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Kurzzusammenfassung

1995 wurden die ersten Bose-Einstein-Kondensate (BEC) mit ultrakalten Atomen
experimentell beobachtet [1, 2]. Seither konnte dieses makroskopische Quanten-
phänomen in einer Vielzahl von physikalischen Systemen realisiert werden, ange-
fangen bei ultrakalten Atomen bis hin zu Quasiteilchen in Halbleiterstrukturen
bei Zimmertemperatur [3, 4, 5, 6, 7]. Aktuelle Experimente in der Arbeitsgruppe
von Martin Weitz an der Universität Bonn [8, 9] machten es sogar experimentell
möglich, Photonen in ein Bose-Einstein Kondensat zu überführen. Obwohl sie weder
eine Ruhemasse noch ein chemisches Potential aufweisen, konnte durch geschicktes
Modi�zieren des thermischen Gleichgewichts in einem Resonator dieser Phasenüber-
gang bei einem Photonengas beobachtet werden. Die vorliegende Diplomarbeit
verbindet nun die Elektrodynamik mit der Bose-Einstein-Kondensation und unter-
stützt somit theoretisch die bereits durchgeführten Experimente. Ausgehend von
den Maxwell-Gleichungen in einer Kavität leiten wir die zugrundeliegende Moden-
struktur der dreidimensionalen Resonatorphotonen her, welche e�ektiv einem zwei-
dimensionalen massiven Bose-Gas entspricht. Das resultierende Randwertproblem
in einem gekrümmten Resonator beinhaltet bereits die relevanten Informationen, die
für ein in einer harmonischen Falle gefangenes massives Bose-Gas erforderlich sind.
Die berechneten Moden bieten Zugang zu thermodynamischen und statistischen
Gröÿen wie der kritischen Photonenzahl, Intensitäten und Korrelationsfunktionen.
In diesem Sinne bietet die explizite Kenntnis des elektromagnetischen Feldes ein
perfektes Werkzeug für weitergehende Untersuchungen.
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Abstract

The �rst Bose-Einstein condensate (BEC) was experimentally observed with ultra
cold atoms in 1995 [1, 2]. Since then, this macroscopic quantum phenomenon has
been realized in various physical systems from ultra cold atoms to quasi-particles
in semi-conductors at room-temperature [3, 4, 5, 6, 7]. Recent experiments [8, 9]
made it experimentally feasible to Bose-Einstein condensate even photons. Pos-
sessing neither a rest mass nor a chemical potential, an adept modi�cation of the
thermal equilibrium in a micro cavity permits the observation of the phase transition
for a photon gas. This diploma thesis links electrodynamics with the Bose-Einstein
condensation of photons and therefore theoretically supports the performed experi-
ments on a photonic BEC. Starting from the three-dimensional Maxwell equations
in a cavity, we derive the underlying mode structure of the cavity photons which
then corresponds to an e�ective two-dimensional massive Bose gas. The resulting
boundary value problem in a curved resonator already contains all relevant informa-
tion which is required for a massive harmonically trapped Bose gas. The calculated
modes grant access to thermodynamical and statistical quantities such as the critical
photon number, intensity and correlation functions. In this sense the knowledge of
the explicit electromagnetic �eld provides a perfect tool for further investigations.
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Outline of this thesis

This thesis represents a link between electrodynamics and the BEC theory which
obviously both apply to a BEC of photons. In particular, we transfer the results for
electromagnetic �elds in the cavity obtained from classical electrodynamics to the
bosonic �eld theory for weakly interacting Bose gases.
After the brief presentation of the performed experiment in the introduction, the
second chapter starts with the Maxwell equations and develops the boundary value
problem for the cavity photons. To this end, the vectorial Maxwell equations are
decomposed into a vector constraint and a scalar di�erential equation. In paraxial
approximation and with suitable coordinates, the boundary value problem for the
curved resonator system can be explicitly solved. The obtained mode structure is
then used to quantize the electromagnetic �eld. The third chapter takes advantage
of the �eld quantization and establishes an e�ective two-dimensional description for
the Bose gas. The main part of this chapter is dedicated to the calculation of the
BEC phase transition for the cavity photons, which is performed quantum mechan-
ically exact. With the full mode structure at hand, the spatial correlation of the
photon gas can be studied. Finally, the thesis is concluded in the fourth chap-

ter. The methods and experimental proposals for further investigation of a photonic
BEC are discussed. Worth mentioning are the occurring di�erent polarizations in the
BEC and the possible creation of a left- and right-handed BEC or doughnut-shaped
ground state mode. In particular, the theoretical description of the two-dimensional
phase transition and the calculation of the corresponding time-dependent correla-
tions are fundamental ongoing questions for the photonic BEC.
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Chapter 1

Introduction

This diploma thesis links the experiments on a Bose-Einstein condensate (BEC) of
photons [8, 9, 10, 11, 12] performed by the Bonn group of Martin Weitz with elec-
trodynamics.
What is special about Bose-Einstein condensation of photons in an optical micro
cavity? One of the most omnipresent Bose gases is the black-body radiation. It is
not feasible to cool down a black body-radiator in order to achieve a phase transi-
tion towards a BEC of photons with thermal distribution. The Stefan-Boltzmann
law tells us already that the radiated energy, and therefore the number of emitted
photons, is proportional to T 4 with T being the temperature. This just states that
cooling provides an e�ective loss of photons but it does not end up in a macroscopic
occupation of the lowest possible energy level. In case of massive particles, as for a
rubidium gas, it is clear that you just have to reduce the average kinetic energy of
the particles to reach the ground state with the whole ensemble. However, with a
rest mass of zero and a vanishing chemical potential we cannot cool down photons
in number conserving way. How can we experimentally circumvent this problem?
A promising ansatz is to put the photons into a micro cavity. The setting of a res-
onator discretizes the spectrum of possible modes inside the cavity. The resonance
condition L = 0.5 nλ naturally selects the allowed cavity modes, here L denotes
the spatial extension of the cavity, λ is a possible wavelength and n is the integer
number of nodes in the resonator. Obviously a wavelength with

