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Resumo

O modelo de Bose-Hubbard descreve bosons sem spin que interagem a curta distância

numa rede aleatória. Este modelo é realizado em sistemas de átomos ultra-frios, onde se

podem observar transições de fase quânticas. À medida que a profundidade do potencial

da rede é aumentada, tal sistema sofre uma transição de fase quântica de um super-

fluido para uma fase isolante de Mott. Na presença de um potencial externo aleatório,

regiões raras de condensado podem surgir dentro de um fundo isolante, formando um

estado de vidro de Bose. Apesar das características bem compreendidas do modelo de

Bose-Hubbard, uma investigação analítica precisa dos efeitos da desordem no espectro de

energia ainda não está disponível, e uma caracterização concreta do espectro de energia

do vidro de Bose, bem como da sua fronteira de fase com a fase de Mott, está em falta.

Neste trabalho, investigamos como a desordem afeta as excitações elementares do modelo

de Bose-Hubbard no limite de interação forte e estudamos a transição de fase quântica de

Mott-para-vidro de Bose para temperatura zero e temperaturas finitas. Desenvolvemos um

método de perturbação com o formalismo de integrais funcionais para obter uma expan-

são de acoplamento forte para a função de Green em termos da energia de tunelamento.

Aplicando o método de soma parcial, calculamos a influência de um subconjunto infinito

de termos em tal expansão na função espectral. Usando o método de Poincaré-Lindstedt,

calculamos a expressão renormalizada para a densidade local de estados. Demonstramos

que o espectro é composto por excitações estáveis-deslocalizadas em baixas energias

e excitações localizadas-amortecidas em energias ligeiramente mais altas. Quando a de-

sordem se torna da ordem das interações, as excitações estáveis-deslocalizadas perdem a

sua dispersão devido ao aumento da sua massa efetiva. Neste caso, o tempo de vida das

excitações localizadas-amortecidas aumenta, e elas dominam toda a banda de energia.

Argumentamos que tais excitações localizadas-amortecidas correspondem aos estados

excitados de baixa energia da fase de vidro de Bose. Além disso, analisando a densidade

local de estados, mostramos que tais informações espectrais servem como um parâmetro

confiável para distinguir sem ambiguidade as fases de Mott e de vidro de Bose, tanto a

temperaturas zero como a temperaturas finitas. Os nossos resultados vão além das pre-

visões da teoria de campo médio para a caracterização desses estados fundamentais.

Finalmente, sugerimos uma abordagem de ação efetiva e uma expansão de desordem

fraca para a análise do espectro de excitações na fase superfluida.

Palavras-chave: Hamiltoniano de Bose-Hubbard. Transições de fase quâticas.

Desordem. Superfluido. Isolante de Mott. Vidro de Bose. Função de Green. Função

espectral.
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Abstract

The Bose-Hubbard model describes short-range interacting spinless bosons on a random

lattice. This model is realized in ultracold atomic systems where quantum phase transitions

can be observed. When loaded into a deep potential depth perfect lattice, a cloud of cold

bosonic atoms undergoes a quantum phase transition from a superfluid to a gapped Mott

insulating phase. In the presence of additional random external potential, rare condensate

regions can emerge inside an insulating background, forming a gapless Bose-glass state.

Despite the well-understood characteristics of the Bose-Hubbard model, a precise analytic

investigation of the effects of disorder on the energy spectrum remains unavailable, and a

concrete characterization of the Bose-glass energy spectra, as well as its phase boundary

with the Mott phase, is lacking. Here, we investigate how disorder affects the elementary

excitations of the Bose-Hubbard model in the strongly interacting limit, and study the Mott-

to-Bose glass quantum phase transition for zero and finite temperatures. We develop a

perturbation method in the functional integral formalism to obtain a strong-coupling expan-

sion for the single-particle Green’s function in terms of the tunneling energy. By applying the

partial summation method, we calculate the influence of an infinite subset of terms in such

an expansion to the spectral function. Using the Poincaré-Lindstedt method, we compute

the renormalized expression to the local density of states. We demonstrate that the spec-

trum is composed of stable-delocalized excitations at low energies and damped-localized

excitations at slightly higher energies. When disorder becomes of the order of interactions,

the stable-delocalized excitations become dispersionless due to their increased effective

mass. In such a limit, the lifetime of the damped-localized excitations increases, and they

dominate the whole energy band. We argue that such damped-localized excitations corre-

spond to the low-energy excited states of the Bose-glass phase. Furthermore, by analyzing

the local density of states, we show that this spectral information serves as a reliable pa-

rameter to unambiguously distinguish the Mott from the Bose-glass states both at zero and

finite temperatures. Our results go beyond the mean-field theory predictions for the char-

acterization of these ground states. Finally, we suggest an effective-action approach and a

weak disorder expansion for the analysis of the superfluid excitation spectra.

Key-words: Bose-Hubbard Hamiltonian. Quantum phase transitions. Disorder.

Superfluid. Mott insulator. Bose glass. Green’s function. Spectral function.
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Introduction

Exploring how structure emerges in nature is perhaps one of the most profound and

interesting questions in science. One intriguing example comes from atomic theory. At first

glance, in the length scales we usually encounter, most things seem to be made of nothing

but continuous ordinary matter to the naked eye. However, over the last century, it has

been consistently proven that matter is in fact comprised of extremely small and differenti-

ated constituents that interact in such a way as to create emergent structures. These small

pieces of matter are called atoms, and their size is usually smaller than one nanometer. In

order to properly describe the behavior of such small pieces of matter, one has to rely on

the laws of quantum mechanics. It is already challenging enough to understand the nature

of one atom or even how a few atoms interact under this framework. To some extent, the

task of physicists, since the advent of the quantum description of matter in the first half

of the last century, has been to understand that the behavior of large aggregates of such

particles cannot be directly derived from a simple extrapolation of the properties of one of

their single constituents. This problem was elegantly pointed out by P. W. Anderson in his

essay "More Is Different" [4], when analyzing the emergent phenomena that appear in large

and complex aggregates of elementary particles. The careful investigation of the quantum

origin of emergent phenomena in the field of quantum many-body physics has provided

many fundamental discoveries in this regard, including novel states of matter, the experi-

mental observation of previously unseen quantum phase transitions, and new macroscopic

quantum phenomena that emerge when the laws of quantum mechanics become impor-

tant beyond the atomic and subatomic scales, thus determining the collective behavior of

macroscopic systems [5].

A simple picture of emergent phenomena in many-body systems may be drawn

from their elementary excitations. Given the degrees of freedom of a system composed

of a large aggregate of quantum particles, one must use statistical mechanics to describe

its thermodynamic properties. The characterization of a closed quantum system, that does

not interact with its surroundings, depends on its energy levels as well as on its tempera-

ture. The microscopic description of such thermodynamic properties can be derived from

the Boltzmann distribution, pi ∝ e−E i /kBT , which gives the probability pi that a macroscopic

subpart of the original system will occupy a particular energy state E i, based on the equi-

librium temperature T, where kB represents the Boltzmann constant. According to this

1
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distribution, low energy states have a higher probability of being occupied. At sufficiently

low temperatures, the important energy levels correspond to the low-energy excited states.

These excited energy levels of the many-body system are often referred to as elementary

excitations. This comes from the assumption that any energy level can be acquired from

the sum of a finite number of these excitations [6]. In many cases, such excitations behave

extremely similar to an individual free particle with a definite energy and velocity. In fact, the

only differences may arise from their mass and lifetime. As a result of internal interactions in

the system and the coupling to an external potential, these excitations acquire what is called

an effective mass. It is as if the mass of the bare particles gets dressed by such interactions

[7]. Consequently, such excitations may also be unstable, presenting a finite lifetime. That

is, they resemble a real particle only during the time when the conservation of energy and

momentum occurs, and decay due to damping afterwards. Thus, another form of referring

to these excitations is the term "quasiparticle". It is important to point out that such elemen-

tary excitations emerge as a consequence of the collective behavior of a large aggregate

of quantum particles. This implies that they pertain to the system as a whole and not to

its individual constituents. A great deal of emergent phenomena in quantum many-body

systems can be explained by characterizing the energy spectra of quasiparticles.

The fact that identical quantum particles are indistinguishable plays an important

role in describing how such particles interact to form macroscopic phenomena. Any per-

mutation of the internal constituents of an ensemble of quantum particles has no relevant

consequences for physical observables. One intrinsic property that is relevant in the statis-

tics of large aggregates of quantum particles is their spin angular momentum. This property

is associated with internal degrees of freedom that arise only in the quantum description

of matter, leading to the spin-statistics theorem of Pauli, which points out the fundamental

distinction between two different kinds of quantum particles: fermions with half-integer spin

and bosons with integer spin. A simpler picture for this distinction, in the case of atoms, is

based on their even smaller constituents: electrons, protons, and neutrons. If the number

of constituents is even, these atoms are called bosons, if it is odd, we call them fermions.

Many interesting phenomena emerge from this distinction. While identical fermions are not

allowed to occupy the same quantum state, as explained by the Pauli exclusion principle,

identical bosons are allowed to pile up in the same state. In this thesis, we are particularly

interested in the emergent phenomena of large aggregates of neutral bosonic atoms in low-

density gas states at low temperatures, where the fact that identical bosons are allowed to

occupy the same quantum state is of central importance.

In ordinary atomic gases, particles move randomly in all directions following what

is usually called thermal motion. In the quantum description of matter, these atoms are

represented as wave-like objects with an extent given by the thermal de Broglie wave-

length, λdB, which scales with the inverse square root of the equilibrium temperature, i.e.,

λdB = (2πħ2/kBmT)−1/2, where ħ is Planck’s constant. If the equilibrium temperature is suf-
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ficiently high, λdB becomes small and the system can be treated as if each atom were a

billiard ball. By cooling the atomic cloud to a certain critical temperature, one can reach

a state where the de Broglie wavelength becomes larger than the average distance be-

tween the atoms, and the wave functions of the atoms start to overlap. In this state, for

bosonic atoms, the individual identity of the particles begins to break down, and they start

to behave collectively. This collective behavior originates from the macroscopic aggregation

of atoms in the same quantum state, which generates a coherent matter wave. Such an

emergent phenomenon was predicted by A. Einstein in 1924 and 1925 [8, 9], based on pre-

vious work by S. Bose [10], and characterizes a quantum phase transition to the so-called

Bose-Einstein condensate. This phase transition occurs at a critical temperature, where the

thermal de Broglie wavelength is of the same order as the average particle distance, which

is determined by the inverse cubic root of the particle density. Below this critical tempera-

ture, a correlation emerges between the bosonic quantum particles, such that it becomes

energetically favorable for the system to respond only as a whole to the action of external

forces. A macroscopic number of particles behaves as one quantum wave.

Even though the prediction of the macroscopic condensation of bosons into the

same quantum state was made early in the development of quantum theory, its experimen-

tal realization in atomic quantum gases was only possible in 1995 [11, 12]. The experiments

were carried out by cooling dilute gases of alkali atoms such as Rubidium and Sodium, in

which only two-body collisions play a role. It was realized that for very dilute gases at low

temperatures, a metastable equilibrium state is possible, but the pathway to liquefaction

and solidification is dynamically suppressed.

The first experiments that realized atomic Bose-Einstein condensates were based

on two techniques for cooling down the atoms. The first is known as laser cooling, which

involves using counterpropagating laser beams to reduce the temperature of the atomic

cloud. If the laser light is detuned below atomic resonance, an atom in thermal motion

moving towards the laser front may absorb a photon due to the Doppler effect. The atom

will eventually decay from its excited state due to spontaneous emission, emitting a photon

in a random direction. The result of this process is that the atom loses kinetic energy. By

repeating this procedure, it is possible to cool the atomic cloud to the order of microkelvin.

The laser-cooling technique was developed in the 1980s [13] and culminated in the 1997

Physics Nobel Prize awarded to S. Chu, C. Cohen-Tannoudji, and W. D. Phillips. The sec-

ond experimental technique used to cool the atomic gases even further consists of carefully

applying a radio frequency field that couples the most energetic atoms to states outside of

the trap by creating a repulsive force that expels the atoms. This technique is called evap-

orative cooling and makes it possible to reach temperatures of the order of nanokelvin in

experiments. The Bose-Einstein condensation of ultracold atomic gases was then verified

by reaching such extremely low temperatures and releasing the cloud from its trap, allowing

it to expand freely for a few milliseconds of time-of-flight. In this free expansion, the most
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energetic atoms escape rapidly while the condensed atoms remain near the region that

corresponds to the center of the now-absent trapping potential. The measurement consists

of taking absorption pictures of the expanded cloud, which indicates a large aggregation

of atoms in low momentum states corresponding to condensation. The experimental real-

ization of the condensation of atoms in cold gases of neutral atoms led to the achievement

by C. Wieman, E. A. Cornell, and W. Ketterle of receiving the Nobel Prize in Physics in

2001. Since the experimental verification of Bose-Einstein condensation in ultracold atomic

gases, these systems have become one of the most exciting research areas in modern

physics due to their potential to explore fundamental concepts concerning the quantum

origin of macroscopic emergent phenomena in quantum many-particle systems. The ever-

growing development of experimental techniques in the control and manipulation of these

systems has made them promising candidates for realizing R. Feynman’s quantum simu-

lator idea [14], in which ultracold atomic gases in different external potentials are used to

mimic the physics of other quantum systems of many particles.

One of the most interesting aspects of ultracold atoms is their ability to realize the

interplay between superfluidity and localization. This question can be addressed in different

ways, one of which is particularly important to the present work: the study of the properties

of cold bosonic atoms submitted to a lattice potential. Such a lattice structure consists of

artificial crystals of light, known as optical lattices [15]. They are created by generating

a standing light wave using counter-propagating laser beams. The coupling between the

atoms and the radiation field is mediated by the AC-Stark effect, which induces an atomic

dipole moment. The atomic energy levels are then modified, and the energy shift serves as

a trapping potential for the condensed atoms. Such an energy shift is proportional to the

square of the radiation-field amplitude and hence its intensity. By aligning different pairs

of counter-propagating laser beams at distinct angles with respect to each other, one can

create optical lattices in one [16, 17], two [18, 19], or three dimensions [19].

When a condensate is loaded into an optical lattice, the modulation of the lattice

parameters can drive the system into a strongly correlated regime. If the intensity of the

radiation field is small, the coupling of the laser beam with the condensed atoms is weak,

and the system can still be described as a coherent matter wave. In this situation, the atoms

are delocalized and can flow without friction through the lattice volume, corresponding to

a superfluid ground state. In the opposite case, if the intensity of the radiation field is

sufficiently large, its coupling with the atoms becomes strong, driving the system into a

phase transition such that it can no longer be described by a matter wave. Rather, the

frictionless flow of particles gets destroyed, and a finite number of them become localized

in each potential well. The strong intensity of the radiation field is directly related to a deep

lattice regime where the contact interactions between atoms at the same lattice site become

large compared to their kinetic energy. This phenomenon is known as Mott localization,

resulting in a Mott insulating ground state. Such a Mott state corresponds to a gapped
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insulating phase. In contrast to regular band insulators, where the energy gap emerges

due to destructive interference between the atomic orbitals, the Mott-insulator energy gap

occurs due to the strong repulsion between the quantum particles [20].

The superfluid to Mott insulator phase transition occurs due to the competition be-

tween the different energy scales of the system and can take place even at the limit of zero

temperature, characterizing it as a quantum phase transition [21]. This phase transition

was first predicted in the seminal paper of Fisher et al. [22] and experimentally verified by

Greiner et al. [23] based on a proposal by Jaksch et al. [24]. The experiment consisted

of measuring the multiple matter wave interference pattern of the atomic cloud by taking

absorption pictures after a few milliseconds of free time-of-flight expansion. For shallow

lattices, sharp peaks were found in the interference pattern, representing the phase coher-

ence present in the superfluid phase. For deep lattice depths, such a phase coherence

pattern gave place to a diffuse background indicating Mott localization.

Another way to address the question of localization is by studying how robust the

bosonic matter-wave coherence is in the presence of disorder. This research field is com-

monly referred to as the dirty boson problem. Such a problem was first investigated in

the context of the transport properties of superfluid helium in porous media [25]. In this

case, disorder is considered static, meaning that the time scales of thermal and quantum

fluctuations are much smaller than the time scale of variation in the disorder. In the field

of atomic condensates, the investigation of this problem first arose due to the inevitable

presence of imperfections in the trapping potential [26]. However, disorder is believed to

be intrinsic to real systems, making the investigation of its effects indispensable to under-

standing real-world problems. Nowadays, disorder can be realized in different ways, such

as the generation of speckle laser fronts, which are highly tunable [27, 28], the use of mi-

cromirror devices to produce random potential landscapes [29], or even the presence of

impurity atoms at random locations in the system fixed by optical dipole traps [30, 31]. The

phenomenon of localization due to disorder was first studied by P. W. Anderson [32] when

analyzing a system of non-interacting particles in the presence of a random lattice poten-

tial. Anderson verified that if the degree of randomness is sufficiently strong, no diffusion

can occur, and the particles become localized. This originates from the interference of

particles that have experienced multiple scattering events by the random potential. This

phenomenon is usually referred to as Anderson localization, and it was further verified to

be a general property for the propagation of waves in a disordered medium [33]. Despite its

early development in 1958, the phenomenon of Anderson localization still attracts attention

in academic research.

In the case of Bose-Einstein condensates, Anderson localization was only verified by

reaching a regime where interactions are negligible. In Ref. [34], localization was verified by

reducing the density of the atomic cloud while letting it expand out of the trap through a one-

dimensional waveguide. During such an expansion, the interaction energy is converted into



Contents 6

kinetic energy, and the condensed atoms diffuse, becoming almost non-interacting. The

condensate was then exposed to a random speckle potential. For sufficiently large inten-

sities of this potential, the expansion of the condensate stops, and its density distribution

was found to decay exponentially, which is one of the signatures of Anderson localization.

On the other hand, Ref. [35] reported the localization of a non-interacting condensate in

a one-dimensional quasiperiodic lattice. Such a quasiperiodic lattice potential was gener-

ated by superimposing two incommensurate standing waves generated by different pairs of

counter-propagating laser beams. Interactions were then tuned to be negligible compared

to the kinetic energy of the particles via Feshbach resonance. This technique consists of

altering the scattering length, which controls the short-range interactions between the par-

ticles by applying an external magnetic field [5]. Similarly to the previous experiments, the

atoms were then allowed to diffuse in the quasiperiodic lattice for different strengths of the

disorder energy scale. For sufficiently strong disorder, no diffusion was observed, indicat-

ing that the system reached an Anderson localized state. One question that remains open,

however, is how localization is affected by strong interactions between the particles that

compose a many-body system.

Assuming a short correlation length for the disorder distribution of the random po-

tential, one can estimate the probability of having a large region where the potential is at its

minimum. Such probability is found to decrease exponentially according to the size of the

region, however, it remains finite [36]. If a cloud of non-interacting condensed bosons is put

in the presence of such a disordered potential, a macroscopic number of particles would

concentrate around the large enough region where the potential is at a minimum. Due to the

high density of bosons in such a region, the ground state of the system becomes unstable

to the presence of internal interactions between the particles. Thus, in this scenario, even in

the weakly interacting regime, the particles would be pushed into other local minima of the

disorder potential, producing a localized ground state composed of droplets of condensed

particles with no transport between them. This characterizes an insulating phase with local

coherence emerging as a direct consequence of the presence of disorder: the Bose-glass

phase. The emergence of such a phase in the superfluid to Mott insulator phase transition

due to disorder was first predicted in the groundbreaking contributions of Ref. [22] in 1989.

Its direct experimental verification was achieved later in 2016 by C. Meldgin et al. [37]. The

experiment was done by preparing a Bose-Einstein condensate inside a three-dimensional

optical lattice potential with an additional disordered potential produced with laser speckles.

The time-of-flight technique was then applied after having prepared the random potential

at different disorder strengths. For strong disorder, due to the presence of local puddles

of condensed particles, the density profile measured in that experiment after free expan-

sion was found to present modulations, which originated from vortex excitations generated

by the interference of local condensates. This characterized a direct probe of the Bose-

glass phase. While some features of the Bose-glass phase are comprehended to a certain
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degree, numerous intriguing inquiries regarding its characterization remain unresolved.

The fundamental problem regarding the interplay between disorder, Mott localiza-

tion, and superfluidity is brought together by the Bose-Hubbard model. This model de-

scribes spinless bosons with short-range interactions within a disorder lattice and is exper-

imentally realized in the lowest Bloch band limit of systems of ultracold bosons in random

lattice potentials. The model is characterized by three competing energy scales: the hop-

ping energy, associated with the tunneling of particles from a site to one of its first neigh-

bors; the interaction energy, which accounts for the on-site repulsion between particles at

the same lattice site; and an energy shift caused by disorder at each lattice site. If the

hopping energy is large compared to the other energy scales, particles can flow without

friction, and the ground state is a superfluid. If interactions dominate over disorder and

tunneling energies, a finite number of particles become localized in each lattice site, and

the ground state becomes a Mott insulator. However, in the case of strong disorder, lo-

cal puddles of condensed particles emerge in an insulating background, giving rise to a

Bose-glass state. These qualitative aspects of the phase diagram corresponding to the

disordered Bose-Hubbard model were first investigated in [22]. Since this pioneering con-

tribution, much information about the details of the phase transitions between these phases

has been obtained. The superfluid phase is distinguished from the insulating phases by

the presence of a macroscopically occupied coherent state, which leads to finite correla-

tions even at the limit of large space separations in the system. This phenomenon is called

off-diagonal long-range order. Another key distinction comes from the energy spectrum of

elementary excitations in the superfluid phase. Such an energy spectrum is gapless, with

low-energy excitations corresponding to the Nambu-Goldstone modes, and the additional

presence of a gapped amplitude mode usually referred to as the Higgs mode. The presence

of a gapless mode in such a phase is a direct consequence of the breaking of the contin-

uous phase invariance, which follows from the Nambu-Goldstone theorem. In the lattice

system, superfluidity occurs when linked to fluctuations in the average number of particles

per site, which lead to a finite compressibility. Unlike the superfluid state, both Mott insu-

lator and Bose glass present no long-range order. In the Mott phase, fluctuations in the

average on-site particle density are suppressed by the strong interactions, and an integer

number of particles become localized at each site. At zero temperature, this leads to a van-

ishing compressibility. However, for finite temperatures, the Mott phase acquires a residual

finite compressibility [38]. The energy spectrum of the Mott phase is identified by its gap

for quasiparticle and quasihole excitations. For a perfect lattice, these excitations are sta-

ble and delocalized, meaning that they can propagate without damping through the whole

system. It has been demonstrated that, in the absence of disorder, the Mott gap closes

when the phase boundary to the superfluid phase is crossed, such that the dispersion of

the quasiparticles and quasiholes transforms continuously into the Nambu-Goldstone and

Higgs amplitude modes [39]. In contrast, the Bose-glass phase, which emerges due to the
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presence of disorder, corresponds to a gapless insulating phase. The gapless excitations

in this phase emerge due to the presence of local condensates, which also lead to a finite

compressibility [22].

The analytic expression of the eigenstates and eigenenergies of the Bose-Hubbard

model cannot be computed in general. Thus, many methods have been applied to in-

vestigate the system. Some of these methods include local [1] and stochastic mean-field

techniques [2, 3] and Monte Carlo calculations [40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

However, the analytic investigation of the effects of disorder has been mainly restricted to

mean-field theory [38, 50, 51]. Although many aspects of the excitations of the Mott phase

have been investigated in the clean case, a precise investigation of the effects of disorder

on their energy spectrum remains unavailable. Moreover, a rigorous characterization of

the low-energy excitations of the Bose glass phase is still lacking. Another problem that

remains unsolved concerns the precise phase boundary between the Mott and the Bose-

glass phases. Due to the residual fluctuation in the average particle density inside the Mott

phase at finite temperatures, the compressibility becomes an unreliable parameter for such

distinction. Based on the different nature of the energy spectrum of these insulating phases,

it has been proposed that the local density of states could serve as a parameter to identify

them [22, 38]. However, it is important to investigate whether one can use such a quan-

tity to calculate the analytic expression of the phase boundary between the Mott insulator

and the Bose glass at finite temperatures, at least for small values of the tunneling energy.

With the aim of understanding the microscopic derivations that explain the answer to these

questions, this thesis is dedicated to constructing an analytical method to investigate the

fundamental details concerning the effects of disorder in the strongly interacting regime of

the Bose-Hubbard model.

Our analysis is based on the single-particle Green’s function. This function appears

as a measure of the linear response of the system to an external perturbation. However, it

provides an even deeper physical insight into the behavior of the elementary excitations of

the disordered Bose-Hubbard model as well as on the phase boundaries between each of

its ground states. The singularities of the Green’s function in frequency-momentum space

can be related to the eigenstates of the underlying Hamiltonian. We interpret these eigen-

states as the elementary excitations of the system. This information is encoded in the

so-called single-particle spectral function which presents a peak on the exact location of

the singularities of the Green’s function. By calculating the location of these peaks, one can

obtain the dispersion relation of the excitations in the first Brillouin zone. In the presence of

disorder, translational invariance is broken due to the local imperfections of the random lat-

tice. However, if one is interested only in the global effects of disorder and not in some local

properties of a specific realization of the random potential, one can average over all possi-

ble realizations. This process of disorder ensemble average guarantees that translational

invariance is recovered on average. Thus, the same concepts concerning the singularities
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of the Green’s function in frequency-momentum space as well as the peaks of the spectral

function for the classification of the excitations can be applied in this case. One can extract

from the Green’s function the condition which leads to the divergence of long-wavelength

correlations and thus obtain the phase boundary to the superfluid phase. Furthermore, one

can calculate the local density of states from the local Green’s function in space. Such a

local density of states is predicted to vanish at zero energy in the Mott phase due to the ex-

istence of the energy gap. In contrast, the gapless spectrum of the Bose glass phase leads

to a finite local density of states at zero energy. Therefore, the computation of the Green’s

function gives us access not only to the energy spectrum for elementary excitations in the

presence of disorder but also to the phase boundary between different ground states.

We construct a perturbation theory that consists of using the functional integral for-

malism to determine a strong-coupling hopping expansion to the single-particle Green’s

function based on the methods of Refs. [52, 53, 54, 55]. This perturbation treatment relies

on field theoretical considerations. Within this hopping expansion, we generate an expres-

sion for the Green’s function that allows us to investigate the disordered Bose-Hubbard

model in the strongly interacting regime. By performing a partial summation of an infi-

nite subset of terms in the hopping expansion, we obtain an analytical expression for the

disordered-averaged spectral function. With this function, we analyze the nature of the ele-

mentary excitations in the disordered case. Considering the first non-vanishing contribution

in the hopping expansion to the local Green’s function, we apply the Poincaré-Lindstedt

method to obtain a renormalized expression for the local density of state, which generalizes

the result obtained in Ref. [38] for the case of finite tunneling energy.

We find that, similarly to the clean case, the Mott phase in the presence of disorder

still exhibits a gap for stable excitations. However, as the region corresponding to the Mott

states in the phase diagram shrinks for finite disorder, the gap for these stable excitations

decreases, leading to a shift of their dispersion towards lower energies. We find that the

effective mass of these stable excitations increases with the disorder strength, which im-

plies that they become less dispersive. In addition, as a new feature caused by disorder,

we find that damped states emerge for slightly higher energies at the center of the band

structure. We demonstrate that the lifetime of excitations in that energy range increases

with the disorder strength. By analyzing the propagation of these in real space and time,

we demonstrate that excitations created in the energy range of the stable states are delo-

calized and dominate the propagation at long time scales. In contrast, excitations produced

in the energy range of the damped states are localized and dominate the propagation at

short time scales. When the disorder becomes of the same order as the interactions, the

stable-delocalized excitations become dispersionless. In such a limit, the lifetime of the

damped-localized excitations increases, and they dominate the whole energy band. There-

fore, we argue that such damped-localized excitations correspond to the low-energy excited

states of the Bose-glass phase.
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By analyzing the renormalized expression for the local density of states, we confirm

that such a quantity, which holds information on the available states for excitations at each

lattice site, is a reliable parameter to unambiguously identify both the Mott and the Bose-

glass phases for zero and finite temperatures and slightly positive values of the tunneling

energy. By investigating the energy intervals where such a quantity is finite, we compute

an analytic expression for the Mott-to-Bose-glass phase boundary. We then compare our

results with numerical calculations from the literature and confirm that our theory goes

beyond the standard mean-field theory for the prediction of the phase boundary.

To provide an alternative beyond our current methods for analyzing the system and

to extend the calculations to the spectrum of excitations of the superfluid phase, we intro-

duce an effective-action approach and a diagrammatic expansion for weak disorder. These

methods can be applied separately or together, and their application appears promising for

analytically characterizing the full phase diagram.

Outline of the thesis

This thesis is divided into five parts. The first part, comprising Chapters 1 and 2,

is devoted to the theoretical background of the Bose-Hubbard model. The second part,

containing Chapters 3 and 4, concerns the theoretical methods that we have applied to

study the system. The third part is constituted by Chapters 5 and 6, which presents the

main contributions from this work. In the fourth part, corresponding to Chapters 7 and 8,

we present some preliminary calculations that could be used to extend the results of the

present thesis as well as to produce new and insightful results for the problem examined

here. Finally, in the fifth part, we summarize the contribution of this work, presenting the

concluding remarks.

In Chapter 1, we start by introducing the coupling between atoms and the radia-

tion field via the optical dipole force. We then demonstrate how one can use counter-

propagating laser beams to generate the periodic structure of optical lattices. We also

discuss how a random external potential can be created using laser speckles. Next, we

introduce the Bose-Hubbard model, first considering the single-particle picture and then

deriving the Hamiltonian within the formalism of second quantization. To connect the lattice

modulation with the competitions between the parameters of the Bose-Hubbard Hamilto-

nian, we show how such parameters scale with the lattice potential depth up to the first

approximation. We then describe the ground state of the system, as well as the techniques

used to experimentally probe them.

Chapter 2 comprises a review of the important aspects of phase transitions between

the ground states of the Bose-Hubbard model. Firstly, we present the definition of quantum

phase transitions and important aspects concerning the scaling behavior near criticality.

Then, we discuss the Landau theory as a method for investigating the symmetry-breaking
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mechanism that occurs in continuous phase transitions. These critical properties of quan-

tum phase transitions are discussed in the context of the Mott-superfluid phase transition

in the clean case. Next, we work how the presence of disorder affects the phase diagram,

specifically how the Bose-glass state intervenes.

We present the principal characteristics of the single-particle Green’s functions in

Chapter 3. First, we discuss how these quantities emerge from linear response theory.

Then, we present the general form of the Källén-Lemann representation of Green’s func-

tions and derive the spectral function, which incorporates the singularities of the Green’s

functions. To set the stage for our perturbation treatment, we introduce the Matsubara

formalism. Next, we discuss some general properties of Green’s functions in disordered

systems. We then consider the physical interpretation of Green’s functions in the context

of elementary excitations and apply these ideas to the disordered Bose-Hubbard model

in the limit of strong interactions. To close this chapter, we briefly report the techniques

of Bragg spectroscopy and the radio-frequency transfer method, which can be applied in

experiments to measure Green’s and spectral functions.

In Chapter 4, we develop the perturbation method used to obtain the main results

of this thesis. The method relies on a hopping expansion constructed in the functional

integral formalism. We first demonstrate how to calculate corrections to the Matsubara

Green’s function in terms of the tunneling energy at a tree-level approximation. After that,

we combine an infinite subset of terms in the hopping expansion of the Green’s function

by applying the technique of partial summation. This allows us to obtain a result that takes

into account the corrections to the path of an excitation which hops through the lattice

and undergoes infinitely many scattering events against the disordered potential at each

site. By considering the first relevant correction to the local Green’s function in the hopping

expansion, we then use the Poincaré-Lindstedt method to obtain a renormalized expression

for the local density of states.

Chapter 5 is devoted to the analysis of the effect of disorder on the excitation spec-

trum of the Bose-Hubbard model in the limit of strong interactions. To this end, we derive

the spectral function that follows from the partial summation result of the Green’s function.

First, we present the details of the spectral function in the clean case. Then, we discuss

the changes that occur in the disordered case by presenting the results for a bounded uni-

form disorder distribution. We then analyze the propagation of excitations by observing the

spatiotemporal profile of the retarded Green’s function.

The results for the phase diagram in the disordered case at finite temperatures and

for small values of the tunneling energy are presented in Chapter 6. Firstly, we derive

the superfluid phase boundary from the partial summation result of the Green’s function.

Secondly, by analyzing the renormalized local density of states obtained with the Poincaré-

Lindstedt method, we obtain an analytical expression for the phase boundary of the Mott-

Bose glass phase transition. Then, we present the phase diagram for a uniform disorder
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distribution. Finally, we compare our results with numerical calculations from the literature.

In Chapter 7, we present some preliminary calculations that serve as the starting

point for investigating the effects of disorder on the excitation spectra of the superfluid

phase. These calculations follow from the application of the effective-action approach. We

first show how to derive the effective-action functional to recover the results for the exci-

tation spectrum obtained in Chapter 5. By considering first-order fluctuations around its

equilibrium value, we discuss how one could obtain the energy spectra for the superfluid

excitations within this approach. We then present a possible order parameter that can be

used to investigate the excitations in the Bose-glass phase.

Chapter 8 contains the development of a disorder expansion perturbation theory. In

this chapter, we consider free lattice bosons in the presence of weak disorder and construct

a diagrammatic expansion for the Green’s function within the functional integral formalism.

By considering a single-site approximation, it is possible to obtain a result for the singulari-

ties of the Green’s function, which is similar to the one obtained with the partial summation

method. We then discuss how to investigate the interacting system by considering the hop-

ping and disorder expansion together, where the fluctuations of each perturbation method

could be treated separately.

Finally, Chapter 9 comprises a summary and concluding remarks that contextualize

the contributions of the present work. There, we also discuss some prospects and insights

that could be topics for future research.

Appendices A, B, and C contain the derivations of the functional integral formula-

tion of the Bose-Hubbard model, the sum rule of the spectral function, and the asymptotic

behavior of the Green’s function, respectively.
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Chapter 1

Cold atoms in random optical lattices

The interaction of atomic systems with radiation leads not only to atomic-state tran-

sitions but it also modifies the internal structure of the atomic levels. The coupling between

radiation field and induced atomic dipole moment causes an energy shift in the atomic

spectrum. One can explore this so-called AC-Stark effect to create optical lattices in or-

der to realize the Bose-Hubbard model. In this chapter, we focus on discussing the basic

physics of such a model and the distinct characteristics of its ground states. Furthermore,

we describe how disorder can be introduced and how the different phases can be experi-

mentally verified.

1.1 AC-Stark effect

One of the main ingredients for trapping and manipulating cold atoms with optical

potentials is the optical dipole force, which relies on the AC-Stark effect. Such an effect

describes how an external oscillating electric field interacts with a neutral atom, inducing

a separation between its positively charged nucleus and its negatively charged electronic

cloud. In the limit where the atomic wave function is extended over distances much smaller

than the electric field wavelength, this separation is measured in terms of an induced electric

dipole moment [56]. The resulting interaction is given by

Ĥ′ =−d̂ ·E , (1.1)

where E represents the electric vector field and the d̂ dipole operator for a single atom. The

dipole operator is defined as the electron elementary charge e multiplied by the sum of the

position operators corresponding to each electron in the atom

d̂=−e
∑

j
r̂ j (1.2)

14
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Generally, only the electrons composing the outer shell are important. Alkali atoms have

only one outer shell electron [5].

