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1. Introduction

1.1. Nambu-Goldstone Theorem

Whenever we consider arbitrary field configurations in quantum statistics or statistical field
theory, the minimum of the corresponding potential plays an important role. This is due
to the fact that even small fluctuations show huge effects unless we are not located at the
minimum of the energy. Consider, for instance, the mexican-hat potential in Figure 1.1 a

V (φ) =
1

2
m2 φ2 +

g

24

(

φ2
)2
, m2 < 0 . (1.1)

For an 1-dimensional field (N =1), (1.1) is also called double-well potential. It has a maxi-
mum at φ= 0 and an infinite set of minima φ0 =

√

−6m2/g with modulus φ= |φ|. Note,
that it is important to distinguish between spatial dimension D and field dimension N . For
a potential like (1.1), it does not make sense to perform perturbation expansions around
φ = 0 since fluctuations drive the system to one of the minima. In classical systems, the
minima are the places where the system is frozen into in the low-temperature limit T → 0.
For increasing temperature, the system can be described by a power series in T around the
minimum, which takes the increasing thermal fluctuations into account.

Most potentials possess more than one configuration of minimal energy. These minima may
be separated and of finite number as well as degenerated and continuously connected. The
double-well potential, for instance, has two disjoint minima which can merely be connected
by means of macroscopic fluctuations across the barrier in the middle. In two and higher
field dimensions, however, the minima of the mexican hat form an uninterrupted groove,
see Figure 1.1 b, whose excitations are called Nambu-Goldstone modes. After adding the
gradient term to the potential, we define the action

A[φ] =

∫

dDx

{

1

2

[

∇φ(x)
]2

+ V
(

φ(x)
)

}

. (1.2)

The field φ(x) may be divided into a background or field expectation Φ(x) and local fluctua-
tions δφ(x). These fluctuations are sufficient to generate such long-range configurations like
the Goldstone modes. Consider an O(N)-symmetric potential with expectation Φ(x) 6= 0,
e.g., the mexican hat for N field components. Thus, there exist (N−1) transversal Goldstone
modes or – in terms of particles in statistical field theory – (N−1) Goldstone bosons.

As the potential’s curvature corresponds to the effective masses of its particles, Goldstone
bosons have zero mass. This matter of fact can also be derived from the effective action

1
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Figure 1.1.: In the case of the double-well potential (a), two isolated minima at nonzero field

|φ0|=
√

−6m2/g exist, whereas the mexican hat (b) for N=2 has a continuous rotationally
symmetric groove of minima (m2 =−1 and g=3/2).

Γ[Φ], which follows from the action (1.2) after integrating over the fluctuations. The effective
action defines the two-point correlation function

Γ(2)(x1,x2) =
δ2Γ[Φ]

δΦ(x1) δΦ(x2)

∣

∣

∣

∣

∣

Φ(x)=Φ

, (1.3)

which sheds light on the mass of the particles by means of its inverse, i.e., the propagator
or correlation function G(x1,x2). In the case of non-zero field expectation, the two-point
function becomes anisotropic and separates into longitudinal and transversal contributions
Γ

(2)
L (x1,x2) and Γ

(2)
T (x1,x2), respectively. Neglecting the influence of fluctuations, the corres-

ponding propagators read accordingly

GL(x1,x2) =
1

Γ
(2)
L (x1,x2)

=
1

−∆ +m2 + Φ2 g/2
δ(x1 − x2) , (1.4)

GT (x1,x2) =
1

Γ
(2)
T (x1,x2)

=
1

−∆ +m2 + Φ2 g/6
δ(x1 − x2) . (1.5)

At the minimum Φ = φ0 of (1.1), they reduce to

GL(x1,x2)
∣

∣

∣

Φ=φ0

=
1

−∆ − 2m2
δ(x1 − x2) , (1.6)

GT (x1,x2)
∣

∣

∣

Φ=φ0

=
1

−∆
δ(x1 − x2) . (1.7)

Whereas the longitudinal part has mass −2m2, the transversal Goldstone bosons are ob-
viously massless. This is exactly what the Nambu-Goldstone theorem states [1, Ch. 3]:

If a quantum field theory without long-range interactions has a continuous sym-
metry and sufficiently negative mass, there is a nonzero field expectation and the
transversal fluctuations have zero mass.

2



1.2. Phase Transitions and Order Parameters

1.2. Phase Transitions and Order Parameters

Matter can usually be found in different states of aggregation. Water, for instance, can
become ice as well as water vapor, a magnetic system can be ferromagnetic or paramagnetic
among others. These states of aggregation or phases differ in symmetry, thermodynamic, me-
chanical or electromechanical properties. Depending on external conditions like pressure p,
temperature T or magnetic field B, the system settles for one certain phase. If we vary these
control parameters in a suitable way, the system passes over into another state. Consider, for
instance, a ferromagnet in N = 3 dimensions. Due to thermal fluctuations, it is impossible
for the electrons to be perfectly arranged at temperatures T 6= 0. At T = 0, however, we
find a constant global order, called spontaneous magnetization M. For small temperatures,
so-called Weiss’ domains arise inside which the elementary magnets are arranged. The
transition point between normal (high-temperature) and ordered (low-temperature) phase
is referred to as critical temperature Tc or, more generally, critical point. The spontaneous
magnetization M being zero above and nonzero below Tc is suitable to describe phase tran-
sitions. In general, there exist some order parameters φ which are zero in one phase and
nonzero in the other. In the case of a ferromagnet, φ is a vector of dimension N = 3. For a
transition gas-liquid, the density difference with respect to the liquid phase may be defined
to be the order parameter, thus it has the dimension N=1. The local generalization of order
parameters is an order field φ(x).

With respect to the later calculations of the effective potential, the background Φ serves as
an order parameter. The anharmonic potential with a positive quadratic term describing
the normal phase has its only minimum at φ = 0, which corresponds to field expectation
〈

φ
〉

=0. The mexican hat has its minima at φ 6=0, i.e., nonzero field expectation. In fact,
this potential describes the ordered phase: whereas the anharmonic potential is rotationally
symmetric, there is a spontaneous breakdown of the symmetry when coming to the mexican
hat which has one longitudinal direction and N−1 transversal ones. Likewise, the para-
magnetic phase is rotationally symmetric, the ferromagnetic phase, however, has a preferred
direction because of the spontaneous magnetization. Thus, the symmetry is reduced. This
is where the name ordered phase comes from.

There are different kinds of phase transitions being classified in 1933 for the first time by
P. Ehrenfest according to the partial derivatives of the thermodynamic potentials. According
to Ehrenfest, a phase transition is of nth order if the first (n−1) partial derivatives with respect
to the natural variables are continuous, whereas at least one of the nth partial derivatives is
discontinuous. As a consequence, the difference between two phases decreases with increasing
transition order. The so-called Kosterlitz-Thouless phase transition [2], occurring exclusively
in two spatial dimensions, is of infinite order. In this case, Gibbs free enthalpy has the form

G(T ) ∼ exp

{

− K√
T − Tc

}

. (1.8)

All derivatives are continuous at T = Tc. A famous example of such a Kosterlitz-Thouless
phase transition is the transition of a thin 4He film from fluid to suprafluid. Typical examples

3
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(a) (b)

|
b

Figure 1.2.: Isothermal lines (a) of the Van-der-Waals gas [3]. Below a critical line, non-
physical areas between B and C arise, which are replaced by Maxwell’s construction as
exemplified for the lower curve. In the ocher area, both gas and liquid phase exist. The
vertical asymptote corresponds to the proper volume b. (b): Phase diagram of water with
triple point O, critical point A, vapor pressure curve O−A, sublimation curve B−O and
melting pressure curve O−C [4].

of first-order transitions are melting or evaporation, whereas ferromagnetic or superconduc-
tor transitions are of second order. Nowadays, it is more common to distinguish merely
between continuous and discontinuous phase transitions, stemming from the continuous or
discontinuous behavior of the order parameter at the critical point. In terms of this defi-
nition, first-order phase transitions regarding Ehrenfest are discontinuous, all transitions of
second and higher order are referred to as continuous.

The critical point shows an interesting phenomenon: in spite of short-range interactions,
long-range fluctuations are found near the critical point, which are characterized as cri-
tical behavior. Completely different systems show similar critical behavior. In the case of
continuous transitions, the critical behavior turns out to be classifiable by means of critical
exponents.

1.3. Discontinuous Phase Transitions

In this section, we consider the Van-der-Waals gas as a typical example of discontinuous
phase transitions. It is characterized by its equation of state

(

p +
a

V

)

(

V − b
)

= kB NT (1.9)

4



1.4. Continuous Phase Transitions and Critical Exponents

with pressure p, volume V , temperature T , Boltzmann constant kB and constants a and b
that include the long-range interaction and the proper volume of the particles, respectively.
Figure 1.2 a shows the isothermal lines, i.e., the pressure as a function of the volume for
fixed temperature. In the case of the critical isothermal line Tc, the points B, C and the
turning point between coincide. Below, the isothermal lines show non-physical regions with
∂p/∂V > 0, which would make the system mechanically unstable. The actual behavior is
described by Maxwell’s construction: a horizontal line from point A toD, dividing this region
into two parts with equal area, visualizes the occurring condensation, i.e., a phase transition
from gas to liquid or the other way around that constitutes an area in which both phases
coexist. By means of this, it is avoided that volume and pressure decrease simultaneously.
The extensive variable V becomes discontinuous and since the volume corresponds to a first
partial derivative of Gibbs potential G,

V =

(

∂ G

∂ p

)

T,N

, (1.10)

it gives rise to the name discontinuous or, with regard to Ehrenfest, first-order phase tran-
sition. Moreover, it shows that coexistent phases are restricted to first-order transitions.
Above the critical temperature, condensation is no longer possible. Gibbs phase rule

f = 2 + k − p (1.11)

describes the relation between the number k of components, the number p of coexistent
phases and the number f of degrees of freedom within an arbitrary system. Consider, for
instance, the phase diagram of water in Figure 1.2 b. Water consists of k = 1 component,
thus there are two degrees of freedom within a pure phase: temperature and pressure. Due
to two degrees of freedom, a pure phase takes a two-dimensional area in the diagram. At
the vapor pressure curve, both liquid water and water vapor are existent, hence we have two
phases and one degree of freedom. In fact, the vapor pressure curve has a one-dimensional
structure. The same holds for both the melting pressure curve and the sublimation curve.
At the so-called triple point O, however, all three phases coexist and zero degrees of freedom
correspond to zero dimensions, i.e., a point. Above the critical point A, a transition between
liquid and gas phase is no longer possible: a fluid phase arises, which depends merely on the
temperature.

1.4. Continuous Phase Transitions and Critical Exponents

In the following, we concentrate on continuous phase transitions which are of special in-
terest. This is due to the fact that near the critical point, many physical quantities, in
particular the order parameters, show an universal power-law behavior ∼ |τ |ϕ with ϕ called
critical exponent. Here, τ =(T−Tc)/Tc denotes the reduced temperature which defines the
region of critical fluctuations. A physical property F , for instance, behaves near the critical
temperature like

F (τ) =

{

C1 |τ |ϕ if τ ↓ 0 ,

C2 |τ |ϕ
′

if τ ↑ 0 .
(1.12)

5



1. Introduction

In principle, ϕ and ϕ′ may be different. Experiments and a thorough analysis with renor-
malization group theory, however, show that both exponents are exactly the same, i.e., it
makes no difference whether we approach the critical point from above or below. The critical
exponent can be obtained from the data by plotting ln|F (τ)| versus ln|τ | and extracting the
slope

ϕ = lim
τ→0

ln
∣

∣F (τ)
∣

∣

ln|τ | . (1.13)

In 1970, R. B. Griffith suggested that these exponents show universality [5]. This means
that they merely depend on

• spatial dimension D,

• dimension N of order parameter,

• range of particle interaction.

Considering the range of interaction, we denote interactions to be of short-range if they
decay with increasing distance r like ∼r−(D+2+a) for a>0 . Classical theories are restricted
to long-range interactions with a<D/2−2 , whereas the intermediate area D/2−2<a< 0
is most difficult to describe.

The coherence length ζ is a quantity that characterizes the range of correlations. Near the
critical point, ζ dominates all microscopic length scales since it diverges like a power in T−Tc

ζ = ζ0

(

T − Tc
Tc

)−ν

, (1.14)

with ν > 0 being a critical exponent. Thus, all microscopic properties become irrelevant.
They merely express themselves by means of the coefficients C1,2 in the power laws (1.12)
but even the ratio of these coefficients, when approaching the critical point from above and
below, is universal. The system behaves in a collective and universal way, and it is not
surprising that merely global properties like dimension or symmetry have an influence on
its behavior. For the complete and unique characterization of a system [6, Ch. 1], a set of
critical exponents α, β, γ, δ, ν, η is introduced with, e.g.,

C ∼ |τ |−α , (1.15)

|M| ∼ |τ |β , forT < Tc , (1.16)

|M| ∼ |B|1/δ , forT = Tc , (1.17)

χL(k = 0) ∼ |τ |−γ , (1.18)

lim
k→0

k2 χT (k) ∼ |τ |ην . (1.19)

Here, C denotes the specific heat, χ the susceptibility at zero field, k the momentum, and
B the magnetic field. These critical exponents are not independent of each other but are

6



1.5. Phase Transitions and Goldstone Theorem

related by scaling relations which were first introduced by B. Widom in 1965 [7]:

α + β (1 + δ) = 2 , (1.20)

γ + β (1 − δ) = 0 , (1.21)

ν (2 − η) = γ . (1.22)

Furthermore, additional hyperscaling relations exist, which include the dimension D [6,
Ch. 1]. Taking all these relations into account, there remain only two independent exponents
which are typically chosen to be ν and η. With the aid of critical exponents, completely
different systems near phase transitions can be grouped into universal classes depending
merely on symmetry properties. Regarding the dimension N of the order parameter (also
denoted as dimension of spin), they classify into

• N = 0: polymer,

• N = 1: Ising model,

• N = 2: XY-model,

• N = 3: Heisenberg model,

• N = ∞: spherical model.

1.5. Phase Transitions and Goldstone Theorem

In order to emphasize the interconnection between phase transitions and Goldstone theorem,
we consider the correlation function

Gij(x,y) =
〈

φi(x)φj(y)
〉

, (1.23)

which is the expectation value of the product of two components of the order field. Its
cumulant version reads

Gc,ij(x,y) = Gij(x,y) −
〈

φi(x)
〉 〈

φj(y)
〉

. (1.24)

The correlation function is particularly interesting in the ordered phase where it describes
the deviations δφ(x) of the order field from its expectation value Φ

δφ(x) = φ(x) − Φ. (1.25)

Then, the cumulant correlation function reads

Gc,ij(x,y) =
〈

δφi(x) δφj(y)
〉

(1.26)

and differs from (1.23) by means of the non-vanishing background function ΦiΦj . For a
ferromagnet, for instance, δφ(x) corresponds to the deviations from the spontaneous mag-
netization Φ=M. Due to the broken symmetry, the correlation function is anisotropic and

7
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T

ΦV (Φ)

Φ
Tc

(a) (b)

Figure 1.3.: Phase transition (a) from anharmonic potential T >Tc (long-dashed) to double-
well T <Tc (short-dashed). T =Tc (solid) corresponds to the transition point. (b): Symmetry
breakdown when coming from normal to ordered phase. The order parameter has no longer
a unique value.

can be divided analogously to (1.4) and (1.5) into a longitudinal and a transversal part with
respect to the order field

Gij(x,y) = PL
ij GL(x,y) + P T

ij GT (x,y) , (1.27)

with projection operators to be defined in Chapter 7. In the case of an O(N)-symmetric
energy functional, fluctuations in transversal directions are symmetry transformations. Thus,
they do not require energy and consequently have infinite coherence length for all tem-
peratures. In other words, they show a critical behavior not just near the critical point but
everywhere. This is in accordance with the Goldstone theorem: due to the spontaneous
breakdown of a continuous symmetry, long-range modes with long-range, critical behavior
emerge.

1.6. Landau Theory

Physical systems are uniquely determined if the corresponding effective action is known.
This is, however, not always given. In order to describe a system at least in a region near
a second-order phase transition, L. D. Landau developed a theory that is specified by the
critical behavior [6,19]. It implies that the thermodynamic potential G(T,h,Φ), Gibbs free
enthalpy, for instance, can be expanded into a power series in terms of the order parameter
Φ. Since the order parameter vanishes when approaching the critical point from above as
well as from below, it is obvious that such an expansion for small values of Φ = |Φ| is
justified. The parameter h denotes the conjugated field, e.g., the magnetic field H for an
order parameter Φ being the magnetization M. Moreover, G is supposed to depend only
on the modulus of the order parameter and of its conjugated field. Assuming the symmetry
G(T, 0,Φ) = G(T, 0,−Φ) for a vanishing field h, the power series merely consists of even
powers. We truncate the series after the fourth power and assume this coefficient to be
positive for stability reasons. Otherwise, the sixth power has to be taken into account. The

8



1.6. Landau Theory

universal ansatz reads

G(T, h,Φ) = G(T, 0, 0) +
A

2
Φ2 +

B

24
Φ4 . (1.28)

In general, the coefficients depend on the temperature. We obtain them by minimizing with
respect to Φ

∂ G(T, h,Φ)

∂ Φ
= AΦ +

B

6
Φ3 !

= 0 , (1.29)

∂2G(T, h,Φ)

∂ Φ2
= A +

B

2
Φ2 !

> 0 . (1.30)

The first equation (1.29) has two possible solutions

Φ = 0 , (1.31a)

Φ = ±
√

−6A

B
. (1.31b)

Consider the normal phase where Φ = 0 is a solution of (1.29) anyway. Then, due to (1.30),
A has to be positive. In the ordered phase, however, Φ is nonzero. Thus, (1.29) has the
solution (1.31b). In accordance with (1.30), A has to be negative. To sum up, we have

normal phase ⇒ A > 0 ,

ordered phase ⇒ A < 0 .

For this reason, we state that the coefficient in front of Φ2 must change its sign at the critical
point Tc and therefore we write

A = a
(

T − Tc) , a > 0 . (1.33)

The change of sign of A is closely related to the spontaneous symmetry breakdown that
can also be observed in connection with the anharmonic and the mexican-hat potential.
We see immediately, that m2 in (1.1) has the same property as the coefficient A in the
previous example. In fact, the rotationally symmetric anharmonic potential represents the
normal phase. The mexican hat is the ordered phase due to symmetry breakdown as shown
in Figure 1.3 a, where the critical point has been attributed to a critical temperature Tc.
Inserting (1.33) into (1.31b), we obtain the temperature dependence of the order parameter

Φ(T ) =

{

±
√

−6a
B

(T − Tc) T < Tc ,

0 T > Tc .
(1.34)

Figure 1.3 b shows that the order parameter Φ is not a unique function of the temperature:
approaching the critical temperature from above, two values of Φ are possible that differ in
their signs, e.g., positive or negative magnetization. Local fluctuations around the critical
point decide which value is adopted. Spontaneous symmetry breakdown denotes just the
possibility of different values for the order parameter. An additional cubic term in (1.28)
would change the transition to first order and would obviously not permit spontaneous
symmetry breakdown. Thus, this phenomenon is reserved to second-order phase transitions.
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1.7. Resummation of Effective Potential

Specializing the effective action in a constant background yields the effective potential. It
is usually calculated by means of a so-called loop expansion. In connection with Feynman
diagrams, the nth order with regard to ~ consists of all 1-particle irreducible Feynman dia-
grams with n loops. Assuming spontaneously broken symmetry, problems arise since some
approximations do not manage to reproduce the convexity of the effective potential. This
problem can be solved by a Maxwell construction [9], for instance, transforming the approxi-
mated effective potential to a convex one, similarly to the construction in connection with
phase diagrams in Figure 1.2 a. Another possibility is the Cornwall-Jackiw-Tomboulis (CJT)
formalism [10] which calculates the effective potential to any given order by resumming all
1-particle irreducible diagrams.

With respect to the O(N)-model, two common approaches are the Hartree approximation
and the large-N limit. The Hartree approximation [11] stems from many-body physics and
consists of a self-consistent resummation of bubble diagrams. In the CJT formalism, all
1-particle irreducible diagrams must be calculated, which leads directly to the effective po-
tential. The large-N approximation can be regarded as the Hartree approximation in the
limit N→∞.

There are further problems concerning the effective potential. Perturbation expansions are
divergent weak-coupling series and require resummation of all tadpole diagrams [12]. As
we will show in detail in Chapter 8, it is impossible to optimize the renormalized but unre-
summed effective potential with respect to the background in order to obtain the free energy.
But a resummation can be performed, for instance, by variational perturbation theory (VPT)
[1, Ch. 5], transforming the divergent weak-coupling series into a convergent strong-coupling
series.

In the limit of large N , the effective potential can be calculated without resummation.
Consider the Wick contractions of the expectation value of a quartic term

〈

Φ(x) Φ∗(x) Φ(x′) Φ∗(x′)
〉

=
〈

Φ(x)Φ∗(x)
〉 〈

Φ(x′)Φ∗(x′)
〉

+
〈

Φ(x)Φ∗(x′)
〉 〈

Φ(x′)Φ∗(x)
〉

+
〈

Φ(x)Φ(x′)
〉 〈

Φ∗(x)Φ∗(x′)
〉

. (1.35)

The possible contractions are referred to as Hartree-, Fock -, and Bogoliubov -contractions.
All three of them have to be taken into account. For large N , however, both Fock and
Bogoliubov terms can be neglected [13, Ch. 26]:

〈

Φ(x) Φ∗(x) Φ(x′) Φ∗(x′)
〉 N→∞∼

〈

Φ(x)Φ∗(x)
〉 〈

Φ(x′)Φ∗(x′)
〉

. (1.36)

The so-called Hubbard-Stratonovich transformation is a calculation procedure for the effec-
tive potential that merely takes the Hartree term into account. Therefore, it yields exact
results in the limit N→∞. In fact, VPT can be regarded as a generalization of Hubbard-
Stratonovich for all values of N [14]. This matter of fact will be worked out in this thesis.
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Furthermore, renormalization becomes necessary in statistical field theory due to arising sin-
gularities. It is a well-known problem that renormalization and resummation cannot agree
together in most cases [15]. The original effective potential is, of course, renormalizable,
but performing renormalization after resummation leads to renormalization constants that
are no longer independent of the medium [16], for instance. Merely for T =0 this sequence
succeeds. In the CJT-formalism, the full bilocal propagator has to be renormalized after
resummation. This turns out to be impossible. A procedure that consists of cut-off renor-
malization prior to resummation has been developed by J. Lenaghan and D. Rischke in 2000
[15]. However, the Hartree approximation requires vanishing cut-off Λ. This matter of fact
does not agree with the O(N) model which becomes trivial in the limit Λ→∞ and requires
at least a finite value of Λ. The large-N approximation is also valid for non-vanishing cut-off.

With regard to all bosonic systems, the Goldstone theorem has to be preserved [17,18].
Whereas it is satisfied all along the large-N limit, it cannot be respected for all temperatures
in the Hartree approximation [15]. If we perform resummation first, the renormalization leads
to massive Goldstone bosons [15]. In 1997, H. Kleinert proposed VPT as an improvement of
the Hartree approximation that preserves the Goldstone theorem [14]. A further advantage of
variational resummation are the achieved exponentially fast convergent series [6, Ch. 19]. In
this thesis, we renormalize the effective potential in φ4-theory, resum it by means of VPT and
show afterwards that all Goldstone bosons still have zero mass. By doing so, we give up self-
consistency since we include the field expectation Φ into the effective action. This procedure
is exactly the reason why the Goldstone theorem is preserved. VPT is a non-perturbative
resummation that conserves symmetry, thus it does not violate the Goldstone theorem either.
Note that in contrast to the CJT-formalism, we renormalize a local quantity as shown in
detail in Chapter 6. Furthermore, we verify that the phase transition remains continuous
and analyze in what extend the point of transition is affected by quantum fluctuations.

1.8. Outline of the Thesis

The φ4-potential (1.1) describes a multifunctional and illuminating physical system. De-
pending on the sign of m2, it implies both anharmonic and mexican-hat potential which
turn into each other by means of a continuous phase transition. Due to the mathematically
closely related shape, the potential (1.1) enables us to study two completely different sys-
tems. For this reason, we have chosen it to be the central system we consider.

This thesis is composed of two parts. The first one is entitled Quantum Statistics. Ad-
mittedly, we are mainly interested in statistical field theory, but minima of the potential
being shifted from zero in the ordered phase impact the original variational procedure [1,
Ch. 5] with regard to the substituted quantity. In order to check the variational procedure,
we consider quantum mechanics first before going to statistical field theory. In Chapter 2,
we derive the loop expansion of the effective potential within quantum statistics, where we
consider, in particular, the low-temperature limit which leads to the corresponding quantum
mechanical results. We remain in arbitrary dimension D up to the second loop order, which
gives rise to longitudinal and transversal frequencies describing the symmetry breakdown

11
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in the ordered phase. The third loop order is disproportionately more tedious to calculate.
Therefore, we confine ourselves to determining it merely for D=1 dimension. In Chapter 3,
we proceed to VPT and apply it to the effective potential. With the help of the second and
third loop order in D=1 dimension, we study the convergence with respect to the increasing
order. The so-called sunset term in the second loop order is preferably neglected [1, Ch. 5]
since it complicates matters. Therefore, we check its effect on the variational results in or-
der to investigate whether this simplification is justified. In D=2 dimensions, longitudinal
and transversal frequencies enable us to introduce a second variational parameter and to in-
vestigate its influence on the accuracy. Finally, we consider the convergence with increasing
dimension D. This limit can be regarded as the analogy of the large-N limit in statistical
field theory in which the φ4 - theory is exactly solvable. On this account, we expect and
obtain, indeed, improving VPT results in quantum mechanics.

In the second part, we concentrate on Statistical Field Theory. The methods for de-
riving the effective potential of (1.1) are adopted from quantum statistics. In Chapter 4,
we concentrate on N = 1 real field and calculate the first two loop orders of the effective
potential. Here, we encounter singularities and have to renormalize the effective poten-
tial. The complete regularization and renormalization procedure is presented in Chapter 5.
Calculating the self-energy represents an alternative approach to renormalization, which is
therefore worked out in Chapter 6. In order to obtain longitudinal and transversal masses
analogously to the frequencies in quantum statistics, we extend our calculations to N real
fields in Chapter 7. The actual variational procedure in statistical field theory is succinctly
treated in Chapter 8 in order to assure ourselves that VPT is, indeed, applicable. Due
to the renormalization invariance, it is impossible to assess the achieved accuracy. There-
fore, we focus our attention to check the requirements we have proposed for the theory: by
means of Landau expansion, we verify that VPT preserves the character of a continuous
phase transition. Moreover, we confirm that the Goldstone theorem is still preserved. In the
large-N limit, the Hubbard-Stratonovich transformation enables us to calculate the effective
potential without resummation. With this, we establish VPT as a generalization of the
Hubbard-Stratonovich transformation to all values of N .
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2. Effective Potential

In this chapter, we derive the effective potential in quantum mechanics for a rotationally
symmetric potential. We deduce the effective potential from the partition function in quan-
tum statistics by means of the background method in order to obtain an expansion in powers
of ~. This expansion is closely related to Feynman diagrams: the nth order corresponds to
all 1-particle irreducible vacuum diagrams with n loops. Diagrams and analytic expressions
can be converted into each other with the aid of Feynman rules. However, we are primarily
interested in quantum mechanics which follows from the low-temperature limit T → 0 in
quantum statistics. In order to avoid confusion, we change the notation of the mass into a
capital letter M throughout this part.

2.1. Partition Function

Consider a quantum mechanical particle propagating from space-time point (xa , ta) to
(xb , tb). The probability of this transition is equal to the absolute square of the time evolu-
tion amplitude

(

xb, tb
∣

∣xa, ta
)

:=
〈

xb
∣

∣ Û(tb, ta)
∣

∣xa
〉

, (2.1)

with Û(tb, ta) being the time evolution operator with respect to the Hamiltonian Ĥ

Û(tb, ta) := e−ı Ĥ(tb−ta)/~ . (2.2)

In the path integral formalism, propagation is described by interference of all possible paths
the particle can walk along, i.e., all paths with initial point xa and final point xb [19,20].
This can be expressed by adding up all these paths with a phase factor, yielding the path
integral

(

xb, tb
∣

∣xa, ta
)

=

∫ x(tb)=xb

x(ta)=xa

Dx eıA[x]/~ . (2.3)

Here, we defined the classical action of a particle with mass M in a potential V (x) by

A[x] =

∫ tb

ta

dt

[

M

2
ẋ2(t) − V

(

x(t)
)

]

. (2.4)

Let En be the eigenvalues of Ĥ belonging to the orthonormal eigenstates |ψn〉. Thus, we
have the eigenvalue equation

Ĥ |ψn〉 = En |ψn〉 . (2.5)
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2. Effective Potential

In that case, we define the canonical partition function Z as a sum over all Boltzmann factors

Z =
∑

n

e−En/kBT = Tr
(

e−Ĥ/kBT
)

(2.6)

with the temperature T and the Boltzmann constant kB. In the last step of (2.6), we used
that for an arbitrary operator

Ô |ψn〉 = On |ψn〉 , (2.7)

the trace is defined by

Tr Ô :=
∑

n

〈

ψn | Ô |ψn
〉

. (2.8)

The outstanding similarity between the Boltzmann factor e−Ĥ/kBT and the quantum me-
chanical time evolution operator (2.2) gives rise to the substitution

tb − ta ↔ −ı ~
kBT

≡ −ı ~β , (2.9)

through which Boltzmann factor and time evolution operator turn into each other. This so-
called Wick rotation (2.9) connects the real-time evolution of a quantum mechanical system
with its equilibrium thermodynamics. Performing the Wick rotation for the classical action
(2.4) and defining the imaginary-time

τ := ı t , (2.10)

we obtain the imaginary time action

A[x] =

∫

~β

0

dτ

[

M

2
ẋ2(τ) + V

(

x(τ)
)

]

. (2.11)

Applying (2.8) in space representation, the partition function (2.6) reads

Z =

∫

dDx
〈

x
∣

∣ e−βĤ |x
〉

=

∫

dDx
〈

x
∣

∣ e−ıĤ(−ı~β)/~
∣

∣x
〉

. (2.12)

Obviously, the matrix element in (2.12) is the analytic continuation of the real time evolution
amplitude with the help of Wick rotation

(

xb, ~β
∣

∣xa, 0
)

=
(

xb, tb
∣

∣xa, ta
)

∣

∣

∣

tb=−ı~β

ta=0
. (2.13)

Therefore, we write the partition function (2.12) as an ordinary integral over the imaginary
time evolution amplitude where initial and final space point coincide:

Z =

∫

dDx
(

x, ~β
∣

∣x, 0
)

. (2.14)
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2.2. Definition of Effective Action and Effective Potential

It can be transferred to path integral formalism by summing over all periodic paths x(~β)=
x(0). Analogously to the time evolution amplitude (2.3) in real time, we have now [21]

Z =

∫

dDx′
∫ x(~β)=x′

x(0)=x′

Dx e−A[x]/~ ≡
∮

Dx e−A[x]/~ , (2.15)

with the imaginary time action A[x] defined in (2.11). Finally, the free energy F follows
from (2.15) by means of

F := − 1

β
lnZ . (2.16)

2.2. Definition of Effective Action and Effective Potential

Within quantum statistics, the so-called correlation functions play an important role. They
are defined to be the expectation values of products of different positions of the path x(τ).
In order to calculate these expectation values, it is convenient to introduce an additional
external current j(τ) into the action, which disturbs the system

A[x, j] := A[x] −
∫

~β

0

dτ j(τ)x(τ) . (2.17)

Defining the generating functional

Z [ j ] :=

∮

Dx e−A[x,j]/~ , (2.18)

we obtain the expectation value of the path with the help of functional derivatives with
respect to the current as we will see in the following. For vanishing current, j(τ)≡0, (2.18)
turns into the partition function (2.15)

Z [ j ]
∣

∣

∣

j≡0
≡ Z . (2.19)

In the same way, also the free energy (2.16) becomes a generating functional of j(τ)

F [ j ] = − 1

β
lnZ [ j ] , (2.20)

which yields just the free energy (2.16) for vanishing current

F [ j ]
∣

∣

∣

j≡0
≡ F . (2.21)

With regard to (2.17) and (2.18), the first functional derivative of the energy functional
(2.20) corresponds, except for the prefactor, to the expectation value X(τ) of the path x(τ)

δF [ j ]

δ ji(τ)
= − 1

~β Z[ j ]

∮

Dx e−A[x,j]/~xi(τ) =: − 1

~β
Xi(τ) . (2.22)
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2. Effective Potential

The current can hence be written as a functional of the background by inverting (2.22)
formally

j(τ) = j[X](τ) . (2.23)

The effective action Γ[X] is defined to be the Legendre transform of the free energy with
respect to the external current

Γ[X] := ~β F [j[X]] +

∫

~β

0

dτ j[X](τ) X(τ) . (2.24)

If we wish to calculate only the effective potential rather than the effective action, it is suf-
ficient to consider a time-independent current j. Thus, the action (2.17) becomes a function
of j

A[x] (j) := A[x] − j

∫

~β

0

dτ x(τ) , (2.25)

and both generating functionals (2.18) and (2.20) reduce to generating functions. Moreover,
the functional derivative (2.22) is now a partial derivative

∂ F(j)

∂ ji
= − 1

~β Z(j)

∮

Dx e−A[x](j)/~

∫

~β

0

dτ xi(τ) =: −Xi . (2.26)

Inverting (2.26) formally, we obtain the current j as a function of the path average X

j = j(X) . (2.27)

Analogously to the effective action, the effective potential Veff(X) is defined to be the Le-
gendre transform of the free energy with respect to the external current:

Veff (X) := F(j(X)) + j(X)X . (2.28)

The effective action Γ[X] and the effective potential Veff(X) are related according to

Veff(X) =
1

~β
Γ[X]

∣

∣

∣

∣

∣

X(τ)=X

. (2.29)

Due to (2.21), the effective potential (2.28) is equal to the free energy for vanishing current
j(X)≡0

Veff(X)
∣

∣

∣

j≡0
≡ F . (2.30)

On the other hand, extremizing the effective potential (2.28) yields with regard to (2.26)

∂ Veff(X)

∂ Xi

= ji(X)
!
= 0 . (2.31)

Thus, a vanishing current corresponds to the extremized effective potential. In other words,
we obtain the free energy (2.30) by extremizing the effective potential. Moreover, we know
that according to

F = E − T S , (2.32)

the free energy is the same as the ground-state energy in the low-temperature limit T→ 0,
which means, with regard to (2.9), β→∞.
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2.3. Saddle Point Approximation

2.3. Saddle Point Approximation

The effective potential Veff(X) is defined to be the Legendre transform of the free energy with
respect to the external current j and can be calculated from the partition function. This
is typically be done by applying the so-called saddle point approximation which is suitable
for the low-temperature limit β→∞. It is an alternative to the background method which
we apply in the following sections. In order to appreciate this method and its advantages,
we shortly present the idea of the saddle point approximation as it is given, for instance, in
Ref. [21]. Moreover, we will refer to the saddle point approximation in Chapter 8: the large-
N limit can be regarded as the analogy of the saddle point approximation in the statistical
field theory.