λ > 2L (1.1)

is not resonant, because n = 1 is the lowest available node number. Thus, we
conclude that every �nite system has a certain cut-o� wavelength. Via the linear
dispersion relation for light in a homogeneous medium

E = ~ω = ~c
2π

λ
(1.2)

the resonator de�nes the lowest available energy level. By setting a high energy
cut-o�, it is no longer required to cool down to the absolute zero point to reach
the corresponding ground state. Thus, especially micro cavities with ultra small
mirror distances L implement enhanced cut-o�s. The thermalization of photons in
a cavity is still problematic, how can one populate the ground state macroscopically
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without loosing the photons. The answer is a dye solution between the cavity
mirrors. Every electromagnetic wave can be described by a certain wave vector k.
In three dimensions, this vector has three distinct vector components. Imagine a
resonator in z-direction and an open rim in the other two transverse directions. The
transverse direction has a continuous spectrum, while the z-direction possesses an
energy cut-o�. Translated into the proportions of the wave vector k, this means
that the two transverse components can become arbitrarily small, whereas the kz-
component cannot. The spectral properties of the dye-solution thermalize the light
inside the cavity. Due to the large overlap between its absorption and its emission
coe�cient, the dye depopulates states with great transversal components and emits
exactly electromagnetic waves with the appropriate kz-component. Thus, this is not
cooling down photons, but the modi�ed thermal equilibrium with the high energy
cut-o� e�ectively leads to a signi�cant population of the photons with wave vector kz
and small transverse components. This is essentially distinct from lasing, where the
gain medium and the light �eld are far removed from thermal equilibrium to produce
coherent light. In the case of the photon BEC the macroscopic population of one
photon mode is achieved by an equilibrium phase transition. Strongly coupled mixed
states of photons and polaritons can also thermalize due to interparticle interaction.
However the di�erence between these exciton polaritons and the photon BEC is the
coupling mechanism. While polaritons require coherent back scattering to reach a
quasi-equilibrium, the frequent collisions of the dye with the solvent hinder coherent
energy exchange between the photons and the dye molecules. Thus, the coupling
process for the thermalization is incoherent which contravenes the condition for
strong matter-�eld coupling.
Of course, electromagnetic waves in a curved resonator obey the Maxwell equations.
In appropriate gauge, the Maxwell equations encode the Fourier transformed three-
dimensional wave equation or so called Helmholtz equation

−∆Ψ(x) = k2Ψ(x), (1.3)

with some additional boundary conditions arising from the curved mirrors. An
explicit analysis of the underlying mode structure should reveal similarities to a
massive trapped bosonic gas whose corresponding partial di�erential equation (PDE)
for the mode function is reminiscent of the two-dimensional stationary Schrödinger
equation {

− ~2

2mph

∆ + V (x)

}
Ψ(x) = k2Ψ(x). (1.4)

This diploma thesis is guided by the idea of taking the normal mode expansion for
cavity photons as an ansatz for equivalently massive trapped bosons. The intention is
to derive the occurrence of BEC from the Helmholtz equation (1.3), which is classical
electrodynamics. Inspired by the analogy to the massive trapped boson Hamiltonian
(1.4), we set up a boundary value problem for the electromagnetic �eld and develop
the underlying normal modes. The explicit mode structure gives full access to various
important quantities as for instance intensities, correlation functions and the critical
photon number. Therefore this diploma thesis provides also theoretical support for
the photonic BEC experiment in Bonn. Before we analyze the problem in detail, it
is useful to have in mind a precise scheme of the performed experiment.
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1.1 Experimental setup

Figure 1.1: a) Schematic spectrum of cavity modes with absorption coe�cient α(ν)
and �uorescence strength f(ν) b) Dispersion relation of photons in the cavity (solid
line) with �xed longitudinal mode (q = 7) and the free photon dispersion (dashed
line) c) Schematic experimental setup with trapping potential imposed by the curved
mirrors [9].

The experiment described here is the basic setting for our further theoretical investi-
gation. It was performed by Martin Weitz and his group at the University of Bonn.
Photons are trapped in a curved optical micro resonator, where the curvature of the
mirrors induces an e�ective harmonic trapping potential, see Figure 1.1. Outside
the center of the mirrors, the distance d becomes shorter and the absolute value of
allowed wave vectors

|k| = 2π

d
(1.5)

grows. Thus, we conclude that the energy E = ~c|k| of the photons to remain in
this region of the cavity is higher than in the center. Here, c denotes the speed of
light in the dye medium de�ned as c = c0/n with the refraction index of the dye
solution n = 1.4 and the vacuum speed of light c0. Thus, we have to distinguish the
cavity wavelength and the outside wavelength according to

ν =
c0

λ0

=
c

λ
, (1.6)

which results in a shorter cavity wavelength

λ =
λ0

n
. (1.7)

The two mirrors are spaced L = 1.46 µm away from each other, which amounts
to 3.5 times the optical wavelength. Corresponding to a vacuum wavelength of
λ0 = 585 nm or a cavity wavelength λ = 412 nm, Figure 1.1 shows a great overlap
between the absorption coe�cient α(ν) and the �uorescence strength f(ν) of the
dye at the quantum number q = 7. This modi�es the spontaneous emissions such
that the emission of the longitudinal mode with quantum number q = 7 dominates
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over all other emission processes.
Due to the extremely short mirror distance and the spectral properties of the dye
solution, there is an e�ective longitudinal low frequency cut-o� ωcut = ckz = 2π ·
5.1 · 1014 Hz with the longitudinal cut-o� wave vector

kz =
qπ

L
=

2π

λ
. (1.8)

The energy E = ~ωcut of the longitudinal mode kz is far above thermal energy at
room-temperature β~ωcut = 80 with the inverse temperature β = 1/(kBT ). The
photon statistics yields

nph =
1

eβ~ωcut − 1
≈ e−80 (1.9)

i.e. the cavity photon number nph is almost not altered by the temperature T of
the surrounding dye solution. The thermalization process conserves the average
photon number. Thermal equilibrium can be achieved by absorption and reemission
processes in the dye solution, which is acting as a heat bath for the photons. In
Figure 1.1, the reemission and absorption in the longitudinal mode kz dominates all
other modes. There the largest overlap between the emission coe�cient α(ν) and
the �uorescence strength f(ν) occurs. Most of the (q = 7)-photons absorbed by
the dye will be reemitted inside the cavity, whereas there is an imbalance between
absorption and emission for all other longitudinal modes. The kz-mode is frozen out
and the transversal modes k⊥ can thermalize due to the rovibrational energy levels
of the dye solution.