For an oscillating electric field of the form

E(x, t)= Ẽ(x)eiωt + c.c., (1.3)

in the limit where the its spatial variation can be considered negligible inside the atom, we

can apply standard time-dependent perturbation for the atom-light interaction (1.1). If we

consider the atom to be initially in its ground state, which is assumed to be an eigenstate of

the parity operator with even parity, the first-order correction vanishes. Up to second order

approximation the energy shift is given by [57, 58]

∆E(r)=−1
2

Re{α(ω)}〈E(x, t)2〉t, (1.4)

where 〈· · · 〉t corresponds to the time average and α(ω) is the complex polarizability which

characterizes the atomic response to external fields. The energy shift in (1.4) is called AC-

Stark shift. This result points to the fact that the polarization of the atom oscillates with the

same frequency as the external electric field and thus the energy shift works as an effective

trapping potential to the atom.

In order to give a simple estimate for the polarizability, we consider the problem of a

static radiation field E = E0ε. Using standard perturbation theory we find the second-order

approximation to the energy shift to be

∆E =−∑
e

| 〈e|d̂ ·ε|g〉 |2
Ee −Eg

E 2
0 =−1

2
αE 2

0 , (1.5)

where |g〉 and {|e〉} represent the unperturbed ground state and the set of excited states of

the atom with energies Eg and Ee, respectively. We have additionally introduced ε which

is the unity vector defining the direction of the electric field. From (1.5) we can see that the

polarizability in this case is given by

α= 2
∑
e

| 〈e|d̂ ·ε|g〉 |2
Ee −Eg

. (1.6)

Considering the simple case of a two-level atom, equation (1.5) reduces to

∆E =±|〈e|d̂ ·ε|g〉 |2
Ee −Eg

E 2
0 . (1.7)

Such energy shifts correspond to the coupling between the atom and the radiation field

producing a dipole potential. This process is depicted in Fig. 1.1.

A more complete derivation of the atomic polarizability could be done by consider-
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Figure 1.1 – Energy shifts induced on the atomic energy levels due to the electric field. On the
left-hand side are energy shifts of the ground and excited states. On the right-hand side we see a
qualitative picture of how those energy shifts can be understood as a trapping potential.

Source: Figure from Ref. [59].

ing the temporal oscillation of the radiation field as well as the finite lifetime of the atomic

excited states which decay by spontaneous emission [60]. Taking into account that the en-

ergy difference between the ground state and an excited state is nearly resonant with the

frequency of the external field, one can rely on a two-level description. Altogether, these

considerations along with the rotating wave approximation lead to an atomic polarizability

of the form

α(ω)≈ |〈e|d̂ ·ε|g〉 |2(Ee −Eg −ħω)
(Ee −Eg −ħω)2 + (ħΓe/2)2 + i

| 〈e|d̂ ·ε|g〉 |2ħΓe/2
(Ee −Eg −ħω)2 + (ħΓe/2)2 . (1.8)

This approximation is valid whenever the detuning

δ=ω− Ee −Eg

ħ (1.9)

is small. A detailed derivation of these results can be found, for instance, in Ref. [57].

By defining the Rabi frequency for the cycle absorption and spontaneous emission

as

ΩR = 1
ħ|〈e|d̂ · Ẽ(x)|g〉 |, (1.10)

the conservative potential that traps the atoms can be written as

V = ħΩ2
Rδ

δ2 + (ħΓe/2)2 . (1.11)

In general, in experiments the resulting mechanical effect comes from the potential of (1.11).

Note that the sign of V depends on the detuning δ. For a red detuned trap regime of neg-

ative δ the potential becomes attractive and atoms move towards higher-intensity regions.

In the case of a blue detuned trap of positive δ the maxima of light intensity correspond to
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Figure 1.2 – Optical dipole traps with far detuned radiation field. For red detuning (left) atoms are
trapped in the maxima of light intensity. For blue detuning (blue) atoms move towards minima of light
intensity.

Source: Figure from Ref. [59].

potential maxima and atoms are trapped in lower-intensity regions. An illustration of both

cases is shown in Fig. 1.2.

1.2 Optical lattices

Optical lattices are formed by creating a standing light wave which oscillates in time

but keeps its peak amplitude stationary in space. This is done by either using a mirror

to reflect the radiation field or by aligning a pair of counter-propagating laser beams (see

Fig. 1.3). By combining laser beams with different frequencies one can construct optical

lattices in one [16, 17], two [18, 19], and three dimensions [19].

In the classical limit, the laser field is well described by a monochromatic wave of the

form of (1.3) with the spatial part given by Ẽ(x) = E0εcos(kL ·x). Here, the absolute value

of the lattice wavevector kL = |kL| relates to the lattice wavelength by λL = 2π/kL.

Assuming that the lasers are well aligned such that the beam width takes the minimal

value w0 of the corresponding beam waist, the intensity of a Gaussian laser beam is given

by

I(x)= I0e−2r2/w2
0 cos2(kLz z), (1.12)

where the intensity amplitude I0 is proportional to the square of the electric field amplitudes

and r is the radial distance from the central from the center axis of the beam. We have

assumed propagation in the z direction. As a consequence of the AC-Stark effect atoms

fill a conservative potential proportional to such amplitudes and are attracted by either the

intensity maxima or minima [59]. The resulting potential in 3D is given by

V (x)=Vtrap(x)+VOL(x) (1.13)
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Figure 1.3 – Optical lattices. On the left we see how the laser fronts can be superimposed to form
two-dimensional (upper) and three-dimensional (lower) lattice potentials. The right image shows the
mirror device to produce such crystals of light.

Source: Figures from Refs. [15, ?].

where the trapping potential is

Vtrap(x)=−V0

(
e
−2 y2+z2

w2
0 +e

−2 x2+z2

w2
0 +e

−2 x2+y2

w2
0

)
, (1.14)

and the optical lattice potential reads

VOL(x)=V0

(
e
−2 y2+z2

w2
0 sin2 kLx x+e

−2 x2+z2

w2
0 sin2 kL y y+e

−2 x2+y2

w2
0 sin2 kLz z

)
. (1.15)

If the atoms are confined near the trap center one can take the limit |x| ¿ w0. Within this

limit the full potential becomes

V (x)≈−3V0 +VOL(x), (1.16)

where the approximation to the optical lattice potential reads

VOL(x)≈V0
(
sin2 kLx x+sin2 kL y y+sin2 kLz z

)
. (1.17)

Note that the characteristic lattice spacing is given by ai =λL i /2=π/kL i with i = x, yz.

It is possible to fine-tune the lattice parameters, such as the lattice spacing, lattice

depth, and the orientation of the lattice, in order to create a wide variety of lattice structures

with different properties and capabilities. By controlling the interference angle between the

laser fronts, one can change the lattice spacing in order to produce different geometries

such as triangular [61] and Kagomè [62]. In order to understand how to investigate the

effects of disorder in such structures, we review some of the most common experimental
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Figure 1.4 – Speckle laser production. a) A laser beam is scattered by a diffusive plate producing a
speckle pattern. b) Typical intensity distribution of the speckle pattern.

Source: Figures from Ref. [63].

techniques to generate random potential landscapes.

1.3 Speckle laser disorder

The fact that optical lattices are highly controllable and almost free of defects make

them an excellent playground to investigate emergent phenomena in many-body physics.

It is often pointed out that they represent one of the best possibilities for realizing Feyn-

man’s quantum simulator [14]. However, in nature it is unlikely to find a physical system

that presents perfect order. In fact, as we shall see, many interesting phenomena can

emerge from the presence of impurity defects and the breaking of translational symmetry.

Here we review the experimental techniques usually applied to generate random potential

landscapes, in particular we focus on the disorder created by laser speckles [27, 28].

When laser light is scattered from a rough surface, partial waves with a random

phase coming from different scattering sites interfere. If the rough surface is composed of

many scatters, one can assume that no direct transmission occurs. The resulting signal

consists of a sum of multiple randomly phased components forming randomly distributed

grains of light known as speckle pattern. In experiments, the role of the rough surface is

played by a diffusive plate. The production of the speckle as well as an example of the

landscape on intensity distributions are shown in Fig 1.4.

The probability density function for the speckle intensity is usually assumed to follow

an exponential law

P (I)= 1
〈I〉e−I/〈I〉. (1.18)

It is worth metioning that the average speckle intensity is proportional to the disorder

strength energy scale. Here we denote such energy scale as ∆, thus the relation reads

〈I〉∝∆. However, it was shown that one can customize the speckle pattern using a spatial
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light modulator in order to form uniform, linearly increasing, and bimodal distributions [64].

The size of the grains of light intensity with random magnitudes that characterizes

the speckle patter can be inferred from the width of the intensity autocorrelation function.

That is the correlation between the intensity of the random pattern at different points in

space. The grain size σs is typically connected to three length scales: the wavelength

λs of the lase beam which is shone into the diffusive plate, the aperture size Ds through

which light passes, and the distance ls of the diffuser from the focal plane. Its expression

is given by σs =λsls/Ds [27, 65]. We remark that the inverse of such a quantity defines the

maximum value for the spatial frequencies of the random potential if it is decomposed as a

sum of many Fourier components.

One can also create disorder by using micromirror devices to engineer light fields

[29]. Such devices have millions of tiny mirrors which can be tilted by either +12o or −12o

with respect to the surface normal. The high reflectivity and broad spectral response of such

devices make it possible to produce a large range of potential landscapes with low optical

aberrations [66]. Furthermore, disorder can be realized by introducing a gas of atoms in a

different internal state or even atoms of another species that are trapped in random nodes

of the optical lattice [30, 31].

1.4 Bose-Hubbard model

We have so far discussed the relevant aspect of the realization of optical lattices and

disordered external potentials. Now, we turn out attention to the description of interacting

spinless bosons loaded into a lattice. The physics of such a system is captured by one of

the central focus of this work: the Bose-Hubbard model.

1.4.1 Single-particle band structure

In the absence of any external potential, the properties of a single atom are well

described by a plane wave eik·x/
p

V , where for a given wavevector k its energy is given by

the free dispersion Ek = ħ2k2/2m. As we shall see, in the presence of a periodic potential

the energy dispersion acquires a band structure.

The Schrödinger equation for the wave function in a one-dimensional periodic po-

tential reads (
− ħ2

2m
∂2

∂x2 +V0 sin2 kLx
)
ψ(b)

q (x)= E(b)
q ψ(b)

q (x). (1.19)

The periodicity of the potential is characterized by the spacing a = π/kL. Solutions of the

above equation are given by Bloch’s theorem [67, 68, 69] and consist of the product of a
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Figure 1.5 – Band structure of a single particle in a periodic potential for different values of potential
depth V0. As V0 is increased the difference in energy between the energy bands becomes larger.

Source: Figure from Ref. [70].

plane wave with a periodically modulated function

ψ(b)
q (x)= eiqxu(b)

q (x), (1.20)

where u(b)
q (x+ a) = u(b)

q (x), i.e. this function has the same period as the potential. Such

solutions of (1.19) are usually called Bloch waves and introduce two additional parameters.

The quantity q, called quasimomentum or crystal momentum, can be interpreted as the

quantum number representing the translational symmetry of the periodic potential. We

can see that values of q differing by 2πm/a with m ∈ Z are equivalent and thus one can

restrict the analysis to the first Brillouin zone −π/a < q ≤π/a. For a given q, equation (1.19)

becomes a set of eigenvalue problems on the fixed interval 0 < x < a. Thus, one can find

many solutions of the Schrödinger equation with a discretely spaced spectrum of modes.

These correspond to the energy bands characterized by the band index b. For a large

lattice, the energy levels of the periodic potential vary continuously with the quasimomentum

q for a fixed band index b. The description of such energy levels by means of the continuous

functions E(b)
q is usually referred to as band structure [70].

It is convenient to rewrite (1.19) in the form

(
− ∂2

∂x̃2 + V0

4ER
(2−2cos2x̃)

)
ψ(b)

q (x̃)= E(b)
q

ER
ψ(b)

q (x̃), (1.21)

where we have introduced the atomic recoil energy ER = ħ2k2
L/2m and the transformation

x̃ = kLx. Note that (1.21) has the form of Mathieu’s differential equation. Solutions to such
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equation are generally expressed in the Floquet form of (1.20) [70]. The energy dispersion

of such solutions is shown in Fig. 1.5 for different values of the potential depth V0. There

one can observe that the separation between the energy bands increases by increasing V0.

For reasonably deep lattices, it is then justified to assume that transitions between energy

bands are suppressed. In this situation a cold bosonic gas would be confined to the lowest

band. This approximation will be better explored in what follows.

1.4.2 Bose-Hubbard Hamiltonian

We have so far discussed the effects of a radiation field and of a periodic external

potential on a single atom. We want now to extend the analysis to describe a system

composed of many interacting atoms in a lattice potential. A convenient way to describe

such a many-particle quantum system is the formalism of second quantization [71, 6, 72].

In such a formalism, the states of the system of N interacting particles are accommodated

in the Fock space composed of a direct sum of n-particle Hilbert spaces

F =
∞⊕

N=0
H N , (1.22)

where H 0 represents the Hilbert space whose element is the state with no particles present,

and so on and so forth. The general form of operators in the formalism of second quanti-

zation is given in terms of creation and annihilation operators [73]. In order to construct the

many-body Hamiltonian, it is particularly helpful to use the coordinate basis in real space.

The real space representation is usually described in terms of the quantum field operators

Ψ̂(x) and Ψ̂†(x), which respectively remove or add a boson to the system at position x.

In the non-relativistic limit, a system composed of many interacting bosons in the

presence of an external potential V (x), which includes the lattice potential as well as the

trapping potential defined in (1.13), is well described by the Hamiltonian [71, 73, 74, 6, 72]

Ĥ =
∫

d3xΨ̂†(x)
(
− ħ2

2m
∇2 +V (x)−µ

)
Ψ̂(x)

+ 1
2

∫
d3x

∫
d3x′Ψ̂†(x)Ψ̂†(x′)Uint(x,x′)Ψ̂(x)Ψ̂(x′).

(1.23)

Here µ denotes the grand-canonical chemical potential while the interaction between two

particles is represented by Uint(x,x′). At low energies one can assume that interactions

are dominated by s-wave scattering [24, 75] which amounts to a contact interaction of the

form

Uint(x,x′)= gδ(x−x′), (1.24)

where g = 4πasħ2/m and as is the s-wave scattering length. The field operators satisfy the
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Figure 1.6 – Bose-Hubbard Hamiltonian. The lattice is represented by the oscillating green line
while the quantum particles are represented by the red dots. The parameters are defined as: V0
corresponds to the lattice depth, J is the tunneling energy, U represents the on-site interaction, εi
corresponds to the local shift caused by the trapping potential.

Source: Prepared by the author.

commutation relations

[Ψ̂(x),Ψ̂†(x′)] = δ(x−x′) and [Ψ̂(x),Ψ̂(x′)] = [Ψ̂†(x),Ψ̂†(x′)] = 0. (1.25)

For low energies and sufficiently deep optical lattices, it is justified to assume that all

atoms are confined to the lowest Bloch band. In this way, the states are given by Bloch’s

theorem in the same form of (1.20). Such states can be superposed into a complete set of

the Wannier functions w(x) which are localized

w(x−xi)=
( a
2π

)3
∫

BZ
d3qe−iq·xiψq(x), (1.26)

where the integration in q runs over the first Brillouin zone. Such functions obey the or-

thonormality condition [74] ∫
d3x w∗(x−xi)w(x−x j)= δi j, (1.27)

where xi represents the position of the lattice site i. In terms of such localized Wannier

functions, the field operators can be decomposed as

Ψ̂(x) = ∑
i

âiw(x−xi),

Ψ̂†(x) = ∑
i

â†
i w

∗(x−xi),
(1.28)

where âi and â†
i correspond to the annihilation and creator operators of a particle at the

lattice site i. The orthonormality condition satisfied by the Wannier functions leads to the

following bosonic commutations relations

[âi, â
†
j] = δi j and [âi, â j] = [â†

i , â
†
j] = 0. (1.29)

By introducing the decomposition of the fields (1.26) into (1.23), we obtain Bose-
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Hubbard Hamiltonian

Ĥ =−∑
〈i j〉

Ji j â
†
i â j + U

2

∑
i

â†
i â

†
i âi âi +

∑
i

(εi −µ)â†
i âi. (1.30)

where the parameters are defined as

Ji j = −
∫

d3x w∗(x−xi)
(
− ħ2

2m
∇2 +V (x)

)
w(x−x j), (1.31)

U =
∫

d3x g|w(x)|4, (1.32)

εi =
∫

d3x w∗(x−xi)
(
− ħ2

2m
∇2 +V (x)

)
w(x−xi). (1.33)

Using the commutation relations of the creation and annihilation operators â†
i and âi, one

can rewrite the Hamiltonian (1.30) as

Ĥ =−∑
〈i j〉

Ji j â
†
i â j + U

2

∑
i

n̂i(n̂i −1)+∑
i

(εi −µ)n̂i, (1.34)

where n̂i = â†
i âi is the number operator. It can be shown that for reasonably deep lattices,

i.e. for a Wannier function localized at a given site, contributions due to the overlap be-

tween sites further than the first neighbors can be neglected [74], therefore, the sum 〈i j〉
is restricted to the nearest neighboring sites. The first term in (1.34) defines the hopping

energy Ji j which is associated with the tunneling of an atom from one lattice site to one of

its neighbors, where we define the Ji j as being equal to J if i and j are first neighbors and

vanishes otherwise. The on-site energy U is associated with the interaction between two

particles at the same site. The local potential εi represents the local energy shift caused

by the trapping potential at each lattice site (see Fig. 1.6). One can study the effects of

disorder by considering that just these local energy shifts become random. We will discuss

this case in more detail at a later stage.

1.4.3 Hamiltonian parameters

In order to estimate the dependency of the Bose-Hubbard Hamiltonian parameters

on the external potential, one can assume that the lattice is sufficiently deep so that a har-

monic approximation to the minimum of the potential at each site is justified [76]. Within

such an approximation the Wannier functions become a product of harmonic oscillator

states. Therefore, we focus on the one-dimensional Schrödinger equation given by(
− ħ2

2m
∂2

∂x2 +V0k2
Lx2

)
w(x)= Ew(x), (1.35)
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where the ground state solution for each lattice potential in dimensionless units well reads

w(x)=
(
π

a2

√
V0

ER

)1/4

exp

[
−π

2

√
V0

ER

( x
a

)2
]

. (1.36)

By using the explicit form of the parameters expressed in (1.31)-(1.33) one can inte-

grate the solution (1.36) which yields [24, 77, 78]

J
ER

= 4p
π

(
V0

ER

)3/4
exp

(
−2

√
V0

ER

)
(1.37)

U
ER

= as
p

8π
a

(√
V0

ER

)3/4

(1.38)

εi

ER
= 3

√
V0

ER
. (1.39)

Even though the results were obtained within a harmonic approximation to each

potential well, one can explicitly see that by varying the lattice potential depth V0 one can

tune the interplay between the Hamiltonian parameters. As we will discuss in what follows,

depending on which energy scale dominates, the system will reach equilibrium in a different

ground states. Thus, by increasing the lattice potential depth one can drive the system into

a phase transition. These details will be further explored in the following sections.

1.4.4 Ground states of the Bose-Hubbard model

The competition between the parameters of the Bose-Hubbard Hamiltonian leads to

different ground states. In order to give a first introduction we follow the path of Ref. [79]

and analyze first the case of two bosonic neutral atoms in a double well potential.

Two particles in a double well

Consider first a single particle in a symmetric double well potential in one dimension.

If the the potential obeys reflection symmetry, i.e. it is symmetric under the transformation

x →−x the Hamiltonian commutes with the parity operator. Hence the eigenfunctions of the

Hamiltonian have definite parity. Due to the fact that the odd eigenfunction has necessarily

a node at x = 0 regardless of the height of the barrier, its eigenenergy is higher than the one

of the even eigenfunction [80]. By representing the even and odd eigenfunctions as φ(x)
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and φ̃(x), respectively, we can form the liner combinations

〈x|L〉 = 1p
2

(
φ(x)+ φ̃(x)

)
, (1.40)

〈x|R〉 = 1p
2

(
φ(x)− φ̃(x)

)
, (1.41)

where |L〉 ( |R〉) corresponds to the state in which the particle is located on the left (right)

potential well. Conversely, we can note that the even and odd eigenfunctions can be written

as

φ(x) = 1p
2

(〈x|L〉+ 〈x|R〉), (1.42)

φ̃(x) = 1p
2

(〈x|L〉− 〈x|R〉). (1.43)

Thus, the ground state of the system, which corresponds to the even eigenfunction, consists

of a symmetric combination of the particles being either on the left or on the write well,

while the first excited state corresponds to an anti-symmetric superposition of these two

possibilities. We define the difference between these two energy levels to be J. This

energy scale depends on the barrier height between the two wells and characterized the

tunneling between them [79].

If we introduce an additional particle the quantum state of the two-particle system

can be described in Fock space by the basis state |nL,nR〉, where nL and nR are non-

negative integers that count the number of particles in the left and right wells, respectively.

If we restrict the analysis to the non-interacting case, the state with the lowest energy is the

one where each atom occupies the symmetric state (1.42). This state corresponds to the

superposition of the states where two atoms are in the left well |2,0〉 with the state where

they are both in the right well |0,2〉 and the state where each particles is in one well |1,1〉.
Such states are coupled via first-order tunneling. The average number of particles per site

is always one, however there is a non-vanishing probability of finding either zero, one, or two

atoms at the same site. Such fluctuations in the atom number occur due to the delocalized

single-particle states. Therefore, one can make a connection between the above described

state and the superfluid state of the many-body system.

By adding the possibility of a contact interaction between the two particles, the total

energy of the symmetric state will increase as an effect of having contributions from states

where the two atoms are located at the same potential well [80]. We define such interac-

tion cost to be U. The presence of such an interaction creates an interplay between the

different energy scales of the system. Whenever the interaction cost U is larger than the

energy difference between the symmetric and anti-symmetric states J, each atom will be

in a superposition of these states. In the Fock basis, this results in a suppression of tran-

sitions from the state |1,1〉 to either |2,0〉 or |0,2〉. Thus, the state of the full system will be
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Figure 1.7 – Different states for two particles in a double well potential. The upper row corresponds
to a symmetric potential while the lower row corresponds to an asymmetric potential. The potential
is represented by the green lines and the particles are represented by the red dots.

Source: Prepared by the author.

described by |1,1〉, where there is exactly one particle per lattice potential well. Such state

resembles a Mott insulating phase, where the atoms are localized due to the interaction

cost.

For a symmetric double well the value of the potential at the minimum of each well is

exactly the same. Thus, the state where the two particles are in the left well, i.e. |2,0〉, has

the same energy as the state where the two particles are in right well, i.e. |0,2〉. By making

the double well asymmetric, that is, by introducing an energy difference ∆ between the two

potential minima, one can bias the two-particle system into choosing either the state |2,0〉
or the state |0,2〉 . If interactions are weak, both particles can occupy the ground state of

the biased well. One can make the analogy between this state and the Bose-glass state

of the many-body system where particles can condense around the local minima of the

potential but tunneling between them is suppressed.

A schematic drawing of the different state of the double well can be observed in

Fig. 1.7. Note that by adiabatically tuning the barrier height of the double well potential or

the difference between the two potential minima, one can imagine that the system would

eventually transition from the delocalized state to either a localized state where each parti-

cles is in one well or both are localized in the same well.

We must remark that we have chosen to make a rather simple discussion about the

problem of a two interacting particles in a symmetric or asymmetric double well potential

with the aim of illustrating the qualitative aspects of the different ground states of the Bose-

Hubbard model. However, this problem can in fact be extremely complicate. Thus, for a

more complete quantitative analysis of such a problem, we refer the reader to look for more

details, for instance, in Refs. [81, 82, 83].
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Figure 1.8 – Superfluid ground state. Particles are delocalized (blue region) through the whole lattice
volume (black line).

Source: Prepared by the author.

Superfluid ground state

We now turn back to the problem of many atoms loaded on an optical lattice de-

scribed by the Bose-Hubbard Hamiltonian. We consider first the case where the tunneling

J is much larger than the interaction energy U and the local shift εi. By extending the

qualitative aspects of the analysis made previously, one can conclude that in the ground

state the single-atom wave functions are delocalized over the entire lattice volume. In this

situation, the ground state of a system composed of N bosons on top of a lattice with L
sites can be approximated as a product of identical Bloch states

|ΨSF〉∝
(

L∑
i=1

âi

)N

|0〉 in the limit
U
J

→ 0, (1.44)

where |0〉 corresponds to the single-particle state with no particles present.

As the atomic states are delocalized one can associate the full system with a matter

wave field where many atoms would start to accumulate in the same quantum sate. In this

situation, the many-body wave function at a single site can be described by a superposition

of basis states with a different number of atoms which is equivalent to a coherent state |Φi〉.
This process is characterized by the emergence of the non-vanishing expectation value

ψi = 〈Φi|âi|Φi〉 which can be written as ψi = p
nieiϕi , where ni is the expected number

of bosons at site i. The system is then best described by a macroscopic wave function

where the real part of the expectation value of the hopping energy in the Bose-Hubbard

Hamiltonian is given in this basis as

Re{〈−Jâ†
i â j〉}=−J

√
nin j cos

(
ϕ j −ϕi

)
, (1.45)

which can be related to the Josephson tunneling energy where ϕ j −ϕi is the macroscopic

phase difference between the neighboring sites i and j. In a macroscopically occupied

coherent state the phase becomes a well defined quantity and thus the system is able to

reduce its energy by an amount J for each Josephson junction. The emergence of such

a well defined phase is linked to the mechanism of spontaneous symmetry breaking that

takes place when this phase emerges, as we shall discuss later.

The superfluid ground state is therefore associated with a macroscopic wave func-

tion where momentum flows without dissipation and each atom is delocalized through the

lattice (see Fig. 1.8).
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Figure 1.9 – Mott insulating ground state. An integer number of particles (red dots) gets localized
(wave functions in blue) at each lattice site (the lattice is represented by the black line).

Source: Prepared by the author.

Mott Insulating ground state

If interactions are strong and dominate over the hopping and local shift terms of the

Bose-Hubbard Hamiltonian, the expectation value for the matter wave field vanishes, i.e.,

ψi = 0. Consequently, fluctuations in average number of particles at each lattice site get

suppressed. Each atomic state can be well described by localized Wannier functions that

minimize the interaction energy. In this limit, the ground state of the full system becomes a

product of local states in Fock space with a commensurate filling n of atoms for every lattice

site

|ΨMI(n)〉∝
L∏

i=1
(â†

i )
n |0〉 as

J
U

→ 0. (1.46)

This state describes a Mott insulator.

If we compare the expectation value of the interaction energy for the coherent states

Un2
i /2 with the same quantity in the Fock state of the Mott regime Uni(ni−1)/2 with average

atom density ni, we notice that the system is now able to reduce its energy by an amount of

U /2ni if the later localized state is formed in place of the coherent superfluid ground state.

The system becomes localized with a fixed integer number of particles per site (see

Fig. 1.9). Because fluctuations in the atom number become negligible such a state is in-

compressible in the limit of zero temperature. In order to create a delocalized excitation,

one has to give an energy at least of the same order of the interactions. This characterizes

the energy gap of the Mott insulator ground state.

Disorder and the Bose glass ground state

The study of disorder in many-body systems is important for understanding the prop-

erties of real-world materials. Disorder can lead to different kinds of phenomena such as

new phases of matter and new types of excitations. Since the seminal paper of Anderson

[32], a fundamental question in this regard concerns how localization manifests itself in the

quantum realm. In the classical limit, a particle with kinetic energy larger than the typical

strength of the disordered potential would follow a ballistic motion above the random po-

tential landscape. In the opposite case, if the particle energy is smaller than the disorder

barrier, localization takes place and the transport over long distances is suppressed. A

quantum particle however can tunnel through potential hills larger than its kinetic energy as
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Figure 1.10 – Bose glass ground state. On the left side we can see how the particle density (upper
row) is accumulated around the minimum of the random potential (lower row) for free particles. In
middle we can observe how the particle density gets distributed over the random potential minima
in the presence of interactions. On the right side, we show such rare regions of condensed bosons
(blue) in an insulating background (pink).

Source: Figures from Refs. [36, 84].

well as be reflected by small potential fluctuations. The motion of such a quantum particle

after many scattering events against the random potential would resemble a random walk.

This changes drastically the scenario compared to the classical case. Here we discus how

disorder is introduced in the Bose-Hubbard Hamiltonian.

Assuming that the trapping potential Vtrap(x) varies slowly compared to the lattice

potential and that its characteristic length extends over to distances much larger than the

spatial extent of the Wannier functions, we can approximate the local energy shift in the

Bose-Hubbard Hamiltonian as [24]

εi ≈Vtrap(xi). (1.47)

Disorder is usually addressed by considering that this local term varies randomly through

the lattice according to some probability distribution P (εi). In experiments this corresponds

of superimposing, for instance, a laser speckle field to the lattice potential and studying its

influence in the system by the random local shifts εi. In the case we are interested, the

disordered potential time scale can be considered much greater than the thermodynamic

times scale of the system. This amounts to a disorder which is effectively frozen in time,

the so-called quenched diagonal disorder.

In order to provide a simple picture about the effects of disorder in the Bose-Hubbard

model, let us follow the arguments Ref. [36]. We define the strength of the disordered po-

tential to be controlled by the energy scale ∆. If the disorder dominates the Bose-Hubbard

Hamiltonian, the bosons can be regarded as free particles. In the absence of interactions

the presence of disorder can lead to the localization of the bosons in a finite but large

enough region of space, namely where the disorder is around its minimum −∆. When

confined to such a region, bosons end up lowering their kinetic energy while the potential
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energy is increased by −∆. If the size of the region where the bosons aggregate is large, it

becomes favorable for a macroscopic amount of particles to condense in such a minimun.

The probability of such a region to occur is exponentially small but it still is finite. As the

density of bosons condensed in such a region is extremely large the ground state becomes

unstable. If interactions are made finite, the particles would be pushed into other local

minima of the random potential landscape. This phase, which consists of local droplets of

condensates with a Mott insulating background, is a new ground state steaming from the

presence of disorder (see Fig. 1.10), the so called Bose glass [22, 84]. Such a phase has

properties from both superfluid and Mott insulator ground states. Even though it is charac-

terized by the absence of macroscopic phase coherence, it is an insulating phase with a

gappless spectrum and a finite compressibility at zero temperature. The questions about

what are the main characteristics of the excitations in such a phase are still open. This

work aims of contributing to a more fundamental understanding in this direction. We now

discuss the characteristics of the phase transitions between the different Bose-Hubbard

Hamiltonian ground states.

1.5 Detection

The experimental detection of each ground state of the Bose-Hubbard model was

realized with the use of the time-of-flight imaging. Here, we give an introduction to such a

technique and how it was applied to distinguish the different ground states.

1.5.1 Time-of-flight imaging

Time-of-flight (TOF) imaging is one of the most successful experimental techniques

to probe cold atoms in external potentials. The experimental procedure consists of suddenly

turning off the external potential that was keeping the atomic gas in order to let the cloud

expand freely [85, 86, 87, 88]. After a few milliseconds, the most energetic atoms escape

over large distances compared to the size of the initial cloud, while the less energetic ones

remain near the center of the now absent external potential. Due to the decrease in the

density during the expansion, the interactions become negligible. The measurement is then

performed by either taking absorption pictures of a resonant laser beam through the dilute

gas or by measuring the fluorescence of the falling atomic cloud over a resonant probe

beam. Such a procedure provides the real space density profile which can be directly

related to the integrated velocity and momentum distribution at the time of the release.

In Fig. 1.11 we show the experimental sequence as well as the optical setup for a

TOF measurement. On the left image we note that the turning on of the lattice (red) and

random (green) potential is an adiabatic process. Subsequently, both potentials are kept

constant and then switched off. The gas then expands freely after the absorption pictures
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Figure 1.11 – Experimental setup for TOF imaging. On the left side we can see an example of the
time sequence for the measurement. On the right side we observe the optical setup for both the
random potential and the imaging beam.

Source: Figures from Refs. [89, 37].

are taken. On the right side, we note the schematic generation of the random potential

with the use of a diffusive plate and the imaging beam. Both are then shone on the cell

which keeps the ultracold gas. The imaging is realized with a charge coupled device (CCD)

camera.

In what follows we show how the experimental evidence coming from TOF measure-

ments was used to identify each ground state of the Bose-Hubbard Hamiltonian.

1.5.2 Experimental characteristics of the ground states

It turns out that the ground states of the Bose-Hubbard Hamiltonian can be distin-

guished by their profile measured in TOF experiments. In the absence of disorder, one can

use the momentum distribution which comes from the TOF imaging to distinguish the su-

perfluid and Mott insulating phases. As the gas is let to expand after the trapping potentials

are turned off, the atomic wave packets which are located at each lattice site start to spread

until eventually they begin to overlap and interfere with each other. As we have discussed,

deep in the superfluid phase for a shallow lattice, the system can be associated with a mat-

ter wave field with a single-site many-body wave function described by a coherent state.

The result of the release of these coherent states from each lattice site is a multiple matter

wave interference pattern. The momentum distribution of the superfluid state reveals nar-

row peaks which occur due to the constant macroscopic phase over the lattice sites. The

position of these narrow peaks brings to light the periodicity of the reciprocal lattice struc-

ture (Fig. 1.11b-c). As the lattice depth is increased, the interference peaks start getting

destroyed by the localization of the wave packets caused by interactions. For deep lattice

potentials, the matter wave field gives place to an incoherent background in the momentum

distribution, signaling that no superfluid fraction remains in the sample (Fig. 1.11g-h). This

pattern is associated to the Mott insulating state. The characteristics of this ground state

was first tested in the clean case by M. Greiner et al. [23]. In Fig. 1.12 we show a picture of

the measured interference patterns identifying each phase.

In the presence of disorder, as the Bose-glass phase is characterized by the ab-
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Figure 1.12 – Multiple matter wave interference patterns obtained in TOF measurements for different
lattice potential depths V0. (a) 0ER ; (b) 3ER ;(c) 7ER ; (d) 10ER ; (e) 13ER ; (f) 14ER ; (g) 16ER ; and
(h) 20ER .

Source: Figure from Ref. [23].

Figure 1.13 – Density profile of superfluid and Bose glass phases. The white ellipses correspond to
the fitted (Thomas-Fermi) radius of the atomic cloud where the fitted profile was subtracted in the
right images. The superfluid state presents a smooth density profile while the Bose glass manifests
vortex defects indicated by the red arrows.

Super�uid Bose glass

Source: Figures from Ref. [37].

sence of a macroscopic phase coherence, in principle, it would be difficult to distinguish

it from the Mott phase by looking at the momentum distribution. In fact, most of the con-

tributions of the present work are related to the key aspects of distinction between both

insulating phases. From the experimental side, a more prominent option was to distinguish

the Bose glass from the superfluid phase. The characterization of such a ground state was

indirectly tested with transport and coherence measurements in one dimension in random

[31], a quasi-periodic [90, 91], and in three dimensions in a random lattice [92]. Here, we fo-

cus on the experiments realized by C. Meldgin et al. [37] where a direct measurement was

dynamically made using quantum quenches of disorder. Since the Bose glass is composed

of rare regions of local condensates, it produces excitations when released from the trap

in TOF experiments. Due to the different phases resulting from the scattering against the
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random potential, vortex excitations are created when the local condensates are allowed

to expand and interfere. Such excitations are associated with modulations of the density

profile and the measured optical depth. The Bose-glass phase was then identified by the

presence of such vortices in the density profile coming from the interference of the inde-

pendent phases corresponding to different local condensates. This density profile is shown

in Fig. 1.13. In the case of the superfluid phase, due to the macroscopic phase, the density

profile shows nothing but a continuous background.

