist correlation functions 〈â†iαâjβ〉 with
β 6= α. They are also of interest but because there exists at the present time no experimental way to
measure them, we will not consider them further.



CHAPTER 4. TIME-OF-FLIGHT 47

T/U0

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

C1(T )/n1(T )

T/U0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
C1(T )/n1(T )

Figure 4.5: Visibility prefactor C1(T )/n1(T ) for fully polarized system. Left: Integer filling with
〈n〉 = 1 (red), 〈n〉 = 2 (blue), 〈n〉 = 3 (black). Right: fractional filling: 〈n〉 = 0.5 (red), 〈n〉 = 1.5
(blue), 〈n〉 = 2.5 (black).
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Figure 4.6: Visibility prefactor Cα(T )/nα(T ) for the parameters η = 0.05U0, U2 = 0.04U0, 〈n〉 = 1
and the hyperfine components α = 1 (red), α = 0 (blue), α = −1 (black).
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Chapter 5

Diagrammatic Green’s Functions

Approach

In this chapter we introduce a different and more general method to calculate various properties of
Bosons in optical lattices. We will restrict ourselves to the scalar Bose-Hubbard model which describes
Bosons having no spin degrees of freedom. As we have already seen above, this corresponds to a fully
polarized system where all atoms are in the same hyperfine state. As this is the experimentally
realized situation when condensates are produced in magnetic traps, and these devices are used in
most experiments, this case is very relevant.

5.1 Preliminaries

Before we turn to the development of our formalism, we have to state some preliminaries which we do
in this section.

5.1.1 Scalar Bose-Hubbard Model

The scalar Bose-Hubbard model can be easily derived from scratch but here we just obtain it from the
spin-1 model (2.18) by setting the spin-dependent interaction U2 to zero. We do not need a magneto-
chemical potential in this situation, so we can also set η = 0. Doing this and renaming U0 → U , we
obtain the Hamiltonian

Ĥ =
∑

i

U

2
[n̂i(n̂i − 1) − µn̂i] − J

∑

<i,j>

â†i âj , (5.1)

where n̂ = â†i âi denotes the particle-number operator on site i. As done in the previous chapters, we
work in the strong-coupling limit and therefore split (5.1) into two parts:

Ĥ = Ĥ0 + Ĥ1 (5.2)

with

Ĥ0 =
∑

i

[

U

2
n̂i(n̂i − 1) − µn̂i

]

(5.3)

and

Ĥ1 = −J
∑

<i,j>

â†i âj . (5.4)

49
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As we see, the Hamiltonian Ĥ0 in Eq. (5.3) is diagonal with respect to the lattice sites. Thus, because
all lattice sites are equivalent, its eigenstates and eigenvalues are given by

Ĥ0|n〉 = NSEn|n〉 , En =
U

2
n(n − 1) − µn . (5.5)

Because it is needed whenever considering the zero-temperature limit, we state here the connection
between the chemical potential and the particle number per site for zero temperature: Minimizing
(5.5) yields

(n − 1) < µ/U < n , (5.6)

which can be also obtained by setting U2 = 0 in the spinor analog in Eqs. (3.15), (3.16).

5.1.2 Importance of Green’s Functions

The quantity we are interested in is the one-particle Green function. In imaginary time it is defined
as

G1(τ
′, j′|τ, j) =

1

ZTr
{

e−βĤ T̂
[

âj,H(τ)â†j′,H(τ ′)
]}

, (5.7)

where

ÔH(τ) = eĤτ Ôe−Ĥτ (5.8)

denotes an imaginary-time Heisenberg operator and T̂ the time ordering operator. We will see later
on that the knowledge of the function (5.7) allows us to calculate both thermodynamic and dynamic
quantities of interest. But in addition to regarding it merely as a mathematical tool, we can also
associate a physical meaning to it. This is best seen not in imaginary but in real time where the
Green function is also called the propagator [62]. It represents the probability amplitude of creating
a particle at site j′ and time t′, transporting it to site j, and annihilating it there at time t. We shall
keep that picture in mind even when performing calculations in imaginary time.

5.1.3 Interaction Picture

Because we do not know the eigenstates and energies of the full Hamiltonian (5.1), we cannot calculate
the Green function (5.7) exactly. Instead, we aim at a perturbative treatment where the Green function
(5.7) is calculated as a power series with respect to the hopping matrix element. To this end, we use
once more the Dirac interaction picture which was already employed in Chapter 3. As calculated in
Section 3.5, the Dyson series for the Dirac imaginary-time evolution operator reads

ÛD(τ, τ0) =

∞
∑

n=0

(−1)n
τ
∫

τ0

dτ1 . . .

τn−1
∫

τ0

dτnĤ1D(τ1) . . . Ĥ1D(τn) . (5.9)

Using the imaginary-time ordering operator, Eq. (5.9) can be simplified to

ÛD(τ, τ0) =

∞
∑

n=0

(−1)n

n!

τ
∫

τ0

dτ1 . . .

τ
∫

τ0

dτnT̂
[

Ĥ1D(τ1) . . . Ĥ1D(τn)
]

= T̂ exp



−
τ
∫

τ0

dτ1Ĥ1D(τ1)



 .

(5.10)
Note that the factor 1/n! accounts for the number of possible permutations of the operators under
the time ordering operator. Now we insert the explicit form of the hopping Hamiltonian (5.4). To
shorten our notation, we drop the index D of the creation and annihilation operators in the following.
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All time-dependent operators are in the Dirac picture unless explicitly stated otherwise. Thus, the
perturbation operator (5.4) becomes

Ĥ1D(τ) = −J
∑

<i,j>

â†i (τ)âj(τ) = −
∑

i,j

Ji,j â
†
i (τ)âj(τ) , (5.11)

where we have introduced the generalized hopping matrix element

Jij =

{

J if i, j nearest neighbors
0 otherwise

. (5.12)

Inserting (5.11) into (5.10) yields

ÛD(τ, τ0) = T̂ exp





∑

i,j

Jij

τ
∫

τ0

dτ1 â†i (τ1)âj(τ1)



 . (5.13)

5.1.4 Partition Function

Before turning to the calculation of (5.7), we determine the partition function which occurs in the
denominator of (5.7) but is also an interesting quantity of itself because it determines thermodynamic
quantities like the specific heat and the compressibility. As seen in Section 3.5, the partition function
(3.8) can also be written as

Z = Tr
{

e−βĤ0ÛD(β, 0)
}

. (5.14)

When we now insert (5.10) in (5.14), we can write the partition function in a power series in the
hopping matrix element J . Doing this yields for the nth-order contribution

Z(n) =
1

n!
Z̃(0)

∑

i1,j1,...,in,jn

Ji1j1 . . . Jinjn

β
∫

0

dτ1

β
∫

0

dτ2 . . .

β
∫

0

dτn

〈

T̂
[

â†i1(τ1)âj1(τ1) . . . â†in(τn)âjn(τn)
]〉(0)

.

(5.15)
Here we have used the partition function of the unperturbed system Z̃(0) whose connection to the
single-site unperturbed partition function

Z(0) =

∞
∑

n=0

e−βEn (5.16)

is given in Eq. (4.42). Now we make an important observation: The thermal average occurring in
(5.15) is just the n-particle Green function of the unperturbed system where some pairs of creation
and annihilation operators have the same time arguments. The unperturbed n-particle Green function
is defined as

G(0)
n (τ ′

1, i
′
1; . . . ; τ

′
n, i′n|τ1, i1; . . . ; τn, in) =

〈

T̂
[

â†
i′
1

(τ ′
1)âi1(τ1) . . . â†i′n

(τ ′
n)âin(τn)

]〉(0)
. (5.17)

Thus, we have reduced the problem of calculating the full partition function to the calculation of
integrals over n-particle Green functions of the unperturbed system:

Z(n) =
1

n!
Z̃(0)

∑

i1,j1,...,in,jn

Ji1j1 . . . Jinjn

β
∫

0

dτ1

β
∫

0

dτ2 . . .

β
∫

0

dτnG(0)
n (τ1, i1; . . . ; τn, in|τ1, j1; . . . ; τn, jn) .

(5.18)
We will see later on that a similar relation also holds for the full one-particle Green function (5.7).
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5.2 Cumulant Decomposition

The next step in our derivation is to decompose G
(0)
n , which is occurring in the perturbation series for

the partition function in (5.18), into simpler parts. As already discussed in Chapter 3, we cannot use
Wick’s theorem to decompose this n-particle function into one-particle functions but we can decompose
it into cumulants. To this end, we follow an approach reviewed by Metzner [79, 80] in the context of
electrons in a conductor. A similar technique has been also used to describe systems of electrons and
phonons [81,82].

In order to find a decomposition of G
(0)
n , we first define a generating functional for them. This

is achieved by coupling the creation and annihilation operators to external currents according to a
standard technique from field theory [5,56,62,76]. Because we are interested in the correlations of the
unperturbed system, we use the Hamiltonian (5.3) and define

Ĥ0[j, j
∗] = Ĥ0 −

∑

i

[

ji(τ)â†i + j∗i (τ)âi

]

. (5.19)

Note that the Hamiltonian is now explicitly time dependent because of the functional dependence
on the current fields ji(τ) and j∗i (τ) on each lattice site. Now we go to the Dirac picture where we
consider the currents in (5.19) as the perturbative contribution. Thus, we have

Ĥ1S(τ) = −
∑

i

[

ji(τ)â†i + j∗i (τ)âi

]

, (5.20)

where we have explicitly put the index S for Schrödinger picture. Equation (5.20) becomes in the
Dirac picture

Ĥ1D(τ) = −
∑

i

[

ji(τ)â†i (τ) + j∗i (τ)âi(τ)
]

. (5.21)

Now we use (5.10) with (5.21) and obtain

ÛD[j, j∗](τ, τ0) = T̂ exp







∑

i

τ
∫

τ0

dτ1

[

ji(τ)â†i (τ) + j∗i (τ)âi(τ)
]







, (5.22)

which yields which (5.14)

Z(0)[j, j∗] =

〈

T̂ exp





∑

i

β
∫

0

dτ
[

j∗i (τ)âi(τ) + ji(τ)â†i (τ)
]





〉

(0)

. (5.23)

As it can be easily seen, the Green functions are obtained from this generating functional (5.23) by
functional differentiation with respect to the currents:

G(0)
n (τ ′

1, i
′
1; . . . ; τ

′
n, i′n|τ1, i1; . . . ; τn, in) =

1

Z(0)[j, j∗]

δ2n Z(0)[j, j∗]

δji′
1
(τ ′

1) . . . δji′n(τ ′
n)δj∗i1(τ1) . . . δj∗in(τn)

∣

∣

∣

∣

∣

j=j∗=0

.

(5.24)

This relation is for itself not of great practical value because we already know how to calculate G
(0)
n

directly according to (5.17). However, the generating functional allows us to find a representation of
the Green functions in terms of cumulants. In order to find this connection, we define the generating
functional of the cumulants as

C
(0)
0 [j, j∗] = logZ(0)[j, j∗] . (5.25)
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The cumulants follow from (5.25) as the functional derivatives

C(0)
n (τ ′

1, i
′
1; . . . ; τ

′
n, i′n|τ1, i1; . . . ; τn, in) =

δ2n

δji′
1
(τ ′

1) . . . δji′n(τ ′
n)δj∗i1(τ1) . . . δj∗in(τn)

C
(0)
0 [j, j∗]

∣

∣

∣

∣

∣

j=j∗=0

.

(5.26)
Because of the property of the logarithm, log(x·y) = log(x)+log(y), and the fact that the unperturbed
Hamiltonian (5.3) is a sum of local Hamiltonians on every site, i.e.

Ĥ0 =
∑

i

Ĥ0i , Ĥ0i =
1

2
Un̂i(n̂i − 1) − µn̂i , (5.27)

we can write the generating functional of the cumulants as

C
(0)
0 [j, j∗] =

∑

i

log

〈

T̂ exp





β
∫

0

dτ
[

j∗i (τ)âi(τ) + ji(τ)â†i (τ)
]





〉

(0)

, (5.28)

where 〈·〉(0) denotes now an expectation value with respect to the local Hamiltonian Ĥ0i. Because
(5.28) is a sum of local terms, the cumulants (5.26) must be local too. When differentiating (5.28)
with respect to the current jh(τ), all terms but the one with site index h become zero. When we now
differentiate with respect to a current jk(τ) with a site index k 6= l, we surely get zero.
Because all lattice sites are equivalent in a homogeneous system, which we are considering, and we do
not care about normalization constants at the moment, we can drop the sum in (5.28) and work with
an one-site creating functional. This allows us to redefine the generating functional of the cumulants
as

C
(0)
0 [j, j∗] = log

〈

T̂ exp





β
∫

0

dτ
[

j∗(τ)â(τ) + j(τ)â†(τ)
]





〉

(0)

, (5.29)

where the square brackets now only denote a functional dependence on j(τ) and j∗(τ). With (5.29),
the corresponding cumulants read

C(0)
n (τ ′

1, . . . , τ
′
n|τ1, . . . , τn) =

δ2n

δj(τ ′
1) . . . δj(τ ′

n)δj∗(τ1) . . . δj∗(τn)
C

(0)
0 [j, j∗]

∣

∣

∣

∣

∣

j=j∗=0

. (5.30)

Until now the definition of these cumulants seems a bit artificial but their importance stems from the

fact that they form the building blocks for constructing the Green function G
(0)
m . To see how this

works, we discuss as an example the one- and the two-particle unperturbed Green functions. At first,
we obtain by performing two functional derivatives on (5.29) according to (5.30)

G
(0)
1 (τ ′, i′|τ, i) =

1

Z(0)[j, j∗]

δ2

δji′(τ ′)δj∗i (τ)
Z(0)[j, j∗]

∣

∣

∣

∣

∣

j=j∗=0

=
δ2

δji′(τ ′)δj∗i (τ)
C

(0)
0 [j, j∗]

∣

∣

∣

∣

∣

j=j∗=0

= δi,i′C
(0)
1 (τ ′|τ) . (5.31)

When we calculate the higher n-particle functions, the product rule of functional differentiation pro-
duces all possible combinations of the cumulants. For example:

G
(0)
2 (τ ′

1, i
′
1; τ

′
2, i

′
2|τ1, i1; τ2, i2) =δi1,i2δi′

1
,i′

2
δi1,i′

1
C

(0)
2 (τ ′

1, τ
′
2|τ1, τ2) (5.32)

+ δi1,i′
1
δi2,i′

2
C

(0)
1 (τ ′

1|τ1)C
(0)
1 (τ ′

2|τ2) + δi1,i′
2
δi2,i′

1
C

(0)
1 (τ ′

2|τ1)C
(0)
1 (τ ′

1|τ2) .
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This also holds for any higher functional derivatives. All possible ways to distribute the n primed and
n unprimed variables equally of the 2, 4, 6, . . . -particle functions must be summed. To find all these
possible combinations and to connect them in the right way in order to sum and integrate over them
according to (5.18) seems quite complicated. Fortunately, there exists a graphical way to manage this
task which we introduce in the next section.

5.3 Basic Diagrammatic Calculations

In this section, we introduce diagrammatic rules to calculate the perturbative contributions to the
partition function. They build a one-to-one representation of the perturbation series (5.18) with the

cumulant decomposition of G
(0)
n , e.g. (5.32).

5.3.1 Diagrammatic Rules

We denote a m-particle cumulant at a lattice site by a vertex with m entering and m leaving lines
with imaginary-time variables. The hopping matrix element is symbolized by a line connecting two
vertices. For example:

i

τ ′ τ

= C
(0)
1 (τ ′|τ) , = C

(0)
2 (τ ′

1, τ
′
2|τ1, τ2) , i j = Jij . (5.33)

In Eq. (5.18), we must sum over all site indices and integrate all time variables. There are no free
variables and because of this there are no external lines. With all this, we can set up the rules for
calculating the vacuum diagrams contributing to the partition function in nth order in J :

1. Draw all possible combinations of vertices with total n entering and n leaving lines.

2. Connect them in all possibles ways and assign time variables and hopping matrix elements to
the lines.

3. Sum all site indices over all lattice sites and integrate all time variables from 0 to β.

We also note here that we have to sum all site indices over the whole lattice, no matter whether two
sites in a diagram coincide or not.

5.3.2 Weights and Multiplicities

The diagrammatic rules derived above are not sufficient to calculate the perturbative series for the
partition function. In this subsection we introduce the symmetry factor which allows us to calculate

the weight of the respective diagram. As discussed in Section 5.2, G
(0)
n is decomposed into a sum of

products of cumulants. We must know how many of them belong to the same diagram. We do this
in a two-step process: For a given diagram there are n! possible permutations of the internal time
variables. But not all of them really belong to different terms in the cumulant decomposition. This
fact is taken into account by the symmetry factor. Thus, the weight of a diagram can be written,
including the prefactor 1/n! from the Taylor expansion in (5.18), as

weight =
1

n!

n!

symmetry factor
. (5.34)
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The symmetry factor can be calculated by counting the permutations of the time variables and vertex
indices which do not change the topological structure of the diagram because they correspond to the
same term in the cumulant decomposition. As an example, we consider the second-order vacuum
diagram

τ1

τ2

i j

. (5.35)

From (5.32), we see that there is only one term in the decomposition which corresponds to this diagram.
One can also see that the symmetry factor is 2, cancelling the two possible permutations of τ and
τ ′. Thus, the total weight of the considered diagram is 1/2. Weights for the fourth-order vacuum
diagrams are given in Ref. [79].

5.3.3 Diagrammatic Series for Partition Function

With the help of the weights discussed in in the previous subsection, the diagrammatic series for the
partition function reads

Z =Z̃(0) +
1

2
+

(

1

8
+

1

4

+
1

4
+

1

8

)

+ O(J6) . (5.36)

The first four diagrams are connected while the last one is disconnected. We will see later on that
disconnected diagrams do not contribute to any quantities which are of physical relevance.
Here is a good point to make some remarks about the differences between the diagrammatic expansion
performed here and the “standard diagrammatic”, which is for example employed in Φ4 - theory and
which is extensively discussed in literature [5,56,62,63]. The main difference is that in the latter case
the interaction between the particles is taken as a perturbation. A Green function without interaction
is symbolized by a line and an interaction matrix element by a vertex. Because of the form of the
propagators, Wick’s theorem can be used to decompose the respective n-particle function into sums
of products of one-particle function which makes calculations much easier than in our case.

5.3.4 Calculation of Cumulants

In order to perform explicit calculations in the present formalism, we must first calculate the cumulants
explicitly. To this end, we make use of the generating functional (5.29). Differentiating twice according
to (5.30) yields

C
(0)
1 (τ ′|τ) =〈T̂

[

â†(τ ′)â(τ)
]

〉(0) =
1

Z(0)

∞
∑

n=0

〈n|T̂
[

â†(τ ′)â(τ)
]

|n〉 e−βEn (5.37)

=
1

Z(0)

∞
∑

n=0

[

Θ(τ − τ ′)(n + 1) e(En−En+1)(τ−τ ′) + Θ(τ ′ − τ)n e(En−En−1)(τ ′−τ)

]

e−βEn .

We see that (5.37) only depends on the difference of the imaginary times τ ′ and τ . This is a general
feature which is also valid for the full Green functions (5.7), because the Hamiltonian (5.1) does not
explicitly depend on time. Thus, we will often use the abbreviation

C
(0)
1 (τ − τ ′) = C

(0)
1 (τ ′|τ) . (5.38)
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In order to obtain C
(0)
2 , we have to differentiate (5.29) four times which yields

C
(0)
2 (τ ′

1, τ
′
2|τ1, τ2) = 〈T̂

[

â†(τ ′
1)â

†(τ ′
2)â(τ1)â(τ2)

]

〉(0) − C
(0)
1 (τ ′

1|τ1)C
(0)
1 (τ ′

2|τ2) − C
(0)
1 (τ ′

1|τ2)C
(0)
1 (τ ′

2|τ1) .

(5.39)
With the same technique, we can also calculate the n-particle cumulant for any given n. This function
will always turn out be a sum of a thermal average of n creation and n annihilation operators and
products of lower-order cumulants.