1.2 Experimental results

The BEC of the photons inside the dye-�lled cavity has been proven experimentally
by investigating both the spatial and the temporal coherence. Figure 1.2 shows
the measured spectral distribution which is a classical thermal distribution at room
temperature plus an increased intensity for the wavelength λ = 585 nm. The latter
corresponds to the frozen longitudinal wave vector kz, which yields λ = n02π/kz.
This proves the BEC of photons in the frequency domain. The experimental setup
also allows to check the spatial domain. Hence, another evidence for the achieved
BEC is the in-situ spot captured by the camera in Figure 1.2. Below criticality,
there is only a thermal cloud of the cavity photons, but above criticality, one �nds
a rather sharp yellow spot sitting in the center of the cavity in the minimum of the
harmonic potential, which is induced by the curvature of the cavity mirrors.
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a) b)

Figure 1.2: a) Spectral intensity distributions (connected circles) transmitted
through one cavity mirror, as measured with a spectrometer for di�erent pump pow-
ers. b) Images of the spatial radiation distribution below criticality (upper panel)
and above criticality (lower panel) [9].
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Chapter 2

Photon �eld in a micro resonator

Starting from the three-dimensional Maxwell equations, we derive a theoretical de-
scription of the electromagnetic �eld that can be used to mimic the Hamiltonian
of two-dimensional massive trapped bosons. To this end, we formulate a boundary
value problem for the Maxwell equations in the curved resonator environment. This
classical description yields the eigenmodes which are necessary for the quantization
of the cavity �eld. Within the paraxial approximation, it can be shown that
solving the Maxwell equations for the photon modes in three dimensions is formally
equivalent to looking for eigenfunctions of the stationary Schrödinger equation for
matter-like bosons in two dimensions. Thus, we can identify the Fock space of the
cavity photons with the Fock space of trapped massive bosons.

2.1 Maxwell equations in matter

The electromagnetic �eld in the resonator, which we investigate, is modi�ed by the
presence of the dye solution. Thus we have to consider the macroscopic Maxwell
equations which read in the units of the système international (SI)

∇ · D = ρ ∇ · B = 0

∇× E = −Ḃ ∇× H = j + Ė.
(2.1)

The following material equations for media featuring electric or magnetic polariza-
tion P or M , respectively, connect the dielectric displacement D and the magnetic
induction B with the electric and the magnetic �eld E and H respectively,

D = ε0E + P (2.2)

B = µ0(H + M), (2.3)

where ε0 is the vacuum permittivity and µ0 the vacuum permeability. For the
moment, we assume that the dye is an isotropic linear material which leads to

D = ε0E + P = ε0(E + χelE) = εE (2.4)

B = µ0(H + M) = µ0(H + χmH) = µH, (2.5)

where χel and χm are the scalar susceptibilities. Thus, here the permeability µ and
the permittivity ε are scalar quantities, too. More generally, the susceptibilities are
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tensor-valued and depend on the orientation of the medium which then also covers
non-linear optical e�ects like the parametric down conversion or the Kerr e�ect [13].
The present system does not involve any free charges or free currents, thus we set
the charge density ρ = 0 and the current j = 0. Combining these assertions with
the material equations (2.4) and (2.5), the Maxwell equations read now

∇ · εE = 0 ∇ · µH = 0

∇× E = −µḢ ∇× H = Ė.
(2.6)

Within the potential formalism, we reexpress the electric and the magnetic �eld in
terms of a scalar potential φ and a vector potential A,

E = −∇ϕ− Ȧ (2.7)

H = ∇× A. (2.8)

Note here, that two of the four equations (2.6) are always satis�ed by the vector
identities

∇× ∇ϕ = 0 (2.9)

∇ · ∇ × A = 0. (2.10)

From a mathematical point of view, we can add the gradient of an arbitrary function
to A and still get the same physical �eld H,

H̃ = ∇× Ã = ∇× (A +∇Ξ) = H. (2.11)

Correspondingly, also the electric �eld is left unchanged

Ẽ = −∇ϕ̃− ∂

∂t
Ã = −∇ϕ̃− ∂

∂t
(A +∇Ξ)

!
= E, (2.12)

provided the scalar function is given by

ϕ̃ = ϕ− ∂

∂t
Ξ. (2.13)

Clearly, the Maxwell equations are invariant under such gauge transformations.
From Emmy Noether's theorem we know that symmetries underlie conserved quan-
tities, in the present case it is simply charge conservation. However, the information
we obtain from (2.11) is that the vector potential A is not exactly determined.
There are many ways for a gauge �xation, i.e ways to �x the arbitrary function Ξ
as for example

sin(A · x) =
π

7|x|
(2.14)

∇ · A = 0. (2.15)

Equation (2.14) is probably not a good choice for a gauge �xation, but (2.15) repre-
sents the Coulomb gauge or the so-called transversal gauge, which is of tremendous
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physical relevance. Plugging Equation (2.7) into Equation (2.6) and applying (2.26),
one immediately �nds that ϕ is an harmonic function

∆ϕ = 0. (2.16)

Setting the Dirichlet boundary condition ϕ = 0 on the boundary ∂Ω and applying
the minimum and maximum principle for harmonic functions, ϕ must be 0. The
Coulomb gauge together with ϕ = 0 represents the radiation gauge.
Using the vector identity

∇× ∇× A = ∇∇ ·A−∆A (2.17)

and the Coulomb gauge (2.15), the Maxwell equations (2.6) reduce to the vectorial
wave equation [

∆− 1

c2

∂2

∂t2

]
A = 0, (2.18)

where c = (µε)−1/2 denotes the speed of light in the dye solution given by c = c0/n.
The linear refraction index n of the dye solution is 1.33. Performing the Fourier
transformation from the time domain to the frequency domain by taking into account
the linear dispersion relation ω = c|k| in homogeneous media, we end up with the
homogeneous vectorial Helmholtz equation[

∆ + |k|2
]
A = 0, (2.19)

with the length of a yet arbitrary wave vector |k| =
√
k2
z + k2

y + k2
x. This equation

is the starting point for further investigations.