Even though some of the characteristics of these ground states are well understood,

many interesting questions are still open. For instance, a clear distinction between Mott

and Bose glass is yet to be experimentally realized. In the following chapter we present the

study of the quantum phase transitions between the ground states of the Bose-Hubbard

Hamiltonian.





Chapter 2

Superfluid to insulator phase transition

The competition between the parameters of the Bose-Hubbard Hamiltonian leads

to different ground states. By tuning the lattice potential depth as well as the intensity of

the disordered potential, one can drive the system into a phase transition from one ground

state to another. In this chapter, we review the concepts of quantum phase transitions and

its relation to symmetry breaking. We also discuss the details of the phase diagram of the

Bose-Hubbard model both for clean and disordered cases.

2.1 Quantum phase transitions

The fact that matter can change its properties under variations of the external con-

ditions is the subject of the study of phase transitions. Everyday examples include when

water vaporizes while boiling or when it freezes to ice under a reduction of its temperature.

However, even the condensation of a gas of bosons below the critical temperature can

be understood in terms of phase transitions. Phase transitions are classified according to

whether the thermodynamic potential, which represents the equilibrium state of the system,

varies continuously or not at the transition point [93]. In the case of freezing water to ice for

instance, the water molecules have no particular order, but at the transition point they ac-

quire order to become ice. This abrupt change in the internal arrangement of the molecules

is associated with a discontinuity of the thermodynamic potential and characterizes the

so-called first-order phase transitions. In contrast, in the condensation of bosons, the ther-

modynamic potential varies continuously when the macroscopic wave function emerges.

Such transitions are usually called second order or continuous phase transitions. Here we

shall be concerned with continuous phase transitions.

Continuous phase transitions may be driven not only by changes in temperature,

where the macroscopic order is destroyed by thermal fluctuations, but also by variations of

non-thermal external parameter such as pressure or magnetic field. In fact, there is a spe-

cial kind of phase transitions where quantum fluctuations play a large role, which can occur

35
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Figure 2.1 – Low energy eigenvalues of the Hamiltonian Ĥ(g). On the left side we see the the level
actually crossing. On the right side the more general avoided level crossing is shown.

Source: Figure adapted from Ref. [21].

even at the zero-temperature limit. Those are the so-called quantum phase transitions. The

effect of quantum fluctuations emerging from the competition of Hamiltonian control param-

eters can be incorporated as non-analycities in the energy function of the ground sate of

a given system [21]. Consider, for instance, that the degrees of freedom of a lattice are

embodied on a Hamiltonian Ĥ(g) which varies according to the dimensionless coupling g.

In the situation where we can write the Hamiltonian as

Ĥ(g)= Ĥ0 + gĤ1, (2.1)

where Ĥ0 and Ĥ1 commute, i.e. the parameter g couples to a conserved quantity and the

two parts of the Hamiltonian can be simultaneously diagonalized, a level-crossing where an

excited state becomes a ground state may occur at critical point g = gc. This corresponds

to a non-analytic point in the ground state energy. Any point where the ground sate energy

of a sufficiently large system is non-analytic can be identify to a quantum phase transition.

Thus, such a phase transition corresponds to a level crossing of an excited state which

becomes a ground state. More generally, an avoided level crossing becomes sharper in the

limit of an infinite lattice (see Fig. 2.1).

The fundamental aspects of a quantum phase transition can be studied by investi-

gating its scaling behavior at the transition point [94]. I these transitions the characteristic

energy scale of the fluctuations ∆E vanishes when the crossing point g= gc is approached.

The energy difference between the ground state and the lowest excited state is assumed to

behave asymptotically as

∆E ∼J |g−gc|zν as g→ gc, (2.2)

where J is the energy scale of the microscopic coupling and zν are so-called critical ex-

ponents. Additionally, quantum phase transitions are accompanied by the divergence of

a characteristic length scale ξ, which could be related, for instance, with the exponential

decay of the relevant equal-time correlation functions in the ground state. The asymptotic



Chapter 2. Superfluid to insulator phase transition 37

behavior of this length scale is usually described as

ξ−1 ∼Λ|g−gc|ν as g→ gc, (2.3)

where Λ is defined as the inverse length scale of the same order as the inverse of the lattice

spacing. A simple comparison between the asymptotic behavior of both the energy gap ∆E
and the length scale ξ leads to

∆E ∼ J

Λz ξ
−z as g→ gc. (2.4)

From this expression one can read that the energy gap closes as the characteristic length

diverges. In this limit, near the critical point where the quantum phase transition takes place,

the system is said to acquire a scale-invariant behavior, where all observables depend on

the dimensionless coupling via power law. The critical exponents associated with these

scaling behavior of the system near the critical point characterizes the universality class of

the quantum phase transition [94].

Another important aspect of quantum phase transition is that in most cases they can

be associated with the spontaneous breaking of a symmetry. In the next section, we discuss

the phenomenological Landau theory of phase transitions, where the symmetry breaking

mechanism plays a large role.

2.2 Landau Theory

One important aspect of in the study of phase transitions is the concept of symmetry.

This concept refers to the properties of a system that remain unchanged under a certain

transformation. At the vicinity of a phase transition, the symmetry present in one of the

phases is reduced when the transition point is crossed. This concept of a broken symmetry

was introduced by L. Landau [95, 96, 97] to describe continuous phase transitions. In order

to characterize the symmetry breaking during the transition, Landau proposed a unique

variable called order parameter. Here we represent the order parameter by ψ. Such a

quantity represents a measure of the degree of order across the phase boundary increasing

from zero in the symmetric phase to a finite valued in the phase where the symmetry was

reduced.

The main idea of Landau’s theory is that in the vicinity of the phase boundary the

order parameter is small enough such that the effective thermodynamic potential F can be

expanded in terms of a such quantity. We assume an underlying Hamiltonian with global

U(1) symmetry. This implies that the effective potential must be invariant under phase
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Figure 2.2 – Landau effective potential in the order parameter space for a2 > 0 (left) and a2 < 0
(right). On the left panel, the effective potential has a single minimum at the point where the order
parameter vanishes. As the order parameter becomes finite, we observe on the right panel that
the effective potential transforms into a Mexican-hat potential characterizing the symmetry-broken
phase.

Source: Prepared by the author.

rotations of the order parameter ψ. Thus, we can express the expansion as

F (ψ)= a0 + a2

2
|ψ|2 + a4

4
|ψ|4 +·· · . (2.5)

The stability of an equilibrium state of the system requires that such state occupies a mini-

mum of this effective potential in the space of the order parameter

∂F (ψ)
∂ψ

= 0,
∂F (ψ)
∂ψ∗ = 0. (2.6)

The minimization condition up to forth order reads

|ψ|2 =−a2

a4
. (2.7)

Note that for the absolute value of the order parameter to be real, the ratio between the

coefficients of the free energy must be negative. Assuming that a4 is always a finite, positive

and real, two situations of the free energy can be distinguished by whether a2 is positive or

negative (see Fig. 2.2).

For negative values of the coefficient of the second-order term in (2.5), i.e. a2 < 0,

the only real solution for (2.7) is that the order parameter vanishes, i.e. ψ= 0. This situation

characterizes the symmetric phase where the effective potential has only one minimum.

In contrast, in the opposite case, where the a2 is positive, the effective potential acquires

infinitely many minima associated with different phases ϕ for finite absolute values of the or-

der parameter in the complex plane. This situation represents the symmetry-broken phase.
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As a consequence, the points where a2 vanishes define the phase boundary which sepa-

rates the symmetric from the symmetry-reduced phase. It is important to mention, that such

coefficient is proportional to the inverse of the so-called single particle Green’s function and

thus the quantum phase transition can be investigated by studying the divergences of such

a quantity. This relation will become important to the analyzes developed in Chapters 5 and

7 where it is discussed in more detail.

We have described in Section 1.4 that the superfluid state of the Bose-Hubbard

model is connected to the emergence of a finite expectation value of the single-site annihi-

lation operator with respect to the emerging coherent-state many-body wave function at a

single site, that is ψi = 〈âi〉 = p
nieiϕi . Therefore, this is the appropriate order parameter

to characterize the quantum phase transition to the superfluid phase. For a homogeneous

system, the site dependency of such an order parameter may be dropped out and the phase

transition follows the same symmetry breaking mechanism just described with the Landau

theory. Each possible value of the phase ϕ is associated with a set of microscopic configu-

rations of the system which lead to the same equilibrium energy [54, 55]. This corresponds

the U(1)-global symmetry of the Bose-Hubbard Hamiltonian. It follows from the ergodic

hypothesis the assumption that, as time progresses, the trajectory of the system in phase

space runs through all microscopic configurations compatible with the total equilibrium en-

ergy. For a large system with many particles, the number of configurations approached

infinity, and so does the time necessary to access the whole set of configurations in phase

space. Consequently, in practice the system becomes confined in a subspace of the mi-

croscopic arrangements and it pics up a definite direction ϕ. This dynamical manifestation

of ergodicity breaking is at the origin of the spontaneous symmetry breaking which takes

place at the transition to the superfluid phase.

In the next section, we introduce the phase diagram for the clean case phase transi-

tion between Mott insulator and superfluid.

2.3 Zero-temperature phase diagram for the clean system

The phase diagram of the Mott-superfluid transition is usually constructed in the

µ× J plane. Such a phase diagram was first predicted in the seminal paper of Fisher et al.

[22] and has since been the subject of a substantial amount of research. We consider first

the clean case, where there is no disorder, following the derivation of Ref. [22]. In order to

get an intuitive picture of the phase diagram we consider first the so-called hard-core limit,

where interactions are strong and the bosons are not allowed to tunnel to neighboring sites,

i.e. the limit J = 0 of the Bose-Hubbard Hamiltonian (1.34). As we discussed in Section

1.4, in this case the ground state is Mott insulator. The eigenvalues of the Bose-Hubbard
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Figure 2.3 – Phase diagram of the Bose-Hubbard Model in the clean case for three dimensions at
zero temperature. The phase boundary between superfluid (SF) and Mott insulator (MI) presents a
Mott-lobe structure.

Source: Figure adapted from Ref. [22].

Hamiltonian can be described by the single site energies

E(n)= U
2

n(n−1)−µn, (2.8)

where n is the integer number of particles that minimizes the energy. For positive values of

the the chemical potential on the interval n−1 < µ/U < n, there are exactly n particles per

site. For negative µ, we have the vacuum state where n = 0.

Consider the situation where µ is fixed inside the region where n ≥ 1. If we allow

J to be finite but still smaller than the interaction energy U the system will not be able to

overcome potential energy cost by creating an excitation which can hop around the lattice.

The conclusion from this argument is that, because of the gap in the Mott phase, there

should be a finite region in the phase diagram where the average number of particles at

each site is fixed by the integer number n. These regions are usually called Mott lobes,

and their structure can be observed in Fig. 2.3. As the average number of particles is fixed,

this phases are incompressible at zero temperature. However, it turns out that for finite

temperatures thermal fluctuations lead to a finite compressibility in this phase [38].

One of the main properties of the Mott lobes is the characteristic energy gap for

quasiparticle or quasihole excitations. We use the prefix quasi to point out that the mass of

these excited atoms gets dressed by the many-body interactions and the lattice structure.

This will be discussed in more details in Chapter 3. For a fixed tunneling energy J the

energy gap for creating a quasiparticle (hole) is just the distance in the direction of the

chemical potential to the right (left) phase boundary. Hence, the creation of a quasiparticle

plus a quasi hole excitation conserves the number of particles in the system. Note that for

integer numbers of the ratio µ/U the superfluid phase extends all over the phase diagram

reaching the J = 0 line. For those values of the chemical potential, the energy for occupying
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Figure 2.4 – Phase transitions for the n = 1 Mott lobe. The critical exponents for the generic transi-
tions, which occur off the tip of the Mott lobe, differ from the transition exactly at the tip. The lines of
constant density are indicated in gray, while the phase boundary is depicted in blue.

Source: Figure from Refs. [54, 39].

a lattice site with n particles becomes the same as the energy of occupying a site with n+1

particles. Thus, for each site there are two degenerate states exactly for those values of

the chemical potential which represents a degeneracy of two to the power of the number

of lattice site for the whole system [21]. Therefore, there is no energy cost for creating

excitations at those points, and superfluidity occurs for any arbitrarily small values of the

tunneling energy J which lifts the degeneracy [22].

By increasing µ for a fixed J one eventually gets to the situation where the kinetic

energy of creating an excitation will balance the potential energy cost caused by interac-

tions. In this scenario, the average density of particle starts to fluctuate creating a finite

number of excitations which are allowed to hop freely through the lattice. These excitations

will condense into a superfluid state and thus one gets the phase boundary. The transition

which occurs due to fluctuations in the average number of particles per site is called generic

transition. At the tip of the Mott lobes, however, there exists a multi-critical point. The tran-

sition at that point is dominated by phase fluctuation rather than density fluctuations. For

the generic transition, the product of the between the dynamical and the correlation length

critical exponents is found to be zν = 1, while for the transition at the tip of the Mote lobes

this product turns out to be zν = 1/2, which is associated with the universality class of the

(d +1)-dimensional XY -model [22, 21, 39]. A phase diagram for the Mott lobe of n = 1

where each transition is specified can be observed in Fig. 2.4. In the present work, we shall
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be concerned with the generic transition.

The clean case phase diagram has been investigated in a numerous amount of

scientific research papers. Here, we reference some that are of particular importance for

the analysis of the present work [52, 53, 54, 39, 98]. In what follows, we discuss what

changes in the phase diagram when disorder is introduced.

2.4 Zero-temperature phase diagram for the disordered

system

As we have already discussed in Section 1.4, in the presence of disorder, a Bose

glass state can emerge in the Bose-Hubbard model. In order to investigate such a prob-

lem, we assume the local energy shifts εi to be randomly distributed within the interval

[−∆/2,∆/2]. Furthermore, we assume the disorder distribution to be uniform, meaning that

any value of the local shifts within that interval has the same probability to occur. Following

again the same path of Ref. [22], we begin by considering the J = 0 case. In such a case,

from (1.34), the local single site energies are given by

E(ni)= U
2

ni(ni −1)−µni +εini. (2.9)

The condition for the minimization of this energy leads a separation of the chemical potential

line in interval of size exactly given by U −∆. In the case where the disorder strength is

smaller then the interaction energy, i.e. ∆<U, values of the chemical potential within these

intervals are allowed to minimize the single site energy by fixing the average particle density

at integer values n ∈ {1,2,3, . . .}. Such interval are defined by

U(n−1)+ ∆
2
≤µ≤Un− ∆

2
. (2.10)

This is analogous to the clean case situation, where the intervals defined the extension of

the Mott lobes. However, in the disordered case, theses intervals become smaller. Thus,

one can conclude that the presence of weak disorder leads to the shrinking of the Mott

lobes. In between the intervals (2.10), where the average number of particles is fixed, there

emerge gaps of width given by ∆, which can be defined as

Un− ∆
2
<µ<Un+ ∆

2
. (2.11)

For values of the chemical potential inside these gaps, the average occupation at the ith
site, ni, is either n+1 or n depending if the realization of the random shift εi at that site is

less or greater then Un+µ. This argument follows from the minimization of the single site

energies (2.9). These fluctuations of the average occupation number at each site even at
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Figure 2.5 – Qualitative phase diagram of the disordered Bose-Hubbard model. The Mott insulator
(MI) is shown in blue, the Bose glass (BG) in pink, and the superfluid (SF) in white. The BG in-
tervenes between the MI and SF for finite disorder and dominates the insulating part of the phase
diagram if the disorder energy scale is greater than the interaction energy.

Source: Figure from Ref. [63].

zero tunneling energy is already a manifestation of the Bose-glass state. We point out that

for µ<−∆/2 the average particle density is strictly zero, i.e. ni = 0.

For weak disorder, inside the intervals (2.10) there are exactly n particles per site in

the decoupled limit of zero tunneling. If J is made slightly positive, but still insufficient to

overcome the energy cost imposed by the repulsive on-site interaction U, no extra particles

can be added to occupied sites and the Mott lobe structure of the clean case can still exist.

However, as it was argued in [22], the Bose-glass phase always intervenes between the

Mott and the superfluid state and it dominates the insulating part of the phase diagram

for strong disorder, i.e., disorder of the same order or greater than the interaction energy,

∆ ≥ U. In this limit, the average particles density never sticks to an integer value, making

it impossible for the formation of a Mott insulating state. A qualitative picture of the phase

diagram in the disordered case can be observed in Fig. 2.5.

One can observe, from middle graph at Fig. 2.5, the lack of a direct Mott to superfluid

phase transition in the weak disordered limit. The argument that justifies this qualitative pic-

ture, which follows from [22], is based on the nature of the lowest lying available states to

create excitations at the vicinity of the Mott-lobe phase boundaries. Due to the presence

of disorder, it is expected that these correspond to localized states which prevent the small

density of excitations created just outside the Mott insulator phase boundaries to immedi-

ately produce superfluidity. In Chapter 5 of the present work, we investigate further these

argument by characterizing the physical aspects of these low-lying excited states.

In agreement with the above described predictions, numerical simulations have ob-

tained phase diagrams which confirm the absence of a direct Mott-superfluid phase tran-

sition in the presence of diagonal disorder [43, 44, 46]. Such phase diagrams are shown
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Figure 2.6 – Phase diagram of the disordered Bose-Hubbard model obtained with Monte-Carlo sim-
ulations. The left graph corresponds to the two-dimensional case and the right graph corresponds
to the three-dimensional case. The superfluid, the Mott insilator, and the Bose glass ground states
are represented by SF, MI, BG, respectively. Both diagrams show that, for finite disorder strength,
no direct SF to MI transition is possible.

Source: Figure from Refs. [43, 44, 46].

in Fig. 2.6. These studies have applied the path-integral Monte Carlo simulations with the

worm algorithm to investigate the effects of uniform diagonal disorder to the Bose-Hubbard

model in two and three dimensions. The distinction between the different ground states

was made by calculating the superfluid stiffness together with the isothermal compressibil-

ity. The superfluid stiffness measures the phase rigidity of the macroscopic wave function

thus identifying the superfuild phase. It is important to point out that this quantity does not

respect the self-averaging property in the Bose-glass phase. This implies its average over

the disordered ensemble does not converge even for larger systems. The compressibility

measures variations on the average particle density per site as a function of the chemical

potential. Since such a density if fixed in the Mott regime, the compressibility vanishes in

that region of the phase diagram, which differs from the Bose-glass phase where such a

quantity is finite due to density fluctuations. However, thermal fluctuations lead to a resid-

ual finite compressibility inside the Mott phase [38], making it a non-reliable parameter to

identify the Mott-Bose glass phase transition at finite temperatures. Therefore, even though

these Monte-Carlo simulations lead to an incredibly accurate result for the phase bound-

aries, the fundamental characteristics of the Bose-glass phase cannot be directly extracted

from them. We shall demonstrate, in Chapter 6, that a more reliable quantity to distinguish

the Mott state from the Bose glass states at zero and finite temperatures is the local density

of states, which takes the energy spectrum structure of theses states into account.

Another argument which in favors the qualitative picture of Fig. 2.5, comes from the

so-called Harris’ criterion for the stability of the clean case critical point against the presence

of disorder [21, 99, 100, 101]. The derivation of such a criterion follows a similar path to

the scaling arguments developed in Section 2.1. In the clean case, by considering g as

the general dimensionless parameter of the Hamiltonian, the divergence of the correlation
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length near the critical point gc, where the phase transition takes place, is described by

(2.3). One can analyze the phase transition by dividing the system into regions of linear

size given by ξ. Due to the presence of disorder, one can attribute to each one of these

regions denoted by i a local critical point gc(i), which may be differ from region to region.

The basic idea developed by Harris was to compare the variations of the local critical points

for different regions ∆gc with the distance g−gc of the global phase transition [99]. In the

case that ∆gc is less than g− gc all blocks may be assumed to be in the same side of

the phase transition. In contrast, in the opposite case, if ∆gc is greater than g− gc, the

regions may be in different phases which makes a uniform phase transition unlikely. The

values of the local critical points gc(i) can be estimated by considering the average over a

large number of random variables within each region. From the central limit theorem, the

standard deviations of these local values are proportional to the inverse of the square root

of the volume of each region

∆gc ∝ ξ−d/2. (2.12)

In the situation where all such regions are in the same side of the phase transition, i.e.

∆gc < g−gc, as the phase transition is approached a comparison between (2.3) and (2.12)

leads to the following relation

ξ−d/2 < ξ−1/ν, (2.13)

which implies the condition

dν> 2. (2.14)

The above condition constitutes the Harris criterion for the robustness of the clean case

scaling behavior to the presence of disorder. As a consequence, if the condition (2.14)

is satisfied, the ratio ∆gc/(g− gc) goes to zero at the critical point, which implies that the

random fluctuation of the local critical values gc(i) cased by disorder have become smooth

and do not influence the critical behavior of the clean case phase transition. In the oposite

case, if the criterion (2.14) is not fulfilled, the ratio ∆gc/(g−gc) becomes larger as the phase

transition is approached. This implies that while some regions of the system are in one

side of the phase boundary, another blocks are on the other side. This arguments ware

generalized to quantum phase transitions in [102].

From the discussion of the last section, one can observe that neither the generic

nor the multi-critical phase transitions from the Mott insulator to the superfluid phase of

the Bose-Hubbard model in the clean case satisfy the condition (2.14). Even though there

is no precise argument to what happens when such a criterion is violated, one possibility

is that the clean case phase transition is replaced by another continuous phase transition

with a different scaling behavior near criticality. That is, in the presence of disorder the

system features a new universality class with a different correlation length exponent which

satisfies the inequality (2.14) [99]. In the case of the disorder Bose-Hubbard model, this is

characterized by the emergence of the Bose-glass phase. However, we must remark that
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the precise characterization of the university class of the Mott insulator to Bose glass as

well as the Bose glass to superfluid phase transitions is still lacking in literature.

The transition from Mott to the Bose glass phase is predicted to be dominated by

rare regions of the random potential where the gap for creating excitations vanishes locally.

The theorem of inclusions was used by Refs. [103, 43] to prove that such a transition is of

Griffiths type. Such a theorem states that for a generic phase transition in the presence of

bounded disorder, there are large regions of competing phases across the phase boundary.

For the superfluid to insulator quantum phase transition, this theorem immediately implies

that no direct Mott-superfluid transition can exist in the presence of continuous disorder.

The Mott insulating phase can only be destroyed if the gap present in its excitation spectrum

vanishes. In the presence of disorder, this means that the phase boundary out of the Mott

states depends only on the value of the bound of the disorder distribution ∆, which is the

energy scale that controls the disorder strength. Hence, if ∆ is larger then the energy

gap, no Mott phase can exist. As we have discussed in Section 1.4, there always exists

the possibility that large enough regions where the disordered potential is minimum will

occur. At those regions, the fluctuations of the disorder potential mimic a homogeneous

chemical potential shift. If the minimum value of the disorder potential is of the same order

as the interaction energy, the energy gap of the Mott phase vanishes locally and droplets of

condensed bosons can emerge. This constitutes the local emergence of phase coherence

in an insulating background. The phase transition which is associated with the emergence

of rare regions where local order is present is called Griffiths phase transition, in analogy

to the predictions which followed from the work of R. Griffiths when analyzing the random

Ising ferromagnet [104].

The Bose glass to superfluid phase transition is predicted to follow the universality

character of percolation class. This prediction comes from assuming that the local puddles

of condensed bosons in the Bose glass phase represent clusters that percolate due to

the competition between the tunneling and the disorder energy scales to form superfluidity.

From the arguments already presented, near the phase boundary to the Mott phase, the

Bose glass is characterized by rare regions where the coherence is restored locally. One

can therefore argue that, by increasing disorder the incoherent background in between

these regions would be filled in, favoring a coherent superflow of atoms through the whole

system’s volume. This superflow would then lead to a finite superfluid fraction. A similar

picture is expected if instead of increasing disorder, one increases the tunneling energy.

In this situation, the tunneling would connect the condensate puddles forming a global

superflow. This percolation picture has been confirmed in Ref. [105], where the dynamical

and the correlation length critical exponents were calculated using quantum Monte Carlos

simulations.

Even though many features the these phase transitions in the presence of disorder

are well established, the complete characterization of the phase diagram from an analytical
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point of view is still lacking. As it was discussed in this chapter, the nature of the low energy

excited states near the phase boundary plays an important role not only in understanding

the universal aspects of the quantum phase transition, but also on identifying the funda-

mental properties the ground states. The purpose of the present work is fill in these gap

by deriving from analytical methods the effects of disorder on the excitations of the Bose-

Hubbard model. Furthermore, we aim on demonstrating the energy spectrum information

can be used to unambiguously distinguish the Mott from the Bose-glass state even for finite

temperatures and small values of the tunneling energy. On the next part of this work, we

introduce the essential quantities which underlie our theoretical methods.
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Chapter 3

Single-particle Green’s functions

The Green’s function formalism provides a powerful framework for investigating quan-

tum many-body systems. These functions can be used to calculate different properties of

the system, such as the spectral function, the density of states and the correlation functions.

Here, we give an overview of how the elementary excitations of the system can be studied

with the use of Green’s functions. We do not wish to cover all the content of applications

of Green’s functions, but rather to present the properties which are relevant to the present

work.

3.1 Linear response

In experiments the usual situation can be described as follows. The system in equi-

librium is exposed to an external field at some arbitrary time. The field perturbs the system

creating excitations. One then measures the response of the system to the perturbation,

e.g. one measures the energy ħω and wavevector k of the emitted particles at a latter

time. This situation is demonstrated in Fig. 3.1. We follow here the derivation of Ref. [106].

The typical situation is that such a perturbation will cause some macroscopic observable

quantity to change in experiments. Thus it becomes necessary to define the notion of the

expectation value of a function of the dynamical variables. In quantum mechanics, we rep-

resent such an observable quantity by the macroscopic operator Ô and its expectation value

is defined as 〈
Ô

〉= tr ρ̂Ô. (3.1)

The operator ρ̂ is usually referred to as the density matrix and it describes the quantum

state of the system in the general case where temperature fluctuations are present. The

question is then how to describe the time evolution of the average value of this observable

quantity due to the presence of the external field or force. It is completely equivalent to

consider that the observable quantity changes in time for a given quantum state or that the

observable remains unchanged while the quantum state evolves in time as a consequence

49
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Figure 3.1 – Usual experimental procedure. The system is in equilibrium at first (left), an excitation
enters the system at time t0 = 0 (middle) and after it has propagated, the excitation lives the system
at a later time t when it is measured (right).
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Excitation
is created
at time t0

Excitation
is annihilated

at time t

Source: Prepared by the author.

of the perturbation. This occurs because the Heisenberg and Schrödinger representations

are equivalent up to a unitary transformation. In the former representation, one can un-

derstand the time evolution of the quantum state by applying the so-called von Neumann

equation for the density matrix

iħ∂ρ̂
∂t

= [
Ĥ, ρ̂

]
, (3.2)

where the Hamiltonian Ĥ is the operator whose eigenvalues coincide with the energy spec-

trum of the system. In order to investigate the response of the macroscopic system to the

external perturbation, one must solve the above equation.

We are particularly interested in the case where Ĥ(t) is composed of the sum of

a time-independent unperturbed part Ĥ0 plus a perturbation part Ĥ1(t) representing the

external field

Ĥ(t)= Ĥ0 + Ĥ1(t), (3.3)

where the perturbation has the form

Ĥ1(t)= B̂F(t). (3.4)

The function F(t) can be interpreted as a generalized force and B̂ as the operator pertain-

ing to the system to which this force couples. We assume that the system is in thermal

equilibrium at temperature T in the grand-canonical ensemble before the perturbation acts.

In such a limit, the expected value of any physical quantities is specified with respect to the

unperturbed density matrix [107, 93]

ρ̂0 = e−βĤ0

Z
, (3.5)

where the partition function reads

Z = tre−βĤ0 , (3.6)
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and the inverse temperature is defined as

β= 1
kBT

, (3.7)

with kB denoting the Boltzmann constant. Note that this definition leads to the normalization

condition for the density matrix

tr ρ̂0 = 1. (3.8)

Equation (3.5) is a solution of (3.2) in the absence of the perturbation Ĥ1 provided that the

unperturbed Hamiltonian commutes with the number operator N̂, i.e. it conserves the total

number of particles. To solve the original problem, we can apply the transformation to the

Dirac interaction picture

σ̂(t)= Û(t)ρ̂(t)Û†(t), (3.9)

where Û(t)= eiĤ0t/ħ. Equation (3.1) can be rewritten as

iħ∂σ̂
∂t

= [
Ĥ1(t), σ̂

]
. (3.10)

where Ĥ1(t)= Û(t)Ĥ1Û†(t). Assuming that the initial condition at t = 0 is satisfied

σ̂(0)= Û(0)ρ̂(0)Û†(0)= ρ̂0, (3.11)

we find, by iteration, that the first order correction in Ĥ1 reads

σ̂(t)= ρ̂0 − i
ħ

∫ t

0
dt′

[
Ĥ1(t′), ρ̂0

]+·· · , (3.12)

which in the Schrödinger picture becomes

ρ̂(t)= ρ̂0 − i
ħÛ†(t)

∫ t

0
dt′

[
Ĥ1(t′), ρ̂0

]
Û(t)+·· · . (3.13)

The above expression characterizes what changes in the density matrix up to first order as

the perturbation Ĥ1 is switched on.

The question is then how the observable quantum and thermal average compares

with an experiment at a given time t. Turning back to (3.1), with the result (3.13) we obtain

〈
Ô

〉= tr ρ̂0Ô− i
ħ tr

(
ÔÛ†(t)

∫ t

0
dt′

[
Ĥ1(t′), ρ̂0

]
Û(t)

)
+·· · . (3.14)

We recognize that the first term is just the average over the equilibrium ensemble of Ĥ0,

which we can represent by
〈
Ô

〉
0. The second term consists of fluctuations around this

equilibrium average value of the observable due to the external field, which we can denote

by δ
〈
Ô

〉
(t). The time dependence is only explicit in such fluctuations. Equation (3.14) can
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then be rewritten as 〈
Ô

〉= 〈
Ô

〉
0 +δ

〈
Ô

〉
(t)+·· · . (3.15)

One can then apply the cyclic property of the trace of products between operators to write

such fluctuation term as

δ
〈
Ô

〉
(t)= i

ħ
∫ t

0
dt′ tr

(
ρ̂0

[
Ĥ1(t′),Ô(t)

])
, (3.16)

where Ô(t) corresponds to the interaction picture representation of the observable. This

result consists of the linear response of the system to an external perturbation and it is

often referred to as Kubo’s formula after its first derivation by R. Kubo in 1957 [108].

Inserting the form (3.4) of the perturbation in (3.14) we get

δ
〈
Ô

〉
(t)=

∫ ∞

0
dt′GR(t, t′)F(t′), (3.17)

where we have introduced the quantity

GR(t, t′)=− i
ħΘ(t− t′)tr

(
ρ̂0

[
Ô(t), B̂(t′)

])
. (3.18)

The above equation defines the so-called Green’s function, which characterizes the linear

response of the system to an external perturbation. In this definition, in particular, the

Heaviside step function Θ ensures a causal relation such that the Green’s function appears

as a measure of the retarded response of the system after the external field is switched

on. We use this derivation as to motivate the use of such functions. However, as we shall

discuss, one can extract a plethora of important information on many-body systems from

the Green’s functions.

3.2 Källén-Lehmann representation

In Section 1.4, while deriving the Bose-Hubbard Hamiltonian , we have introduced

the formalism of second quantization. There we defined the field operator Ψ̂†(x) and its

adjoint Ψ̂(x) which, when acting on the state of the system, respectively add or remove a

particle from the point x. Any operator in this formalism can be described by products of

such field operators. Therefore it makes sense to define the Green’s function with the use

of such operators. However, instead of the retarded Green’s function that we derived in the

last section, it is often useful to define the so-called time-ordered Green’s function

G(xt,x′t′)≡− i
ħ 〈T Ψ̂(xt)Ψ̂†(x′t′)〉 , (3.19)
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where we use the Heisenberg representation

Ψ̂(xt)= eiĤt/ħΨ̂(x)e−iĤt/ħ. (3.20)

In the definition (3.19), T is usually called the time-ordering operator which acts in the

product of the bosonic field operators such that they obey the following relation

T Ψ̂(xt)Ψ̂†(x′t′)=
Ψ̂(xt)Ψ̂†(x′t′) if t > t′,

Ψ̂†(x′t′)Ψ̂(xt) if t < t′.
(3.21)

This definition motivates the interpretation of the Green’s function in many-body theory as

the amplitude of propagation of an excitation created at space-time point x′t′ and follows

a path to be annihilated at space-time point xt. From now on, we shall assume that ħ = 1

such that energy is measured in terms of frequencies. We follow here the derivations of

Refs. [109, 72].

As it is the case for the Bose-Hubbard Hamiltonian, we assume no explicit time

dependence for Ĥ. This assumption implies that time translation invariance is respected

and the that Green’s function depends only on the difference t− t′. Furthermore, we shall

assume that the system is homogeneous such that it respects translational symmetry. In

this case, the Green’s function reduces to

G(xt,x′t′)=G(x−x′, t− t′). (3.22)

We will discus latter the more complicated case when disorder is present.

With the use of the time ordering (3.21) we can define the correlation functions

G>(x, t) = − i〈Ψ̂(xt)Ψ̂†(0)〉 for t > 0, (3.23)

G<(x, t) = − i〈Ψ̂†(0)Ψ̂(xt)〉 for t < 0. (3.24)

These functions are called the greater and lesser correlation functions. Under the present

consideration of a homogeneous system, the momentum operator p̂, which is the generator

of translations in space [110], commutes with the Hamiltonian. It can therefore be proved by

using a plane-wave basis [72] that the Heisenberg form of the field operators can be written

as

Ψ̂(xt)= e−ip̂·xeiĤtΨ̂(0)e−iĤteip̂·x. (3.25)

Consequently, one can choose to evaluate traces corresponding to the averages in (3.23)

and (3.24) in terms of the set of exact eigenstates of the Hamiltonian Ĥ and the momentum
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operator p̂

Ĥ |φm〉 = Em |φm〉 , (3.26)

p̂ |φm〉 = pm |φm〉 . (3.27)

Thus, we obtain the following expressions

G>(x, t) = − i
Z

∑
mn

| 〈φm|Ψ̂(0)|φn〉 |2e−βEm+i(pn−pm)·x−i(En−Em)t for t > 0, (3.28)

G<(x, t) = − i
Z

∑
mn

| 〈φm|Ψ̂(0)|φn〉 |2e−βEn+i(pn−pm)·x−i(En−Em)t for t < 0, (3.29)

where we have applied the completeness relation of the basis states. The sums over the

set of states in the above equation come from the assumption that the system has a dis-

crete energy spectrum, however, one could generalize this to an integration in case of a

continuum energy spectrum.