To simplify matters, we consider the case of classical statistics in D= 1 dimension instead
of the path integral formalism. The main difference is that the former path x(τ) becomes
then a time-independent space coordinate x. As a consequence, the path integrals reduce to
ordinary integrals and the partition function of a particle with mass M in a potential V (x)
reads

Z =

∫ ∞

−∞

dx

λ
e−β V (x) (2.33)

with the thermal de Broglie-wavelength

λ =

√

2π~2β

M
. (2.34)

Now we add an external current j to the potential analogously to (2.25), leading to the
generating function

Z(j) :=

∫ ∞

−∞

dx

λ
e−β V (x,j) . (2.35)

In the low-temperature limit β → ∞, the minimum of V (x, j) := V (x) − jx yields the
crucial contribution in the integral (2.35). The corresponding x-value of this minimum is
called saddle point x0 and can be determined by

∂ V (x, j)

∂ x

∣

∣

∣

∣

∣

x= x0

= 0 . (2.36)

We introduce a new variable δx describing the deviations from the saddle point

x = x0 + δx , (2.37)

and perform a Taylor expansion of the potential V (x, j) around x0 :

V (x, j) = V (x0, j) +
1

2
V (2)(x0) δx

2 +
1

6
V (3)(x0) δx

3 + · · · . (2.38)
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2. Effective Potential

The current j is linearly coupled to the potential. For this reason, the derivatives of second
and higher order of the potential do not explicitly depend on j any more. The first derivative
vanishes due to (2.36). Inserting (2.38) into the partition function (2.35) and expanding the
resulting exponential function leads to

Z(j) = e−β V (x0,j)

∫ ∞

−∞

d δx

λ
exp

{

−β
2
V (2)(x0) δx

2

} {

1 − β

6
V (3)(x0) δx

3

− β

24
V (4)(x0) δx

4 +
β2

72

[

V (3)(x0)
]2
δx6 + · · ·

}

. (2.39)

Due to the Gaussian exponential function, all integrals with odd powers of δx vanish. The
remaining integrals are solved according to

∫ ∞

−∞

dx x2n e−Ax
2/2 =

√

2 π

A

(2n− 1)!!

An
. (2.40)

Up to the second order with respect to β−1, the partition function (2.39) reads

Z(j) =
e−β V (x0,j)

~ β
√

V (2)(x0) /M

{

1 − V (4)(x0)

8 β [V (2)(x0)]
2 +

5
[

V (3)(x0)
]2

24 β [V (2)(x0)]
3 + · · ·

}

. (2.41)

The free energy follows by expanding the logarithm of (2.41) up to the first order:

F(j)=V (x0)−x0j+
1

β
ln

(

~β

√

V (2)(x0)

M

)

+
1

β2

{

V (4)(x0)

8 [V (2)(x0)]
2 − 5

[

V (3)(x0)
]2

24 [V (2)(x0)]
3 + · · ·

}

.(2.42)

Now, we have to express the saddle point in terms of the path average X that follows from
the free energy analogously to (2.22) by means of

X(j) = − ∂ F(j)

∂ j
. (2.43)

Thus, we derive an expression for X=X(x0) and invert it afterwards. To this end, we insert
(2.42) into (2.43), yielding

X(x0) =
∂ x0

∂ j

[

j − V (1)(x0)
]

+ x0 −
V (3)(x0)

2 β V (2)(x0)

∂ x0

∂ j
+ · · · . (2.44)

Because of x0 being the saddle point according to (2.36), we know that V (1)(x0)=j . Further-
more, it follows that

∂ V (1)(x0)

∂ j
= 1 ⇔ ∂ x0

∂ j
=

1

V (2)(x0)
. (2.45)

Inserting V (1)(x0) and (2.45) into (2.44) leads to

X(x0) = x0 −
V (3)(x0)

2 β [V (2)(x0)]
2 + · · · . (2.46)

After inverting (2.46), we insert x0 =x0(X) into the free energy (2.42). Finally, the Legendre
transform analogously to (2.28) yields the desired effective potential

Veff(X) = V (X) +
1

β
ln

(

~β

√

V (2)(X)

M

)

+
1

β2

{

V (4)(X)

8 [V (2)(X)]
2 −

[

V (3)(X)
]2

12 [V (2)(X)]
3 + · · ·

}

. (2.47)

20



2.4. Background Method

2.4. Background Method

As we have seen in the previous section, it can be tedious to calculate the effective potential
via the saddle point approximation. The so-called background method proves to be a more
efficient approximation. Within this theory, there is no need to introduce an artificial current
and the effective potential can be calculated in other ways than performing the Legendre
transform. In the following, we present the background method for the D-dimensional path
integral (2.15).

The background method [22–24] was first introduced by B. De Witt in 1965. It consists of
dividing the path x(τ) into a background X(τ) and fluctuations δx(τ)

x(τ) = X(τ) + δx(τ) . (2.48)

This ansatz can be compared to those in the saddle point approximation (2.37). More
precisely, the saddle point corresponds to the leading order of the background which is just
the field expectation (2.46). For the purpose of calculating the effective potential, it is
sufficient to consider a time-independent background X(τ)≡X. We insert the ansatz (2.48)
for a constant background into an arbitrary potential V (x) and perform a Taylor expansion
around the background. For reasons of simplicity, we denote the partial derivatives by

∂n V (X)

∂Xi ∂Xj · · · ∂Xm

=: Vij···m(X) . (2.49)

In this formalism, the Taylor expansion of the potential reads

V (X + δx) = V (X) + Vi(X) δxi(τ) +
1

2
Vij(X) δxi(τ) δxj(τ)

+
1

6
Vijk(X) δxi(τ) δxj(τ) δxk(τ)

+
1

24
Vijkl(X) δxi(τ) δxj(τ) δxk(τ) δxl(τ) + · · · . (2.50)

For reasons of clarity, we use Einstein’s sum convention, i.e., adding up all indices that occur
repeatedly. Now we insert the Taylor expansion (2.50) into the imaginary-time action (2.11),
yielding

A[X + δx] = ~ β V (X) +

∫

~β

0

dτ

{

1

2
δxi(τ)

[

−M ∂2
τ + Vij(X)

]

δxj(τ)

+
1

6
Vijk(X) δxi(τ) δxj(τ) δxk(τ) +

1

24
Vijkl(X) δxi(τ) δxj(τ) δxk(τ) δxl(τ) + · · ·

}

≡ A(cl)(X) + A(fluc)[X + δx] (2.51)

with the classical action A(cl)(X) and the fluctuation part A(fluc)[X+δx]. Note that we have
vanishing terms linear in the fluctuations δx(τ). A detailed proof is given in Ref. [1, Ch. 3]
where a functional integro-differential equation for the effective action is solved order by
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2. Effective Potential

order in ~. Analogously to the action (2.51), the partition function (2.15) in the background
formalism has a decomposition into classical and fluctuation part

Z(X) = e−A(cl)(X)/~

∮

Dδx e−A(fluc)[X+δx]/~

≡ Z(cl)(X)Z(fluc)(X) . (2.52)

For reasons of brevity, we define

Ã[X + δx] :=

∫

~β

0

dτ
1

2
δxi(τ)

[

−M ∂2
τ + Vij(X)

]

δxj(τ) . (2.53)

We calculate the fluctuation part of the partition function (2.52) by expanding the exponen-
tial function with third and higher powers of the fluctuations in accordance with (2.51) and
obtain

Z(fluc)(X) =

∮

Dδx e−Ã[X+δx]/~

[

1 − Vijk(X)

6 ~

∫

~β

0

dτ δxi(τ) δxj(τ) δxk(τ) (2.54)

− Vijkl(X)

24 ~

∫

~β

0

dτ δxi(τ) δxj(τ) δxk(τ) δxl(τ) +
Vijk(X)Vlmn(X)

72 ~2

×
∫

~β

0

dτ1

∫

~β

0

dτ2 δxi(τ1) δxj(τ1) δxk(τ1)δxl(τ2) δxm(τ2) δxn(τ2) + · · ·
]

.

Now we define the expectation values by means of

〈•〉 :=
1

Z(1)(X)

∮

Dδx • e−Ã[X+δx]/~ (2.55)

with the first-order partition function

Z(1)(X) =

∮

Dδx e−Ã[X+δx]/~ . (2.56)

Due to the symmetry, expectation values with odd powers vanish, so (2.54) reduces to

Z(fluc)(X) = Z(1)(X)

[

1 − Vijkl(X)

24 ~

∫

~β

0

dτ
〈

δxi(τ) δxj(τ) δxk(τ) δxl(τ)
〉

(2.57)

+
Vijk(X)Vlmn(X)

72 ~2

∫

~β

0

dτ1

∫

~β

0

dτ2
〈

δxi(τ1) δxj(τ1) δxk(τ1)δxl(τ2) δxm(τ2) δxn(τ2)
〉

+ · · ·
]

.

In accordance with (2.20) and (2.30), we conclude that the effective potential and the par-
tition function are related by

Veff(X) = − 1

β
lnZ(X) . (2.58)
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2.5. Effective Potential in First Loop Order

Inserting (2.51), (2.52), and (2.57) into (2.58) and expanding the logarithm, we obtain the
effective potential

Veff(X) = V (X) − 1

β
lnZ(1)(X) +

Vijkl(X)

24 ~ β

∫

~β

0

dτ
〈

δxi(τ) δxj(τ) δxk(τ) δxl(τ)
〉

− Vijk(X)Vlmn(X)

72 ~2 β

∫

~β

0

dτ1

∫

~β

0

dτ2
〈

δxi(τ1) δxj(τ1) δxk(τ1)δxl(τ2) δxm(τ2) δxn(τ2)
〉

+ · · ·

≡ V (X) + V
(1)
eff (X) + V

(int)
eff (X) . (2.59)

All contractions of the fluctuations are included in the interaction part V
(int)
eff (X).

2.5. Effective Potential in First Loop Order

In accordance with (2.59), the first-order term V
(1)
eff (X) of the effective potential reads ex-

plicitly

V
(1)
eff (X) = − 1

β
lnZ(1)(X) , (2.60)

with the first-order partition function defined by (2.53) and (2.56). For further calculations,
we denote the operator in the integral of (2.53) by

Ôij(τ) := M

[

− ∂2
τ +

1

M
Vij(X)

]

. (2.61)

The so-called integral kernel G−1
ij (τ1, τ2) is defined by

G−1
ij (τ1, τ2) := Ôij(τ1) δ(τ1 − τ2) . (2.62)

With regard to (2.53), (2.56), and (2.62), the first-order term of the partition function can
hence be written as

Z(1)(X) =

∮

Dδx exp

{

− 1

2 ~

∫

~β

0

dτ1

∫

~β

0

dτ2 δxi(τ1) G
−1
ij (τ1, τ2) δxi(τ2)

}

. (2.63)

This is just a Gaussian path integral: let A be a D-dimensional self-adjoint matrix with
positive determinant detA > 0. Then, we obtain

∫ ∞

−∞

dDx e−xTAx/2 =
(2π)D/2√

detA
. (2.64)

The Gaussian path integral in (2.63) can be regarded as a functional generalization of (2.64)

∮

Dδx exp

{

− 1

2~

∫

~β

0

dτ1

∫

~β

0

dτ2 δxi(τ1) G
−1
ij (τ1, τ2) δxj(τ2)

}

=
1√

detG−1
. (2.65)
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2. Effective Potential

We write the square root in (2.65) as

1√
detG−1

= exp

(

−1

2
Tr lnG−1

)

, (2.66)

with trace log being the sum of the logarithms of the integral kernel’s eigenvalues λ

Tr lnG−1 :=
∑

λ

lnλ . (2.67)

We obtain them by solving the corresponding eigenvalue problem

∫

~β

0

dτ2G
−1
ij (τ1, τ2) δxj(τ2) = M λδxi(τ1) (2.68)

for periodic eigenstates δxi(0)=δxi(~β) . Now we specialize our formalism in a rotationally
symmetric potential V (x)=V (x). In arbitrary dimension D, we can define one longitudinal
and D−1 transversal directions with respect to the background X. To this end, we introduce
the longitudinal and transversal projection operators

PL
ij :=

XiXj

X2
and P T

ij := δij − PL
ij . (2.69)

They have the following properties:

PL
ij Xj = Xi , P T

ij Xj = 0 , (2.70)

PL
ij P

L
ij = 1 , P T

ij P
T
ij = D − 1 , (2.71)

PL
ij P

L
jk = PL

ik , P T
ij P

T
jk = P T

ik , (2.72)

PL
ij P

T
jk = P T

ij P
L
jk = 0 , PL

ij + P T
ij = δij . (2.73)

In terms of the projection operators, the second derivative of the rotationally symmetric
potential V (X) reads

Vij(X) = V ′′(X)PL
ij +

V ′(X)

X
P T
ij , (2.74)

where V ′(X) and V ′′(X) denote the first and the second derivative with respect to the
modulus X = |X|, respectively. Now we turn our attention back to the eigenvalue problem

(2.68). First, the eigenstates δxi(τ) are decomposed into functions v
(n)
i (τ) according to the

longitudinal (n= 1) and transversal (n= 2, ..., D) directions. Second, we decompose them
with respect to the Matsubara frequencies

ωm =
2π

~β
m , m ∈ Z , (2.75)
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2.5. Effective Potential in First Loop Order

since we are looking for periodic eigenstates. Due to the delta-function in (2.62), the eigen-
value problem (2.68) amounts to solving

Ôij(τ) v
(m,n)
j (τ) = M λ(m) v

(m,n)
i (τ) , n = 1, 2, ..., D , (2.76)

with the periodic eigenfunctions v(m,n)(~β)=v(m,n)(0). For the longitudinal eigenfunctions,
we choose the ansatz

v
(m,1)
j (τ) = Xj e

−ıωmτ (2.77)

with the background Xj. Inserting (2.77) into (2.76), the corresponding eigenvalues turn
out to be

λ
(m)
L = ω2

m +
1

M
V ′′(X) . (2.78)

For the transversal eigenfunctions n=2, ..., D, we choose

v
(m,n)
j (τ) = Y

(n)
j e−ıωmτ , (2.79)

with Y
(n)
j being perpendicular to the background Xj and among each other: XjY

(n)
j =0 and

Y
(n)
j Y

(n′)
j =0 for n 6=n′ . Due to the symmetry, the transversal eigenvalues do not depend on

n and are therefore (D−1)-fold degenerated

λ
(m)
T = ω2

m +
1

M

V ′(X)

X
. (2.80)

With regard to the occurring Matsubara frequencies, it is suggestive to define the longitudinal
and transversal X-dependent frequencies

ω2
L (X) :=

1

M
V ′′(X) , ω2

T (X) :=
1

M

V ′(X)

X
. (2.81)

Thus, the eigenvalues (2.78) and (2.80) read

λ
(m)
L = ω2

m + ω2
L (X) , λ

(m)
T = ω2

m + ω2
T (X) . (2.82)

In terms of the projection operators (2.69) and the frequencies (2.81), the integral kernel
(2.62) has the decomposition

G−1
ij (τ1, τ2) = M

{

PL
ij

[

−∂2
τ + ω2

L(X)
]

+ P T
ij

[

−∂2
τ + ω2

T (X)
]

}

δ(τ2 − τ1) . (2.83)

Applying (2.62), (2.66), and (2.82), we identify the trace-log term (2.67) with

Tr lnG−1 =
∞
∑

m=−∞

[

lnλ
(m)
L + (D − 1) lnλ

(m)
T

]

. (2.84)

In order to evaluate this Matsubara sum, we recall the one-dimensional harmonic oscillator
partition function (B.34) and find

1

2
Tr lnG−1

ω = − lnZω = ln

(

2 sinh
~βω

2

)

, (2.85)
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2. Effective Potential

which reduces in the low-temperature limit to

1

2
Tr lnG−1

ω −→ ~ β ω

2
for β → ∞ . (2.86)

It remains to substitute the longitudinal and transversal frequencies ω→ωL,T in accordance
with (2.81), and we obtain the first-order effective potential (2.60) in the low-temperature
limit:

V
(1)
eff (X) =

~ωL(X)

2
+ (D − 1)

~ωT (X)

2
. (2.87)

2.6. Calculation of Propagator

For all calculations in second and higher orders, we require the so-called propagator Gij(τa, τb)
which we therefore calculate in this section. It is defined to be the inverse of the integral
kernel G−1

ij (τa, τb) in (2.62)

∫

~β

0

dτ2G
−1
ij (τ1, τ2)Gjk(τ2, τ3) = ~ δik δ(τ1 − τ3) . (2.88)

The Matsubara decomposition of the integral kernel (2.83) reads

G−1
ij (τ1, τ2) =

∞
∑

m=−∞

G
−1(m)
ij e−ıωm(τ1−τ2) . (2.89)

As usual, the Fourier coefficients follow from inverse Fourier transform:

G
−1(m)
ij =

1

~β

∫

~β

0

dτ G−1
ij (τ, 0) eıωmτ . (2.90)

By applying the decomposition (2.83) of the integral kernel into longitudinal and transversal
parts, we obtain a similar expression for the Fourier coefficients (2.90), namely

G
−1(m)
ij =

M

~β

{

PL
ij

[

ω2
m + ω2

L (X)
]

+ P T
ij

[

ω2
m + ω2

T (X)
]

}

. (2.91)

Furthermore, we write both the propagator and the δ−function in Matsubara decomposition

Gij(τ1, τ2) =

∞
∑

m′=−∞

G
(m′)
ij e−ıωm′ (τ1−τ2) (2.92)

and

δ(τ1 − τ3) =
1

~ β

∞
∑

m=−∞

e−ıωm(τ1−τ3) . (2.93)
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2.6. Calculation of Propagator

In order to calculate the Fourier coefficients of the propagator, we insert (2.89), (2.92), and
(2.93) into the integral identity (2.88), which leads to

∞
∑

m,m′=−∞

G
−1(m)
ij G

(m′)
jk e−ı(ωmτ1−ωm′τ3)

∫

~β

0

dτ2 e−ıτ2(ω
m′−ωm) =

1

β
δik

∞
∑

m=−∞

e−ıωm(τ1−τ3) . (2.94)

When we perform the τ2-integration, we obtain a Kronecker symbol δm,m′ that cancels one
sum on the left-hand side of (2.94) and the equation reduces to

~β
∞
∑

m=−∞

G
−1(m)
ij G

(m)
jk e−ıωm(τ1−τ3) =

1

β
δik

∞
∑

m=−∞

e−ıωm(τ1−τ3) . (2.95)

We merely have to compare the coefficients and obtain immediately

G
−1(m)
ij G

(m)
jk =

1

~ β2
δik . (2.96)

Because of the orthonormality (2.73) of the projection operators, it is possible to decompose

also the propagator G
(m)
ij into a longitudinal and transversal part analogously to (2.83) and

(2.91)

G
(m)
jk = PL

jkG
(m)
L + P T

jkG
(m)
T . (2.97)

Now we insert the decompositions (2.91) and (2.97) of the integral kernel and the propagator
into (2.96). With respect to (2.72) and (2.73), we find

PL
ik

[

ω2
m + ω2

L (X)
]

G
(m)
L + P T

ik

[

ω2
m + ω2

T (X)
]

G
(m)
T =

1

Mβ

[

PL
ik + P T

ik

]

. (2.98)

Thus, we identify the longitudinal and transversal Matsubara coefficients of the propagator
with

G
(m)
L =

1

M β

1

ω2
m + ω2

L (X)
, G

(m)
T =

1

M β

1

ω2
m + ω2

T (X)
. (2.99)

The complete Fourier coefficient follows after inserting (2.99) into (2.97)

G
(m)
jk =

1

M β

[

PL
jk

1

ω2
m + ω2

L (X)
+ P T

jk

1

ω2
m + ω2

T (X)

]

. (2.100)

Finally, we insert (2.100) into the Matsubara series (2.92) and obtain the propagator

Gij(τ1, τ2) =
1

M β

∞
∑

m=−∞

[

PL
ij

1

ω2
m + ω2

L (X)
+ P T

ij

1

ω2
m + ω2

T (X)

]

e−ıωm(τ1−τ2)

:= PL
ij GL(τ1, τ2) + P T

ij GT (τ1, τ2) . (2.101)

The general result of the propagators (2.101) has been calculated in Appendix B, the result
for the low-temperature limit T → 0 can be found in (B.32). We just have to replace the
frequencies ω→ωL,T (x) in accordance with (2.81), yielding

GL(τ1, τ2) =
~

2M ωL (X)
e−ωL|τ1−τ2| , GT (τ1, τ2) =

~

2M ωT (X)
e−ωT |τ1−τ2| . (2.102)

By taking the low-temperature limit, the results pass from quantum statistics into quantum
mechanics.
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2.7. Effective Potential in Second Loop Order

Now we come back to the interaction part of the effective potential defined in (2.59). The
propagator calculated in the previous section corresponds to the expectation value

Gij(τ1, τ2) =
〈

δxi(τ1)δxj(τ2)
〉

. (2.103)

Therefore, we reduce the expectation values of higher powers in (2.59) to propagators by
applying Wick contractions

〈

δxi(τ) δxj(τ) δxk(τ) δxl(τ)
〉

= 3Gij(τ, τ)Gkl(τ, τ) , (2.104)

〈

δxi(τ1) δxj(τ1) δxk(τ1) δxl(τ2) δxm(τ2) δxn(τ2)
〉

= 6Gil(τ1, τ2)Gjm(τ1, τ2)Gkn(τ1, τ2)

+ 9Gij(τ1, τ1)Gkl(τ1, τ2)Gmn(τ2, τ2) . (2.105)

Here, we benefit from the fact that most contractions coincide due to the same time argu-
ments. The second term in (2.105) can be omitted as it would lead to a one-particle reducible

Feynman diagram. With regard to (2.104) and (2.105), the interaction part V
(int)
eff (X) in

(2.59) can be written as

V
(int)
eff (X) =

Vijkl(X)

8 ~ β

∫

~β

0

dτ Gij(τ, τ)Gkl(τ, τ) (2.106)

− Vijk(X)Vlmn(X)

12 ~2 β

∫

~β

0

dτ1

∫

~β

0

dτ2 Gil(τ1, τ2)Gjm(τ1, τ2)Gkn(τ1, τ2) + · · · .

There exists a so-called loop expansion of the interaction part

V
(int)
eff (X) = − 1

β

∞
∑

l=2

V
(l)
eff (X) . (2.107)

The name is due to the fact that all interaction terms of the effective potential can be de-
scribed by Feynman loop diagrams. The term V

(l)
eff (X) consists of all one-particle irreducible

vacuum diagrams with l loops. A diagram is called irreducible if it does not break into two
pieces when cutting one line, vacuum diagram means that all lines start and end in vertices.
The summation in (2.107) starts with l=2 loops, the zero- and first-order terms correspond
to the potential itself and the trace-log term, respectively. There exists an immediate con-
nection between diagrams and mathematical formalism. Lines and vertices and integrals
and propagators can be transferred into each other by applying the so-called Feynman rules.
Therefore, we present them for a rotationally symmetric potential of a constant background
X in D dimensions:

(1) All vertices and their outgoing lines are denoted arbitrarily with indices.

(2) A propagatorGij(τa, τb) corresponds to a line connecting the lines i and j of the vertices
a and b, respectively:

a b
i j ≡ Gij(τa, τb) . (2.108)
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2.7. Effective Potential in Second Loop Order

(3) A vertex a with n outgoing lines represents the τ -integral

j

i m

k

a .
.
. ≡ −1

~
Vij···m(X)

∫

~β

0

dτa (2.109)

over the propagators connected with vertex a. Here, we applied the notation (2.49).

In order to calculate the loop expansion (2.107) of the effective potential, we have to evaluate
the associated Feynman integrals for each order. There exists also a Feynman diagram for
the first-order term, which we add in this place

Tr lnG−1 = . (2.110)

In second loop order, there exist two Feynman diagrams

V
(2)
eff =

1

8
+

1

12
. (2.111)

More precisely and with regard to the Feynman rules (2.108) and (2.109), we identify the
diagrams with

= −1

~
Vijkl(X)

∫

~β

0

dτ Gij(τ, τ)Gkl(τ, τ) (2.112)

and

=
1

~2
Vijk(X)Vlmn(X)

∫

~β

0

dτ1

∫

~β

0

dτ2 Gil(τ1, τ2)Gjm(τ1, τ2)Gkn(τ1, τ2) . (2.113)

The diagram (2.112) is called direct diagram, (2.113) is referred to as sunset diagram. In
order to calculate these diagrams, we have to determine the occurring higher derivatives of
the potential first

Vijk(X) = PL
ijk V

′′′(X) + P T
ijk

[

V ′′ (X)

X
− V ′ (X)

X2

]

(2.114)

and

Vijkl(X) = PL
ijkl V

(4)(X) + P T
ijkl

V ′′′(X)

X
+ PE

ijkl

[

V ′′(X)

X2
− V ′(X)

X3

]

. (2.115)

Here, we have introduced projection operators of third order order

PL
ijk =

XiXj Xk

X3
, (2.116)

P T
ijk = δij

Xk

X
+ δjk

Xi

X
+ δki

Xj

X
− 3PL

ijk , (2.117)
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and of fourth order

PL
ijkl =

XiXj XkXl

X4
, (2.118)

P T
ijkl = δij

XkXl

X2
+ δjk

XiXl

X2
+ δkl

XiXj

X2
+ δli

XkXj

X2
+ δjl

XkXi

X2
+ δik

Xj Xl

X2
− 6PL

ijkl , (2.119)

PE
ijkl = δij δkl + δik δjl + δil δjk − 3PL

ijkl − 3P T
ijkl . (2.120)

Analogously to (2.70)–(2.73), we determine the following properties:

PL
ijk

Xk

X
= PL

ij , P T
ijk

Xk

X
= P T

ij , (2.121)

PL
ijk P

T
ilm = PL

jk P
T
lm , P T

ijk P
L
ilm = P T

jk P
L
lm , (2.122)

PL
ij P

L
ikl = PL

jkl , P T
ij P

T
ikl = P T

jl

Xk

X
+ P T

jk

Xl

X
, P T

ij P
L
ikl = 0 , PL

ij P
T
ikl = P T

kl

Xj

X
, (2.123)

PL
ijk P

L
ilm = PL

jklm , P T
ijk P

T
ilm = P T

jk P
T
lm + PL

jl P
T
km + PL

jm P
T
kl + PL

kl P
T
jm + PL

km P
T
jl , (2.124)

PL
ij P

L
ijkl = PL

kl , P T
ij P

T
ijkl = (D − 1)PL

kl , (2.125)

PL
ij P

T
ijkl = P T

kl , P T
ij P

L
ijkl = 0 , (2.126)

PL
ij P

E
ijkl = −2P T

kl , P T
ij P

E
ijkl = (D + 1)P T

kl − 2 (D − 1)PL
kl . (2.127)

With these results, we start calculating the direct diagram (2.112). To this end, we split up
the occurring propagators in accordance with (2.97), insert the fourth derivative (2.115) and
use the relations (2.71), (2.73), and (2.125)–(2.127), yielding

= −1

~

∫

~β

0

dτ

{

G2
L(τ, τ)V

(4)(X) + (D2 − 1)G2
T (τ, τ)

[

V ′′ (X)

X2
− V ′ (X)

X3

]

+
2 (D − 1)

ωL(X)ωT (X)

[

V ′′′ (X)

X
− 2 V ′′(X)

X2
+

2 V ′(X)

X3

]}

. (2.128)

Due to the locality of the propagators, the integration merely yields a factor ~β when in-
serting the propagator (2.102). So we finally obtain

= − ~
2β

4M2

{

V (4)(X)

ω2
L (X)

+
(D2 − 1)

ω2
T (X)

[

V ′′ (X)

X2
− V ′ (X)

X3

]

+
2 (D − 1)

ωL(X)ωT (X)

[

V ′′′ (X)

X
− 2 V ′′ (X)

X2
+

2V ′ (X)

X3

]}

. (2.129)
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Next we calculate the sunset diagram (2.113). As before, we split up the occurring propa-
gators in accordance with (2.101), insert the third derivative (2.114) and use the relations
(2.71), (2.73), and (2.125)–(2.127), which lead to

=
1

~2

∫

~β

0

dτ1

∫

~β

0

dτ2

{

G3
L(τ1, τ2) [V ′′′ (X) ]

2
(2.130)

+ 3 (D − 1)GL(τ1, τ2)G
2
T (τ1, τ2)

[

V ′′ (X)

X
− V ′ (X)

X2

]2
}

.

After inserting the longitudinal and transversal propagators (2.102), both τ -integrations can
be executed and we obtain the final result for the sunset diagram

=
~

2 β

12M3 ω4
L

[

V ′′′ (X)
]2

+
3 ~

2 β (D − 1)

4M3 ωL ω2
T (2ωT + ωL)

[

V ′′ (X)

X
− V ′ (X)

X2

]2

. (2.131)

The weights of the second-order diagrams have been calculated explicitly in (2.106). As
it is worked out in Ref. [25], for instance, they can also be obtained from combinatorial
considerations. The weights w of the diagrams with three- and four-vertices are given by

w =
1

2!S+D 3!T 4!F P
. (2.132)

Here, S, D, T, F denote the number of self, double, triple, fourfold connections, and P is the
number of vertex permutations that leave the topology of the diagram unchanged. Finally,
we sum up our results (2.87), (2.107), (2.129), and (2.131) and obtain the effective potential
(2.59) up to the second loop order in the low-temperature limit β→∞:

Veff(X) = V (X) +
~ωL(X)

2
+ (D − 1)

~ωT (X)

2
+

~
2

32

{

(D2 − 1)

ω2
T

[

V ′′ (X)

X2
− V ′ (X)

X3

]

+
1

ω2
L(X)

V (4)(X) +
2 (D − 1)

ωL(X)ωT (X)

[

V ′′′ (X)

X
− 2 V ′′ (X)

X2
+

2 V ′ (X)

X3

]

}

− ~
2

48

{

3 (D − 1)

2ωT (X) + ωL(X)

1

ωL(X)ω2
T (X)

[

V ′′ (X)

X
− V ′ (X)

X2

]2

+
1

3ω4
L(X)

[

V ′′′ (X)
]2

+

}

+ O(~3) . (2.133)

This result is in accordance with the one in Ref. [26, Ch. 5].