2.2 Boundary value problem

In order to establish proper boundary conditions, we must take a closer look at
the experimental setup. The whole system exhibits cylindrical symmetry, since it
is invariant under rotations of the azimuthal angle. These are rotations around the
z-axis, see Figure 2.1. Additionally we have to parametrize the curved caps of the
cylinder as the boundary for the curved resonator.
A few geometrical considerations for this bi-convex cavity lead to a parametrization
of the mirrors, here denoted by ∂Ω±. Hence the coordinate z is parametrized as a
function of the distance ρ perpendicular to the optical axis

z|∂Ω±(ρ) = ±
(
L

2
−R +

√
R2 − ρ2

)
, (2.20)

where R is the curvature radius of the mirrors and L the mirror distance. In paraxial
approximation, where ρ� R is assumed, these boundary conditions reduce to

z|∂Ω±(ρ) ≈ ±
(
L

2
− ρ2

2R

)
. (2.21)
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Figure 2.1: Schematic of the geometrical setup within the bi-convex micro resonator.
The system is invariant under rotations around the z-axis. The indicated polar angle
θ does not play a role in cylindrical coordinates, but it is relevant in curvilinear
coordinates to describe the mirror surfaces (bold black). The large radius vector R
indicates the curvature of the mirrors. L is the mirror distance on the optical axis,
which decreases in radial direction ρ.

To justify that ρ� R, we evaluate ρ at z = 0 in (2.21), where theoretically the two
mirror surfaces get together,

z = ±
(
L

2
− ρ2

2R

)
!

= 0. (2.22)

A �rst estimation leads to

ρmax ≈
√
LR. (2.23)

Just for comparison, the mirror distance L is about 1.46 µm in contrast to a huge
curvature radius R of about 1 m. Thus ρmax is at least a thousand times smaller
than R.
Furthermore, we assume perfectly conducting cavity walls which yields the boundary
conditions [14]

n× E|∂Ω± = −n× Ȧ|∂Ω± = 0 (2.24)

n ·H|∂Ω± = n · ∇ ×A|∂Ω± = 0, (2.25)

where n is the normal vector to the curved mirror surface in Figure 2.1. Due to
continuity, the tangential component of the electric �eld and the normal component
of the magnetic �eld have to vanish on the cavity boundary. However, a normal
component of electric �eld on the cavity surface is allowed. The same applies for
the tangential magnetic �eld. There is a non-zero �eld inside the cavity, but outside
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the cavity the �eld should vanish. This is modeled by the ideal cavity walls which
guarantee a �eld-free environment. Figure 2.1 clearly shows that the tangential and
normal vectors are not constant vectors, but depend on the base point.
In the previous section, we have cast the Maxwell equations into the form of the
vectorial Helmholtz equation (2.19) with a vector constraint arising from Coulomb
gauge (2.15)

∇ · A = 0 (2.26)[
∆ + |k|2

]
A = 0. (2.27)

The actual advantage of the Coulomb gauge is that the Helmholtz di�erential oper-
ator is scalar and acts separately on each of the three �eld components of A. The
coupling of the various vector components is still present in the divergence con-
straint.
Solving the Maxwell equations for the cavity modes amounts to solving Equations
(2.26), (2.27) with the boundary conditions given by Equations (2.24), (2.25) and a
speci�c boundary parametrization (2.21) making the variable z dependent on ρ.
In three dimensions, one has three independent variables for the Helmholtz equa-
tion. It would be tempting to separate these three variables in order to solve the
ordinary di�erential equations (ODEs), however the boundary condition induces a
dependence which destroys this scheme afterwards. One can simplify the problem
by using coordinates (ξ1, ξ2, ξ3) adapted to the boundary condition, such that no
dependencies among the variables are induced on the boundary, for example

A(x)|∂Ω = A(ξ1 = const, ξ2, ξ3). (2.28)

The curved mirrors are then just isolines in the chosen curvilinear coordinate system.
In this representation the boundary value problem can be handled more readily.
In a next step, I subdivide the system of two partial di�erential equations into the
vector constraint and the scalar Helmholtz equation for each vector component. The
separability of partial di�erential equations (PDEs) is the criterion whether or not
it is possible to cast a PDE of certain variables into separated ordinary di�erential
equations (ODEs) for the respective single variables. This is advantageous as ODEs
are generally easier to solve than PDEs. Morse and Feshbach have already shown
that the homogeneous scalar Helmholtz equation in three dimensions [15], i.e.[

∆ + |k|2
]
Ai(ξ1, ξ2, ξ3, ω) = 0 (2.29)

is separable in eleven di�erent coordinate systems [15, 16]. Of course the scalar
Helmholtz equation can also be solved in non-separable coordinates, but this is
rather hard to achieve. In general it is convenient to choose one of these eleven
coordinate systems such that the boundary is parametrized in a simple form, while
the scalar Helmholtz equation still remains separable, although the Laplace operator
can get more complicated.
In this section we deduced that it is su�cient to solve the scalar Helmholtz equations
in separable coordinates. The following section provides a possible coordinate system
matching the boundary condition. Once we have a scalar solution Ai [17] at hand, we
have to construct a vector �eld which ful�lls the additional constraint ∇·A(x) = 0.
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2.3 Oblate spheroidal coordinates

With the previous considerations in mind, we choose the oblate spheroidal coordi-
nates

x = a cosh(µ) sin(θ) cos(φ), (2.30)

y = a cosh(µ) sin(θ) sin(φ), (2.31)

z = a sinh(µ) cos(θ), (2.32)

where a is scale factor, one has to determine from the geometry of the cavity. The
coordinate µ runs mainly along the z-axis, while θ > 0 is o�-axis. For a �xed µ one
gets an ellipsoid in the xz-plane which is rotated around the z-axis by the angle φ.
Restricting the polar angle θ to 0 < θ < π/2, the sign of z is carried by µ. Then the
sign of x and y is de�ned by φ, for further illustration see Figure 2.2. The limitation
of the polar angle θ enables us to distinguish between the left (−) and right (+)
mirror side.

a) -0.4 -0.2 0.0 0.2 0.4
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-0.3-0.2-0.1 0.1 0.2 0.3

z

a

-1.0

-0.5

0.5
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Figure 2.2: Oblate spheroidal coordinates. a) Equations (2.30)�(2.32) as a cut in
the xz-plane for φ=0. b) Coordinate surfaces at constant µ are ellipses. The short
half axis is de�ned by µ and the two focal points are de�ned by the parameter a.