With the use of the Heaviside step functions, one can write the time-ordered Green’s

function as

G(x, t)=Θ(t)G>(x, t)+Θ(−t)G<(x, t). (3.30)

Up to this point we have not specified any constraint for the space variable apart from

homogeneity. We can therefore make a Fourier transform to momentum space. Moreover,

one can introduce a Fourier transform from time to frequency space. Altogether, these

transformations read

G(k,ω)=
∫
Rd

ddx
∫ ∞

−∞
dtG(x, t)e−ik·xeiωt. (3.31)

Such a transformation becomes subtle when evaluating the integrals in time as the expo-

nentials oscillate rapidly in the limit of t → −∞ in the case of G<(x, t) and in the limit of

t →∞ in the case of G>(x, t). One can sort out this problem by introducing the technique

of analytic continuation in order to extend the domain of the Fourier transformed Green’s

function over frequencies defined in the complex plane. In our present analysis, for t > 0,

for instance, this consists of introducing an imaginary part to the frequency with the transfo-

mation ω→ω+i0+ and then considering the limit that such a part tends to zero from above.

The situation is analogous for t < 0, however one has to use the complex conjugation of the

former transformation ω→ω−i0+. Consequently, the transformation results in the following

expression

G(k,ω)= (2π)3

Z

∑
mn

| 〈φm|Ψ̂(0)|φn〉 |2δ[k− (pn −pm)]

×
[

e−βEm

ω− (En −Em)+ i0+ − e−βEn

ω− (En −Em)− i0+

]
.

(3.32)

Note that the analytic continuation results in shifting the poles of the Green’s function either
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to the lower or the upper half of the complex plane.

The result (3.32) corresponds to the so-called Källén-Lehmann representation in

the non-relativistic limit. It was derived independently by G. Källén and H. Lehmann while

studying the general features of renormalization constants in quantum field theory [111,

110, 112, 113]. A crucial detail concerning such a general result is that it implies that

the Green’s function in Fourier space is a meromorphic function of the frequencies. This

means that it is complex-differentiable in a neighborhood of each point defined in a domain

of the complex plane except for a set of isolated points where singularities occur. These

singularities consist of simple poles located exactly at the excitation energies corresponding

to wave vector k with residue proportional to | 〈φm|Ψ̂(0)|φn〉 |2. It is essential to notice that if

one obtains as result of some perturbation theory, for instance, terms of the Green’s function

where higher order poles appear, it becomes necessary to renormalize such singularities

so that the simple pole structure is recovered. Although, this result was derived in the

continuum limit, the implications are true even in the lattice case.

3.3 Spectral function

As we have shown in Section 3.1, in many cases it is convenient to work with the

retarded Green’s function. In the case of the field operators such a function is defined as

GR(xt,x′t′)≡−iΘ(t− t′)〈[Ψ̂(xt),Ψ̂†(x′t′)]〉 . (3.33)

Assuming time and space translational symmetries, we can follow the same path presented

in the last section to obtain the Källén-Lehmann representation

GR(k,ω)= (2π)3

Z

∑
mn

e−βEm | 〈φm|Ψ̂(0)|φn〉 |2δ[k− (pn −pm)]
1−e−β(En−Em)

ω− (En −Em)+ i0+ . (3.34)

The analytic continuation can be further explored by separating the real and imaginary

parts. To this end, we consider the symbolic identity

1
ω± i0+ = p.v.

1
ω
∓ iπδ(ω), (3.35)

which is only valid for ω ∈ R. Here, p.v. denotes the principal value of that function. This

identity is to be understood in a distribution sense, i.e. it is only well defined mathematically

when considered over an integral. With this identity, equation (3.34) becomes

GR(k,ω)= (2π)3

Z

∑
mn

e−βEm | 〈φm|Ψ̂(0)|φn〉 |2δ[k− (pn −pm)]

×
(
1−e−β(En−Em)

){
p.v.

1
ω− (En −Em)

− iπδ[ω− (En −Em)]
}

.
(3.36)
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From the imaginary part of the above expression, we define the so-called spectral function

A(k,ω)=−1
π

ImGR(k,ω), (3.37)

which in the present case turns out to be

A(k,ω)= (2π)3

Z

∑
mn

e−βEm | 〈φm|Ψ̂(0)|φn〉 |2δ[k−(pn−pm)]
(
1−e−βω

)
δ[ω−(En−Em)]. (3.38)

Note that in this case, such a function is represented by an energy-dependent Dirac delta

distribution which is directly related to the simple pole singularity of the Källén-Lehmann

representation for the Green’s function.

An important characteristics of the spectral function is that one can recover the full

Green’s function by integrating it over the frequency domain. For the retarded Green’s

function (3.34) this representation reads

GR(k,ω)=
∫ ∞

−∞
dω′ A(k,ω′)

ω−ω′+ i0+ , (3.39)

while for the time-ordered Green’s function the integration is given by

G(k,ω)=
∫ ∞

−∞
dω′A(k,ω′)

[
p.v.

1
ω−ω′ − iπ

δ(ω−ω′)
tanh

(
βω/2

)]. (3.40)

Expressions (3.39) and (3.40) are commonly referred to as the spectral representation of

the Green’s functions. The spectral function becomes then a central character as it can be

used to obtain the Källén-Lehmann representation of the important Green’s functions.

One can prove an important property of the spectral function by considering the

inverse Fourier transform integral

GR(k, t)=
∫ ∞

−∞
dω
2π

GR(k,ω)e−iωt. (3.41)

Using the spectral representation (3.39) we get

GR(k, t) =
∫ ∞

−∞
dω
2π

∫ ∞

−∞
dω′ A(k,ω′)

ω−ω′+ i0+ e−iωt

=
∫ ∞

−∞
dω′A(k,ω′)

∫ ∞

−∞
dω
2π

e−iωt

ω−ω′+ i0+

= − iΘ(t)
∫ ∞

−∞
dω′A(k,ω′)e−iω′t.

(3.42)

There the last line was obtained by recognizing that the ω integral is the Fourier represen-

tation of the Heaviside step function. The above equation is important as it shows that one

can obtain the retarded Green’s function in time by integrating the spectral function over the
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frequency domain. On the other hand, we can solve the integral (3.41) by introducing the

Fourier representation (3.31) along with the definition (3.33)

GR(k, t) =
∫
Rd

ddxGR(x, t)e−ik·x

= − iΘ(t)
∫
Rd

ddx 〈[Ψ̂(xt),Ψ̂†(0)]〉 e−ik·x.
(3.43)

Comparing both expressions (3.42) and (3.43) we can see that∫ ∞

−∞
dωA(k,ω)e−iω′t =

∫
Rd

ddx 〈[Ψ̂(xt),Ψ̂†(0)]〉 e−ik·x. (3.44)

In the limit of t → 0+, one can use the commutation relations of the field operators defined

in (1.25) to show that the right-rand side of the above equation simplifies to∫
Rd

ddx 〈[Ψ̂(x0),Ψ̂†(0)]〉 e−ik·x =
∫
Rd

ddxδ(x)e−ik·x

= 1.
(3.45)

With this, we have derived the so-called sum rule for the spectral function∫ ∞

−∞
dωA(k,ω)= 1. (3.46)

The sum rule is a general property of the spectral function and it turns out to hold even

in the case of frozen disorder. Furthermore it plays an important role when defining the

properties of convergence of the Green’s function as it fixes the asymptotic behavior for

large |ω|. By applying equation (3.39), this asymptotic limit reads

GR(k,ω)∼ 1
ω

∫ ∞

−∞
dω′A(k,ω′)∼ 1

ω
as |ω|→∞. (3.47)

Moreover, another general property of the spectral function can be derived by noticing for

positive frequencies that every term in the summations over the states in (3.38) is posi-

tive. The opposite is true for negative frequencies, i.e. each term in the sums is negative.

Therefore, the spectral function obeys the following positive-definite property

(sgn ω)A(k,ω)≥ 0. (3.48)

The sum rule (3.46) turns out to hold even for fermions. However, the positive-definite

property is different in that case [72].

As we shall see, the spectral function plays an important role in the description of

many-body systems. It incorporates the singularities of the Green’s functions and can be

used to investigate the excitations of a system. However, we focus next on constructing a

formalism which allows one to investigate equilibrium properties of the system.
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3.4 Imaginary time and Matsubara formalism

When studying equilibrium properties of interacting quantum many-body systems at

finite temperatures it is often the case that exact solutions are not available. Thus, one must

rely on perturbation theory. However, in most situations approximations up to lowest orders

are insufficient, due to the presence of divergent terms, and one must consider the effect

of an infinite amount of terms in the perturbation [114]. For real-time Green’s functions, like

the ones defined in the last section, which involve correlation functions of the form

〈Ψ̂(xt)Ψ̂†(0)〉 = 1
Z

tr[e−βĤeiĤtΨ̂(x)e−iĤtΨ̂†(0)], (3.49)

a straightforward application of perturbation theory is generally challenging due to the argu-

ments of the exponentials inside the trace. While −β is real the exponents ±it are imaginary.

By exploring the similarities between the operators, one can notice that the term

e−βĤ can be interpreted as a quantum evolution-operator in imaginary time τ from 0 to β.

This motivates introduction of the so-called Wick rotation it → τ [106, 110]. With such a

transformation, perturbation theory becomes applicable. This approach is used since the

development of the Euclidean formulation of quantum field theory [115] and it is commonly

known as Matsubara formalism [116]. It turns out that such a method yields an important

access to equilibrium thermodynamic properties of the many-particle system.

The Matsubara Green’s function is therefore defined as

G (xτ,x′τ′)≡−〈TτΨ̂(xτ)Ψ̂†(x′τ′)〉 , (3.50)

where the Heisenberg picture for the field operators in imaginary time reads

Ψ̂(xτ) = eτĤΨ̂(x)e−τĤ , (3.51)

Ψ̂†(xτ) = eτĤΨ̂†(x)e−τĤ , (3.52)

while the operator Tτ defines the order in imaginary time of products of field operators

analogously to (3.21)

TτΨ̂(xτ)Ψ̂†(x′τ′)=
Ψ̂(xτ)Ψ̂†(x′τ′) if τ> τ′,
Ψ̂†(x′τ′)Ψ̂(xτ) if τ< τ′.

(3.53)

Assuming imaginary time and space translational symmetry, we follow the path of Section

3.2 to obtain

G (x,τ) = −〈Ψ̂(xτ)Ψ̂†(0)〉

= − 1
Z

∑
mn

| 〈φm|Ψ̂(0)|φn〉 |2e−βEm+i(pn−pm)·x−(En−Em)τ,
(3.54)
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where we show only the case of τ> 0. As we have mentioned, the imaginary-time variable

is defined over the interval τ ∈ [0,β], so we can define the Fourier transform to frequency

space

G (x, iωl)=
∫ β

0
dτG (x,τ)eiωlτ. (3.55)

The conjugated variable of imaginary time corresponds to a set of discrete complex fre-

quencies {ωl}, the so-called Matsubara frequencies. In the present case of bosonic parti-

cles such frequencies are defined as

ωl =
2πl
β

, (3.56)

where l ∈ Z. For future reference, we present the inverse of the Matsubara-Fouries trans-

form

G (x,τ)= 1
β

∞∑
l=−∞

G (x, iωl)e−iωlτ. (3.57)

Applying the transformation (3.55) to (3.54) together with the Fourier transform to momen-

tum space defined in (3.31), we obtain

G (k, iωl)=
(2π)3

Z

∑
mn

e−βEm | 〈φm|Ψ̂(0)|φn〉 |2δ[k− (pn −pm)]
1−e−β(En−Em)

iωl − (En −Em)
. (3.58)

The above equation corresponds to the Källén-Lehmann representation of the Matsubara

Green’s function.

Using the spectral function of (3.38), one can immediately write the spectral repre-

sentation of (3.58) as

G (k, iωl)=
∫ ∞

−∞
dω′ A(k,ω′)

iωl −ω′ . (3.59)

It is important to note that when calculating the Green’s function on the Matsubara-frequency

space, one obtains a representation which is valid only over discrete frequency points in

the complex plane. In order to obtain a more complete representation in connection, for

instance, with the retarded Green’s function, one has to perform an analytic continuation

to the real frequency domain. In such a case, this analytic continuation turns out to be

iωl → ω+ i0+. However, one has to make sure that this analytic continuation leads to a

unique representation such that the asymptotic behavior of the Green’s function for large

|ω| converges. Since the sum rule fixes such a limit, one can first calculate the spectral

function from the Matsubara Green’s functions transforming into continuous frequencies

and then obtain other types of Green’s functions using the spectral representation. Hence,

we establish the relation between the Matsubara Green’s function and the spectral function

A(k,ω)= 1
i
[G (k, iωl)|iωl→ω−i0+ −G (k, iωl)|iωl→ω+i0+]. (3.60)
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We have derived the most important aspects of the Green’s functions and spectral

functions which are relevant to our analysis. However, we have so far only considered the

case where space translational invariance is present. It becomes necessary to discuss

what changes when this symmetry is broken by disorder. Therefore, we shall focus next on

the general properties of Green’s function and spectral functions in disordered systems.

3.5 General properties in disordered systems

So far we have discussed the properties of Green’s functions in systems that present

translational invariance. Here we consider how such a formalism could be applied in dis-

order systems, where translational symmetry is broken. We focus on the case of frozen

disorder, meaning that the time scale of the random potential is much larger than the ther-

modynamic time scale of the system. In this way, one can consider the thermal average

over the equilibrium ensemble of the underlying Hamiltonian considering the random po-

tential to be fixed. Furthermore, we assume a lattice system within the case of diagonal

disorder, where the random potential appears as a diagonal term in the Hamiltonian. It

turns out that this system already encompasses many interesting phenomena.

In order to account for the stochastic character of disorder, we consider the random

potential to be described by local energy shifts εi which are randomly distributed through

the lattice volume. We demand these local shifts to be independent and identically dis-

tributed according to a common probability distribution P (εi). As a result, quantities like the

Green’s function become random variables in their own right. If one is not interested in local

properties of an specific landscape of disorder, one can study global effects by looking into

averaged quantities in the disorder ensemble. That is, one can consider many realizations

of disorder and then average over all them. The disorder-ensemble average is therefore

defined as

G =∏
i

∫ ∞

−∞
dεiP (εi)G(εi). (3.61)

The result is supposed to converge to the expected value of the Green’s function for large

enough systems and many realizations of the random potential [117, 106, 118]. This is

equivalent to assuming that the probability distribution of the random variables G(εi) is

sharply peaked around its average value, such that G is a representative of the ensemble.

In the case of the Bose-Hubbard model, for instance, the term which represents the

random potential reads ∑
i
εi â

†
i âi. (3.62)

By decomposing the creation and annihilation operators into the lattice Fourier representa-

tion

âi =
( a
2π

)d ∫
BZ

ddkâ(k)eik·xi , (3.63)
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the representation of the disordered potential in reciprocal space becomes

∑
i
εi â

†
i âi =

( a
2π

)d ∫
BZ

ddk
∫

BZ
ddk′â†(k)ε(k,k′)â(k′), (3.64)

where we have defined

ε(k,k′)=
( a
2π

)d ∑
i
εiei(k−k′)·xi . (3.65)

Note that in contrast the the previous sections, k represents the crystal momentum and the

Fourier integral is defined over the first Brillouin zone. The expression (3.64) shows that

the disordered potential couples states with different wavevectors leading to an off-diagonal

contribution to the Hamiltonian in reciprocal space. Thus, one can expect that, instead

of the delta distribution in k-space shown in (3.32), the Källén-Lehmann representation

of the Green’s function in the disordered case would involve a superposition of states with

different momentum. However, as the disordered average in (3.61) is supposed to converge

and therefore it commutes with the trace of the the definition (3.19), the averaged Green’s

function becomes statistically homogeneous and translational symmetry is recovered. This

implies that the terms of G(εi) which couple states with different wavevectors average over

to zero. As a consequence, the averaged Green’s function resembles the clean case in

reciprocal space, i.e.

G(k,k′;ω)= δ(k−k′)G(k,ω). (3.66)

Consequently, the definition of the spectral function and all properties derived in the past

sections, such as the sum rule, still hold in the disordered case after having performed the

disorder ensemble average.

The singularities of the Green’s function however may change due to disorder. In

contrast to the delta-like peaks represented in the clean-case spectral function, a broad

distribution may emerge. This leads to a different interpretation of their physical character.

We shall discuss these implications in the next section.

3.6 Physical interpretation: elementary excitations

In the first section of the present chapter, we have shown that Green’s functions

provide a way to simplify the description of many-body systems by capturing their response

to an external field or force. Up to a linear approximation, they are connected to how the

expected value of an observable changes in time due to such a perturbation. This already

constitutes an important connection to physical quantities. Another physical interpretation,

which is of particular importance for the present work, comes from the singularities of the

Green’s function in the Källén-Lehmann representation. To see this, we rely on the limit of

zero temperature.
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In the zero-temperature limit, equation (3.32) becomes

G(k,ω)
(2π)3 =∑

m

[
δk,pm 〈φ0|Ψ̂(0)|φm〉 〈φm|Ψ̂†(0)|φ0〉

ω− (Em −E0)+ i0+ + δk,−pm 〈φ0|Ψ̂†(0)|φm〉 〈φm|Ψ̂(0)|φ0〉
ω+ (Em −E0)− i0+

]
,

(3.67)

where we have set p̂ |φ0〉 = 0. We assume that the ground state of the system has N
particles. As the operator field operator Ψ̂† creates one particle, the intermediate states in

sum of the first term on the right hand side of (3.66) must correspond to states with N +1

particles. The energy dependency of the Green’s functions in Fourier space stems from its

denominators. In the first term, we can rewrite the denominator as

ω− [Em(N +1)−E0(N)]=ω− [Em(N +1)−E0(N +1)]− [E0(N +1)−E0(N)]. (3.68)

The difference E0(N +1)−E0(N) is associated to the energy gained by the system when

an extra particle is added to its ground state while keeping the volume constant. This

characterizes the chemical potential. The remaining term Em(N+1)−E0(N+1) corresponds

to the energy difference between the ground state and the excited state of the N+1 particle

system. The analysis of the second term is analogous and the denominator can be written

as

ω+ [Em(N −1)−E0(N)]=ω+ [Em(N −1)−E0(N −1)]− [E0(N)−E0(N −1)]. (3.69)

The term E0(N)−E0(N −1) represents the chemical potential as well, since in the ther-

modynamic limit one must have µ(N +1) = µ(N) with corretions of order N−1 [72], while

the term Em(N −1)−E0(N −1) is again the energy difference between the ground and the

excited states, this time for the N −1 particle system.

From the arguments presented above, we can interpret that the Green’s function

incorporates the information of the creation or removal of a particle from the system. Al-

though they may resemble some features of the physical particles composing the system,

it is often the case that some of their properties are changed. For instance, such particles,

which are represented by the Green’s function, may get dressed by the interaction with the

other particles and thus acquire an effective mass which is different from the real mass.

Additionally, it could also be the case that these are not stable particles, but rather have a

finite lifetime. For this reason, it is usual to call them quasiparticles or quasiholes. It should

be pointed out that quasiparticles and quasiholes represent excited energy levels of the

many-body system, hence it is also common to refer to them as elementary excitations.

Therefore, the key information about the excitations can be obtained from the singularities

of the Green’s function in frequency space.

Since the singularities of the Green’s function are characterized by the spectral func-

tion, one can attempt to obtain further information about the excitations from such a quantity.
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We consider first the case of positive energies. In the zero-temperature limit, the spectral

function of (3.38) reduces to

A(k,ω)=∑
m
δk,pm | 〈φm|Ψ̂†(0)|φ0〉 |2δ[ω− (Em −E0)]. (3.70)

From the expression above, one can read off that the sum in the spectral function counts

the number of states with a well defined wavevector k associated with an excitation energy

ω which are linked to the ground state by the creation of an extra particle [106]. Thus, there

is a straightforward relation to the concept of the density of states. The total density of

states can be defined as

ρ(ω)= 1
(2π)d

∫
Rd

ddkA(k,ω). (3.71)

This quantity measures the total number of available quantum states per unit frequency

range in a system of definite volume. In systems where translational symmetry is not

present, such as disordered systems, another quantity which might be of interest is the

local density of states. Such a quantity can be defined from the imaginary part of the

Green’s function in space

ρ(x,ω)=−1
π

ImGR(x,x;ω). (3.72)

The relation between both densities of states is given by

ρ(ω)=
∫
Rd

ddxρ(x,ω). (3.73)

The result is analogous to the case of negative energies where the spectral function mea-

sures the number of states with wavevector k and corresponding excitation energy ω which

are connected to the ground state by the creation of a hole, i.e. the removal of a particle

[106]. The total density of states will be further explored when analyzing the nature of the

excitations of the Bose-Hubbard model, while the local density of states will be used to

construct a phase diagram for finite temperatures.

One would expect that the eigenenergies of the Hamiltonian would depend on the

local random potential when disorder is introduced. Therefore, by averaging over all disor-

der realizations, the sharp Dirac delta distributions in equation (3.70) would transform into a

broad distribution. An additional interpretation of the Green’s functions concerns the prop-

agation and stability of these excitations in this case. We demonstrate the concepts which

connect the Green’s functions with the propagation of the excitations in Chapter 5. To best

demonstrate the relation to the stability of the states, we treat the strongly interacting limit

of the Bose-Hubbard Model in the next section.
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3.7 Bose-Hubbard model in the limit of strong interactions

From the definition (1.34) of the Bose-Hubbard Hamiltonian, we note that, in the

case of vanishing hopping, such a Hamiltonian becomes diagonal in the number operator

basis

Ĥ0 =
∑

i
Ĥ0i , (3.74)

with

Ĥ0i =
U
2

n̂i(n̂i −1)−µi n̂i, (3.75)

where we have introduced the notation µi =µ−εi. Such a situation could be achieved in the

deep lattice regime, where interactions are strong enough to localize the atoms suppressing

fluctuations on the average number of particles per site, i.e. J/U → 0. Additionally, one has

to consider that the disorder strength is not of the order of the interactions. This limit sets

the stage for the perturbation methods to be introduced in the next chapter. As we shall

see, one can construct a perturbation series in terms of the hopping energy in order to

investigate the problem of the full Hamiltonian (1.34). Therefore, in this section our aim

is to discuss the key aspects of the unperturbed Hamiltonian above. Since our interest

is to construct a perturbation expansion in the next section, we apply here the Matsubara

formalism.

From the decomposition of the field operators in terms of maximally localized Wan-

nier functions (1.28), one can conclude that a proper definition to the Green’s function in

the case of lattice consists of

Gi j(τ,τ′)=−〈Tτâi(τ)â†
j(τ

′)〉 , (3.76)

where instead of the full field operators, we have the Heisenberg representation of the

bosonic creation and annihilation operators with commutation relations given by (1.29). In

the limit of strong interactions, where the system is described by the Hamiltonian (3.74), an

excitation created at a given site cannot propagate due to its vanishing tunneling energy.

Thus, such an excitation can only create local fluctuations in the average particle density

per site. Hence, in this limit, the proper definition to the Green’s function is given by

g i(τ,τ′)=−〈Tτâi(τ)â†
i (τ

′)〉0 , (3.77)

where the average must be taken over the equilibrium ensemble of (3.74) for fixed εi. The

obvious choice of a basis to take the trace are the eigenstates |ni〉 of the number operator
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n̂i. The corresponding single-site eigenenergies correspond to

Ĥ0i |ni〉 = Eni (µi) |ni〉 , (3.78)

Eni (µi) = U
2

ni(ni −1)−µini. (3.79)

Taking the trace implicit in (3.77) respect to the basis states defined above, we obtain

g i(τ,τ′)=−
∞∑

n=0

e−βEn(µi)

Z0(µi)

×
{
Θ(τ−τ′)(n+1)e(τ−τ′)[En(µi)−En+1(µi)] −Θ(τ′−τ)ne(τ−τ′)[En−1(µi)−En(µi)]

}
.

(3.80)

Since in this limit the average number of particles in each site is fixed, we have chosen to

suppress the site index in the average particle density ni ≡ n. In this case, the partition

function is defined as

Z0(µi)=
∞∑

n=0
e−βEn(µi). (3.81)

Note that (3.80) respects imaginary time translational symmetry. Making the substitution

τ→ τ+τ′ and transforming to the Matsubara frequency space we obtain the following ex-

pression

g i(iωl)=
∞∑

n=0

e−βEn(µi)

Z0(µi)

(
n+1

iωl +µi −Un
− n

iωl +µi −U(n−1)

)
. (3.82)

Therefore, in the limit of strong interactions, the full Matsubara Green’s function can

be written as

Gi j(iωl)= δi j g i(iωl) as
J
U

→ 0. (3.83)

Note that for fixed µi the Green’s function is characterized by two simple poles, one corre-

sponding to the quasiparticle branch and the other to the quesihole branch. In the case of

zero tunneling, such excitations can only be created exactly at chemical potentials where

the Mott lobes intersect, µi/U = n. In such a point the energy for occupying a site with n
particles is the same as the one to occupy a site with n+1 particles (see Section 3.2). This

leads to local fluctuations in the average number of particles at those points. If µi becomes

random, for a continuous disorder distribution, this point turns into a continuum set of points

defined in the gaps (2.11) of the phase diagram.

To demonstrate this, we investigate the limit of zero temperature. In such a limit,

i.e. as β→∞, one would expect that the system goes to its ground state. In the strongly

interacting case, the ground state is a Mott insulating state where fluctuations in the average

particle density per site are suppressed and each site contains exactly n0 bosons. Thus,

(3.82) simplifies to

g i(iωl)=
n0 +1

iωl +µi −Un0
− n0

iωl +µi −U(n0 −1)
. (3.84)
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This constitutes the so-called atomic limit of the unperturbed Green’s function at zero tem-

perature.

We can now consider what happens when the Fourier transform to reciprocal space

is taken. In the lattice case, such a Fourier transform and its inverse are defined as

G (k,k′; iωl) = ∑
i j

Gi j(iωl)e−i(k·xi−k′·x j), (3.85)

Gi j(iωl) =
( a
2π

)2d ∫
BZ

ddk
∫

BZ
ddk′G (k,k′; iωl)ei(k·xi−k′·x j), (3.86)

where the integrals in reciprocal space run over the first Brillouin zone. Inserting (3.83) in

(3.85) we obtain

G (k,k′; iωl)=
∑

i
g i(iωl)e−i(k−k′)·xi . (3.87)

One can immediately see that for a homogeneous system, i.e. µi = µ, only the exponential

contributes to the sum over all sites, which yields

∑
i

e−i(k−k′)·xi =
(
2π
a

)d
δ(k−k′). (3.88)

This would amount to a system which is invariant under translations. However, the sum

becomes non-trivial when disorder is present. To see this, we first consider the first term

on the right-hand side of (3.84). Note that by using the explicit form of the local chemical

potential µi =µ−εi it can be expressed as a series expansion of the form

1
iωl +µ−εi −Un0

=
∞∑

m=0

εm
i

(iωl +µ−Un0)m+1 . (3.89)

Its Fourier transform then becomes

∑
i

e−i(k−k′)·xi
1

iωl +µ−εi −Un0
=

∞∑
m=0

1
(iωl +µ−Un0)m+1

∑
i
εm

i e−i(k−k′)·xi . (3.90)

One can clearly see that the first term in the sum, m = 0, recovers the clean case where

the singularity corresponds to a simple pole. For m = 1 however, we obtain the Fourier

transform of the local potential shown in equation (3.65). For any finite m we observe the

following situation. The terms which maintain the conservation of translational invariance,

namely for k=k′, lead to the sum ∑
i
εm

i . (3.91)

Since we must take the average over all configurations of the disorder potential, the above

summation represents a positive coupling between the moments of order m of the random

distribution. Thus, in this case the summation in m of equation (3.90) corresponds to a

sum over all moments of the distribution at each site. Note that each moment of order m
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contributes to the sum with a pole of order m+1. In the opposite case, that is considering the

terms in with k 6= k′, the coupling between the terms of the sum over all sites in (3.90) can

be negative or even complex. Consider, for instance, the one-dimensional case. The space

variable simplifies to x j = a j where j ∈ Z. For the case of k− k′ = π/2a, the exponential

clearly becomes e−iπ j/2 = (−i) j, which yields either plus or minus the imaginary unit i. In

such a case, the sum ∑
j
εm

j e−i(k−k′)a j, (3.92)

leads to a complex coupling between the moments of the random shifts ε j at each site.

Note that we have used j to represent the site index to avoid confusion with the imaginary

unit i. The case where k−k′ =π/2a will play an important role when we analyze the energy

spectrum in Chapter 5.

Taking the disorder-ensemble average, we get

∑
i
εm

i e−i(k−k′)·xi = εm
i

∑
i

e−i(k−k′)·xi

=
(
2π
a

)d
εm

i δ(k−k′).
(3.93)

Hence, the terms where k 6=k′ average over to zero and translational invariance is restored

as it was discussed in Section 3.5. Equation (3.90) reduces to

∞∑
m=0

1
(iωl +µ−Un0)m+1

∑
i
εm

i e−i(k−k′)·xi =
(
2π
a

)d
δ(k−k′)[iωl +µ−εi −Un0]−1. (3.94)

If we take the analytic continuation to the real frequency domain consistent with a retarded

response, i.e. iωl → ω+ i0+, the unperturbed retarded Green’s function in the disordered

case then reads

g i(ω)=Re g i(ω)+ iIm g i(ω), (3.95)

with

Re g i(ω) = p.v.
∫ ∞

−∞
dεiP (εi)

(
n0 +1

ω+µ−εi −Un0
− n0

ω+µ−εi −U(n0 −1)

)
, (3.96)

Im g i(ω) = π
(
n0P [ω+µ−U(n0 −1)]− (n0 +1)P [ω+µ−Un0]

)
, (3.97)

where p.v. denotes the principal value of the integration in (3.96) and we have chosen to

show the explicit form of the local chemical potential µi = µ− εi. The full retarded Green’s

function in reciprocal space reads

GR(k,k′;ω)=
(
2π
a

)d
δ(k−k′)

{
Re g i(ω)+ iIm g i(ω)

}
(3.98)

We point out that the behavior of the imaginary part of g i(ω) in (3.97) is determined
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Figure 3.2 – Cyclic color function plot over arg g i(ω) for a continuous disorder distribution. The upper
row represents the case where n0 = 0, that is only the quasiparticle branch is present, while the lower
row corresponds to the case n0 = 1 where the quasihole branch appears as well. In the limit of zero
disorder (left) the singularities correspond to simple poles. When disorder is finite (middle and right)
the simple poles transform into branch cuts.

Source: Prepared by the author.

by the disorder distribution P (εi). One can recover the clean case by choosing

P (εi)= δ(εi). (3.99)

As we have already discussed, the simple poles of the Green’s function in the clean case

are mapped into Dirac delta distribution peaks of the imaginary part. One can deduce that

any discrete probability distribution of the random potential would lead to additional delta

distribution like peaks in Im g i(ω). To see this, take, for instance, the case where disorder

is realized by impurity atoms trapped at random sites which can be described by assuming

a binary disorder distribution [119]

P (εi)= L−L′

L
δ(εi)+ L′

L
δ(εi −U ′), (3.100)

where L is the number of lattice sites and L′ represents the number of impurities. In this

case, the energy of each site where an impurity atom is located gets shifted by the impurity

interaction U ′. Due to the presence of such impurities, additional delta distribution like

peaks would emerge in Im g i(ω). These peaks are therefore related to simple poles of

the Green’s function. One can imagine that including different energy shifts in a discrete

probability distribution for the disorder would increase the number of peaks in the imaginary

part of the unperturbed Green’s function. However, in the limit of many energy shifts, which
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are close in energy, the distribution becomes continuous and the simple pole singularities

become a branch cut. The emergency of such a branch cut can be observed in Fig. 3.2,

where we consider a disorder distribution

P (εi)= 1
∆

[
Θ

(
εi + ∆2

)
−Θ

(
εi − ∆2

)]
, (3.101)

which is uniformly distributed on the bounded interval [−∆/2,∆/2].

The transformation of the singularities from simple poles into a branch cut has an

influence on the lifetime of these elementary excitations. In order to exemplify this, we

consider the spectral function, which is obtained applying the definition (3.37) to equation

(3.98)

A(k,ω)= (n0 +1)P [ω+µ−Un0]−n0P [ω+µ−U(n0 −1)]. (3.102)

For simplicity we take the case of n0 = 0

A(k,ω)=P (ω+µ). (3.103)

In the clean case, where the distribution takes the form (3.99), the time dependence of the

retarded Green’s function can be recovered by applying (3.42) which yields

GR(k,k′; t)=−iΘ(t)
(
2π
a

)d
δ(k−k′)eiµt. (3.104)

For t > 0 this is clearly an oscillating function where the amplitude of the oscillations is

constant. Hence, one can see that a discrete disorder distribution such as (3.100) would

only lead to more oscillating terms in the time dependence of the retarded Green’s function.

In the case of continuously distributed disorder, the distribution P (εi) differs from a Dirac

delta distribution and it can acquires a finite width. Suppose, for instance, that such a

distribution has a Cauchy-Lorentz form

P (εi)= 1
π

∆/2
ε2

i + (∆/2)2
, (3.105)

where the full width of half maximum is given by the disorder energy scale ∆. In such a

case, the averaged retarded Green’s function becomes

GR(k,k′; t)=−iΘ(t)
(
2π
a

)d
δ(k−k′)eiµt−∆t/2. (3.106)

For positive t, the above equation has a a decaying exponential e−∆t/2. Thus, the finite width

of the spectral function in the disordered case leads to a decaying amplitude of GR(k,k′; t)
in time. One can conclude that the excitations are damped due to disorder with a lifetime,

in this case, given by 2/∆. Another type of distribution, which is of particular interest to
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Figure 3.3 – Time dependence of the absolute square of GR(k,k′; t). For the clean case, ∆→ 0, the
amplitude is constant, while it decays rapidly for finite disorder strength ∆= 0.1µ.
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Source: Prepared by the author.

this work, is the uniform disorder distribution (3.101). For such a distribution, the retarded

Green’s function reads

GR(k,k′; t)=−iΘ(t)
(
2π
a

)d
δ(k−k′)eiµt sin(∆t/2)

∆t/2
, (3.107)

which decays in time with the rate 2/∆. For each of these cases, we plot the time depen-

dence of GR(k,k′; t) in Figure 3.3.

All things considered, we have shown that in the limit of strong interactions of the

Bose-Hubbard model, the stable excitations, which lead to local fluctuations in the average

density of particles in the clean case, become damped in the disordered case. This can be

understood by remembering that, in the clean case, the excitations are true eigenstates of

the Hamiltonian. In the disordered case, however, these excitations resemble a true eigen-

state for a finite lifetime after which they decay. One can therefore conclude that disorder

dresses up the elementary excitations by producing a damping effect. All this information

can be extracted from the Green’s functions and from the analysis of the peaks of the spec-

tral function. In Chapter 5, we demonstrate how such effects could be understood in the

presence of finite tunneling energy J. In the next section, we explain some measurements

which could provide information on the spectral and the Green’s functions.

3.8 Measurements in disordered systems

Even though this chapter was reserved to introduce the relevant aspects of Green’s

functions that serve the purposes of the present work, we recognize that it would be in-

teresting to present here how such a quantity could be experimentally probed. Thus, in
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Figure 3.4 – Sketch of a two beam Bragg spectroscopy. A laser beam with wavevector kA and
frequency ωA intersects at an angle 2θ with a second laser beam with wavevector kB and frequency
ωB (red arrows) creating a lattice grid which is superimposed in the atomic cloud (blue).

Source: Prepared by the author inspired by Ref. [128].

the following we give a brief introduction to the techniques of Bragg spectroscopy and the

radio-frequency transfer method.