5.3.5 Free Energy

As a first application of the diagrammatic approach and to demonstrate the formalism, we calculate the
first correction to the grand-canonical free energy. To do this is interesting because we can see how the
effects arising from hopping change the thermodynamic quantities. In the previous subsection, we have
stated diagrammatic rules for the calculation of the partition function (5.18). The grand-canonical
potential follows from it according to

F = − 1

β
logZ . (5.40)

The series for Z in (5.36) contains both connected and disconnected diagrams. Now it turns out that
the logarithm in (5.40) just cancels all disconnected diagrams. This can be proved for example with
help of the replica method, as further explained in Ref. [56], or in an explicit way, as presented in
Ref. [83]. We will not state these proofs here but point out a physical argument why the disconnected
diagrams cannot contribute to the grand-canonical free energy. As it is known from thermodynamics,
the grand-canonical free energy belongs to the extensive quantities which means that it scales with
the size of the system NS [51]. But when we sum the site indices in a diagram over the lattice, we get
a factor NS for every connected sub-diagram. Thus, all disconnected diagrams scale at least with N2

S

and such terms cannot contribute to extensive quantities.
There are no vacuum-diagrams with one internal line. Therefore, the first correction is of second order
in J and reads

τ1

τ2

i j =
∑

i,j

Ji,jJj,i

β
∫

0

dτ

β
∫

0

dτ ′ C
(0)
1 (τ ′|τ)C

(0)
1 (τ |τ ′) . (5.41)

Performing one integration with the help of (5.38) and carrying out the summation of the site indices
over all lattice sites, Eq. (5.41) becomes

τ1

τ2

i j = βJ22DNS

β
∫

0

dτ C
(0)
1 (τ)C

(0)
1 (−τ) . (5.42)

Inserting (5.37) into (5.42) and performing the remaining integral yields

τ1

τ2

i j =
βJ22DNS

Z(0)2

∑

n,k

β
∫

0

dτ(n + 1)k e(En−En+1+Ek−Ek−1)τe−β(En+Ek) (5.43)

=
βJ22DNS

Z(0)2

∑

n,k

(n + 1)k

En − En+1 + Ek − Ek−1

[

e(En−En+1+Ek−Ek−1)β − 1
]

e−β(En+Ek) ,

from which we can obtain by shifting summation indices and using (5.5)

τ1

τ2

i j =
NSJ22Dβ

UZ(0)2

∑

n,k

[

(k + 1)n

k − n + 1
+

k(n + 1)

n − k + 1

]

e−β(En+Ek) . (5.44)
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Rearranging the term in the square brackets in Eq. (5.44) yields the final result

τ1

τ2

i j =
NS4DJ2β

UZ(0)2

∑

n,k

(n + 1)n

(n − k + 1)(k − n + 1)
e−β(En+Ek) . (5.45)

Note that these terms are defined not for all values of k and n. For example, the first term in the
denominator in (5.45) surely becomes zero for k = n − 1. This arises from the fact that

β
∫

0

dx eǫx = (1 − δǫ,0)
eβǫ − 1

ǫ
+ δǫ,0β , (5.46)

where the second possibility was not taken into account when performing the integral in (5.43). It
is possible to consider all these cases separately but this becomes quite cumbersome when going to
higher orders where we have more integrals to calculate. But fortunately, there exists another solution:
The occurring singularities are not real poles but can be removed by means of a well-defined limiting
process. To this end, we need two principle limits which we state here in a general form. The first one
is

lim
ǫ→0

eβǫ − 1

ǫ
= lim

ǫ→0

1 + βǫ − 1 + . . .

ǫ
= β , (5.47)

where we have used the Taylor expansion of the exponential function. Later on, we will also find terms
with ǫ2 in their denominators where we have to expand, correspondingly, up to second order to obtain

lim
ǫ→0

(

β

ǫ
+

e−βǫ − 1

ǫ2

)

= lim
ǫ→0

(

β

ǫ
+

1 − βǫ + 1
2β2ǫ2 − 1 + . . .

ǫ2

)

=
β2

2
. (5.48)

Thus, we will think of all integer numbers n, k, . . . as being shifted by a suitable smallness parameter
ǫ, do our calculation, and perform the limit ǫ → 0 at the end. After this clarification we return to the
calculation of the first correction to the free energy. Inserting (5.45) in (3.1) and using the symmetry
factor of the diagram, which we have shown in Subsection 5.3.2 to be 1/2, finally yields

F (2) = − 1

2β

τ1

τ2

i j = −NS2DJ2

UZ(0)2

∑

n,k

(n + 1)n

(n − k + 1)(k − n + 1)
e−β(En+Ek) . (5.49)

When we perform the zero-temperature limit β → ∞ of (5.49), we get the first correction to the
ground-state energy per site:

E(2)
n = −2DJ2

U
n(n + 1) , (5.50)

where n in the integer particle number per site or filling factor. Thus, we conclude that the hopping
reduces the energy of the system. This result can, of course, also be obtained by using the standard
Rayleigh-Schrödinger perturbation theory at T = 0. There it even is a theorem that, when the first
correction to the ground-state energy vanishes, the second correction must be negative [61]. Equation
(5.50) obviously obeys this rule.
As it is well known and also discussed above, the grand-canonical free energy contains the information
about the thermodynamics of a system. When we now investigate these quantities in the lowest non-
trivial order in J , we must keep in mind that our results will be only valid for J ≪ U , i.e. in the deep
Mott phase.
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Figure 5.1: Corrections to particle number per site for J = 0.02U . Left: Unperturbed system (black),
Second order in J (red). Right: First hopping correction for T = 0.02U (blue) and T = 0.05U (red).

5.3.6 Particle Number

Before we turn to the more sophisticated calculation of the specific heat, we investigate how the
corrections from the hopping process affect the particle. With the help of the general arguments made
in Subsection 3.1, we can write the particle number per site as

〈n〉 = 〈n〉(0) + 〈n〉(2) + O(J)4 , (5.51)

where the zeroth hopping-order reads

〈n〉(0) =
1

Z(0)

∞
∑

l=0

l e−βEl (5.52)

and the first non-vanishing hopping correction is, according to (3.2), given by

〈n〉(2) = − 1

NS

∂F (2)

∂µ
. (5.53)

Inserting now (5.49) into (5.53) and using (5.5) yields

〈n〉(2) =
2DJ2

U

∂

∂µ

∑

n,k
(n+1)n

(n−k+1)(k−n+1)e
−β(En+Ek)

Z(0)2
. (5.54)

Performing the derivative in (5.54) and simplifying yields the final result

〈n〉(2) =
2DJ2β

UZ(0)2

[

∑

n,k

n(n + 1)(n + k)

(n − k + 1)(k − n + 1)
e−β(En+Ek)

− 2〈n〉(0)
∑

n,k

n(n + 1)

(n − k + 1)(k − n + 1)
e−β(En+Ek)

]

. (5.55)

Before we consider this result further, we calculate its zero-temperature limit. In order to do this, we
remember from Subsection 3.2.2 that all thermal sums get reduced to one term in this situation. Thus,
we have k = n = 〈n〉(0) where n is the integer filling determined by (5.6). Therefore, the two terms in
the bracket in (5.55) cancel each other. Because this process is governed by exponential functions, it
is faster than the linear grow in β resulting from the prefactor, and we can state

lim
β→∞

〈n〉(2) = 0 . (5.56)
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Note that this convergence is only pointwise with respect to µ but not uniform [84]. In Fig. 5.1 (left),
we can see that the corrections are very small and become slightly larger for larger particle numbers.
In Fig. 5.1 (right), it is visible that for lower temperature the region, where the corrections are non-
neglectable, becomes smaller, but also more peaked. This is a result of the non-uniform convergence
which was mentioned above. In conclusion, we can say that hopping induces only minor changes to
the dependence of the particle-number per site on the chemical potential and that these effects are
more important for larger temperatures.

5.3.7 Specific Heat

As a second thermodynamic quantity, we calculate now the specific heat at constant volume. It is
defined as

CV =
∂Uin

∂T

∣

∣

∣

∣

∣

V, N fixed

, (5.57)

where Uin is the inner energy. Note that the role of the volume is played in our system by the number of
lattice sites NS . The connection between them is for a system, which has the form of a D-dimensional
cube with lattice-spacing a, given by

V = NS aD . (5.58)

We consider here only the unperturbed system, i.e. J = 0. To get the specific heat, we need to know the
inner energy which is connected to the grand-canonical free energy by the Legendre transformation [51]

Uin = F + TS + µN , (5.59)

where the entropy is given by

S = −∂F
∂T

. (5.60)

The grand-canonical free energy of the unperturbed system reads

F (0) = −TNS logZ(0) , (5.61)

with the single-site unperturbed partition function given by (5.16). Inserting (5.61) into (5.60) yields
the entropy

S = NS logZ(0) +
NS

Z(0)

∞
∑

n=0

Ene−En/T . (5.62)

Plugging (5.62) and also the connection between grand-canonical free energy and particle number,
which reads for the unperturbed system

N = −∂F (0)

∂µ
=

NS

Z(0)

∞
∑

n=0

n e−En/T , (5.63)

into (5.59) yields for the inner energy

Uin = NS
1

Z(0)

[

∞
∑

n=0

En e−En/T + µ

∞
∑

n=0

n e−En/T

]

. (5.64)

This can be simplified by introducing the new energies

Ẽn = En + µn =
U

2
n(n − 1) , (5.65)
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which are just the energy eigenvalues (5.5) of the Hamiltonian (5.3) without the additional term −µn
which was just a consequence of working within the grand-canonical ensemble. Inserting (5.65) into
(5.64) yields

Uin =
NS

Z(0)

∞
∑

n=0

Ẽn e−En/T = 〈Ẽn〉(0) . (5.66)

The expression (5.66) for the inner energy Uin is not yet suitable for the calculation of the specific
heat because it does not explicitly depend on the total particle number, but only implicitly via the
chemical potential. In order to overcome this problem, we use (5.63) and insert it into (5.66) to obtain

Uin =

∑∞
n=0 Ẽn e−En/T

∑∞
n=0 n e−En/T

N . (5.67)

The next step is to perform the derivative of (5.67) with respect to the temperature. Note that
this derivative must be performed for fixed particle number which means that we must consider the
chemical potential µ as an implicit function of the particle number N . Because of that, we introduce
the fugacity z = eµ/T and rewrite (5.67), according to (5.65) as

Uin =

∑∞
n=0 Ẽn e−Ẽn/T zn

∑∞
n=0 n e−Ẽn/T zn

N . (5.68)

Now all the complicated dependence on µ(N) is hidden in the fugacity and we must calculate its
derivative with respect to T for fixed total particle number N . This seems to be a problematic task
because, in order to calculate the derivative of z, we need ∂µ(N,T )/∂T which is impossible to calculate
explicitly, because we do not know the explicit form of µ(N,T ). When considering the Bose gas in a
harmonic trap, as it is done in Ref. [85], there exists a possibility to overcome this problem. We apply
the same method to our present problem of a Bose gas in an optical lattice. To this end we start with
the obvious identity

∂N(µ, T )

∂T

∣

∣

∣

∣

∣

N fixed

= 0 . (5.69)

Inserting now (5.63) into (5.69) and using the definition of the fugacity, we obtain the relation

[

∞
∑

n=0

n

(

Ẽn

T 2
zn + nzn−1 ∂z

∂T

)

e−Ẽn/T

]

×
[

∞
∑

n=0

e−Ẽn/T zn

]

−
[

∞
∑

n=0

(

Ẽn

T 2
zn + nzn−1 ∂z

∂T

)

e−Ẽn/T

]

×
[

∞
∑

n=0

n e−Ẽn/T zn

]

= 0 , (5.70)

where all derivatives have to be performed for fixed particle number N . Expanding the sums in (5.70)
yields

∞
∑

n,k=0

zn

(

Ẽk

T 2
zk + kzk−1 ∂z

∂T

)

(k − n)e−(Ẽk+Ẽn)/T = 0 . (5.71)

Equation (5.71) contains the desired derivative of the fugacity with respect to the temperature at fixed
particle number. Solving (5.71) for it yields

∂z

∂T

∣

∣

∣

∣

∣

N fixed

= − 1

T 2

∑

n,k znẼkz
k(k − n) e−(Ẽk+Ẽn)/T

∑

n,k znkzk−1(k − n) e−(Ẽk+Ẽn)/T
. (5.72)
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Figure 5.2: Specific heat per particle for a system without hopping and with filling factors n = 1
(black) and n = 2 (red).

Now we insert (5.68) into (5.57) and obtain

CV =
N

(

∑

n nzne−Ẽn/T
)2

{[

∑

n

Ẽn

(

Ẽn

T 2
zn + nzn−1 ∂z

∂T

)

e−Ẽn/T

]

×
[

∑

n

nzne−Ẽn/T

]

−
[

∑

n

Ẽnzne−Ẽn/T

]

×
[

∑

n

n

(

Ẽn

T 2
zn + nzn−1 ∂z

∂T

)

e−Ẽn/T

]}

. (5.73)

Together with (5.72), Eq. (5.73) is the solution for the specific heat of a system without hopping. Our
result, which we have plotted in Fig. 5.2, obeys the third law of thermodynamics, i.e. limT→0 CV = 0,
but does not yield the Dulong-Petit law in the limit T → ∞. But this is no drawback because
the one-band Bose-Hubbard model is only valid for low temperatures and is not expected to yield
meaningful high-temperature results anyway. We note that the functional form of CV (T ) near T = 0
is CV ∝ e−∆/T , where the activation energy ∆ is determined by the on-site interaction energy U ,
i.e. ∆ ≈ U . We do not consider corrections for finite J here because for small J there will be only
minor changes, as already observed when discussing the particle. For larger values of J , a superfluid
exists which changes the thermodynamic behavior in such a fundamental way that simple low-order
perturbation theory is unable to provide significant results.

5.3.8 Green’s Functions

Now we turn to our main quantity of interest and calculate the one-particle Green function (5.7)
perturbatively in the hopping parameter J . The Green function can be written in complete analogy
to (5.14) as

G1(τ
′, i′|τ, i) =

1

ZTr
{

e−βĤ0 T̂
[

â†i′(τ
′)âi(τ)ÛD(β, 0)

]}

, (5.74)

where the time-ordering operator acts also on the time variables which are resulting from the expansion
of the Dirac time-evolution operator in (5.10). Equation (5.74) has a similar structure as (5.14) and
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can, therefore, be treated with the same methods. In complete analogy to (5.18) we get

G
(n)
1 (τ ′, i′|τ, i) =

Z̃(0)

Z
1

n!

∑

i1,j1,...,in,jn

Ji1j1 . . . Jinjn

β
∫

0

dτ1 . . .

β
∫

0

dτn

× G
(0)
n+1(τ1, i1; . . . ; τn, in, τ ′, i′|τ1, j1; . . . ; τn, jn; τ, i) . (5.75)

We can use the same cumulant decomposition and a diagrammatic representation with nearly the
same rules, but we have to consider the fact that now there are two additional time variables and site
indices which are fixed and which are not summed or integrated. We denote them by external lines.
With those remarks the zeroth hopping order just reads

G
(0)
1 (τ ′, i|τ, j) =

i

τ ′ τ
= δi,jC

(0)
1 (τ ′|τ) . (5.76)

In first order in J there is only one diagram which we now explicitly calculate as an example. However,
we only consider the case τ ′ > τ , because the other case is calculated in exactly the same manner.
The first correction to the Green function reads under consideration of (5.12) and the diagrammatic
rules in Subsection 5.3.1.

G
(1)
1 (τ ′, i|τ, j) =

i j

τ ′ τ1 τ
= Jδd(i,j),1

β
∫

0

dτ1 C
(0)
1 (τ ′|τ1)C

(0)
1 (τ1|τ) . (5.77)

Inserting (5.38) into (5.77) yields

G
(1)
1 (τ ′, i|0, j) = Jδd(i,j),1

β
∫

0

dτ1 C
(0)
1 (τ ′ − τ1)C

(0)
1 (τ1) , (5.78)

so we obtain with (5.37):

G
(1)
1 (τ ′, i|0, j) =

Jδd(i,j),1

Z(0)2

∑

n,k

β
∫

0

dτ1

[

Θ(τ1 − τ ′)(n + 1) e(En−En+1)(τ1−τ ′)

+ Θ(τ ′ − τ1)n e(En−En−1)(τ ′−τ1)

]

k e(Ek−Ek−1)τ1 e−β(En+Ek) . (5.79)

After carrying out the integral over the internal time variable τ , Eq. (5.79) yields

G
(1)
1 (τ ′, i|0, j) =

Jδd(i,j),1

Z(0)2

∑

n,k

k(n + 1)

[

eτ ′(En+1−En)

En − En+1 + Ek − Ek+1
eβ(En−En+1+Ek−Ek−1)

− eτ ′(Ek−Ek−1)

En − En+1 + Ek − Ek+1
+

eτ ′(Ek−Ek−1) − eτ ′(En−En−1)

En−1 − En + Ek − Ek−1

]

e−β(En+Ek) . (5.80)

By shifting summation indices and using (5.5), we can simplify (5.80) and obtain the final result

G
(1)
1 (τ ′, i|0, j) =

Jδd(i,j),1

UZ(0)2

∑

n,k

[

(k + 1)n eτ ′(En−En−1)

k − n + 1

+
k(n + 1)eτ ′(Ek−Ek−1)

n − k + 1
+

eτ ′(Ek−Ek−1) − eτ ′(En−En−1)

k − n

]

e−β(En+Ek) , (5.81)

where the vanishing denominators have to be treated according to (5.47).
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5.4 Diagrammatic Rules in Matsubara Space

After having calculated this example, we return to the general concept. Calculations can often, but
not always, be simplified by going to Matsubara space. The Matsubara transform of the one-particle
cumulant reads, for instance,

C
(0)
1 (ω′

m|ωm) =
1

β

β
∫

0

dτ

β
∫

0

dτ ′ C
(0)
1 (τ ′|τ)ei(ωmτ−ω′

mτ ′) . (5.82)

Here the bosonic Matsubara frequencies are

ωm =
2π

β
m , (5.83)

with m taking integer values. Because (5.82) depends only on time differences, according to (5.38),
we can write it as

C
(0)
1 (ω′

m|ωm) = δm,m′C
(0)
1 (ωm) (5.84)

with

C
(0)
1 (ωm) =

β
∫

0

dτ C
(0)
1 (τ)eiωmτ . (5.85)

Explicitly, we obtain from inserting (5.37) and (5.38) into (5.85)

C
(0)
1 (ωm) =

1

Z(0)

β
∫

0

dτ
∑

n

e−βEn n e(En−En−1+iωm)τ =
1

Z(0)

∑

n

e−βEn n
eβ(En−En−1) − 1

En − En−1 + iωm
, (5.86)

which yields after shifting summation indices

C
(0)
1 (ωm) =

1

Z(0)

∑

n

[

(n + 1)

En+1 − En + iωm
− n

En − En−1 + iωm

]

e−βEn . (5.87)

The inverse Matsubara transform into the time domain reads

C
(0)
1 (τ ′|τ) =

1

β

∞
∑

m=−∞

C
(0)
1 (ωm)e−iωm(τ−τ ′) . (5.88)

The situation is similar for higher n-point functions. Because they all only depend on time differences,
always a “frequency conservation” occurs which can be written as

C(0)
n (ω′

m1
, . . . , ω′

mn
|ωm1

, . . . , ωmn) ∝ δPn
k=1

ωmk
,
Pn

k=1
ω′

mk
. (5.89)

This is the imaginary-time analog of the fact that homogeneity in time implies conservation of energy
according to the Noether theorem [19].
Now we can write down how our diagrammatic rules have to be modified in Matsubara space: The
lines now carry Matsubara frequencies which obey (5.89) and we have to sum over all free Matsubara
frequencies ωm instead of integrating over the time-variables. This “frequency conservation” will allow
us to calculate some kind of diagrams without having to perform Matsubara-sums at all. For example:

G
(1)
1 (ωm; i, j) =

i j

ωm ωm ωm

= Jδd(i,j),1C
(0)
1 (ωm)2 . (5.90)
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This observation will help us later on to sum infinite series of diagrams to obtain results which go
beyond perturbation theory.