Now we link this coordinate system to the oblate cavity. First of all, the mirror
distance L is small in comparison to all other involved spatial dimensions, L �
ρ � R. This already implies that the coordinate µ, which determines the mirror
distance on the z axis, is much smaller than 1. The isolines for µ = const in Figure
2.2 highlight this fact. Thus, an expansion for small µ corresponds to a micro
cavity and a plain mirror expansion. Additionally, expanding for small θ, which is
actually the paraxial expansion, yields an approximate form of the oblate spheroidal
coordinates
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x ≈ aθ cosφ (2.33)

y ≈ aθ sinφ (2.34)

z ≈ aµ− aµθ2

2
. (2.35)

Inserting now (2.33) and (2.34) into (2.35) yields

z = aµ− µ(x2 + y2)

2a
. (2.36)

Starting with the coordinate surface for µ0 = const, we impose the boundary con-
ditions from Equation (2.21)

z|∂Ω− =
x2 + y2

2R
− L

2
!

=
µ0(x2 + y2)

2a
− aµ0, (2.37)

z|∂Ω+ =
L

2
− x2 + y2

2R
!

= aµ0 −
µ0(x2 + y2)

2a
. (2.38)

This determines the scaling factor a and the oblate coordinate ±µ0 for the mirror
surfaces

a =

√
LR

2
, (2.39)

µ0 =

√
L

2R
� 1. (2.40)

Note here again that the expansion above is valid for an oblate cavity where the
mirror distance L is much smaller than the curvature radius R. We have assured
that the coordinates match the boundary condition in a way that we can simply
parametrize it by µ = const.

2.4 Scalar Helmholtz equation in oblate spheroidal

coordinates

The oblate spheroidal coordinates are one of the eleven orthogonal coordinate sys-
tems in which the scalar Helmholtz equation is separable [16]. Now we are going to
solve [

∆ + |k|2
]
u(x, y, z, ω) = 0 (2.41)

with |k| = ω/c. Here the scalar function u is a Fourier transformed solution to
the scalar wave equation in Cartesian coordinates. It turns out to be convenient to
transform the variables according to [18]

ξ = cos θ 0 ≤ ξ < 1 (2.42)

ζ = sinhµ −∞ ≤ ζ <∞. (2.43)
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Then the Cartesian coordinates in (2.30)�(2.32) read as follows

x = a
√

(1 + ζ2)(1− ξ2) cosφ, (2.44)

y = a
√

(1 + ζ2)(1− ξ2) sinφ, (2.45)

z = aζξ. (2.46)

Since we treat the micro cavity in a set of orthogonal coordinates, the metric involv-
ing the Jacobian is diagonal, so in three dimensions there are only three non-zero
metric components. In general orthogonal coordinates the Laplace operator can be
written as [19]

∆u =
1

h1h2h3

[
∂1

(
h2h3

h1

∂1u

)
+ ∂2

(
h1h3

h2

∂2u

)
+ ∂3

(
h1h2

h3

∂3u

)]
, (2.47)

where h1, h2, h3 are the diagonal entries of the metric. In our case we get

hξ =

∥∥∥∥∂x

∂ξ

∥∥∥∥ = a

√
ζ2 + ξ2

1− ξ2
, (2.48)

hζ =

∥∥∥∥∂x

∂ζ

∥∥∥∥ = a

√
ζ2 + ξ2

1 + ζ2
, (2.49)

hφ =

∥∥∥∥∂x

∂φ

∥∥∥∥ = a
√

(1 + ζ2)(1− ξ2). (2.50)

The Laplacian then takes the form

∆ =
1

a2 (ζ2 + ξ2)

{
∂

∂ζ

[(
1 + ζ2

) ∂
∂ζ

]
+

∂

∂ξ

[(
1− ξ2

) ∂
∂ξ

]}
+

1

a2 (1 + ζ2) (1− ξ2)

∂2

∂φ2
. (2.51)

The azimuthal term can be split into a di�erence

1

(1 + ζ2) (1− ξ2)
=

1

(ζ2 + ξ2)

[
1

1− ξ2
− 1

1 + ζ2

]
, (2.52)

so we are able to separate the Helmholtz equation as(
ζ2 + ξ2

)
a2
(
∆ + |k|2

)
u(ξ, ζ, φ) = 0. (2.53)

The multiplication with (ζ2 + ξ2) cancels the prefactor in the Laplacian (2.51), such
that separation with a constant is possible.
Plugging the separation ansatz u(ξ, ζ, φ) = Q(ζ)R(ξ)eimφ with an integer angu-
lar momentum quantum number m into Equation (2.53), the separated Helmholtz
equation is [

d

dζ
(1 + ζ2)

d

dζ
+

m2

(1 + ζ2)
+ (|k|a)2ζ2

]
Q(ζ) = −γ2Q(ζ), (2.54)[

d

dξ
(1− ξ2)

d

dξ
− m2

(1− ξ2)
+ (|k|a)2ξ2

]
R(ξ) = +γ2R(ξ), (2.55)
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with γ as a separation constant. The separation scheme endows the two brackets
with eigenvalues of opposite sign e.g ±γ2. Furthermore, a kind of harmonic potential
emerges in the form of two quadratic terms. The task is now to simultaneously solve
both eigenvalue problems. Thus, it remains to determine the connection between γ
and |k|. The azimuthal angular momentum eigenvalue m was already identi�ed by
separating the variables. For simpli�cation we set from now on |k| = k.