3.8.1 Bragg spectroscopy

We have already stated that systems of ultracold atoms serve as a playground to

study Hamiltonians such as the Bose-Hubbard model. One of the main experimental tech-

niques used to probe spectral properties of these systems is the so-called Bragg spec-

troscopy. Such a technique was first demonstrated in Ref. [120], and has since generated

many other studies, some of which are Refs. [121, 122, 123, 124, 125, 126, 127, 128].

The experiment is based on exposing the atomic cloud to two collimated laser beams,

one with wavevector kA and frequency ωA and the other with wavevector kB and frequency

ωB. Such lasers are usually called Bragg beams. The beams intersect at an angle 2θ creat-

ing a standing wave. By controlling the angle between the laser beams one can change the

periodicity of such standing wave. In the absence of spontaneous emission, the momen-

tum transfer from the radiation field to the atomic cloud stems from the coupling between

the induced atomic dipole moment and the gradient of the standing light wave, as we have

discussed in Section 1.1. An atom which trades a photon by means of absorption and

stimulated emission with the two Bragg beams, gains momentum given by the difference

kA−kB [120]. As a result an induced excitation with frequency given by ωA−ωB is created.

One can adjust such excitation frequency by controlling the detuning between the laser

beams. The magnitude of momentum transferred to the atoms is characterized by both the

angle θ and the wavelength λ of the laser beams [127]

|kA −kB| = 4π
λ

sinθ. (3.108)
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One can then determine the excitation spectrum, for instance, by measuring the resulting

heating rate [123, 128] or the absorption spectrum [126]. In both cases the experiments

give access to the so-called dynamic structure factor.

The dynamic structure factor measures fluctuations in the density-density correla-

tions of the many-body system. Such a quantity can be related to the response of the

system by the fluctuation-dissipation theorem [129, 130] and characterizes the spectra of

collective excitations. In contrast to the elementary excitations, collective excitations do not

emerge from individual particles dressed by the interactions with its neighbors, but rather in-

volve the wavelike motion of the whole system [7]. These excitations are outside the scope

of the analysis carried out in this work, as they involve the so-called two-particle propagator.

Even though the usual quantity measured in Bragg spectroscopy is not the single-

particle Green’s function, it was shown in Ref. [126] that the excitation scheme of such

a technique for inter-band transitions contains important information on the single-particle

elementary excitations in the Mott-insulator phase. In particular, it was demonstrated in

that study that one can investigate the coherence of quasiparticles and quasiholes from the

asymmetry of the spectra in the absorption rate. Furthermore, the study proposed that by

counting the population of the excited states with a band mapping technique, such as the

one applied in [131], it is possible to measure the single-particle spectral function and thus

obtain the spectrum of the elementary excitations.

3.8.2 Radio-frequency transfer

Electromagnetic fields in the range of radio frequencies are widely used in exper-

iments of cold atoms. Some examples are evaporative cooling, where a radio-frequency

(rf) field is applied to the atomic cloud in order to couple the most energetic particles to

states outside the trap such that they get expelled leaving the sample colder [132], and rf-

spectroscopy which can be used to characterize and control magnetic traps and adiabatic

potentials [133]. Here, we focus of the experiments reported in [134], where the spec-

tral function of ultracold atoms in a disordered potential was measured with the rf-transfer

method.

The experiment was realized with a Bose-Einstein condensate of Rubidium-87 atoms

carefully prepared in the initial state |F = 1,mF =−1〉 ≡ |1〉 in the presence of a random po-

tential generated by laser speckles. A clever idea was then to use the hyperfine structure

of those atoms by tuning the disordered potential in such a way to affect only the state

|F = 2,mF = 1〉 ≡ |2〉. The transition |1〉 → |2〉 was then induced by applying an external

rf-field. In such configuration the energy levels of the disorder potential form an effective

continuum and for weak rf coupling the transition rate is given by Fermi’s golden rule. Such

a transition rate is proportional to the overlap between the initial and the final states multi-

plied by the density of states [135, 56]. As we have already shown, the density of states can
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Figure 3.5 – Experimental procedure and measurement of the spectral function. (a) A near-resonant
speckle laser with detuning ∆L is applied to create either an attractive (red detuned, ∆L < 0) or
repulsive (blue detuned, ∆L > 0) random external field which is sensible only to atoms in state |2〉.
In (b) and (c) a radio-frequency (rf) field is applied in the condensed atoms to induce the transition
|1〉 → |2〉 where Eδ is the energy of the final state which depends on the detuning of the rf-field
from the bare transition. The spectral function is then proportional to the transfer rate measured
via fluorescence imaging. The resulting measurement of A(k= 0,ħδ) for a repulsive disordered
potential is shown in (d) and (e) for different disorder strengths ∆. The blue dots correspond to
experimental points while the red line represents numerical results of a time-propagation algorithm.

Source: Figure from Ref. [134].

be written as a momentum integral over the spectral function via (3.71). In the presence

of disorder, one has to consider the average of the transition rate over many realizations of

the random potential. In the limit that the average of the overlap function and the average

of the density of states can be taken separately, the transition rate becomes proportional

to the average spectral function. Therefore, by counting the number excited atoms in a

given period of time via fluorescence imaging for many realizations of the random potential,

one can obtain a direct measurement of the spectral function in disordered systems as was

realized in [134]. Such an experimental process is shown in Fig. 3.5 along with some of

the measurements. One can clearly see in Fig. 3.5(d) and (e) that the spectral function has

a peak which indicates the excitation energies of the disordered potential. This peak has

a finite width, which, as we have already discussed, provides a measure of the lifetime of

these excitations.

The experiment referenced above seems to be prominent in determining the spec-

tral properties of cold atoms in disordered external potentials. Although the measure was

realized only for k= 0, the authors argue that by applying different kinds of transfer methods

it is possible to have access to finite values of k. In addition to the information on the lifetime

of the excitations, by measuring the spectral function for different values of the wavevector

one would obtain the dispersion relation and the band structure of such excitations. Such
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an information could be used to extract, for instance, the effective mass of these quasipar-

ticles. We remark however, that the experiments mentioned above were carried out without

the presence of a lattice in the limit of weak interaction between the atoms.

In conclusion, we have introduced here some basic properties of Green’s function

and how they can be used to investigate the spectra of elementary excitaions as well as

some possibilities for experimental measurements in disordered systems. In what follows

we focus on the perturbation theory to construct a broader understanding of the Bose-

Hubbard model.





Chapter 4

Perturbation Theory

One of the aims of this work is to study the effects of disorder on the strongly inter-

acting limit of the Bose-Hubbard Hamiltonian for finite values of the tunneling energy. If the

disorder energy scale is not strong compared to the interactions, one can expect that there

are still some regions of the phase diagram where fluctuations of the particle density at

each lattice site are suppressed by the interactions and the ground state is a Mott insulator.

In that region, it is then justified to treat the hopping energy as a perturbation which tries to

delocalize the particles creating excitations. Such a class of approximations is commonly

referred to as strong-coupling expansion, however it could also be understood as an ex-

tension of the so-called locator expansion [32, 136, 137] to an interacting system. Rather

than using the operator formalism as we have done in Refs. [138, 139], here we choose to

demonstrate this perturbation treatment in the functional integral formalism. We apply the

same formalism in Chapters 7 and 8 to demonstrate some preliminary calculations which

follow from the results presented in this thesis. Therefore, the choice for the functional in-

tegral formalism makes the full body of this work uniform. Furthermore, it is often the case

that such a functional integral formulation offers an easier path to perturbation treatments

than other traditional methods. The basic derivation of such a formalism in imaginary-time

is carried out in Appendix A.

4.1 Hopping expansion

The action corresponding to the Bose-Hubbard Hamiltonian is given by

S[ψ∗,ψ]=
∫ β

0
dτ

∑
i

[
ψ∗

i (τ)
(
∂

∂τ
−µ

)
ψi(τ)+ U

2
ψ∗

i (τ)2ψi(τ)2
]

−
∫ β

0
dτ

∑
i j
ψ∗

i (τ)Ji jψ j(τ)+
∫ β

0
dτ

∑
i
ψ∗

i (τ)εiψi(τ),
(4.1)

75
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where the fields ψ and ψ∗ can be associated to the degrees of freedom of bosonic particles

on a lattice. One interesting point is that the steepest decent condition, i.e. the Euler-

Lagrange equations to this action correspond to the lattice version of the Gross-Pitaevskii

equations

∂ψi(τ)
∂τ

= −∑
j

Ji jψ j(τ)−µψi(τ)+U |ψi(τ)|2ψi(τ)+εiψi(τ), (4.2)

−∂ψ
∗
i (τ)
∂τ

= −∑
j

Ji jψ
∗
j (τ)−µψ∗

i (τ)+U |ψi(τ)|2ψ∗
i (τ)+εiψ

∗
i (τ). (4.3)

As we want to study the system near the phase transition, we introduce to the action

a source term

(j|ψ)+ (ψ|j)=
∫ β

0
dτ

∑
i

[
j∗i (τ)ψi(τ)+ ji(τ)ψ∗

i (τ)
]
, (4.4)

where we have introduced the abbreviation

(j|ψ)=
∫ β

0
dτ

∑
i

j∗i (τ)ψi(τ). (4.5)

This auxiliary source term can be interpreted as fluctuations that couple to the bosonic

fields near the phase transition explicitly breaking the global U(1) symmetry of the Bose-

Hubbard Hamiltonian. The introduction of such a term is made based on general quantum

field theory considerations [110, 140, 113]. With this source term it is possible to define the

unperturbed partition function as

Z0[j∗, j]=
∮

Dψ∗ ∮
Dψe−S0[ψ∗,ψ]+(j|ψ)+(ψ|j)∮

Dψ∗ ∮
Dψe−S0[ψ∗,ψ] , (4.6)

where the unperturbed action corresponds to (4.1) in the case of a vanishing tunneling term,

i.e., J = 0. We define the partition function so that it satisfies Z0[0,0] = 1. The functional

integral representation corresponds to the summation over all configurations of the bosonic

matter fields with periodic boundary conditions in imaginary time, i.e. ψ(0)=ψ(β). We note

that (4.6) consists of the average

Z0[j∗, j]= 〈e(j|ψ)+(ψ|j)〉0 , (4.7)

where 〈· · ·〉0 denotes the average over the equilibrium ensemble of the unperturbed system

for a fixed local potential εi. The partition function can then be rewritten as

Z0[j∗, j]= eW0[j∗,j], (4.8)
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where the negative free-energy functional is defined as

W0[j∗, j]= log 〈e(j|ψ)+(ψ|j)〉0 . (4.9)

Note that the source dependent partition function constitutes the generating functional of

moments corresponding to the bosonic fields with respect to the unperturbed equilibrium

ensemble. Hence, the negative free energy W0[j∗, j] defines the cumulant generating func-

tional.

By considering the tunneling energy as a perturbation parameter, and expanding

the exponential with respect to the hopping term, we realize that corrections to the partition

function in the hopping expansion can be calculated according to

Z [j∗, j]= exp

(∑
i j

Ji j

∫ β

0
dτ

δ2

δj∗i (τ)δj j(τ)

)
Z0[j∗, j]. (4.10)

With this approach, one can study physical quantities by calculating correlation functions

up to any order. Here, we restrict the calculation to the two-point Green’s function which

can be obtained via [140]

Gi j(τ,τ′)= δ2Z [j∗, j]
δj∗i (τ)δj j(τ)

∣∣∣∣∣
j∗,j=0

. (4.11)

All single-particle properties of the system can be extracted from the two-point function.

In order to properly calculate the hoping corrections to the Green’s function, we must

consider the cumulant expansion of the free energy

W0[j∗, j]=
∫ β

0
dτ

∫ β

0
dτ′

∑
i

j∗i (τ)〈Tτâi(τ)â†
i (τ

′)〉0 ji(τ′)+·· · , (4.12)

where we recognize the average in between the sources on the right-hand side as the

unperturbed Green’s function (3.77) defined in Section 3.7. We choose not to show the

subsequent terms in this expansion as they are not relevant to the analysis carried in this

thesis. Such terms would be important, for instance, in the effective-action approach de-

veloped in [52, 53, 54, 55] where a diagrammatic notation simplifies the calculations. The

result of the functional derivatives of (4.10) acting on the cumulant expansion of (4.12) is to

generate different terms composed of products of unperturbed contributions joined by the

hopping matrix. As a consequence of the linked-cluster theorem, one can describe all the

terms by considering only the so-called connected contributions [141, 142, 71, 143, 144].

After applying (4.11) the perturbation series in the reads

Gi j(τ,τ′)= δi j g i(τ,τ′)+ Ji j

∫ β

0
dτ1 g i(τ,τ1)g j(τ1,τ′)

+∑
l

Jil Jl j

∫ β

0
dτ1

∫ β

0
dτ2 g i(τ,τ1)gl(τ1,τ2)g j(τ2,τ′)+·· · .

(4.13)
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This amounts to a tree-level approximation to the Green’s function. Each term in this series

can be interpreted as the amplitude of propagation for an excitation which is created at

imaginary time τ′ at site j and hops along the lattice being annihilated after reaching site

i at imaginary time τ. It turns out that such an approximation is already sufficient to study

how disorder affects the energy spectrum in the strongly interacting regime as well as to

obtain an analytical expression to the phase boundary between Mott and Bose glass states.

In what follows we discuss how one can use the above described expansion to construct

analytical solutions.

4.2 Partial summation

As it was mentioned in the last chapter, singular points of the Green’s functions in the

Kälén-Lehmann representation can be directly linked to the eigenstates of the underlying

Hamiltonian giving the energy dispersion of the low-energy excitations of the system [118].

However, up to any finite order, the expansion of the Green’s function in (4.13) is an analytic

power series in terms of the tunneling energy J. Thus, one must sum an infinite amount

of terms in such an expansion. This can be done by breaking down sequences of terms

into infinite subsets and then combining them in a partial summation to find the final result

[7, 114].

In order to proceed with such a summation, we consider only the first-order contri-

bution in (4.13). After taking the disorder average it can be written as

Gi j(τ,τ′)= δi j g i(τ,τ′)+ Ji j

∫ β

0
dτ1 g i(τ,τ1) g j(τ1,τ′)+·· · . (4.14)

Note that the average over the product of the unperturbed Green’s function in the first-order

correction factorizes as a consequence of the hopping matrix being off-diagonal, i.e. Jii = 0.

Expression (4.14) can be further simplified by transforming in the Matsubara frequency

domain with the definition (3.55)

Gi j(iωl)= δi j g i(iωl)+ Ji j g i(iωl) g j(iωl)+·· · , (4.15)

where we have used the imaginary-time translational invariance property of the Green’s

function, namely Gi j(τ,τ′)=Gi j(τ−τ′,0). The inverse of (4.15) can be written as

[
Gi j(iωl)

]−1 = δi j

[
g i(iωl)

]−1 − Ji j +·· · . (4.16)

With the disorder-ensemble average the unperturbed Green’s function g i(iωl) becomes

homogeneous and space translational invariance broken by the random random potential

is recovered [145, 146]. Afterwards, we perform the Fourier transform into momentum
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space defined as [
G (k,k′; iωl)

]−1 =∑
i j

[
Gi j(iωl)

]−1
e−i(k·xi−k′·x j). (4.17)

One can invert this expression exactly in the Fourier-Matsubara space to obtain

G (k,k′; iωl)=
(
2π
a

)d δ(k−k′)[
g i(iωl)

]−1 − J(k)
. (4.18)

We point out that this result is equivalent to the partial summation of simple chain contri-

butions to the Green’s function obtained for the clean case in [98] and for the disordered

case in [138, 139]. It has the same form as the Dyson equation, where the dispersion for a

d-dimensional hypercubic lattice

J(k)= 2J
d∑

p=1
cos

(
akp

)
(4.19)

plays the role of the self-energy. This result consists of considering that the scattering

events against the disordered potential between each hopping process are statistically in-

dependent such that the average over products of the unperturbed amplitudes of propaga-

tion factorizes. In the actual disordered system, the reciprocal space representation of the

Green’s function of the must have off-diagonal elements, which couple states with differ-

ent wavevectors. Such elements vanish after the disorder ensemble average is performed

[117]. However, as we shall see latter, their physical effects still remain in the system influ-

encing the transport properties. From (4.18) we define the Green’s function obtained by the

partial summation method as

G (k, iωm)= 1[
g i(iωl)

]−1 − J(k)
. (4.20)

In the next chapter, we show how one can obtain information on the energy spectrum for

single-particle excitations from such a quantity.

4.3 Poincaré-Lindstedt method

The theory developed by Fisher et al. [22] regarding the Bose-glass phase posits

that in this well-localized regime, the density of states of low-lying excitations reaches a

finite value at zero excitation energy for vanishing tunneling energy. This occurs due to

the continuous distribution of the random potential in the system. This case was further

analyzed in Ref. [38]. The finite density of states for zero energy is a consequence of the

gapless spectrum of the Bose-glass state and it should persist even when the hopping en-
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ergy is made slightly positive. In order to gain a deeper understanding of this phenomenon,

our perturbation theory takes into account the hopping corrections to the local Green’s func-

tion. In the local case, the first-order contribution in the hopping expansion (4.13) vanishes

and the Green’s function can be written as

Gi(τ,τ′)= g i(τ,τ′)+∑
j

Ji j J ji

∫ β

0
dτ1

∫ β

0
dτ2 g i(τ,τ1)gl(τ1,τ2)g i(τ2,τ′)+·· · . (4.21)

Assuming imaginary-time translational invariance, in the Matsubara representation (3.55),

the above expression becomes

Gi(iωl)= g i(iωl)+
∑

j
Ji j J ji g i(iωl)2 g j(iωl)+·· · . (4.22)

The second term on the right-hand side of the above expression involves double poles

which come from the square of the unperturbed Green’s function. Such a term could be

interpreted as the cyclic path of an excitation which starts at site i, hops to one of its first

neighbors and then hops back to the original site. One can represent such double poles

as derivatives of simple poles. This simplifies the analytic continuation iωm →ω+ i0+ from

the Matsubara frequencies to the real frequency domain. The imaginary part of the local

Green’s function ρ i(ω) = −ImGi(ω+ i0+)/π [6, 72, 71] corresponds to the local density of

state which reads

ρ i(ω)=
∞∑

n=0

e−βEn(µi)

Z0(µi)
{
(n+1)δ[ω+µi −Un]−nδ[ω+µi −U(n−1)]

}
−∑

j
Ji j J ji

∞∑
n=0

(
(n+1)

e−βEn(µi)

Z0(µi)

)2
∂

∂µi

{
δ[ω+µi −Un]g j(Un−µi)

}
−∑

j
Ji j J ji

∞∑
n=0

(
n

e−βEn(µi)

Z0(µi)

)2
∂

∂µi

{
δ[ω+µi −U(n−1)]g j(U(n−1)−µi)

}
+·· · ,

(4.23)
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where we have defined the local chemical potential µi =µ−εi. Here we show only the terms

which will be important to our analyses. By taking the disorder average we obtain

ρ i(ω)=
∞∑

n=0
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
P [ω+µ−Un]

−
∞∑

n=0
n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
P [ω+µ−U(n−1)]

+ zJ2 g j(ω)
∞∑

n=0

(
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)

)2

P ′[ω+µ−Un]

+ zJ2 g j(ω)
∞∑

n=0

(
n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)

)2

P ′[ω+µ−U(n−1)]

+·· · .

(4.24)

Note that, after the disorder average the sum of the hopping matrix over nearest neighbors

can be directly evaluated to ∑
j

Ji j J ji = zJ2, (4.25)

where z is the lattice coordination number. The hopping corrections to the local density

of states (4.23) are multiplied by derivatives of the disorder distribution. The derivatives

originate from the double poles of the local Matsubara Green’s function (4.21) and appear

as a result of using the property ∫ ∞

−∞
dxδ′(x) f (x)=− f ′(0) (4.26)

of derivatives of the Dirac delta function when taking the disordered average of (4.22). As

it was mentioned in the last chapter, in Matsubara space the discrete singularities of the

Green’s function should only correspond to simple poles [72, 71]. These anomalies, which

come from the double poles implicit in (4.21), can be understood in first approximation as

a consequence of including correlations between scattering events against the disordered

potential at the same lattice site for the cyclic path of an excitation created in system.

In order to deal with the above described problem, one has to renormalize the local

density of states. One alternative to do this is to use the Poincaré-Lindstedt method. In a

simple picture, this method was first applied in celestial mechanics to renormalize the fre-

quency associated to the orbit of objects in outer space with the aim of eliminating secular

non-periodic terms [147, 148]. More recently, this method has been applied to treat non-

linear problems such as the Duffing oscillator [149] or even the dynamics of Bose-Einstein

condensates [150, 151]. In the usual Poincaré-Lindstedt method, periodic terms transform

into simple poles in frequency space. In contrast, secular terms appear as poles of higher

order. We can therefore interpret the Dirac delta functions in (4.22) as the imaginary part of

a simple pole and its derivatives as coming from the imaginary part of higher order poles.
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In analogy to the Poincaré-Lindstedt method, we propose the use of the following transfor-

mations
γ−n =ω+µ−U(n−1) → Ω−

n +λ(γ−n −Ω−
n),

γ+n =ω+µ−Un → Ω+
n +λ(γ+n −Ω+

n),

J2 → λJ2.

(4.27)

Note that by setting λ= 1 one recovers the initial situation. Expanding (4.23) up to the first

order in λ we obtain

ρ i(ω)=
∞∑

n=0
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
P (Ω+

n)

−
∞∑

n=0
n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
P (Ω−

n)

+λ
∞∑

n=0
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
(γ+n −Ω+

n)P ′(Ω+
n)

−λ
∞∑

n=0
n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
(γ−n −Ω−

n)P ′(Ω−
n)

+λzJ2 g j(ω)
∞∑

n=0

(
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)

)2

P ′(Ω+
n)

+λzJ2 g j(ω)
∞∑

n=0

(
n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)

)2

P ′(Ω−
n)

+·· ·

(4.28)

The renormalization consists of determining the values of Ω±
n that cancel the derivatives of

the disorder distributions on the above expression. In this case, such values are given by

Ω−
n(J) = ω+µ−U(n−1)+ zJ2n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
g j(ω), (4.29)

Ω+
n(J) = ω+µ−Un− zJ2(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
g j(ω). (4.30)

With this choice, the disorder average of the local density of states becomes

ρ i(ω)=
∞∑

n=0
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
P [Ω+

n(J)]−
∞∑

n=0
n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
P [Ω−

n(J)]+·· · . (4.31)

We can therefore interpret the renormalization of the arguments of the disorder distribution

in the local density of states as the Poincaré-Lindstedt method in frequency space.

The renormalized expression of the local density of states (4.31) constitutes a re-

summation of the original expression (4.24), which makes them equivalent up to second

order in J. This result generalizes the expression of the density of states computed in Ref.

[38] with corrections due to finite tunneling energy. We are now in the position to discuss
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the implications of such results and how they can be used to explain the effects of disorder

in the strongly interacting regime of the Bose-Hubbard model.





Part III

Results

84



Chapter 5

Excitations of the disordered

Bose-Hubbard model

At commensurate fillings, for a sufficiently deep lattice potential depth, the ground

state of a cloud of cold bosonic atoms is a Mott insulator. In a perfect lattice, the low-lying ex-

cited states above this ground state correspond to gapped quasiparticle and quasihole ex-

citations with a well-defined wavevector k, which are still eigenstates of the Bose-Hubbard

Hamiltonian and propagate without decay through the system’s volume. The properties of

these stable excitations are mapped into Dirac delta distributions of the spectral function,

which occur at finite energies. The main characteristics of such low-energy excitations have

been the subject of extensive investigation [152, 153, 154, 155, 156, 157, 158]. However,

the problem of how disorder affects the energy spectrum in the strong-interacting limit re-

mains unclear so far. Here, we present an extended version of the results partially available

in Ref. [139] in the zero-temperature limit. There, we have shown that sharp peaks associ-

ated with stable excitations still appear in the spectral function when disorder is present. In

contrast to the clean case, however, the gap for creating these excitations becomes smaller

due to disorder, and thus the peak for stable states in the spectral function is shifted to-

wards lower energies. In addition, a broad peak of width Γ(k) associated with damped

states emerges in the spectral function for slightly higher energies. A schematic drawing

showing the qualitative aspects of these findings is depicted in Fig. 5.1. The analysis pre-

sented in this chapter is obtained from the Green’s function derived in Section 4.2 using the

partial summation method.

85
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Figure 5.1 – Qualitative sketch of the spectral function A(k,ω) for fixed a|k|¿ 1 in the quasiparticle
branch of the spectrum. The sharp dashed-black peak at ω+

0 (k) corresponds to stable excitations of
the clean case. Disorder shifts this peak to ω+(k) (red) towards lower energies while it also creates
damped states with dispersion ωr(k), which appear as a broad peak (blue) of finite width Γ(k). These
qualitative aspects are analogous for the quasihole branch.

Source: Figure from Ref. [139].

5.1 Spectral function

It has already been pointed out that the spectral function generalizes the concept of

a dispersion relation. In this section, we present how such a quantity can be used to investi-

gate the effects of disorder in the strongly interacting limit of the Bose-Hubbard Hamiltonian.

5.1.1 Clean case

In order to give contrast to what changes in the presence of disorder, we begin by

discussing the clean case. In this limit, the resummed expression for the Green’s function

obtained in (4.20) simplifies to

G (k, iωl)=
1

[g(iωl)]−1 − J(k)
, (5.1)

where g(iωl) corresponds to the homogeneous version of (3.82), i.e., for µi = µ. Using the

zero-temperature limit of (3.84) we can separate the quasiparticle (+) and quasihole (−)

contributions and rewrite (5.1) as

G (k, iωm)= Π+
0 (k)

iωm −ω+
0 (k)

+ Π−
0 (k)

iωm −ω−
0 (k)

, (5.2)

where we have defined the clean case dispersion relations

ω±
0 (k)= 1

2

(
U(2n−1)−2µ− J(k)±

√
J(k)2 −2J(k)U(2n+1)+U2

)
, (5.3)

as well as the weights which characterize the amount of energy stored in each excitation

Π±
0 (k)= 1

2

(
1± U(2n+1)− J(k)√

J(k)2 −2J(k)U(2n+1)+U2

)
. (5.4)
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Figure 5.2 – Clean case spectral function (5.5) at k= 0 in the first Mott lobe n0 = 1 for d = 3. We have
given a finite width to the δ-peaks in order to represent them graphically. The right plot, where the
tunneling energy is fixed at J = 0.0002U, shows that the quasihole and quasiparticle peaks, which
occur at negative and positive frequencies, respectively, appear well separated. When the hopping
energy is increased to J = 0.026U in the left plot, the energy gap decreases and the excitation peaks
appear close to each other. We have chosen the chemical potential to be µ= 0.5U on the right plot
and µ= 0.41U on the left plot such that the peaks appear symmetric.

Source: Prepared by the author.

By considering the analytic continuation iωm → ω+ i0+ and applying the definition

(3.37) to equation (5.2), we obtain the following expression for the spectral function:

A(k,ω)=Π+
0 (k)δ(ω−ω+

0 (k))+Π−
0 (k)δ(ω−ω−

0 (k)). (5.5)

One can straightforwardly check that this expression satisfies the sum rule. This result is

the same as the one obtained in Ref. [39] with the use of the Schwinger-Keldysh formalism.

Notice that the spectral function in this case is represented by Dirac delta distributions

peaked exactly at the clean case dispersion relations ω±
0 (k). In Fig. 5.2, we show a plot of

the spectral function for the first Mott lobe.

Since the density of states is an integral in reciprocal space of the spectral function

via (3.71), we obtain from equation (5.5):

ρ(ω)= 1
(2π)d

∫
BZ

ddkΠ+
0 (k)δ[ω−ω+

0 (k)]+ 1
(2π)d

∫
BZ

ddkΠ−
0 (k)δ[ω−ω−

0 (k)]. (5.6)

To solve the above integrals, one has to sum over all the roots of the arguments of the Dirac

delta distributions in the first Brillouin zone. In a d-dimensional reciprocal space, these

roots form a (d−1)-dimensional surface satisfying ω±(k)=ω. The sum over all these roots

then leads to an integral over the constant energy surface:

ρ(ω)= 1
(2π)d

∫
ω+

0 (k)=ω
dS

Π+
0 (k)

|∇kω
+
0 (k)| +

1
(2π)d

∫
ω−

0 (k)=ω
dS

Π−
0 (k)

|∇kω
−
0 (k)| , (5.7)

where dS represents an infinitesimal portion of the surface. Note that the gradient of the
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dispersion relations in the denominators corresponds to the group velocities v±
g =∇kω

±(k).

Hence, at stationary points of the dispersion relations, i.e., at the points where the group

velocity vanishes, the density of states diverges. Such divergences of ρ(ω) are commonly

referred to as Van Hove singularities [159].

To see that the excitations in the clean case are stable, we can, for instance, consider

the inverse Fourier transform of the retarded Green’s function, from frequency space to time.

In terms of the spectral function, using equation (3.42), it becomes

G(k, t)=−iΘ(t)
∫ ∞

−∞
dωA(k,ω)e−iωt, (5.8)

where we defined GR ≡G. Inserting equation (5.5), the integration reduces to

G(k, t)=−iΘ(t)Π+
0 (k)e−iω+

0 (k)t − iΘ(t)Π−
0 (k)e−iω−

0 (k)t. (5.9)

Note that the time dependence of the Green’s function follows from the complex expo-

nentials. As the energy dispersion relations are real in the clean case, the amplitude just

oscillates without any damping. This occurs due to the fact that, in the clean case limit,

there is no mechanism trough which an excitation could loose its initial momentum. There-

fore, any excitation created in this limit is stable and will not decay. As we have discussed

in Section 3.7, this picture changes when disorder is present.

It is possible to study the propagation of these excitations by considering the inverse

Fourier transform from reciprocal space to real space defined in (3.86). In the case of

n0 = 0, for instance, where only the quasi particle branch exists, the representation of the

Greens functions in real space reads

G i j(t)=−iΘ(t)
( a
2π

)d
eiµt

∫
BZ

ddkei[J(k)t+k·(xi−x j)]. (5.10)

For each dimension in reciprocal space, with the use of the lattice dispersion (4.19), the

integrals simplify to

∫ π/a

−π/a
dkei[2Jtcos(ak)+k(xi−x j)] = 2πi|xi j |/a

a
J|xi j |/a(2Jt), (5.11)

where xi j = (xi − x j) and Jxi j /a(2Jt) corresponds to a Bessel function of first kind. Hence,

(5.10) becomes

G i j(t)=−iΘ(t)eiµt
d∏

p=1
i|x

(p)
i j |/a

J|x(p)
i j |/a(2Jt), (5.12)

where x(p)
i j corresponds to the p-th component of the vector xi −x j. The amplitude of

propagation of the stable quasiparticle excitations in the clean case is therefore given by

(5.12). We plot the time evolution of the absolute square value of G i j(t) in Fig. 5.3. Note that
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Figure 5.3 – Time evolution of the absolute square values of the retarded Green’s function (5.12)
for d = 1 and n0 = 0. Feature scaling was applied to the curves of finite t. The amplitude spreads
through space over time. The tunneling energy and the chemical potential are fixed at J = 0.035U
and µ = 0.3U, respectively. Despite the fact that the interactions do not play a role in this case,
we select U as the energy scale with the aim of locating the equilibrium points in the J ×µ phase
diagram.

Source: Prepared by the author.

as time increases the amplitude of G i j(t) becomes extended remaining finite even for long

distances. This implies that the quasiparticle excitations are extend and as time increases

there is a finite probability to find the excitation at a site arbitrarily distant from the lattice

site where it was created.

We remark that the properties derived here for the excitations in the clean case are

general. This implies that, in the absence of disorder, the elementary excitations above

the Mott insulator ground state correspond to stable-extended quasiparticle and quasihole

states. In the next section, we discuss how this picture changes when disorder is finite.

5.1.2 Disordered case

The spectral function is defined as the imaginary part of the retarded Green’s func-

tion (3.37). Using the result (4.20) of the partial summation method obtained in the last

chapter, the spectral function can be written as

A(k,ω)=−1
π

Im g i(ω)

[1− J(k)Re g i(ω)]2 + [J(k)Im g i(ω)]2
. (5.13)

The states of the excitations are then represented by peaks of the spectral function for a

fixed wavevector k in the frequency domain. As we have shown in the last section, Im g i(ω)

is a smooth function of ω controlled by the continuous disorder distribution P (εi). Hence,

the peaks of the spectral function correspond to frequencies that make the first term in the
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denominator on the right-hand side of (5.13) vanish

1− J(k)Re g i(ω)= 0. (5.14)

The dispersion relation of the excitations can thus be obtained by solving (5.14) for each

fixed average particle density per site n0.

Outside of the energy range where the imaginary part of the unperturbed Green’s

function is finite, i.e. in the limit of Im g i(ω)→ 0, the spectral function of (5.13) is strictly zero

except when the condition (5.14) is fulfilled where it becomes sharply peaked. In that limit,

we can represent the spectral function as

A±(k,ω)=± δ[ω−ω±(k)]

|J(k)2∂ωRe g i[ω±(k)]|
, (5.15)

where ω+(k) (ω−(k)) corresponds to the dispersion of excitations in the quasiparticle (quasi-

hole) branch of the spectrum. These strong peaks represented by δ-distributions with van-

ishing width indicate that stable excitations can still be created in the strong interacting limit

of the Bose-Hubbard Hamiltonian. However, as we shall demonstrate in the following sec-

tion, their dispersion gets altered by the disorder. To ivestigate how the dispersion changes,

we can define the effective-mass tensor [68]

(m∗)−1
i j = ∂2ω±(k)

∂ki∂k j

∣∣∣∣
k=0

, (5.16)

where i and j represent components of the wavevector k in this case. The effective mass

gives a measure of how the dispersion of these excitations occurs in the system. Its in-

crease, for instance, reveals that the excitations become less dispersive.

In contrast to the previous limit, in the energy range where Im g i(ω) is finite, the

spectral function acquires a finite spread. From the discussion of Section 3.7, we concluded

that, for a continuous disorder distribution, the singularities of the unperturbed Green’s

function transform into a branch cut. Over the energy interval where this branch cut is

located, the states become degenerate. One can argue from perturbation theory that these

states will be coupled with the exact solution being given by linear combinations of the

original states with an energy which is spread out by the perturbation [135, 106]. Such an

information gets mapped into the finite width of the spectral function in that region. However,

resonances appear whenever (5.14) is satisfied. In the neighborhood of the frequencies

where the resonances occur, ω≈ωr(k), we can expand the spectral function as

Im g i(ω)

|1− J(k)g i(ω)|2
≈ Π(k)Γ(k)

[ω−ωr(k)]2 +Γ(k)2 . (5.17)

This corresponds to an approximation of the spectral function by a Caychy-Lorentz distri-
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bution in the region where Im g i(ω) is finite. Such an approximation yields and estimate to

the weight of these excitations

Π(k)= |J(k)2∂ωRe g i[ωr(k)]|−1, (5.18)

also called renormalization factor. This quantity can be interpreted as the proportion of a

real particle which enters into the creation of an excitation in the energy range where the

resonances occur [160, 118]. Additionally, the width of the distribution is given by

Γ(k)=
∣∣∣∣∣ Im g i[ωr(k)]

∂ωRe g i[ωr(k)]

∣∣∣∣∣. (5.19)

Such a quantity is directly linked to the fact that these excitations are not individually invari-

ant under translations, i.e. they are not eigenstates of the crystal momentum [117]. As a

consequence, such excitations decay in time with a lifetime given by the inverse of the width

of the spectral function [118]

τ̃(k)= 1
Γ(k)

. (5.20)

Since the energy interval where Im g i(ω) is finite is contained within the bounds of the

disorder distribution, we conclude that the emergence of these damped states is directly

linked to the presence of the random potential. Note that, within this approximation, the

resonances correspond to poles of the retarded Green’s function G(k,ω+ i0+) in the lower

half of the complex plane.