2.8. Effective Potential in Third Loop Order

If we carry on with the third order in the same way as we did in the second order, derivatives
of fifth and sixth order have to be calculated. Moreover, diagrams contain up to ten pro-
jection operators when dividing the propagators and the derivatives into longitudinal and
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transversal contributions. It would be extremely tedious to calculate all these contractions
in order to obtain expressions analogously to (2.129) and (2.131). Therefore, we restrict our
calculations to D = 1 dimension, which corresponds to the contraction with all projection
operators being longitudinal. This allows us to investigate the convergence of VPT with
increasing order at least in D= 1 dimension. As we will show later on in connection with
the second loop order, VPT yields better results the higher dimensions we consider, which
justifies restricting to the second order in higher dimensions.

In D=1 dimension, there exists only one X-dependent frequency ω(X) which corresponds
to the longitudinal one in (2.81). Likewise, the propagator G(τi, τj) has no longer a decom-
position into longitudinal and transversal parts and reads

lim
T→0

G(τ1, τ2) =
~

2Mω(X)
e−ω(X)|τ1−τ2|. (2.134)

The third loop order consists of eight Feynman diagrams which are evaluated along similar
lines as discussed in the previous section:

=
1

~2

[

V (4)(X)
]2
∫

~β

0

dτ1

∫

~β

0

dτ2 G
4(τ1, τ2)

= ~
3β

[

1

2Mω(X)

]4
[

V (4)(X)
]2

2ω(X)
, (2.135)

=
1

~2

[

V (4)(X)
]2
∫

~β

0

dτ1

∫

~β

0

dτ2 G(τ1, τ1)G(τ2, τ2)G
2(τ1, τ2)

= ~
3β

[

1

2Mω(X)

]4
[

V (4)(X)
]2

ω(X)
, (2.136)

= − 1

~3
V (4)(X)

[

V (3)(X)
]2
∫

~β

0

dτ1

∫

~β

0

dτ2

∫

~β

0

dτ3 G
2(τ1, τ2)G

2(τ1, τ3)G(τ2, τ2)

= −~
3β

[

1

2Mω(X)

]5 5 V (4)(X)
[

V (3)(X)
]2

9ω2(X)
, (2.137)

=− 1

~3
V (4)(X)

[

V (3)(X)
]2
∫

~β

0

dτ1

∫

~β

0

dτ2

∫

~β

0

dτ3 G(τ1, τ1)G(τ1, τ2)G(τ1, τ3)G
2(τ2, τ2)

= −~
3β

[

1

2Mω(X)

]5 8 V (4)(X)
[

V (3)(X)
]2

9ω2(X)
, (2.138)

=
1

~4

[

V (3)(X)
]4
∫

~β

0

dτ1

∫

~β

0

dτ2

∫

~β

0

dτ3

∫

~β

0

dτ4

×G(τ1, τ2) G(τ1, τ3) G(τ1, τ4) G(τ2, τ3) G(τ2, τ4) G(τ3, τ4)

= ~
3β

[

1

2Mω(X)

]6 2
[

V (3)(X)
]4

3ω3(X)
, (2.139)
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=
1

~4

[

V (3)(X)
]4
∫

~β

0

dτ1

∫

~β

0

dτ2

∫

~β

0

dτ3

∫

~β

0

dτ4 G
2(τ1, τ2)G

2(τ3, τ4)G(τ1, τ4)G(τ2, τ3)

= ~
3β

[

1

2Mω(X)

]6 22
[

V (3)(X)
]4

27ω3(X)
, (2.140)

=
1

~2
V (3)(X)V (5)(X)

∫

~β

0

dτ1

∫

~β

0

dτ2 G(τ1, τ1) G
3(τ1, τ2)

= ~
3β

[

1

2Mω(X)

]4
2 V (3)(X)V (5)(X)

3ω(X)
, (2.141)

= − 1

~3
V (6)(X)

∫

~β

0

dτ G2(τ, τ)

= −~
3β

V (6)(X)

[2Mω(X)]3
. (2.142)

The respective weights of these Feynman diagrams follow from (2.132). Adding up all third-
order diagrams (2.135)–(2.142) to the second order (2.133) for D=1, we obtain the effective
potential up to the third order in ~:

lim
β→∞

Veff(X) = V (X) +
~ω(X)

2
+

~
2

32M2ω2(X)
V (4)(X) − ~

2

144M3ω4(X)

[

V (3)(X)
]2

− 17~
3

13824M6ω9(X)

[

V (3)(X)
]4

+
13~

3

2304M5ω7(X)
V (4)(X)

[

V (3)(X)
]2

− 7~
3

1536M4ω5(X)

[

V (4)(X)
]2 − ~

3

288M4ω5(X)
V (3)(X)V (5)(X)

+
~

3

64M3ω3(X)
V (6)(X) + O(~4) . (2.143)

If we specify on a quartic potentials like the double-well, the last two diagrams (2.141)
and (2.142) do not contribute to the effective potential due to the vanishing fifth and sixth
derivative and our result coincides with Ref. [26, Ch. 2].
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3. Variational Perturbation Theory in

Quantum Mechanics

In this chapter, we apply variational perturbation theory (VPT) to the effective potential
that we derived in the previous chapter. We specialize it both to the double-well, i.e.,
D= 1 dimension, and the mexican hat in D= 2 dimensions. Since we have taken the low-
temperature limit in our calculations, we consider the case of quantum mechanics. After
a short overview concerning the double-well potential, we give an introduction to VPT.
Afterwards, we start with D = 1 dimension and investigate the convergence of VPT with
regard to the loop order. Then, we proceed to D=2 dimensions where a second variational
parameter is introduced. Finally, we consider the large-D limit.

3.1. Anharmonic Oscillator and Double-Well Potential

In this section, we concentrate on the mexican-hat potential in D dimensions in quantum
mechanics, which reads in analogy to (1.1)

V (x) =
M

2
ω2x2 +

1

4
g (x2)2 +

1

4g
, ω2 < 0 , (3.1)

where ω denotes the frequency, M the mass of the particle, and the coupling constant g
determines the strength of anharmonicity. We have chosen an additional constant 1/4g in
order to set the potential’ s minimum to zero as it is shown in Figure 3.1a for different values
of the coupling constant. In the case of the anharmonic oscillator

V (x) =
M

2
ω2 x2 +

1

4
g (x2)2 , ω2 > 0 , (3.2)

it is not necessary to add a constant to the potential. Due to the positive frequency square
ω2, the minimum is equal to zero, see Figure 3.1b.

For large coupling constants g, the mexican-hat potential has the shape of a quartic potential
with no significant barrier in the middle. The smaller the coupling constant g, the stronger
the shape of the mexican hat distinguishes from the anharmonic oscillator because of the
increasing barrier in the middle. For very small coupling constants, the potential can be
regarded to consist of two separated potentials. Particles can merely tunnel through the
barrier. Raising g, the particles start sliding from one side to the other instead of tunneling.

From our calculations of the effective potential we obtain the ground-state energy in accor-
dance with (2.30) and (2.32). This gives us the possibility to investigate the accuracy of our
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Figure 3.1.: (a) Double-well potential (3.1) for M = 1, ω2 = −1, and coupling constants
g = 1.0 (red), g = 0.6 (green), g = 0.4 (blue), g = 0.3 (yellow), and g = 0.2 (light blue).
The smaller the coupling constant, the more distinctive the barrier in the middle. (b):
Anharmonic oscillator (3.2) for M=1, ω2=1 and the same coupling constants as in (a).

approximations by comparing these results with those calculated numerically with the help
of the shooting method [26, App. C]. This method consists of the numerical integration of
the Schrödinger equation that reads in one dimension

[

− ~
2

2M

d2

dx2
+ V (x)

]

ψ(x) = E ψ(x) . (3.3)

The results for the ground-state energy of the double-well potential for different values of
g can be found in Table A.1. In arbitrary dimension D, the Schrödinger equation for a
rotationally symmetric potential reads

[

− ~
2

2M

(

d2

dx2
+
D − 1

x

d

dx

)

+ V (x)

]

ψ(x) = E ψ(x) (3.4)

with the modulus x = |x|. Again, we apply the shooting method to obtain the ground-state
energies and choose D = 2, 3, 4, 5, 10 dimensions as it is shown in the Tables A.5–A.8.

3.2. Variational Perturbation Theory

Most physical systems are too complex and too difficult to be calculated analytically. There-
fore, approximations are applied, e.g., perturbation series or loop expansions which we will
concentrate on. These series can be truncated at a certain order. In the case of a suitable
expansion, the first few terms should yield a satisfying approximation. Variational pertur-
bation theory (VPT) is an additional method to increase the accuracy of these expansions
in a given order. The basic principle is to introduce an artificial parameter that will be op-
timized afterwards. This principle resembles Ritz method which we therefore recall shortly.
For details see Ref. [27, Ch. 18], for instance.

3.2.1. Ritz Method

Let Ĥ be the Hamiltonian of a system

Ĥ|n〉 = En|n〉 , (3.5)
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3.2. Variational Perturbation Theory

whose eigenvalues En and orthonormal eigenstates |n〉 cannot be determined analytically.
We have

〈ψ|Ĥ|ψ〉
‖ ψ ‖2

≥ E0 , (3.6)

with E0 being the ground-state energy and ψ being an arbitrary wave function. The evidence
of (3.6) is supplied straightforwardly:

〈ψ|Ĥ|ψ〉 =
∑

n

〈ψ|n〉〈n|Ĥ|ψ〉 =
∑

n

En〈ψ|n〉〈n|ψ〉

≥ E0

∑

n

〈ψ|n〉〈n|ψ〉 = E0〈ψ|ψ〉. (3.7)

Here, we have applied the completeness
∑

n |n〉〈n| = 1 of the eigenstates. With regard to
(3.6), we determine the ground-state energy to be the infimum concerning all possible wave
functions

E0 = inf
ψ

〈ψ|Ĥ|ψ〉
‖ ψ ‖2

. (3.8)

Note that if ψ is an eigenfunction of Ĥ , the infimum becomes a minimum. We choose trial
functions ψ = ψ(λ1, λ2, ..., λN) containing one or more variational parameters λ1, λ2, ..., λN .
Then, we calculate the corresponding energy as a function of these parameters

E(λ1, λ2, ..., λN) =

〈

ψ(λ1, λ2, ..., λN)
∣

∣Ĥ
∣

∣ψ(λ1, λ2, ..., λN)
〉

‖ ψ(λ1, λ2, ..., λN) ‖2
. (3.9)

The parameters are varied in such a way that E(λ1, λ2, ..., λN) becomes minimal. As a result,
we obtain an upper bound for the actual ground-state energy E0

E0 ≤ min
{λ1,λ2,...,λN}

E(λ1, λ2, ..., λN) . (3.10)

In the case of one parameter, we extremize (3.9) by setting its first derivative to zero

dE(λ)

dλ

∣

∣

∣

∣

∣

λ=λ(ex)

= 0 , (3.11)

and obtain the approximation

E0 ≤ E
(

λ(ex)
)

. (3.12)

Analogously, two parameters yield

E0 ≤ E
(

λ
(ex)
1 , λ

(ex)
2

)

(3.13)

with both conditions

∂E(λ1, λ2)

∂λ1

∣

∣

∣

∣

∣

λ1=λ
(ex)
1

= 0 ,
∂E(λ1, λ2)

∂λ2

∣

∣

∣

∣

∣

λ2=λ
(ex)
2

= 0 . (3.14)
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In many cases, satisfying results are obtained with only one parameter. A typical application
is the helium atom [27, Ch. 18]: we take advantage of the fact that the wave functions and the
energies of the hydrogen atom are well-known and that helium mainly differs from hydrogen
in the nuclear charge Z. Qualitatively speaking, both systems resemble very much. For this
reason, we take over the hydrogen’s wave functions and the nuclear charge Z becomes the
variational parameter which is optimized afterwards.

3.2.2. Basic Principles

With the aid of the helium example, we make out the basic idea of Ritz method and VPT:
the unknown system that cannot be calculated analytically is regarded as a deviation from a
qualitatively similar, analytically solvable one. The deviations are described by a variational
parameter which is optimized subsequently in such a way that it describes the deviations as
well as one possibly can.

Consider the anharmonic oscillator (3.2) as an example of VPT. Introducing an additional
frequency Ω, we may rewrite (3.2) according to

V (x) =
M

2
Ω2 x2 +

1

4
g (x2)2 +

M

2

(

ω2 − Ω2
)

x2 . (3.15)

This corresponds to the potential of a harmonic oscillator with frequency Ω plus a deviation.
Writing (3.15) as

V (x) =
M

2

[

Ω

√

1 + ~
ω2 − Ω2

~ Ω2

]2

x2 +
1

4
g (x2)2 , (3.16)

we identify the transformation (3.15) with Kleinert’s square-root substitution [1, Ch. 5]

ω → Ω
√

1 + ~ r , r =
ω2 − Ω2

~ Ω2
. (3.17)

By varying the parameter Ω, the deviation from the exactly solvable harmonic oscillator
is optimized. The square-root substitution (3.17) is the basic principle of VPT [1, Ch. 5].
It is traced back to the approach of R. Feynman and H. Kleinert in 1986 [28], which has
been extended to a systematic and uniformly convergent variational perturbation expansion
[29–32]. In particular, it is powerful method to transform divergent weak-coupling series into
convergent strong-coupling ones. In this part, VPT is applied to the effective potential of
the mexican hat (3.1). The loop expansion of the interaction part (2.107) is truncated at a
certain order and we perform the square-root substitution (3.17), yielding

Veff(X)
(3.17)→ Veff(X,Ω) . (3.18)

Whereas in Ritz method, the parameter corresponds to a physical quantity, e.g., the effective
nuclear charge of helium, the variational parameter in VPT is artificially introduced. By
truncating the loop expansion at a certain order, we obtain an actual dependence of the
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effective potential on the variational parameter. Therefore, we minimize its influence, i.e.,
the dependence of the effective potential on this parameter. This so-called principle of
minimal sensitivity [33] gives rise to a minimization analogously to (3.11). By doing so, we
obtain an approximation for the ground-state energy E0 in the low-temperature limit T→0
when we insert the optimized frequency Ω into the effective potential and optimize it with
respect to the background X. Thus, we have

E0 = Veff

(

X(opt),Ω(opt)
)

(3.19)

with

∂ Veff(X,Ω)

∂X

∣

∣

∣

∣

∣

X=X(opt)

= 0 ,
∂ Veff(X,Ω)

∂ Ω

∣

∣

∣

∣

∣

Ω=Ω(opt)

= 0 . (3.20)

In some cases, the first derivative with respect to the variational parameter has no zero or
only for complex Ω, which is no physical solution. Then, we apply the second derivative and
look for turning points instead of minima

∂2 Veff(X,Ω)

∂Ω2

∣

∣

∣

∣

∣

Ω=Ω(opt)

= 0 . (3.21)

By comparing these results with those obtained from the shooting method, we have a crite-
rion on how fast the loop expansion (2.107) converges with the aid of VPT. To this end, we
consider the second and third order of the loop expansion.

3.3. Variational Perturbation Theory in One Dimension

In Ref. [1, Ch. 5], VPT has already been applied to the effective potential of the double-well
in quantum mechanics. These calculations have been restricted to the second loop order
without the sunset term. It is an interesting question whether this simplification is justi-
fied or not, i.e., whether the sunset term increases the accuracy distinctively. Whereas in
quantum mechanics or quantum statistics, the sunset term is easy enough to calculate, it
will become much more difficult in statistical field theory. Our intention is to investigate the
importance of the sunset term in quantum mechanics first. To this end, we apply VPT to
both cases with and without sunset term and compare the accuracies with the help of the
numerically calculated ground-state energies. These calculations are done at first in D= 1
dimension. In a second step, we extend our calculations to D = 2 dimensions where the
theory is canonically extended to two variational parameters. This enables us to compare
the results with one and two variational parameters, i.e., to examine the significance of a
second parameter. Finally, we choose higher dimensions to check the convergence of VPT
with increasing dimension.

Consider the double-well potential, i.e., the potential (3.1) in D=1 dimension

V (x) =
M

2
ω2 x2 +

1

4
g x4 +

1

4g
. (3.22)
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Figure 3.2.: Optimized variational parameter (a) and corresponding optimized effective
potential (b) of the double-well (3.28) in second loop order without sunset (D = 1). The
different values of the coupling constant are denoted by g=1.0 (red), g=0.6 (green), g=0.4
(blue), g=0.3 (yellow), and g=0.2 (light blue).

Until the end of this chapter, we set the mass M=1. The corresponding effective potential
in third loop order can be obtained from (2.143) when setting

ω2(X) = ω2 + 3 g X2 , (3.23)

as defined in (2.81) for the longitudinal frequency. The transversal one merely occurs in
higher dimensions. It is important to distinguish between the frequency ω of the poten-
tial itself and the X-dependent frequency (3.23). For the double-well potential (3.22), the
effective potential (2.143) reads

Veff(X) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

2
ω(X) +

3 ~
2 g

16ω2(X)
− ~

2 g2X2

4ω4(X)

− 21 ~
3 g2

128ω5(X)
+

39 ~
3 g3X2

32ω7(X)
− 51 ~

3 g4X4

32ω9(X)
+ O(~4) . (3.24)

In contrast to the usual application of VPT as exemplarily shown for the anharmonic oscil-
lator, we apply the substitution (3.17) not to the frequency ω of the potential (3.22) but to
the X-dependent frequency ω(X) which is obviously of crucial importance for the effective
potential instead of the bare frequency. Thus, we have

ω(X) → Ω
√

1 + ~ r , r =
1

~

ω2(X) − Ω2

Ω2
. (3.25)

This substitution makes allowance for the fact that the minimum of the potential is located
at X 6=0. Analogously to perturbation expansions which have to be performed around the
potential’s minimum in order to guarantee stability, the shifted minimum has to be taken
into account when applying VPT. We will later on give a more detailed explanation in
connection with phase transitions in statistical field theory.

3.3.1. Second Loop Order Without Sunset

First of all, we consider the effective potential in second loop order without the sunset term.
In accordance with (3.24), it reads

Veff(X) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

2
ω(X) + ~

2 3 g

16ω2(X)
. (3.26)
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Performing the substitution (3.25) and expanding the occurring square root up to the second
order with respect to ~ yields the intermediate result

Veff(X,Ω) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

2
Ω + ~

2 Ω r

4
+ ~

2 3 g

16 Ω2
. (3.27)

After replacing r in accordance with (3.23) and (3.25), we obtain

Veff(X,Ω) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

4
Ω +

~

4

ω2 + 3gX2

Ω
+ ~

2 3 g

16 Ω2
. (3.28)

Due to (3.23), the variational parameter Ω becomes X-dependent itself. In order to calculate
the optimized effective potential, we take the first derivative of (3.28) with respect to Ω and
set it to zero for a fixed X

∂ Veff(X,Ω)

∂ Ω
=

~

4
− ~

3gX2 + ω2

4 Ω2
− 3 g ~

2

8 Ω3

!
= 0 . (3.29)

This equation is solved numerically for different values of X and coupling constant g. The
X-dependence of the optimized variational parameter Ω(opt)(X) is interpolated afterwards as
it is shown in Figure 3.2a. Inserting Ω(opt)(X) into (3.28), we obtain the optimized effective

potential V
(opt)
eff (X) in Figure 3.2b. Merely for coupling constants smaller than g≈0.4, it has

its minimum at non-vanishing background. For large coupling constants, it has the shape of
the anharmonic potential in Figure 3.1 b with a minimum at X=0. If not denoted otherwise,
we always choose ω2 =−1. Finally, we calculate the ground-state energy

E0 = V
(opt)
eff (X0) with

d V
(opt)
eff (X)

dX

∣

∣

∣

∣

∣

X=X0

= 0 . (3.30)

Our results are shown in the Tables A.1 and A.2 compared with those of the shooting method.

3.3.2. Second Loop Order With Sunset

Now we consider the full second order, i.e., including the sunset term. In accordance with
(3.24), the corresponding effective potential reads

Veff(X) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

2
ω(X) + ~

2 3 g

16ω2(X)
− ~

2 g2X2

4ω4(X)
. (3.31)

Comparing (3.26) and (3.31), we see that the additional term goes with X2. In other words:
as long as the minimum of the effective potential can be found at X = 0, i.e., for large
coupling constants g, the second order with and without sunset term yield the same results
concerning the ground-state energy.

After performing the square-root substitution (3.25) in (3.31), we obtain, analogously to the
previous section, the effective potential as a function of the variational parameter

Veff(X,Ω) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

4
Ω +

~

4

ω2 + 3gX2

Ω
+ ~

2 3 g

16 Ω2
− ~

2 g
2X2

4 Ω4
. (3.32)
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Figure 3.3.: Optimized variational parameter Ω(opt)(X) of the effective potential (3.32) in
second loop order (D=1). The run of the curve is continuous for larger coupling constants
(a) g = 1.0 (red), g = 0.6 (green). Smaller values (b) g = 0.4 (blue), g = 0.3 (yellow), and
g=0.2 (light blue) yield discontinuous parameters which moreover become negative.

Setting the first derivative to zero

∂ Veff(X,Ω)

∂ Ω
=

~

4
− ~

3gX2 + ω2

4 Ω2
− 3 g ~

2

8 Ω3
+
g2

~
2X2

Ω5

!
= 0 , (3.33)

yields the desired optimized variational parameters. The run of the curves distinguishes cru-
cially between larger, Figure 3.3 a, and smaller values, Figure 3.3 b, of the coupling strength
g. In contrast to the calculations without sunset term, the frequencies can become negative
and their X-dependence is not necessarily continuous. Consequently, the optimized effective
potential in Figure 3.5 a is not that smooth any more than it has been without the sunset
term in Figure 3.2 b. Analogously to (3.30), we calculate the ground-state energies in Ta-
ble A.1. The effective potential’s minimum is located at X = 0 for g ≥ 1.3 . As expected,
our results for the ground-state energy coincide within this range with those without sunset
term.

3.3.3. Third Loop Order

Finally, we consider all terms of the effective potential (3.24) up to the third order with
respect to ~. The square-root substitution (3.25) yields together with (3.23)

Veff(X,Ω) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

3 ~ Ω

16
+

3 ~
(

ω2 + 3gX2
)

8 Ω
− ~ (ω2 + 3gX2)2

16 Ω3

+
3 ~

2 g

8 Ω2
− 3 ~

2
(

7g2X2 + gω2
)

16 Ω4
− 21 ~

3 g2

128 Ω5
+

~
2 g2X2 (3gX2 + ω2)

2 Ω6

+
39 ~

3 g3X2

32 Ω7
− 51 ~

3 g4X4

32 Ω9
. (3.34)
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Figure 3.4.: Optimized variational parameter Ω(opt)(X) of the effective potential (3.34) in
third loop order (D=1). Similarly to Figure 3.3, the run of the curve is continuous (a) for
larger coupling constants g = 0.6 (green) and discontinuous (b) for smaller values g = 0.4
(blue) and g=0.3 (yellow).

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

(a) (b)

V
(opt)
eff (X)

X

V
(opt)
eff (X)

X

Figure 3.5.: Optimized effective potential (3.32) and (3.34) in second (a) and third loop
order (b), respectively (D=1). The different values of the coupling constants are indicated
by g=1.0 (red), g=0.6 (green), g=0.4 (blue), g=0.3 (yellow), and g=0.2 (light blue).

Since the first derivative yields no real values for Ω, we choose the second derivative when
optimizing Veff(X,Ω) with respect to Ω

∂2 Veff(X,Ω)

∂ Ω2
=

3 ~ (3gX2 + ω2)

4 Ω3
+

9 g ~
2

4 Ω4
− 3 ~ (3gX2 + ω2)2

4 Ω5

− 15 g ~
2 (7gX2 + ω2)

4 Ω6
− 315g2

~
3

64 Ω7
+

21 g2
~

2X2(3gX2 + ω2)

Ω8

+
273 g3

~
3X2

4 Ω9
− 2295 g4

~
3X4

16 Ω11

!
= 0 . (3.35)

Similar to the previous section, the shape of the X-dependent optimized parameter Ω(opt)(X)
varies with the coupling constant in so far that it becomes discontinuous for small g. Three
examples are given in Figure 3.4. The optimized effective potential resembles the full second
order just as much as the frequencies do, see Figure 3.5 b. The approximations for the
ground-state energies are listed in Table A.3 .
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Figure 3.6.: Deviations in per cent of the VPT ground-state energies from the numerically
calculated ones as a function of the coupling constant g (D=1). The solid line denotes the
second order without sunset, the long-dashed line corresponds to the third order. As far
as the results with sunset differ from those without, they are indicated by the short-dashed
curve.

3.3.4. Convergence with Increasing Loop Order

Now we consider the convergence of VPT, i.e., the accuracy with increasing order of ~. To
this end, we compare the deviations of our approximations in second order with and with-
out sunset term and in third order from the numerical results that are listed in the Tables
A.1–A.3. Figure 3.6 shows the deviations as a function of the coupling constant g. The
approximation becomes the better the larger the coupling constant is. This is not surprising
since in the strong-coupling limit g→∞, the double-well passes into the anharmonic poten-
tial which is conspicuously more incomplex due to the missing barrier in the middle. The
sunset term increases the accuracy merely slightly and additionally just for small coupling
constants g≤ 1.3 where the effective potential’s minimum passes over to X 6=0. For larger
values of the coupling constant, the minimum is located at X = 0, which annihilates the
influence of the sunset term ∼X2, see Eq. (3.31). This result shows that the sunset term
is of particular importance for potentials with minima at X 6= 0, i.e., potentials which are
not convex: the more this characteristic is formed (small g), the more the influence of the
sunset increases. By contrast, we have the anharmonic potential, for instance, which has its
minimum at X=0. In this case, we can neglect the sunset without losing accuracy.

Taking the third loop order into account, however, increases the accuracy crucially. This is in
accordance with the fact that VPT converges exponentially, as it is shown in Ref. [6, Ch. 19].
Furthermore, it is remarkable that even in the third order, the approximations become
abruptly seriously worse at about g = 0.4 . This phenomenon has already been observed
in Ref. [1, Ch. 5] and can be explained as follows: for very small coupling constants, the
potential can be regarded to consist of two separated potentials, see Figure 3.1. Particles can
merely tunnel through the barrier in the middle. For large coupling constants, the double-
well potential has the shape of a quartic potential with no significant barrier in the middle.
At about g ≈ 0.4, particles start sliding from one side to the other. This modification is
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directly reflected in the VPT results. If we wish to obtain satisfying results in such regions,
it is obviously necessary to go to higher orders.

3.4. Variational Perturbation Theory in Two Dimensions

In the previous section, we have investigated the accuracy of VPT with respect to the
loop order. As expected, the approximations improve when taking more terms of the loop
expansion (2.107) into account. But there exist still another way to increase the accuracy
that has already been mentioned in conjunction with Ritz method: instead of one variational
parameter we choose two parameters, which is canonically possible for dimensions D ≥ 2
because of the arising longitudinal and transversal X-dependent frequencies (2.81). Now we
perform the square-root substitution (3.25) twice

Veff(X)
(3.25)→ Veff(X,ΩL,ΩT ) , (3.36)

and optimize with respect to both variational parameters and X

∂ Veff(X,ΩL,ΩT )

∂ ΩL

∣

∣

∣

∣

∣

ΩL=Ω
(opt)
L

= 0 , (3.37)

∂ Veff(X,ΩL,ΩT )

∂ ΩT

∣

∣

∣

∣

∣

ΩT =Ω
(opt)
T

= 0 , (3.38)

∂ Veff(X,ΩL,ΩT )

∂ X

∣

∣

∣

∣

∣

X=X0

= 0 . (3.39)

Thus, we can compare the accuracy of the approximations with one and two parameters in
second order.

Consider the mexican-hat potential (3.1) in D = 2 dimensions. Then, the X-dependent
frequencies (2.81) read

ω2
L(X) = ω2 + 3 g X2 , ω2

T (X) = ω2 + g X2 . (3.40)

The corresponding effective potential in full second loop order follows from (2.133), yielding

Veff(X) =
1

2
ω2X2 +

1

4
g X4 +

1

4g
+

~

2

[

ωL(X) + ωT (X)
]

+ ~
2

{

3 g

16ω2
L(X)

+
3 g

16ω2
T (X)

+
g

8ωL(X)ωT (X)
− g2X2

4ω4
L(X)

− g2X2

4ωL(X)ω2
T (X)

[

2ωL(X) + ωT (X)
]

}

. (3.41)
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Figure 3.7.: Optimized variational parameter (a) of the effective potential (3.41) and the
thereby optimized effective potential (b) (D = 2). The different curves correspond to the
coupling constants g=1.0 (red), g=0.6 (green), g=0.4 (blue), g=0.3 (yellow), and g=0.2
(light blue).

3.4.1. One Variational Parameter

Before calculating with two variational parameters, we insert a section with only one para-
meter in D=2 dimensions in order to investigate the significance of an additional parameter
afterwards. To this end, we apply the square-root substitution (3.17) to the potential’s
frequency ω and not, as announced before, to the X-dependent longitudinal and transversal
frequencies (3.40), which would canonically lead to two variational parameters. In this
section, we consider the second loop order with the sunset term. The X-dependence of
the resulting optimized parameter is shown in Figure 3.7 a. It is interesting to see that the
frequency is non-vanishing just in a surrounding of X=0. The smaller the coupling strength
g, the smaller this area is. This matter of fact shows that it is, indeed, reasonable to apply
the square-root substitution to the X-dependent frequencies as done in the previous section,
if we consider a potential with minima at X 6= 0. Otherwise, the variational parameter
has no influence on the effective potential, which makes VPT useless and redundant. As a
consequence, the optimized effective potential in Figure 3.7 b shows a very smooth course for
vanishing values of Ω(opt)(X). The barrier of the potential itself in the middle is again only
reflected for small coupling constants. After determining the effective potential’s minimum,
we obtain the ground-state energies in Table A.4 for some values of g. For about g≥0.8 , it
turns out that there is no difference in the ground-state energies for one or two variational
parameters, since the minimum lies at X=0 where both frequencies are equal.

3.4.2. Two Variational Parameters

Now we proceed with two variational parameters, applying (3.17) to both longitudinal and
transversal frequencies (3.40):

ωL(X) → ΩL

√

1 + ~rL , rL =
ω2
L(X) − Ω2

L

~ Ω2
L

, (3.42)

ωT (X) → ΩT

√

1 + ~rT , rT =
ω2
T (X) − Ω2

T

~ Ω2
T

.

46



3.4. Variational Perturbation Theory in Two Dimensions

-3 -2 -1 0 1 2 3
1

2

3

4

5

-3 -2 -1 0 1 2 3

1

1.2

1.4

1.6

(a) (b)

Ω(opt)(X)

X

Ω(opt)(X)

X

Figure 3.8.: The blue (red) curves show the optimized transversal (longitudinal) variational
parameter of the effective potential (3.41) for g = 1 without (a) and with (b) the sunset
(D=2).
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Figure 3.9.: Optimized effective potential (3.41) without (a) and with sunset (b) and with
two variational parameters (D = 2) for coupling constants g = 1.0 (red), g = 0.6 (green),
g=0.4 (blue), g=0.3 (yellow), and g=0.2 (light blue).

We obtain the optimized effective potential after calculating the conditions (3.37) and (3.38),
which leads to the equations

∂ Veff(X,ΩL,ΩT )

∂ ΩL
=

~
2g2X2

2Ω3
LΩ

2
T

− ~
2(12g2X2 + gΩ2

L)

8 Ω4
LΩT

+
~

2g2X2

Ω3
L(ΩL + 2ΩT )2

+
3~

2g2X2

Ω4
L(ΩL + 2ΩT )

− ~
(

−8g2X2 + 3gΩ2
L + 6gX2Ω3

L + 2ω2Ω3
L − 2Ω5

L

)

8 Ω5
L

!
= 0 , (3.43)

∂ Veff(X,ΩL,ΩT )

∂ ΩT
=

~

4
+

~
2(4g2X2 − 3gΩ2

L)

8 Ω2
L Ω3

T

− 4~
2g2X2 + ~

2gΩ2
L + 2~gX2Ω3

L + 2~ω2Ω3
L

8 Ω3
L Ω2

T

+
2~

2g2X2

Ω3
L

(

ΩL + 2ΩT

)2

!
= 0. (3.44)

The optimized longitudinal and transversal frequencies coincide for X = 0, which is not
surprising because of their definition (3.40). Whereas the transversal frequency shows a
quadratic behavior both in second loop order with and without sunset term, the run of
the longitudinal frequency distinguish crucially in both cases: taking the sunset term into
account, this frequency is restricted and converges to a finite value as it is shown in Figure
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Figure 3.10.: Deviation in per cent of the numerical values from the ground-state energies
calculated via VPT for the effective potential (2.133) in second loop order. The different
colors denote the dimensions D=1 (red), D=2 (green), D=3 (blue), D=5 (yellow), and
D=10 (light blue).