2.4.1 Transverse modes

Rewriting the eigenvalue problem (2.55) from ξ = cos(θ) into the θ coordinate, we
�nd

− 1

sin θ

d

dθ
sin θ

dR

dθ
+

m2

sin2 θ
R + (ak)2 sin2 θR = (qa)2R (2.56)

with the following decomposition of the absolute value of wave vector k

(qa)2 = (ak)2 − γ2. (2.57)

The allover sign in Equation (2.56) is chosen in analogy to the kinetic energy from
quantum mechanics, which is −∆. Within the paraxial approximation we gain
access to analytic solutions, namely to modes which are strongly con�ned close to
the cavity axis, i.e. to the z-axis. Anticipating a typical axial wavelength of the
order L, we expect the dimensionless parameter

ka ∼ 1

L

√
RL

2
=

√
R

2L
(2.58)

to be large. Hence, we have a large potential ka sin2 θ con�ning the transverse modes
near the cavity axis.
The previous observation motivates the paraxial expansion sin θ ≈ θ = ρ/a, so that
we �nd the following approximated equation

−1

ρ

d

dρ
ρ

dR

dρ
+

(
m2

ρ2
+
k2

a2
ρ2

)
R = q2R, (2.59)

where (k/a)2ρ2 is the leading order potential term. Note here, that we have omitted
higher order potential terms.
Equation (2.59) is formally equivalent to the radial di�erential equation for a quan-
tummechanical two-dimensional harmonic oscillator with the transversal eigen-
value q2. Thus �nding eigenmodes in a curved resonator and, therefore, solving the
scalar Helmholtz equation in paraxial approximation is formally equivalent to the
quantum mechanical two-dimensional harmonic oscillator.
Since the total wave vector is given by k2 = q2 + γ2/a2, we already conclude that
k‖ = γ/a must be the absolute value of the axial wave vector. Equation (2.59) is
well studied, so we restrain ourselves in specifying its solution.
Second order di�erential equations generally have two linearly independent solu-
tions, but here, only one of them is of physical relevance, the one which is not
singular at ρ = 0, i.e.

R(q, k,m; ρ) = e−ρ
2k/2aρ|m|1F1

(
|m|+ 1

2
− aq2

4k
; |m|+ 1;

k

a
ρ2

)
, (2.60)
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where 1F1(d; b; z) is the con�uent hypergeometric function

1F1(d; b; z) =
∞∑
n=0

d(n)zn

b(n)n!
(2.61)

with the raising factorial d(n) = d(d + 1) · · · (d + n − 1). The solution R is regular
except for poles at negative integer b and can be normalized if d is zero or a negative
integer, so that the in�nite series terminates and the leading exponential function
guarantees that R ∈ L2 is a square integrable function. Checking these conditions,
we �nd

b = |m|+ 1 ≥ 0 (2.62)

d =
|m|+ 1

2
− aq2

4k
!

= −l l = 0, 1, ... (2.63)

which leads to a relation between q, k and m. Recalling that k =
√
q2 + γ2/a2 we

determine q(γ, |m|) from

q2 = 2
2k

a
(2l + |m|+ 1). (2.64)

For negative integers d, the con�uent hypergeometric function 1F1(d; b; z) can be
rewritten in terms of generalized Laguerre polynomials Lml in the form

R(q, k,m, ρ) = e−ρ
2k/2aρmLml

(
k

a
ρ2

)
. (2.65)

Remarks on the transverse solution

Before we can analyze the eigenvalues depending on γ,m, q in more detail, we have to
investigate the longitudinal di�erential equation (2.54) and the boundary conditions.
This will give further constraints and requirements to the separation constant γ. We
can already estimate the order of the radial eigenvalue q from Equation (2.63). In
leading order k will be proportional to 1/L. Solving Equation (2.63) for q leads to

q ∼
√
k

a
∼ 1

L3/4
(2.66)

with a =
√
RL/2. For L in the µm regime, we anticipate that the transversal

eigenvalues are around 10-100 times smaller than the axial ones which means their
contribution to |k| =

√
(γ/a)2 + q2 compared with the axial ones are about 100-

10000 times smaller because they appear squared in the absolute value of the total
wave vector. Due to the fact that the energy of an harmonic oscillator is equi-partite
between kinetic and potential energy, there is a way to estimate the order of the
transverse spatial extension of the eigenmodes. Omitting the kinetic energy term
and taking half of the energy eigenvalue yields

k2

a2
ρ2 =

q2

2
=⇒ ∆ρ ≈

√
(l + 1)a

2k
≈
√

(l + 1)10 µm (2.67)
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which is typically much larger than the wavelength. This is well known for the waist
of a beam that is not deeply focused, so that its wave fronts have a small curvature.
If l is not particularly large, the transverse modes are much narrower than the cavity
width, which is of the order a. This is good since conceptual, the cavity is actually
open in radial direction. Thus the edge e�ects should be only a small perturbation,
if the modes are localized close to the optical axis. Note also that the quantization
of q arises naturally from the fact that the Laguerre functions can be normalized
and not from any boundary condition. By approximating the Helmholtz equation we
acquired a curvature-induced harmonic con�nement which makes the solution to the
radial equation automatically normalizable, even in an open cavity. In contrast, a
simple plane wave is only normalizable in a �nite volume. Figure 2.3 shows the open
and closed cavity de�nition. We can choose the open one, because we do not expect
large contributions from afar. On the one hand this micro cavity setup involves large
longitudinal wave numbers 1/L which implicate huge trapping potentials (2.59). On
the other hand, the large radius of curvature does not signi�cantly deform the wave
fronts.

a) b)

Figure 2.3: Schematic of a) closed and b) open cavity. The gray shaded area indicates
the e�ective cavity volume and the fat black lines represent the mirrors. Due to the
curvature of the two mirrors, they would enclose a �nite volume. However strong
con�nement to the optical axis, normalizable mode functions and a large curvature
radius permit an open cavity model b).