It is quite instructive to calculate G
(1)
1 (τ ′|τ) by transforming (5.90) back into the time domain. We

will again restrict ourselves to the case τ ′ > τ . Inserting (5.87) into (5.90) yields

G
(1)
1 (ωm; i′, i) = δd(i′,i),1J

[

1

Z(0)

∑

n

(

n + 1

En+1 − En + iωm
− n

En − En−1 + iωm

)

e−βEn

]2

. (5.91)

Applying (5.88) to (5.91) and rearranging the result allows us to write the Matsubara back-transform
as

G
(1)
1 (τ ′, i′|τ, i) = −

Jδd(i′,i),1

βZ(0)2

∞
∑

m=−∞

∑

n,k

nk

(En − En−1 + iωm)(Ek − Ek−1 + iωm)

[

1 − eβ(En−En−1)
]

×
[

1 − eβ(Ek−Ek−1)
]

e−β(En+Ek)e−iωm(τ−τ ′) . (5.92)

The next step is to perform a decomposition into partial fractions which yields

− 1

(En − En−1 + iωm)(Ek − Ek−1 + iωm)
=

1

En − En−1 − Ek + Ek−1

×
(

1

En − En−1 + iωm
− 1

Ek − Ek−1 + iωm

)

. (5.93)

In order to perform the Matsubara-sums, we use Poisson’s sum formula [62, (2.429)]

∞
∑

m=−∞

f(ωm) =
β

2π

∞
∑

l=−∞

∞
∫

−∞

dωm f(ωm) eiωmlβ , (5.94)

where ωm on the right-hand side is a continuous variable. Applying (5.94) to the first term in (5.93)
gives

∞
∑

m=−∞

1

En − En−1 + iωm
e−iωm(τ−τ ′) =

β

2π

∞
∑

l=−∞

∞
∫

−∞

dωm
1

En − En−1 + iωm
eiωm[lβ−(τ−τ ′)] , (5.95)

where the occurring integral can be evaluated with the help of the residue theorem. Because the
integrand should vanish at the contour of integration, we must close this contour in the upper half
plane for l > 0 and in the lower one for l < 0. For l = 0 we remember that τ ′ > τ , so we also close
the contour of integration in the upper half-plane. The integrand in (5.95) has one simple pole at
ωm = i(En − En−1). For En > En−1 the pole is in the upper half plane. Thus, the integral vanishes
for l < 0. Inserting this into (5.95) yields

β

2π
2πi

1

i

∞
∑

k=0

e−[kβ−(τ−τ ′)](En−1−En) = β
e(τ−τ ′)(En−1−En)

1 − eβ(En−En−1)
. (5.96)

For En < En−1 the situation is vice versa: Only l < 0 give non-vanishing contributions. Shifting
summation variables, it turns out that the result is the same as (5.96). Performing the same calculation
with the second term in (5.93) and putting everything together, we obtain

G
(1)
1 (τ ′, i′|τ, i) =

Jδd(i′,i),1

Z(0)2

∑

n,k

nk

En − En−1 − Ek + Ek−1

{

e(τ−τ ′)(Ek−1−Ek)
[

1 − eβ(En+En−1)
]

−e(τ−τ ′)(En−1−En)
[

1 − eβ(Ek−Ek−1)
]}

e−β(En+Ek) , (5.97)

which yields after shifting indices, inserting (5.5), and setting τ = 0 the same result as (5.81). This
result is important for the explanation of the time-of-flight pictures which will be done in Subsection
6.1.1.



Chapter 6

Further Development of Green’s

Functions Technique

In the last Chapter, we have developed the basic principles of a very powerful approach to the Bose-
Hubbard model. In this chapter, we apply this formalism in order to calculate various system proper-
ties. Aside from these practical applications, we also develop a resummation method which allows us
to improve our perturbative results.

6.1 Applications

In this section, we apply the Green function formalism to calculate quantities which are of relevance
for explaining experimental observations.

6.1.1 Time-of-Flight

As discussed in Chapter 4, most experiments performed with Bosons in optical lattices involve time-
of-flight measurements [67]. In order to explain them theoretically, we need the density in momentum
space which can be calculated from the Green function. At first, we need the equal-time correlation
function which we get from (5.7) according to

〈â†i âj〉 = lim
τ ′ց0

G1(τ
′, i|0, j) . (6.1)

Note that the equal-time limit must be performed in this way because in the formula for the quasi-
momentum distribution (4.29), the creator stands at the left-hand side of the annihilator. With (5.31),
(5.37), and (6.1), we get in zeroth hopping order

〈â†i âj〉(0) = 〈n̂〉(0)δi,j , (6.2)

which is just the thermal average of the particle number per site. Using (5.81), the first-order correction
in (6.1) is given by

〈â†i âj〉(1) =
Jδd(i,j),1

UZ(0)2

∑

n,k

[

(k + 1)n

k − n + 1
+

k(n + 1)

n − k + 1

]

e−β(En+Ek) , (6.3)

which becomes in the zero-temperature limit

〈â†i âj〉(1) = 2
Jδd(i,j),1

U
n(n + 1) . (6.4)

65
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Figure 6.1: First-order time-of-flight pictures at zero-temperature (first row) and comparison with
experimental data [17] (second row). V0 = 8 ER (a), V0 = 14 ER (b), V0 = 18 ER (c), V0 = 30 ER (d).

The quasi-momentum distribution reads in an analogous way to (4.29)

S(k) = 〈n̂〉(0) + J(k)S1(β) , (6.5)

where we have used the D-dimensional analog of the lattice dispersion (4.6),

J(k) = 2J

D
∑

ν=1

cos(kνa) (6.6)

and the temperature-dependent coefficient

S1(β) =
1

UZ(0)2

∑

n,k

[

(k + 1)n

k − n + 1
+

k(n + 1)

n − k + 1

]

e−β(En+Ek) . (6.7)

The zero-temperature limit of (6.7) is

S1 =
2n(n + 1)

U
. (6.8)

When we want to compare this result with experimental data, we encounter a problem: Unfortunately,
so far, there exists no way to measure the temperature of Bosons which are trapped in an optical lattice.
The gas is cooled to the lowest possible temperature, i.e. until no thermal fraction is visible anymore,
before the optical lattice is turned on adiabatically [17]. This increase of the lattice depth can lead to a
change of the temperature [86] which cannot be measured experimentally. Because of this problem, we
have assumed the system to be at T = 0 for the calculation of the time-of-flight pictures in Fig. 6.1 as
an approximation. Nevertheless, the question how to determine the actual temperature is interesting
and shall be discussed later on. In Fig. 6.1, the agreement between our first-order calculation and
the experiment is quite good for deep lattices in (c) and (d) and becomes worse when the lattice
becomes shallower as in (a) and (b) as already discussed for the spinor case in Chapter 4. However,
in Subsection 6.1.6 we show that it is also possible to go beyond simple perturbation theory and to
incorporate features arising from long-range correlations, so that we are then able to explain the sharp
interference peaks theoretically.
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6.1.2 Phase Boundary

In this section, we calculate the phase boundary between the Mott insulator and the superfluid phase
[6,58,64] which we have addressed for the more general spinor system already in Chapter 3. However,
we will see that the approach used in this chapter provides us with more insight and also allows us to
improve the respective results.
Within the theory of critical phenomena, it is known that the correlations become infinitely strong
at the critical point which means that the Green function diverges [5, 76]. It is not possible to get a
diverging Green function from simple finite-order perturbation theory because this yields only analytic
functions, i.e. power series in J . Thus, we have to sum an infinite subset of diagrams which we choose
to consist of all diagrams which do not have any loops but are single chains. A conceptually similar
method was used in Ref. [87] where a system at zero temperature was considered and, therefore,
real-time Green functions were calculated. Thus, the resummed Green function reads

G̃1(ωm; i, j) =
i

ωm ωm

+
i j

ωm ωm ωm

+
i k j

ωm ωm ωm ωm

+
i k h j

ωm ωm ωm ωm ωm

+. . . .

(6.9)
The choice of this particular subset of diagrams seems a bit arbitrary but becomes more reasonable
below. A more systematic way to understand the resummation of the perturbation series for the Green
functions by means of the self-energy is presented in Subsection 6.2.1.
Because site indices are allowed to coincide on the actual lattice according to rule 3 in Subsection
5.3.1, every line produces just a factor of J(k) and, therefore, the summation (6.9) is easily performed
in Fourier space, yielding

G̃1(ωm,k) =
∞
∑

l=0

[

C
(0)
1 (ωm)

]l+1
J(k)l . (6.10)

This is a geometric series which can be immediately evaluated to

G̃1(ωm,k) =
C

(0)
1 (ωm)

1 − J(k)C
(0)
1 (ωm)

. (6.11)

Equation (6.11) diverges at

1 − J(k)C
(0)
1 (ωm) = 0 (6.12)

for some wave vector k and some Matsubara frequency ωm. The imaginary part of C
(0)
1 in (5.87)

vanishes only for ωm = 0. Furthermore, phase transitions are governed by long-wavelength fluctuations
[5, 76] and, therefore, the wave vector k has also to be set to zero. Thus, the condition for the phase
transition becomes after inserting (5.87) into (6.12)

2DJc =

∑

n e−βEn

∑

n e−βEn

(

n+1
En+1−En

− n
En−En−1

) , (6.13)

which coincides with the mean-field result [64,65]. The zero-temperature limit of (6.13) is [58]

2DJc = 1/

[

n + 1

En+1 − En
− n

En − En−1

]

(6.14)

for filling n. The phase boundary both for finite and zero temperature is shown in Fig. 6.2. The
temperature shifts the phase boundary towards higher critical values of J . This effect is important in
the region between the lobes but quite weak near the tips. We shall see later on that this behavior is
closely connected to thermal fluctuations.
In order to see that (6.13) becomes exact in the limit of infinite spatial dimension D, one must suitably
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Figure 6.2: First-order (mean-field) phase diagram for different temperatures. T = 0 (black), T =
0.05U (blue), and T = 0.1U (red).

scale the hopping parameter. This is a non-trivial question leading to different answers for Fermions
and Bosons, respectively [88, 89]. For our case, we define at first place the rescaled hopping strength
J̃ = 2DJ so that the contribution of the kth order chain diagram in (6.9) is proportional to J̃k. The
lowest-order term neglected by our summation is represented by the diagram

i

k

ω1 ω1

ωm ωm

. (6.15)

It has two internal lines and is, for this reason, proportional to J2. Furthermore, (6.15) hast one
free site index, which we must sum. This yields a factor 2D. Thus, the one-loop diagram (6.15) is
proportional to 2DJ2 = J̃2/(2D) for which reason it vanishes in the limit of D → ∞. All other
neglected diagrams are also at least of the order 1/D. Therefore, it can be said that the first-order or
mean-field result (6.13) is exact at infinite spatial dimension.

6.1.3 Real-Time Green’s Functions

The quantum phase diagram (6.13) and also the correlation functions (6.1) are properties of a system in
thermal equilibrium which become properties of the ground state for T = 0. But we are also interested
in dynamic properties which can be also measured experimentally [68]. The dynamic property which is
best accessible within the framework employed in this thesis, is the excitation spectrum or dispersion
relation. It is especially interesting because it has a characteristic gap in the Mott phase which
vanishes when approaching the critical hopping. Furthermore, we are interested to investigate how
finite temperature affects the situation.
Until now, we have only dealt with imaginary-time Green functions. To find information on the
excitation spectrum, it is necessary to consider the real-time Green function for T 6= 0. Of course, the
concept of temperature makes no sense when considering systems far from thermal equilibrium but,
because we are only considering excitations of a thermal system, it is reasonable to define the retarded
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Green function for finite temperature due to causality according to [62,63,90]

G1(t
′, j′|t, j) = Θ(t − t′)

1

ZTr
{

e−βĤ
[

âjH(t), â†j′H(t′)
]}

, (6.16)

where â†j′H(t) and âjH(t) are creation and annihilation operators in real-time Heisenberg representation.
It is possible to perform a diagrammatic expansion of this expression using the real-time interaction
representation but we will not work this out here. We get the retarded Green function in a much simpler
way by means of an analytic continuation of the corresponding imaginary-time one (5.7), which we
have calculated in the previous chapter. This continuation is not well defined in general because we
know G1(ωm) only at a set of discrete points ωm and this is not enough for determining the function
in the whole upper half-plane [91]. This problem is also encountered when continuing functions which
are determined numerically, as discussed in Ref. [92]. Fortunately, it is known that G1(ωm) must
vanish like 1/ωm for large frequencies [62]. We can also see explicitly that our perturbative result
(5.87) obeys this condition. This information is sufficient to make the analytic continuation unique.
In order to find a connection between the real- and imaginary-time Green function, we use the general
approach in Ref. [62] and adapt it to the particular system discussed here. At first place, we write
the imaginary-time Green function in the spectral representation. Because of the already discussed
translational invariance in imaginary time, we set τ ′ = 0 in (5.7) and consider only the case τ > 0.
Doing this, Eq. (5.7) becomes

G1(0, j
′|τ, j) =

1

ZTr
{

e−βĤ âj,H(τ)â†j′,H(0)
}

. (6.17)

Now, we denote the eigenstates of the full Hamiltonian (5.1) by |n〉 and its respective energy eigenvalues
by En. Note that, of course, we do not know them explicitly, but an explicit formula is not needed
for the following derivation. Performing the trace in (6.17) in the base |n〉 yields

G1(0, j
′|τ, j) =

1

Z
∑

n

e−βEn〈n|âj,H(τ)â†j′,H(0)|n〉 , (6.18)

which can be rewritten with the help of the completeness relation
∑

n′ |n′〉〈n′| = 1 and the connection
between operators in Heisenberg and Schödinger picture (5.8) as

G1(0, j
′|τ, j) =

1

Z
∑

n,n′

e−βEne(En−E
n′)τ 〈n|âj |n′〉〈n′|â†j′ |n〉 . (6.19)

In Eq. (6.19), the dependence on time and on the operators is separated which allows us directly to
calculate the Matsubara transform very easily. Inserting (6.19) into (5.85) yields

G1(ωm; j′, j) =
1

Z
∑

n,n′

〈n|âj |n′〉〈n′|â†j′ |n〉
β
∫

0

dτ ′ e(En−E
n′+iωm)τ ′

, (6.20)

from which we obtain after carrying out the occurring integral

G1(ωm; j′, j) = − 1

Z
∑

n,n′

e−βEn〈n|âj |n′〉〈n′|â†j′ |n〉
1 − eβ(E

n′−En)

En − En′ + iωm
. (6.21)

This spectral representation (6.21) will be the suitable form of the imaginary-time Green function to
be compared with its real-time analog which we address now. Its definition (6.16) becomes for t′ = 0

G1(0, j
′|t, j) = Θ(t)

1

ZTr
{

e−βĤ
[

âj,H(t), â†j′,H(0)
]}

. (6.22)
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Now, we can proceed in a similar way as in (6.17), (6.18) and obtain under consideration of the
commutator occurring in (6.22)

G1(j
′|t, j) = Θ(t)

1

Z
∑

n,n′

e−βEn

[

ei(En−E
n′)t〈n|âj |n′〉〈n′|â†j′ |n〉 − ei(E

n′−En)t〈n|â†j′ |n′〉〈n′|âj |n〉
]

.

(6.23)
The next step is to perform a Fourier transform of (6.23):

G1(ω; j′, j) =

∞
∫

−∞

dt G1(j
′|t, j) eiωt . (6.24)

Inserting (6.23) into (6.24) yields

G1(ω; j′, j) =
1

Z
∑

n,n′

e−βEn



〈n|âj |n′〉〈n′|â†j′ |n〉
∞
∫

0

dt ei(En−E
n′)t − 〈n|â†j′ |n′〉〈n′|âj |n〉

∞
∫

0

dt ei(E
n′−En)t



 .

(6.25)
The two integrals in (6.25) are not well defined because integrals of this form only converge when the
exponent has a negative real part. But the energies are of course real and, therefore, the exponent
does not have a real part at all. To ensure convergence nevertheless, we add an infinitesimal positive
imaginary part to the frequency ω, i.e. set ω → ω + iη. Note, that if we did not consider the retarded
Green function but the advanced one, which has a prefactor Θ(−t), the infinitesimal imaginary part
iη would just change sign. Performing the integrals in (6.25) with this convergence procedure yields

G1(ω; j′, j) =
1

Z
∑

n,n′

e−βEn

[

〈n|âj |n′〉〈n′|â†j′ |n〉
−1

i(En − En′ + ω + iη)

− 〈n|â†j′ |n′〉〈n′|âj |n〉
−1

i(En′ − En + ω + iη)

]

. (6.26)

After exchanging n and n′ in the second term, we can write this as

G1(ω; j′, j) =
i

Z
∑

n,n′

e−βEn〈n|âj |n′〉〈n′|â†j′ |n〉
1 − eβ(En−E

n′ )

En − En′ + ω + iη
, (6.27)

which can now be compared with the spectral representation of the imaginary-time Green function in
(6.21). Thus, we see that we get the real-time Green function from the imaginary one by making the
replacement iωm → ω + iη and multiplying the result by −i:

G1(ω; j′, j) = −iG1(iωm = ω + iη; j′, j) . (6.28)

As a simple example, we state here the real-time Green function for the unperturbed system. Applying
the rule (6.28) to (5.87) yields the desired result:

G
(0)
1 (ω; j′, j) = δj′,jC

(0)
1 (ω) =

−iδi,j

Z(0)

∞
∑

n=0

[

n + 1

En+1 − En + ω + iη
− n

En − En−1 + ω + iη

]

e−βEn .