3.8 a and Figure 3.8 b respectively. The corresponding optimized effective potentials are il-
lustrated in Figure 3.9, the ground-state energies in second loop order can be found in Table
A.5. Comparing the Tables A.4 and A.5, we state that a second variational parameter does
not increase the accuracy distinctively. For large coupling constants g where the effective
potential has its minimum at X = 0, there is no difference at all because both frequencies
ωL(X) and ωT (X) coincide at X = 0. Consequently, this holds also for the corresponding
variational parameters. Thus, when calculating the free energy, the second parameter turns
out to be redundant. Our investigations with regard to the sunset term or a second varia-
tional parameter show that it is important to introduce methods to increase the accuracy for
potentials that have their minima at X 6=0, i.e., potentials that have broken symmetry and
are thus not convex. Potentials like the anharmonic one, however, can be treated without
any additional methods.

3.5. Variational Perturbation Theory in Higher Dimensions

We are also interested in the convergence of VPT with respect to the dimension D. Starting
from the effective potential (2.133) in second loop order for arbitrary dimension D, we
calculate the ground-state energies for different values of D as a function of the coupling
constant g by applying VPT with two variational parameters analogously to the procedure in
D=2 dimensions. The results are given in the Tables A.5–A.8 and are graphically shown in
Figure 3.10. In Ref. [34], it is demonstrated for the anharmonic oscillator, that the accuracy
of VPT increases for higher dimensions. Figure 3.10 indicates that the same behavior also
holds for the mexican hat. This phenomenon is in accordance with the large-N limit in
statistical field theory where the O(N)-symmetric φ4-theory becomes exactly solvable [35,
Ch. 18]. We will come back to this point in Chapter 8.
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4. Effective Potential of One Real Field

As mentioned in the introduction, we are primarily interested in statistical field theory rather
than in quantum statistics. The previous chapters were intended to prepare our calculations
in statistical field theory which we now turn our attention to. In the following, we derive
the effective potential analogously to our procedure in quantum statistics. Instead of D-
dimensional space coordinates x, we consider N real fields φ(x) as functions of space-time
coordinates x in D dimensions. In this chapter, we focus on a potential V

(

φ(x)
)

for N =1
field in D spatial dimensions. As the field-theoretic results have to pass for D=1 into those
derived in quantum statistics for the low-temperature limit, we can check our calculations
by comparing them to the results of Chapter 2. Note, that we return now to the original
notation m for the mass.

4.1. Background Method

We start deriving the effective potential in the same way as before in quantum statistics.
The field theoretic analogue to the partition function (2.15) in quantum statistics reads

Z =

∫

Dφ e−A[φ] (4.1)

with the action

A[φ] =

∫

dDx

{

1

2

[

∇φ(x)
]2

+ V
(

φ(x)
)

}

. (4.2)

The background method now amounts to dividing the field φ(x) into a constant background
Φ and fluctuations δφ(x) according to

φ(x) = Φ + δφ(x) . (4.3)

We insert the ansatz (4.3) into the potential V
(

φ(x)
)

and perform a functional Taylor ex-
pansion around the background Φ. For reasons of simplicity, we define the partial derivatives

∂n V
(

φ(x)
)

∂ φn(x)

∣

∣

∣

∣

∣

φ(x)=Φ

=: V (n)(Φ) . (4.4)

Thus, the Taylor expansion reads

V
(

Φ + δφ(x)
)

= V (Φ) + V ′(Φ) δφ(x) +
1

2
V ′′(Φ) δφ2(x) +

1

6
V ′′′(Φ) δφ3(x)

+
1

24
V (4)(Φ) δφ4(x) + · · · . (4.5)
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Now we insert the Taylor expansion (4.5) into the action (4.2), yielding

A[Φ + δφ] = v V (Φ) +

∫

dDx

{

1

2
δφ(x)

[

−∆ + V ′′(Φ)
]

δφ(x)

+
1

6
V ′′′(Φ) δφ3(x) +

1

24
V (4)(Φ) δφ4(x) + · · ·

}

≡ A(cl)(Φ) + A(fluc)
[

Φ + δφ
]

(4.6)

with volume v. Analogously to quantum statistics, the term linear in δφ(x) vanishes within
the background method. With regard to the classical and the fluctuation part of the action
(4.6), we likewise decompose the partition function (4.1) into

Z(Φ) = e−A(cl)(Φ)

∫

Dδφ e−A(fluc)[Φ+δφ]

≡ Z(cl)(Φ) Z(fluc)(Φ) . (4.7)

For the following calculations, it is useful to define

Ã
[

Φ + δφ
]

:=

∫

dDx
1

2
δφ(x)

[

−∆ + V ′′(Φ)
]

δφ(x) . (4.8)

The fluctuation part of the partition function (4.7) is calculated by expanding the exponential
function with terms of third and higher powers regarding the fluctuations. In accordance
with (4.6), we obtain

Z(fluc)(Φ) =

∫

Dδφ e−Ã[Φ+δφ]

[

1 − V ′′′(Φ)

6

∫

dDx δφ3(x) (4.9)

− V (4)(Φ)

24

∫

dDx δφ4(x) +

[

V ′′′(Φ)
]2

72

∫

dDx

∫

dDy δφ3(x) δφ3(y) + · · ·
]

.

Now we introduce the expectation value

〈•〉Φ :=
1

Z(1)(Φ)

∫

Dδφ • e−Ã[Φ+δφ] (4.10)

with the first-order partition function

Z(1)(Φ) :=

∫

Dδφ e−Ã[Φ+δφ] . (4.11)

For symmetry reasons, expectation values with odd powers of the fluctuations vanish. There-
fore, (4.9) reduces to

Z(fluc)(Φ) = Z(1)(Φ)

[

1 − V ′′′(Φ)

6

∫

dDx
〈

δφ3(x)
〉

Φ
− V (4)(Φ)

24

∫

dDx
〈

δφ4(x)
〉

Φ

+

[

V ′′′(Φ)
]2

72

∫

dDx

∫

dDy
〈

δφ3(x) δφ3(y)
〉

Φ
+ · · ·

]

. (4.12)
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The expectation value consisting of two fluctuations δφ(x) δφ(y), for instance, is defined to
be the propagator

GΦ(x,y) =
〈

δφ(x) δφ(y)
〉

Φ
. (4.13)

The effective potential follows immediately by expanding the logarithm Veff(Φ)=−lnZ(Φ).
With regard to (4.6), (4.7), and (4.12), we obtain

Veff(Φ) = v V (Φ) − lnZ(1)(Φ) +
V (4)(Φ)

24

∫

dDx
〈

δφ4(x)
〉

Φ

−
[

V ′′′(Φ)
]2

72

∫

dDx

∫

dDy
〈

δφ3(x) δφ3(y)
〉

Φ
+ · · ·

≡ v V (Φ) + V
(1)
eff (Φ) + V

(int)
eff (Φ) . (4.14)

4.2. Effective Potential in First Loop Order

In the first place, we calculate the first-order term Z(1)(Φ) and V
(1)
eff (Φ), respectively. Defining

the integral kernel

G−1
Φ (x,x′) :=

[

−∆ + V ′′(Φ)
]

δ(x − x′) (4.15)

associated with the propagator (4.13), we write the first-order partition function (4.11) in
accordance with (4.8) as

Z(1)(Φ) =

∫

Dδφ exp

{

−
∫

dDx

∫

dDx′
1

2
δφ(x)G−1

Φ (x,x′) δφ(x′)

}

. (4.16)

Similar to (2.65), the functional integral (4.16) can be regarded as a functional generalization
of a Gaussian integral, resulting in

Z(1)(Φ) =
1

√

detG−1
Φ

= exp

[

− 1

2
Tr lnG−1

Φ

]

(4.17)

and the first-order effective potential

V
(1)
eff (Φ) =

1

2
Tr ln

[

−∆ + V ′′(Φ)
]

. (4.18)

In terms of the momentum basis, (4.18) reads

V
(1)
eff (Φ) =

v

2

∫

dDk

(2π)D
ln
[

k2 + V ′′(Φ)
]

, (4.19)

where the spacial integration merely leads to a volume factor v. Reminding Schwinger’s
proper time representation of the logarithm in (C.33), we continue

V
(1)
eff (Φ) =

v

2

(

− ∂

∂x

)

{

1

Γ(x)

∫ ∞

0

dτ τx−1 e−τ V
′′(Φ)

∫

dDk

(2π)D
e−τ k2

}
∣

∣

∣

∣

∣

x=0

. (4.20)
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The momentum integral corresponds to a Gaussian integral and the τ -integral can be eva-
luated with the aid of the Gamma function (C.1), so we obtain

V
(1)
eff (Φ) =

v

2 (4π)D/2

(

− ∂

∂x

)

{

Γ (x−D/2)

Γ(x)
[

V ′′(Φ)
]x−D/2

}
∣

∣

∣

∣

∣

x=0

. (4.21)

Because of the poles of the Gamma function at negative integers, we have to treat even
dimensions carefully when further calculating (4.21). Therefore, we start with assuming
that D is odd. In this case, the only pole is caused by Γ(x) in the denominator, so our first
task is to evaluate 1/Γ(x) at x = 0. To this end, we perform a Taylor expansion of Γ(x)
around x=0 with regard to (C.2),

Γ(x) =
Γ (x+ 1)

x
=

1

x
+ Γ′(1) + · · · , (4.22)

and expand the reciprocal value, yielding

1

Γ(x)
=

x

1 + xΓ′(1) + · · · = x − x2 Γ′(1) + · · · . (4.23)

Performing the derivative in (4.21) at x=0, all terms cancel apart from one:

V
(1)
eff (Φ) = − v

2 (4π)D/2
Γ (x−D/2 )
[

V ′′(Φ)
]x−D/2

∣

∣

∣

∣

∣

x=0

= − v

2 (4π)D/2
Γ

(

D

2

)

[

V ′′(Φ)
]D/2

. (4.24)

In D=1 dimension and for the potential (1.1) in N=1 field dimension, (4.24) reduces to

V
(1)
eff (Φ)

D=1
=

v

2
M , (4.25)

where the Φ-dependent mass M is just the second derivative V ′′(Φ) of (1.1)

M2 := m2 +
g

2
Φ2 . (4.26)

Replacing m2 → ω2 , Φ → X and dividing by the volume v, (4.24) reproduces the former
result (2.87) for D=1 dimension in quantum mechanics. For D=3, we obtain from (4.24)

V
(1)
eff (Φ)

D=3
= − v

12π
M3 . (4.27)

Now let D be even, i.e., D=2n and we start again from (4.21). The ratio of both Gamma
functions can be written as

Γ
(

x−D/2
)

Γ(x)
=

Γ (x− n)

Γ(x)
=

1

(x− n)(x− n+ 1) · · · (x− 1)
. (4.28)
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4.2. Effective Potential in First Loop Order

Thus, (4.21) amounts to calculating

− ∂

∂x

{

1

(x− n)(x− n + 1) · · · (x− 1)

[

V ′′(Φ)
]n−x

}
∣

∣

∣

∣

∣

x=0

(4.29)

=
1

(x− n) · · · (x− 1)

∣

∣

∣

∣

∣

x=0

[

V ′′(Φ)
]n

lnV ′′(Φ) −
[

V ′′(Φ)
]n ∂

∂x

{

1

(x− n) · · · (x− 1)

}
∣

∣

∣

∣

∣

x=0

.

Consider the product

(x− n) (x− n + 1) · · · (x− 1) =
n
∑

k=0

bk x
k := fn(x) (4.30)

with

fn(0) = (−1)n n! . (4.31)

Regarding (4.31), the first term in (4.29) yields straightforwardly

1

(x− n) · · · (x− 1)

∣

∣

∣

∣

∣

x=0

[

V ′′(Φ)
]n

lnV ′′(Φ) = (−1)n
[

V ′′(Φ)
]n

lnV ′′(Φ)

n!
. (4.32)

The derivative in the second term of (4.29) reads:

− ∂

∂x

1

(x− n) · · · (x− 1)

∣

∣

∣

∣

∣

x=0

= − ∂

∂x

1

fn(x)

∣

∣

∣

∣

∣

x=0

=
f ′
n(x)

f 2
n(x)

∣

∣

∣

∣

∣

x=0

. (4.33)

All coefficients bk in (4.30) are functions of n: bk ≡ bk(n). Taking the derivative f ′
n(x) at

x=0, all terms cancel except for b1(n)=f ′
n(0) on which we will therefore focus our attention.

Defining an := b1(n), one can show by induction the recursion formula

an = (−1)n+1
[

n |an−1| + (n− 1)!
]

, n ≥ 2 , with a1 = 1 . (4.34)

The first three coefficients are

a2 = −3 , a3 = 11 , a4 = −50 . (4.35)

Eq. (4.34) enables us to perform the derivative (4.33). According to (4.31), we obtain

f ′
n(x)

f 2
n(x)

∣

∣

∣

∣

∣

x=0

=
an
(

n!
)2 . (4.36)

Finally, we insert (4.32) and (4.36) into (4.21) and (4.29), which delivers the first loop order
of the effective potential for even dimensions D=2n :

V
(1)
eff (Φ) =

(

−1
)n

v

2n! (4π)n
[

V ′′(Φ)
]n

[

an
n!

− lnV ′′(Φ)

]

. (4.37)

For D=2 dimensions, i.e., n=1, (4.37) becomes

V
(1)
eff (Φ)

n=1
= − v

8π
V ′′(Φ)

[

1 − lnV ′′(Φ)
]

. (4.38)

Both results (4.24) and (4.37) are connected by means of renormalization. In fact, they turn
out to be equivalent. We will come back to this point in Section 5.4.
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4. Effective Potential of One Real Field

4.3. Effective Potential in Second Loop Order

Now we turn our attention to the interaction part of the effective potential (4.14). The expec-
tation values are reduced to products of the propagator (4.13) by applying Wick contractions
and we obtain

V
(int)
eff (Φ) =

V (4)(Φ)

8

∫

dDx G2
Φ(x,x) −

[

V ′′′(Φ)
]2

12

∫

dDx

∫

dDy G3
Φ(x,y) + · · · . (4.39)

These first two terms can immediately be identified with those in (2.106) in quantum sta-
tistics. In fact, we find a direct analogy when we consider the corresponding Feynman rules:

(1) All vertices and their outgoing lines are denoted arbitrarily.

(2) A propagator GΦ(x,y) corresponds to a line connecting vertices x and y

x y ≡ GΦ(x,y) , (4.40)

where the propagator is related to the integral kernel G−1
Φ (x,y) according to

∫

dDx′G−1
Φ (x,x′)GΦ(x′,x′′) = δ(x − x′′) . (4.41)

(3) n outgoing lines from a vertex x represent the integration

2

1 n

3

x .
.
. ≡ −V (n)(Φ)

∫

dDx (4.42)

over the propagators connected with vertex x.

Now we specialize in the potential (1.1) for N=1 field dimension. Thus, we have V ′′(Φ)=M2

in accordance with (4.26). Comparing the interaction part (4.39) with the Feynman rules
(4.40) and (4.42), we obtain the explicit expressions of the second-order diagrams:

≡ − g

∫

dDx G2
Φ(x,x) , (4.43)

Φ Φ ≡ g2 Φ2

∫

dDx

∫

dDy G3
Φ(x,y) . (4.44)

The diagrammatic representation of the second loop order V
(2)
eff (Φ) that includes the weights

in (4.39) is the same as (2.111) in quantum statistics. It is much easier to evaluate Feynman
diagrams in the momentum space. Due to translational invariance, the propagator GΦ(x,y)
has a Fourier representation

GΦ(x,y) =

∫

dDk

(2π)D
eık (x−y) GΦ(k) . (4.45)
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4.3. Effective Potential in Second Loop Order

In the same way, the integral kernel (4.15) can be written as

G−1
Φ (x,y) =

∫

dDk

(2π)D
eık (x−y) G−1

Φ (k) , G−1
Φ (k) = k2 + M2 . (4.46)

Moreover, we apply the Fourier transform of the δ-function

δ(x − y) =

∫

dDk

(2π)D
eık (x−y) . (4.47)

In order to calculate the propagator in momentum space, we insert (4.45)–(4.47) into (4.41),
yielding

GΦ(k) =
1

G−1
Φ (k)

=
1

k2 +M2
. (4.48)

The direct diagram (4.43) follows from (C.30) without any problems since all propagators
are local and the spatial integration only gives a volume factor v:

≡ − g

∫

dDx

[

∫

dDk

(2π)D
GΦ(k)

]2

= −g v

[

∫

dDk

(2π)D
1

k2 +M2

]2

=
− g v Γ2 ( 1 −D/2 )

(4π)D
(

M2
)2−D

. (4.49)

For even dimensions, (4.49) is infinite due to the Gamma function’s poles at negative in-
tegers. However, we are primarily interested in D=3 dimensions, so we do not have to pay
attention to this problem at the moment.

The sunset diagram (4.44) turns out to be much more complicated since the propagators
are actual bilocal quantities. In a first step, we insert the Fourier representation (4.45) of
the propagators. Due to the translational invariance, one of the spatial integrations gives a
volume factor v and we obtain

Φ Φ = g2Φ2

∫

dDx dDy

∫

dDp dDq dDk

(2π)3D
eı[k+p+q](x−y) GΦ(k)GΦ(p)GΦ(q)

= g2Φ2

∫

dDy

∫

dDp dDq dDk

(2π)2D

∫

dDz

(2π)D
eı[k+p+q]z GΦ(k)GΦ(p)GΦ(q) . (4.50)

Using the Fourier transformed propagator (4.48), this reduces to

Φ Φ = g2Φ2 v

∫

dDp dDq

(2π)2D

1

p2 +M2

1

q2 +M2

1

(p + q)2 +M2

:= g2Φ2 v I(D) . (4.51)
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4. Effective Potential of One Real Field

The remaining integral I(D) has been solved in Appendix D. With regard to (D.8), the
sunset diagram yields

Φ Φ = g2Φ2 v
(M2)D−3 Γ

(

1 −D/2
)

(4π)D

{

Γ (2 −D/2) F

(

1, 2 − D

2
;
3

2
;
1

4

)

− 2D−3
√
π Γ(3 −D)

Γ
(

(5 −D)/2
) F

(

1, 3 −D;
5 −D

2
;
1

4

)

}

. (4.52)

By now, we realize that we do have to deal with infinities occurring in Feynman integrals:
due to the Gamma and the hypergeometric functions in (4.52), the sunset integral has
divergencies in D=3 dimensions as well as for even dimensions. Therefore, we leave (4.52)
at that for the moment and insert a whole chapter on regularization and renormalization of
Feynman integrals before dealing with this very diagram.
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5. Regularization and Renormalization

In statistical field theory, many Feynman integrals do not converge due to two different types
of divergencies: ultraviolet (UV)-divergencies arise from an integrand falling off too slowly at
large momenta, infrared (IR)-divergencies occur for small momenta in the zero-mass limit.
Since all fields we consider are massive, the latter divergencies do not occur during our
present calculations.

Usually, a Feynman integral is primarily defined for a certain region of convergence, i.e.,
merely for certain dimensions. Due to analytic continuation, it is possible to extend this
region to all real numbers except for some discrete poles. To this end, one uses the Gamma
function Γ(x), defined for all x ∈ R \ {−1,−2,−3, ...}, and applies its identity

Γ(x+ 1) = xΓ(x) . (5.1)

Since these discrete poles are usually located at integer dimensions which are just of physical
interest, the regularization procedure has to go further. Via ε-expansion, we approach the
pole from one side where the integral is now defined, so we can localize and characterize the
divergency. Finally, we perform renormalization by absorbing all divergencies in so-called
renormalized quantities.

5.1. Dimensional Regularization

In order to demonstrate the idea of dimensional regularization, we consider the elementary
Feynman integral

= I1(D) =

∫

dDk

(2π)D
1

k2 +M2
, (5.2)

which is originally convergent for 0 < D < 2 . We assume the dimension D to be an arbitrary
complex number and write (5.2) – benefiting from the rotationally invariant integrand – in
terms of polar coordinates

I1(D) =
SD

(2π)D

∫ ∞

0

dk kD−1 1

k2 +M2
, (5.3)

with SD being the surface of the D−dimensional unit sphere

SD =
2πD/2

Γ(D/2)
. (5.4)
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5. Regularization and Renormalization

The integral (5.2) can be reduced to the one of the Beta function (C.9). Thus, the result
reads

I1(D) =
Γ (1 −D/2)

(4π)D/2
(M2)D/2−1 . (5.5)

By means of (5.1), the Gamma function continues the integral from 0<D<2 to all D except
for even dimensions D = 2, 4, 6, ... where the occurring Gamma function has poles.

5.2. ε-Expansion of Feynman Integrals

Despite of analytic continuation, divergencies can remain at dimensions which shall be con-
sidered, e.g., D=4 in (5.5). Since all remaining poles are discrete, we are able to approach
them through a region in which the integral is well-defined choosing a dimension close to the
desired one, e.g., D=4−ε. Inserting this into (5.5), an expansion for small ε leads to

I(4 + ε) =
M2

8 π2

[

− 1

ε
− ln 2 +

1

2

(

γ − 1 + lnM2 − ln π
)]

+ O(ε) , (5.6)

with Euler’s constant γ defined in (C.7). All terms of order ε and higher can be neglected
since we consider the limit ε→ 0. From the leading term ∼ 1/ε, we read off that we deal
with a pole of first order.

The ε-expansion of the sunset integral for D = 3+ε has been calculated in Appendix D
(D.15), yielding

D=3+ε
= − 1

32 π2 ε
+

1

32 π2

{

− lnM2 + ln
4π

9
+ 1 − γ

}

+ O(ε) . (5.7)

Again, the divergency turns out to be a first-order pole, whereas for D=4−ε, we find a pole
of second order as it is shown in detail in (D.19). An approach from above, i.e., D=4+ε,
would lead to the same result. However, it is common to remain within the most important
physical interval 2≤D≤4 .

5.3. Renormalization

After localizing and characterizing all divergencies, we continue with renormalization. The
basic idea is to introduce renormalized parameters in which all divergencies are absorbed.
These parameters transform initial quantities such as mass, coupling constant, and field
into renormalized physical quantities. Of course, not all theories can be renormalized. In
this context, the so-called power counting is a very illuminating method to investigate UV-
divergencies. In accordance with the Feynman rules, each internal line of a Feynman diagram
IF corresponds to a propagator ∼ p−2, so I internal lines yield 2I powers of momentum p in
the denominator. Furthermore, v vertices give rise to

L = I − v + 1 (5.8)
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5.3. Renormalization

D-dimensional loop integrations [6, Ch. 9]. Thus, we have DL = D (I−v+1) powers of
momentum in the numerator. Altogether, a Feynman integral yields

ω(IF) = (D − 2) I + D (1 − v) (5.9)

powers of momentum, which characterizes the integral’s power behavior at large momenta.
Therefore, we have

IF ∼ λω(IF) if λ→ ∞ , (5.10)

after rescaling the momentum p → λp. The quantity ω(IF) in (5.9) is called superficial
degree of divergence. The Feynman diagram IF is called superficially divergent if ω(IF) ≥ 0.
The sunset integral (D.1), for instance, has ω(IF)= 0 for D=3 dimensions, which is called
logarithmically divergent. In D = 4 dimensions, however, it has ω(IF) = 2, referred to as
quadratically divergent. In φ4-theory without background, the numbers I and n of internal
and external lines are connected by [6, Ch. 9]

I = 2v − n

2
. (5.11)

Inserting (5.11) into (5.9) yields

ω(IF) = D + n

(

1 − D

2

)

+ v (D − 4) . (5.12)

In four dimensions, the corresponding superficial degree of divergence

ω(IF ) = 4 − n (5.13)

shows that at any given perturbative order, merely vacuum diagrams, two- and four-point
one-particle irreducible diagrams lead to ω(IF) ≥ 0, thus they are the only superficially
divergent diagrams. All other n-point functions are finite, hence the theory is renormalizable.
However, since (5.13) is independent of the number v of vertices, divergencies can occur at
any given perturbation order. In three dimensions, (5.12) simplifies to

ω(IF) = 3 − n

2
− v . (5.14)

In this case, only a few low-order diagrams can be superficially divergent, all others are finite.
Consider, for instance, vacuum diagrams where n= 0. Due to (5.14), divergencies merely
arise up to the third perturbation order v=3. Such a theory is called superrenormalizable. In
more than four dimensions, (5.12) can be positive at any given order and not only for two- or
four-point diagrams. Hence, new divergencies arise again and again, which makes the theory
nonrenormalizable. For a φ4-theory, Dc = 4 is called the upper critical dimension above
which the theory becomes nonrenormalizable. More generally, the upper critical dimension
of a φr-theory reads [6, Ch. 9]

Dc =
r

r/2 − 1
. (5.15)
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5. Regularization and Renormalization

In a renormalizable theory, all quantities like mass, field, and coupling constant have to
be renormalized. In the case of a superrenormalizable theory, however, the renormalization
procedures of these quantities are independent of each other and not implicitly necessary to
absorb all divergencies. Thus, we concentrate on the mass renormalization which turns out
to be the only infinite renormalization. The renormalization of the field and coupling con-
stant merely leads to additional constants which may be disregarded due to renormalization
invariance. We will dwell upon this fact in Section 8.4 in connection with VPT.

5.4. Subtraction Method

When we calculated the first order of the effective potential in Section 4.2, we implicitly
derived a further method of regularization that is referred to as subtraction method. In this
section, we introduce the basic principles and explain that our results are correct although
they seem to be inconsistent so far.

First of all, note that the integral example (5.2) points out another possibility to calculate
the first-order diagram (4.19). The integral (5.2) represents the derivative of the trace-log
term with regard to M2 as defined in (4.26). In fact, the integral (5.5) results from (4.24)
after differentiation or the other way round: the first-order diagram is obtained by integra-
ting (5.5) with respect to M2. The result (5.5), however, is valid for arbitrary dimensions,
in particularly for even dimensions. Therefore, it must be possible to extend (4.24) to even
dimensions, although it was originally intended to be valid only for odd dimensions. The
result has to be equivalent to (4.37) which was explicitly derived for even dimension. In other
words, both results have to be equal when taking renormalization invariance into account.

The subtraction method was introduced in 1984 by Collins [36]. It was originally intended
to deal with IR-divergencies. More precisely, it consists of subtracting IR-divergencies of
an integral, which arise if we extend the dimension to D<0. The resulting integral can be
solved analytically and yields an expression in terms of Gamma or Beta functions. These
functions, however, provide analytic continuation to dimensions D > 0 in such a way that
this method can also be applied to UV-divergencies. A detailed discussion is presented in
Ref. [6, Ch. 8], for instance. Here, we restrict ourselves to summarizing the basic principle.

Consider an integral with a finite region of convergence 0 < D < D′ and a rotationally
invariant integrand f(k2). This integral is continued to dimensions −2<D<0 by

∫

dDk

(2π)D
f(k2) =

SD
(2π)D

{

∫ C

0

dk kD−1
[

f(k2) − f(0)
]

+ f(0)
CD

D

+

∫ ∞

C

dk kD−1 f(k2)

}

. (5.16)
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5.5. Renormalization of Effective Potential

Due to the negative dimension D, the limit C→∞ leads to
∫

dDk

(2π)D
f(k2) =

SD
(2π)D

∫ ∞

0

dk kD−1
[

f(k2) − f(0)
]

. (5.17)

This procedure is applied again and again until all divergencies are subtracted and the right-
hand side of (5.17) yields a finite result.

Now consider the integral (4.19) of the effective potential in first order. The term to subtract
with regard to (5.17) is just lnM2. In fact, this is what our calculations in Section 4.2 amount
to, compare with Eq. (4.37). For this reason, we conclude that both results (4.24) and (4.37)
are equivalent with regard to renormalization invariance. For even dimensions, however, the
subtraction method has to be favored. In doing so, all divergencies are removed without any
further measures.

5.5. Renormalization of Effective Potential

In this section, we turn back to the original problem, i.e., the renormalization of the sunset
diagram (4.52) in D= 3 dimensions. The regularization procedure and the ε-expansion as
introduced in Section 5.2 are worked out in detail in Appendix D, yielding the result (D.15).
Thus, we obtain

Φ Φ
D=3+ε

=
g2Φ2 v

32 π2

{

−1

ε
− ln

M2

µ2
+ ln

4π

9
+ 1 − γ

}

+ O(ε)

≡ Φ Φ
div

+ Φ Φ
fin
, (5.18)

with M2 defined in (4.26). The divergent part consists of the term ∼ 1/ε, the finite part
contains all other terms. The full effective potential (4.14) in terms of Feynman diagrams
can hence be written as

Veff(Φ) =
v

2
m2 Φ2 +

v g

24
Φ4 +

~

2
− ~

2

8
− ~

2

12
Φ Φ

div
− ~

2

12
Φ Φ

fin
. (5.19)

Here, we have introduced the artificial smallness parameter ~ whose powers denote the
respective loop orders. In order to renormalize (5.19), we consider the harmonic contribution
of the potential itself and the divergent contribution of the sunset diagram. With regard to
(5.18), both are proportional to Φ2, thus they can be merged as follows:

v

2
m2 Φ2 − ~

2

12
Φ Φ

div
=

v

2
m2 Φ2 +

~
2g2Φ2 v

32 π2

1

ε
≡ v

2
m2
r Φ2 , (5.20)

where mr denotes the physical renormalized mass that absorbs all divergencies. In accor-
dance with (4.27), (4.49), and (5.18)–(5.20), the renormalized effective potential V

(r)
eff (Φ) in

second loop order for D=3 dimensions and volume v=1 results in

V
(r)
eff (Φ) =

1

2
m2
r Φ2 +

g

24
Φ4 − ~

12 π

(

m2
r +

g

2
Φ2
)3/2

+
~

2 g

128π2

(

m2
r +

g

2
Φ2
)

+
~

2 g2 Φ2

384 π2
ln

[

1

µ2

(

m2
r +

g

2
Φ2
)

]

− ~
2 g2 Φ2

384 π2

(

ln
4π

9
+ 1 − γ

)

. (5.21)
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5. Regularization and Renormalization

In all terms of first and higher loop order, the bare mass can be replaced by the renormalized
one as the additional terms are of higher order and do not contribute to the second loop order.
To simplify matters, we omit the index r of the renormalized mass and the renormalized
effective potential in the following unless otherwise noted.
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6. Self-Energy

The calculation of the self-energy allows another access to renormalization. We present it
in this chapter in order to verify the result of the previous renormalization procedure in
another way.