Higher order corrections to the axial modes

Rewritten in the θ-variable and expanded to the next order, the transverse eigenvalue
equation (2.56) yields the following terms in units of the dimensionless variable
x = θ/

√
ak, which is adapted to the harmonic oscillator limit

− 1

x

d

dx
x

dR

dx
+
m2

x
R + x2R

+
x

3ka

dR

dx
+
m2

3ka
R− x4

3ka
R =

(qa)2

ka
R. (2.68)

The second line can only be treated with perturbation theory, otherwise the nega-
tive x4 potential would make the system unstable. Since the harmonic oscillator in
the �rst line is dimensionless, all quantities related to x are of the order of the di-
mensionless transverse extent, say

√
l according to (2.67), we anticipate a correction
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of the order l2/ka ∼
√
L from the quartic potential. Compared to the eigenvalue

2l = (qa)2/ka, this correction is small.

2.4.2 Axial modes

The axial part of the Helmholtz equation (2.54) can be cast into a Schrödinger-like
form if we rescale the function Q(ζ) = (1 + ζ2)−1/2P (ζ), which leads to

−d2P

dζ2
+ V (ζ)P = (ka)2P. (2.69)

Here, the potential is

V (ζ) = − m2 − 1

(1 + ζ2)2
+

(qa)2

1 + ζ2
, (2.70)

where ζ = sinhµ.
Since the coordinate µ is small for our micro resonator system, as it lies between
±µ0 =

√
L/2R, we can treat the potential term as being essentially constant with

a maximum value at ζ = 0 of V0 = (qa)2 + 1−m2. The higher order non-constant
contributions in ζ may be treated as small perturbations within the semiclassical
WKB-theory. First of all we are only interested in propagating solutions, which
means that the energy (ka)2 − V (ζ) should always be positive. In zeroth order
approximation with the notation (ka)2 − V0 = γ2 +m2 − 1 > 0, Equation (2.69) is

−d2P (µ)

dµ2
= (γ2 +m2 − 1)P (µ). (2.71)

This is equation is solved by

P (µ) = Aei
√

(γ2+m2−1)µ +Be−i
√

(γ2+m2−1)µ. (2.72)

The longitudinal eigenvalue problem (2.71) involves also the angular momentum
quantum numberm, which mixes here with the axial eigenvalue due to the curvature.
Solving the Cartesian z coordinate (2.32) for µ, we get the approximate form

µ(ρ, z) ≈ z

a

(
1 +

ρ2

2a2
+

z3

6a2

)
, (2.73)

where the leading order term z/a is proportional to
√
L and the next-to-leading

order term zρ2/2a3 already goes with L. This means once again that the o�-axis
correction is about three magnitudes smaller than the leading order. So at �rst sight
the function P is a plane wave in z-direction with small corrections. We cannot yet
specify another equation for γ, until we construct the full vector solution and �nally
implement the boundary conditions for the perfect conducting cavity walls (2.24)
and (2.25). The general solution P in (2.72) still contains some arbitrary constants
A and B which will also be �xed later.
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2.4.3 Higher order correction to axial modes

In this section we use the WKB technique to calculate the next order correction
term of the axial modes. This semiclassical approach is useful since, we treat the
regime where the energy eigenvalue is larger than the given potential (ka)2 � V0.
This is the region where the classical motion is possible. If the transverse quantum
numbers are su�ciently small, we already know that (ka)2 � V0 = (qa)2 −m2 + 1.
To apply the WKB method we rewrite Equation (2.69) in the form

ε2
d2P

dυ2
=
{
V (υ)− (ka)2

}
P (υ), (2.74)

where we have introduced the rescaled variable υ = εζ with a small dimensionless
scaling parameter ε. The parameter provides a separation of scales between the
kinetic energy term and the potential term. If one thinks in terms of the Schrödinger
equation, one �nds ε ∼ ~ with appropriate dimensions.
With the ansatz for P

P = exp (Φ(υ)) , (2.75)

Equation (2.74) turns into a di�erential equation for Φ

d2Φ

dυ2
+

(
dΦ

dυ

)2

=
1

ε2
{
V (υ)− (ka)2

}
. (2.76)

The �rst derivative of Φ can be split into its real and imaginary part

dΦ(υ)

dυ
= A(υ) + iB(υ). (2.77)

Integrating this equation we obtain immediately the amplitude and the phase of the
function P . Applying the ansatz (2.77) to Equation (2.76), we �nd an equation for
the imaginary and one for the real part of P

dA(υ)

dυ
+ A(υ)2 −B(υ)2 =

1

ε2
{
V (υ)− (ka)2

}
, (2.78)

dB(υ)

dυ
+ 2A(υ)B(υ) = 0. (2.79)

Performing an expansion in the small parameter ε for A and B

A =
1

ε

∞∑
n=0

εnAn (2.80)

B =
1

ε

∞∑
n=0

εnBn, (2.81)

and taking the limit ε→ 0 the zeroth order of (2.78) and (2.79), yields

A2
0 −B2

0 =
{
V (υ)− (ka)2

}
, (2.82)

2A0B0 = 0. (2.83)

21



If the amplitude A varies su�ciently slowly as compared to the phase B, we can set
A0 = 0 and �nd an equation for the determination of the WKB phase

B0 = ±
√

(ka)2 − V (υ). (2.84)

This is of course only valid if (ka)2 > V , otherwise we will not �nd any classi-
cal oscillating motion, since the square root becomes imaginary and the total wave
function is then exponentially damped, which corresponds to quantum mechanical
tunneling.
Now we are able to calculate the WKB phase between the points ±υ0 = ±εζ0 =
±ε sinhµ0, where the axial mode function vanishes, thus the phase must be a mul-
tiple of π. Expanding the potential V (ζ) from (2.70) in the old variable ζ under the
square root (2.84) and then integrating it, yields the phase∫ ζ0

−ζ0
B(ζ ′)dζ ′ ≈ 2k‖aζ0 −

((qa)2 − (2m2 − 2))ζ3
0

3k‖a
!