(6.29)

6.1.4 Dispersion Relations of Excitations

As it is well known within the Kubo formalism [56], the retarded Green function describes the linear
response of a system to an external disturbance [56,62,90]. We are now interested for which value of



CHAPTER 6. FURTHER DEVELOPMENT OF GREEN’S FUNCTIONS TECHNIQUE 71

the wave vector k, describing the spatial dependence, and the frequency ω, describing the temporal de-
pendence, this response becomes arbitrarily strong. The analogs in a classical one-particle system, like
a pendulum, are the eigenfrequencies where resonances occur. When neglecting damping, the response
is infinitely strong and, therefore, the Green function diverges when the frequency hits a resonance
frequency. For a quantum many-particle system, like the one discussed here, these resonances can be
described in terms of quasiparticles which provides a more intuitive way of understanding them. The
dispersion relation of these quasiparticles describes how the resonance frequencies depend on the wave
vector k. Thus, we need to find the poles of the real-time Green function. In order to do this, we take
the resummed first-order imaginary-time Green function (6.11), continue it to real time according to
(6.28) and obtain

G̃1(ω,k) =
−iC

(0)
1 (ω)

1 − J(k)C
(0)
1 (ω)

, (6.30)

where C
(0)
1 (ω) is given by (6.29). Equation (6.30) has poles for

1 − J(k)
1

Z(0)

∞
∑

n=0

[

n + 1

En+1 − En + ω
− n

En − En−1 + ω

]

e−βEn !
= 0 , (6.31)

where we have already set η → 0. Now we only need to solve (6.31) for ω. Because of the infinite sum
in (6.31), this can be done only numerically. We will come back to this soon but discuss at first place
the zero-temperature limit where analytic solutions are possible. For this case, the solution of (6.31)
reads with (5.5)

ω1,2(k) =
U

2
(2n − 1) − µ − J(k) ± 1

2

√

U2 − UJ(k)(4n + 2) + [J(k)]2 . (6.32)

To gain some physical insight into (6.32), we set J = 0 and obtain

ω(0)
p (k) = En+1 − En = Un − µ , ω

(0)
h (k) = En − En−1 = U(n − 1) − µ . (6.33)

From this, we can conclude that ωp is the energy needed to add another particle to a site already
occupied by n Bosons. Therefore, we shall call this a “particle” excitation. The second solution ωh is
the energy gained when removing a particle from an n-fold occupied site, for which reason we shall call
it a “hole” excitation. In the Mott-insulator phase, the excitation spectrum is gapped, which means
that ωp,h(0) 6= 0. This is most obviously seen for J = 0 due to (6.33). For a particle excitation one
has to add a particle to a site which costs a finite energy given by (6.33). When we allow hopping,
this energy is reduced because of delocalization. If a superfluid is present, we expect the spectrum
to be gapless because the added particle can delocalize over the whole system leading to a vanishing
energy in the long-wavelength limit.
Examining Eq. (6.32) and also its finite-temperature analog, which we have determined numerically,
we see that the excitations have a gap for parameters µ and J which correspond to a system in the Mott
phase as given by (6.13) and (6.14), respectively. Furthermore, we can see that the phase transition
is characterized by a vanishing gap, i.e. ω(0) = 0. Because of these considerations, it is reasonable
to define a Mott insulator through its excitation gap and the phase boundary as the point where this
gap vanishes first time. We will see below that this definition of the phase boundary is equivalent to
the one used above. In literature, sometimes, as for example in Ref. [58], a different definition of a
Mott insulator is used. There it is defined as an incompressible phase but this definition is strictly
valid only for T = 0 [22]. At first place, we have to understand the reason for the incompressibility
of the Mott phase at zero-temperature. In order to change the size of the system by one site, a finite
energy is required because at least one particle needs to be transferred to another site. Therefore
an infinitesimal change in volume is not possible with an infinitesimal energy and the compressibility
is zero. However, when a superfluid is present, the energy change is smooth because the superfluid
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Figure 6.3: Spectrum of the pair excitation for T = 0, n = 1, and 2DJ = 0 (black), 2DJ = 0.1U
(blue), 2DJ = 2DJct = 0.1716U (red) within the first Brillouin zone.

is delocalized and therefore the compressibility is finite. So far the situation for T = 0. For finite
temperature, thermal fluctuations of the particle number exist also in the Mott phase. Therefore, an
infinitesimal change in volume does just change the average particle number per site in an infinitesimal
way, leading to a small but finite compressibility [22]. Thus, we calculated in Subsection 6.1.2 the
phase-boundary for a transition from a phase with gap to a phase without gap. This definition is
equivalent to the one based on the compressibility for T = 0 but is also valid and useful for finite
temperatures.
The excitations discussed above lack some physical meaning because they involve adding or removing
a particle from outside which makes them not very feasible to study experimentally. This is also the
reason why they explicitly depend on the chemical potential. Thus, we turn our attention to the
dispersion relation of a pair excitation which is explicitly described by removing a particle from one
site and putting it to another. Using (6.32), the energy of this process is given for T = 0 by

ωpair(k) = ωp(k) − ωh(k) =
√

U2 − UJ(k)(4n + 2) + [J(k)]2 . (6.34)

Because such pair excitations do not change the total particle number, they do not depend on the
chemical potential µ. Their spectrum is shown in Fig. 6.3. We can now compute the value of J where
the gap of the pair excitations vanishes. At this point it does not cost any finite energy to create
particle-hole pairs in the long-wavelength limit which leads to the formation of the superfluid. We set
(6.34) equal to zero and obtain

ωpair(0) =
√

U2 − 2DUJc(4n + 2) + (2DJc)2
!
= 0 . (6.35)

Solving (6.35) yields
2DJct

U
= 2n + 1 − 2

√

n(n + 1) . (6.36)

For n = 1, the numerical value of (6.36) is

2DJct

U

∣

∣

∣

∣

∣

n=1

= 3 − 2
√

2 ≈ 0.1716 , (6.37)
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which is just the value at the tip of the first Mott lobe. To prove this connection in general, we have
to find the tip in (6.14) which means that we have to maximize it with respect to µ. Performing the
differentiation in (6.14) with respect to the chemical potential µ and setting the derivative equal to
zero yields

∂

∂µ

1
n+1

En+1−En
− n

En−En−1

=

[

n(n + 1)

(µ/U + 1)2
− 1

]

!
= 0 . (6.38)

When we solve this for µ, we obtain the positive solution

µt/U =
√

n(n + 1) − 1 . (6.39)

Inserting (6.39) back into (6.14) gives us the same value of the critical hopping at the tip as obtained
in (6.36).
Now we examine, how temperature affects the dispersion relation. The presence of thermal fluctuations
makes the situation more difficult. Now also the energy of the pair excitation depends on the chemical
potential. This is understandable because for finite temperature we do not have an fixed integer filling
anymore but only an average one which is related to the chemical potential in a bijective way (see also
Chapter 3). This dependence is shown in Fig. 6.5. When solving (6.31) numerically, one can see that
the effect of temperature on the dispersion relation is strongest for those values of µ which correspond
to fractional filling. Because we know already from examining the phase boundary in Subsection 6.1.2
that thermal fluctuations shift the superfluid transition to higher values of J , it is not unexpected
that this suppression of the superfluid can also be seen in the excitation spectrum. To examine the
thermal fluctuation in a more quantitative way, we consider the thermal fluctuations of the particle
number per site in the unperturbed system. They are defined as

〈δn〉 =

√

〈

(n̂ − 〈n̂〉)2
〉

, (6.40)

which can be simplified to
〈δn〉 =

√

〈n̂2〉 − 〈n̂〉2 . (6.41)

With the definition of the thermal average (3.7), Eq. (6.41) becomes

〈δn〉 =

√

∑

n n2 e−βEn

Z(0)
−
[∑

n n e−βEn

Z(0)

]2

, (6.42)

which is shown in Fig. 6.6. The thermal fluctuations are strongest where the particle number changes
most rapidly and the regions of strong fluctuations become larger for increasing temperature.
Thus, it is reasonable that temperature affects the spectrum most for chemical potentials which cor-
respond to fractional fillings as it is clearly visible in Fig. 6.4. In order to clarify this fact further, one
can plot the temperature-dependence of the gap Egap = ωpair(0) for different hopping parameters and
particle numbers, which are controlled by the chemical potential, as we have done in Fig. 6.7. The
broadening of the gap for higher temperatures, which was already obtained in Ref. [93], seems a bit
counter-intuitive at first sight but we have to keep in mind that we are still in a very low temperature
regime. What we observe is the thermal suppression of quantum tunneling. For this reason, it is also
obvious that temperature does not affect the gap for vanishing hopping (see black curve in Fig. 6.7).
Because the gap is a quantity which is experimentally accessible [68], this effect could be a candidate
to serve as a thermometer for Bosons in optical lattices.

6.1.5 Effective Masses

As widely known from condensed matter physics, excitations, which have not too short lifetimes,
can by described by quasi-particles propagating through the many-body medium [63]. A prominent
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Figure 6.6: Fluctuations of particle number per site for J = 0.
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Figure 6.7: Temperature dependence of the gap of pair excitations. Fractional filling, µ = 0.05U .
2DJ = 2DJct(T=0) = 0.1716U (red), 2DJ = 0.1U (blue), and J = 0 (black).

example are particles and holes in a semiconductor [94]. Such quasi-particles bear an effective mass
which governs their motion. This effective mass can strongly deviate from the physical mass of the
electrons. In this subsection, we calculate such effective masses for the excitations of the Bose-Hubbard
model in the Mott phase at zero temperature for a three-dimensional system. The dispersion relation
of massive particles is of the form

ωp,h(k) = Egap +
k2

2Mp,h
+ . . . , (6.43)

where Mp,h are the effective masses of the particles and holes, respectively. In order to obtain these
effective masses, we have to expand (6.32) around k = 0 and solve the coefficient of the k2 term for
Mp,h. Doing this yields

Mp,h/U =
1

J̃

√

1 + 36J̃(J̃ − 1)

3 − 6J̃ ±
√

1 + 36J̃(J̃ − 1)
, (6.44)

where we have used the abbreviation J̃ = J/U . Thus, we see that the particles and holes become
infinitely heavy for vanishing hopping as (6.44) diverges in the limit J̃ → 0. On the other hand,
the excitations become massless at the critical point. This is a consequence of the Nambu-Goldstone
theorem which states that when a continuous symmetry is broken, massless excitations exist [56]. The
symmetry involved here is the U(1) gauge-invariance. In the Mott phase, we can arbitrarily choose
the phase of the wave function while in the superfluid the phase is fixed because of the existence
of a collective wave function which describes the superfluid. Comparing our result with numerical
simulations from Ref. [95] in Fig. 6.8, one sees that they have the same qualitative form and only
disagree in the position of the critical point. This is just an obvious consequence of the underestimation
of the critical hopping by mean-field theory which was already encountered in Subsection 6.1.2.

6.1.6 Time-of-Flight from Resummed Green’s Function

After having successfully calculated the phase boundary and also the excitation spectrum from the
resummed Green function (6.11), we use it now to improve also our time-of-flight pictures. As seen
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Figure 6.8: Effective masses of particles (red) and holes (blue) in the Mott phase. Dots: Quantum
Monte-Carlo data from Ref. [95].

in Subsection 6.1.1, the pictures in Fig. 6.1, which were calculated from the first-order Green function
(5.81) are good for deep lattices but do not reproduce the sharp peaks observed in the experiments for
low lattice depths, e.g. in Ref. [17]. We show now that we can get better results from the resummed
Green function. To this end, we must first transform (6.10) into the time domain. Because of the
remarks in Subsection 6.1.1, we focus to the zero-temperature case where the Matsubara frequencies
ωm = 2πm/β become infinitely dense, and the sum over all ωm is replaced by an integral over the
continuous variable which we will also call ωm in order not to mix it up with the real-time frequency
ω. We will not introduce a special notation to denote zero-temperature quantities because we will not
consider finite-temperature ones in this subsection. The resummed Green function in the time domain
is obtained by Fourier transforming (6.11) back into the time domain and reads

G̃
(1)
1 (τ ′|0;k) =

1

2π

∞
∫

−∞

dωm
C

(0)
1 (ωm)

1 − J(k)C
(0)
1 (ωm)

e−iωmτ ′

, (6.45)

where we restrict ourselves to the case τ ′ > 0. The one-particle cumulant (5.87) reads in the zero-
temperature limit

C
(0)
1 (ωm) =

n + 1

En+1 − En + iωm
− n

En − En−1 + iωm
. (6.46)

Inserting (6.46) into (6.45) yields with (5.5)

G̃
(1)
1 (τ ′|0;k) =

1

2π

∞
∫

−∞

dω̃m
1 + µ̃ − iω̃m

J̃(k)(−µ̃ − 1 + iω̃m) − (n − µ̃ − 1 + iω̃m)(n − µ̃ + iω̃m)
e−iωmτ ′

, (6.47)

where we have introduced a dimensionless chemical potential µ̃ = µ/U and Matsubara frequency
ω̃m = ωm/U . The poles of the integrand in Eq. (6.47) lie at

ω̃1/2 =
i

2

[

2n − 2µ̃ − 1 − J̃(k) ±
√

J̃(k)2 − J̃(k)(4n + 2) + 1

]

. (6.48)

For the further derivations, the sign of the radicand in (6.48) is crucial. First we note that the radicand
is positive for J = 0. Therefore, we consider this case first. Now we make use of the residue theorem
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again. The pole ω̃1 lies in the upper half of the complex plane and, therefore, does not contribute to
this integral, while ω̃2 lies in the lower one. Thus, we obtain in the limit τ ′ ց 0:

G̃
(1)
1 (k) = −

J̃(k) − 1 − 2n +
√

J̃(k)2 − J̃(k)(4n + 2) + 1

2
√

J̃(k)2 − J̃(k)(4n + 2) + 1
. (6.49)

We note that (6.49) does no longer depend on the chemical potential. The physical reason for this is
the same as already discussed in Subsection 4.1.2. As the next step, we look for the value of J̃(k) for
which the radicand in (6.48) becomes zero. Setting

J̃(k)2 − J̃(k)(4n + 2) + 1
!
= 0 (6.50)

yields
Jc(k)

U
= 2n + 1 ±

√

n(n + 1) , (6.51)

which is just the generalization of (6.36) to arbitrary wave vectors k. Thus, we can state that the
radicand is positive for J̃(k) < 2n+1−

√

n(n + 1) and for J̃(k) > 2n+1+
√

n(n + 1). Recalling (6.6)
we see that J(0) = 2DJ . Thus, Eq. (6.49) is valid only in the Mott phase. Furthermore, we observe
that because J(0) ≥ J(k) for all k, the Green function really diverges first in the long-wavelength limit
which is exactly the behavior expected at a phase transition [4]. Unfortunately, it is not possible to get
results in the superfluid phase. When the radicand in (6.48) is negative, the poles obtain a real-part
which leads a to complex unphysical Green function. The second region where the radicand in (6.49)
is positive, i.e. J̃(k) > 2n + 1 +

√

n(n + 1), is not physically reasonable either because its positivity
is not true for all values of J̃(k) which leads to complex Green functions for some wave-vectors k.
Because of these problems, we proceed now in a different way. In order to be able to extract meaningful
information in the superfluid region nevertheless, we expand (6.45) back into a geometrical series and
integrate term by term:

G̃
(1)
1 (τ ′|0;k) =

1

2π

∞
∑

l=0

J(k)l
∞
∫

−∞

dωm C
(0)
1 (ωm)l+1e−iωmτ ′

. (6.52)

Now we can insert (6.46) into (6.52) and get

G̃
(1)
1 (τ ′|0;k) =

1

2π

∞
∑

l=0

J(k)l
∞
∫

−∞

dωm

[

n + 1

En+1 − En + iωm
− n

En − En−1 + iωm

]l+1

e−iωmτ ′

. (6.53)

As a next step we have to calculate the remaining integral. This is most easily done with the help of
the residue theorem again. We insert (5.5) and obtain

G̃
(1)
1 (τ ′|0;k) =

1

2π

∞
∑

l=0

J(k)l

U l

∞
∫

−∞

dω̃m
(µ̃ + 1 − iω̃m)l+1

[(µ̃ − n + 1 − iω̃m)(n − µ̃ + iω̃m)]l+1
e−iω̃mτ̃ ′

, (6.54)

where we have introduced a dimensionless imaginary time τ̃ ′ = Uτ ′. The integrand in (6.54) has two
(l+1) -fold poles at ω̃1 = i(n− µ̃−1) and ω̃2 = i(n− µ̃). Because of the relation between the chemical
potential and the particle number per site for T = 0 (5.6), ω̃1 is always in the lower half plane of
the the complex ωm-plane, while ω̃2 is always in the upper half plane. To calculate the residue of the
contributing pole at ω̃1, we need the general formula for a n-fold pole [91]:

Resaf(z) =
1

(n − 1)!
lim
z→a

∂n−1

∂zn−1
[(z − a)nf(z)] . (6.55)
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Applying this to our case yields

(ω̃m − ω̃1)
l+1f(ω̃) =

1

il+1

(

µ̃ + 1 + iω̃m

n − µ̃ − iω̃m

)l+1

e−iω̃mτ̃ ′

. (6.56)

With the help of (6.56) we obtain from Eq. (6.54)

G̃
(1)
1 (τ ′|0;k) = −

∞
∑

l=0

1

ill!

J(k)l

U l

∂l

∂ω̃l
m

[

(

µ̃ + 1 − iω̃m

n − µ̃ + iω̃m

)l+1

e−iω̃mτ̃ ′

]

ω̃m=ω̃1

. (6.57)

Now we have to differentiate (6.56) l -times with respect to ω̃m, which is a quite cumbersome task in
general. But because we are, in the end, only interested in the limit τ ′ ց 0, it is possible to simplify
(6.57) to

G̃
(1)
1 (k) = −

∞
∑

l=0

1

ill!

J(k)l

U l

∂l

∂ω̃l
m

[

(

µ̃ + 1 − iω̃m

n − µ̃ + iω̃m

)l+1
]

ω̃m=ω̃1

. (6.58)

Note that the derivatives of e−iω̃mτ̃ ′
cannot contribute, because they all contain at least one factor

of τ̃ and therefore vanish in the considered limit. In order to check the intermediate result (6.58), it
is useful to consider the term with l = 0, because this is just the equal-time Green function of the
unperturbed system. Doing this, we obtain from (6.58):

G
(0)
1 (k) = n . (6.59)

This is just the Fourier transform of the zero-temperature limit of (5.76) with (5.37). Setting l = 1 in
(6.58) also reproduces the first-order result calculated in (6.8).
For the further development, it is useful to write (6.58) in the form

G̃
(1)
1 (k) =

∞
∑

l=0

(

J(k)

U

)l

Sl , (6.60)

where the respective dimensionless coefficients are determined according to

Sl = − 1

ill!

∂l

∂ω̃l
m

[

(

µ̃ + 1 − iω̃m

n − µ̃ + iω̃m

)l+1
]

ω̃m=ω̃1

. (6.61)

When explicitly performing the derivatives with respect to ω̃m in (6.61), the chain and product rule
of differentiation produce terms with all powers of n up to l + 1. In order to find a simpler expression
for the coefficients (6.61), we perform a transformation of variables which yields

Sl =
1

l!

[

∂l

∂yl

(

y + n

1 − y

)l+1
]

y=0

, (6.62)

which can be rewritten as

Sl =
1

l!

{

∂l

∂yl

[

l+1
∑

k=0

(

l + 1

k

)

(n + 1)k

(1 − y)k
(−1)l+1−k

]}

y=0

. (6.63)

Now the derivatives can be performed with the help of the formula

∂l

∂yl
(1 − y)−k =

(k + l − 1)!

(k − 1)!
(1 − y)−k−l . (6.64)
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S0 n

S1 2n + 2n2

S2 3n + 9n2 + 6n3

S3 4n + 24n2 + 40n3 + 20n4

S4 5n + 50n2 + 150n3 + 175n4 + 70n5

Figure 6.9: Coefficients for the calculation of the equal-time correlation from the resummed Green
function.

Inserting (6.64) into (6.63) yields the final result

Sl = (l + 1)

l+1
∑

k=0

(l + k − 1)!(−1)l−k+1(n + 1)k

(l − k + 1)!k!(k − 1)!
. (6.65)

We note that with the help of the hypergeometric function 2F1(α, β; γ; z) [96, (9.100)], Eq. (6.65) can
be written as

Sl = (−1)l(n + 1)(l + 1) 1F2(−l, l + 1; 2;n + 1) . (6.66)

Now one can use a symbolic computer-algebra program like Mathematica to calculate the coefficients
Sl explicitly from (6.66). The first few of them are tabulated in Fig. 6.9. The coefficients (6.66) are
closely related to the closed form of the resummed Green function in the Mott phase in Eq. (6.49).
When Eq. (6.49) is expanded into powers of J(k), the expansion coefficients are just given by Sl in
Eq. (6.65), which is a good crosscheck for the correctness of our results.
We note that the series (6.60) only converges within the Mott phase, i.e. for J < Jct with Jct given
by (6.36) Nevertheless, we can also get meaningful results in the superfluid phase. We only need to
deal with the problem of the divergence of the series (6.60). Because we have summed in (6.60) only a
subset of diagrams of a given order, the Green functions and, therefore, the pictures are not normalized
anymore. This is meant in that sense, that the overall intensity becomes arbitrarily strong. But this
is no real problem at all because only differences between regions with high and low intensity in the
kx − ky-plane, corresponding to dark and light spots, are of interest and everything else is just a mat-
ter of suitably choosing the scale. When we plot the time-of-flight pictures resulting from Eq. (6.60),
we need to truncate the infinite series after a finite order which we call N . One can see that it is
enough to take N ≈ 20 because a larger N does not lead to visible differences. Therefore, we call the
corresponding pictures the resummed time-of-flight pictures which we have plotted in Fig. 6.10. These
pictures show a notable difference between the Mott insulator and the superfluid phase. In the former,
the pictures from the resummed Green function and the one from the first-order perturbation theory
show only minor differences as it can bee seen in Fig. 6.10 (a) and (b). This is reasonable because
we already noted in Subsection 6.1.1 that our perturbation theory is good in the Mott phase. In the
superfluid phase, the situation is different, as shown in (c) and (d). The resummed pictures show the
characteristic sharp peaks which were also observed in the experiment while the first-order ones lack
them as discussed in Subsection 6.1.1. Thus, we can say that the resummation procedure allowed us
to explain experimental results which were not explainable by the low-order perturbative calculation
performed in Subsection 6.1.1. However, the results are not completely satisfactory because of the
unphysical non-convergent nature of the series (6.60). Furthermore, we note that Fig. 6.10 (d) does
not only show the expected and experimentally measured peaks corresponding to the sites of the re-
ciprocal lattice but also additional ones between them. As they do not occur when considering the
quasi-momentum distribution in the limit of vanishing interaction, as done in Section 4.1.1, we can
surely say that they are only an artefact of using the series (6.60) in the region of non-convergence.
To conclude this discussion, we briefly sketch the reason for the sharp interference peaks in the super-
fluid phase on physical ground: When the system is in the superfluid phase, a fraction of the Bosons
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(a) (b)

(c) (d)

Figure 6.10: Representation of time-of-flight pictures with arbitrary scale and two different lattice
depths V0. (a) and (b): V0 = 18ER. (c) and (d): V0 = 8ER. (a) and (c): First-order perturbation
theory. (b) and (d): Resummed (see text).

is completely delocalized over the whole lattice and forms a uniform superfluid which is described in
mean-field theory by the order-parameter Ψ, as extensively discussed for the spinor case in Chapter
3. Because the superfluid is spatially uniform, it leads to a constant correlation function in real space
which corresponds to local correlations in momentum space. This is the case because the Fourier
transform of a constant is a Kronecker-delta. In order to study these features in more detail, one has
to introduce an order parameter into the theory, for example by means of an effective-action formal-
ism [85,97] and calculate the respective Green functions in the presence of this additional background
field. This goes beyond the scope of this thesis and will, therefore, not be done.