When we approach a many-particle system, we usually begin by assuming that the particles
are point-like. This simplification can cause essential non-physical infinities: via the inter-
action, a point-like particle acquires an infinite mass, but the actual physical mass is, of
course, finite. Thus, all infinities caused by the theory have to be removed by a renormaliza-
tion scheme. In order to illustrate this procedure, we consider a particle propagating from
x1 to x2. In Feynman’s formalism, we describe this process with the propagator

x1 x2 = G0 (x1,x2) . (6.1)

However, the particle will also interact with the vacuum. In the φ4-theory, such interactions
are, for instance,

x1 x2

or x1 x2 . (6.2)

Since physics includes all possible processes, (6.1) is only a zeroth approximation. Let us
denote the full propagator by

x1 x2 = G(x1,x2) . (6.3)

Whereas G0(x1,x2) describes the propagation of a point-like particle, G(x1,x2) characterizes
a real physical particle interacting with the vacuum. The self-energy Σ collects all these
interactions with the vacuum. More precisely, Σ denotes the interaction energy and can
therefore be absorbed in the full integral kernel G−1 in addition to the other contributions
of the free integral kernel G−1

0 :

G−1(x1,x2) = G−1
0 (x1,x2) − Σ(x1,x2) . (6.4)

The contributions of the self-energy Σ can be regarded as modifications of quantities like the
mass m. Therefore, it is obvious to associate the self-energy with renormalization, which we
demonstrate in this chapter.
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6. Self-Energy

6.1. Definition of Self-Energy

Consider the free action

A(0)[φ] =
1

2

∫

dDx dDx′ φ(x)G−1
0 (x,x′)φ(x′) (6.5)

of the potential (1.1). Its name denotes that in contrast to the full action (4.2), we have no
interaction. In analogy to (4.15), the free integral kernel reads

G−1
0 (x,x′) =

(

−∆ +m2
)

δ(x − x′) . (6.6)

Since it merely depends on the difference of the coordinates, it has the Fourier representation

G−1
0 (x,x′) =

∫

dDk

(2π)D
eık(x−x′) G−1

0 (k) . (6.7)

The integral kernel in Fourier space can directly be calculated from (6.6) by means of inverse
Fourier transform, yielding

G−1
0 (k) = k2 + m2 . (6.8)

Note that for k=0, the integral kernel just yields the mass m2:

G−1
0 (k = 0) = m2 . (6.9)

The free propagator G0(x,x
′) is related to (6.6) by an integral identity that reads in analogy

to (4.41)

∫

dDx′ G−1
0 (x,x′)G0(x

′,x′′) = δ(x − x′′) . (6.10)

Its Feynman diagram has already been introduced in (6.1). Now we take the interaction
part of the potential (1.1) into account

A(int)[φ] =
g

24

∫

dDx φ4(x) . (6.11)

The full action A[φ] = A(0)[φ] +A(int)[φ] leads to the full integral kernel G−1(x,x′) and
the corresponding full propagator (6.3). In accordance with (6.4), the difference of both
integral kernels is referred to as self-energy. Whereas we found the free integral kernel at
zero momentum to be the bare mass, we define the renormalized physical mass as

m2
r := G−1(k = 0) = m2 − Σ(k = 0) . (6.12)

In terms of the self-energy, mass renormalization therefore amounts to calculating the self-
energy at zero momentum.
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6.2. Self-Energy via Effective Action

The self-energy is determined by the so-called Dyson equation which can be derived from
(6.4). We multiply with G(x,x1) and G0(x2,x

′) and integrate over x1 and x2, yielding

∫

dDx2G0(x2,x
′)

∫

dDx1G
−1(x1,x2)G(x,x1)

=

∫

dDx1G(x,x1)

∫

dDx2G
−1
0 (x1,x2)G0(x2,x

′)

−
∫

dDx1

∫

dDx2 G(x,x1 ) Σ(x1,x2) G0(x2,x
′) . (6.13)

Taking into account the orthonormality condition for G0 in (6.10) and a corresponding one
for G, (6.13) simplifies to

G(x,x′) = G0(x,x
′) +

∫

dDx1

∫

dDx2 G(x,x1 ) Σ(x1,x2) G0(x2,x
′) . (6.14)

The Dyson equation (6.14) can also be expressed in terms of Feynman diagrams. To this
end, we introduce a new symbol for the self-energy

Σ(x,x′) = x x′ . (6.15)

It has two stumps which, however, have to be distinguished from actual lines that are
described by propagators like (6.1) and (6.3). Such full lines can be attached to the self-
energy at each of its stumps x and x′, which corresponds analytically to integrate over x
and x′, respectively. With this prescription, we identify (6.14) with

x x′ = x x′ + x x′ . (6.16)

The Dyson equation (6.14) is a self-consistent equation [37, Ch. 7] for the propagator G(x,x′)
because it appears both on the left- and the right-hand side of the equation. Solving (6.16)
iteratively up to any desired order by inserting the left-hand side into the right-hand side
again and again, we obtain the Dyson series

x x′ = x x′ + x x′ + x x′ + · · · . (6.17)

6.2. Self-Energy via Effective Action

Each vacuum diagram of the effective potential has a corresponding self-energy diagram.
In this section, we derive the self-energy for N = 1 field from the point of view of loop
expansion. We proceed similarly to Chapter 4, starting from (4.1) and (4.2), but in contrast
to the calculation of the effective potential where we assumed a constant background, we now
choose a x-dependent background function Φ(x). This yields the effective action Γ[Φ(x)],
which differs from the effective potential merely in the non-constant background function.
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6. Self-Energy

Thus, instead of the effective potential and the partition function being a function of the
background, they are functionals now:

Z[Φ] = e−Γ[Φ] . (6.18)

Evaluating the effective action Γ[Φ(x)] for a constant background Φ, we recover the effective
potential

Γ[Φ]
∣

∣

∣

Φ(x)=Φ
= Veff(Φ) . (6.19)

Moreover, we specialize in the potential (1.1) from the very beginning instead of assuming an
arbitrary potential as we did before. The corresponding ansatz in the background method
(4.3) reads

φ(x) = Φ(x) + δφ(x) . (6.20)

Analogously to (4.5), we perform a Taylor expansion of the potential (1.1) around the back-
ground Φ(x) and insert it into the action (4.2). With vanishing terms linear in δφ(x), the
action yields

A[Φ + δφ] =

∫

dDx

{

1

2
Φ(x)

[

−∆ +m2
]

Φ(x) +
g

24
Φ4(x) +

g

4
Φ2(x) δφ2(x)

+
g

6
Φ(x) δφ3(x) +

g

24
δφ4(x) +

1

2
δφ(x)

[

−∆ +m2
]

δφ(x)

}

. (6.21)

Inserting the action (6.21) of the background formalism into (4.1), we divide again the
partition function into a classical and a fluctuation part by means of

Z[Φ] = Z(cl)[Φ] Z(fluc)[Φ] . (6.22)

Here, the classical partition function is defined by

Z(cl)[Φ] := exp

{

−
∫

dDx

[

1

2
Φ(x)

[

−∆ + m2
]

Φ(x) +
g

24
Φ4(x)

]}

. (6.23)

The fluctuation part in (6.22) reads

Z(fluc)[Φ] =

∫

Dδφ e−Ã[Φ+δφ] exp

{

−
∫

dDx

[

g

6
Φ(x) [ δφ(x) ]3 +

g

24
[ δφ(x) ]4

]}

, (6.24)

where we defined

Ã[Φ + δφ] =

∫

dDx
1

2
δφ(x)

[

−∆ +m2 +
g

2
Φ2(x)

]

δφ(x) . (6.25)

With regard to (6.18) and (6.22), we write the effective action in a loop expansion analogously
to (4.14)

Γ[Φ] = A[Φ] + Γ(1)[Φ] + Γ(int)[Φ] . (6.26)
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6.2. Self-Energy via Effective Action

The zero-loop order of the effective action follows straightforwardly from (6.23), as the
integral can no longer be calculated explicitly due to the non-constant background

A[Φ] = − lnZ(cl)[Φ] =

∫

dDx

[

1

2
Φ(x)

[

−∆ + m2
]

Φ(x) +
g

24
Φ4(x)

]

. (6.27)

We are merely interested in the second functional derivative of A[Φ] with respect to the
background Φ(x), which cancels the spatial integration anyway

δ2 A[Φ]

δΦ(x) δΦ(x′)
=
[

−∆ +m2 +
g

2
Φ2(x)

]

δ(x − x′) . (6.28)

Note that for a constant background Φ, the second functional derivative (6.28) reproduces
the Φ-dependent integral kernel (4.15):

δ2 A[Φ]

δΦ(x) δΦ(x′)

∣

∣

∣

∣

∣

Φ(x)=Φ

=
[

−∆ +m2 +
g

2
Φ2
]

δ(x − x′) = G−1
Φ (x,x′) . (6.29)

Thus, in the background method, the Φ-dependent integral kernel (6.28) plays the role of
the free integral kernel (6.6). It is obvious to identify the full integral kernel analogously
with the second derivative of the full effective action [6, Ch. 5]

δ2 Γ[Φ]

δΦ(x) δΦ(x′)

∣

∣

∣

∣

∣

Φ(x)=Φ

= G−1(x,x′) . (6.30)

Comparing (6.4), (6.26), (6.29), and (6.30), we see that the self-energy diagrams follow from
the second functional derivative of Γ(1)[Φ] and Γ(int)[Φ] evaluated at a constant background.
In order to calculate the effective action in first and higher loop orders, we expand the
fluctuation part (6.24) as follows

Z(fluc)[Φ] =

∫

Dδφ e−Ã[Φ+δφ] − g

6

∫

dDx Φ(x)

∮

Dδφ [ δφ(x) ]3 e−Ã[Φ+δφ]

− g

24

∫

dDx

∮

Dδφ [ δφ(x) ]4 e−Ã[Φ+δφ]

+
g2
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∫

dDx

∫

dDx′
∮

Dδφ [ δφ(x) ]3 [ δφ(x′) ]
3
e−Ã[Φ+δφ] + · · ·

≡ Z(1)[Φ] + Z(2)[Φ] + · · · . (6.31)

The logarithm of Z(1)[Φ] yields the first loop order of the effective action

Γ(1)[Φ] = − lnZ(1)[Φ] = − ln

{

∫

Dδφ e−Ã[Φ+δφ]

}

. (6.32)
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6. Self-Energy

Our next task is to calculate the second functional derivative of (6.32) as we did in (6.28)
for the zero-loop order

δ2 Γ(1)[Φ]

δΦ(x) δΦ(x′)
=

g2

4

Φ(x) Φ(x′)
(

Z(1)[Φ]
)2

[

∫

Dδφ [ δφ(x) ]2 e−Ã[Φ+δφ]

][

∫

Dδφ [ δφ(x′) ]
2
e−Ã[Φ+δφ]

]

+
1

Z(1)[Φ]

∫

Dδφ g
2
δ(x − x′) [ δφ(x) ]2 e−Ã[Φ+δφ]

− 1

Z(1)[Φ]

∫

Dδφ g
2

4
Φ(x) Φ(x′) [ δφ(x) ]2 [ δφ(x′) ]

2
e−Ã[Φ+δφ] . (6.33)

Specializing in a constant background Φ(x)≡Φ, (6.33) reduces to

δ2 Γ(1)[Φ]

δΦ(x) δΦ(x′)

∣

∣

∣

∣

∣

Φ(x) = Φ

=
g2

4
Φ2
〈

δφ2(x)
〉

Φ

〈

δφ2(x′)
〉

Φ
+
g

2
δ(x − x′)

〈

δφ2(x′)
〉

Φ

− g2

4
Φ2
〈

δφ2(x) δφ2(x′)
〉

Φ
, (6.34)

with the expectation value 〈•〉Φ already defined in (4.10). Furthermore, the propagator
GΦ(x,x′) is defined by means of (4.13). Applying Wick contractions, we write in accordance
with (4.13)

〈

δφ2(x) δφ2(x′)
〉

Φ
= GΦ(x,x) GΦ(x′,x′) + 2G2

Φ(x,x′) , (6.35)

which simplifies (6.34) to

δ2 Γ(1)[Φ]

δΦ(x) δΦ(x′)

∣

∣

∣

∣

∣

Φ(x)=Φ

= − g2

2
Φ2G2

Φ(x,x′) +
g

2
δ(x − x′)GΦ(x′,x′) . (6.36)

Analogously to the vacuum diagrams of the effective potential, Feynman rules can be derived
for the self-energy diagrams. A detailed derivation is given, for instance, in Ref. [38]. In
doing so, the terms in (6.36) are attributed to the first-order diagrams of the self-energy

g2

2
Φ2G2

Φ(x,x′) =
1

2
x x′
Φ Φ , (6.37)

g

2
δ(x − x′)GΦ(x,x′) =

1

2 x x′

. (6.38)

Thus, the second functional derivative of the first-order effective action evaluated at a con-
stant background is just the self-energy in first loop order:

− δ2 Γ(1)[Φ]

δΦ(x) δΦ(x′)

∣

∣

∣

∣

∣

Φ(x) =Φ

=
1

2
x x′
Φ Φ +

1

2 x x′

. (6.39)

Consequently, we obtain the second-order diagrams of the self-energy from the second order
of the effective action. There exists still a further connection between vacuum diagrams
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6.3. Renormalization with Self-Energy

and self-energy diagrams by means of Feynman’s formalism. Comparing (6.39) with the
second-order diagrams of the effective potential as they are given, for instance, in (2.111),
we find the following correlation: the self-energy diagrams and their corresponding weights
follow graphically from the vacuum diagrams by amputating one line. Amputating one
line, however, means decreasing the loop order. Thus, we obtain the first-order self-energy
diagrams (6.39) graphically from the second-order vacuum diagrams (2.111). The second-
order diagrams of the self-energy might hence be derived from (2.135)–(2.142) and translated
to analytic expressions by means of Feynman rules. Alternatively, we might extend the
present calculations to the next higher order of the effective action. Since it turns out that
we need just one single second-order diagram to renormalize the mass, we take the second-
loop order Feynman diagrams for the self-energy from Ref. [38] instead of calculating them
explicitly.

6.3. Renormalization with Self-Energy

Now we turn back to our original intention, i.e., the renormalization of the effective po-
tential in Chapter 4 in D = 3 dimensions with the self-energy. In (6.12), we have defined
the renormalized mass to be the difference of the bare mass and the self-energy with zero
momentum. Strictly speaking, we have to calculate all self-energy diagrams in second loop
order when we wish to calculate the renormalized mass in second loop order. However, we
benefit from the fact that φ4-theory in three dimensions is superrenormalizable, see Chapter
5. Most self-energy diagrams are finite, among others the first-order diagrams (6.37) and
(6.38). These diagrams merely lead to finite contributions to the effective potential, which
can be omitted because of renormalization invariance as further discussed in Section 8.4.
Hence, it is sufficient to concentrate on the only infinite second-order diagram which gives
us the required mass renormalization. In accordance with Ref. [38], it reads

Σ (x,x′) =
1

6
x x′ =

1

6
g2G3

Φ(x,x′) . (6.40)

For the purpose of mass renormalization (6.12), it is sufficient to calculate (6.40) in momen-
tum space for k=0. Here, we benefit from the fact that the propagator is a function only of
the coordinate difference y :=x−x′ . We perform a Fourier transform of (6.40) and calculate
the spatial integral, yielding

Σ (k) =
1

6
g2

∫

dDy e−ıky G3
Φ (y)

=
1

6
g2

∫

dDk′dDk′′

(2π)2D

1

k′2 +M2

1

k′′2 +M2

1

(k − k′ − k′′)2 +M2
(6.41)

with the mass M defined in (4.26). Evaluating the integral (6.41) at k=0 leads to

Σ (k = 0) =
1

6
g2

∫

dDk′ dDk′′

(2π)2D

1

k′2 +M2

1

k′′2 +M2

1

(k′ + k′′)2 +M2
, (6.42)
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which coincides with the sunset diagram (4.51) except for the prefactor Φ2. In accordance
with (5.18) and (6.12), the renormalized mass m2

r results in

m2
r = m2 +

g2

192π2

1

ε
− Σ

(fin)
(k = 0) . (6.43)

All finite terms of (5.18) have been absorbed in Σ
(fin)

(k = 0) defined by

1

6
Φ Φ

fin
= Φ2 Σ

(fin)
(k = 0) . (6.44)

In contrast to the previous renormalization procedure in Chapter 5 where we started with
the bare mass and came to defining the renormalized one, we now proceed contrarily: we
consider the quadratic term of the potential with the renormalized mass and the sunset
diagram from the second loop order, insert (5.18) and (6.43) and notice that all divergencies
cancel:

1

2
m2
r Φ2 − ~

2

12
Φ Φ

=
1

2

[

m2 +
~

2 g2

192 π2

1

ε
− ~

2 Σ
(fin)

(k = 0)

]

Φ2 − ~
2 g2 Φ2

384 π2

1

ε
+

~
2

2
Σ

(fin)
(k = 0)

=
1

2
m2 Φ2 . (6.45)

Here, we have again introduced the formal smallness parameter ~. By means of this renor-
malization procedure, the renormalized effective potential in second loop order reads in
accordance with (4.26)

V
(r)
eff (Φ) =

1

2
m2 Φ2 +

g

24
Φ4 − ~

12 π

(

m2 +
g

2
Φ2
)3/2

+
~

2 g

128 π2

(

m2 +
g

2
Φ2
)

+
~

2 g2 Φ2

384 π2
ln

[

1

µ2

(

m2 +
g

2
Φ2
)

]

. (6.46)

Note, that we might also omit the finite part of the self-energy in (6.45): the divergencies can-
cel anyway, we merely add a finite term from the second-order diagram to the renormalized
effective potential. This modification does not change physics due to the superrenormaliz-
ability of the φ4-theory in D=3 dimensions. We will dwell upon this point in Chapter 8. If
we omitted the finite part of the self-energy, we would obtain our former result (5.21) instead
of (6.46).

72



7. Effective Potential of N Real Fields

In order to apply VPT with two variational parameters in statistical field theory, we have
to extend our calculations to N real fields and derive the corresponding effective potential.
Furthermore, we require a general result for an arbitrary number of fields to connect VPT
with the Hubbard-Stratonovich transformation which represents the large-N limit. To this
end, we take advantage of our calculations in quantum statistics in Chapter 2, which are
completely analogous to our present procedure. Moreover, we have already calculated the
effective potential in statistical field theory for N =1 real field in Chapter 4. Therefore, we
go succinctly through this chapter and refer to our former results.

7.1. Background Method

Consider the partition function

Z =

∫

Dφ e−A[φ] , (7.1)

with the field φ consisting ofN components, i.e. φ≡(φ1, φ2, · · · , φN). Assuming an arbitrary
potential V

(

φ(x)
)

, the action reads

A[φ] =

∫

dDx

[

−1

2
φ(x) ∆ φ(x) + V (φ(x))

]

. (7.2)

The background method for a constant background yields the ansatz

φ(x) = Φ + δφ(x) . (7.3)

We perform a Taylor expansion of the potential V
(

φ(x)
)

around the background Φ and
insert the result into the action (7.2) analogously to (2.50) and (2.51), which leads to

A
[

Φ + δφ
]

= v V (Φ) +

∫

dDx

{

1

2
δφi(x)

[

−∆ + Vij(Φ)
]

δφj(x)

+
Vijk(Φ)

6
δφi(x)δφj(x)δφk(x) +

Vijkl(Φ)

24
δφi(x)δφj(x)δφk(x)δφl(x) + · · ·

}

≡ A(cl)(Φ) + A(fluc)
[

Φ + δφ
]

. (7.4)

Here, we have denoted the partial derivatives of the potential analogously to (2.49) by

∂n V
(

φ(x)
)

∂φi(x) ∂φj(x) · · · ∂φm(x)

∣

∣

∣

∣

∣

φ(x)=Φ

=: Vij···m(Φ) . (7.5)

73



7. Effective Potential of N Real Fields

Terms linear in the fluctuations vanish in (7.4). The partition function (7.1) is divided into
the classical partition function Z(cl)(Φ) and the fluctuating partition function Z(fluc)(Φ) as
it has likewise been done in (4.7). We expand the fluctuation part and write it in terms of
the expectation values that are defined similar to (4.10) and (4.11) for N =1 field. Finally,
we obtain the loop expansion of the effective potential Veff(Φ)=−lnZ(Φ) in accordance with
(2.59) and (4.14)

Veff(Φ) = v V (Φ) − lnZ(1)(Φ) +
Vijkl(Φ)

24

∫

dDx
〈

δφi(x) δφj(x) δφk(x) δφl(x)
〉

− Vijk(Φ)Vlmn(Φ)
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∫

dDx

∫

dDy
〈

δφi(x) δφj(x) δφk(x) δφl(y) δφm(y) δφn(y)
〉

+ · · ·

≡ v V (Φ) + V
(1)
eff (Φ) + V

(int)
eff (Φ) . (7.6)

7.2. Effective Potential in First Loop Order

The first-order term can be adopted from (4.18), yielding

V
(1)
eff (Φ) = − 1

2
Tr lnG−1 . (7.7)

Analogously to (2.61), we define the operator

Ôij(x) :=
[

−∆ + Vij(Φ)
]

, (7.8)

which enables us to write the integral kernel in (7.7) in the form

G−1
ij (x,x′) = Ôij(x) δ(x − x′) . (7.9)

Strictly speaking, we would have to denote the integral kernel (7.9) by a subscript Φ referring
to the background as we did in Chapter 4. In order to avoid too many indices, we omit the
subscript during this chapter. Now we specialize the potential in a rotationally symmetric
one V (Φ) = V (Φ). In accordance with (2.69), we define the longitudinal and transversal
projection operators

PL
mn :=

ΦmΦn

Φ2
, P T

mn := δmn − PL
mn . (7.10)

All properties follow from the quantum statistical results (2.70)–(2.73) when replacing Xi→
Φi . The second partial derivative of the potential in terms of the projection operators (7.10)
reads

Vij(Φ) = V ′′(Φ)PL
ij +

V ′(Φ)

Φ
P T
ij (7.11)

where V ′(Φ) and V ′′(Φ) denote the first and the second derivative with respect to the modulus
Φ= |Φ|, respectively. We obtain a decomposition of the operator (7.8) into longitudinal and
transversal part by inserting (7.11):

Ôij(x) = PL
ij

[

−∆ + V ′′(Φ)
]

+ P T
ij

[

−∆ +
V ′(Φ)

Φ

]

. (7.12)
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Thus, the calculation of (7.7) amounts to finding the longitudinal and transversal eigenvalues
of the operator (7.12). The corresponding eigenvalue equation reads

Ôij(x) v
(k,n)
j (x) = λ(k) v

(k,n)
i (x) , n = 1, 2, ..., N , (7.13)

with a decomposition of the eigenfunctions analogously to Section 2.5. For the longitudinal
eigenfunction n=1, we choose the ansatz

v
(k,1)
j (x) = Φj e

−ıkx , (7.14)

which yields in accordance with (7.11) the eigenvalue

λ
(k)
L = k2 + V ′′(Φ) . (7.15)

For the transversal eigenfunctions

v
(k,n)
j (x) = Ψ

(n)
j e−ıkx , n = 2, 3, ..., N , (7.16)

we choose fields Ψ
(n)
j being perpendicular among each other and with respect to the back-

ground field Ψ
(n)
j Ψ

(m)
j =0 for n 6=m and Ψ

(n)
j Φj=0 . Due to the symmetry, the corresponding

eigenvalues do not depend on n and are therefore (N−1)-fold degenerated

λ
(k)
T = k2 +

V ′(Φ)

Φ
. (7.17)

Therewith, all eigenvalues are determined and the first-order term (7.7) reads in analogy to
(2.84)

V
(1)
eff (Φ) = − v

2

∫

dDk

(2π)D

[

lnλ
(k)
L + (N − 1) lnλ

(k)
T

]

. (7.18)

The remaining momentum integrals have already been solved in (4.24). Thus, we obtain

V
(1)
eff (Φ) =

v Γ
(

−D/2
)

2 (4π)D/2

{

[

V ′′(Φ)
]D/2

+ (N − 1)

[

V ′(Φ)

Φ

]D/2
}

. (7.19)

The integral over the momentum space in (7.18) can be regarded as the field-theoretic
analogy of the Matsubara sum (2.84) in quantum statistics. Therefore, it is obvious to
define longitudinal and transversal Φ-dependent masses analogously to (2.81):

m2
L(Φ) =: V ′′(Φ) , m2

T (Φ) =:
V ′(Φ)

Φ
. (7.20)

Since we assume a rotationally symmetric potential, the masses (7.20) only depend on the
modulus of the background. Specializing to the potential (1.1), the masses (7.20) reduce to

m2
L(Φ) =: m2 +

g

2
Φ2 , (7.21)

m2
T (Φ) =: m2 +

g

6
Φ2 . (7.22)
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7.3. Calculation of Propagator

For all calculations in higher orders, we need the propagator Gij(x,x
′) which we derive next.

It is defined as a generalization of (4.41) by the functional inverse of the integral kernel (7.9)

∫

dDx′ G−1
ij (x,x′) Gjk(x

′,x′′) = δik δ(x − x′′) . (7.23)

Inserting (7.12) and (7.20) into (7.9), the decomposition of the integral kernel into longitu-
dinal and transversal parts reads

G−1
ij (x,x′) =

{

PL
ij

[

−∆x +m2
L(Φ)

]

+ P T
ij

[

−∆x +m2
T (Φ)

]

}

δ(x − x′) . (7.24)

The coefficients of the Fourier transform

G−1
ij (x,x′) =

∫

dDk

(2π)D
G−1
ij (k) e−ık(x−x′) . (7.25)

can therefore similarly be written as a sum of longitudinal and transversal contributions

G−1
ij (k) = PL

ij

[

k2 +m2
L(Φ)

]

+ P T
ij

[

k2 +m2
T (Φ)

]

. (7.26)

Inserting the Fourier representations

Gjk(x
′,x′′) =

∫

dDk′

(2π)D
Gjk(k) e−ık

′(x′−x′′) , (7.27)

δ(x − x′′) =

∫

dDk

(2π)D
e−ık(x−x′′) , (7.28)

as well as (7.25) into (7.23) and performing the x′- and k′-integrations, we obtain

∫

dDk

(2π)D
G−1
ij (k)Gjk(k) e−ık(x−x′′) =

∫

dDk

(2π)D
δik e

−ık(x−x′′) . (7.29)

Both integrands imply the relation

G−1
ij (k)Gjk(k) = δik . (7.30)

Because of orthonormality, the Fourier transform of the propagator has a decomposition into
longitudinal and transversal part analogously to the integral kernel (7.26)

Gij(k) = PL
ij GL(k) + P T

ij GT (k) , (7.31)

which enables us to determine longitudinal and transversal propagators in Fourier space:

GL(k) =
1

k2 +m2
L(Φ)

, GT (k) =
1

k2 +m2
T (Φ)

. (7.32)
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With respect to (7.26) and (7.31), the full propagator results in

Gij(x,x
′) = PL

ij GL(x,x
′) + P T

ij GT (x,x′) , (7.33)

with the longitudinal and transversal parts

GL(x,x
′) =

∫

dDk

(2π)D
1

k2 +m2
L(Φ)

e−ık(x−x′) , (7.34)

GT (x,x′) =

∫

dDk

(2π)D
1

k2 +m2
T (Φ)

e−ık(x−x′) . (7.35)

7.4. Effective Potential in Second Loop Order

Now we come back to the interaction part of the effective potential (7.6). The expectation
values are reduced to products of the propagator (7.33) by applying Wick contractions and
we obtain two second-order terms analogously to (4.39). In order to attribute them to
Feynman diagrams, we briefly transfer the Feynman rules (4.40) and (4.42) to the present
case of a rotationally symmetric potential V (Φ) consisting of N constant background fields
Φ≡(Φ1,Φ2, · · · ,ΦN ) :

(1) All vertices and their outgoing lines are denoted arbitrarily.

(2) A propagator Gij(x,y) corresponds to a line connecting lines i and j between the
vertices x and y

x x′
i j ≡ Gij(x,x

′) , (7.36)

with the propagator defined by (7.33)–(7.35).

(3) n outgoing lines from a vertex x represent the integration

j

i m

k

x .
.
. ≡ −Vijk···m(Φ)

∫

dDx (7.37)

over all propagators connected with the vertex x and the partial derivatives defined in
(7.5).

With regard to (7.36) and (7.37), we identify the second-order diagrams which have to be
one-particle irreducible with

= −Vijkl(Φ)

∫

dDx Gij(x,x) Gkl(x,x) , (7.38)

Φ Φ = Vijk(Φ) Vlmn(Φ)

∫

dDx

∫

dDx′ Gil(x,x
′) Gjm(x,x′) Gkn(x,x

′) . (7.39)
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Our proceeding is the same as the one in quantum mechanics: we express the higher deriva-
tives in terms of projection operators, decompose the propagators into longitudinal and
transversal parts and perform all contractions of the resulting projection operators. To this
end, we calculate the third and fourth derivatives of the rotationally symmetric potential
V (Φ) in accordance with (7.5), yielding

Vijk(Φ) = PL
ijk V

′′′(Φ) + P T
ijk

[

V ′′(Φ)

Φ
− V ′(Φ)

Φ2

]

, (7.40)

Vijkl(Φ) = PL
ijkl V

(4)(Φ) + P T
ijkl

V ′′′(Φ)

Φ
+ PE

ijkl

[

V ′′(Φ)

Φ2
− V ′(Φ)

Φ3

]

. (7.41)

Here, we have introduced the projection operators of third order

PL
ijk :=

Φi Φj Φk

Φ3
, P T

ijk := δij
Φk

Φ
+ δik

Φj

Φ
+ δjk

Φi

Φ
− 3PL

ijk , (7.42)

and of fourth order

PL
ijkl =

Φi Φj Φk Φl

Φ4
, (7.43)

P T
ijkl = δij

ΦkΦl

Φ2
+ δik

ΦjΦl

Φ2
+ δil

ΦjΦk

Φ2
+ δjk

ΦiΦl

Φ2
+ δjl

ΦiΦk

Φ2
+ δkl

ΦiΦj

Φ2
− 6PL

ijkl , (7.44)

PE
ijkl = δij δkl + δik δjl + δil δjk − 3PL

ijkl − 3P T
ijkl . (7.45)

Their properties correspond to those of the operators (2.121)–(2.127) in quantum statistics
after replacing Xi → Φi. Inserting (7.33) and (7.41) into (7.38), the contractions of the
projection operators yield

= −
∫

dDx

{

G2
L(x,x)V (4)(Φ) + (N2 − 1)G2

T (x,x)

[

V ′′(Φ)

Φ2
− V ′(Φ)

Φ3

]

+ 2 (N − 1)GL(x,x)GT (x,x)

[

V ′′′(Φ)

Φ
− 2 V ′′(Φ)

Φ2
+

2 V ′(Φ)

Φ3

]}

. (7.46)

The x-integration merely leads to a volume factor v since all propagators are local. The
remaining momentum integrals (7.34) and (7.35) amount to simple Feynman integrals (5.5),
thus (7.46) results in

= − v
Γ2
(

1 −D/2
)

(4π)D

{

V (4)(Φ)
[

m2
L(Φ)

]D−2

+ 2 (N − 1)

[

V ′′′(Φ)

Φ
− 2 V ′′(Φ)

Φ2
+

2 V ′(Φ)

Φ3

]

[

m2
L(Φ)

]D/2−1 [
m2
T (Φ)

]D/2−1

+ (N2 − 1)

[

V ′′(Φ)

Φ2
− V ′(Φ)

Φ3

]

[

m2
T (Φ)

]D−2

}

. (7.47)
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Specializing (7.47) to the potential (1.1), we obtain

= − v
Γ2
(

1 −D/2
)

(4π)D
g

{

[

m2
L(Φ)

]D−2
+
N2 − 1

3

[

m2
T (Φ)

]D−2

+
2 (N − 1)

3

[

mL(Φ)
]D/2−1 [

mT (Φ)
]D/2−1

}

, (7.48)

with the longitudinal and transversal mass (7.21) and (7.22), respectively. For N =1 field,
(7.48) coincides with our previous result (4.49).

In order to calculate the sunset diagram (7.39), we insert (7.33) and (7.40) and perform all
contractions of the projection operators, yielding

Φ Φ =

∫

dDx dDx′

{

G3
L(x,x

′)
[

V ′′′(Φ)
]2

+ 3 (N − 1)GL(x,x
′)G2

T (x,x′)

[

V ′′(Φ)

Φ
− V ′(Φ)

Φ2

]2}

≡
[

V ′′′(Φ)
]2
J1(D) + 3 (N − 1)

[

V ′′(Φ)

Φ
− V ′(Φ)

Φ2

]2

J2(D) . (7.49)

The integral J1(D) coincides with the normal sunset integral (D.1), where the mass M2 has
to be replaced by m2

L(Φ)

J1(D) =

∫

dDx dDx′
∫

dDk dDk′ dDk′′

(2π)3D

e−ı(k+k′+k′′)(x−x′)

[

k2 +m2
L(Φ)

] [

k′2 +m2
L(Φ)

] [

k′′2 +m2
L(Φ)

]

= v

∫

dDk dDk′

(2π)2D

1

k2 +m2
L(Φ)

1

k′2 +m2
L(Φ)

1

(k + k′)2 +m2
L(Φ)

(7.50)

≡ v I(D) . (7.51)

The second integral J2(D) differs from J1(D) in so far as both longitudinal and transversal
masses occur, which complicates the calculation crucially

J2(D) =

∫

dDx dDx′
∫

dDk dDk′ dDk′′

(2π)3D

e−ı(k+k′+k′′)(x−x′)

[

k2 +m2
L(Φ)

] [

k′2 +m2
T (Φ)

] [

k′′2 +m2
T (Φ)

]

= v

∫

dDk dDk′

(2π)2D

1

k2 +m2
L(Φ)

1

k′2 +m2
T (Φ)

1

(k + k′)2 +m2
T (Φ)

≡ v I
(

m2
L(Φ), m2

T (Φ), m2
T (Φ)

)

. (7.52)

Therefore, the evaluation of (7.52) is relegated to Appendix E. Both the normal sunset J1(D)
and the integral J2(D) have a pole for D=3. We adopt the result from (E.59) in ε-expansion
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for D=3+ε

J2(D = 3 + ε) = − v

32π2

1

ε
+

v

32π2

{

−γ + 1 + ln 4π + ln
mL(Φ)

µ

− ln

(

2mT (Φ) −mL(Φ)

µ

)

− 2 ln

(

mL(Φ) + 2mT (Φ)

µ

)

}

+ O(ε) . (7.53)

Finally, we insert (D.15), (7.51), and (7.53) into (7.49) and specialize in the potential (1.1):

Φ Φ =
g2 Φ2 v

32 π2

{

− 1

ε
− γ + 1 + ln

4π

9
− 2 ln

mL(Φ)

µ
+
N − 1

3

[

− 1

ε
− γ + 1

+ ln 4π + ln
mL(Φ)

µ
− ln

(

2mT (Φ) −mL(Φ)

µ

)

−2 ln

(

mL(Φ) + 2mT (Φ)

µ

)

]}

+ O(ε) . (7.54)

Note that for N=1 field, (7.54) reduces to our previous result (5.18).