As a result, for every Mott lobe with a fixed particle density n0, the energy band

is divided into two distinct regions. The first region is associated with stable states which

resemble the excitations of the clean case. On the other hand, the second region arises as a

result of disorder and corresponds to damped states that have a finite lifetime, represented

by the characteristic time τ̃(k). This separation of the spectral function into two distinct

regions allows us to differentiate between the stable states and the damped states that are

produced by disorder. By doing so, we are able to distinguish the corresponding terms in

the spectral function and gain a better understanding of the underlying physical processes.

Accordingly, the spectral function can be written as

A(k,ω)= δ(ω−ω+(k))

|J(k)2∂ωRe g i[ω+(k)]|
− δ(ω−ω−(k))

|J(k)2∂ωRe g i[ω−(k)]|
+ (n0 +1)P [ω+µ−Un0]

[1− J(k)Re g i(ω)]2 +π2(n0 +1)2J(k)2P [ω+µ−Un0]2

− n0P [ω+µ−U(n0 −1)]

[1− J(k)Re g i(ω)]2 +π2n2
0J(k)2P [ω+µ−U(n0 −1)]2

.

(5.21)

So far, our analysis has been carried out without making any assumptions about the
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specific value of n0 or the shape of the bounded distribution P (εi). This means that our

conclusions are valid for each Mott lobe within the context of our approximations, making

them generally applicable. It is worth noting that although our method is designed to work

well in high-dimensional systems, it can still be applied to one-dimensional systems (d = 1)

for small enough values of the tunneling energy J. At this point, we will shift our focus to

the case of a uniform distribution, where the distribution P (εi) is evenly spread across the

interval [−∆/2,∆/2].

5.2 Uniform disorder distribution

In order to gain further insight into the new properties contained in the above de-

scribed results, we investigate the case where the random potential obeys a uniform proba-

bility distribution, which we have defined in equation (3.101) of Section 3.7. We remind the

reader that such a distribution can be experimentally realized, for instance, in experiments

where the speckle-laser intensity is customized [64].

For a uniform disorder distribution, the real part of the unperturbed Green’s function

of (3.96) can be written as

Re g i(ω)= n0 +1
∆

log
∣∣∣∣ω+µ−Un0 −∆/2
ω+µ−Un0 +∆/2

∣∣∣∣+ n0

∆
log

∣∣∣∣ω+µ−U(n0 −1)+∆/2
ω+µ−U(n0 −1)−∆/2

∣∣∣∣. (5.22)

Hence, equation (5.14) takes the form

∣∣∣ω+µ−Un0 − ∆2
∣∣∣n0+1∣∣∣ω+µ−U(n0 −1)+ ∆

2

∣∣∣n0

−e∆/J(k)
∣∣∣ω+µ−Un0 + ∆2

∣∣∣n0+1∣∣∣ω+µ−U(n0 −1)− ∆
2

∣∣∣n0 = 0.
(5.23)

Even though we have derived the above equation from (5.14), it is important to point out

that we expect from the general results discussed on the last section only four solutions of

(5.23) to be associated with real excitations for each Mott lobe with n0 ≥ 1. For both the

quasiparticle and quasihole branches of the energy spectrum, two of such solutions would

correspond to the dispersion relation of stable excitations and the remaining two would be

associated with the dispersion of damped states. However, one can observe from (5.23)

that the solutions for each Mott lobe with integer particle density n0 must be considered

separately.

5.2.1 Mott lobe n0 = 0

We first consider the simpler case where the average density of particles per site in

the system is n0 = 0 which occurs for µ<−∆/2. In this case, only the quasiparticle branch

of the spectrum exists and (5.23) admits two solutions.
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The solution associated with the energy dispersion of a stable state is given by

ω+(k)=−µ− ∆
2

coth
(
∆

2J(k)

)
. (5.24)

Applying the definition (5.16) to the above equation, we obtain that the diagonal components

of the effective-mass tensor read

m∗ = 8Jd2

a2∆2 sinh2
(
∆

4Jd

)
. (5.25)

In order to make a comparison, we take the limit ∆→ 0 to recover the clean case results

ω+
0 (k) = −µ− J(k), (5.26)

m∗
0 = 1

2Ja2 . (5.27)

Therefore, the energy dispersion of the stable excitations in the disordered case maps back

into the dispersion relation of the stable-delocalized excitations in the clean case limit.

For the damped state the solution is rather given by

ωr(k)=−µ− ∆
2

tanh
(
∆

2J(k)

)
, (5.28)

where the respective lifetime of these excitation obtained from (5.20) reads

τ̃(k)= 4
π∆

cosh2
(
∆

2J(k)

)
. (5.29)

Note that in the clean case limit

lim
∆→0

ωr(k)=−µ (5.30)

the damped states become dispersionless while their lifetime

lim
∆→0

τ̃(k)→∞ (5.31)

diverges. In such a limit, excitations can only be produced for J = 0 at integer values of µ/U.

One can understand this by observing the clean case phase diagram. The superfluid phase

extends all the way down to zero tunneling in the region in between the Mott lobes where

the ratio between chamical potential and interaction energy becomes an integer [22]. For

vanishing hopping, the integer ratio µ/U = n0 implies that the energy for an atom to occupy

a site with n0 particles is the same as the energy to occupy a site with n0+1. This leads to

fluctuations in the average density of particles a thus superfluidity emerges at at arbitrarilly

small J. However, as there is no dependence on the wavevector, excitations in this situation

are dispersionless and do not propagate in space. Hence, as a consequence of the limits
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(5.30) and (5.31), we conclude that the damped state of the disordered case map back to

stable localized excitations in the clean case limit.

From (5.20), we obtain that the spectral function for n0 = 0 can be written as

A(k,ω)= ∆2

4J(k)2 csch2
(
∆

2J(k)

)
δ(ω−ω+(k))

+
1
∆ [Θ(ω+µ+ ∆

2 )−Θ(ω+µ− ∆
2 )][

1− J(k)
∆ log

∣∣∣ω+µ−∆/2
ω+µ+∆/2

∣∣∣]2

+π2J(k)2/∆2

.
(5.32)

In Appendix B one can find the proof that the above expression satisfies the sum rule. From

the definition (3.71), by integrating the spectral function over the fist Brillouin zone we obtain

the density of states in the disordered case

ρ(ω)= 1
(2π)d

∫
BZ

ddkA(k,ω). (5.33)

These results allow us to construct the band structures for one, two and three dimen-

sions which are shown in Fig. 5.4. We remark that, even though the expressions (5.24)-

(5.28) have no dependence on the on-site interaction U we employ such an energy as a

scale for the other relevant energies. By doing this, we can better locate the equilibrium

points in the J ×µ phase diagram. We chose the represent the dispersion relation in two

and three dimensions by using the critical points in the Brillouin zone. For d = 2 such

points are defined as Γ= (0,0), X = (0,π), M = (π,π), whereas for d = 3 the definition reads

Γ= (0,0,0), X = (0,π,0), M = (π,π,0), and R = (π,π,π).

The spectral function for k= 0 is plotted in Fig. 5.4(a), (d) and (g). We note that the

strong peak of the stable states in the disorder case (red) is shifted towards lower energies

in comparison with the clean case stable states (dashed black). For slightly higher energies

there emerges a broad distribution which is characteristic of the damped states (blue). Such

states appear in the center of the band as can be observed in the light-blue shaded region

with width ∆ of the dispersion relations. We point out that (5.24) and (5.28) plotted in

Fig. 5.4(b), (e) and (h) present jumps which are represented by the dotted-red lines. We can

understand such jumps as originating from the scattering effects of the excitations against

the random potential. If one decomposes the disordered potential in a sum of infinitely many

spatial Fourier components, as the disorder is not spatially correlated, one must consider

that none of these components is allowed to have spatial frequency larger then π/a. As

a result, an excitation which propagates, for instance, in the kx direction would interact

separately with every component of the random potential thus meeting the condition for

Bragg scattering exactly at wavevector kx =±π/2a. In fact this argument can be extended

even to spatially correlated disorder, where the restriction on the spatial frequencies comes

from the grain size of the disorder distribution, as it is shown in Ref. [161]. We remark that
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Figure 5.4 – Band structure for the Mott lobe n0 = 0. (a), (d) and (g) correspond to the spectral
function (5.32). (b), (e) and (h) represent the dispersion relations (5.24), (5.26) and (5.28). (c), (f)
and (i) show the density of states (5.33). The shaded-lightblue region and the dotted-red lines in
(b), (e) and (h) correspond to the band of damped states of width ∆ and the jumps of the dispersion
relations, respectively. Although interactions are not important in this case, we chose U as the
energy scale in order to specify the points in the J×µ phase diagram.

Source: Prepared by the author.

the dispersion relations become flat at those points, implying that the group velocity defined

by the gradient vg = ∇kω(k) vanishes and therefore leads to the localization of the wave

packets. In agreement with these results, the emergence of sub bands in the disordered

Bose-Hubbard model has been reported previously in Ref. [162]. Furthermore, we note

that the Van Hove singularities in the density of states are altered by the disorder. The

band width is increased to ∆coth(∆/4Jd). In the d = 1 case plotted in Fig. 5.4(c) we can

observe that the strong singularities corresponding to the stable states (red) still appear

at the band edges, however the damped states dominate the center of the band. This

qualitative features are repeated for d = 2 and d = 3 as can be observed in Fig. 5.4(f) and

(i), respectively. Nevertheless, the strong singularity at the center of band in the d = 2 case

gets divided into two soft peaks located at ω=−µ±∆/2 in the disordered case. In d = 3 the

singularities of the disorder case resemble the ones of the clean case.

To gain a better understanding of how increasing disorder impacts the system, we

present a graphical representation of the effective mass of stable states and the lifetime of
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Figure 5.5 – Effective mass (5.28) (a) and lifetime (5.29) at k = 0 (b). Both plots include the cases
of d = 1, d = 2 and d = 3 which are represented respectively by the dotted, the dot-dashed and
the continuous red and blue lines. The dashed-black line in (a) represents the effective mass in
the clean case (5.27). The dashed-green line in (b) correspond to time scale associated with the
inverse of the disorder strength 1/∆. We use the same value of the tunneling energy as the one used
in Fig. 5.4.

Source: Prepared by the author.

damped states in Fig. 5.5. In Fig. 5.5(a), the effects of disorder are clearly demonstrated

by the increase in the effective mass of the stable states. This increase indicates that the

dispersion of the states is becoming more flat as a result of the increased disorder strength.

On the other hand, Fig. 5.5(b) shows the lifetime of the damped states. Our analysis of this

plot reveals that the lifetime of these states (represented by the blue curve) increases as the

disorder strength ∆ increases. This means that the resonance becomes sharply peaked,

making the damped states more stable. It is worth noticing that this effect occurs when the

disorder strength ∆ is of the same order as the interaction energy U. Hence, we conclude

that disorder affects the energy dispersion of the stable states as well as the stability of the

damped states.

By investigating how the gap for creating these excitations closes we can understand

how the quantum phase transitions take place. The lower bound of the broad distribution in

(5.32) defines the energy gap for the damped states

Er =−µ−∆/2. (5.34)

For the stable states the gap can be obtained by expanding equation (5.24) as k→ 0

E+ =−µ− ∆
2

coth
(
∆

4Jd

)
. (5.35)

For sufficiently small tunneling energy, the difference between the energy gaps reads

Er −E+ ∼∆e−∆/2Jd. (5.36)

Note that such an energy difference is always positive, thus, the gap for creating stable exci-

tations closes before the gap for producing damped excitations when the disorder strength
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∆ is increased. As it was discussed from Fig. 5.4 and Fig. 5.5, for strong disorder the

damped states become stabler and dominate the energy spectrum while the stables states

loose their dispersive nature. In this limit, when the gap closes, a phase transition from

a Mott insulator to a Bose-glass state occurs. Therefore, we conclude that the damped

excitations correspond to the low-energy excited states of the Bose-glass phase.

The existence of disorder prevents the occurrence of a direct Mott-superfluid transi-

tion [22, 163, 103, 43]. To fully comprehend the quantum phase diagram, it is necessary

to take into account correlation between scattering processes at the same site [138]. To

account for quantum and thermal fluctuations, an effective-action approach may be used

[52, 53, 54]. A proposal has been made to define the disorder average of the mean particle

density as an order parameter to distinguish the Bose-glass phase, similar to the Edwards-

Anderson order parameter used in spin glass theory [164, 165, 1].

5.2.2 Mott lobe n0 = 1

Considering frequencies over the real line, for n0 = 1, equation (5.23) reduces to

(
ω+µ−U − ∆

2

)2(
ω+µ+ ∆

2

)
+αe∆/J(k)

(
ω+µ−U + ∆

2

)2(
ω+µ− ∆

2

)
= 0, (5.37)

where we have defined α=±1. The bounds of the disorder distribution impose the following

conditions to the frequencies

−µ−∆/2 < ω < −µ+∆/2 (5.38)

U −µ−∆/2 < ω < U −µ+∆/2. (5.39)

These intervals correspond to the regions of the energy spectrum where Im g i(ω) is finite.

As a consequence, solutions of (5.37) within the intervals (5.38) and (5.39) are associated

with the dispersion of the damped excitations. Outside these intervals, Im g i(ω) vanishes

and the solutions (5.37) correspond to the energy dispersion of stable excitations.

The expanded form of (5.37) corresponds to a cubic equation given by

ω3 +B2ω
2 +B1ω+B0 = 0. (5.40)

For each value of α there exist three solutions for the above equation. By applying Car-

dano’s method we can write the solutions in the following form

ωl =−B2

3
+ηlC− B1 − B2

2
3

ηlC
, (5.41)
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where we have defined the primitive cubic root of unity

η= −1+ i
p

3
2

, (5.42)

and the coefficients are given by

C =
[

1
2

(
B1B2

3
−B0 −

2B3
2

27

)
+

√√√√1
4

(
B0 − B1B2

3
+ 2B3

2

27

)2

+ 1
27

(
B1 −

B2
2

3

)3] 1
3

, (5.43)

B2 = 3µ−2U + ∆
2

(−1+αe
∆

J(k)

1+αe
∆

J(k)

)
, (5.44)

B1 = U2 − ∆
2

4
−4Uµ+3µ2 +∆µ

(−1+αe
∆

J(k)

1+αe
∆

J(k)

)
, (5.45)

B0 = µU2 −2Uµ2 +µ3 + U∆2

2
− µ∆2

4
+

(
∆µ2

2
− ∆U2

2
− ∆

3

8

)(−1+αe
∆

J(k)

1+αe
∆

J(k)

)
. (5.46)

The exponent of the primitive cubic root in (5.41) is defined as l ∈ {0,1,2}. In the case of

α = −1, all three cases of l lead to real dispersion relations. On the other hand, for α = 1

only the case l = 1 corresponds to a real dispersion. Consequently, these cases are the

ones which represent real excitations of the Mott lobe n0 = 1. We point out that in this case,

equations (5.41) and (5.43)-(5.46) present an explicit dependence on the interaction energy

U in contrast to the previous case of n0 = 0.

We demonstrate in Fig. 5.6 the d = 1 band structure for the n0 = 1 Mott lobe. One

can observe that the energy spectrum resembles qualitatively the previous case of n0 = 0

which was shown in Fig. 5.4. However, in the present case the energy spectrum presents

both quasiparticles and quasiholes branches. The gap for stable excitations decreases

and damped states emerge at the energy-band center. Furthermore, the dispersions have

jumps at kx = π/2a. These jumps appear as a result of the scattering against the random

potential analogously to the previous n0 = 0 case.

We plot the effective mass and lifetime for stable and damped states in the quasipar-

ticle and quasihole branches in Fig. 5.7 using equations (5.16) and (5.20). Similar to what

was seen in Fig. 5.5 for the case of n0 = 0, we find that both the effective mass of stable

states and the lifetime of damped states increase as the disorder strength is increased.

Fig. 5.7 also shows that the dependence of the effective mass of the stable states and the

lifetime of damped states in the quasihole branch (represented by dotted red line in (a)

and dotted blue line in (b)) is more pronounced with increased disorder strength. We must

make a comment on what happens when the gap for creating these excitations closes.

Since in the present case the excitation spectrum has both the quasipaticle and the quasi-

hole branches, in the generic phase transition the gap of one of these branches closes

while the gap for the other one remains open. As discussed in Section 2.1, the closing of
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Figure 5.6 – Band structure for the Mott lobe n0 = 1 in the case of d = 1. The upper row depicts to
the quasiparticle branch with µ= 0.8U and the lower row corresponds to the quasihole branch with
µ = 0.2U. (a) and (d) represent the spectral function (5.21). (b) and (e) follow from the dispersion
relations (5.41). (c) and (f) result from the density of states (5.33). The shaded-lightblue region and
the dotted-red lines in (b) and (e) correspond to the band of damped states of width ∆ and the jumps
of the dispersion relations, respectively. In all plots we have chosen J = 0.025U and ∆= 0.2U.

Source: Prepared by the author.

Figure 5.7 – (a) Effective mass (5.16). (b) Lifetime at k = 0 (5.20). In both plots the dotted and
continuous red and blue lines correspond to the quasihole and quasiparticle branches, respectively.
The dashed and dot-dashed black lines in (a) correspond respectively clean-case quasiparticle and
quasihole effective masses. The dashed-green line in (b) corresponds to the time scale associated
with the inverse of the energy scale of disorder, i.e. 1/∆. In both plots we chose J = 0.025U.

Source: Prepared by the author.
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a gap indicates a quantum phase transition. In the clean case, for instance, it was demon-

strated for first Mott lobe, that in the generic phase transition, when the quasiparticle gap

closes it transforms continuously into a Nambu-Goldstone mode of superfluid phase, while

the quasihole gap, which remains open during the transition, transforms continuously into a

gapped Higgs amplitude mode [39]. Therefore, we expect that this scenario is maintained

when disorder is present such that the stable and the damped excitations should transform

continously into the excitations of the superfluid phase. However, a precise analysis on the

effects of disorder on such superfluid excitations must be realized to draw further conclu-

sions. In Chapters 7 and 8, we present some possible methods that could be applied in this

regard. Our next focus is to study the propagation of the stable and damped excitations in

space and time.

5.2.3 Green’s function in space time

So far, we have analyzed the properties of excitation states in Fourier space. We now

examine the real space and time effects of our previously demonstrated results. To do this,

we investigate the complete retarded Green’s function within the limits of our approximation.

One can extract important information concerning the propagation of excitations in

space by analyzing the asymptotic behavior of the Green’s function in the limit of large

space separations. We use here the expression (5.20) for the Green’s function which results

from the partial summation method. The details of this calculation are demonstrated in

Appendix C. In such a limit the Green’s function is given by

G i j(ω)∼ 1

|xi −x j| d−1
2

e−
|xi−x j |

` as |xi −x j|→∞, (5.47)

where the exponential decay is characterized by the length scale

`= a

√
J|G(0,ω)|

|sin[arg(G(0,ω))/2]|
. (5.48)

Such a length scale corresponds to the mean free path which represents the average dis-

tance an excitation propagates before each scattering event against the disordered poten-

tial [118]. Note that the dependence of ` in ω results from the limit k → 0 of the Green’s

function defined in (4.20). For low energies, in the limit of vanishing Im g i(ω) the mean free

path of (5.48) diverges. As a consequence, the amplitude of the Green’s function decays

algebraically as |xi −x j|−(d−1)/2. Such an algebraic decay characterizes the propagation of

the stable excitations. On the other hand, in the energy range of the damped states, where

Im g i(ω) is finite, the amplitude of propagation of these excitations decays exponential with

characteristic length ` denoted in (5.48).

To ivestigate the propagation in time, it is convenient to write the Green’s function
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as an integral over the frequency domain of the spectral function (3.42) [72]. With this

representation, the spatio-temporal profile of the Green’s function can be obtained via

G i j(t)=−iΘ(t)
( a
2π

)d ∫
BZ

ddk
∫ ∞

−∞
dωA(k,ω)e−iωt+ik·(xi−x j). (5.49)

In the case of t = 0 the integral over the frequency domain is simplified by the sum rule. The

integral over the first Brillouin zone then gives

G i j(0)=
d∏

p=1

sin
(
πx(p)

i j /a
)

πx(p)
i j /a

, (5.50)

where we have defined x(p)
i j is defined p-th component of the vector xi −x j. Thus, the

amplitude of the Green’s function is initially concentrated at small space separations, i.e.

|xi −x j|→ 0. We remark that this result is true for both the clean and disordered cases.

Using the spectral function to represent the Green’s function, we distinguish the

contributions of the stables excitations from the ones of the damped excitations. For sim-

plicity, we consider the case of n0 = 0 where, for a uniform disorder distribution, the spectral

function is given by (5.33). Thus, the contributions from the stable and damped states are

respectively given by

G+
i j(t) = − iΘ(t)

( a
2π

)d ∫
BZ

ddk
∆2

4J(k)2 csch2
(
∆

2J(k)

)
e−iω+(k)t, (5.51)

Gr
i j(t) = − iΘ(t)

( a
2π

)d ∫
BZ

ddk
∫ −µ+∆2
−µ−∆2

dω
e−iωt+ik·(xi−x j)[

1− J(k)
∆ log

∣∣∣ω+µ−∆/2
ω+µ+∆/2

∣∣∣]2

+π2J(k)2/∆2

. (5.52)

By solving this integrals numerically for d = 1, we plot the absolute squared value of the

Green’s function in Fig. 5.8. Considering both contributions of (5.51) and (5.52), we ob-

serve in Fig. 5.8(a) a distinct behaviors of the total Green’s function for short and long time

scales. The amplitude of |G i j(t)|2 is initially localized in the vicinity of xi − x j = 0. Around

t = 16/U the localized behavior fades away and the amplitude becomes extended. This ex-

tended behavior dominates the propagation at long time scales. We plot the contributions

corresponding to stable excitations and damped excitations in Fig. 5.8(b) and (c) respec-

tively. The amplitude of the stables states, in Fig. 5.8(b), spreads through space as time

increases while the amplitude of the damped states remains localized and decays rapidly

in time. From the asymptotic limit of the Green’s function (5.47), we conclude that only the

algebraic decay is not sufficient to localized the stable excitations, however the additional

exponential decay leads to the localization of the damped states in space. Furthermore,

we conclude that the amplitude of propagation of the full Green’s function in Fig. 5.8(a) is

dominated by the damped-localized states at short time scales whereas it is dominated by
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Figure 5.8 – Time evolution of the absolute square value of the Green’s function for d = 1 and n0 = 0.
(a) correspond to the total Green’s function |G i j(t)|2, where we have used feature scaling to better
illustrate the behavior of the amplitude at long time scales. (b) Contribution |G+

i j(t)|2 of the stable

states. (c) Contribution |Gr
i j(t)|2 of the damped states. In all plots we chose J = 0.035U, ∆= 0.2U

and µ=−0.3U.

Source: Prepared by the author.

the stable-delocalized states for long time scales.

5.3 Summary of results

As we have demonstrated, disorder changes the energy spectrum of the Bose-

Hubbard Hamiltonian in the strongly interacting limit by decreasing the gap for stable ex-

citations, increasing their effective mass and producing in the center of the band damped-

localized states which become stabler when disorder becomes of the order of the interac-

tions. Such damped-localized states dominate the spectrum in the strong disorder limit.

In this limit a phase transition from a Mott insulator to a Bose glass occurs. In order to get

more information on the complete phase diagram, we propose in the next section the use of

the local density of state to distinguish both insulating phases. It turns out that out approach

works even when thermal fluctuations are included.





Chapter 6

Phase diagram at finite temperatures

So far we have been concerned with the nature of the elementary excitations of the

disordered Bose-Hubbard model. We now turn our attention to the phase diagram of such

a model. Many results in this direction have been obtained with numerical methods such

as local [1] and stochastic mean field techniques [2, 3] or even Monte-Carlo calculations

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. However, in most cases the analytical results

were restricted to mean field theory [38, 50, 51]. In the present chapter, we demonstrated

how one can investigate the phase diagram of the Bose-Hubbard model by applying the

result of local density of states obtained in Section 4.3 by means of the Poincaré-Lindstedt

method. In particular, we use such a quantity to distinguish the Mott from the Bose glass

ground state. In contrast to the superfluid state, both insulating phases are characterized

by the absence of long-range order. Nevertheless, it turns out that difference in the spectral

information of each insulating ground state is encoded into the local density of states. Such

a quantity vanishes for zero energy excitations above the Mott state due to the finite gap,

while it becomes finite for the Bose-glass phase as a consequence of its gapless spectrum.

The results presented in this chapter were summarized and published in Ref. [138]. In what

follows, we shall discuss them in detail.

6.1 Superfluid phase boundary

The microscopic origin of the superfluid phase in the Bose-Hubbard model lies on

the emergence of phase coherence in the single-site macroscopic wave function. From the

symmetry point of view, the existence of such macroscopic wave function implies the spon-

taneous breakdown of the global U(1) symmetry. We have discussed in Section 2.2 that the

relevant fluctuations of the effective potential near the phase transition can be described by

an order parameter field. In the normal phase, the effective potential is symmetric under

transformation of the U(1)-symmetry group in the space of the order parameter. However,

it peaks up a preferred direction at the transition point. The order parameter in the lattice

103
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case can be defined as the site dependent expectation value of ψi = 〈âi〉. The symmetry

breaking is then characterized by the change in sign of the coefficient that multiplies the

term of second order in the order parameter expansion the effective potential. This coef-

ficient is found to be proportional to the inverse of the single-particle Green’s function, as

it is shown, for instance, in Refs. [140, 113]. In Chapter 7, we shall demonstrate such a

relation within our partial summation approximation. Therefore, the change in sign of the

second order coeffincient in the expansion of the effective potential in terms of the order

parameter is equivalent to the divergence of the single-particle Green’s function. Moreover,

the breaking of a continuous U(1) symmetry is associated with the emergence of excitations

which cost vanishing little energy to create at low momentum [166]. Hence, we conclude

that the transition to the superfluid phase is marked by the divergence of long-wavelength

correlations at low energies and the phase boundary is given by

G(0,0)−1 = 0. (6.1)

This condition is the same used in [98] for studying the clean case phase diagram.

In the disordered case, considering the result of partial summation (4.20) obtained

in Section 4.2, the superfluid phase boundary simplifies to

J(0)=
[
g i(0)

]−1
, (6.2)

which explicitly can be written as

Jz
U

=
[∫ ∞

−∞
dεiP (εi)

∞∑
n=0

e−βEn(εi)

Z0(εi)

(
n+1

µ−εi −Un
− n
µ−εi −U(n−1)

)]−1

. (6.3)

This expression for the phase boundary is a generalization of the results obtained in [52, 53,

54, 98] to the case where disorder is present. It is worth mentioning that expression (6.3)

is exactly the same as the result obtained in [38] to the phase boundary of the disordered

Bose-Hubbard model within the mean-field method.

Considering the uniform disorder distributions defined in (3.101), the equation for

the phase boundary simplifies to

Jz
U

=
[∫ ∆/2

−∆/2
dεiP (εi)

∞∑
n=0

e−βEn(εi)

Z0(εi)

(
n+1

µ−εi −Un
− n
µ−εi −U(n−1)

)]−1

. (6.4)

We plot such a phase boundary in Fig. 6.1. The red line marks the divergence of the

single-particle Green’s function. For values of the tunneling energy above that line, the

equilibrium state of the system is found to be a superfluid state. The region enclosed below

such a red line corresponds to the non-superfluid states. Note that for finite temperature,

the superfluid state do not extends down to the vanishing-hopping line. One can observe
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Figure 6.1 – Superfluid phase boundary obtained from (6.4) for the finite temperature kBT/U = 0.01,
with z = 6, and for different values of the disorder parameter. The disorder energy scales is set at
∆/U = 0.5 in (a) and at ∆/U = 1 in (b).
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Source: Prepared by the author and published in Ref. [138].

in Fig. 6.1(a) that if disorder is not of the same order of the interaction energy, the curve of

the phase boundary has local maxima which resemble the Mott-lobe tips of the clean case.

We the disorder energy scale becomes of the same order of the interactions, in Fig. 6.1(b),

the curve becomes smoother. Even though equation (6.4) provides a clear distinction from

the superfluid to the non-superfluid ground states, it gives no discrimination between Mott

insulator and Bose glass. As we shall discuss in the next section, one must consider a

different parameter in order to study the phase transition between these insulating phases.

6.2 Local density of states

One essential property that distinguishes the insulating phases of the Bose-Hubbard

model in the presence of disorder comes from their energy spectrum. While the Mott-

insulator ground state is characterized by its gap for quasiparticle and quasihole excitations,

the Bose-glass state corresponds to a gapless insulating phase. It was argued in Ref. [22],

where this quantum phase transition was first investigated, that the low-energy excitations

of the Bose-glass phase correspond essentially to localized quasiparticles and quasiholes.

We have demonstrated in the last chapter that this is indeed the case, and that, in addition

to being localized, such excitations are also damped. It was further stated in Ref. [22]

that one could therefore study the Mott-Bose glass phase boundary by means of the local

density of states at zero energy, which is supposed to vanish in the Mott phase due to

presence of the gap acquiring finite values only in the Bose-glass state where the gap is

closed. Here, we explore the validity of such argument for finite temperatures and slightly

positive values of the tunneling energy.
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Figure 6.2 – Density plot of the local density of states obtained from (6.5) for a uniform disorder
distribution with kBT/U = 0.01 and z = 6. The black regions correspond to the Mott-insulator phase,
where ρ i(0)= 0, and the grey region corresponds to the Bose-glass phase, where ρ i(0) 6= 0. The red
line indicates the result (6.4) for the phase boundary to the superfluid phase as shown in Fig. 6.1,
which corresponds to the white region of the figures. The disorder strength is fixed with ∆/U = 0.5 in
(a) and ∆/U = 1 in (b).
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Source: Prepared by the author and published in Ref. [138].

These arguments were tested in Ref. [38], where it was shown that the local density

of states serves as a parameter to characterize the insulating phases of the Bose-Hubbard

model even for finite temperatures. However, the full phase diagram could not be inves-

tigated in such paper as their result is only valid in the zero-tunneling line. In Section

4.3, we have demonstrated that a correction in the hopping expansion can be included in

the disorder-ensemble average of the local density of states by means of the Poincaré-

Lindstedt method. To simplify the discussion of this section, we repeat here the result of

equation (4.31) in its explicit form

ρ i(ω)=
∞∑

n=0
(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
P

[
ω+µ−U(n−1)+ zJ2n

e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
g j(ω)

]
−

∞∑
n=0

n
e−βEn(U(n−1)−ω)

Z0(U(n−1)−ω)
P

[
ω+µ−Un− zJ2(n+1)

e−βEn(Un−ω)

Z0(Un−ω)
g j(ω)

]
+·· · .

(6.5)

Note that, in this approximation, the hopping contributions appear in the argument of the

disorder distribution. We have demonstrated in Section 3.1 that such distribution controls

the size of the energy range where the damped-localized excitations appear. Therefore, the

result of (6.5) implies that, within our perturbation method, increasing the tunneling energy

leads to an alteration on the size of the region occupied by the damped-localized states the

energy spectrum. To see how such a result affects the phase diagram, we plot ρ i(ω) for a

uniform disorder distribution (3.101) in Fig. 6.2.

For vanishing tunneling energy, if the disorder energy scale is not of the order of the
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interaction energy, i.e. ∆<U, there is always an interval, namely µ ∈ [U(n−1)+∆/2,Un−
∆/2], where the chemical potential minimizes the local eigenenergies (3.79) of the unper-

turbed Hamiltonian (3.74) by fixing the single-site average particle density at integer values

and the system reaches equilibrium in Mott-insulating ground state. For finite hopping, one

expects a Mott lobe structure to appear. This is indeed what we verify in Fig. 6.2(a), where

the region where the local density of states for zero energy excitations, i.e. ρ i(0), vanishes

is represented in black. However, we can now distinguish the grey regions where ρ i(0) is

finite, which correspond to the Bose-glass state. For finite temperatures, we observe that

the Bose-glass emerges in between the Mott lobes. When the disorder strength becomes

of the order of interactions, i.e. ∆∼U, the Bose glass dominates the insulating part of the

phase diagram and the system can no longer reach equilibrium in a Mott insulating state.

This is depicted in Fig. 6.2(b). From the analysis presented in Chapter 5, in this limit of

strong disorder, the low-energy excitations of the system corresponds to gapless damped-

localized states. We have calculated the local density of states only bellow the red line,

which represents the result (6.4), where the phase transition to the superfluid phase takes

place. To compute the analytical expression for the phase boundary between both insulat-

ing phases, we must further analyze the arguments of the distributions in (6.5). We shall do

so in the next section.

6.3 Mott insulator to Bose glass phase boundary

Assuming that the probability distribution of the random potential P (εi) is bounded

on the interval εi ∈ [−∆/2,∆/2], implies that the region where the local density of states for

zero energy excitations is finite, i.e. ρ i(0) 6= 0, is controlled by the following intervals

−∆
2

≤ γ−n + zΛ−
n J2 ≤ ∆

2
, (6.6)

−∆
2

≤ γ+n − zΛ+
n J2 ≤ ∆

2
, (6.7)

where have applied the definitions

γ−n = µ−U(n−1), (6.8)

γ+n = µ−Un, (6.9)

Λ−
n = n

e−βEn(U(n−1))

Z0(U(n−1))
g j(0), (6.10)

Λ+
n = (n+1)

e−βEn(Un)

Z0(Un)
g j(0). (6.11)

The intervals of (6.6) and (6.7) define the region occupied by the Bose-glass phase in the

phase diagram in the case of ∆<U. As a consequence, the Mott lobes would be enclosed
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Figure 6.3 – Phase boundaries for the case of kBT/U = 0.01, z = 6, and ∆/U = 0.5. The continuous
red line corresponds to (6.4), while the dashed-black lines indicate (6.12) for n = 1,2,3, i.e., the
phase boundary between Mott insulator and Bose glass obtained from the result for the local density
of states. The green dots represent the critical points where the three phases coexist.
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Source: Prepared by the author and published in Ref. [138].

by the values of the tunneling energy outside these intervals which obey the condition

(−∆2 −γ−n
zΛ−

n

)1/2

≤ J ≤
(−∆2 +γ+n

zΛ+
n

)1/2

. (6.12)

This result corresponds to the analytical expression of the phase boundary between Mott

insulator and Bose glass. Note that, for each Mott lobe, one can obtain the phase boundary

by just setting the corresponding integer values of the average particle density n which

minimize the local eigenenergies (3.79). Such a result can be observed in Fig. 6.3.

It is important to mention that our result for the hopping corrections of the local den-

sity of states computed with the Poincaré-Lindstedt method goes beyond mean-field theory

in the prediction of the Mott-Bose glass phase boundary. According to such a result, the

regions enclosed by the black dashed lines in Fig. 6.3 represents the Mott lobes. Note

that such region trespass the red line, which represents the phase transition to the super-

fluid phase. This would correspond to a direct phase transition from Mott to the superfluid

ground states even in the presence of disorder. As we have mentioned in Chapter 2, it was

argued in Ref. [22], that the most likely scenario is that, in presence of disorder, the Bose

glass always intervenes and the Mott-superfluid transition is not allowed. These arguments

were further sustained by quantum Monte Carlo simulations [40, 43, 44, 46]. Furthermore,

with the use of the theorem of inclusions, it was proved in Ref. [103] that in the pres-

ence of any bounded disorder distribution no direct transition between Mott insulator and

superfluid should occur. We can understand this disagreement between our results and

predictions available in the literature, by remembering that we have considered only the

first non-vanishing contribution in the hopping expansion of the local density o states. Thus,
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we expect that by including higher order corrections within our approximation to ρ i(ω), the

critical points where the three phases coexist, represented by the green dots at each side

of the Mott lobes in Fig. 6.3, would become closer together until eventually meet below the

phase boundary to the superfluid phase. In this situation, the Bose-glass would emerge be-

tween the Mott and superfluid phases, forbidding a direct phase transition between them.