6.1.7 Visibibility from Resummed Green’s Function

After having successfully calculated the crucial features in the time-of-flight pictures from the re-
summed Green function, we now turn to the visibility which was already addressed in Subsection 4.2.3
for the case of a spin-1 system. In this subsection, we use the straightforward specification of (4.34)
to a scalar system which reads

V =
nmax − nmin

nmax + nmin
. (6.67)
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Because we are now especially interested in the visibility for low lattice depths, we do not use the
two-dimensional approximation from Subsection 4.1.2 but carry out the integration over the z axis
which leads to

nmax =

∞
∫

−∞

dkz
|w(k)|2

a2
G̃

(1)
1 ((2π/a, 0, kz/a)) , nmin =

∞
∫

−∞

dkz
|w(k)|2

a2
G̃

(1)
1 ((

√
2π/a,

√
2π/a, kza)) ,

(6.68)
where we have used the resummed Green function in Fourier space (6.60) and the Fourier transform of
the Wannier function (4.28). Now we are in the position to calculate the visibility for arbitrary lattice
depths. Before we do this, we take a moment to discuss the connection between the parameters of the
Bose-Hubbard model U and J and the experimentally adjustable parameter, which is the lattice depth
V0. In order to obtain the parameter J , one must use (2.13). To evaluate the occurring integrals,
one has to know the Wannier function. When we approximate it by a Gaussian (4.28) and use the
dimensionless lattice depth Ṽ0 = V0/ER again, we get for not too low lattice depths [23]

J ≈ ER

(

π2

4
− 1

)

Ṽ0 e−π2
√

Ṽ0/4 , (6.69)

from which we see that J decays with V0 exponentially. This is reasonable because it is well known
that tunneling probabilities have an exponential dependence on the barrier height. In order to get a
formula for the interaction energy, we specify (2.14) to the scalar Bose-Hubbard Model and get

U = aS

∫

d3x|w(x − xi)|4 , (6.70)

where aS is the s-wave scattering length. In the harmonic approximation Eq. (6.70) becomes [23]

U =
√

8πER
aS

a
Ṽ

3/4
0 , (6.71)

where the ratio between the s-wave scattering length aS and the lattice constant a occurs. From (6.71)
we see that U depends only algebraically on Ṽ0.
Because the harmonic approximation (6.69), (6.71) has quite large errors, as extensively discussed
in Ref. [23], we will not employ it here but use the numerically determined parameters J(Ṽ0) and
U(Ṽ0) instead, which we have obtained with the help of a Mathematica program [59]. In Fig. 6.11,
we have shown the visibility for varying values of U/(2DJ) in a double-logarithmic plot. Comparing
the red and the black curve, one can see that they fairly agree in the deep Mott phase. The visibility
depends nearly linearly on J/U in this region. In the superfluid phase, the result from the first-order
perturbation theory (black) clearly shows unphysical behavior because it gets larger than unity which
is impossible according to the definition (6.67). This it not suprising because the simple perturbation
theory breaks down in this region. However, the result from the curve from the resummed Green
function (red) does not show these problems but approaches unity as it is expected and also measured
experimentally in Ref. [77]. Thus, our resummation procedure allows us to extend the calculation of
the visibility, which was calculated for systems in the Mott phase in Ref. [23], to the whole parameter
space, i.e. even deep into the superfluid phase. Note that unlike the corresponding result for the
time-of-flight in the previous subsection, the visibility does not need any artificial scaling because the
respective series for the visibility converges for all values of J/U . To be more precise, it converges to
unity for parameter values in the superfluid phase. This seems to be not absolutely correct because it
is expected from Bogoliubov theory [71] that the visibility is smaller than unity also in the superfluid
phase and approaches unity only for vanishing interaction U → 0. When we compare our theoretical
result with experimental data in Fig. 6.11, we see that their exists quite a large disagreement. One main
reason is the fact that the experimentally determined particle numbers have quite large errors. Thus,
we do not know exactly how many particles occupy one lattice site. Furthermore, in the experiment,
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Figure 6.11: Visibility for n = 2 and T = 0. Black: Result from first-order perturbation theory. Red:
Result from resummed Green’s function. Dots: Experimental data from Ref. [77]

the system is not homogeneous as in our theoretical consideration. An additional confining trap is
used, as mentioned in Chapter 1, which leads to the formation of a so-called wedding-cake structure
where Mott shells with different particle numbers per site exist [23,68]. Here we have only considered
the innermost one, thus, we have overestimated the visibility. In addition to these complications,
superfluid regions exist between these shells which lead to an increased visibility.

6.1.8 Correlation Functions

While we were discussing the phase boundary in Subsection 6.1.2 we noted that the phase transition
is characterized by diverging long wave-length correlations. In this subsection we investigate in more
details how the correlations between different lattice sites behave. We restrict ourselves to the zero-
temperature case again. We explain the main concepts for a one-dimensional system for reasons of
simplicity but generalization to arbitrary spatial dimension is straightforward. In order to study the
correlation function as a function of the distance between the sites, we define

K(r) = 〈â†i âj〉 = lim
τ ′ց0

G1(τ
′, i|0, j) with d(i, j) = r/a . (6.72)

Because we are interested in the behavior of K(r) for large distances r, we cannot use finite-order
perturbation theory but we have to use the resummed Green’s function instead. Thus, we consider
the resummed equal-time Green function (6.60) and Fourier transform it into real-space:

K̃(1)(j) =
a

2π

π/a
∫

−π/a

dk G̃(1)(k) e−ikr . (6.73)

From the explicit form of (6.60) we can see that the calculation of the Fourier transform boils down
to the evaluation of the integrals

Il =
a

2π

π/a
∫

−π/a

dk [2 cos(ka)]l e−ikr . (6.74)
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Figure 6.12: Logarithmic plot of decay of correlations in Mott phase for hopping parameters 2DJ =
0.04U (black), 2DJ = 0.06U (blue), and 2DJ = 0.09U (red). The corresponding correlation-lengths
are ξ1 = 0.31 a, ξ2 = 0.48 a, and ξ3 = 0.66 a.

As an example we just state the result of (6.74) for l = 2 which reads

I2 =
4(r̃2 − 2) sin(πr̃)

π(r̃3 − 4r̃)
, (6.75)

where r̃ = r/a. Evaluating (6.75) at the discrete values r̃ = 0, 1, . . . yields

I2 = 2δr̃,0 + δr̃,2 , (6.76)

which is the same result as obtained when just counting the possibilities to make two jumps on a one-
dimensional lattice starting from the origin. The formula for general values of J is difficult to state
in a closed form but easily calculated with the help of an symbolic computer algebra program. We
note that an equivalent result could, in principle, be obtained by Fourier transforming Eq. (6.49) back
into real-space. However, this is not possible analytically but only by means of numerical integration.
Thus, it is more convenient to use the series respresentation (6.60) instead. In Fig. 6.12, we have
shown the exponential decay of the correlations which is described by the functional form

K(r) ∝ e−r/ξ , (6.77)

where ξ is the correlation length [5], which can be obtained by fitting (6.77) to Fig. 6.12. For a system
in the Mott phase, the correlation-length ξ is of the order of the lattice constant a (see Fig. 6.12), as
it is expected. The divergence of ξ when approaching the critical point is discussed below.

6.1.9 Extension to Spin-1 Systems

In this subsection, we sketch how to extend the Green function approach to the spin-1 Bose-Hubbard
model which was discussed in the Chapters 2–4. In the definition of the Green function in (5.7) we
have to give the operators additional indices α′ and α which correspond to the three hyperfine states
α. Thus, the full one-particle Green function becomes

G1(τ
′, j′, α′|τ, j, α) =

1

ZTr
{

e−βĤ T̂
[

âαj,H(τ)â†α′j′,H(τ ′)
]}

. (6.78)
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The same applies to the n-particle Green function and also to the cumulants. Now we proceed like
in the scalar case but with one slight change: The perturbative Hamiltonian in Dirac representation
now reads

Ĥ1D(τ) = −
∑

α

∑

i,j

Ji,j â
†
iα(τ)âjα(τ) , (6.79)

where we have to sum over all hyperfine states wherever a perturbation operator occurs. For the
diagrammatic rules, this means the following: Every internal line gets an additional spin index which
must be summed from −1 to +1. External lines get fixed spin indices corresponding to α and α′ in
(6.78). The second important difference occurs, when calculating the cumulants. There we have to
use the states |S,m, n〉 instead of the states |n〉 and perform the trace over the full Fock space. As
the easiest example we calculate the zeroth-order result:

G
(0)
1 (τ ′, α′|τ, α) =

1

Z(0)

∑

S,m,n

〈S,m, n|T̂
[

â†α′(τ
′)âα(τ)

]

|S,m, n〉e−βES,m,n . (6.80)

Using the matrix elements M , N , O, and P from Appendix A, we can write this as

G
(0)
1 (τ ′, α′|τ, α) =

δαα′

Z(0)

∑

S,m,n

{

Θ(τ − τ ′)
[

M2
α,S,m,n e(ES,m,n−ES+1,m+α,n+1)(τ−τ ′)

+ N2
α,S,m,n e(ES,m,n−ES−1,m+α,n+1)(τ−τ ′)

]

+ Θ(τ ′ − τ)
[

O2
α,S,m,n e(ES,m,n−ES+1,m−α,n−1)(τ

′−τ)

+ P 2
α,S,m,n e(ES,m,n−ES−1,m−α,n−1)(τ ′−τ)

]

}

e−βES,m,n . (6.81)

Note that the higher n-particle functions do not have the Kronecker symbol δαα′ and we must not
drop the spin indices. With these tools we can find the corresponding quasi-momentum distribution
yielding the same result as in Chapter 4. To find the phase boundary to the different superfluid
phases, we perform a resummation as described in Subsection 6.1.2 and look for the divergence of
G1(α,α;ωm = 0,k = 0) which yields the same result as with the mean-field approach described in
Chapter 3.

6.2 Second Order

After having seen how to get the thermodynamic and dynamic quantities of interest from our Green
function approach, we push this method further and see how the respective results improve. To be able
to treat the corrections to the mean-field result systematically, it is useful to introduce basic diagrams
from which we can get non-perturbative results by summing a geometric series as done in (6.11). A
diagram shall be called “one-particle irreducible” when it cannot be divided into two parts by cutting
a single line. We denote the sum of all these one-particle irreducible diagrams with their respective
weights like a one-particle cumulant but with a big dot. Thus, we define

C1(ωm,k) = = + +

(

1

2
+ . . .

)

. (6.82)

From (6.82) we can build up the full Green function by the Dyson-like series

G1(ωm,k) =
∞
∑

l=0

( )l+1
J(k)l =

C1(ωm,k)

1 − J(k)C1(ωm)
. (6.83)
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The procedure used above to get the first-order resummed Green function (6.11) corresponds to the
lowest-order approximation in (6.82) which reads

≈ . (6.84)

In this section, we go beyond this.

6.2.1 Self-Energy

A suitable way to describe the dynamics and thermodynamics of a single particle in a many-particle
background is to introduce the self-energy [56,63,85,90]. It is defined as

Σ =
1

G
(0)
1

− 1

G1
, (6.85)

from which the full Green function can be obtained according to

G1 =
1

1/G
(0)
1 − Σ

. (6.86)

Comparing (6.85) with (6.83) and using (5.76) allows us to write (6.85) as

Σ(ωm,k) =
1

C
(0)
1 (ωm)

− 1

C1(ωm,k)
+ J(k) , (6.87)

which can now be calculated in powers of J . Because no first-order contribution to C1 exist in (6.82),
the first-order self-energy reads

Σ(1)(ωm,k) = J(k) . (6.88)

Inserting (6.88) into (6.86) just yields again our first-order resummed Green function (6.10). For the
calculation of the second-order self-energy we need the second diagram in (6.82) which we will compute
in the next subsection.

6.2.2 Calculation of One-Loop Diagram

Of course, we could calculate the one-loop diagram in Matsubara space, but because this involves the
quite complicated calculation of a sum over all Matsubara frequencies, we perform the calculation in
the time domain. Using the diagrammatic rules in Subsection 5.3.1, the second diagram in (6.82) is
evaluated according to

i

k

τ ′

2
τ2

τ ′

1
τ1

= G
(2B)
1 (τ ′

1, i
′|τ1, i) = 2DJ2δi,i′

β
∫

0

dτ2

β
∫

0

dτ ′
2 C

(0)
2 (τ ′

1, τ
′
2|τ1, τ2)G

(0)
1 (τ2|τ ′

2) , (6.89)

where G
(2B)
1 is just an abbreviation for the respective diagram and the symmetry factor is one. With

the explicit form of the two-particle cumulant (5.39) we get three terms from (6.89) which we calculate
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separately for τ1 = 0. The first one reads

G
(2B′)
1 (τ ′

1, i
′|0, i) =

δi′,i2DJ2

Z(0)2

∑

k,l

e−β(El+Ek)

×
{

k(k − 1)(l + 1) eτ ′
1(Ek−1−Ek−2)

β
∫

τ ′
1

dτ ′
2 eτ ′

2(Ek−Ek−1+El−El+1)

τ ′
1
∫

0

dτ2 eτ2(Ek−2−Ek−1−El+El+1) (6.90a)

+ k2(l + 1) eτ ′
1(Ek−Ek−1)

β
∫

τ ′
1

dτ ′
2 eτ ′

2(Ek−Ek−1+El−El+1)

τ ′
2
∫

τ ′
1

dτ2 eτ2(Ek−1−Ek−El+El+1) (6.90b)

+ k(k + 1)l eτ ′
1
(Ek−Ek−1)

β
∫

τ ′
1

dτ2 eτ2(Ek−Ek+1+El−El−1)

τ2
∫

τ ′
1

dτ ′
2 eτ ′

2
(Ek+1−Ek−El+El−1) (6.90c)

+ k(k − 1)(l + 1) eτ ′
1
(Ek−Ek−1)

τ ′
1
∫

0

dτ ′
2 eτ ′

2
(Ek−1−Ek−2+El−El+1)

τ ′
2
∫

0

dτ2 eτ2(Ek−2−Ek−1−El+El+1) (6.90d)

+ k2l eτ ′
1(Ek−Ek−1)

τ ′
1
∫

0

dτ2 eτ2(Ek−1−Ek+El−El−1)

τ2
∫

0

dτ ′
2 eτ ′

2(Ek−Ek−1−El+El−1) (6.90e)

+ (k + 1)kl eτ ′
1(Ek+1−Ek)

β
∫

τ ′
1

dτ2 eτ2(Ek−Ek+1+El−El−1)

τ ′
1
∫

0

dτ ′
2 eτ ′

2(Ek−Ek−1−El+El−1)

}

. (6.90f)

We note that the two integrals in (6.90a) and (6.90f) are independent from each other and factorize
while the remaining terms contain “real” double integrals. The integrations can now be easily carried
out and we obtain

(6.90a) =k(k − 1)(l + 1) eτ ′
1
(Ek−1−Ek−2)

eβ(Ek−Ek−1+El−El+1) − eτ ′
1
(Ek−Ek−1+El−El+1)

Ek − Ek−1 + El − El+1

× eτ ′
1
(Ek−2−Ek−1−El+El+1) − 1

Ek−2 − Ek−1 − El + El+1
, (6.91a)

(6.90b) =
k2(l + 1) eτ ′

1
(Ek−Ek−1)

Ek−1 − Ek − El + El+1

[

(β − τ ′
1) −

e(β−τ ′
1
)(Ek−Ek−1+El−El+1) − 1

Ek − Ek−1 + El − El+1

]

, (6.91b)

(6.90c) =
k(k + 1)l eτ ′

1
(Ek−Ek−1)

Ek+1 − Ek − El + El−1

[

(β − τ ′
1) −

e(β−τ ′
1
)(Ek−Ek+1+El−El−1) − 1

Ek − Ek+1 + El − El−1

]

, (6.91c)

(6.90d) =
k(k − 1)(l + 1) eτ ′

1
(Ek−Ek−1)

Ek−2 − Ek−1 − El + El+1

[

τ ′
1 −

eτ ′
1
(Ek−1−Ek−2+El−El+1) − 1

Ek−1 − Ek−2 + El − El+1

]

, (6.91d)

(6.90e) =
k2l eτ ′

1
(Ek−Ek−1)

Ek − Ek−1 − El + El−1

[

τ ′
1 −

eτ ′
1
(Ek−1−Ek+El−El−1) − 1

Ek−1 − Ek + El − El−1

]

, (6.91e)

(6.90f) =(k + 1)kl eτ ′
1(Ek+1−Ek) e

β(Ek−Ek+1+El−El−1) − eτ ′
1(Ek−Ek+1+El−El−1)

Ek − Ek+1 + El − El−1

× eτ ′
1
(Ek−Ek−1−El+El−1) − 1

Ek − Ek−1 − El + El−1
. (6.91f)
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By suitably shifting summation indices in (a), (b), (c), and (f), we can get rid of all exponentials
containing β which yields

(6.90a) =k(k − 1)(l + 1)
eτ ′

1(Ek−Ek−2+El−El+1) − eτ ′
1(Ek−Ek−1)

(Ek − Ek−1 + El − El+1)(Ek−2 − Ek−1 − El + El+1)

+ (k + 1)kl
eτ ′

1(El−El−1) − eτ ′
1(Ek−Ek−1)

(Ek+1 − Ek + El−1 − El)(Ek−1 − Ek − El−1 + El)
, (6.92a)

(6.90b) =k2(l + 1)
eτ ′

1(Ek−Ek−1)

Ek−1 − Ek − El + El+1

[

(β − τ ′
1) +

1

Ek − Ek−1 + El − El+1

]

+ (k + 1)2l
eτ ′

1(El−El−1)

(Ek − Ek+1 − El−1 + El)2
, (6.92b)

(6.90c) =k(k + 1)l
eτ ′

1(Ek−Ek−1)

Ek+1 − Ek − El + El−1

[

(β − τ ′
1) +

1

Ek − Ek+1 + El − El−1

]

+ (k − 1)k(l + 1)
eτ ′

1
(Ek−Ek−2−El+1+El)

(Ek − Ek−1 − El+1 + El)2
, (6.92c)

(6.90f) =(k + 1)kl
eτ ′

1(El−El−1) − eτ ′
1(Ek−Ek−1)

(Ek − Ek+1 + El − El−1)(Ek − Ek−1 − El + El−1)

+ (k − 1)k(l + 1)
eτ ′

1(Ek−Ek−2−El+1+El) − eτ ′
1(Ek−k−1)

(Ek−1 − Ek + El+1 − El)(Ek−1 − Ek−2 − El+1 + El)
. (6.92d)

The next step is to transform this result into Matsubara space. This is straightforward to do, yielding
after some rearrangements the result

G
(2B′)
1 (ωm; i′, i) =

δi,j2DJ2

Z(0)2

∑

k,l

e−β(El+Ek)