7.5. Renormalization of Effective Potential

The divergent part of (7.54) does not depend on the number N of field components and
is, thus, analogous to the one in the case of N = 1 field (5.18). Hence, we may use our
previous renormalization calculation (5.20). Inserting (7.19), (7.48), and (7.54) into (5.19),
the renormalized effective potential in second loop order for D = 3 dimensions and volume
v=1 results in

V
(r)
eff (Φ) =

1

2
m2
r Φ2 +

g

24
Φ4 − ~

12 π

{

m3
L(Φ) + (N − 1)m3

T (Φ)

}

+
~

2 g

128 π2

{

m2
L(Φ) +

N2 − 1

3
m2
T (Φ) +

2 (N − 1)

3
mL(Φ)mT (Φ)

}

+
~

2 g2Φ2

384 π2

{

2 ln
mL(Φ)

µ
− ln

4π

9
− 1 + γ − N − 1

3

[

− γ + 1 + ln 4π + ln
mL(Φ)

µ

− ln

(

2mT (Φ) −mL(Φ)

µ

)

− 2 ln

(

mL(Φ) + 2mT (Φ)

µ

)

]}

. (7.55)

Here, we have used again the artificial smallness parameter ~. In the case of N=1 field, this
result coincides with (5.21) as required.
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Statistical Field Theory

Now we proceed to VPT in statistical field theory. At the beginning of this chapter, we
argue that an optimization of the effective potential requires its resummation. Afterwards,
we apply VPT to the renormalized effective potential in D=3 dimensions. As explained in
Chapter 5, we have renormalization invariance as we are dealing with a superrenormalizable
theory. Thus, we cannot obtain a unique effective potential which would yield a unique
ground-state energy. The only actual numerical quantity we might extract from the effective
potential is the condensation energy Ec which is invariant with respect to renormalization.
This quantity can immediately be read off from a potential by means of the difference between
zero and the minimum. Ground-state energies obtained from the optimization of the effective
potential are not significant and can therefore not be compared with numerically calculated
ones as done in quantum mechanics. However, we apply VPT nevertheless to investigate
whether this is, in principle, possible. Analogously to quantum mechanics, we choose one
and two variational parameters, which corresponds to the effective potential for one and for
several fields. Subsequently, we check whether the phase transition is still continuous after
renormalizing and resumming the effective potential. At the end of this chapter, we consider
the large-N limit and show that the result from variational resummation passes into the one
obtained from the Hubbard-Stratonovich transformation.

8.1. Necessity of Resummation

Without any variational parameters, the effective potential could merely be optimized with
respect to the background field Φ. This, however, is impossible since the effective potential
turns out to diverge when it is evaluated at the optimal background field. For this reason,
it is indispensable to resum it, which we demonstrate in this section.

We try then to optimize the unresummed effective potential by means of the usual procedure
[26]. To this end, we take the first derivative of the effective potential (7.55) with respect
to Φ2. This is more reasonable than differentiating it regarding Φ, which would include the
solution Φ = 0 belonging to the normal phase. Afterwards, we expand the square of the
background in powers of ~ up to the second order

Φ2 = Φ2
0 + ~ Φ2

1 + ~
2 Φ2

2 + · · · , (8.1)

and insert this ansatz into the derivative of the effective potential. The resulting expression
is expanded up to the second order in ~ and set to zero, yielding an equation of the form

∂ Veff(Φ)

∂ Φ2
= C0(Φ

2
0) + ~C1(Φ

2
0,Φ

2
1) + ~

2C2(Φ
2
0,Φ

2
1,Φ

2
2) + O(~3)

!
= 0 . (8.2)
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The explicit expressions of the coefficients in (8.2) read

C0(Φ
2
0) = m2 +

g

6
Φ2

0 , C1(Φ
2
0,Φ

2
1) =

g

6
Φ2

1 −
g

12 π

[

N − 1

2
mT (Φ0) −

3

2
mL(Φ0)

]

, (8.3)

C2(Φ
2
0,Φ

2
1,Φ

2
2) =

g2

192 π2

{

γ − 1 − ln
4π

9
+ lnm2

L(Φ0) +
N − 1

3

[

γ − 1 − ln 4π

+ ln
[

2m2 +m2
T (Φ0)

]

+ ln
[

2mT (Φ0) +mL(Φ0)
]

− lnmL(Φ0)

]}

g2

128 π2

{

1 +
N2 − 1

9
+
N − 1

3

mT (Φ0)

mL(Φ0)
+
N − 1

9

mL(Φ0)

mT (Φ0)

}

+
g2Φ2

0

384 π2

{

1

m2
L(Φ0)

+
N − 1

3

[

1

6m2 + 3m2
T (Φ0)

− 1

2m2
L(Φ0)

+
2mL(Φ0) + 3mT (Φ0)

6mL(Φ0)mT (Φ0)
[

2mT (Φ0) +mL(Φ0)
]

]}

+
g

6
Φ2

2 −
g2Φ2

1

12 π

[

N − 1

24mT (Φ0)
− 3

8mL(Φ0)

]

, (8.4)

with the longitudinal and transversal masses defined in (7.21) and (7.22), respectively. Hence,
(8.2) leads to a system of three equations Ci=0, i=0, 1, 2, each corresponding to the respec-
tive order of ~. This system for the extremizing background Φ can be solved consecutively.
The first two equations (i=0, 1) are solved without further problems. With regard to (8.3),
they lead to the solutions

Φ2
0 = −6m2

g
, Φ2

1 =
3
√
−2m2

4 π
. (8.5)

However, if we insert these solutions into the second-order coefficient (8.4), it becomes infi-
nite. This matter of fact becomes obviously when we take (7.22) into account and identify
the solution of zeroth order in (8.5) with the transversal mass m2

T (Φ0) being zero. Since this
is the very same mass that is also written in the denominator in (8.4), the coefficient C2 has
a pole. Thus, the second-order contribution to the background becomes infinite and we have
to resum the effective potential if we wish to proceed to higher loop orders.

8.2. Variational Resummation with One Parameter

In order to apply VPT with one variational parameter, we consider the effective potential for
N=1 real field. This case corresponds to D=1 dimension in quantum mechanics. A higher
number of fields would require two variational parameters. During the following calculations,
we return to the renormalized effective potential (5.21) and omit the superscript r which
distinguishes the renormalized potential from the unrenormalized one. Hence, we start with

Veff(Φ) =
1

2
m2 Φ2 +

g

24
Φ4 − ~

12 π

(

M2
)3/2

+
~

2 g

128 π2
M2

+
~

2 g2 Φ2

384 π2
ln
M2

µ2
− ~

2 g2 Φ2

384 π2

(

ln
4π

9
+ 1 − γ

)

+ O(~3) , (8.6)
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Figure 8.1.: Optimized variational parameter (a) and optimized effective potential (b) for
the effective potential (8.9) in second loop order (N = 1) with coupling constants g = 0.4,
g=0.6, g=1, and g=2.

where M2 is the Φ-dependent mass (4.26). In the following, we set the mass parameter
µ=1. In statistical field theory, the mass m plays the role of the frequency ω in quantum
mechanics, see Section 4.2. Consequently, the square-root substitution (3.17) now refers to
the mass. Analogously to (3.25), we choose the Φ-dependent mass (4.26)

M −→ M
√

1 + ~ r , (8.7)

r =
1

~

M2 −M2

M2
. (8.8)

Our proceeding is as follows: we insert (8.7) into (8.6) and expand the resulting expression
up to the second order with respect to ~. Afterwards, we resubstitute (8.8), yielding

Veff(Φ,M) =
1

2
m2 Φ2 +

g

24
Φ4 +

~

24 π
M3 − ~M2

8 π
M − ~ gΦ2

16 π
M +

~
2 g

128 π2
M2

− ~
2 g2 Φ2

384 π2

(

ln
4π

9
+ 1 − γ

)

+
~

2 g2 Φ2

384 π2
lnM2 + O(~3) . (8.9)

Calculating the first derivative of (8.9) with respect to M and setting it to zero, we obtain
the equation

∂ Veff(Φ,M)

∂M =
~

8 π
M2 − ~M2

8 π
− ~ gΦ2

16 π
+

~
2 g

64 π2
M +

~
2 g2 Φ2

192 π2M
!
= 0 . (8.10)

The result of the numerical evaluation is shown in Figure 8.1 a for different values of the
coupling constant g. In contrast to the corresponding quantum mechanical results in Figure
3.3, the optimized parameter turns out to be continuous for all coupling strengths. The
effective potential yields real values for all Φ and is plotted in Figure 8.1 b. It reflects the
typical shape of the double-well, the smaller the coupling constant, the more distinctive the
barrier in the middle.
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Figure 8.2.: Optimized longitudinal (a) and transversal (b) variational parameters for the
effective potential (8.14) in second loop order (N=2) with coupling constant g=2.
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Figure 8.3.: Optimized effective potential (8.14) in second loop order (N = 2) for coupling
constants g=0.4, g=0.6, g=1, and g=2.

8.3. Variational Resummation with Two Parameters

In this section, we apply VPT with two variational parameters. To this end, we consider the
effective potential for N=2 real fields, which reads in accordance with (7.55)

Veff(Φ) =
1

2
m2Φ2 +

g

24
Φ4 − ~

12 π

{

m3
L(Φ) + m3

T (Φ)

}

+
~

2 g

128 π2

{

m2
L(Φ) + m2

T (Φ)

+
2

3
mL(Φ)mT (Φ)

}

+
~

2 g2 Φ2

384 π2

{

5

3
lnmL(Φ) − ln

4π

9
+

4

3
(γ − 1)

−1

3

[

ln 4π − ln
(

2mT (Φ) −mL(Φ)
)

− 2 ln
(

mL(Φ) + 2mT (Φ)
)

]}

. (8.11)
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Here, we have again set the mass parameter µ= 1. The effective potential (8.11) contains
longitudinal and transversal Φ -dependent masses m2

L(Φ) and m2
T (Φ) as defined in (7.21) and

(7.22), respectively. For this reason, it is straightforward to generalize (8.7) and (8.8) to two
variational parameters MM , MT by means of

mL(Φ) −→ ML

√

1 + ~ rL , mT (Φ) −→ MT

√

1 + ~ rT , (8.12)

rL =
1

~

m2
L(Φ) −M2

L

M2
L

, rT =
1

~

m2
T (Φ) −M2

T

M2
T

. (8.13)

Then, we insert (8.12) into (8.11), expand the resulting expression up the to second order
in ~ and apply (8.13), which gives us the effective potential as a function of the variational
parameters

Veff(Φ,ML,MT ) =
1

2
m2 Φ2 +

g

24
Φ4 − ~

8 π

[

m2
L(Φ)ML + m2

T (Φ)MT

]

+
~

24 π

[

M3
L + M3

T

]

+
~

2 g

128 π2

[

M2
L + M2

T +
2

3
MLMT

]

+
~

2 g2 Φ2

384 π2

{

5

3
lnML − ln

4π

9
+

4

3
(γ − 1)

− 1

3

[

ln 4π − ln
(

2MT −ML

)

− 2 ln
(

ML + 2MT

)

]}

. (8.14)

We obtain the optimization equations for (8.14) by taking the first derivative with respect
to both variational parameters ML and MT and setting them to zero

∂ Veff(Φ,ML,MT )

∂ML
=

~

8 π

[

M2
L −m2

L(Φ)
]

+
~

2 g

64 π2

[

ML +
1

3
MT

]

+
~

2 g2 Φ2

1152 π2

[

5

ML
− 2ML

4M2
T −M2

L

+
1

ML + 2MT

]

!
= 0 , (8.15)

∂ Veff(Φ,ML,MT )

∂MT
=

~

8 π

[

M2
T −m2

T (Φ)
]

+
~

2 g

64 π2

[

MT +
1

3
ML

]

+
~

2 g2 Φ2

576 π2

[

4MT

4M2
T −M2

L

+
1

ML + 2MT

]

!
= 0 . (8.16)

The actual simultaneous evaluation of (8.15) and (8.16) is done numerically. As it is shown
in Figure 8.2, the plots of the optimized longitudinal and transversal variational parame-
ters are quite different. The longitudinal parameter 8.2 a is continuous and always positive.
Coming from large Φ, it increases and has a maximum at Φ = 0. This is quite remarkable
since the longitudinal parameter remains when choosing N =1 field. In that case, however,
the parameter shows an almost inverse behavior as it is shown in Figure 8.1 a. The transver-
sal parameter in Figure 8.2 b jumps to negative values when approaching the origin, which
does not correspond to a physical solution. Therefore, it is not surprising that the resulting
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optimized effective potential in Figure 8.3 b becomes complex and, thus, non-physical itself
near the origin. But coming from large values of Φ, the effective potential remains real until
the minimum, which is the physically important region. Therefore, we have just continued
the effective potential near the origin by plotting its real part. In spite of the differences
regarding the variational parameter, the optimized effective potential in Figure 8.3 b has the
same qualitative form as the one for N=1 field in Figure 8.1 b.

In contrast to the usual application of VPT [1, Ch. 5], we have applied the square-root
substitutions (3.25) and (8.7) to the X-dependent frequency and the Φ-dependent mass,
respectively. As the reason for this modification we gave the fact that the minima of the
potential are shifted from zero. Such a generalized substitution (8.7) takes phase transitions
into account. In the ordered phase, we can distinguish between longitudinal and transversal
directions due to symmetry breakdown. Hence, we have two masses (7.21) and (7.22) and two
variational parameters (8.12), each corresponding to the respective direction. In the O(N)-
symmetric normal phase, longitudinal and transversal directions are equal and indeed, both
masses (7.21) and (7.22) coincide and one single variational parameter remains.

8.4. Renormalization Invariance

We turn our attention once more to the renormalization invariance. Both results (5.21) and
(6.46) represent two possible renormalized effective potentials for N=1. Since the only term
they differ in does not depend on the mass, it is not affected by the square-root substitution
(8.7) and vanishes consequently in the first derivative (8.10). For this reason, the optimized
variational parameter M(opt) is independent of the chosen renormalization. However, when
we insert M(opt) into the effective potential, different optimized potentials arise: (8.6) is
specified to the renormalization (5.21) and differs from the one we would obtain for (6.46).
Therefore, actual numerical values, for instance for the ground-state energy, have no signi-
ficance. This consideration also holds, of course, for calculations with more than one field
and two variational parameters.

8.5. Verification of Goldstone Theorem

In this section, we briefly check whether the Goldstone theorem is still preserved after renor-
malizing and resumming the effective potential. In accordance with (1.7), we have to verify
that transversal masses, i.e., transversal curvatures, are zero at the minimum Φ0 of the effec-
tive potential. To this end, we calculate the second derivatives of (7.55) and (8.14) with
respect to the background field Φ and extract the transversal contribution by applying the
transversal projection operator (7.10). In both cases, the effective potential is rotationally
symmetric and the minimum is determined by the first partial derivative of the form

∂ Veff(Φ)

∂ Φi

∣

∣

∣

∣

∣

Φ=Φ0

=
Φi

Φ

∂ Veff(Φ)

∂ Φ

∣

∣

∣

∣

∣

Φ=Φ0

!
= 0

Φi 6=0−→ ∂ Veff(Φ)

∂ Φ

∣

∣

∣

∣

∣

Φ=Φ0

= 0 . (8.17)
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Figure 8.4.: Phase transition between the normal phase (a) for m2 =0.0071 and the ordered
phase (b) for m2 = 0.0065 of the effective potential (8.11) in second loop order without
variational resummation (N=2).

Here, we applied that we consider the ordered phase where the field expectation is nonzero.
In terms of the projection operators (7.10), the second derivative of the effective potential
reads

∂2 Veff(Φ)

∂Φi ∂Φj
= PL

ij

∂2Veff(Φ)

∂Φ2
+ P T

ij

1

Φ

∂Veff(Φ)

∂Φ
. (8.18)

Due to (2.73), the longitudinal term in (8.18) vanishes when we apply the transversal pro-
jection operator (7.10). With regard to (2.71), (8.17), and (8.18), we verify the Goldstone
theorem

P T
ij

∂2 Veff(Φ)

∂Φi ∂Φj

∣

∣

∣

∣

∣

Φ=Φ0

= (N − 1)
∂ Veff(Φ)

∂ Φ

∣

∣

∣

∣

∣

Φ=Φ0

= 0 . (8.19)

This calculation is valid for both (7.55) and (8.14). Thus, the Goldstone theorem is still
preserved after renormalization and resummation.

8.6. Landau Expansion of Effective Potential

As already mentioned in the introduction, we can use the Landau expansion to investigate
the order of the phase transition. Although we already know that the transition from the
anharmonic potential to the mexican hat is continuous due to symmetry breakdown, we
shall confirm this matter of fact by means of the Landau expansion and investigate the ac-
tual transition point m2

c . Moreover, we discuss the importance of the sunset term (7.54) in
connection with phase transitions.

We start with the effective potential (8.11), i.e., with N = 2 fields and without variational
parameters. Figure 8.4 shows that there is, indeed, a transition from the normal to the
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Figure 8.5.: Change of sign of the physical mass term for the effective potential in second
loop order (N =2) without (a) and with (b) variational resummation. The roots occur at
m2
c =0.00707 and m2

c =0.00570, respectively, indicating a continuous phase transition from
the normal (m2

ph>0) to the ordered phase (m2
ph<0).

ordered phase. We read off from Figure 8.4 that the transition point lies in the interval
0.0065 < m2

c < 0.0071 for natural units ~ = g = 1. At a first instance, this result is quite
astonishing since the potential itself is clearly separated into two phases at m2 = 0, see
Figure 1.3 a. The coefficient of Φ2 in the effective potential, denoted as physical mass m2

ph/2
or A/2 with respect to (1.28), reads in accordance with (7.55)

m2
ph = 2

∂ Veff(Φ)

∂ Φ2

∣

∣

∣

∣

∣

Φ=0

= m2 − 4 ~ gm

24 π
+

~
2g2

72 π2

− ~
2g2

192 π2

[

1 − γ − lnm2 + ln
4π

9
+

(

1 − γ + ln
4π

9
− 2 lnm

)]

. (8.20)

The root m2
c of (8.20) is numerically calculated to be m2

c =0.00707 for natural units, which
can also be read off from Figure 8.5 a. In accordance with (1.28) and (7.55), we also determine
the coefficient B of Φ4 at the critical point as follows:

B = 24
∂2 Veff(Φ)

∂
(

Φ2
)2

∣

∣

∣

∣

∣

Φ=0,m2=m2
c

= 12 g +
49 g3

864 π2m2
c

− 5 g2

12 πmc

. (8.21)

This coefficient is positive for all values of the coupling constant g as demanded in order to
guarantee stability.
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Figure 8.6.: Phase transition of the effective potential (8.14) in second loop order (N = 2)
after variational resummation between the normal phase (a) with m2 =0.006 and the ordered
phase (b) for m2 =0.005.

8.7. Landau Expansion and Variational Perturbation

Theory

When applying VPT, it is of crucial importance that the character of the phase transition
remains conserved. In order to check this demand, we perform a Landau expansion of the
effective potential (8.14) in second loop order after variational resummation. Afterwards, we
study the resulting order of the phase transition. It is an interesting question whether the
sunset term is indispensable or if it merely shifts the transition point. Therefore, we calculate
a further Landau expansion of the effective potential without sunset term and investigate
again the resulting order of the phase transition.

Starting from the effective potential (8.14) in full second loop order, both parameters ML

and MT have to be expanded in powers of Φ2:

ML = AL +BL Φ2 + CL Φ4 + · · · , (8.22)

MT = AT +BT Φ2 + CT Φ4 + · · · . (8.23)

Inserting this ansatz into the derivatives (8.15) and (8.16) and expanding them in powers of
Φ2 yields equations of the form

∂ Veff(Φ,ML,MT )

∂ML
= K

(0)
L + K

(1)
L Φ2 + K

(2)
L Φ4 + · · · !

= 0 , (8.24)

∂ Veff(Φ,ML,MT )

∂MT

= K
(0)
T + K

(1)
T Φ2 + K

(2)
T Φ4 + · · · !

= 0 . (8.25)

All six coefficients in (8.22) and (8.23) are numerically determined from (8.24) and (8.25) in
a recursive way analogously to Section 8.1. Finally, we reinsert the coefficients (8.22) and
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Figure 8.7.: The effective potential in second loop order (N=2) without sunset after varia-
tional resummation shows no continuous phase transition. We have chosen m2 = 0.005 (a)
and m2 =0 (b). For m2 being negative, the effective potential becomes even unstable.

(8.23) into (8.14). The resulting effective potential is plotted in Figure 8.6: the postulated
transition of second order is clearly visible and can be located at m2

c =0.00570 by numerical
methods or graphically as it is done in Figure 8.5 b. However, the transition point is slightly
shifted compared to the calculations without variational parameters where it was found from
(8.20) at m2

c =0.00707 .

Now, we investigate the importance of the sunset term. Therefore, we neglect this term
when performing the Landau expansion and and check subsequently, whether the transition
remains continuous. We start again from (8.14) but omit the sunset terms ∼ g2. Thus, we
have

Veff(Φ,ML,MT ) =
1

2
m2Φ2 +

g

24
Φ4 − ~

8π

[

m2
L(Φ)ML +m2

T (Φ)MT

]

+
~

24π

[

M3
L + M3

T

]

+
~

2

8

g

16π2

[

M2
L + M2

T +
2

3
MLMT

]

. (8.26)

Now we derive the Landau expansion in exactly the same manner as before. The solutions of
the effective potential, however, turn out to be unstable for small masses and yield no actual
physical result. Even close to the transition point when taking the sunset into account, no
symmetry breaking can be observed. Figure 8.7 depicts a typical situation when coming
from the normal phase. Thus, we conclude that the sunset term is of essential importance
since it is responsible for conserving the character of the phase transition when applying
VPT.

8.8. Field Expectation and Shift of Critical Point

In Ref. [39], the critical temperature shift for a homogeneous Bose-Einstein condensate has
been calculated up to five loops as well as the perturbation expansion for the field expectation
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value

Φ2 =

∫

d3k

(2π)3

1

k2 +m2
. (8.27)

We check our calculations by further evaluating (8.27) for the shifted physical mass (8.20)
instead of the bare mass m2. The integral (8.27) has been calculated in (5.5), thus it remains
to expand the result in g, yielding

Φ2 = −m

4π
+

(N + 2) g

12(4π)2
− (N + 2) g2

36(4π)3m

1

8

[

−2 + 4 γ+N+8 lnm− 4 ln
4π

9

]

+ O(g3). (8.28)

The result coincides with the expansion in Ref. [39] only in the leading order. This is due
to the fact that we started our calculations from the effective potential rather than from
the effective action. Hence, we miss the contributions in the propagator that result from
the renormalization of the wave function. These terms are of second and higher order with
respect to g and therefore lead to deviations of the second-order term in (8.28) from the
result in Ref. [39]. Moreover, we have an additional term linear in g since (8.28) is not
expressed in terms of the physical mass following from (8.20). If we invert (8.20) and replace
the bare mass m2 by m2

c in (8.28), the first-order term vanishes.

In the introduction, we have mentioned that the order parameter is usually chosen to be
zero in one phase and non-zero in the other. This matter of fact shall be verified here for
the background Φ after variational resummation. To this end, we have plotted the minimum
of the effective potential (8.14) as a function of the mass m2. The result in Figure 8.8 a
reproduces exactly the typical behavior of an order parameter. The transition point is equal
to the one calculated in Figure 8.5 a.

We record the fact that the Landau expansion with and without resummation confirms the
continuous transition even though at an other point than expected from the classical point
of view. Indeed, quantum fluctuations shift the critical point as we shall now investigate
in detail. The quadratic coefficient of the bare φ4-potential (1.1) goes, of course, to zero
for vanishing mass. Thus, the phase transition takes place at m2 = 0. Taking quantum
corrections into account, the quadratic coefficients equals (8.20), pointing out that quantum
fluctuations induce corrections that do not vanish for small masses m2. In fact, these cor-
rections diverge to minus infinity due to the logarithmic term. This can also be read off from
Figure 8.5. The bare mass m2 is therefore shifted to a physical mass m2

ph which determines
the critical point. Since the leading correction is negative, the phase transition proceeds at
m2

ph =0 but m2>0. This result is an artifact of renormalization. Normally, adding a quartic
term φ4 means actually increasing the curvature, i.e., the effective coefficient of φ2. Thus,
we expect the original φ2-coefficient to become smaller in order to yield a critical value.
Regarding renormalization, it becomes the other way round: the trace-log term which yields
the first-order correction is, of course, divergent. After dimensional regularization, the finite
contribution in (7.55) is negative

1

2
Tr lnG−1 dim. reg.

=⇒ − ~

12π

[

m3
L(Φ) + (N − 1)m3

T (Φ)
]

. (8.29)
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Figure 8.8.: The field expectation (a) of the effective potential (8.14) for g= 1 (N = 2) as
a function of the mass shows the typical behavior of an order parameter. It is zero in the
normal and non-zero in the ordered phase. The transition point at m2

c is shifted (b) with
increasing coupling strength g.

Therefore, the mass term is shifted contrary to our intuition. The resulting transition point
m2
c as a function of the coupling strength g is plotted in Figure 8.8 b. As it is shown in Figure

8.5, the transition point is slightly shifted to a smaller critical mass m2
c after resummation.

It is impossible to attach a physical importance to this fact since it is likewise affected by
renormalization.

Thus, we conclude that, at least, our qualitative finding m2
c > 0 is in accordance with the

positive shift for a homogeneous Bose-Einstein condensate in the literature. There, both an
analytical VPT calculation up to five [39] and seven [40] loops agree well with high precision
Monte Carlo simulations [41–43].

8.9. Large-N Limit

The large-N limit allows the calculation of the effective potential without resummation. It
is based on the so-called Hubbard-Stratonovich transformation

√

π

λ
eµ

2/4λ =

∫ ∞

−∞

dσ e−λσ
2−µσ (8.30)

with a scalar field σ. In order to derive the effective potential of the mexican hat (1.1) by
means of a Hubbard-Stratonovich transformation we start from the partition function

Z =

[

N
∏

n=1

∫

dφn

]

e−A[φ] (8.31)
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Figure 8.9.: Phase transition (a) of the effective potential (8.44) from the normal (m2 =0.03)
to the ordered phase (m2 = 0.02) in the large-N limit. The actual transition point (b) is
determined to be m2 = 0.02375. The physical mass m2

ph/2 denotes the coefficient of Φ2 in
the effective potential.

with the action

A[φ] =

∫

dDx
N
∑

n=1

1

2
φn(x)

[

−∆ +m2
]

φn(x) +
g

24

∫

dDx
[

φ2(x)
]2
. (8.32)

The Hubbard-Stratonovich transformation enables us to express the interaction part of the
potential with a functional integral over an additional field σ(x). A functional version of
(8.30) yields
√

π

a
exp

{

− b2

4a

∫

dDx
[

φ2(x)
]2

}

=

∫

Dσ exp

{

−
∫

dDx
[

a σ2(x) + ı b σ(x) φ2(x)
]

}

. (8.33)

Note, that from three possible contractions of φ4 in (1.35), merely the Hartree term is taken
into account. Due to (1.36), the Hubbard-Stratonovich transformation is therefore only ex-
act in the limit N→∞.

In order to apply the Hubbard-Stratonovich transformation (8.33) to the partition function
(8.31) with the action (8.32), we define the constants a and b by

b =
1

2
, a = − 3

2 g
. (8.34)

Furthermore, the overall factor on the left-hand side of (8.33) is absorbed into the functional
integration measure Dσ. Now, the ansatz (8.33) can directly be applied to (8.31) and (8.32),
yielding

Z =

∫

Dσ exp

{

− 3

2 g

∫

dDx σ2(x)

}[

N
∏

n=1

∫

dφn

]

× exp

{

−
∫

dDx
N
∑

n=1

1

2
φn(x)

[

−∆ +m2 + ı σ(x)
]

φn(x)

}

. (8.35)
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Analogously to all previous calculations of the effective potential, we apply the background
method, but this time for both the φ- and the σ-field

φn(x) = Φn + δ φn(x) , (8.36)

σ(x) = −ıΣ + δ σ(x) . (8.37)

The complex ansatz (8.37) compensates for (8.33) since altogether we have to obtain a real
result. As explained in Section 2.4, terms linear in δφ vanish. Furthermore, we omit all
fluctuations δσ at any order. We introduce a new coupling constant g̃=gN and consider the
limit N →∞. This is completely analogous to the saddle point approximation in Section
2.3. Inserting (8.36) and (8.37) into (8.35) leads to the partition function

Z = exp

{

3N v

2 g̃
Σ2

}

exp

{

−v

N
∑

n=1

1

2
Φn

[

m2 + Σ
]

Φn

}

× exp

{

−N
2

Tr ln
[

−∆ +m2 + Σ
]

}

=: exp
{

−Veff(Φ,Σ)
}

. (8.38)

Thus, the effective potential divided by the volume v reads

Veff(Φ,Σ) = − 3N

2 g̃
Σ2 +

1

2

(

m2 + Σ
)

Φ2 +
N

2

∫

dDk

(2π)D
ln
(

k2 + m2 + Σ
)

. (8.39)

We define

λ := m2 + Σ (8.40)

to be a kind of effective mass corresponding to the variational parameter in the previous
sections. The remaining integral in (8.39) is calculated applying (4.24) and we obtain

Veff(Φ, λ) = − 3N

2 g̃
λ2 − 3N

2g̃
m4 +

3N

g̃
m2 λ +

1

2
λΦ2 − N

2

1

(4π)D/2
Γ
(D

2

)

λD/2 . (8.41)

The effective potential (8.41) has to be optimized with respect to both the background field
Φn and the mass λ

∂ Veff(Φ, λ)

∂ Φn

= λΦn
!
= 0 ⇒

{

Φn = 0 normal phase ,

Φn 6= 0 , λ = 0 ordered phase ,
(8.42)

∂ Veff(Φ, λ)

∂ λ
= −3N

g̃
λ +

3N

g̃
m2 +

1

2
Φ2
n − N D

(4π)D/2
Γ
(D

2

)

λD/2−1 !
= 0 . (8.43)

Now we specify in D = 3 dimensions where neither m nor g̃ has to be renormalized [35,
Ch. 18]. The effective potential (8.41) becomes

Veff(Φ, λ) = − 3N

2 g̃
λ2 − 3N

2g̃
m4 +

3N

g̃
m2 λ +

1

2
λΦ2 − N

12π
λ3/2 . (8.44)
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We insert the solution of (8.43) into (8.44) and plot the resulting potential in the large-N
limit with constant N/g̃ = 1 for different values of m2 in order to find a phase transition
analogously to Section 8.6. Indeed, Figure 8.9 shows the transition from normal to ordered
phase at m2 =0.02375. Analogously to the Landau expansion with and without variational
resummation in Figure 8.5, we have a negative shift resulting in a transition at m2>0, which
confirms our previous results.