We remark, however, that the calculations to include higher-order corrections in the hop-

ping expansion to the renormalized local density of states are extremely involved. In order

to achieve a better understanding about the complete phase diagram, one could observe

how the energy functional behaves in each region of the phase diagram. We have men-

tioned in the last chapter that an effective-action approach should lead to progress in this

regard [52, 53, 54].

Even though our result is not accurate in the prediction of the Mott-superfluid phase

transition, it might be worthwhile to test it against some beyond mean-field numerical simu-

lations. Such comparison is made in the next section.

6.4 Comparison with numerical results

In this section, we compare our result for the phase boundary of the first Mott lobe

to numerical calculations from the literature. One comparison is made against the results

of Ref. [1] for the zero-temperature limit in two dimensions. Those results were obtained

by the introduction of an Edwards-Anderson like order parameter to identify the Bose glass,

as it was proposed in [164, 165, 167, 168, 169]. In this case, such a parameter is defined

as the variance of the local particle density after the disorder average is taken. The numer-

ical calculations are then executed by applying a local mean-field method to calculate the

energy functional which is minimized with a conjugate gradient algorithm. The other com-

parison is made against the results of Ref. [2, 3] for the three dimensional case at zero and

finite temperatures. These references made use of a stochastic mean-field theory. Such a

method is constructed as a single site theory and allows for the calculation of the probabil-

ity density function which describes fluctuations of the local mean-field parameters in the

thermodynamic limit. All three references have made use of a uniform disorder distribution.

First, we take the result of (6.12) to be valid only below the superfluid phase bound-

ary of (6.4). In the zero-temperature limit and for a uniform disorder distribution, the un-

perturbed Green’s function assumes the form of (5.22). In the case of ω = 0, we define

g i(0)≡ gn0 , where

gn0 =
n0 +1
∆

log
∣∣∣∣µ−Un0 −∆/2
µ−Un0 +∆/2

∣∣∣∣+ n0

∆
log

∣∣∣∣µ−U(n0 −1)+∆/2
µ−U(n0 −1)−∆/2

∣∣∣∣. (6.13)
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Figure 6.4 – Comparison between theoretical and numerical results for the first Mott lobe in the
disordered case for two and three dimensions at both zero and finite temperatures. The continuous-
red line corresponds to (6.4) and (6.12), i.e., the results of our Green’s function approach, while the
blue dots indicate the numerical predictions of [1] for the d = 2 case and [2, 3] for the d = 3 cases.
Figures (a) and (b) show the d = 2 and d = 3 zero-temperature phase boundary with ∆/U = 0.6 and
z = 4 and z = 6, respectively. Figure (c) presents the finite temperature 3d phase boundary with
∆/U = 0.5, z = 6, and kBT/U = 0.03.
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Source: Prepared by the author and published in Ref. [138].

Thus, equation (6.4) simplifies to
Jz
U

= [
gn0

]−1, (6.14)

while equation (6.12) becomes

(−∆2 −γ−n0

zn0 gn0

)1/2

≤ J ≤
( −∆2 +γ+n0

z(n0 +1)gn0

)1/2

. (6.15)

With the above expressions, together with results of (6.4) and (6.12) for finite temperatures,

we compare in Fig. 6.4 our results with the numerical calculations from the literature.

The results of our analysis are found to be in excelent agreement with the numerical

data reported in the literature. In Fig. 6.4(a), although our prediction tends to overestimate

the size of the first Mott lobe in the d = 2 case, the majority of the numerical points fall within

the range of the red continuous line. However, our prediction for the d = 3 phase boundary

shows remarkable agreement with the numerical data at both zero and finite temperatures,

as demonstrated in Fig. 6.4(b) and (c), respectively. As temperature is introduced, the

phase boundary to the superfluid phase, characterized by (6.4), becomes smoother, re-

sulting in kinks at the tri-critical points where the three phases coexist, as shown at the

intersection of this solution with the Mott insulator to Bose glass phase boundary of (6.12).

We can therefore conclude that our analytical method to the phase boundary is equivalent

to the numerical method of stochastic mean-field theory developed in Refs. [2, 3].
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6.5 Summary of results

We developed an analytic approach to compute the finite-temperature phase dia-

gram of the disordered Bose-Hubbard model and distinguish between the three possible

ground states of the system. Our approach reproduced the results of mean-field theory and

allowed us to construct a phase diagram that accurately differentiated between Mott insu-

lator and Bose-glass phases. Our results compared significantly well to numerical results

for both d = 2 and d = 3 cases. However, our phase diagram predicts a direct transition

between Mott-insulator and superfluid phases, which conflicts with the proven absence of

such a transition in the presence of bounded disorder. This approach has potential to go

beyond mean-field theory and improve the prediction of the superfluid to Bose-glass phase

transition with the inclusion higher-order corrections.
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Chapter 7

Superfluid elementary excitations

In this chapter we introduce a powerful method that allows not only to recover the

results we have shown in Chapter 5 for the excitations above the Mott insulator ground

state, but also to investigate the elementary excitations of the superfluid phase. The key

element of such a method is the effective-action functional, which generalizes the concept

of a classical action including quantum fluctuations. The effective action is the generator

of the one-particle irreducible correlation functions and therefore is composed only of the

connected parts in the hopping expansion. By studying fluctuations on its equilibrium value,

one can obtain the energy spectrum of the system. In addition, it is also possible to define

an effective potential in order to apply Landau theory of phase transitions introduced in

Section 2.1. The calculations of this chapter are inspired by the derivations of Refs. [52,

53, 54, 55].

7.1 Effective-action approach

In order to obtain the effective-action functional, we must first consider the next term

in the cumulant expansion of the unperturbed free energy (4.12). Thus, the free energy

becomes

W0[j∗, j]=
∫ β

0
dτ1

∫ β

0
dτ′1

∑
i

j∗i (τ1)g i(τ1,τ′1)ji(τ′1)

+ 1
2!2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ′1

∫ β

0
dτ′2

∑
i

j∗i (τ1)j∗i (τ2)W (4)
0i (τ1,τ2;τ′1,τ′2)ji(τ′1)ji(τ′2)+·· · .

(7.1)
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By including the first correction in the hopping perturbation developed in Section 4.1, the

free energy becomes

W[j∗, j]=
∫ β

0
dτ1

∫ β

0
dτ′1

∑
i

j∗i (τ1)g i(τ1,τ′1)ji(τ′1)

+∑
i j

Ji j

∫ β

0
dτ1

∫ β

0
dτ

∫ β

0
dτ′1j∗i (τ1)g i(τ1,τ)g j(τ,τ′1)j j(τ′1)

+ 1
2!2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ′1

∫ β

0
dτ′2

∑
i

j∗i (τ1)j∗i (τ2)W (4)
0i (τ1,τ2;τ′1,τ′2)ji(τ′1)ji(τ′2)+·· · .

(7.2)

The correlation function W (4)
0i can be obtained from its decomposition in terms of the con-

nected parts [140]

W (4)
0i (τ1,τ2;τ′1,τ′2)= 〈Tτâi(τ1)âi(τ2)â†

i (τ
′
1)â†

i (τ
′
2)〉0 − g i(τ1,τ′1)g i(τ2,τ′2)− g i(τ1,τ′2)g i(τ2,τ′1).

(7.3)
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The calculation of such a correlation function is extensive and we choose not to show it

here. Instead, we just show its expression in the Matsubara space representation

W (4)
0i (iωl1 , iωl2 ; iω′

l1
, iω′

l2
)=

β2

Z0(µi)

(
δωl1ω

′
l1
δωl2ω

′
l2
+δωl1ω

′
l2
δωl2ω

′
l1

)
×

[ ∞∑
n=0

e−βEn(µi)
(

n+1
En+1(µi)−En(µi)− iωl2

+ n
E i(n−1)−E i(n)+ iωl2

)
×

(
n+1

En+1(µi)−En(µi)− iωl1

+ n
En−1(µi)−En(µi)+ iωl1

)
− 1

Z0(µi)

∞∑
n,m=0

e−β[En(µi)+Em(µi)]
(

n+1
En+1(µi)−En(µi)− iωl2

+ n
En−1(µi)−En(µi)+ iωl2

)
×

(
m+1

Em+1(µi)−Em(µi)− iωl1

+ m
Em−1(µi)−Em(µi)+ iωl1

)]
+ β

Z0(µi)
δω′

l1
+ω′

l2
,ωl1+ωl2

∞∑
n=0

e−βEn(µi)

×
[

(n+2)(n+1)
[En+1(µi)−En(µi)− iω′

l2
][En+2(µi)−En(µi)− iω′

l1
− iω′

l2
][En+1(µi)−En(µi)− iωl1]

+ n(n−1)
[En−1(µi)−En(µi)+ iωl2][En−2(µi)−En(µi)+ iωl1 + iωl2][En−1(µi)−En(µi)− iω′

l1
]

−
(

n+1
[En+1(µi)−En(µi)− iωl1][En+1(µi)−En(µi)− iω′

l1
]

+ n
[En+1(µi)−En(µi)+ iωl1][En+1(µi)−En(µi)+ iω′

l1
]

)

×
(

n+1
En+1(µi)−En(µi)− iω′

l2

+ n
En−1(µi)−En(µi)+ iωl2

)
+ωl1 ↔ω′

l1

ωl2 ↔ω′
l2

]
,

(7.4)

where we indicate in the last line the extra terms generated by permutations of the Matsub-

ara frequency variables. We remark that the explicit form of W (4)
0i was calculated in Refs.

[53, 54, 55, 55]. Taking transformation to the Matsubara frequency domain as well as the

disorder ensemble average of (7.2), we can define the order-parameter fields as functional

derivatives of the averaged free energy with respect to the sources

ψi(iωl) = 〈âi(iωl)〉 = δW
δj∗i (iωl)

, (7.5)

ψ∗
i (iωl) = 〈â†

i (iωl)〉 = δW
δji(iωl)

. (7.6)
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This definition motivates a Legendre transformation of the free energy, which gives the

effective action

−βF [ψ∗,ψ]=W +∑
i

∑
l

(
ψi(iωl)j∗i (iωl)+ψ∗

i (iωl)ji(iωl)
)
. (7.7)

As j∗ and ψ are conjugate variables, in general we have

ji(iωl)=−β δF

δψ∗
i (iωl)

, j∗i (iωl)=−β δF

δψi(iωl)
. (7.8)

We observe that the physical situation of interest corresponds to the case where the sources

vanish, i.e. j(iωl)= j∗(iωl)= 0, thus the above equation becomes

δF

δψ

∣∣∣∣
ψ=ψeq

= δF

δψ
∗

∣∣∣∣
ψ=ψeq

= 0. (7.9)

Furthermore, when evaluated at the equilibrium value of the order parameter the effective

action equals the free energy

−βF |ψ=ψeq = lim
j→ 0

W . (7.10)

As a result of the Legendre transformation, the effective action can be expressed as

an expansion in the order-parameter field given by

−βF [ψ∗,ψ]=F (0) + 1
β2

∑
i j

∑
ll′
ψ∗

i (iωl)F (2)
i j (iωl , iω′

l)ψ j(iω′
l)

+ 1
2!2β4

∑
i1 i2 i′1 i′2

∑
l1l2l1

′l2
′
ψ∗

i i
(iωl1) ψ∗

i2
(iωl2)F (4)

i1 i2,i′1 i′2
(iωl1 , iωl2 , iω′

l1
, iω′

l2
)ψi′1(iω′

l1
) ψi′2(iω′

l2
)

+·· · ,
(7.11)

where

F (0) = ∏
i

∫ ∞

−∞
dεiP (εi)

[∑
i

ln

( ∞∑
n=0

e−βEn(εi)

)]
, (7.12)

F (2)
i j (iωl , iω′

l) = βδωlω
′
l

(
Ji j −δi j[g i(iωl)]−1

)
, (7.13)

F (4)
i1 i2,i′1 i′2

(iωl1 , iωl2 , iω′
l1

, iω′
l2

) = δi1 i2δi2 i′1δi′2 i1

W (4)
0i1

(iωl1 , iωl2 , iω′
l1

, iω′
l2

)

g i1(iωl1) g i1(iωl2) g i1(iω′
l1

) g i1(iω′
l2

)
.

(7.14)

Note that only the term F (2)
i j gains a contribution up to first order in the hopping expansion.
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Using the transformation to reciprocal space, we write

ψ(k, iωl)=
∑

i
ψi(iωl)e−ik·xi , (7.15)

therefore, the effective action becomes

−βF [ψ∗,ψ]=F (0) + 1
β2

( a
2π

)2d ∑
ll′

∫
ddk

∫
ddk′ψ∗(k, iωl)F (2)(k, iωl ,k′, iω′

l)ψ(k′, iω′
l)

+ 1
2!2β4

( a
2π

)4d ∑
l1l2l1

′l2
′

∫
ddk1

∫
ddk2

∫
ddk′

1

∫
ddk′

2

×ψ∗(k1, iωl1) ψ∗(k2, iωl2)F (4)(k1, iωl1 ,k2, iωl2 ;k′
1, iω′

l1
,k′

2, iω′
l2

)ψ(k′
1, iω′

l1
) ψ(k′

2, iω′
l2

)

+·· · ,
(7.16)

where the Fourier transform of each term reads

F (2)(k, iωl ;k′, iω′
l)=β

(
2π
a

)d
δ(k−k′)δωlω

′
l

[
J(k)− [g i(iωl)]−1

]
, (7.17)

F (4)(k1, iωl1 ,k2, iωl2 ;k′
1, iω′

l1
,k′

2, iω′
l2

)=
(
2π
a

)d
δ(k1 +k2 −k′

1 −k′
2)

×
W (4)

0i1
(iωl1 , iωl2 ; iω′

l1
, iω′

l2
)

g i1(iωl1) g i1(iωl2) g i1(iω′
l1

) g i1(iω′
l2

)
.

(7.18)

Note on the right hand side of (7.17) that the term in brackets corresponds to minus the

inverse of the Green’s function (4.20) obtained in Section 4.2 with the partial summation

method,

[G (k, iωl)]−1 = [g i(iωl)]−1 − J(k). (7.19)

It is a general result that the two-point Green’s function corresponds to the inverse of F (2)

[140]. Thus, we can see that the Legendre transformation is equivalent to the partial sum-

mation method.

We have already discussed that, after taking the disorder average, translational in-

variance is recovered. Considering that the temporal as well as the average translation

symmetries are preserved in the equilibrium state of the Bose-Hubbard Hamiltonian, we

define the equilibrium value of the order-parameter field in Fourier-Matsubara space to be

given by

ψeq(k, iωl)=β
(
2π
a

)D
δωl ,0δ(k)ψeq. (7.20)

By plugging such an equilibrium value in equation (7.16), we can define the effective po-

tential, which corresponds to the effective action divided by the number of lattice sites
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Fpot =F /L. The Landau expansion of such an effective potential reads

Fpot = F (0)

βL
+ F (2)(0,0,0,0)

βL
|ψeq|2 + 1

2!2
F (4)(0,0,0,0;0,0,0,0)

βL
|ψeq|4 +·· · . (7.21)

In Section 2.2, we demonstrated that the spontaneous breaking of U(1)-global symmetry

that occurs during a continuous phase transition can be mapped on the change of sign of

the coefficient of second order in the order-parameter expansion of the effective potential.

Hence, the phase boundary correspond exactly to the point where such a coefficient van-

ishes. From equation (7.19) and (7.21), one can observe that the condition F (2) = 0 leads

to equation (6.1) from which we have extracted the phase boundary to the superfluid phase

in Chapter 6. Therefore, this calculation justifies the use of the divergences of the Green’s

function to investigate such a phase transition.

To get analytical information on the excitation spectrum, we can study fluctuations of

the effective action around the equilibrium value of the order parameter. Thus, considering

the expansion

ψ(k, iωl)=ψeq(k, iωl)+δψ(k, iωl), (7.22)

the expansion of the effective action (7.16) up to second order in δψ(k,ωl) becomes

−βF
[
δψ∗,δψ

]=F (0) +F (2)(0,0,0,0)|ψeq|2 + 1
2!2

F (4)(0,0,0,0,0,0,0,0)|ψeq|4

+ 1
β2

( a
2π

)2d ∑
ll′

∫
ddk

∫
ddk′δψ∗(k, iωl)

×
[
F (2)(k,ωl ,k′,ω′

l)+F (4)(k,ωl ,0,0,k′,ω′
l ,0,0)|ψeq|2

]
δψ(k′, iω′

l)

+ 1
2!2β2

( a
2π

)2d ∑
ll′

∫
ddk

∫
ddk′F (4)(k,ωl ,k′,ω′

l ,0,0,0,0)|ψeq|2

× [δψ(k, iωl)δψ(k′, iω′
l)+δψ∗(k, iωl)δψ∗(k′, iω′

l)]+·· · .

(7.23)

The properties of the excitations are related to the real-time dynamics of the system, and

thus we must take the analytic continuation from Matsubara space to the real frequency

domain. For the Matsubara frequencies the transformation related to the retarded response

reads

iωl →ω+ i0+, (7.24)

as we have already shown in the previous chapters. For the Matsubara sums, such a

transformation has the following form

1
β

∑
l
→ 1

2π

∫ ∞

∞
dω. (7.25)

With this expression we are now able to analyze the spectra in the disordered case of both

in the Mott insulator and superfluid phases. By applying such an analytic continuation, the
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effective action of (7.23) can be written as

−βF
[
δψ∗,δψ

]=F (0) +F (2)(0,0;0,0)|ψeq|2 + 1
2!2

F (4)(0,0,0,0;0,0,0,0)|ψeq|4

+ 1
2π

( a
2π

)2d ∫
dω

∫
ddkδψ∗(k,ω)ζ1(k,ω)δψ(k,ω)

+ 1
4π

( a
2π

)2d ∫
dω

∫
ddkζ2(k,ω)[δψ(k,ω)δψ(−k,−ω)+δψ∗(k,ω)δψ∗(−k,−ω)]

+·· · ,

(7.26)

where we have defined the functions

ζ1(k,ω) = F (2)(k,ω+ i0+;k,ω+ i0+)+F (4)(k,ω+ i0+,0,0;k,ω+ i0+,0,0)|ψeq|2, (7.27)

ζ2(k,ω) = 1
2

F (4)(k,ω+ i0+,−k,−ω− i0+;0,0,0,0)|ψeq|2. (7.28)

Considering the different cases of the equilibrium order parameter in each ground state, we

can obtain the dispersion relation for the low-energy excitations from (7.26). Such calcula-

tion is presented in what follows.

7.2 Excitation spectra in the Mott-insulator phase

Inside the Mott-insulating state, since there is no long-range order, the equilibrium

value of the order parameter vanishes, i.e. ψeq = 0. In this case, equation (7.26) reduces to

F
[
δψ∗,δψ

]=−F (0)

β
+ 1

2π

( a
2π

)2d ∫
dω

∫
ddkδψ∗(k,ω)ζ0(k,ω)δψ(k,ω), (7.29)

where from equations (7.17) and (7.27), we obtain

ζ0(k,ω) = 1
β
ζ1(k,ω)|ψeq=0

= 1
β

F (2)(k,ω+ i0+;k,ω+ i0+)

=
(
2π
a

)d[
J(k)− [g i(ω+ i0+)]−1

]
.

(7.30)

The stationary condition for the effective action (7.29) with respect to the fluctuations is

given by

ζ0(k,ω)δψ(k,ω)= 0, (7.31)

which only admits non-trivial solutions in the case of

ζ0(k,ω)= 0. (7.32)
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The above equations gives the dispersion relations of the excitations above the Mott-insulator

ground state. In fact, the excitation spectrum which follows from this result is equivalent to

the one obtained in Section 5.1. We now show how such an equivalence takes place.

Considering the separation of real and imaginary parts of the unperturbed Green’s

function after the analytic continuation (3.95), the condition (7.32) can be written as

Re g i(ω)+ iIm g i(ω)− 1
J(k)

= 0. (7.33)

Since the imaginary part Im g i(ω), given in the zero-temperature limit by (3.97), is controlled

by the disorder distribution, in the energy range where it vanishes equation (7.33) becomes

equivalent to (5.14) for the peaks of the spectral function. Such an imaginary part is only

finite, for each fixed average particle density n0, inside the intervals

U(n0 −1)−µ− ∆
2

≤ ω ≤ U(n0 −1)−µ− ∆
2

, (7.34)

Un0 −µ− ∆2 ≤ ω ≤ Un0 −µ− ∆2 . (7.35)

In the limit of zero temperature, for a uniform disorder distribution, the real part Re g i(ω)

simplifies to a logarithm form written in (5.22). In such a limit, (7.33) can be rewritten in

following form

∣∣∣ω+µ−Un0 − ∆2
∣∣∣n0+1∣∣∣ω+µ−U(n0 −1)+ ∆

2

∣∣∣n0

−e∆/J(k)−i∆Im g i(ω)
∣∣∣ω+µ−Un0 + ∆2

∣∣∣n0+1∣∣∣ω+µ−U(n0 −1)− ∆
2

∣∣∣n0 = 0.
(7.36)

For energies outside the intervals (7.34) and (7.35), we recover from equation (7.36) the

expression of (5.23) shown in Section 5.2. Inside the regions, where Im g i(ω) is finite,

where have

∆Im g i(ω)=
n0π for ω in the interval (7.34),

−(n0 +1)π for ω in the interval (7.35).
(7.37)

Therefore, for both n0 = 0 and n0 = 1 Mott lobes, we recover the equations that originated

the dispersion relations found in Section 5.2.

We have therefore proven that the result of first order in the hopping approximation

of the effective-action method is equivalent to the one obtained with the spectral function

for the analyses of the elementary excitations of the Mott phase in Chapter 5. However, the

present effective-action approach provides a venue to investigate the excitation spectrum

of the superfluid phase. We describe such analysis in the subsequent section.
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7.3 Excitation spectra in the superfluid phase

In order to obtain the energy spectrum for the excitations in the superfluid phase,

we must consider equation (7.26) in its full content, since the equilibrium value of the order

parameter is finite inside such a phase, i.e. ψeq 6= 0. Such equilibrium values is defined by

the following relation

|ψeq|2 =−2
F (2)(0,0;0,0)

F (4)(0,0,0,0;0,0,0,0)
. (7.38)

In this case, the stationary condition to the effective action (7.26) with respect to the fluctu-

ations δψ and δψ∗ leads to the following coupled equations

ζ1(k,ω)δψ(k,ω)+ζ2(k,ω)δψ∗(−k,−ω) = 0, (7.39)

ζ1(k,ω)δψ∗(k,ω)+ζ2(k,ω)δψ(−k,−ω) = 0. (7.40)

One can observe that any fluctuation δψ which is purely imaginary and stationary with

respect to its arguments is trivial solution of the above equations [54]. This is a conse-

quence of global phase symmetry of the effective action (7.16). Non-trivial solutions of

(7.39) and (7.40) correspond to gapless Nambu-Goldstone modes associated with long-

wavelength fluctuations of the order parameter during the spontaneous breaking of the

continuous global phase invariance.

By using the internal symmetries of the functions ζ1 and ζ2 defined in (7.27) and

(7.28), we can rewrite equation (7.40) as

δψ∗(k,ω)=− ζ2(k,ω)
ζ1(k,−ω)

δψ(k,ω), (7.41)

and substitute it back into (7.39) to obtain[
ζ1(k,ω)− ζ2(k,ω)2

ζ1(k,−ω)

]
δψ(k,ω)= 0, (7.42)

which leads to the following equation

ζ1(k,ω)ζ1(k,−ω)−ζ2(k,ω)2 = 0. (7.43)

Solutions to the above equation correspond to the dispersion relations of the excitations of

the superfluid phase. Thus, the effective action-approach presented here provides access

to the energy spectrum of elementary excitations of both Mott insular and superfluid phases

in the same formalism.

The analytical calculation of the solutions of (7.43) in the disorder case is not straight-

forward due to the fact that we must consider the average of the four-point correlation func-

tion (7.4) over all realizations of the random potential. Another complication comes from



Chapter 7. Superfluid elementary excitations 122

Figure 7.1 – Dispersion relation of the excitations in the superfluid phase for a cubic lattice with
kBT/U = 0.033, µ = 0.4 and different values of the tunneling energy. For the left, middle, and right
images the values are Jz = 0.18U, Jz = 0.20, and Jz = 0.22U, respectively.

Source: Figure from Ref. [54].

the analytic continuation to the real frequency domain, which one must take care to guar-

antee convergence of the asymptotic behavior of the correlation functions. Considering

first the limit of zero temperature and finding the solutions numerically might be a natural

progression of the present work.

When the disorder distribution is given by (3.99), we recover the clan case. In such

a case, (7.43) can be solved numerically, which yields the dispersion relations shown in

Fig. 7.1. Such a figure shows a gapless Nambu-Goldstone mode together with a gaped

mode whose gap decreases for smaller values of the tunneling energy, i.e. near the phase

Mott-superfluid phase boundary. One characteristics of the Nambu-Goldstone excitations

is the liniear dispersion for small values of the k vector. The massive gaped mode is often

referred to as the Higgs amplitude mode. The excitation spectra of the Bose-Hubbard model

in the clean case has been experimentaly investigated by exciting the system via non-

destructive techniques such as lattice modulation [17, 170] or Bragg spectroscopy [171,

172, 173]. An important characteristics of these excitations of the superfluid state is that

they transform continuously into the quasiparticle and quasihole excitations of the Mott

phase when the clean-case phase boundary is crossed. This can be understood from the

present calculation by noticing that equations (7.39) and (7.40) reduce to (7.31) at the phase

boundary, where the equilibrium value of the order parameter vanishes, i.e. ψeq = 0.

Since the Bose glass, similarly to the Mott insulator, is characterized by the absence

of long-range order, the present order parameter used to calculate the expansion of the

effective action cannot be applied to study the excitation spectrum in this phase. Thus, a

different order parameter is needed. In the next section, we introduce an alternative for

such an order parameter.
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7.4 Bose-glass spectra

In 1975, S. F. Edwards and P. W. Anderson propose a new order parameter to study

the theory of spin glasses [174, 175]. In the spin glass problem, the exchange interactions

between the spins are random. Thus, it was suggested in the above referred papers, that

the time persistent part of local spin correlations could serve as an order parameter for

such a phase. It turns out, that one can propose a similar definition to study the Bose-glass

ground state.

Since the Bose-glass phase is characterized by the formation of rare disconnected

condensate domains, such a ground state is not completely described by the usual super-

fluid order parameters of (7.5) and (7.6). However, by remembering that for sufficiently small

tunneling energy, the Bose glass is distinguished by local fluctuations in average particle

density per site, one may propose, in analogy to the Edwards-Anderson order parameter,

the following quantity to identify such a ground state

q = lim
|τ−τ′|→∞

〈âi(τ)â†
i (τ

′)〉−N0, (7.44)

where N0 corresponds to the condensate density. Such order parameter was first proposed

in the context of the Bose-glass physics in [164, 165] and has since been applied in a

number of different investigations [167, 168, 1, 169]. The main idea of applying an effective-

action approach would be to include both superfluid and Bose-glas order parameters such

that one could describe each phase of the system within the same formalism. This would

be a fruitful area for future work.





Chapter 8

Free lattice bosons with weak disorder

Another form to treat the problem of disorder in the Bose-Hubbard model would be

to consider it as a perturbation. In this chapter, we present a disorder expansion for free

bosons on a lattice with weak disorder. Such a theory is constructed in a similar manner as

the one presented in Chapter 4. We argue that the two methods could be applied together

in order to develop a theory where the fluctuations in the hopping expansion can be treated

separately from the fluctuations in the disorder expansion. Furthermore, we show a single-

site approximation to account for the effects of weak disorder.

8.1 Disorder expansion

We begin by considering the functional-integral formulation of the Bose-Hubbard

model with an action given by (4.1). Furthermore, we introduce to this action the source

term expressed in (4.4). We are interested in the case where the hopping energy is much

larger then the other energy scales in the system. Assuming that U /J → 0 and ∆/J ¿ 1,

we can treat the system as composed of non-interacting particles and consider the local

potential as a perturbation. Thus, in this limit, we define the unperturbed partition function

to have the following form

Z0[j∗, j]≡
∮

Dψ∗ ∮
Dψe(ψ|G0

−1ψ)+(j|ψ)+(ψ|j)∮
Dψ∗ ∮

Dψe(ψ|G0
−1ψ)

, (8.1)

such that Z0[0,0]= 1. Moreover, we use the definition

(ψ|G0
−1ψ)=

∫ β

0
dτ

∑
i j
ψ∗

i (τ)
[

Ji j −δi j

(
∂

∂τ
−µ

)]
ψ j(τ). (8.2)

124
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By completing the square in the argument of the exponential function in the numerator of

(8.1), we obtain

Z0[j∗, j] = e−(j|G0j)
∮

Dψ∗ ∮
Dψe(ψ+jG0|G0

−1[ψ+G0j])∮
Dψ∗ ∮

Dψe(ψ|G0
−1ψ)

= e−(j|G0j),

(8.3)

where the second line is obtained by realizing that the integral in the numerator of the first

line is equivalent to the integral in the denominator up to a change o variables.

Introducing the Matsubara-Fourier transform

ψi(τ)= 1
β

( a
2π

)d ∑
l

∫
BZ

dkeik·xi−iωlτψ(k, iωl), (8.4)

we can write the unperturbed Green’s function as

G0(k, iωl)=
1

iωl +µ+ J(k)
, (8.5)

where J(k) is the lattice dispersion for a d-dimensional hypercubic lattice defined in (4.19).

Note that the above unperturbed Green’s function has the same form as the zero-temperature

limit shown in equation (5.2) for the case of n0 = 0 . Similarly to what we have done in Sec-

tion 4.1 to find the hopping expansion to the partition function (4.10), we can consider the

local potential as a perturbation, and calculate corrections with respect to it via

Z [j∗, j]= exp

(
−∑

l

∫
BZ

ddk
∫

BZ
ddk′ε(k,k′)

δ2

δj∗(k, iωl)δj(k′, iωl)

)
e−(j|G0j), (8.6)

where ε(k,k′) has the same form of (3.65). Therefore the full Green’s function can be written

as

G (k,k′; iω)=− δ2Z [j∗, j]
δj∗(k, iωl)δj(k′, iωl)

∣∣∣∣
j∗,j=0

. (8.7)

We point out that analogously to the hopping expansion of (4.10), where for each term the

tunneling matrix coupled different local Green’s functions (3.82) between different neighbor-

ing sites, in the present case of (8.6), the local energy shift couples free propagators (8.5)

of states with different wavevectors.

Considering order by order in the perturbative expansion, it is possible to show that

the terms which contribute to the full Green’s function have the following form

G (k,k′; iωl)= δ(k−k′)G0(k, iωl)+G0(k, iωl)ε(k,k′)G0(k′, iωl)

+
∫

BZ
ddk1G0(k, iωl)ε(k,k1)G0(k1, iωl)ε(k1,k)G0(k′, iωl)+·· · .

(8.8)

To study the global properties of disorder, we must take the average over all realizations of
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the random potential

G (k,k′; iωl)= δ(k−k′)G0(k, iωl)+G0(k, iωl)ε(k,k′)G0(k′, iωl)

+
∫

BZ
ddk1G0(k, iωl)ε(k,k1)G0(k1, iωl)ε(k1,k)G0(k′, iωl)+·· · .

(8.9)

We can understand the physical interpretation of the expansion, by treating each term sep-

arately. The first term on the right-hand side of (8.9) is not affected by the disorder and

thus represents the free propagation of an excitation with wavevector k and energy iωl .

The second term has a correction of first order in the disorder expansion. The averaging

process turns out to be given by

G0(k, iωl)ε(k,k′)G0(k′, iωl) =
( a
2π

)d ∑
i

e−ixi ·(k−k′)G0(k, iωl)εiG0(k′, iωl)

= δ(k−k′)G0(k, iωl)εiG0(k, iωl),
(8.10)

where we have used the explicit form of the random potential (3.65) and the representation

of the sum over all sites of the exponential in the first line as a Dirac-delta distribution (3.88).

This term can therefore be interpreted as a free propagation followed by one scattering

event at site i and another free propagation. The averaging of the second-order term is

given by∫
BZ

ddk1ε(k,k1)G0(k1, iωl)ε(k1,k)=
( a
2π

)2d ∑
i j
εiε j

∫
BZ

ddk1e−ixi ·(k−k1)−ix j ·(k1−k′)G0(k1, iωl).

(8.11)

The correlation function of the random potential can be decomposed as

εiε j = δi jε
2
i +εi ε j. (8.12)

For the first term on the right hand side of (8.12), equation (8.11) reduces to∫
BZ

ddk1ε(k,k1)G0(k1, iωl)ε(k1,k) = ε2
i

( a
2π

)2d ∑
i

e−ixi ·(k−k′)
∫

BZ
ddk1G0(k1, iωl)

= δ(k−k′)ε2
i G0ii(iωl),

(8.13)

where we have defined G0ii as the local form of the inverse Fourier of (8.5) from reciprocal

space to real space

G0i j(iωl)=
( a
2π

)d ∫
BZ

ddkeik·(xi−x j)G0(k, iωl), (8.14)

that is, G0ii corresponds to the above equation when i = j,

G0ii(iωl)=
( a
2π

)d ∫
BZ

ddkG0(k, iωl). (8.15)
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The expression (8.13) can be understood as representing a double scattering process at

site i followed by a coherent superposition all values of the wavevector over the first Brillouin

zone defined by (8.15). For the second term on the right hand side of (8.12), equation (8.11)

simplifies to∫
BZ

ddk1ε(k,k1)G0(k1, iωl)ε(k1,k)=
( a
2π

)2d ∫
BZ

ddk1
∑
i j

e−ixi ·(k−k1)−ix j ·(k1−k′)εiG0(k1, iωl)ε j

=δ(k−k′)εiG0(k1, iωl)ε j,
(8.16)

which can be interpreted as a single scattering event at site i followed by a free propagation

and then by another single scattering event at a different site j.
With this interpretation, we introduce a diagrammatic representation to describe all

the possible terms of the perturbation expansion (8.9). Free propagation can be repre-

sented by

G0(k, iωl) =
k

. (8.17)

We define the diagram for a single scattering at one site between two free propagations

(8.10) as

G0(k, iωl)εiG0(k, iωl) =
k k

, (8.18)

while the diagram representing (8.13) is defined as

ε2
i G0ii(iωl) = . (8.19)

Note that arrow between the two dots in this case has no wavevector index, meaning that

it represents the sum of the amplitude over all values of the wavevector in the first Brilloin

zone. With this notation equation (8.9) of the average Green’s function can be rewritten as

G (k,k′; iωl)= δ(k−k′)
[

k
+
k k

+
k k k

+
k k

+
k k k k

+
k k

+
k k k

+
k k k

+
k k

+·· ·
]
.