×
{

k(k − 1)(l + 1)

Ek − Ek−2 + El − El+1 + iωm

[

2

(Ek−1 − Ek − El + El+1)(Ek − Ek−1 + iωm)

+
1

(Ek − Ek−1 − El+1 + El)2
− 1

(Ek − Ek−1 + iωm)2

]

+
(k + 1)kl

(Ek − Ek+1 − El−1 + El)(Ek − Ek−1 + iωm)

[

−2

El − El−1 + iωm

+
1

Ek − Ek−1 + iωm
+

1

Ek − Ek+1 − El−1 + El

]

+
(k + 1)k(l + 1)

(Ek−1 + Ek − El − El+1)(Ek+1 − Ek + iωm)

[

2

El+1 − El + iωm

+
−1

Ek+1 − Ek + iωm
+

−1

Ek−1 − Ek − El + El+1

]

+
(k + 1)(k + 2)l

Ek+2 − Ek + El−1 − El + iωm

[

1

Ek − Ek+1 − El−1 + El
+

−1

Ek+1 − Ek + iωm

]2

+ k2(l + 1)

[

−1

(Ek−1 − Ek − El + El+1)(Ek − Ek−1 + iωm)2

+
1

(Ek−1 − Ek − El − El+1)2(Ek − Ek−1 + iωm)
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+
1

(Ek − Ek−1 − El+1 + El)2(El+1 − El + iωm)

]

+ (k + 1)2l

[

−1

(Ek − Ek+1 − El−1 + El)2(El − El − El−1 + iωm)

+
−1

(Ek − Ek+1 − El−1 + El)(El − El − El−1 + iωm)2

]

+
(k + 1)2(l + 1)

(Ek+1 − Ek + iωm)2(El+1 − El + iωm)
+

−k2l

(Ek − Ek−1 + iωm)2(El − El−1 + iωm)

+ β

[

k + 1

Ek+1 − Ek + iωm
− k

Ek − Ek−1 + iωm

]

×
[

k(l + 1)

Ek−1 − Ek − El + El+1
+

(k + 1)l

Ek+1 − Ek − El + El−1

]}

. (6.93)

We note that every term in (6.93) but the one proportional to β in the last line has a well defined
zero-temperature limit. We will see soon how this term is compensated in the limit β → ∞. From the
second term in (5.39), we get the contribution to (6.89)

G
(2B′′)
1 (τ ′

1, i
′|τ1, i) = −2DJ2δi,i′C

(0)
1 (τ ′

1|τ1)

β
∫

0

dτ2

β
∫

0

dτ ′
2C

(0)
1 (τ ′

2|τ2)C
(0)
1 (τ2|τ ′

2) . (6.94)

The integrals in (6.94) have been already calculated in (5.43)–(5.44). Thus, we get in Matsubara space

G
(2B′′)
1 (i′, i;ωm) = − βδi,i′2DJ2

Z(0)3

{

∑

k

e−βEk

[

k + 1

Ek+1 − Ek + iωm
− k

Ek − Ek−1 + iωm

]}

×
{

∑

k,l

eβ(Ek+El)

[

k(l + 1)

Ek−1 − Ek − El + El+1
+

(k + 1)l

Ek+1 − Ek − El + El−1

]}

.

(6.95)

Comparing (6.95) with the last term in (6.93), it becomes obvious that they cancel each other in the
low-temperature limit β → ∞. We must only remember that in this limit all thermal sums get reduced
to a single term which is determined by the particle number per site n. Thus, the respective terms
cancel for the same reason as already discussed when considering the specific heat in Subsection 5.3.7.
Finally, we obtain from the third term in (5.39) for (6.89)

G
(2B′′′)
1 (τ ′

1, i
′|τ1, i) = −2DJ2δi,i′

β
∫

0

dτ2

β
∫

0

dτ ′
2C

(0)
1 (τ ′

1|τ2)C
(0)
1 (τ ′

2|τ1)C
(0)
1 (τ2, τ

′
2) . (6.96)

When we examine the integral in (6.96), we see that it is, apart from prefactors, the same as the one
occurring when calculating the diagram

i k j

τ ′ τ1 τ2 τ .

But because of frequency conservation this term is best calculated in Matsubara space and we obtain

G
(2B′′′)
1 (i′, i;ωm) = −2DJ2δi,i′C

(0)
1 (ωm)3 . (6.97)
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In order to obtain the final result for (6.89), we must only combine (6.93), (6.95), and (6.97) which
yields

i

k

ω1 ω1

ωm ωm

= G
(2B)
1 (i′, i|ωm) = G

(2B′)
1 (i′, i|ωm) + G

(2B′′)
1 (i′, i|ωm) + G

(2B′′′)
1 (i′, i|ωm) . (6.98)

Note that because (6.98) is proportional to δi,i′ , it does not depend on k in momentum space. For
this reason, we will drop the variable k in the following.
Now, we use the definition of the self-energy (6.87) and obtain for the second order in the hopping
matrix element

Σ(2)(ωm,k) = − G
(2B)
1 (ωm)

[

C
(0)
1 (ωm)

]2 . (6.99)

Note that the proportionality to J2 is contained in the definition of G
(2B)
1 in Eq. (6.89). Plugging

(6.99) in (6.86) yields

G̃
(2)
1 (ωm,k) =

1

1/C
(0)
1 (ωm) − J(k) + G

(2B)
1 (ωm)/

[

C
(0)
1 (ωm)

]2 . (6.100)

Because of the topology of the occurring diagram, we call (6.100) the one-loop corrected Green function.
To get the phase boundary from it, we must set again k = 0 and ωm = 0 as described in Subsection
6.1.2

G̃
(2)
1 (0,0) =

1

1/C
(0)
1 (0) − 2DJ + G

(2B)
1 (0)/

[

C
(0)
1 (0)

]2 . (6.101)

Now we must find the parameter values where (6.101) diverges. Setting the denominator equal to zero
provides us with a quadratic equation which has the two solutions

Jc = 1/







C
(0)
1 (0)D ±

√

√

√

√

G
(2B)
1 (0)

J2C
(0)
1 (0)

+ D2
[

C
(0)
1 (0)

]2







. (6.102)

Note that this Eq. (6.102) is perfectly defined because the factor J2 on the right-hand side just cancels
the factor J2 which is contained in the one-loop contribution (6.98). Because we are looking for the
phase boundary, which corresponds to the first value of J at which G1 diverges when starting from
J = 0, we must always take that sign in (6.102) which yields the lower value of Jc. Another fact
worth noting is that (6.102) depends on the spatial dimension of the system in a non-trivial way and
we can, therefore, see how the quantum-corrections, which we have calculated, affect the mean-field
phase diagram for the different dimensions of interest, i.e. D = 3, D = 2, and D = 1. This is done in
the next subsections.

6.2.3 One-Loop Corrected Phase Boundary at Zero Temperature

The Mott insulator-superfluid transition at zero temperature is of great theoretical interest as the
quantum nature of this phenomenon becomes most transparent in this situation and is not obfuscated
by thermal fluctuations. Furthermore, we can compare our findings with the corresponding results in
the literature [58,75,95,98]. To find the zero-temperature limit of (6.102) is straightforward. In order
to obtain this limit, we have to take the zero-temperature limit of the one-loop diagram (6.98) first.
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Together with the Matsubara zero-mode ωm = 0 and the zero-momentum Fourier component k = 0,
we obtain from (6.98), (6.93), (6.95), and (6.97)

G
(2B)
1 (0,0)

∣

∣

∣

∣

∣

T=0

=
2DJ2

4U2

[

7n(n2 − 1)

n − µ̃ − 3
+

n(n2 + 3)

n − µ̃ − 1
+

4(n + 1)3

(n − µ̃)3
+

2n(n + 2)(n + 1)

(n − µ̃)2
+

(n + 2)(n + 1)n

n − µ̃ + 2

+
(n2 + 2n + 4)(n + 1)

µ̃ − n
+

4n3

(µ̃ − n + 1)3
+

2n(n2 − 1)

(µ̃ − n + 1)2

]

, (6.103)

where n is the filling factor and we have used again the dimensionless chemical potential µ̃ = µ/U .
Inserting now (6.103) into (6.102) and using (5.37), we obtain the phase boundary

Jc

U

∣

∣

∣

∣

∣

T=0

=
µ̃ + 1

(µ̃ − n + 1)(n − µ̃)
/

[

[

µ̃ + 1

(µ̃ − n + 1)(n − µ̃)

]2

+

(

(µ̃ + 1)D

(µ̃ − n + 1)(n − µ̃)

×
{

(D − 2)

[

µ̃ + 1

(µ̃ − n + 1)(n − µ̃)

]3

+
7n(n2 − 1)

2(n − µ̃ − 3)
+

2(n + 1)3

(n − µ̃)3
+

(n + 2)(n + 1)n

(n − µ̃)2

+
(n + 2)(n + 1)n

2(n − µ̃ + 2)
+

(n + 2)(n + 1)n

2(µ̃ − n)
+

2n3

(µ̃ − n + 1)2
+

n2(n − 1)

2(µ̃ − n + 1)

})1/2]

. (6.104)

Setting n = 1 and D = 3 in (6.104) yields the important special case

Jc

U

∣

∣

∣

∣

∣

T=0

=
µ̃ − µ̃3

3µ̃2 + 6µ̃ + 3 + 3
√

9µ̃5−7µ̃4−26µ̃3−6µ̃2+µ̃−3
µ̃−3

. (6.105)

The same result was also found in Ref. [99] where a different field-theoretic approach was used, which
is based on the effective potential method. The result in (6.105) and also the corresponding one for
D = 2 from (Eq. 6.104) is shown in Fig. 6.13 and compared to results from quantum Monte-Carlo
simulations. Comparing the results for D = 2 and D = 3, one can see two things: First, the difference
between the first and second order is larger in two dimensions. Second, the deviation of our analytic
result from the quantum Monte-Carlo simulation is also larger for lower dimension. This is both
reasonable as we have seen in Subsection 6.1.2 that all neglected contributions in (6.82) are smaller
for higher dimensions.
When considering D = 1 in Fig. 6.14, one encounters a region where (6.102) has no real solutions but
two complex ones. Therefore, in this region no phase transition exists in our approximation. But other
methods like extrapolated strong-coupling expansion [100], quantum Monte-Carlo simulations [101],
and the density-matrix-renormalization-group (DMRG) [102] show that a phase transition exists for
all values of µ. Because of this special problem, we will restrict our discussion in the following always
to the case D ≥ 2.

6.2.4 Critical Properties of Mott Insulator-Superfluid Transition

In this subsection, we have a closer look at the zero-temperature phase transition and connect our
result (6.104) to the theory of critical phenomena in general [5,76] and to the theory of quantum phase
transitions [6] in particular.
The most important point at the phase boundary is the tip because this gives us the value of the
hopping parameter for which the Mott phase vanishes for a given filling. Therefore, we call this point
of the phase diagram the critical point and the corresponding hopping parameter the critical hopping.
In the following, we focus for simplicity on the case n = 1. In order to obtain the critical hopping,
one has to extremize the function Jc(µ) as done for the first-order result in Subsection 6.1.4 where
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Figure 6.13: Phase diagram for n = 1, T = 0. Black: First order (mean-field). Red: Second order
(one-loop corrected). Blue: Third-order strong-coupling expansion [75]. Error bar: Extrapolated
strong-coupling expansion [75]. Dots: Quantum Monte-Carlo data [95,98]. Left: D = 3, right: D = 2.
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Figure 6.14: Phase diagram for n = 1, T = 0, D = 1. Black: order (mean-field). Red: Second order
(one-loop corrected). Blue: Third order strong-coupling expansion [75]. Dots: DMRG data [102].
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the analytic expression (6.37) was found. For the second order discussed in Subsection 6.2.3, it is not
possible to extremize (6.104) analytically. Therefore, we have computed the critical point numerically.
The results are given for different dimensions in Table 6.15 and are compared with results taken from
Ref. [75]. The latter values were obtained by extrapolating results from a third-order strong-coupling
expansion at zero-temperature by taking into account the general form of the phase boundary around
the tip as described in Ref. [58]. We see that our second-order results agree with the values in Ref. [75]
for D = 3 and D = 2 while we cannot find a respective result for D = 1 as discussed in the previous
subsection.
After this encouraging observation for the position of the critical point, we investigate the region
around it in more detail. As discussed in Subsection 6.1.4, the phase boundary can be interpreted
as the gap for adding or removing a single particle. Inverting the function of the critical hopping in
dependence of the chemical potential Jc(µ) allows us to show this gap as a function of |J − Jct| where
Jc is the critical hopping parameter (see Fig. 6.16). For the second-order result, this inversion leads
to an algebraic equation of fourth order. It is possible to solve this kind of equations in a closed form
but because the analytic expressions for the solutions are very complicated and do not provide any
additional physical insight, we consider the numerical solution instead. We note that these curves
start with an infinite slope, i.e. the derivative diverges at |J − Jct| = 0.
It is well known that the microscopic details of the considered system become irrelevant at a phase
transition, at least for most thermodynamic quantities of interest, and the critical behavior is governed
by a single length scale, the coherence length. At a classical phase transition, ξ diverges according
to [5, 76]

ξ ∝ |T − Tct|−ν . (6.106)

Here Tc is the critical temperature and ν the critical exponent of the coherence length. This exponent
only depends on the symmetry of the system, its spatial dimension, and the number of components
of the respective order parameter. Such critical exponents can be calculated very accurately using
field-theoretical methods and combining them with extrapolation techniques like variational pertur-
bation theory [5,76]. For the zero-temperature quantum phase transition discussed here, the quantum
fluctuations drive the transition and the role of the critical temperature is played by the critical hop-
ping parameter. Therefore, we must consider the dynamic system and introduce a characteristic time
scale which diverges as t ∝ ξz, where the coherence length now has the behavior ξ ∝ |J − Jct|−ν .
The additional parameter z is called the dynamic critical exponent [58, 103]. Because a time scale is
inversely proportional to a frequency or energy scale, we can write down the formation of the gap as

Egap ∝ |J − Jct|zν . (6.107)

Because we see from Fig. 6.16 that Egap is zero at the origin while its first derivative diverges, we
can immediately state that 0 < zν < 1. To obtain this exponent quantitatively, we make a double-
logarithmic plot of Egap(|J − Jct|) for small |J − Jct|. The value of zν can then be easily read off from
the slope because power functions become straight lines in double-logarithmic plots. This is done both
for D = 2 and D = 3 in Fig. 6.17. Thus, we obtain zν = 0.5 both for the first- and the second-order
result as well as for both considered dimensions. For the first-order calculation this is also obvious from
examining the analytic expression for µ(Jc) which has a square-root behavior. In order to compare
these exponents with literature values, we first note that a quantum phase transition in D dimensions
has the same critical properties as a classical phase transition in d = D + 1 dimensions because the
additional dynamic degree of freedom enters the theory exactly like an additional spatial dimension
[6, 58]. Because our order parameter has two components, i.e. one complex number, it resembles the
classical xy-model. The upper critical dimension is dc = 4 for which reason we expect mean-field like
behavior for the quantum phase transition for D = 3 with the critical exponent zν = 1/2. For D = 2,
which corresponds to a classical model with d = 3, the result from Ref. [5] is zν = 0.67. Thus, we
can say that our theory correctly describes the qualitative form of the tip but fails to account for
the correction to the square-root form in two dimensions. However, we mention that other analytical
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First order Second order Ref. [75]

D = 1 0.0858 N/A 0.245 ± 0.012

D = 2 0.0429 0.0556 0.057 ± 0.007

D = 3 0.0286 0.0330 0.034 ± 0.003

Figure 6.15: Critical hopping parameters Jct/U for different spatial dimensions and comparison with
values from Ref. [75].

|J − Jct|/U
0.005 0.010 0.015 0.020

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Egap/U

|J − Jct|/U
0.005 0.010 0.015 0.020

0.05

0.10

0.15

0.20

0.25

0.30

Egap/U

Figure 6.16: Gap for removing of a particle. Black: First-order. Red: Second-order. Left: D = 3.
Right: D = 2

methods like the strong-coupling approach [75,100] and also some numerical work [98] have obtained
Mott lobes which have cusps at the tip even in three dimensions. This means that the slope becomes
not infinite at the critical point and, therefore, corresponds to a critical exponent zν > 1 which strongly
disagrees with well established facts [5, 6, 58, 103]. To close this subsection, we make some additional
remarks about the one-dimensional case. As this situation corresponds to a classical two-dimensional
system, there exists no second-order phase transition, as for D ≥ 2, but a transition of the Kosterlitz-
Thouless type where the gap has an exponential dependence on |J−Jct| [104]. Presumably, this special
behavior is the reason that our approach fails to produce a phase boundary for the one-dimensional
system.

6.2.5 One-Loop Corrected Phase Boundary at Finite Temperature

In this subsection, we discuss the phase boundary for finite temperatures. Because there is no other
analytical or numerical data available in the literature at the moment, we can only compare our
findings with the first-order result in Eq. (6.13) which we have done in Fig. 6.18. Because it is, both
from the theoretical and experimental point of view, the most relevant case, we restrict ourselves to
the case D = 3. The situation for D = 2 is very similar, only the differences between first- and
second-order results are larger. Effects from temperature are, again, as already seen in Subsection
6.1.2, most important between the lobes, while the effects arising from the one-loop correction play
an important role only near the tip. Thus, we can say that we have a thermally dominated region
where thermal fluctuations are large (see also Fig. 6.6), and a quantum dominated region where the
corrections from the one-loop diagram are large.
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Figure 6.17: Double-logarithmic plot of gap from Fig. 6.16. Black: First-order. Red: Second-order.
Left: D = 3. Right: D = 2. The slope of all curves is zν = 0.5.
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Figure 6.18: Phase diagram for finite temperature and D = 3. Black: First order (mean-field). Red:
Second order (one-loop-corrected). Left: T = 0.02U . Right: T = 0.1U .

6.2.6 One-Loop Corrected Excitation Spectrum

In Subsection 6.1.4 we have calculated the excitation spectrum from the first-order resummed Green
function (6.11). Now we investigate, how the one-loop corrections affect this excitation spectrum. In

order to this, we proceed exactly like above, which means that we continue G̃
(2)
1 (ωm,k) in (6.100) to

real time and solve it for the poles. Unfortunately, because of the complicated structure of (6.98), this
procedure leads to equations for ω which are not solvable analytically. Therefore, we have solved the
respective equation, i.e.