Finally, we verify explicitly that in the large-N limit, our results from variational resum-
mation pass into the one from Hubbard-Stratonovich. We start from the effective potential
(7.55) with ~=1 and take all terms up to the first loop order into account, i.e.,

Veff(Φ) =
1

2
m2 Φ2 +

g

24
Φ4 − 1

12 π

{

m3
L(Φ) + (N − 1)m3

T (Φ)

}

. (8.45)

Since the resummed effective potential differs from the unresummed one only in the second
and higher orders, (8.45) represents yet the optimized effective potential. Taking the limit
N→∞ leads to

Veff(Φ)
N→∞

=
1

2
m2 Φ2 +

g

24
Φ4 − N

12 π
m3
T (Φ) . (8.46)

Now we start from the result (8.44) of the Hubbard-Stratonovich transformation. Resubsti-
tuting the coupling constant g and (8.40) into (8.44), we obtain

Veff(Φ) = − 3

2 g
Σ2 +

1

2

(

m2 + Σ
)

Φ2 − N

12 π

(

m2 + Σ
)3/2

. (8.47)

We have already remarked that the Hubbard-Stratonovich background field Σ plays the role
of the variational parameter. Now we state more precisely: the parameter λ defined in (8.40)
corresponds to the transversal mass m2

T (Φ)

λ ↔ m2
T (Φ) . (8.48)

This is in accordance with the fact that for large N , the longitudinal direction can be
neglected compared to the transversal one. Moreover, we identify in comparison of (7.22),
(8.40), and (8.48) the Hubbard-Stratonovich background field to be Σ=gΦ2/6. Inserting this
identity into (8.47), we obtain immediately the same result as (8.46). Thus, we conclude this
chapter with the result that VPT is indeed the continuation of the Hubbard-Stratonovich
transformation to an arbitrary number N of fields.
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9. Summary and Outlook

In this thesis, we have considered the φ4-potential (1.1) in quantum mechanics as the low-
temperature limit of quantum statistics and in statistical field theory. In both cases, we
have calculated the associated effective potential and applied variational perturbation theo-
ry (VPT). The reasons for doing so are different in both cases. Within quantum mechanics,
it was our intention to investigate how the variational approach is, in principle, applied to
the mexican-hat potential. It turned out, for instance, that due to the non-convexity of the
potential, it is reasonable to apply Kleinert’s square-root trick to the X-dependent frequen-
cies ω(X) rather than to the bare frequency ω of the potential itself as it is done in the
anharmonic case, see Eq. (3.25). This generalization from the procedure in Ref. [1, Ch. 5]
was tested here in the more elementary context of quantum mechanics before applying it to
statistical field theory.

The resummation of the effective potential has to be successful for all coupling strengths.
With regard to this requirement, VPT is exceedingly appropriate since it transforms a di-
vergent weak-coupling series into a convergent strong-coupling series [1, Ch. 5]. In order
to assess the accuracy of VPT, we have calculated the ground-state energies from the opti-
mized effective potential of the double-well. By doing so, we found that the importance of
the sunset term depends on the shape of the potential: as shown in Tables A.1 and A.2, both
approximations with and without sunset term yield the same result as long as the minimum
of the optimized effective potential is located at X= 0. This is due to the fact that the
sunset term goes with X2 and vanishes therefore at X= 0. For small coupling constants,
however, the optimized effective potential of the double-well in Figure 3.2 has its minima at
X 6=0. In this case, the approximations are slightly improved by taking the sunset diagram
into account as shown in Figure 3.6. Moreover, this figure shows that the third loop order
improves the results crucially. This finding is in accordance with the exponential convergence
of VPT [6, Ch. 19] regarding the loop order, which makes the approach exceedingly power-
ful. Furthermore, we have verified the convergence with regard to the increasing number of
dimensions D→∞ for a fixed loop order. This matter of fact is shown in Figure 3.10 and
reproduces the analogy to the large-N limit in statistical field theory where the φ4-theory is
exactly solvable [35, Ch. 18].

In the second part of this thesis, we have treated statistical field theory, taking advantage
of the experiences we gained in the previous quantum statistical part. We have derived the
effective potential (7.55) in φ4-theory in second loop order for an arbitrary spatial dimension
D. However, we encounter singularities for D = 3 that typically arise in statistical field
theory. For this reason, we have applied the standard rules of regularization and renor-
malization. Here, we have benefited from the fact that φ4-theory in D = 3 dimensions is
superrenormalizable and therefore permits us to absorb all divergencies solely by a mass
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9. Summary and Outlook

renormalization (5.20). The renormalization procedure in Chapter 5 by means of dimen-
sional regularization and ε-expansion does not affect the rotational invariance. Thus, we can
apply VPT afterwards, which is symmetry conserving itself. This order of renormalization
and resummation is not self-consistent but as a consequence, the Goldstone theorem is not
violated after performing both renormalization and resummation as it is shown in Section
8.5. Therefore, VPT turns out to be, indeed, a suitable procedure to extend the common
Hartree-Fock-Bogoliubov theory to systems with non-vanishing field expectation. This is an
important result since it affects all bosonic systems.

In contrast to VPT, the well-established Hubbard-Stratonovich transformation merely re-
gards the Hartree term. As soon as we intend to take fluctuations into account, both Fock-
and Bogoliubov-terms have to be included in the theory in order to obtain satisfying re-
sults. For this reason, the Hubbard-Stratonovich transformation is only suitable in the limit
N→∞ which is dominated by the Hartree term. VPT, however, is appropriate to all values
of N . We find an immediate analogy between both approaches if we identify the scalar
Hubbard-Stratonovich background field Σ with a variational parameter in VPT. This con-
nection has explicitly been verified in Section 8.9. In other words, VPT meets the claim
of generalizing the Hubbard-Stratonovich transformation to arbitrary values of N without
violating the Goldstone theorem.

Conserving symmetry is additionally important in connection with phase transitions. The
φ4-theory contains a continuous transition which has to be reproducible throughout all cal-
culations. This matter of fact is verified by means of a Landau expansion in Chapter 8.
We have obtained the continuous transition before and after variational resummation as it
is shown in Figure 8.4 and 8.6, respectively. Furthermore, this calculation reveals the im-
portance of the sunset term in statistical field theory: whereas in quantum mechanics, it is
just a matter of accuracy whether we take the sunset term into account or not, the sunset
turns out to be responsible for the continuous phase transition in statistical field theory, see
Figures 8.6 and 8.7. In principle, we might have calculated the shift of the critical point
where the phase transition takes place. In Section 8.8, we have shown, however, that the
renormalization inevitably affects the point of transition in a non-physical way such that the
result is not meaningful. Even VPT cannot change this lack.

There remain, of course, numerous intentions and ideas that could not be realized within
the framework of this thesis. In the quantum statistical part of this thesis, we have noticed
that calculating the effective potential in higher than second order requires laborious evalua-
tions of Feynman diagrams. There exists a recursion method by C.M. Bender and T.T. Wu
[44,45], that approximatively solves the time-independent Schrödinger equation. It has been
extended to the time-dependent Schrödinger equation [46] as well as to the Fokker-Planck
equation [47]. This method consists of a power series ansatz in the coupling constant for the
energy and a twofold one in the coupling constant and the space coordinate for the wave
function. The coefficients are determined recursively and in doing so, we would obtain the
effective potential without explicitly evaluating the Feynman diagrams. This approach might
have been suitable for our calculations. But since we were mainly interested in statistical
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field theory rather than quantum mechanics, we did not pursue this idea.

Within statistical field theory, there remain more fundamental plans. It is an interesting
question, how far the basic procedure of renormalization and resummation of our theory is
affected when taking finite temperatures into account, for instance. Such an extension of
the theory might be applied to Bose-Einstein condensates. We have drawn a first analogy
in Section 8.8. Moreover, one should turn the attention to the critical exponents which are
defined in the introduction. Whereas they are mostly calculated by coming from the upper
phase [6, Ch. 19], our theory would yield an approach from the lower phase. We did not
pay attention to this point since the second loop order is not sufficient for such applications.
However, this does not imply that VPT cannot yield notable approximations in the next
higher orders. Quite the contrary: due to the exponential convergence of VPT, a few higher
orders are likely to lead to satisfying results.
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A. Ground-State Energy via Shooting

Method and VPT

In this appendix, we list all values for the ground-state energy E0 of the double-well poten-
tial (3.22) and the mexican hat (3.1) in quantum mechanics that have been calculated either
by means of the shooting method or of VPT. The shooting method consists of numerical
integration of the Schrödinger equation (3.3): the ground-state energy E0 is varied in such a
way that the resulting wave function does not diverge. For further details, see Ref. [26], for
instance. First, all results of VPT with one variational parameter are listed, i.e., solutions of
the optimization equations (3.30) in second and third loop order. Values for the second loop
order without sunset have merely been listed as far as they do not coincide with those of
the full second loop order. All values are confronted with those obtained from the shooting
method and we calculate the corresponding deviations. Note, that we have chosen natural
units, i.e. M = ~ = 1 and ω2 = −1.

Going to higher dimensions D = 2, 3, 5, 10 , we have calculated the ground-state energy
with two variational parameters. Furthermore, we apply the shooting method to the D-
dimensional Schrödinger equation (3.4) and compare both results. Table A.4 shows our
results for one variational parameter in D = 2 dimensions. All values for greater coupling
constants coincide with those in Table A.5 and are therefore not repeated.
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A. Ground-State Energy via Shooting Method and VPT

g E0 (VPT) E0 (numeri-
cally)

deviation in
per cent

0.2 0.834367 0.617254 35.17
0.3 0.601156 0.531250 13.16
0.4 0.500018 0.470875 6.19
0.5 0.470176 0.434791 8.14
0.6 0.444508 0.414076 7.35
0.7 0.430807 0.402811 6.95
0.8 0.424383 0.397506 6.76
0.9 0.422584 0.396076 6.30
1.0 0.423829 0.397235 6.70
1.1 0.427131 0.400161 6.74
1.2 0.431849 0.404310 6.81
1.3 0.435978 0.409314 6.51
1.4 0.440770 0.414917 6.23
1.5 0.446129 0.420940 5.98
1.6 0.451891 0.427252 5.77
1.7 0.457938 0.433758 5.58
1.8 0.464182 0.440388 5.40
1.9 0.470557 0.447090 5.25
2.0 0.477014 0.453827 5.11
3.0 0.540958 0.519140 4.21
4.0 0.598905 0.577281 3.75
5.0 0.650428 0.628677 3.46
6.0 0.696634 0.674611 3.27
7.0 0.738548 0.716189 3.12
8.0 0.776964 0.754241 3.01
9.0 0.812487 0.789388 2.93
10.0 0.845577 0.822102 2.86

Table A.1.: VPT ground-state energies of the double-well potential (3.31) in second loop
order. In the third column, the deviations of the VPT results from those of the shooting
method are calculated.
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g E0 (VPT) E0 (numeri-
cally)

deviation in
per cent

0.2 0.687239 0.617254 11.24
0.3 0.636511 0.531250 19.81
0.4 0.549629 0.470875 16.73
0.5 0.492445 0.434791 13.26
0.6 0.460699 0.414076 11.26
0.7 0.442850 0.402811 9, 94
0.8 0.433248 0.397506 8.99
0.9 0.428832 0.396076 8.27
1.0 0.427817 0.397235 7.70
1.1 0.429103 0.400161/ 7.23
1.2 0.431981 0.404310 6.84

Table A.2.: VPT ground-state energies of the double-well potential in second loop order
without sunset (3.26) confronted with the results from the shooting method. For coupling
constants g > 1.2, the VPT results are equal to those when taking the sunset into account,
see Table A.1.
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A. Ground-State Energy via Shooting Method and VPT

g E0 (VPT) E0 (numeri-
cally)

deviation in
per cent

0.1 0.680389 0.679211 0
0.2 0.598912 0.617254 2.97
0.3 0.521212 0.531250 1.89
0.4 0.483383 0.470875 2.66
0.5 0.438392 0.434791 0.83
0.6 0.417701 0.414076 0.86
0.7 0.396135 0.402811 1.66
0.8 0.404597 0.397506 1.78
0.9 0.402255 0.396076 1.56
1.0 0.402938 0.397235 1.44
1.1 0.405094 0.400161 1.23
1.2 0.408835 0.404310 1.11
1.3 0.413518 0.409314 1.03
1.4 0.418863 0.414917 0.95
1.5 0.424673 0.420940 0.89
1.6 0.430808 0.427252 0.83
1.7 0.437164 0.433758 0.79
1.8 0.443667 0.440388 0.75
1.9 0.450259 0.447090 0.71
2.0 0.456900 0.453827 0.68
3.0 0.521645 0.519140 0.49
4.0 0.579611 0.577281 0.40
5.0 0.630905 0.628677 0.36
6.0 0.676787 0.674611 0.32
7.0 0718337. 0.716189 0.30
8.0 0.756376 0.754241 0.28
9.0 0.791520 0.789388 0.27
10.0 0.824236 0.822102 0.26

Table A.3.: VPT ground-state energies of the double-well potential (3.24) in third loop order
compared to the numerical results from the shooting method.

g E0 (numeri-
cally)

E0 (VPT) deviation in
per cent

0.2 0.601954 0.682617 13.40
0.3 0.570219 0.620170 8.76
0.4 0.568540 0.618122 8.72
0.6 0.604169 0.655796 8.55
1.0 0.709640 0.749998 5.69

Table A.4.: VPT ground-state energies of the mexican-hat potential (3.41) in second loop
order (D=2) with one variational parameter confronted with the results from the shooting
method.

106



g E0 (VPT) E0(numerically) deviation in
per cent

0.2 0.657168 0.601954 9.17
0.3 0.616803 0.570219 8.17
0.4 0.612818 0.568540 7.79
0.5 0.625360 0.582583 7.34
0.6 0.647108 0.604169 7.11
0.7 0.677789 0.629259 7.71
0.8 0.700686 0.655823 6.84
0.9 0.725073 0.682804 6.12
1.0 0.750000 0.709640 5.69
1.1 0.774946 0.736031 5.29
1.2 0.799616 0.761820 4.96
1.3 0.823849 0.786935 4.69
1.4 0.847556 0.811346 4.46
1.5 0.870695 0.835052 4.27
1.6 0.893250 0.858068 4.10
1.7 0.915222 0.880417 3.95
1.8 0.936623 0.902127 3.82
1.9 0.957469 0.923226 3.71
2.0 0.977780 0.943744 3.61
3.0 1.156140 1.122794 2.97
4.0 1.301480 1.267792 2.66
5.0 1.425000 1.390665 2.47
10.0 1.872320 1.834165 2.08

Table A.5.: VPT ground-state energies of the mexican-hat potential (3.41) in second loop
order (D=2) calculated with two variational parameters.
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A. Ground-State Energy via Shooting Method and VPT

g E0 (VPT) E0(numerically) deviation in
per cent

0.3 0.710543 0.781325 9.96
0.4 0.767765 0.825782 7.56
0.5 0.830715 0.893919 7.61
0.6 0.893799 0.950117 6.30
0.7 0.954951 1.006918 5.44
0.8 1.013471 1.062500 4.84
0.9 1.069215 1.116165 4.39
1.0 1.122261 1.167691 4.02
1.1 1.172776 1.217068 3.78
1.2 1.220952 1.264376 3.56
1.3 1.266980 1.309734 3.38
1.4 1.311041 1.353275 3.22
1.5 1.353300 1.395129 3.09
1.6 1.393906 1.435420 2.98
1.7 1.432992 1.474263 2.88
1.8 1.470679 1.511763 2.79
1.9 1.507072 1.548018 2.72
2.0 1.542268 1.583113 2.65
3.0 1.843627 1.884617 2.22
4.0 2.083052 2.125000 2.01
5.0 2.284196 2.327303 1.89
6.0 2.459095 2.503399 1.80
7.0 2.614745 2.660230 1.74
8.0 2.755596 2.802225 1.69
9.0 2.884666 2.93296 1.66
10.0 3.004101 3.052891 1.62

Table A.6.: VPT ground-state energies of the mexican-hat potential (2.133) in second loop
order calculated with two variational parameters (D=3).
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g E0 (VPT) E0(numerically) deviation in
per cent

0.2 0.983909 1.097802 11.58
0.3 1.175857 1.261869 7.32
0.4 1.356177 1.426616 5.19
0.5 1.520323 1.582959 4.12
0.6 1.669534 1.727660 3.48
0.7 1.805949 1.861239 3.06
0.8 1.931553 1.984962 2.77
0.9 2.047999 2.100117 2.55
1.0 2.156623 2.207840 2.38
1.1 2.258504 2.309087 3.74
1.2 2.354518 2.309087 3.74
1.3 2.445384 2.495222 2.04
1.4 2.531694 2.581334 1.92
1.5 2.613945 2.663468 1.89
1.6 2.692555 2.7402024 1.84
1.7 2.767880 2.817343 1.75
1.8 2.840225 2.889722 1.74
1.9 2.909852 2.959416 1.70
2.0 2.976993 3.026647 1.67
3.0 3.546221 3.597501 1.45
4.0 3.994104 4.047409 1.34
5.0 4.368862 4.424192 1.27
6.0 4.694088 4.751358 1.22
7.0 4.983230 5.042337 1.19
8.0 5.244741 5.305585 1.16
9.0 5.484314 5.546804 1.14
10.0 5.705981 5.770033 1.12

Table A.7.: VPT ground-state energies of the mexican-hat potential (2.133) in second loop
order calculated with two variational parameters (D=5).
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A. Ground-State Energy via Shooting Method and VPT

g E0 (VPT) E0(numerically) deviation in
per cent

0.2 2.366271 2.457481 3.86
0.3 2.996700 3.069808 2.44
0.4 3.515422 3.581415 1.88
0.5 3.957602 4.020141 1.58
0.6 4.344634 4.405337 1.40
0.7 4.690084 4.749794 1.27
0.8 5.003026 5.062228 1.18
0.9 5.289814 5.348807 1.12
1.0 5.555067 5.614047 1.06
1.1 5.802255 5.861351 1.02
1.2 6.034047 6.093351 0.98
1.3 6.252547 6.312122 0.95
1.4 6.459439 6.519331 0.93
1.5 6.656100 6.713411 0.91
1.6 6.843662 6.904278 0.89
1.7 7.023077 7.084084 0.87
1.8 7.195148 7.256558 0.85
1.9 7.360560 7.422381 0.84
2.0 7.519903 7.582140 0.83
3.0 8.850000 8.933270 0.94
4.0 9.924544 9.994836 0.71
5.0 10.809519 10.883333 0.68
6.0 11.577914 11.654947 0.67
7.0 12.261500 12.341500 0.65
8.0 12.880179 12.962925 0.64
9.0 13.447320 13.532635 0.63
10.0 13.972385 14.060116 0.63

Table A.8.: VPT ground-state energies of the mexican-hat potential (2.133) in second loop
order calculated with two variational parameters (D=10).
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B. Calculation of Propagator

In this appendix, we calculate the propagator G(τ1, τ2), following Ref. [1]. First, we consider
an arbitrary temperature and calculate the general form of the propagator. In a second step,
we take the low-temperature limit β→∞ on which we focus throughout Part 1.
We start from the one-dimensional harmonic oscillator coupled to an external current. The
associated generating function reads

Z[ j ] =

∮

Dx e−A[x,j]/~ , (B.1)

with the Euclidean action

A[x, j] =

∫

~β

0

dτ

[

M

2
ẋ2(τ) +

ω2

2
x2(τ)

]

−
∫

~β

0

dτ j(τ) x(τ) . (B.2)

Performing the path integral in (B.1) means integrating over all periodic paths x(τ), i.e.,

x(0) = x(~β) . (B.3)

Hence, these paths possess a Matsubara decomposition

x(τ) =

∞
∑

m=−∞

xm e
−ı ωmτ , (B.4)

with coefficients xm and Matsubara frequencies

ωm =
2π

~β
m, m ∈ Z . (B.5)

This is due to the fact that the functions e−ıωmτ form a complete orthogonal system. In
order to prove this statement, we consider Poisson’s summation formula. It can be derived
from the periodic comb function

K(x) =

∞
∑

m=−∞

δ(x−m) , (B.6)

which has the Fourier representation

K(x) =

∞
∑

n=−∞

e−2πınx . (B.7)

Multiplying (B.6) and (B.7) with an arbitrary function f(x) and integrating over x yields

∞
∑

m=−∞

f(m) =
∞
∑

n=−∞

∫ ∞

−∞

dx f(x) e−ın~βx . (B.8)
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B. Calculation of Propagator

In the case of a function f(m)=F (ωm), (B.8) reads

∞
∑

m=−∞

F (ωm) =
~β

2π

∞
∑

n=−∞

∫ ∞

−∞

dωm F (ωm) e−ın~βωm . (B.9)

Now we specify on the functions

xm(τ) =
e−ıωmτ

√
~β

. (B.10)

These functions fulfil both the orthonormality condition

∫

~β

0

dτ xm(τ) x∗n(τ) = δm,n (B.11)

and, with regard to (B.9), the completeness relation

∞
∑

m=−∞

xm(τ1) x
∗
m(τ2) = δ(p)(τ1 − τ2) . (B.12)

The periodic delta function in (B.12) is defined to be

δ(p)(τ1 − τ2) =

∞
∑

n=−∞

δ (τ1 − τ2 + n~β) . (B.13)

Thus, the functions (B.10) form a complete orthonormal system, allowing us to perform the
Matsubara decomposition (B.4). In order to yield a real path, the coefficients have to obey
the condition

xm = x∗−m , (B.14)

which connects coefficients with positive and negative m. As a consequence, they are com-
pletely determined by those with positive modes m. Inserting (B.4) into (B.2) yields

A[x, j] = ~β
M

2
ω2 x2

0 − x0

∫

~β

0

dτ j(τ) + ~βM
∞
∑

m=1

(ω2
m + ω2)

[

(Rexm)2 + (Im xm)2
]

− 2
∞
∑

m=1

∫

~β

0

dτ j(τ)
[

cos(ωmτ) Rexm + sin(ωmτ) Im xm

]

, (B.15)

where we took (B.14) into account and separated coefficients and exponential functions into
real and imaginary part. The path integral can also be replaced either by an infinite product
of ordinary integrals over all Matsubara coefficients xm or by a product of integrals over real
and imaginary part of all coefficients with positive m:

∮

Dx → N0

∫ ∞

−∞

dx0

∞
∏

m=1

(

Nm

∫ ∞

−∞

dRe xm

∫ ∞

−∞

d Imxm

)

. (B.16)
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The respective normalization constants

N0 =

√

M

2 π ~2β
, Nm =

M β ω2
m

π
(B.17)

are calculated in detail in Ref. [1]. Inserting (B.15) and (B.16) into (B.1), we obtain

Z[j] = N0

∫ ∞

−∞

dx0 exp

{

−M
2
β ω2x2

0 +
x0

~

∫

~β

0

dτ j(τ)

}

×
∞
∏

m=1

[

Nm

∫ ∞

−∞

dRexm exp

{

−Mβ (Rexm)2 (ω2
m + ω2) +

2 Rexm
~

∫

~β

0

dτ j(τ) cos (ωmτ)

}

×
∫ ∞

−∞

d Imxm exp

{

−Mβ (Im xm)2 (ω2
m + ω2) +

2 Im xm
~

∫

~β

0

dτ j(τ) sin(ωmτ)

}]

. (B.18)

These integrals are Gaussian integrals like
∫ ∞

−∞

dx e−a x
2+ b x =

√

π

a
e b

2/4a , (B.19)

leading to

Z[j] = N0

√

2π

M β ω2

(

∞
∏

m=1

Nm π

M β
(

ω2
m + ω2

)

)

exp

{

1

2 ~2

∫

~β

0

dτ1

∫

~β

0

dτ2
1

M β

[

1

ω2
+

∞
∑

m=1

2

ω2
m + ω2

(

cosωmτ1 cosωmτ2 + sinωmτ1 sinωmτ2

)

]

j(τ1) j(τ2)

}

. (B.20)

Applying trigonometric addition theorems and using the odd symmetry of Matsubara fre-
quencies (B.5), we evaluate the sum within the exponential function:

1

ω2
+

∞
∑

m=1

2 cos [ωm (τ1 − τ2) ]

ω2
m + ω2

=

∞
∑

m=−∞

eı ωm(τ1−τ2)

ω2
m + ω2

. (B.21)

It is obvious to define the harmonic partition function without an external current to be

Zω = N0

√

2π

Mβω2

∞
∏

m=1

πNm

M β (ω2
m + ω2)

=
1

~ β ω

∞
∏

m=1

ω2
m

ω2
m + ω2

. (B.22)

Furthermore, we define the so-called harmonic propagator by

Gω (τ1, τ2) =
∞
∑

m=−∞

e−ı ωm(τ1−τ2)

M β
(

ω2
m + ω2

) . (B.23)

In terms of the harmonic partition function (B.22) and the propagator (B.23), the generating
function (B.20) factorizes into

Z[j] = Zω exp

{

1

2~2

∫

~β

0

dτ1

∫

~β

0

dτ2 Gω (τ1, τ2) j(τ1) j(τ2)

}

. (B.24)
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B. Calculation of Propagator

Our next task is to evaluate the Matsubara series (B.23). To this end, we apply Poisson’s
summation formula (B.9) to (B.23), yielding

Gω (τ1, τ2) =

∞
∑

n=−∞

gω (τ1 − τ2 + n~β) , (B.25)

with

gω (τ) =
~

2 πM

∫ ∞

−∞

dωm
e−ıωmτ

ω2
m + ω2

. (B.26)

These functions can be calculated with the help of Cauchy’s residue theorem. In the case of
τ >0, we close the curve in the lower hemisphere with a pole at ωm=−ı ω :

gω (τ) =
~

2πM
(−2πı)

e−ı τ(−ıω)

−2ı ω
=

~

2ωM
e−ωτ . (B.27)

Analogously, we calculate the case τ < 0 ,

gω (τ) =
~

2πM
2πı

e−ı τ ı ω

2ı ω
=

~

2ωM
eωτ , (B.28)

and combine (B.27) and (B.28) for any real value of τ to

gω (τ) =
~

2ωM
e−ω|τ | . (B.29)

After inserting (B.29) into (B.25) with respect to τ1, τ2 ∈ [0, ~β], it remains to evaluate the
geometric series

Gω (τ1, τ2) =
~

2ωM

{

e−ω|τ1−τ2| +

∞
∑

n=1

[

e−ω(τ1−τ2+n~β) + e−ω(τ2−τ1+n~β)
]

}

, (B.30)

yielding the final result

Gω (τ1, τ2) =
~

2ωM

cosh
[

ω
(

|τ1 − τ2| − ~β/2
) ]

sinh
(

~βω/2
) . (B.31)

In our calculations, we consider the low-temperature limit T → 0, i.e. β →∞, where the
propagator (B.31) simplifies to

lim
T→0

Gω (τ1, τ2) =
~

2ωM
e−ω|τ1−τ2| . (B.32)

This follows immediately from the exponential representation of the hyperbolic functions.
For further application, we continue calculating the harmonic partition function (B.22).
Using (B.23), it is straightforward to show the identity

∂

∂ ω
lnZω = −Mβω Gω(τ, τ) . (B.33)

Integrating (B.31) for equal arguments yields the harmonic partition function in accordance
with (B.33):

Zω =
1

2 sinh
(

~βω/2
) . (B.34)
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C. Functions and Integrals

In this appendix, we focus our attention on those mathematical functions that occur fre-
quently during our calculations in quantum field theory. We summarize their definitions
and most important properties as well as useful relations, following Refs. [48] and [49]. Fur-
thermore, we shortly present some methods transforming difficult integrals into Gaussian
integrals that can be solved straightforwardly.

C.1. Gamma and Beta Functions

The Gamma function Γ(x) belongs to the most important and most frequently occurring
functions in quantum field theory. Furthermore, it is linked to renormalization because it is
a kind of quintessence of analytic continuation and dimensional regularization. The Gamma
function has the integral representation

Γ(z) =

∫ ∞

0

dt e−t tz−1 , (C.1)

which is only defined if Re z>0. However, partial integration leads to the functional identity

z Γ(z) = Γ(z + 1) . (C.2)

Thus, the Gamma function can be extended analytically to all values of z except for negative
integers which cannot be reached. This is the very property that makes the Gamma func-
tion particularly suitable in connection with dimensional regularization: many integrals are
defined just for some dimensions because they diverge otherwise. If a general result for D
dimensions can be found in which D is an argument of the Gamma function, than the result
can be extended via an analytic continuation to dimensions in which the original integral
was not defined. By applying the functional identity (C.2), it is obvious that for an integer
argument n, the Gamma function yields

Γ(n) = (n− 1)! , n ∈ N . (C.3)

There exist a so-called doubling formula which we cite from Ref. [48] without proof:

Γ(2x) =
22x−1

√
π

Γ(x) Γ
(

x+
1

2

)

. (C.4)

Euler’s psi function ψ(x) (also called Digamma function) is defined to be the logarithmic
derivative of Γ(x):

ψ(x) =
d

dx
ln Γ(x) . (C.5)
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C. Functions and Integrals

Applying (C.2), we derive the functional relation

ψ(x+ 1) = ψ(x) +
1

x
. (C.6)

Furthermore, Euler’s constant γ is defined by

γ := −ψ(1) = 0.577 215 ... . (C.7)

The Beta function B(x, y) is closely related to the Gamma function. It is defined by two
equivalent integral representations

B(x, y) =

∫ 1

0

dt tx−1 (1 − t)y−1 , (C.8)

B(x, y) =

∫ ∞

0

dt tx−1(1 + t)−x−y . (C.9)

In terms of Gamma functions, B(x, y) reads

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
, (C.10)

which exposes a symmetry concerning both arguments:

B(x, y) = B(y, x) . (C.11)

If the integral’s upper bound in (C.8) differs from 1, we obtain the incomplete Beta function
Bz(x, y):

Bz(x, y) =

∫ z

0

dt tx−1 (1 − t)y−1 . (C.12)

C.2. Hypergeometric Functions

During the calculation of the sunset diagram in Appendix D and E, integrals occur that can
be attributed to hypergeometric functions. Therefore, we list its relevant representations,
functional relations, and special cases. The hypergeometric function 2F1(a, b; c; z) is defined
by the Taylor series

2F1(a, b; c; z) :=
∞
∑

k=0

(a)k (b)k
(c)k

zk

k!
, (C.13)

with the so-called Pochhammer’s symbols

(x)k :=
Γ(x+ k)

Γ(x)
. (C.14)

Obviously, 2F1(a, b; c; z) is symmetric with regard to the first two arguments:

2F1(a, b; c; z) = 2F1(b, a; c; z) . (C.15)
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C.2. Hypergeometric Functions

The hypergeometric function (C.13) has two subscripts, because it is obvious to extend it to
a so-called generalized hypergeometric function with a larger number of arguments:

pFq
(

α1, α2, ..., αp; β1, β2, ..., βq; z
)

=

∞
∑

k=0

(α1)k (α2)k ... (αp)k
(β1)k (β2)k ... (βq)k

zk

k!
. (C.16)

In our calculations, it is sufficient to concentrate on (C.13), also referred to as Gauss’ hyper-
geometric function. To simplify matters, we omit both subscripts from now on. If a or b is
equal to a negative integer, the hypergeometric function is defined by the sum

F (−m, b; c; z) =
m
∑

k=0

(−m)k (b)k
(c)k

zk

k!
. (C.17)

The integral representation of the hypergeometric function reads

F (a, b; c; z) =
1

B(b, c− b)

∫ 1

0

dt tb−1(1 − t)c−b−1(1 − tz)−a . (C.18)

In comparison with (C.8), we state that hypergeometric functions can be regarded as a
generalization of Beta functions. Whereas Beta functions have two poles at t=0 and t=1,
the hypergeometric function (C.18) has an additional pole at t=1/z.
Moreover, the following integral occurs:

∫ u

0

dx
xµ−1

(1 + βx)ν
=

uµ

µ
F
(

ν, µ; 1 + µ;−βu
)

. (C.19)

In the case of m and b being equal to +1, (C.17) reduces to

F (−1, 1; x; y) =
x− y

x
. (C.20)

Furthermore, there exist some special cases in which the hypergeometric function can be
written in terms of other well-known functions:

F (1, 1; 2; z) =

∞
∑

k=0

Γ(1 + k)

Γ(2 + k)
zk =

1

z

∞
∑

k=1

zk

k
= − 1

z
ln (1 − z) , (C.21)

F
(1

2
, 1;

3

2
; z2
)

=

∞
∑

k=0

Γ
(

k + 1/2
)

Γ
(

1/2
)

Γ
(

3/2
)

Γ
(

k + 3/2
) z2k =

1

z

∞
∑

k=0

z2k+1

2k + 1

=
1

2z
ln

1 + z

1 − z
=

1

z
Artanh (z) , (C.22)

F
(1

2
,

1

2
;

3

2
; −z

)

=
1√
z

Arsinh
√
z . (C.23)

Another useful functional relation is

F (a, b; c; z) = (1 − z)c−a−b
Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
F
(

c− a, c− b; c− a− b+ 1; 1 − z
)

+
Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
F
(

a, b; a + b− c+ 1; 1 − z
)

. (C.24)

The hypergeometric function is related to the incomplete Beta function by

Bz(x, y) =
zx

x
F (x, 1 − y; x+ 1; z) . (C.25)
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C. Functions and Integrals