(8.20)

Note that all diagrams consist of free propagation followed by scattering once to infinitely
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many times at the same site and then by another another free propagation. Therefore, we

can choose the sum of all internal diagrams representing the process of scattering once to

infinitely many times with the disordered potential as the self-energy

Σ(k, iωl)= + + + +·· · . (8.21)

Therefore, the sum of the full disorder-averaged Green’s function can be reorganized in

terms of the self-energy and represented diagrammatically as

G (k,k′; iωl)= δ(k−k′)
[

k
+

k k
Σ +

k k k
Σ Σ +·· ·

]
. (8.22)

Summing up an infinite amount of such diagrams we obtain

G (k,k′; iωl)= δ(k−k′)
1

G0(k, iωl)−1 −Σ(k, iωl)
, (8.23)

which can be rewritten as

G (k,k′; iωl)= δ(k−k′)
1

iωm +µ+ J(k)−Σ(k, iωl)
. (8.24)

Note that, as discussed in previous chapters, the averaged Green’s function recovers trans-

lational invariance and represents the propagation of excitations which conserve crystal

momentum. However, as a result of the scattering against the random potential, such

states acquire a finite lifetime.

In the case of (8.24), applying the definition (3.60) leads to the following averaged

spectral function

A(k,ω)=−1
π

ImΣ(k,ω)
[ω+µ+ J(k)−ReΣ(k,ω)]2 + [ImΣ(k,ω)]2 , (8.25)

which has a form similar to equation (5.13). However, in the present case, we can see that

the real part of the self-energy shifts the dispersion relation of the excitations

ω(k)=−µ− J(k)+ReΣ(k,ω), (8.26)

while its imaginary part is related to their lifetime. Considering that the peaks of the spectral

function are still close to the unperturbed dispersion, ω0(k) = −µ− J(k), we can estimate

such a lifetime as

τ̃(k)≈ 1
|ImΣ(k,ω0(k))| . (8.27)

Thus, in this calculation, the self-energy incorporates the effects of disorder in the propaga-
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tion of the elementary excitations.

In the hopping expansion, developed in Section 4.1, the unperturbed Green’s func-

tions corresponded to localized excitations calculated in the strongly interacting limit. This

perturbation method is usually referred to as strong-coupling expansion, or even locator

expansion in the case of free particles. Unlike the previous hopping expansion, the unper-

turbed Green’s function in the present calculation corresponds to delocalized excitations.

One can see this, by noticing that the inverse Fourier transform of (8.5) to real time and

space represents a Bloch state. For this reason the present method is usualy called prop-

agator expansion. From this point of view, the two methods are different. However, it was

shown in Refs. [136, 137] that there is an equivalence relation between this two kinds of

expansions in the non-interacting limit. The theory developed in this section with the disor-

der expansion could be applied together with the hopping expansion in chapter 4.1. For the

results of the present work, this would amount to the substitution of (8.5) by the clean-case

limit of the result (4.20) obtained by partial summation, which amounts to (5.1). In this way,

fluctuations in the hoppping expansion could be treated separately from fluctuations in the

disorder expansion. Hence, the present calculations provide an insight for future work.

What follows is an account of how to obtain the explicit form of the self energy via

the single-site approximation.

8.2 Single-site approximation

Formally, the self-energy shown in (8.21) represents a complex quantity describing

the average effects of the random potential on the free propagation of elementary excita-

tions. Thus, its emergence implies that the presence of the disordered medium modifies

the dynamical properties of the excitations. If the disorder is small, one can assume that

the system can be represented as a collection of small regions which resemble a perfect

lattice locally, except for a few sites where the energy shifts of the random potential would

be finite. One can understand this local shifts as impurities on a system which is invariant

under translations. In the limit that the concentration of this impurities is low, the correla-

tion between scattering events of an excitation at different lattice sites could be neglected

and repeated scatterings from one impurity becomes more important. An approximation in

this limit is commonly referred to as a single-site approximation, which decouples multiple

scattering events at different impurities [176].

One way to take these assumptions under consideration in the perturbation theory

derived in the previous section, would be to consider only the diagrams which represent

scattering once to infinitely many times at the same lattice site in the sum for the self-energy
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defined by (8.21). These consist of all diagrams which contain a single cross

Σ(k, iωl)= + + +·· · . (8.28)

The physical interpretation of the above summation is that within each subsequent scat-

tering event there occurs a coherent superposition of the amplitudes amplitudes of prop-

agation over all possible values of the wavevector in the first Brillouin zone. In its explicit

representation, the above summation reads

Σ(k, iωl)=
∞∑

m=0
εm+1G0ii(iωl)m. (8.29)

By noticing that the sum commutes with the disorder ensemble average, the summation

can be directly evaluated to

Σ(k, iωl)=
∫ ∞

−∞
dε

[
ε

1−εG0ii(iωl)

]
P (ε), (8.30)

where we show the explicit form of the disorder average (3.61). Note that the resulting ex-

pression for the self-energy has no dependency on the wavevector, i.e. Σ(k, iωl) = Σ(iωl).

This is a characteristics of such single-site approximations. One can thus understand the

approximation presented here analogously to the coherent-potential approximation, initially

developed in [177, 178] in the problem of disordered alloys and commonly applied to dis-

ordered lattice systems [117, 118, 106]. A further argument to justify the use of such an

approximation is that it can be proved that the k-dependence of the self-energy appears

in (8.21) only for double cross diagrams of forth order in local potential. Therefore, we can

conclude that at first approximation, disorder couples only to time-dependent degrees of

freedom of the system.

For the uniform disorder distribution (3.101), the self-energy (8.30) becomes

Σ(iωl)=
1

∆G0ii(iωl)2 log
[

2+∆G0ii(iωl)
2−∆G0ii(iωl)

]
− 1

G0ii(iωl)
. (8.31)

Note the analytic continuation of this self-energy to the real frequency domain, i.e. iωl →
ω+ i0+, would lead to a logarithmic branch cut on the disorder-averaged Green’s function

(8.24). In the previous analysis carried in Chapter 5 the logarithmic branch cut constituted

the mathematical signature of the damped-localized excitations. Thus, the presence of such

a branch cut in the present calculation can interpreted as a sign of the emergence of these

damped-localized excitations.





Part V

Final remarks
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Chapter 9

Summary and conclusions

Since the seminal work of Fisher et al. [22] in 1989, a substantial amount of research

has been devoted to the problem of the disordered Bose-Hubbard model. The experimental

realization of this model in ultracold atomic systems loaded in random optical lattices has

contributed to the problem gaining more attention. Many methods have been used to ad-

dress this problem, such as Monte Carlo simulations, mean-field theories, strong-coupling

expansions, and renormalization group techniques. As a result, a great deal of information

regarding important aspects of this model has been discovered. However, a precise analyt-

ical description was still lacking. The work developed in this thesis was constructed as an

attempt to fill this void.

One important idea carried throughout the whole thesis was the possibility of charac-

terizing and distinguishing each ground state of the Bose-Hubbard model in the presence

of disorder by means of their low-energy excited states. These excited energy levels of

the system were interpreted in the context of elementary excitations: the quasiparticles and

quasiholes. These entities represent the emergent phenomena that originate from the inter-

actions of the particles that constitute the system among themselves and with the external

random lattice. As we have demonstrated, there is a crucial change in the energy spec-

trum of the elementary excitations in the strongly interacting limit of the system due to the

presence of disorder. Furthermore, we have shown that this spectral information remains

a reliable and trustworthy property to unambiguously distinguish both the Mott and Bose

glass ground states, even at finite temperatures and slightly positive values of the tunneling

energy.

The key quantity we have used to analyze these spectral properties, as well as the

phase transitions, is the single-particle Green’s function and its imaginary part in the Källén-

Lehmann representation, i.e., the spectral function. As we have discussed, the singularities

in the Green’s function in such a representation reveal important information about the

microscopic properties of the elementary excitations. These singularities are encoded in the

spectral function. In the clean case, such singularities represent stable states for creating

extended quasiparticle and quasihole excitations. In the vicinity of the Mott-insulator phase

132
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boundary, any finite amount of such excitations immediately produces superfluidity.

In the presence of diagonal disorder, the global properties were investigated by

considering the ensemble average over many realizations of the random potential over a

bounded uniform distribution. We have demonstrated that the terms of the random potential

coupling to states that do not conserve momentum, average over to zero, such that trans-

lational invariance is restored on average. In the strongly interacting limit, in the absence of

tunneling energy, the spectral function changes from a sharp Dirac-delta peak into a broad

peak determined by the disorder distribution. For a continuous disorder distribution, this

change originates from the transformation of the simple poles of the Green’s function in the

clean case into a branch cut singularity in the disordered case. Physically, this implies a

change in the nature of the excitations. Disorder makes the excitations unstable, meaning

that they only resemble eigenstates of the Bose-Hubbard Hamiltonian for a finite lifetime

after which they decay.

In order to analyze the influences of slightly positive values of the tunneling energy,

we constructed a strong coupling hopping expansion. This perturbation method was de-

rived by means of the functional integral formulation based on Refs. [52, 53, 54, 39, 98, 138,

139]. By calculating hopping corrections to the cumulant expansion of the free-energy func-

tional, we were able to obtain a perturbation expansion for the Matsubara Green’s function.

Using a partial summation method, we obtained an expression for the disorder-averaged

Green’s function in the Källén-Lehmann representation. This expression results from con-

sidering infinitely many contributions for the path of an excitation that is created in the

system with a well-defined wavevector k and corresponding frequency ω(k), which hops

through the lattice by scattering infinitely many times against the disordered potential at

each site. In this approximation, scattering events at different lattice sites were considered

to be uncorrelated.

Within the partial summation approximation, we have demonstrated that in the pres-

ence of disorder and for small values of the hopping energy, the spectral function features

both a sharp peak for low energies and a broad peak for slightly higher energies. By cal-

culating the frequencies associated with such peaks, we obtained the dispersion relations

for the excitations. The sharp peaks are associated with stable states that still exist even

in the presence of disorder, while the broad peaks are associated with damped states that

emerge due to disorder. By integrating the spectral function over the first Brillouin zone,

we computed the total density of states. With all this information, we constructed the band

structure for one, two, and three dimensions. The damped states emerge in the center of

such band structure, and the dispersion relations of both stable and damped excitations

present jumps that correspond to the scattering against the random potential. Furthermore,

the effective mass of the stable states increases with disorder, meaning that the excitations

in that energy range become less dispersive in the limit of strong disorder. Additionally,

the lifetime of the damped states increases with disorder, meaning that the excitations in
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that energy range become more stable. Moreover, by analyzing the propagation of these

excitations in space, we have demonstrated that the stable states are extended at long time

scales, and the damped states are localized at short time scales. In the limit of vanishing

tunneling, as disorder is increased, the states for stable excitations become dispersionless,

and the damped-localized states dominate the whole band. Since such damped-localized

states are the ones that remain when the gap closes, we conclude that they correspond to

the low-energy states available for single-particle excitations of the Bose-glass phase.

Considering the first non-vanishing contribution in the hopping expansion, we have

constructed a renormalized expression for the local density of states based on the local

Green’s function. To achieve this, we employed the Poincaré-Lindsted method to renormal-

ize the double-pole singularities that arose in the local density of states as derivatives of the

disorder distribution. As a result, we obtained a hopping-dependent local density of states

that generalizes the result found in [38] for the case of finite hopping. This approximation is

equivalent to considering the first correction to the correlations between scattering events

against the disordered potential that occur at different times on the same lattice site.

Using this result, we have confirmed that the local density of states is a reliable

quantity for unambiguously distinguishing the Bose-glass from the Mott insulator phase,

even at finite temperatures and for small values of the tunneling energy. We have obtained

an analytical expression for the Mott-Bose glass phase boundary, which compares signifi-

cantly well with numerical calculations from the literature. In the case of d = 2 and for finite

temperatures, our result overestimates the sides of the first Mott lobe when compared to

the local mean-field theory, but it agrees well around its tip. However, in the case of d = 3,

our result shows remarkable agreement for both zero and finite temperatures when com-

pared to the stochastic mean-field theory. This indicates that our method is equivalent to

that method from the phase boundary point of view.

We remark that, although our results are best suited for high dimensions, they clearly

go beyond simple mean-field theories. Additionally, we point out that for sufficiently small

tunneling energy, we expect the qualitative aspects of these results to hold even for d = 1.

We have proposed an analytical effective-action method that allows us to recover the

results obtained for the spectra using the Green’s function. Furthermore, we have shown

that this method can be applied to obtain the superfluid excitation spectrum in the presence

of disorder. In the clean case, it was demonstrated in [39] that the quasiparticles and quasi-

hole excitations transform continuously into the Nambu-Goldstone and Higgs amplitude

modes when the Mott-superfluid phase boundary is crossed. In the presence of disorder,

an interesting question would be to investigate how the damped-localized excitations of the

Bose-glass phase play a role in such a transition. The effective-action method would cer-

tainly lead to a deeper understanding in this regard. In addition, we also suggest including

an Edwards-Anderson-like order parameter to study the spectra in the Bose-glass state.

A theory with both the superfluid and the Bose-glass order parameters would provide a
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concrete analytical picture of the complete phase diagram of the disordered Bose-Hubbard

model. This would be a fruitful area for further work.

We have constructed a disorder expansion that could be used to obtain new results

for the effects of disorder, and which could be applied in conjunction with the hopping ex-

pansion. One of the strengths of this disorder expansion is that it provides a clear physical

interpretation concerning how disorder affects the path of an excitation. Each term in the

expansion of the disorder-averaged Green’s function can be understood by the number of

scattering events against the random potential. By applying a single-site approximation to

the self-energy, where only diagrams representing scattering once to infinitely many times

at the same lattice site were considered, we demonstrated that it is possible to obtain a

result for the branch cut singularity of the Green’s function that is similar to the one found

using the hopping expansion. This suggests an equivalence relation between such expan-

sions, similar to the one found in [136, 137]. Both these perturbation methods could be

applied together to investigate the regime where interactions are important. An advantage

of using this approach would be that the loop correction of the hopping expansion, which

represents internal interactions between the excitations, could be treated separately from

the loop corrections of the disorder expansion, which represent correlations between scat-

tering events at different lattice sites. Future research might explore the combined use of

these expansions for further investigation of the effects of disorder on the excitations of the

Bose-Hubbard model, as well as on the scaling behavior of the system near criticality.

In conclusion, this thesis has made significant contributions to our understanding of

the disordered Bose-Hubbard model in the limit of strong interactions. The use of the hop-

ping expansion has allowed us to construct analytical expressions for various properties

of the system, including the spectral function, local density of states, and the Mott-Bose

glass phase boundary. Our findings shed new light on the microscopic characterization

of the effect of disorder on Mott-insulating phase excitations, giving further insight into the

low-energy excitations of the Bose-glass state. By using the different nature of these ele-

mentary excitations, we have demonstrated that spectral information serves as a reliable

property to distinguish these insulating phases even at finite temperatures. We have sug-

gested additional analytical techniques that could be applied to extend our results and con-

struct further investigations. The theoretical approaches proposed in this work have further

expanded the applicability of analytical methods in studying the system of cold bosonic par-

ticles with short-range interactions in a random lattice potential. Our analysis is based on

the single-particle Green’s and spectral functions, which can be probed experimentally with

Bragg spectroscopy or with the rf-transfer method. These findings provide a more precise

and concrete characterization of the Bose-glass ground state, paving the way for further

developments in the field.
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Appendix A

Functional-integral formalism

In this appendix, we derive the path integral formulation for the Bose-Hubbard model.

This derivation follows from Ref. [179].

A.1 Lattice occupation number representation and Fock

space

When investigating the quantum aspects of many-particle systems on a lattice it is

convenient to use the occupation number representation. For bosonic particles a general

many-body state |Ψ〉 can be expressed by the superposition

|Ψ〉 = c
∑

n1...nL

ψn1...nL |n1 . . .nL〉 , (A.1)

where c is some normalization constant, ψn1,...,nL represents a set of expansion coefficients,

L is the total number of lattice sites, and ni is the number of particles in the site i. This

state with an arbitrary number of particles is accommodated in the Fock space given by

F =
∞⊕

N=0
F N , (A.2)

where F 0 is the one dimensional Hilbert space whose element is the state with no particles

present, the so-called vacuum state, and so on. The normalization condition together with

the completeness relation of the basis states are respectively given by

〈n1 . . .nL|m1 . . .nL〉 = δn1m1 · · ·δnLmL , (A.3)

∑
n1...nL

|n1 . . .nL〉〈n1 . . .nL| = 1̂. (A.4)

In order to construct a path integral formulation for the time evolution of a state given
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in (A.1), we must choose a set of suitable eigenstates of the many-body Hamiltonian which

absorbs as much as possible the quantum dynamical phase accumulated during short-time

propagations. Given that such Hamiltonians are conveniently expressed in terms of the

creation and annihilation operators, the idea would be to search for the eigenstates of such

operators. These are the so-called coherent states.

A.2 Coherent states

With the propose of developing the coherent-state representation, we introduce the

creation and annihilation operators which satisfy the following commutation relations[
âi, â

†
j

]
= δi j,

[
âi, â j

]= 0, and
[
â†

i , â
†
j

]
= 0, (A.5)

where âi (â†
i ) annihilates (creates) a particles in site i. Using (A.1) to represent the many-

particle state, we can see that if the minimum of particles in |Ψ〉 is n0 the minimum of

particles in â†
i |Ψ〉 must be n0 +1. Thus, the creation operators cannot posses eigenstates.

Assuming that |Ψ〉 is an eigenstate of the annihilation operator, the condition

âi |Ψ〉 =ψi |Ψ〉 (A.6)

must be satisfied. This implies the following condition for the coefficients

ψiψn1...ni−1...nL =p
niψn1...nL , (A.7)

for all {ni}. Setting the vacuum coefficient equal to 1 and considering its relation by induction

to the other coefficients, we obtain

ψn1...nL = ψ
n1
1√
n1!

. . .
ψ

nL
L√
nL!

. (A.8)

Therefore, we can rewrite (A.1) as

|Ψ〉 = c
∑

n1...nL

ψ
n1
1√
n1!

. . .
ψ

nL
L√
nL!

|n1 . . .nL〉 . (A.9)
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Assuming that 〈Ψ|Ψ〉 = 1, we find

〈Ψ|Ψ〉 = c∗c
∑

m1...mL

∑
n1...nL

(ψ∗
1)m1√
m1!

. . .
(ψ∗

L)mL√
mL!

ψ
n1
1√
n1!

. . .
ψ

nL
L√
nL!

〈m1 . . .mL|n1 . . .nL〉

= c∗c
∑

n1,...,nL

(ψ∗
1ψ1)n1

n1!
. . .

(ψ∗
LψL)nL

nL!
= c∗c eψ

∗
1ψ1 · · ·eψ∗

LψL

= c∗c exp

(
L∑

i=1
ψ∗

i ψi

)
= 1 =⇒ c = exp

(
−1

2

L∑
i=1

ψ∗
i ψi

)
.

(A.10)

Hence, we can write the normalized coherent state as

|Ψ〉 = exp

(
−1

2

L∑
i=1

ψ∗
i ψi

) ∑
n1...nL

ψ
n1
1√
n1!

. . .
ψ

nL
L√
nL!

|n1 . . .nL〉 . (A.11)

We now have a normalized basis of the Fock space in terms of the coherent states.

In order to derive the over completeness relation, we define the following operator

Î =
∫ L∏

i=1

dψ∗
i dψi

2πi
|Ψ〉〈Ψ| , (A.12)

where the integration runs over the whole complex plane. A general matrix element of this

operator can be written as

〈n1 . . .nL| Î |m1 . . .nL〉 =
∫ L∏

i=1

dψ∗
i dψi

2πi
〈n1 . . .nL|Ψ〉〈Ψ|m1 . . .nL〉

=
L∏

i=1

∫ dψ∗
i dψi

2πi
e−ψ

∗
i ψi

(ψ∗
i )mi√
mi!

(ψi)ni√
ni!

,

(A.13)

using the polar coordinates ψi = reiφ and ψ∗
i = re−iφ the integration becomes

∫ dψ∗
i dψi

2πi
e−ψ

∗
i ψi

(ψ∗
i )mi√
mi!

(ψi)ni√
ni!

= 1

π
√

ni!
√

mi!

∫ ∞

0
drrmi+ni+1e−r2

∫ 2π

0
dφeiφ(ni−mi).

(A.14)

For the integration over the angular coordinate, we have

∫ 2π

0
dφeiφ(ni−mi) = ei2π(ni−mi) −1

i(ni −mi)
=

2π for ni = mi,

0 for ni 6= mi.
(A.15)

Thus, we can rewrite (A.14) as

∫ dψ∗
i dψi

2πi
e−ψ

∗
i ψi

(ψ∗
i )mi√
mi!

(ψi)ni√
ni!

= 2δnimi

ni!

∫ ∞

0
drr2ni+1e−r2

, (A.16)
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the transformation r2 → x gives

∫ dψ∗
i dψi

2πi
e−ψ

∗
i ψi

(ψ∗
i )mi√
mi!

(ψi)ni√
ni!

= δnimi

ni!

∫ ∞

0
dxxnie−x, (A.17)

if we notice that

de−αx

dα
=−xe−αx,

d2e−αx

dα2 = x2e−αx, . . . ,
dnie−αx

dαni
= (−1)ni xnie−αx (A.18)

we can write∫ dψ∗
i dψi

2πi
e−ψ

∗
i ψi

(ψ∗
i )mi√
mi!

(ψi)ni√
ni!

= δnimi

(−1)ni ni!

∫ ∞

0
dx

dnie−αx

dαni

∣∣∣∣
α=1

= δnimi

(−1)ni ni!
dni

dαni

∫ ∞

0
dxe−αx

∣∣∣∣
α=1

= δnimi

(−1)ni ni!
dni

dαni

(
1
α

)∣∣∣∣
α=1

= δnimi

(−1)ni ni!
(−1)ni ni!
αni+1

∣∣∣∣
α=1

= δnimi .

(A.19)

Therefore,

〈n1 . . .nL| Î |m1 . . .nL〉 = 〈n1 . . .nL|m1 . . .nL〉 = δn1m1 · · ·δnLmL , (A.20)

and Î is the unity operator in Fock space

Î =
∫ L∏

i=1

dψ∗
i dψi

2πi
|Ψ〉〈Ψ| = 1̂. (A.21)

We are now in position to develop the coherent-state functional integral representa-

tion for the Bose-Hubbard model.

A.3 Imaginary-time path integral and the partition func-

tion

The partition function of the system in the occupation number representation can be

written as
Z = tr

(
e−βĤ

)
= ∑

n1...nL

〈n1 . . .nL|e−βĤ |n1 . . .nL〉
(A.22)
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Using the completeness relations of (A.4) and (A.21) this expression becomes

Z =
∫ L∏

i=1

dψ∗
i dψi

2πi

∑
n1...nL

〈n1 . . .nL|Ψ〉 〈Ψ|e−βĤ |n1 . . .nL〉

=
∫ L∏

i=1

dψ∗
i dψi

2πi
〈Ψ|e−βĤ ∑

n1...nL

|n1 . . .nL〉〈n1 . . .nL|Ψ〉

=
∫ L∏

i=1

dψ∗
i dψi

2πi
〈Ψ|e−βĤ |Ψ〉 .

(A.23)

Hence, the partition function may be thought of as the sum over the diagonal matrix ele-

ments of the imaginary-time evolution operator Û (τ,τ′)= e−(τ′−τ) Ĥ
ħ evaluated over the inter-

val τ′−τ=ħβ. By breaking the time interval into M steps of size ∆τ= τ′−τ
M , we can rewrite

the matrix elements considering the periodic condition to the coherent states |Ψ0〉 = |Ψ〉
and 〈ΨM | = 〈Ψ| as

〈ΨM |e−(τ′−τ) Ĥ
ħ |Ψ0〉 = 〈ΨM |e−M ∆τ

ħ Ĥ |Ψ0〉
= 〈ΨM |e−∆τħ Ĥ · · ·e−∆τħ Ĥ︸ ︷︷ ︸

M times

|Ψ0〉 . (A.24)

Using the completeness relation (A.21) between each step of the interval we get

〈ΨM |e−(τ′−τ) Ĥ
ħ |Ψ0〉 = lim

M→∞

∫ M−1∏
l=1

L∏
i=1

dψ∗
i,ldψi,l

2πi

M∏
l=1

〈Ψl |e−
∆τ
ħ Ĥ |Ψl−1〉 , (A.25)

where each matrix element is given by

〈Ψl |e−
∆τ
ħ Ĥ |Ψl−1〉 = 〈Ψl |1̂−

∆τ

ħ Ĥ+O (∆τ2)|Ψl−1〉

= 〈Ψl |Ψl−1〉
(
1− ∆τħ

〈Ψl |Ĥ|Ψl−1〉
〈Ψl |Ψl−1〉

+O (∆τ2)
)
.

(A.26)

Considering the Bose-Hubbard Hamiltonian

ĤBH(â†, â)= U
2

∑
i

â†
i â

†
i âi âi −

∑
i
µi â

†
i âi −

∑
i j

Ji j â
†
i â j, (A.27)

we have

〈Ψl |ĤBH(â†, â)|Ψl−1〉 =
(
U
2

∑
i
ψ∗

i,lψ
∗
i,lψi,l−1ψi,l−1 −

∑
i
µiψ

∗
i,lψi,l−1

−∑
i j

Ji jψ
∗
i,lψ j,l−1

)
〈Ψl |Ψl−1〉

= HBH(ψ∗
l ,ψl−1)〈Ψl |Ψl−1〉 .

(A.28)
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Thus, the matrix elements can be written as

〈Ψl |e−
∆τ
ħ Ĥ |Ψl−1〉 = e−

1
2

∑L
i=1

(
ψ∗

i,l (ψi,l−ψi,l−1)−ψi,l−1(ψ∗
i,l−ψ∗

i,l−1)
)

×
(
1− ∆τħ HBH(ψ∗

l ,ψl−1)+O (∆τ2)
)

= e
−∆τħ

[
1
2

∑L
i=1

(
ħψ∗

i,l
ψi,l−ψi,l−1

∆τ −ħψi,l−1
ψ∗i,l−ψ

∗
i,l−1

∆τ

)
+HBH (ψ∗

l ,ψl−1)
]
.

(A.29)

Inserting this relation in (A.25) we get

〈ΨM |e−(τ′−τ) Ĥ
ħ |Ψ0〉 = lim

M→∞

∫ M−1∏
l=1

L∏
i=1

dψ∗
i,ldψi,l

2πi

×
M∏

l=1
e
−∆τħ

[
1
2

∑L
i=1

(
ħψ∗

i,l
ψi,l−ψi,l−1

∆τ −ħψi,l−1
ψ∗i,l−ψ

∗
i,l−1

∆τ

)
+HBH (ψ∗

l ,ψl−1)
]

= lim
M→∞

∫ M−1∏
l=1

L∏
i=1

dψ∗
i,ldψi,l

2πi

×e
−∆τħ

∑M
l=1

[
1
2

∑L
i=1

(
ħψ∗

i,l
ψi,l−ψi,l−1

∆τ −ħψi,l−1
ψ∗i,l−ψ

∗
i,l−1

∆τ

)
+HBH (ψ∗

l ,ψl−1)
]

(A.30)

It is convenient to introduce the trajectory representationψi(τ) to represent the set {ψi,1, · · · ,ψi,M},

where in the limit M →∞ we can write

ψ∗
i,l
ψi,l −ψi,l−1

∆τ
→ ψ∗

i (τ)
∂ψi(τ)
∂τ

,

ψi,l−1
ψ∗

i,l −ψ∗
i,l−1

∆τ
→ ψi(τ)

∂ψ∗
i (τ)
∂τ

,

HBH(ψ∗
l ,ψl−1) → HBH(ψ∗(τ),ψ(τ)),

(A.31)

where the exponent in (A.30) becomes

−∆τħ
M∑

l=1

[
1
2

L∑
i=1

(
ħψ∗

i,l
ψi,l −ψi,l−1

∆τ
−ħψi,l−1

ψ∗
i,l −ψ∗

i,l−1

∆τ

)
+HBH(ψ∗

l ,ψl−1)

]

=−1
ħ

∫ ħβ

0
dτ

[
1
2

L∑
i=1

(
ħψ∗

i (τ)
∂ψi(τ)
∂τ

−ħψi(τ)
∂ψ∗

i (τ)
∂τ

)
+HBH(ψ∗(τ),ψ(τ))

]
,

(A.32)

therefore we can write the partition function in the trajectory representation as

Z =
∮

Dψ∗
∮

Dψe
− 1

ħ
∫ ħβ

0 dτ
[

1
2

∑L
i=1

(
ħψ∗

i (τ) ∂ψi (τ)
∂τ −ħψi(τ)

∂ψ∗i (τ)
∂τ

)
+HBH (ψ∗(τ),ψ(τ))

]
(A.33)

where ∮
Dψ∗

∮
Dψ= lim

M→∞

∫ M∏
l=1

L∏
i=1

dψ∗
i,ldψi,l

2πi
, (A.34)
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and we have the periodic condition in imaginary time ψ(β) =ψ(0). Integrating by parts the

imaginary-time derivative, we can write the partition function

Z =
∮

Dψ∗
∮

Dψexp
(
−1
ħS[ψ∗,ψ]

)
, (A.35)

where the action is given by

S[ψ∗,ψ]=
∫ ħβ

0
dτ

[
L∑

i=1
ħψ∗

i (τ)
∂ψi(τ)
∂τ

+HBH(ψ∗(τ),ψ(τ))

]
. (A.36)

We can now use this formulation to study the correlations of the system.





Appendix B

Sum rule for the case of n0 = 0

We want to show that equation (5.32) satisfies the sum rule, namely that∫ ∞

−∞
dωA(k,ω)= 1. (B.1)

The integral separates into two terms. The first term, corresponding to the stable states,

consists on the integration of a Dirac delta distribution resulting in the following expression

∫ ∞

−∞
dωA+(k,ω)= ∆2

4J2(k)
csch2

(
∆

2J(k)

)
. (B.2)

The integration of the second term, which corresponds to the damped states, is more

involved. As a consequence of the uniform disorder distribution the integration reduces to

−µ+∆/2∫
−µ−∆/2

dωAr(k,ω)=
−µ+∆/2∫

−µ−∆/2

dω
1/∆[

1− J(k)
∆ log

∣∣∣ω+µ−∆/2
ω+µ+∆/2

∣∣∣]2

+π2J(k)2/∆2

. (B.3)

One can simplify such an integration by applying the change of variables

ω=−µ− ∆
2

tanh(u). (B.4)

The integral can thus be written as

−µ+∆/2∫
−µ−∆/2

dωAr(k,ω)= ∆
2

2

∫ ∞

−∞
du

sech2(u)
∆2(2J(k)u+1)2 +π2J2(k)

. (B.5)

One can solve the above integral by going into the complex plane and applying the residue
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theorem. This leads to

−µ+∆/2∫
−µ−∆/2

dωAr(k,ω)=− ∆2

4J2(k)
csch2

(
∆

2J(k)

)
+

∞∑
l=0

4iπ∆2J(k)(∆+ iJ(k)π(1+2l))[
∆2 −4J(k)2π2l(1+ l)+2iπ∆J(k)(1+2l)

]2 ,

(B.6)

where the first term stands for the residue of the simple pole in the upper half of the complex

plane on the denominator of the right-hand side of (B.5), while the second term consists of

the sum of infinitely many residues in the upper half of the complex plane coming from the

hyperbolic secant function in the numerator. Choosing

f (l)=
∞∑

l=0

4iπ∆2J(k)(∆+ iJ(k)π(1+2l))[
∆2 −4J(k)2π2l(1+ l)+2iπ∆J(k)(1+2l)

]2 , (B.7)

such a summation can be directly evaluated by applying the Poison summation formula

∞∑
l=0

f (l) =
∞∑

l=0

∫ ∞

−∞
dxδ(x− l) f (x)

=
∞∑

m=−∞

∫ ∞

−∞
dxf (x)e2iπmx.

(B.8)

Applying once more the residue theorem, it is possible to show that

∞∑
l=0

4iπ∆2J(k)(∆+ iJ(k)π(1+2l))[
∆2 −4J(k)2π2l(1+ l)+2iπ∆J(k)(1+2l)

]2 = 1. (B.9)

Therefore, considering all the parts the sum rule reads

∫ ∞

−∞
dωA(k,ω)= ∆2

4J2(k)
csch2

(
∆

2J(k)

)
− ∆2

4J2(k)
csch2

(
∆

2J(k)

)
+1, (B.10)

which clearly equals to unity.





Appendix C

Limit of large space separations

The inverse Fourier transform of the partial summation result for the Green’s function

(4.20) reads

G i j(ω) =
( a
2π

)2d ∫
BZ

ddk
∫

BZ
ddk′G(k,k′;ω)ei(k·xi−k′·x j)

=
( a
2π

)d ∫
BZ

ddk
eik·(xi−x j)

[g i(ω)]−1 − J(k)
,

(C.1)

where we have already considered the analytic continuation iωl →ω+ i0+ from Matsubara

to real frequencies.

In order to simplify the integration, one can apply the identity

1
A

=
∫ ∞

0
dνe−A ν, (C.2)

where the variable ν is usually called the Feynman-Schwinger parameter. We choose A =
[g i(ω)]−1 − J(k) an substitute this back in (C.1), which takes the form

G i j(ω)=
( a
2π

)d ∫ ∞

0
dνe−ν

[
g i(ω)

]−1 ∫
BZ

ddkeik·(xi−x j)+νJ(k). (C.3)

In the limit of large separations in space, i.e. |xi −x j| →∞, one can interpret that

only the low momentum modes would contribute and lattice spacing a becomes negligible

such that the dispersion (4.19) can be expanded as

J(k)≈ 2Jd− Ja2|k|2. (C.4)

Including the above expansion in (C.3) and considering the limit of a → 0, we obtain that the

integrals in k become Gaussian. Such integration results in the following expression

G i j(ω)∼
∫ ∞

0
dν

e−ν[G(0,ω)]−1−|xi−x j |2/4Ja2ν

νd/2 as |xi −x j|→∞. (C.5)

160



Appendix C. Limit of large space separations 161

Since, we are only interested in the overall asymptotic behavior, we do not show the pro-

portionality constants. We now define the rescaling of ν as

ν=
√

G(0,ω)
4Ja2 |xi −x j|u, (C.6)

which allows us to write the exponents in (C.5) in following form

ν

G(0,ω)
+ |xi −x j|2

4Ja2ν
= |xi −x j|√

4Ja2G(0,ω)

(
u+ 1

u

)
. (C.7)

After this change of variables, the equation (C.5) becomes

G i j(ω)∼ 1

|xi −x j| d
2 −1

K d
2 −1

 |xi −x j|
a
√

JG(0,ω)

 as |xi −x j|→∞, (C.8)

where we have introduced the modified Bessel function of second kind

Km(y)= 1
2

∫ ∞

0
du um−1e−

y
2
(
u+ 1

u
)
, (C.9)

with

m = d
2
−1 and y= |xi −x j|

a
√

JG(0,ω)
. (C.10)

In the long distance limit, i.e. for y À 1, a calculation with the saddle-point method

[180, 144] shows that the following asymptotic behavior for the Bessel function

Km(y)=
√

π

2y
e−y

[
1+O

(
1
y

)]
. (C.11)

Therefore, the asymptotic behavior of the Green’s function becomes

G i j(ω)∼ 1

|xi −x j| d−1
2

e−
|xi−x j |

`

[
1+O

(
1

|xi −x j|
)]

as |xi −x j|→∞, (C.12)

where

`= a

√
J|G(0,ω)|

|sin[arg(G(0,ω))/2]|
. (C.13)
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