1 − J(k)C
(0)
1 (ω) + G

(2B)
1 (ω)/C

(0)
1 (ω)

!
= 0 (6.108)

for ω numerically. The respective results are plotted in Fig. 6.19 for D = 3 and in Fig. 6.20 for D = 2.
The quantum-corrections are larger for hopping parameters near the critical value and especially
important for long wave-lengths. Of course the vanishing of the gap now takes place at the one-loop
corrected value which is given in Fig. 6.15. As expected, the deviations between the two orders are
larger for two than for three spatial dimensions.
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Figure 6.19: Spectrum of the pair excitation for D = 3, T = 0, n = 1, and 2DJ = 0 (black),
2DJ = 0.1U (blue), 2DJ = 0.1716U (red) within the first Brillouin zone. The solid curves are results
from the first-order calculation (compare Fig. 6.3), while the dashed curves are the one-loop corrected
results.
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Figure 6.20: Spectrum of the pair excitation for D = 2, T = 0, n = 1, and 2DJ = 0 (black),
2DJ = 0.1U (blue), 2DJ = 0.1716U (red) within the first Brillouin zone. The solid curves are results
from the first-order calculation, while the dashed curves are the one-loop corrected results.
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Chapter 7

Summary and Outlook

In the present thesis, we have discussed various aspects of the physics of Bosonic gases in optical
lattices. In the first part, we have considered Bosons which carry an effective spin F = 1. In Chapter
2, we have derived a generalization of the widely used Bose-Hubbard model for their description where
the Hamiltonian was given in Eq. (2.18).
Chapter 3 was devoted to the discussion of the Mott insulator-superfluid transition in such a spin-1
system, both for zero and finite temperature, within the framework of perturbative mean-field theory.
In contrast to the literature [53,60], where the discussion was restricted to T = 0 and special ground
states, we have considered systems in arbitrary zero-temperature ground states in Section 3.4 with the
main result (3.45). In order to obtain this result, we have derived recursion relations for the matrix
elements of particle creation and annihilation operators with respect to the eigenstates of the spin-1
Bose-Hubbard Hamiltonian in absence of hopping in Appendix A. Our findings (3.45), (3.57), (3.63)
agreed with Refs. [53,60] for the special cases discussed there. The result for finite temperature (3.94)
showed the new effect of a crossing of phase boundaries belonging to different temperatures which is
shown in Fig. 3.12 and explained in Subsection 3.5.2.
In Chapter 4, we have shown the spin-resolved time-of-flight pictures in Fig. 4.2 and generalized the
concept of the visibility, which measures the interference patterns in a quantitative way, from scalar
Bosons [23,77] to spinor ones in Eq. (4.33). We have calculated its dependence on the spin-dependent
interaction (see Fig. 4.1). Effects arising from finite temperature have been discussed in Section 4.2.
The dependence of the visibility of the different hyperfine components on the temperature, as plotted
in Fig. 4.6, shows an interesting non-monotonic behavior which could, in principle, be measured
experimentally in the very near future.
An interesting open problem, which could not be considered within the framework of this thesis,
is the question of phase transitions between different superfluid phases which are characterized by
the direction of the order-parameter vector Ψ as discussed in Chapter 3. But also the Mott phase
bears interesting additional features because tunneling leads to an effective interaction between the
lattice sites which can result in a transition between different phases that are known from the study
of classical spin models [48]. The reason for these features is that tunneling induces an effective
interaction between neighboring lattice sites. Thus, for example, an anti-ferromagnetic phase with
alternating spin order can occur.
In the second part, we have considered the extensively discussed scalar Bose-Hubbard model where
we employed a new analytical approach. We have used the diagrammatic technique reviewed by W.
Metzner for Fermions in Ref. [79] and adapted it for the treatment of the present Bosonic problem. The
general formalism was developed in Chapter 5 and some diagrams were calculated explicitly. Chapter
6 was devoted to the application of this formalism where we developed, in particular, a resummation
procedure (6.83) which allowed us to go beyond simple perturbation theory. With this procedure, we
were able to obtain time-of-flight pictures which qualitatively agreed with the experiment in the full
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parameter range (see Fig. 6.10) and a formula for the visibility which is both correct in the limit of
strong and weak interactions (see Fig. 6.11). Furthermore, we have calculated the excitation spectrum
both for zero and finite temperature and proposed a method to measure the temperature of these
systems by the width of the gap in the Mott phase (see Fig. 6.7).
Equipped with a general resummation procedure by means of the self-energy, we calculated in Section
6.2 the one-loop corrected Green function (6.100). This allowed us to write down an analytic formula
for the phase boundary at zero-temperature (6.104) which improved the zero-temperature mean-field
result in Ref. [58] and is close to recent high precision Monte Carlo data in both two and three
dimensions (see Fig. 6.13) [95, 98]. The same result was also obtained in Ref. [99] with a different
method. The key idea behind that particular approach is to couple currents to the Bose-Hubbard
Hamiltonian (5.1) and perform a Legendre transform to obtain the effective action which is suitable to
describe the phase transition. Furthermore, we have also shown the analytic one-loop corrected phase
diagram for finite temperature for which no other results to compare with exist so far (see Fig. 6.18).
We have identified the regions in the phase digram where thermal effects dominate and the ones where
quantum effects govern the behavior.
The most pressing question in the context of the Green function approach is the calculation of the
Green function within the superfluid phase. Although our resummation allowed us to calculate some
properties within this phase, a well-founded description must explicitly take into account the non-
vanishing expectation value of the field-operators. A suitable starting point for this goal is the effective
action [62,85], and first results in this direction have been already reported in Ref. [97].



Appendix A

Properties of Spin-1 Eigenstates

The aim of this appendix is to derive properties of the eigenstates of the Hamiltonian (3.12), i.e. the
one characterizing the system without hopping. These properties are needed in order to perform the
perturbative calculations in Chapters 3 and 4.

A.1 Matrix Elements of Creation and Annihilation Operators

In this section, we calculate the matrix elements of the creation and annihilation operators in the basis
of the eigenstates of the local Hamiltonian in absence of hopping, which reads

Ĥ0 =
1

2
U0n̂(n̂ − 1) +

1

2
U2(Ŝ

2 − 2n̂) − µn̂ − ηŜz . (A.1)

Note, that in this whole appendix, we work only with quantities, which are local with respect to the
lattice sites, so we have dropped all site indices. The matrix elements form an important foundation
for the calculations which are performed in this theses, because they provide us with a tool to consider
arbitrary perturbations to the Hamiltonian (A.1), for example arising from hopping, as long as they

can be expressed in terms of the creation and annihilation operators â†α and âα. The eigenstates of
(A.1) are the common eigenstates of Ŝ2, Sz and

n̂ =
∑

α

n̂α =
∑

α

â†αâα . (A.2)

We denote them by the quantum numbers S, m and n, i.e.

Φ = |S,m, n〉 . (A.3)

Note that the states (A.3) are defined to be normalized. The calculations in this whole Appendix
are based on previous work on spin-1 Bosons in optical lattices at zero temperature [50, 53, 60], on
the discussion of spinor Bose gases in general [34, 35, 43, 46] and also on some older work on cavity
QED [105].
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A.1.1 Further Properties of Spin Operators

The three components of the spin operator Ŝ are

Ŝx =
1√
2
(â†0â1 + â†1â0 + â†−1â0 + â†0â−1) ,

Ŝy =
1√
2
(â†0â1 − â†1â0 + â†−1â0 − â†0â−1) ,

Ŝz = â†1â1 − â†−1â−1 . (A.4)

from which one can easily calculate

Ŝ2 = 2n̂1n̂0 + 2n̂0n̂−1 + n̂1 + 2n̂0 + n̂−1 + n̂2 + n̂2
−1 − 2n̂1n̂−1 + 2â†1â

†
−1â

2
0 + 2â†2â1â−1 . (A.5)

With the help of the Bose commutator relation [âα, â†β] = δα,β we obtain the commutator relations

[Ŝα
j , Ŝβ

k ] = iδjk

∑

γ

ǫαβγ Ŝγ
j , (A.6)

which are just the standard commutator relations for angular momentum operators. For instance,
they are also encountered when describing the states of an electron in the hydrogen atom. Inspired
by this, we introduce the ladder operators

Ŝ± = Ŝx ± iŜy , (A.7)

which can be expressed in terms of the components of Ŝ according to

Ŝx =
1

2

(

Ŝ+ + Ŝ−

)

, Ŝy = − i

2

(

Ŝ+ − Ŝ−

)

. (A.8)

Thus, we obtain

Ŝ2 = (Ŝx)2 + (Ŝy)2 + (Ŝz)2 =
1

2

(

Ŝ+Ŝ− + Ŝ−Ŝ+

)

+ (Ŝz)2 . (A.9)

The ladder operators (A.7) have the known property [61]

Ŝ±|S,m, n〉 =
√

S(S + 1) − m(m ± 1)|S,m ± 1, n〉 . (A.10)

From (A.4) and (A.7), we get their explicit form in terms of creation and annihilation operators

Ŝ+ =
√

2 (â†1â0 + â†0â−1) ,

Ŝ− =
√

2 (â†0â1 + â†−1â0) . (A.11)

A.1.2 Creation of Basis States from Vacuum State

Our aim in this Appendix is to calculate

â†α|S,m, n〉 and âα|S,m, n〉 . (A.12)

Therefore, we want to know how the eigenstates of Ĥ0 can be obtained by letting combinations of the
creation operators â†α act on the vacuum state |0〉. In order to answer this question, we introduce the
singlet creation operator

Θ̂† = â†20 − 2â†1â
†
−1 . (A.13)
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Below we will see that it creates, when acting on the vacuum state, a state with two particles and
zero spin. In order to understand this operator better, it is necessary to calculate some commutator
relations first:

[â1, Θ̂
†] = −2â†−1 , [â0, Θ̂

†] = 2â†0 , (A.14)

[â−1, Θ̂
†] = −2â†1 , [S±, Θ̂†] = 0 , (A.15)

[âα, Θ̂†] = 0 , [Ŝz, Θ̂†] = 0 , (A.16)

[n̂, Θ̂†] = 2Θ̂† . (A.17)

With the help of these relations, we can prove that (A.13) really creates a singlet pair:

Ŝ2Θ̂†Q|0〉 = Θ̂†QŜ2|0〉 + [Ŝ2, Θ̂†Q]|0〉 = 0 , (A.18)

n̂Θ̂†Q|0〉 = [n̂, Θ̂†Q]|0〉 = QΘ̂Q−1[n̂,Θ†]|0〉 = 2QΘ̂†Q|0〉 . (A.19)

Here we have introduced the new quantum number Q which denotes the number of spin singlet pairs.
It is connected to the quantum numbers n and S by the obvious relation Q = (n − S)/2. Because we
do not only want to produce spin singlet states, but also states with arbitrary S and m, we now show
how to create n particles with aligned spin. This is achieved by successively applying the creation
operator â†1. In order to be able to prove this, we need its commutator relations with the constituents
of the operator Ŝ2 in (A.9). They read

[â1, Ŝ+] =
√

2â0 , [â1, Ŝ−] = 0 ,

[â0, Ŝ+] =
√

2â−1 , [â0, Ŝ−] =
√

2â1 ,

[â−1, Ŝ+] = 0 , [â−1Ŝ−] =
√

2â0 ,

[â†1, Ŝ+] = 0 , [â†1, Ŝ−] = −
√

2â†0 ,

[â†0, Ŝ+] = −
√

2â†1 , [â†0, Ŝ−] = −
√

2â−1 ,

[â†−1, Ŝ+] = −
√

2â0 , [â†−1, Ŝ−] = 0 , (A.20)

where we have also stated, for the sake of completeness, the respective formulas for the other creation
and annihilation operators. With the help of (A.20), we can now show in a way completely analogous
to (A.18) and (A.19) that

n̂ â†S1 |0〉 = n â†S1 |0〉 , (A.21)

Ŝ2 â†S1 |0〉 = S(S + 1) â†S1 |0〉 , (A.22)

Ŝz â†S1 |0〉 = S â†S1 |0〉 . (A.23)

Because the singlet creation operator (A.13) contains no annihilation operators, it commutes with all

â†α and we can state that
|S, S, n〉 ∝ â†S1 Θ̂†Q|0〉 . (A.24)

Thus, creating Q singlet pairs and S particles of spin one yields a state which is characterized by
n = 2Q + S particles with spin S and m = S. Introducing a yet unknown normalization factor, we
can write (A.24) as

|S, S, n〉 =
1

√

f(Q,S)
â†S1 Θ̂†Q|0〉 . (A.25)

The value of this normalization factor will be proven in the next section to be

f(Q,S) = S!Q!2Q (2Q + 2S + 1)!!

(2S + 1)!!
, (A.26)
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where
n!! = n(n − 2)(n − 4) . . . 1 (A.27)

denotes the double factorial. States with lower m can then be obtained by successively applying Ŝ− to
(A.25). Thus, we are now in the position to express every eigenstate of (A.1) in terms of the vacuum
state |0〉 and three known, commuting operators, which are the singlet creation operator Θ̂† in (A.13),

the creation operators â†1 and the lowering ladder operator Ŝ− in (A.11).

A.1.3 Recursion Relations

After this preliminary discussion, we come back to our main problem (A.12). When we add one spin-1
particle to a state with total spin quantum number S and magnetic quantum number m, we end in a
superposition of only two states. The reason for this is provided by various conservation rules. The
first two of them are the conservation of the particle number and the magnetization parallel to the
z-axis. Thus, applying â†α on a state |S,m, n〉, the resulting states must have the form |S̃,m+α, n+1〉.
The third conservation rule states, that when adding a particle, the total spin quantum number S can
only change by ∆S = ±1 and, therefore, S̃ = S ± 1. Thus, we can write (A.12) in the following form:

â†α|S,m, n〉 = Mα,S,m,n|S + 1,m + α, n + 1〉 + Nα,S,m,n|S − 1,m + α, n + 1〉 . (A.28)

When removing a particle, the situation is completely analogous, yielding

âα|S,m, n〉 = Oα,S,m,n|S + 1,m − α, n − 1〉 + Pα,S,m,n|S − 1,m − α, n − 1〉 . (A.29)

Our task is now to calculate the respective coefficients in (A.28) and (A.29). The first important
observation is that states |S,m, n〉 with m > S do not exist. Therefore, we can state immediately that
N1,S,S,n = 0 and

â†1|S, S, n〉 = M1,S,S,m|S + 1,m + 1, n + 1〉 . (A.30)

Thus, it is now possible to obtain M1,S,S,n by calculating:

â†1|S, S, n〉 = â†1
1

√

f(Q,S)
â†S1 Θ̂†Q|0〉 . (A.31)

Applying (A.25) yields

â†1|S, S, n〉 =

√

f(Q,S + 1)
√

f(Q,S)
|S + 1, S + 1, n + 1〉 , (A.32)

which becomes after inserting the explicit form of the normalization constant (A.26)

â†1|S, S, n〉 =

√

(S + 1)(2Q + 2S + 3)

2S + 3
|S + 1, S + 1, n + 1〉 . (A.33)

Comparing this with (A.30) yields

M1,S,S,n =

√

(S + 1)(2Q + 2S + 3)

2S + 3
. (A.34)

Thus, we have found the first matrix element which will serve us as a starting point for the recursion
relation to be derived. In order to find this recursion for M1,S,m,n with m < S, we start with (A.28)

and act on it with Ŝ+, yielding

Ŝ+â†1|S,m, n〉 = M1,S,m,nŜ+|S + 1,m + 1, n + 1〉 + N1,S,m,nŜ+|S − 1,m + 1, n + 1〉 . (A.35)
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Using the fact from (A.20) that â†1 and Ŝ+ commute and applying (A.10), this can be rewritten as

â†1
√

S(S + 1) − m(m + 1) |S,m + 1, n〉
=
√

(S + 1)(S + 2) − (m + 1)(m + 2) M1,S,m,n|S + 1,m + 2, n + 1〉
+
√

(S − 1)S − (m + 1)(m + 2) N1,S,m,n|S − 1,m + 1, n + 1〉 , (A.36)

which takes, after using (A.28) on the left-hand side again, the form

√

S(S + 1) − m(m + 1)
(

M1,S,m+1,n|S + 1,m + 2, n + 1〉 + N1,S,m+1,n|S − 1,m + 2, n + 1〉
)

=
√

(S + 1)(S + 2) − (m + 1)(m + 2) M1,S,m,n|S + 1,m + 2, n + 1〉
+
√

(S − 1)S − (m + 1)(m + 2) N1,S,m,n|S − 1,m + 1, n + 1〉 . (A.37)

Comparing the coefficients of the state |S + 1,m + 2, n + 1〉 on the left- and right-hand side, one can
easily read off from (A.76)

M1,S,m,n =

√

(S + 1)S − m(m + 1)

(S + 1)(S + 2) − (m + 1)(m + 2)
M1,S,m+1,n , (A.38)

which is a recursion relation that tells us how to calculate M1,S,m−1,n from M1,S,m,n. The starting
point is M1,S,S,n for which we have found the explicit formula (A.34). Together with this, we do now
have a formula for the calculation of M1,S,m,n for all |m| ≤ S.
Motivated by this, we now turn to the calculation of M0,S,m,n. We proceed in a way analogous to the
one employed above, use (A.29) for α = 0, and obtain

Ŝ+â†0|S,m, n〉 = M0,S,m,nŜ+|S + 1,m, n + 1〉 + N0,S,m,nŜ+|S − 1,m, n + 1〉 . (A.39)

Because â†0 and Ŝ+ do not commute, we must use (A.20) on the left-hand side of (A.39) and write

√

S(S + 1) − m(m + 1) â†0|S,m + 1, n〉 +
√

2â1|S,m, n〉
= M0,S,m,n

√

(S + 1)(S + 2) − m(m + 1) |S + 1,m + 1, n + 1〉
+ N0,S,m,n

√

(S + 1)(S − 1) − m(m + 1) |S − 1,m + 1, n + 1〉 . (A.40)

Finally, we use (A.28) twice in order to express the remaining operators on the left-hand side of (A.40)
by their respective matrix elements. Thus, we get

√

S(S + 1) − m(m + 1)
(

M0,S,m+1,n|S + 1,m + 1, n + 1〉 + N0,S,m+1,n|S − 1,m + 1, n + 1〉
)

+
√

2M1,S,m,n|S + 1,m + 1, n + 1〉 +
√

2N1,S,m,n|S − 1,m + 1, n + 1〉
= M0,S,m,n

√

(S + 1)(S + 2) − m(m + 1)|S + 1,m + 1, n + 1〉
+ N0,S,m,n

√

(S + 1)(S − 1) − m(m + 1)|S − 1,m + 1, n + 1〉 . (A.41)

Comparing the coefficients of the state |S + 1,m + 1, n + 1〉 in (A.41), we can read off the following
relation:

M0,S,m,n =

√

S(S + 1) − m(m + 1)

(S + 1)(S + 2) − m(m + 1)
M0,S,m+1,n +

√

2

(S + 1)(S + 2) − m(m + 1)
M1,S,m,n ,

(A.42)
which is a bit more complicated than (A.38), because it involves not only M0,S,m+1,n on the right-hand
side, but also M1,S,m,n. But this is no problem at all because we know how to calculate M1,S,m,n for
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all allowed values of m due to (A.38). To find the right starting point for the recursion (A.42), we
recall that Mα,S,S+1,n = 0. This is trivially true because the corresponding states do not even exist.
Thus, the starting point for (A.42) reads with (A.34)

M0,S,S,n =

√

1

S + 1
M1,S,S,n =

√

2Q + 2S + 3

2S + 3
. (A.43)

In order to calculate M−1,S,m,n, we proceed exactly as done above but replace â†0 by â†−1. Doing this
yields after a short calculation

M−1,S,m,n =

√

S(S + 1) − m(m + 1)

(S + 1)(S + 2) − m(m − 1)
M−1,S,m+1,n +

√

2

(S + 1)(S + 2) − m(m − 1)
M0,S,m,n .