C.3. Proper Time Representation

Feynman rules connect diagrams to integrals over combinations of propagators. Schwinger’s
proper time representation affords us to write propagators as Gaussian integrals. It is based
on the identity

1

ax
=

1

Γ(x)

∫ ∞

0

dτ τx−1 e−τa , (C.26)

which follows immediately from (C.1). In order to show the advantages of this representation,
we consider the integral

I2(D) =

∫

dDk

(2π)D
1

[

k + 2kq +m2
]γ . (C.27)

Applying (C.26) and interchanging momentum- and τ -integral, the momentum integral re-
duces to a D-dimensional Gaussian integral and can easily be evaluated with the help of

∫

dDk

(2π)D
e−τk

2

=
( 1

4π τ

)D/2

. (C.28)

Thus, we obtain the intermediate result

I2(D) =
1

Γ(γ)

∫ ∞

0

dτ τγ−1 e−τm
2 1

(2π)D

(π

τ

)D/2

eτq
2

. (C.29)

The τ -integral in (C.29) is evaluated in accordance with (C.1), yielding

I2(D) =
1

(4π)D/2
Γ
(

γ −D/2
)

Γ(γ)

1
(

m2 − q2
)γ−D/2

. (C.30)

Another integral similar to (C.30) reads

I3(D) =

∫

dDk

(2π)D
1

(

Ak2 +m2
)γ =

Γ
(

γ −D/2
)

(4π)D/2 Γ(γ)

(

m2
)D/2−γ

AD/2
. (C.31)

Moreover, the proper time representation leads to a further representation of the logarithm:
we insert (C.26) into

ln a = − ∂

∂x

( 1

ax

)

∣

∣

∣

∣

∣

x=0

, (C.32)

yielding the so-called Schwinger representation of logarithm:

ln a = − ∂

∂x

{

1

Γ(x)

∫ ∞

0

dτ τx−1 e−τa
}

∣

∣

∣

∣

∣

x=0

. (C.33)
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C.4. Feynman’s Parametric Formula

C.4. Feynman’s Parametric Formula

In connection with Feynman diagrams, Feynman’s parametric integral formula

1

AaBb
=

Γ(a+ b)

Γ(a) Γ(b)

∫ 1

0

dx
xa−1 (1 − x)b−1

[Ax+B(1 − x)]a+b
(C.34)

turns out to be highly useful. It follows from

1

AB
=

1

B − A

( 1

A
− 1

B

)

=
1

B − A

∫ B

A

dz
1

z2
=

∫ 1

0

dx
1

[Ax+B(1 − x)]2
, (C.35)

after differentiation with respect to A and B,

da+b−2

dAa−1 dBb−1

1

AB
=

(−1)a+b Γ(a) Γ(b)

AaBb
(C.36)

and

da+b−2

dAa−1 dBb−1

1

[Ax+ B(1 − x)]2
=

(−1)a+b Γ(a+ b) xa−1 (1 − x)b−1

[Ax+B(1 − x)]a+b
. (C.37)

Although (C.36) and (C.37) are only defined for integer values of the powers a and b, (C.34)
can be extrapolated analytically to arbitrary complex powers. Combinations of arbitrary
powers of propagators can be rewritten by using Feynman’s parametric integral formula
(C.34). After interchanging momentum- and x-integral, the momentum integral can often
be solved straightforwardly. Nevertheless, it remains calculating the Feynman parametric
integral. To give an example, we consider

I4(D) =

∫

dDk

(2π)D
1

(

k2 +m2
1

)a

1
(

k2 +m2
2

)b
. (C.38)

Feynman’s parametric formula (C.34) and the integral formula (C.31) yield

I4(D) =
Γ(a+ b)

Γ(a) Γ(b)

∫ 1

0

dx xa−1(1 − x)b−1

∫

dDk

(2π)D
1

[

k2x+m2
1x+m2

2(1 − x)
]a+b

=
1

(4π)D/2
Γ
(

a+ b−D/2
)

Γ(a) Γ(b)

∫ 1

0

dx
xa−1(1 − x)b−1

[

m2
1x+m2

2(1 − x)
]a+b−D/2

. (C.39)

Furthermore, we address ourselves two other integrals. The first one reads

I5(D) =

∫

dDk2

(2π)D
1

[

(k1 + k2)2 +m2
1

]a

1
(

k2
2 +m2

2

)b
. (C.40)

Applying Feynman’s parametric formula (C.34) to (C.40) yields with (C.30)

I5(D)=
Γ(a+ b)

Γ(a) Γ(b)

∫ 1

0

dx xa−1(1 − x)b−1

∫

dDk2

(2π)D
1

[

k2
2+2xk1k2+k2

1x+m2
1x+m2

2(1−x)
]a+b

=
1

(4π)D/2
Γ
(

a + b−D/2
)

Γ(a)Γ(b)

∫ 1

0

dx
xa−1(1 − x)b−1

[

m2
1 x+m2

2(1 − x) + (x− x2)k2
1

]a+b−D/2
. (C.41)
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C. Functions and Integrals

Finally, we generalize (C.38) to the integral

I6(D) =

∫

dDk

(2π)D
1

(

Ak2 +m2
1

)a

1
(

k2 +m2
2

)b
, (C.42)

that can be transformed in the same way as the former one:

I6(D) =
Γ(a + b)

Γ(a) Γ(b)

∫ 1

0

dx xa−1(1 − x)b−1

∫

dDk

(2π)D
1

[

k2
(

1+(A−1)x
)

+m2
1x+m2

2(1−x)
]a+b

=
1

(4π)D/2
Γ
(

a+ b−D/2
)

Γ(a) Γ(b)

∫ 1

0

dx
xa−1(1 − x)b−1

[

1+(A−1)x
]D/2[

m2
1x+m2

2(1−x)
]a+b−D/2

. (C.43)
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D. Sunset Diagram

Thanks to all preliminaries in the previous appendix, we are now able to calculate the
Feynman integral

I(D) =

∫

dDk1 d
Dk2

(2π)2D

1

k2
1 +M2

1

k2
2 +M2

1

(k1 + k2)2 +M2
, (D.1)

which occurs when evaluating the sunset diagram Φ Φ = g2Φ2I(D). Furthermore, it

appears in the self-energy diagram if we specialize the external momentum k to be

zero: (k = 0) = g2I(D). We are especially interested in D = 3 dimensions, where the

integral is logarithmically divergent since its superficial degree of divergence is ω ( ) = 0 .
Our intention is to calculate the integral for arbitrary dimension D and to localize the
singularity for D=3 afterwards.

D.1. Calculation in D Dimensions

With the help of (C.40) and (C.41), the integral (D.1) can be transferred to

I(D) =

∫

dDk1

(2π)D
1

k2
1 +M2

∫

dDk2

(2π)D
1

k2
2 +M2

1

(k1 + k2)2 +M2

=
Γ
(

2 −D/2
)

(4π)D/2

∫ 1

0

dx2

∫

dDk1

(2π)D
1

k2
1 +M2

1
[

(x2 − x2
2)k

2
1 +M2

]2−D/2
. (D.2)

We continue applying (C.42) and (C.43), which enables us to perform the second momentum
integral via a further Feynman parametrization

I(D) =
Γ(3 −D)

(4π)D
1

(M2)3−D

∫ 1

0

dx1

∫ 1

0

dx2
x

1−D/2
1

[

1 + (x2 − x2
2 − 1)x1

]D/2
. (D.3)

The integral with respect to x1 is connected to a hypergeometric function due to (C.19),
yielding

I(D) =
Γ(3 −D)

(4π)D(M2)3−D

1

2 −D/2

∫ 1

0

dx2 F

(

D

2
, 2 − D

2
; 3 − D

2
; x2

2 − x2 + 1

)

. (D.4)

121



D. Sunset Diagram

The last argument can be simplified applying (C.24), which gives us

I(D) =
Γ(3 −D)

(4π)D (M2)3−D

1

2 −D/2

∫ 1

0

dx2

{

Γ
(

3 −D/2
)

Γ
(

1 −D/2
)

Γ(3 −D) Γ(1)

×F

(

D

2
, 2 − D

2
;
D

2
; x2 − x2

2

)

+ (x2 − x2
2)

1−D/2

× Γ
(

3 −D/2
)

Γ
(

D/2 − 1
)

Γ
(

D/2
)

Γ
(

2 −D/2
) F

(

3 −D, 1; 2− D

2
; x2 − x2

2

)

}

. (D.5)

The remaining integral is solved straightforwardly after writing the hypergeometric function
in the series representation (C.13):

I(D) =
(M2)D−3 Γ

(

1 −D/2
)

(4π)D

{

∞
∑

k=0

Γ
(

2 −D/2 + k
)

k!

∫ 1

0

dx2 (x2 − x2
2)
k

−
∞
∑

k=0

Γ(3 −D + k) Γ(1 + k)

Γ
(

2 −D/2 + k
)

k!

∫ 1

0

dx2 (x2 − x2
2)
k+1−D/2

}

. (D.6)

With these transformations, the appearing integrals correspond to Beta functions (C.8) and
yield, according to (C.10),

I(D) =
(M2)D−3 Γ

(

1 −D/2
)

(4π)D

∞
∑

k=0

{

Γ
(

2 −D/2 + k
)

Γ(k + 1)

Γ(2 + 2k)

− Γ(3 −D + k) Γ
(

2 −D/2 + k
)

Γ(4 −D + 2k)

}

. (D.7)

After simplifying the Gamma functions in the denominator by the use of (C.3) and the
doubling formula (C.4), the series in (D.7) is retransformed to two hypergeometric functions.
Thus, our final result reads

I(D) =
(M2)D−3 Γ

(

1 −D/2
)

(4π)D

{

Γ

(

2 − D

2

)

F

(

1, 2 − D

2
;
3

2
;
1

4

)

− 2D−3
√
π Γ(3 −D)

Γ
(

(5 −D)/2
) F

(

1, 3 −D;
5 −D

2
;
1

4

)

}

. (D.8)

For D =1, (D.8) yields our quantum mechanical result (2.131) in one dimension

I(1) =
1

12

1

M4
, (D.9)

if we take all prefactors into account, replace the mass in quantum field theory M→ωL and
set in return the quantum mechanical mass M=1 in (2.131).
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D.2. Divergence for D = 3

D.2. Divergence for D = 3

As mentioned above, the integral (D.8) is logarithmically divergent in D=3 dimensions. It
is our intention to localize this divergence and to separate finite and infinite contributions.
Merely the second term in (D.8) shows a divergent behavior for D = 3, thus we will con-
centrate on expanding this term in a region near D = 3, i.e. for D = 3+ε. To this end,
we use the series representation (C.13) of the hypergeometric function, separate the term
k= 0 where the divergence arises and retransform the remaining regular contribution to a
hypergeometric function after a shift of the index k:

2D−3
√
π Γ(3 −D)

Γ
(

(5 −D)/2
) F

(

1, 3 −D;
5 −D

2
;
1

4

)

=
∞
∑

k=0

Γ
(

2 −D/2 + k
)

Γ(3 −D + k)

Γ(4 −D + 2k)

=
Γ
(

2 −D/2
)

Γ(3 −D)

Γ(4 −D)
+

∞
∑

k=1

Γ
(

2 −D/2 + k
)

Γ(3 −D + k)

Γ(4 −D + 2k)

=
Γ
(

2 −D/2
)

3 −D
+

2D−5
√
π Γ(4 −D)

Γ
(

(7 −D)/2
) F

(

1, 4 −D;
7 −D

2
;
1

4

)

. (D.10)

Thus, the whole integral (D.8) can be written as

I(D) =
(M2)D−3 Γ

(

1 −D/2
)

(4π)D

{

Γ
(

2 − D

2

)

F

(

1, 2 − D

2
;
3

2
;
1

4

)

− 2D−5
√
π Γ(4 −D)

Γ
(

(7 −D)/2
) F

(

1, 4 −D;
7 −D

2
;
1

4

)

− Γ
(

2 −D/2
)

3 −D

}

. (D.11)

It remains expanding the last term for D=3+ε . To this end, we introduce a mass parameter
µ which appears in a dimensionless ratio with the mass M in order to yield a dimensionless
argument of the logarithm. It may be set to one afterwards. In connection with the effective
potential, this procedure corresponds to obtaining a dimensionless coupling constant [6,
Ch. 8]. Thus, the ε-expansion of the divergent term in (D.11) reads

− (M2)D−3 Γ
(

1 −D/2
)

(4π)D
Γ
(

2 −D/2
)

3 −D

D=3+ε
= − 1

32π2

1

ε
+

1

32π2

{

−ln
M2

µ2
+ ln 4π

+
1

2
ψ
(1

2

)

+
1

2
ψ
(

−1

2

)

}

+ O(ε) , (D.12)

where ψ(x) denotes the Digamma function introduced in (C.5). With (C.6), we simplify

ψ
(1

2

)

+
1

2
ψ
(

−1

2

)

= 1 − γ − ln 4. (D.13)

Evaluating the other regular terms in (D.11) for D = 3, we find hypergeometric functions
(C.21) and (C.22), yielding:

F
(

1,
1

2
;
3

2
;
1

4

)

= 2 Artanh
1

2
= ln 3 ,

F
(

1, 1; 2;
1

4

)

= 4 ln
4

3
. (D.14)
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Finally, we insert (D.12)–(D.14) into (D.11) and obtain the full ε-expansion

I(3 + ε) = − 1

32π2

1

ε
+

1

32π2

{

− ln
M2

µ2
+ ln

4π

9
+ 1 − γ

}

+ O(ε) . (D.15)

D.3. Divergence for D = 4

In order to verify our result (D.8), we perform a further expansion for D = 4−ε. Both
prefactors contain a Gamma function which has poles at negative integers. Thus, the integral
becomes quadratically divergent. This agrees with the superficial degree of divergence which
is in D = 4 dimensions ω ( ) = 2 . Again, we insert the mass parameter µ into the
logarithm.

I(4 − ε) = − M2

(4π)D

{

6

ε2
+

1

ε

[

−6 ln
4πµ2

M2
+ 7γ − 5 + ln 4 + ψ

(1

2

)

− 2F (0,1,0,0)
(

1, 0;
3

2
;
1

4

)

− 4F (0,1,0,0)
(

1,−1;
1

2
;
1

4

)

− 2F (0,0,1,0)
(

1,−1;
1

2
;
1

4

)

]

+ O(ε0)

}

, (D.16)

where we defined the partial derivatives

F (0,1,0,0)(a, b; c; z) :=
∂

∂ b
F (a, b; c; z) ,

F (0,0,1,0)(a, b; c; z) :=
∂

∂ c
F (a, b; c; z) . (D.17)

The derivative in the last term of (D.16) with respect to the third argument can be calculated
analytically:

F
(

1,−1; x;
1

4

)

=
4x− 1

4x
⇒ F (0,0,1,0)

(

1,−1; x;
1

4

)

∣

∣

∣

∣

∣

x= 1
2

= 1 . (D.18)

Inserting (D.13) and (D.18), the ε - expansion (D.16) becomes

I(4 − ε) = − M2

(4π)D

{

6

ε2
+

1

ε

[

− 6 ln
4πµ2

M2
+ 6 γ − 7 − 2F (0,1,0,0)

(

1, 0;
3

2
;
1

4

)

− 4F (0,1,0,0)
(

1,−1;
1

2
;
1

4

)

]

+ O(ε0)

}

. (D.19)

In Ref. [6, Ch. 8], the integral (D.1) has also been calculated. The authors concentrated on
D=4−ε from the very beginning and expanded the integrand before integrating. However,
their result can be compared to (D.19). The actual coincidence of the numerical values serves
as prove of our calculations which have the crucial advantage that the result (D.8) is valid
for arbitrary dimensions.
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E. Generalized Sunset Diagram

In the previous appendix, we calculated the integral (D.1) where all three mass terms in
the denominators are equal. This integral occurs in the sunset diagram, for instance, if we
consider one real field. In the case of N fields, however, longitudinal and transversal masses
arise if we consider the broken symmetry phase. Thus, we have to extend our calculations
to a sunset diagram with arbitrary mass terms

I(x, y, z) =

∫

dDk1 d
Dk2

(2π)2D

1

k2
1 + x

1

k2
2 + y

1

(k1 + k2)
2 + z

. (E.1)

For equal mass terms x=y=z, (E.1) reduces to the ordinary sunset integral (D.1).

E.1. Calculation for One Mass

First of all, we calculate a special case of (E.1), that is to say where y= z=0 without loss
of generality. Then, (E.1) simplifies to

I(x, 0, 0) =

∫

dDk1 d
Dk2

(2π)2D

1

k2
1 + x

1

k2
2

1

(k1 + k2)
2 . (E.2)

We proceed similarly to the previous appendix where all masses were equal, yielding

I(x, 0, 0) =
xD−3

(4π)D
Γ(3 −D)

D/2 − 1

∫ 1

0

dx1 (1 − x1)
D−3 F

(

D

2
,
D

2
− 1;

D

2
; x2

1 − x1 + 1

)

, (E.3)

instead of (D.4). When we continue applying (C.24), the second term vanishes there due to
the appearance of Γ(0) in the denominator, and we obtain

I(x, 0, 0) =
xD−3

(4π)D
Γ(3 −D)

D/2 − 1

∫ 1

0

dx1 (1 − x1)
D−3 (x1 − x2

1)
1−D/2 F

(

0, 1; 2 − D

2
; x1 − x2

1

)

. (E.4)

Consider the hypergeometric function in (E.4). In accordance with (C.13) and (C.14), it
contains

(0)k =
Γ(0 + k)

Γ(0)
= δk,0 . (E.5)

Hence, the hypergeometric function becomes

F

(

0, 1; 2 − D

2
; x1 − x2

1

)

= 1 , (E.6)
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and (E.4) results in

I(x, 0, 0) =
xD−3

(4π)D
Γ(3 −D)

D/2 − 1

∫ 1

0

dx1 (1 − x1)
D−3 (x1 − x2

1)
1−D/2 . (E.7)

The integration is performed applying (C.8), and our final result reads

I(x, 0, 0) =
xD−3

(4π)D
Γ(3 −D) Γ (2 −D/2) Γ2 (D/2 − 1)

Γ (D/2)
. (E.8)

The calculation procedure for three arbitrary masses in (E.1) is completely different from
the previous one. We follow Ref. [50], where the integral is reduced to a system of ordinary
differential equations that can be solved with the help of the so-called method of charac-
teristics which we introduce shortly.

E.2. Method of Characteristics

The method of characteristics is a fundamental approach to linear and non-linear partial
differential equations of first order. For our calculations, it is sufficient to restrict ourselves
to a linear partial differential equation of first order which reads

X1
∂ F

∂x1

+ X2
∂ F

∂x2

+ · · · + Xn
∂ F

∂xn
= G . (E.9)

F = F (x1, x2, · · · , xn) denotes the unknown function, Xi = Xi(x1, x2, · · · , xn) with i =
1, · · · , n are given functions as well as the inhomogeneity G=G(x1, x2, · · · , xn). In the case
of G=0, the differential equation is called homogeneous. Then, solving (E.9) corresponds to
integrating the characteristic system

dx1

X1

=
dx2

X2

= · · · =
dxn
Xn

=: dt . (E.10)

An inhomogeneous differential equation can be regarded as a homogeneous one if we define
an additional function H(x1, · · · , xn, I) ≡ const so that

X1
∂ H

∂x1
+ X2

∂ H

∂x2
+ · · · + Xn

∂ H

∂xn
+ G

∂ H

∂I
= 0 . (E.11)

Its characteristic system reads

dx1

X1

=
dx2

X2

= · · · =
dxn
Xn

=
dI

G
:= dt . (E.12)

E.3. Calculation in D Dimensions

Recall the integral

Ĩ(x) =

∫

dDk

(2π)D
1

k2 + x
=

Γ (1 − D/2)

(4π)D/2
xD/2−1 , (E.13)
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as calculated in (5.5). Its derivative reads

∂ Ĩ(x)

∂ x
= − Γ (2 −D/2)

(4π)D/2
xD/2−2 . (E.14)

Furthermore, we define the following functions

K1(x, y, z) := − ∂ Ĩ(z)

∂ z

[

Ĩ(x) − Ĩ(y)
]

, (E.15)

K(x, y, z) := K1(x, y, z) + K1(y, z, x) + K1(z, x, y) , (E.16)

where K1(y, z, x) and K1(z, x, y) arise from cyclic permutation in (E.15). For an arbitrary
vector v, we recall Gauss’ theorem

∫

V

div v dV =

∮

∂V

vdS (E.17)

with volume V and surface ∂V . From (E.17), we conclude the identity

0 ≡
∫

dDp dDq
∂

∂ kµ
kµ

(p2 + x) (q2 + y) [(p + q)2 + z]
. (E.18)

It results from the fact that both surface integrals in (E.17) with regard to p and q go with
∼1/R4, where R denotes the radius. For D=3 dimensions, the integrals vanish in the limit
R → ∞. With respect to (E.1), (E.15), and (E.17), we derive a differential equation for
K1(x, y, z) that reads

K1(x, y, z) = 2 x
∂ I(x, y, z)

∂ x
+ (x+ z − y)

∂ I(x, y, z)

∂ y
+ (D − 3) I(x, y, z) . (E.19)

Appropriate cyclic permutations yield corresponding results for both other two functions
in (E.16). Inserting (E.19) into (E.16), we obtain a differential equation for the function
K(x, y, z)

K(x, y, z) = (y − z)
∂ I
∂ x

+ (z − x)
∂ I
∂ y

+ (x− y)
∂ I
∂ z

. (E.20)

Thus, the desired integral I(x, y, z) can be obtained by solving the differential equation
(E.20). For reasons of simplicity, we define

Γ′ :=
1

(4π)D
Γ

(

2 − D

2

)

Γ

(

1 − D

2

)

. (E.21)

When we insert (E.13) and (E.14) into (E.15), we obtain the expression

K1(x, y, z) = Γ′
[

x(xz)−ν − y(yz)−ν
]

(E.22)

with ν :=2−D/2. With respect to the corresponding cyclic permutations, (E.22) transforms
(E.16) to

K(x, y, x) = −Γ′
{

(z − x)(xz)−ν + (y − z)(yz)−ν + (x− y)(xy)−ν
}

. (E.23)
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Now we apply the method of characteristics. Starting from (E.20), the characteristic equation
reads in accordance with (E.12)

d I
K

=
dx

y − z
=

dy

z − x
=

dz

x− y
= dt → I =

∫

K dt . (E.24)

Suitable initial conditions turn out to be

x(t = 0) = X , y(t = 0) = Y , z(t = 0) = 0 . (E.25)

Thus, (E.24) leads to the integral

I(x, y, z) = I(X, Y, 0) +

∫ t

0

dt′ K
(

x(t′), y(t′), z(t′)
)

. (E.26)

Recalling (E.23) and (E.24), the integral (E.26) can be written as a sum of three integrals

I(x, y, z) = I(X, Y, 0) − Γ′

{

∫ t

0

dt′ (z − x)(xz)−ν +

∫ t

0

dt′ (x− y)(xy)−ν

+

∫ t

0

dt′ (y − z)(yz)−ν

}

= I(X, Y, 0) − Γ′

{

∫ y

Y

dy (xz)−ν +

∫ z

0

dz (xy)−ν +

∫ x

X

dx (yz)−ν

}

. (E.27)

From the method of characteristics (E.24) and the initial conditions (E.25), we derive

d

dt

(

x+ y + z
)

= 0 ⇒ x+ y + z = X + Y := c = const , (E.28)

d

dt

(

x2 + y2 + z2
)

= 0 ⇒ x2 + y2 + z2 = X2 + Y 2 := d2 = const . (E.29)

Furthermore, we require

xy = z2 − cz +
1

2

(

c2 − d2
)

, (E.30a)

yz = x2 − cx+
1

2

(

c2 − d2
)

, (E.30b)

xz = y2 − cy +
1

2

(

c2 − d2
)

, (E.30c)

which can be verified straightforwardly by inserting (E.28) and (E.29). The definition

a :=

√

d2

2
− c2

4
=

1

2

(

X − Y
)

=
1

2

√

x2 + y2 + z2 − 2(xy + yz + xz) (E.31)

transfers (E.30a)–(E.30c) to

xy =
(1

2
c− z

)2

− a2 , (E.32a)

yz =
(

x− 1

2
c
)2

− a2 , (E.32b)

xz =
(

y − 1

2
c
)2

− a2 . (E.32c)
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Now we start calculating the integrals (E.27) one by one. The first one reads

∫ x

X

dx′ (yz)−ν =

∫ x

X

dx′

[

(

x′ − 1

2
c

)2

− a2

]−ν

=

∫ x−c/2

a

ds
[

s2 − a2
]−ν

, (E.33)

where we substituted s :=x′−1
2
c after applying (E.32b). The y-integral is solved analogously

with s := 1
2
c−y′ and (E.32c), yielding

∫ y

Y

dy′ (xz)−ν =

∫ y

Y

dy′

[

(

1

2
c− y′

)2

− a2

]−ν

=

∫ a

c/2−y

ds
[

s2 − a2
]−ν

. (E.34)

With s := 1
2
c−z′ and (E.32a), the third integral in (E.27) results in

∫ z

0

dz′ (xy)−ν =

∫ z

0

dz′

[

(

1

2
c− z′

)2

− a2

]−ν

=

∫ c/2

c/2−z

ds
[

s2 − a2
]−ν

. (E.35)

All three integrals (E.33)–(E.35) can be solved analytically. We are left with adding them
up, and I

(

x, y, z
)

reads

I
(

x, y, z
)

= I
(

X, Y, 0
)

− Γ′

[(

∫ x−c/2

a

+

∫ a

c/2−y

+

∫ c/2

c/2−z

)

ds
[

s2 − a2
]−ν

]

. (E.36)

Now we have reduced I
(

x, y, z
)

to an integral I
(

X, Y, 0
)

, which we simplify by applying
the method of characteristics once again for two variables x and y. With z=0, (E.20) and
(E.22) become

K(x, y) = y
∂I
∂x

− x
∂I
∂y

, (E.37)

K(x, y) = −Γ′ (x− y) (xy)−ν (E.38)

with the corresponding characteristic equation

dx

y
= −dy

x
=

dI
K

= dt ⇒ dx = y dt , dy = −x dt . (E.39)

This time, we choose the initial conditions x(t = 0) =X−Y = 2a and y(t= 0) = 0. With
respect to (E.38) and (E.39), we find

I(x, y, 0) = I(X − Y, 0, 0) +

∫ t

0

dt′K
(

x(t′), y(t′)
)

= I(X − Y, 0, 0) + Γ′

{

∫ y

0

dy (xy)−ν +

∫ x

X−Y

dx (xy)−ν

}

. (E.40)

After replacing xy=c2/4−a2 in accordance with (E.32a) and applying (E.31), we obtain

I
(

X, Y, 0
)

= I
(

2a, 0, 0
)

+ Γ′

∫ c/2

a

ds
[

s2 − a2
]−ν

. (E.41)
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Finally, we insert (E.41) into (E.36), yielding

I
(

x, y, z
)

= I
(

2a, 0, 0
)

+ Γ′
[

F
( c

2
− y
)

+ F
( c

2
− z
)

− F
(

x− c

2

)]

, (E.42)

where we defined the function

F (w) =

∫ w

a

ds
[

s2 − a2
]−ν

. (E.43)

The integral I(x, 0, 0) has already been solved in (E.8) . However, this formula is only valid
for values a2 ≥ 0, i.e., for initial conditions X ≥ Y . Transferring our Feynman diagrams to
these calculations, a2 turns out to be negative. Thus, we have a→±ıb, which affects (E.8)
as follows:

(

2a
)D−3 →

{

(

2b
)D−3

ıD−3 =
(

2b
)D−3

eı(D−3)π/2

(

2b
)D−3 (−ı

)D−3
=
(

2b
)D−3

e−ı(D−3)π/2
. (E.44)

Both cases are symmetrically regarded, yielding

1

2

[

eı(D−3)π/2 + e−ı(D−3)π/2
]

= cos
π

2
(D − 3) = − sin

πD

2
. (E.45)

We define b2 :=−a2, and our final result reads

I(x, y, z) = −I(2b, 0, 0) sin
πD

2
+ Γ′

[

G
( c

2
− x
)

+G
(c

2
− y
)

+G
(c

2
− z
)]

. (E.46)

In analogy to (E.43), we have defined the function

G(w) =

∫ w

0

ds (s2 + b2)−ν =
1

2

(

b2)1/2−ν

∫ w2/b2

0

dv
1√
v

(1 + v)−ν . (E.47)

The latter transformation turns out to be useful, since the integral is related to those of the
incomplete Beta function (C.12) and (C.25).

E.4. Divergence for D = 3

In this section, we specify our present general result to the sunset diagram (7.52). In com-
parison with (E.1), we identify

x = m2
L(Φ) ≡ m2

L , y = z = m2
T (Φ) ≡ m2

T . (E.48)

With regard to (E.47), this corresponds to

b2 = m2
Lm

2
T − 1

4
m4
L , w = m2

T − 1

2
m2
L . (E.49)

Thus, the integral (E.1) yields the result

I(m2
L, m

2
T , m

2
T ) = −I

(

√

4m2
Lm

2
T −m2

L , 0, 0
)

sin
πD

2

+ Γ′

{

G
(

m2
T − 1

2
m2
L

)

+ 2G
(1

2
m2
L

)

}

. (E.50)
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Analogously to the previous calculations, we have to introduce a mass parameter µ that
yields a dimensionless ratio with the longitudinal and transversal mass. For reasons of
clarity, we calculate the expansion without adding µ and insert it only in the final result.
Now we start calculating the integrals G(w) in accordance with (E.47), (C.23), and (C.25)
and specialize in D=3 dimensions. The first one reads

G

(

1

2
m2
L

)

=
[

m2
Lm

2
T − 1

4
m4
L

](D−3)/2

√

m2
L

4m2
T −m2

L

F

(

1

2
, 2 − D

2
;
3

2
;

m2
L

m2
L − 4m2

T

)

D=3
= Arsinh

√

m2
L

4m2
T −m2

L

, (E.51)

The other integral in (7.52) contains both longitudinal and transversal mass, yielding

G

(

m2
T − 1

2
m2
L

)

=
[

m2
Lm

2
T − 1

4
m4
L

](D−3)/2 2m2
T −m2

L
√

4m2
Lm

2
T −m4

L

×F

(

1

2
, 2 − D

2
;
3

2
;− (2m2

T −m2
L)

2

4m2
Lm

2
T −m4

L

)

D=3
= Arsinh

2m2
T −m2

L
√

4m2
Lm

2
T −m4

L

. (E.52)

Furthermore, we know from (E.21) that

Γ′ D=3
= − 1

32 π2
. (E.53)

Due to (E.8), the first term in (E.50) has a pole for D = 3. Therefore, we perform an ε-
expansion analogously to the one in Section D.2. In fact, it amounts to the same as (D.15)
if we substitute

√
3M2→

√

4m2
Lm

2
T−m4

L ≡ M̃2. This substitution leads to the ε-expansion

−I
(

M̃2, 0, 0
)

sin
πD

2
D=3+ε

= − 1

32π2

1

ε
+

1

32π2

{

−γ + 1 + ln 4π − ln M̃2
}

+ O(ε) . (E.54)

The substitution of M̃2 emphasizes the analogy to the case of N = 1 field where (D.15) is
already the total result. For N being an arbitrary number of fields, we obtain additional
finite contributions (E.51) and (E.52), leading to

I(m2
L, m

2
T , m

2
T )

D=3+ε
= − 1

32π2

1

ε
+

1

32π2

{

−γ + 1 + ln4π − lnM̃2 − 2Arsinh

√

m2
L

4m2
T −m2

L

−Arsinh
2m2

T −m2
L

√

4m2
Lm

2
T −m4

L

}

+ O(ε) . (E.55)

With the help of

Arsinh x = ln
(

x+
√
x2 + 1

)

, (E.56)
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we simplify the following expressions:

Arsinh

√

m2
L

4m2
T −m2

L

= ln
(

mL + 2mT
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2
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, (E.57)
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− 1
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)

. (E.58)

Finally, we insert the mass parameter µ and (E.55) yields

I(m2
L, m

2
T , m

2
T )

D=3+ε
=

1

32π2

{

−1

ε
− γ + 1 + ln 4π +

1

2
ln
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−ln

(

4m2
T −m2

L

µ2

)

− ln

(

mL + 2mT

µ

)

}

+ O(ε) . (E.59)

Note that for equal masses m2
L=m2

T , the result (E.59) reduces to (D.15) as required.
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Jürgen Dietel und Aristeu Lima bedanken.

Zum Schluß geht ein großes Dankeschön für die ausgesprochen harmonische und entspannte
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