(A.44)
Evaluating (A.44) for m = S yields under consideration of (A.42), (A.38), and (A.34) the starting
point

M−1,S,S,n =

√

3 + n + S

(1 + 2S)(3 + 2S)
. (A.45)

Now we turn to the calculation of Nα,S,m,n. One of these coefficients, i.e. N−1,S,S,m, can be calculated
directly. In order to do this, we make use of the properties of the particle number operator (A.2) and
write the particle number as

n = 〈S, S, n|n̂|S, S, n〉 =
∑

α

〈S, S, n|â†αâα|S, S, n〉 =
∑

α

〈S, S, n|âαâ†α|S, S, n〉 − 3 . (A.46)

By applying (A.28) and rearranging the resulting expression, we get

N−1,S,S,n = −
√

3 + n −
∑

α

M2
α,S,S,n (A.47)

in terms of what we already know. Following now the same recipe, which was also used in the
calculation of Mα,S,m,n, we apply Ŝ− on (A.28) which yields

Ŝ−â†−1|S,m, n〉 = M−1,S,m,nŜ−|S + 1,m − 1, n + 1〉 + N−1,S,m,nŜ−|S − 1,m − 1, n + 1〉 . (A.48)

Performing calculations similar to (A.35)–(A.38) we conclude from (A.48)

N−1,S,m,n =

√

S(S − 1) − m(m − 1)

S(S + 1) − m(m + 1)
N−1,S,m+1,n . (A.49)

By replacing â†−1 by â†0, respectively â†1, we obtain

N0,S,m,n =

√

S(S − 1) − m(m + 1)

S(S + 1) − m(m + 1)
N0,S,m+1,n −

√

2

S(S + 1) − m(m + 1)
N−1,m+1,n , (A.50)

N0,S,m,n =

√

S(S − 1) − (m + 2)(m + 1)

S(S + 1) − m(m + 1)
N1,S,m+1,n −

√

2

S(S + 1) − m(m + 1)
N0,m+1,n . (A.51)

After having successfully calculated the matrix elements of the creation operators â†α, our next goal is
to do the same for the annihilation operators âα. Because the way how this is done is very similar to
the one used above, we restrict ourselves to a brief sketch of the derivation. At first place, we consider
the matrix elements Oα,S,m,n. As encountered above, we need again one starting point, which means
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that we need to calculate one of them explicitly, for instance O−1,S,S,n . In order to obtain it, we use
(A.25) and apply the operator â−1 on it:

â−1|S, S, n〉 =
1

√

f(Q,S)
â−1â

†S
1 Θ̂†Q|0〉 , (A.52)

which can be rewritten with the help of some commutator algebra as

â−1|S, S, n〉 =
1

√

f(Q,S)
â†S1 (−2â1

†)Θ̂†(Q−1)Q|0〉 . (A.53)

Using (A.25) again and inserting the explicit form of the normalization factor (A.26) into (A.53) gives

â−1|S, S, n〉 =

√

f(Q − 1, S + 1)
√

f(Q,S)
(−2Q)|S + 1, S + 1, n − 1〉 = −

√

2Q(2S + 1)

2S + 3
|S + 1,m + 1, n − 1〉 ,

(A.54)
which yields after comparison with (A.29)

O−1,S,S,n = −
√

2Q(2S + 1)

2S + 3
. (A.55)

Acting with Ŝ+ on (A.29) one finds the three recursion relations

O−1,S,m,n =

√

S(S + 1) − m(m + 1)

(S + 2)(S + 1) − (m + 2)(m + 1)
O−1,S,m+1,n , (A.56)

O0,S,m,n =

√

S(S + 1) − m(m + 1)

(S + 2)(S + 1) − m(m + 1)
O0,S,m+1,n −

√

2

(S + 2)S(S + 1) − m(m + 1)
O−1,m,n ,

(A.57)

O1,S,m,n =

√

S(S + 1) − m(m + 1)

(S + 2)(S + 1) − m(m − 1)
O0,S,m+1,n −

√

2

(S + 2)(S + 1) − m(m − 1)
O0,m+1,n ,

(A.58)
where the starting point is given by (A.55). At last, we determine now the remaining class of matrix
elements. Here the starting point is provided by P−1,S,S,n. In order to calculate it, we use the particle
number operator n̂ once more and obtain

n = 〈S, S, n|n̂|S, S, n〉 =
∑

α

〈S, S, n|â†αâα|S, S, n〉 . (A.59)

Rearranging (A.59) with the help of (A.29) gives us

P1,S,S,n =

√

n −
∑

α

O2
α,S,S,n . (A.60)

Applying now Ŝ−1 on (A.29) one can obtain the last three recursion relations, which read

P1,S,m,n =

√

S(S − 1) − m(m − 1)

S(S + 1) − m(m + 1)
P1,S,m+1,n , (A.61)

P0,S,m,n =

√

S(S − 1) − m(m + 1)

S(S + 1) − m(m + 1)
P0,S,m+1,n +

√

2

S(S + 1) − m(m + 1)
P1,S,m+1,n , (A.62)
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Figure A.1: Matrix elements of the creation operators â†α.

P−1,S,m,n =

√

S(S + 1) − (m + 2)(m + 1)

S(S + 1) − m(m + 1)
P−1,S,m+1,n +

√

2

S(S + 1) − m(m + 1)
P0,m+1,n . (A.63)

With the formulas derived in this section, we can calculate arbitrary matrix elements between states
with arbitrary quantum numbers S, m, n in a recursive way. In literature, so far, only matrix elements
for some particular states were given [50, 53, 60]. Thus, our result is especially important in view of
calculations for finite temperature which are performed in Section 3.2.2. There it is necessary to
perform a trace over all states and, therefore, those arbitrary matrix elements are needed. However,
the zero-temperature ground state for an unmagnetized, anti-ferromagnetic system is |0, 0, n〉 for even
and |1,m, n〉, (m = 0,±1) for odd particle number n. Thus, when only considering the lowest orders
in zero-temperature perturbation theory, we only need the matrix elements of these states and of the
states |S,m, n〉 with S ≤ 2 and |m| ≤ 2. In order to be able to work with explicit formulas and
to compare our results, stemming from the general recursion relations, with the particular formulas
in Ref. [60], we have stated the matrix elements of the creation and annihilation operators for these
states in Table A.1 and Table A.2. They agree with the findings from Ref. [60].

A.2 Calculation of Normalization Constant of Eigenstates

In this section, we prove that the normalization constant occurring in (A.25) has the value which was
already given in (A.26). We carry out the prove according to the sketch in Ref. [46]. In order to do
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Figure A.2: Matrix elements of the annihilation operators âα

this, we define at first place the operator

Â =





(â−1 − â1)/
√

2

−i(â1 + â−1)/
√

2
â0



 . (A.64)

The connection of this operator to our problem is the fact, that its square is just the adjoined of our
singlet creation operator (A.13), i.e.

Â2 = Â2
x + Â2

y + Â2
z = 2â2

0 − â−1â1 = Θ̂ . (A.65)

In order to create the state |0, 0, 2Q〉, we need to apply Θ̂†Q on the vacuum state |0〉. Therefore, we
define a creating function, from which we can get all powers of Θ̂† by means of a simple derivative
calculation. The easiest function containing all powers is the exponential, which is defined for an
operator by its Taylor series. Thus, we write

eÂ†·x =

∞
∑

l=0

1

l!
(Â†·x)l . (A.66)

Acting with the Laplace operator on a term in the exponential series (A.66) yields under consideration
of (A.65)

∇2(Â†·x)l = l(l − 1)Θ̂†(Â†·x)l−2. (A.67)

Repeating this Q times yields

(

∇2
)Q

(Â†·x)l =

{

l!
(l−2Q)!Θ̂

†Q(Â†·x)l−2Q for l ≥ 2Q

0 otherwise
. (A.68)
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With the help of (A.68), we can write

Θ̂†Q|0〉 =
(

∇2
)Q

eÂ†·x|0〉
∣

∣

∣

∣

∣

x=0

. (A.69)

Because we are also interested in producing powers of â†1, we note that

(

∂

∂x
+ i

∂

∂y

)

(Â†·x)l = l(Â†
x + iÂ†

y)(Â
†·x)l−1 , (A.70)

which becomes after insertion of (A.64)

(

∂

∂x
+ i

∂

∂y

)

(Â†·x)l = l(−
√

2)â†1(Â
†·x)l−1 . (A.71)

Combining this with (A.69), we can write

â†S1 Θ̂Q†|0〉 = T̂Q
S eÂ

†·x|0〉
∣

∣

∣

∣

∣

x=0

. (A.72)

where we have introduced the operator

T̂Q
S (x) = (−2−1/2)S

(

∂

∂x
+ i

∂

∂y

)S
(

∇2
)Q

. (A.73)

Because the eigenstates (A.3) are, by definition, normalized, the desired normalization constant (A.26)
can be written as

f(Q,S) = 〈0|
(

â†S1 Θ̂Q†
)† (

â†S1 Θ̂Q†
)

|0〉 . (A.74)

Now we insert (A.73) into (A.74) and use the fact, that only Â† and Â act on the vacuum state |0〉.
Furthermore, we note that

(

eÂ
†·x
)†

= eÂ·x and introduce the complex conjugate of (A.73) which

reads

T̂ ∗Q
S (x) = (−2−1/2)S

(

∂

∂x
− i

∂

∂y

)S
(

∇2
)Q

. (A.75)

Finally, we obtain

f(Q,S) = T̂Q
S (x′)T̂ ∗Q

S (x)〈0|eÂ·x′

eÂ†·x|0〉
∣

∣

∣

∣

∣

x=x′=0

. (A.76)

In order to simplify (A.76) further, we need the commutator relation

[Â, Â†] = 1 , (A.77)

which allows us to use the Baker-Campbell-Hausdorff formula [62]. This relation reads in the suitable
form

eX̂eŶ = eŶ eX̂e[X̂,Ŷ ] , (A.78)

where X̂ and Ŷ are operators with the property
[

X̂, [X̂, Ŷ ]
]

=
[

Ŷ , [X̂, Ŷ ]
]

= 0 . (A.79)

Together with the fact, that Â|0〉 vanishes and the normalization of the vacuum state, i.e. 〈0|0〉 = 1,
we can simplify

〈0|eÂ·x′

eÂ
†·x|0〉 = ex·x′

. (A.80)
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Inserting (A.80) into (A.76) and expanding the occurring exponential yields

f(Q,S) =
1

(2Q + S)!
T̂ ∗Q

S (x′)T̂Q
S (x)(x · x′)2Q+S

∣

∣

∣

∣

∣

x=x′=0

. (A.81)

The only thing left to do is to carry out the differentiations in T̂Q
S on the simple function (x · x′)2Q+S

which is straightforward, yielding

f(Q,S) = S!Q!2Q(2Q + 2S + 1)(2Q + 2S − 1)(2Q + 2S − 3) . . . (2S + 3) . (A.82)

This can be simplified with the help of (A.27) to the final result (A.26).

A.3 Relations Between Matrix Elements

The matrix elements, which we have calculated in Section A.1, are not independent but obey relations
between each others. Some of these relations, which are used in this thesis to simplify equations, are
derived in this section. At first place, we use (A.28) and consider

〈S,m, n|â†α|S−1,m−α, n−1〉 = 〈S,m, n|
(

Mα,S−1,m−α,n−1|S,m, n〉 + Nα,S−1,m−α,n−1|S−2,m, n〉
)

= Mα,S−1,m−α,n−1 . (A.83)

But we can calculate the same quantity also by letting the adjoined operator of â†α, which is âα, act
on the left-hand side of the scalar product and apply (A.29) to get

〈S,m, n|â†α|S−1,m−α, n−1〉 =
(

Oα,S,m,n〈S+1,m−α, n−1| + Pα,S,m,n〈S−1,m−α, n−1|
)

× |S−1,m−α, n−1〉 = Pα,S,m,n . (A.84)

Comparing (A.83) and (A.84) one can derive the relation

Mα,S−1,m−α,n−1 = Pα,S,m,n . (A.85)

Furtheremore, we can also prove with the same technique

Nα,S+1,m−α,n−1 = Oα,S,m,n , (A.86)

Oα,S−1,m+α,n+1 = Nα,S,m,n , (A.87)

Pα,S+1,m+α,n+1 = Mα,S,m,n . (A.88)

These relations can be exemplarily checked in Figs. A.1 and A.2. With the help of these formulas, we
can calculate the quantum mechanical expectation value of the particle number operator in a given
hyperfine spin state, which is given by n̂α = â†αâα, and obtain

〈S,m, n|n̂α|S,m, n〉 = O2
α,S,m,n + P 2

α,S,m,n . (A.89)

A.4 Calculation of Matrix Elements for Unmagnetized System

In this section, we calculate the matrix elements (3.98) which were appearing in Subsection 3.5.2.
They are defined by

M̃α,S,n =
S
∑

m=−S

M2
α,S,m,n . (A.90)
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Completely analogous definitions hold for Ñα,S,n, Ñα,S,n, Õα,S,n, and P̃α,S,n. At first place, we write
down M2

1,S,m,n in an explicit form. Using (A.34) and (A.38) yields

M2
1,S,m,n =

(S + 1)(n + S + 3)

2S + 3
× (S + 1)S − S(S − 1)

(S + 2)(S + 1) − (S + 1)S

× (S + 1)S − (S − 1)(S − 2)

(S + 2)(S + 1) − S(−1)
× · · · × (S + 1)S − m(m + 1)

(S + 2)(S + 1) − (m + 2)(m + 1)
. (A.91)

As a next step, we rewrite (A.90) with the help of (A.91) as

M̃1,S,n =
(S + 1)(n + S + 3)

2S + 3

(

(S + 1)S − S(S − 1)

(S + 2)(S + 1) − (S + 1)S

(

(S + 1)S − (S − 1)(S − 2)

(S + 2)(S + 1) − S(S − 1)

×
(

. . .

(

(S + 1)S − (−S)(−S + 1)

(S + 2)(S + 1) − (−S + 1)(−S + 2)
+ 1

)

+ 1

)

. . .

)

+ 1

)

, (A.92)

which becomes after simplifying the respective fractions

M̃S,n =
(n + S + 3)(S + 1)

3
, (A.93)

For reasons of symmetry, the matrix elements for the unmagnetized system must be the same for all
hyperfine components α because there exists no preferred direction. Therefore, we have dropped this
index in (A.93). This result is also obtained when calculating M̃0,S,n and M̃−1,S,n explicitly. The
calculation for the other matrix elements are so similar that we will skip them and only state their
results:

ÑS,n =
(n − S + 2)S

3
, (A.94)

ÕS,n =
(n − S)(S + 1)

3
, (A.95)

P̃S,n =
(n + S + 1)S

3
. (A.96)



Appendix B

Correlation Function for Finite

Temperature

In this Appendix, we carry out the details of the calculation of the finite temperature correlation
function which were deferred in Section 4.2. We start with (4.47), carry out the occurring integrals
and obtain

〈â†kαâlα〉(1) =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk
[

M2
α,Sk,mk,nk

O2
α,Sl,ml,nl

e−β(ESl,ml,nl
+ESk,mk,nk

) − e−β(ESl+1,ml−α,nl−1+ESk+1,mk+α,nk+1)

ESl+1,ml−α,nl−1 + ESk+1,mk+α,nk+1 − ESl,ml,nl
− ESk,mk,nk

+ M2
α,Pk,mk,nk

P 2
α,Sl,ml,nl

e−β(ESl,ml,nl
+ESk,mk,nk

) − e−β(ESl−1,ml−α,nl−1+ESk+1,mk+α,nk+1)

ESl−1,ml−α,nl−1 + ESk+1,mk+α,nk+1 − ESl,ml,nl
− ESk,mk,nk

+ N2
α,Sk,mk,nk

O2
α,Sl,ml,nl

e−β(ESl,ml,nl
+ESk,mk,nk

) − e−β(ESl+1,ml−α,nl−1+ESk−1,mk+α,nk+1)

ESl+1,ml−α,nl−1 + ESk−1,mk+α,nk+1 − ESl,ml,nl
− ESk,mk,nk

+ N2
α,Sk,mk,nk

P 2
α,Sl,ml,nl

e−β(ESl,ml,nl
+ESk,mk,nk

) − e−β(ESl−1,ml−α,nl−1+ESk−1,mk+α,nk+1)

ESl−1,ml−α,nl−1 + ESk−1,mk+α,nk+1 − ESl,ml,nl
− ESk,mk,nk

]

. (B.1)

We plug the explicit formulas for the energy eigenvalues (3.14) in the denominators of (B.1) and split
the resulting formula into two parts according to

〈â†kαâlα〉(1) = A + B , (B.2)

with

A =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

e−β(ESk,mk,nk
+ESl,ml,nl

)

[

M2
α,Sk,mk,nk

O2
α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sk + Sl + 2)
+

M2
α,Sk ,mk,nk

P 2
α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sl − Sk + 1)

+
N2

α,Sk,mk,nk
O2

α,Sl,ml,nl

U0(nk − nl + 1) + U2(Sk − Sl + 1)
+

N2
α,Sk,mk,nk

P 2
α,Sl,ml,nl

U0(nk − nl + 1) − U2(Sk + Sl)

]

, (B.3)
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and

B = −
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

[

M2
α,Sk,mk,nk

O2
α,Sl,ml,nl

e−β(ESl+1,ml−α,nl−1+ESk+1,mk+α,nk+1)

U0(nk − nl + 1) + U2(Sk + Sl + 2)

+
M2

α,Sk,mk,nk
P 2

α,Sl,ml,nl
e−β(ESl−1,ml−α,nl−1+ESk+1,mk+α,nk+1)

U0(nk − nl + 1) + U2(Sl − Sk + 1)

+
N2

α,Sk,mk,nk
O2

α,Sl,ml,nl
e−β(ESl+1,ml−α,nl−1+ESk−1,mk+α,nk+1)

U0(nk − nl + 1) + U2(Sk − Sl + 1)

+
N2

α,Sk,mk,nk
P 2

α,Sl,ml,nl
e−β(ESl−1,ml−α,nl−1+ESk−1,mk+α,nk+1)

U0(nk − nl + 1) − U2(Sk + Sl)

]

. (B.4)

Now, we consider the first term in (B.4), which we call B1, and perform the following shifts of variables:

Sk + 1 → Sk , mk + α → mk , nk + 1 → nk ,

Sl + 1 → Sl , ml − α → ml , nl − 1 → nl . (B.5)

Of course, we also have to shift the summation indices and furtheremore, adjust the boundaries of
summation. This is, in principle, a bit complicated because the different indices depend on each other.
For example, we have to sum S from S = 0 to S = n under the constraint that only even (odd)
values of S are allowed for even (odd) values of n. This constraint does not cause a problem because
we shift both S and n by ±1 and, therefore, their relative parity remains unchanged. The boundary
terms arising from the shifted summation variables vanish because at least one of the respective matrix
elements is zero, e.g. Oα,S,m,S = 0. Thus, we can write

B1 = −
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

M2
α,Sk,mk,nk

O2
α,Sl,ml,nl

e−β(ESl+1,ml−α,nl−1+ESk+1,mk+α,nk+1)

U0(nk − nl + 1) + U2(Sk + Sl + 2)

= −
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

M2
α,Sk−1,mk−α,nk−1O

2
α,Sl−1,ml+α,nl+1e

−β(ESk,mk,nk
−ESl,ml,nl

)

U0(nk − nl − 1) + U2(Sk + Sl)
. (B.6)

Using now (A.85) and (A.87), we obtain from (B.6)

B1 =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

e−β(ESk,mk,nk
−ESl,ml,nl

)
N2

α,Sk,mk,nk
P 2

α,Sl,ml,nl

U0(nl − nk + 1) − U2(Sl + Sk)
(B.7)

with the same technique of shifting summation indices we get

B2 =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk ,nk

e−β(ESk,mk,nk
+ESl,ml,nl

)
N2

α,Sk,mk,nk
O2

α,Sl,ml,nl

U0(nl − nk + 1) + U2(Sl − Sk + 1)
, (B.8)

B3 =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk ,nk

e−β(ESk,mk,nk
+ESl,ml,nl

)
M2

α,Sk,mk,nk
P 2

α,Sl,ml,nl

U0(nl − nk + 1) + U2(Sk − Sl + 1)
, (B.9)

B4 =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk ,nk

e−β(ESk,mk,nk
+ESl,ml,nl

)
M2

α,Sk ,mk,nk
O2

α,Sl,ml,nl

U0(nl − nk + 1) + U2(Sl + Sk + 2)
. (B.10)

Before simplifying further, we note that there exist possible divergences. For example, B2 in (B.8),
diverges when nl − nk + 1 = 0 and at the same time Sl − Sk + 1 = 0. However, the same divergence
occurs also with different sign in the thermal sum and they cancel for this reason. Thus, we can just
skip divergent terms when performing the sum over all states. Because we sum both the indices Sl,
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ml, nl and Sk, mk, nk over all allowed values, we do not change the result if we exchange nl with
nk, Sl with Sk and ml with mk. Applying these replacements to (B.7) and comparing the result with
(B.3) yields

B1 =
δd(l,k),1J

Z(0)2

∑

Sl,ml,nl

∑

Sk,mk,nk

e−β(ESk,mk,nk
−ESl,ml,nl

)
N2

α,Sk,mk,nk
P 2

α,Sl,ml,nl

U0(nk − nl + 1) − U2(Sk + Sl)
= A4 . (B.11)

With the same method we can show that B2 = A3, B3 = A3, and B4 = A1. Thus, we can finally write

〈â†kαâlα〉(1) = 2A , (B.12)

with A given by (B.3).
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Diplomarbeit in seiner Arbeitsgruppe anzufertigen. In Gesprächen mit ihm konnte ich lernen, daß
theoretische Physik nicht nur aus Formeln und Rechnungen besteht, sondern auch tiefe Einsichten in
die Natur der Dinge liefern kann. Sein enormes physikalisches Wissen, das sich auch in seinen zahlre-
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