= nπ (2.85)

with the de�nition of the longitudinal wave vector (ka)2
‖ = (ka)2− (qa)2 + (m2− 1)

and the axial quantum number n. The �rst term is the zeroth order potential term
we have already found in the previous section. The next curvature correction is then

(qa)2

ka
µ3

0 ≈ 2lµ3
0 ≈ 2l

1

(ka)3
, (2.86)

where we used the estimated result for q2 from (2.66) and the fact that the parameter
µ is µ0 = L/2a ∼ 1/ka. In terms of these dimensionless units, the axial next order
correction is about a factor 1/(ka)2 smaller than the transverse one. Thus the
transverse anharmonicity is more relevant, although is scales with 1/ka.

2.4.4 Scalar solution

The separation scheme of the scalar Helmholtz equation in oblate spheroidal coordi-
nates provided two di�erential equations. One of them is connected to the transver-
sal modes and the quantum mechanical two-dimensional harmonic oscillator. The
other one involved the µ coordinate whose isolines represent the curved mirrors. In
summary we obtain a total scalar wave function that solves the Helmholtz equation
in the paraxial approximation. It contains an e�ective two-dimensional oscillator
for the radial part and a plane wave for the µ coordinate,

uγqm

(
ρ, φ, µ(ρ, z), k =

√
γ2/a2 + q2

)
= e−ρ

2k/2aρmLml

(
k

a
ρ2

)
P (µ(ρ, z)) eimφ,

(2.87)

where k =
√
γ2/a2 + q2. Here, the expression γ/a = k‖ represents the absolute

value of the axial wave vector.
The boundary condition cannot be implied properly, before we have a vector solution
at hand. Thus, at present we are not able to give exact eigenvalues for the wave
function P . The WKB-phase method in (2.85) for the scalar function P yields the
provisional result k‖ = nπ/L. The wave vector k‖ is the result of the axial modes
and it resembles kz, but they are not necessarily exactly the same.
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2.5 Vector solution

The precedent steps, which led to the scalar Helmholtz equation, are only valid
under the constraint ∇ · A = 0. Starting with the scalar solution (2.87), we have
to construct an adequate vector solution. Fortunately, there exists a representation
theorem for the vector Helmholtz equation [20, 10.41] which states:
If u is a solution to the scalar Helmholtz equation

∆u+ |k|2u = 0, (2.88)

and e is a constant vector, then the vectors

f = ∇× (eu) (2.89)

g =
1

|k|
∇ × f (2.90)

are independent solutions of the vector Helmholtz equation

∆A + |k|2A = 0 (2.91)

involving a solenoidal vector A, i.e. the Coulomb gauge ∇ ·A = 0 is ful�lled. The
general transverse solution of this equation is a linear combination of both

A = C1∇× (eu) +
C2

|k|
∇ × ∇× (eu). (2.92)

The general vector solution for the potential A in (2.92) is a superposition of two
orthogonal vector �elds corresponding to the di�erent polarizations ε1 and ε1 of the
electromagnetic �eld. Together with the wave vector k, they form an orthogonal
basis of the cavity system. In order to distinguish between the two orthogonal vector
modes, we introduce

Aγqmε1(x) =∇× (euγqm) (2.93)

Aγqmε2(x) =
1

|k|
∇ × ∇× (euγqm). (2.94)

The indices on the scalar solution uγqm from (2.87) remind us of the yet undetermined
wave vectors and quantum numbers. The divergence condition is satis�ed trivially
due to the identity ∇· ∇× = 0. One only has to make a good choice for the constant
unit vector e. The theorem holds for constant vectors, because the operation ∇×
acts only on the scalar solution and not on the unit vector.
In the non-constant vector case the product rule for scalar function times vector
results in additional terms to the vector Helmholtz equation. As the normal vector
n is non-constant, we also want to admit non-constant vectors and therefore allow
some kind of corrections.
Due to the curl construction it also possible to choose unit vectors of a gradient
form without loosing transversality, i.e.

∇× [(∇f)u] = u∇× ∇f︸ ︷︷ ︸
=0

+∇u×∇f = −∇f ×∇u. (2.95)
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In the oblate spheroidal coordinates the corresponding unit vectors are not constant
as they still depend on the local coordinates. However a good starting point is the
µ-surface from (2.73) and its gradient which, by de�nition, is the normal vector to
the µ = const-surface spanned by the θ and φ unit vectors, see Figure 2.4,

n = a∇µ = a∇z
a

(
1 +

ρ2

2a2
+

z3

6a2

)
=

 xz/a2

yz/a2

1 + x2/2a2 + y2/2a2 − z2/2a2

 . (2.96)

Hence, the leading order of normal vector n points into the Cartesian z-direction.
This is illustrated in Figure 2.4.

Figure 2.4: Illustration of paraxial area and the non-constant normal vectors n(ρ).
Ellipses of small µ = 10−3 are almost plane. For small polar angle θ the paraxial
approximated oblate spheroidal coordinates are close to cylindrical coordinates.

The electric (2.7) and magnetic �eld (2.8) is

E =iωAγqmε1(x) + iωAγqmε2(x), (2.97)

H =∇× Aγqmε1(x) +∇× Aγqmε2(x) (2.98)

Imposing the perfect conductor boundary conditions (2.24) and (2.25), the �elds
have satisfy

n× E|∂Ω± =iωn× ∇× (nuγqm)|∂Ω± +i
ω

k
n× ∇× ∇× (nuγqm)|∂Ω±

!
= 0,

(2.99)

n · H|∂Ω± =n · ∇ × ∇× (nuγqm)|∂Ω± +
1

k
n · ∇ × ∇× ∇× (nuγqm)|∂Ω±

!
= 0.

(2.100)

An explicit analysis of these terms yields in leading order the Dirichlet boundary
condition for the scalar function P (µ) of the polarization ε1 and the von Neumann
condition for the other vector mode with its respective electric and magnetic �eld.
The performed expansion is the micro cavity expansion for k‖ � 1, z � 1 and the
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plain cavity expansion, which allows to expand in the geometric variable a � 1.
The leading order of these expansions is

n× Eε1|∂Ω± ≈ (Ψ3e⊥3 + Ψ4e⊥4)P (µ)|∂Ω± +O
(
k2
⊥ρ

2ρz

a2

)
!

= 0, (2.101)

n× Eε2|∂Ω± ≈ (Ψ1e⊥1 + Ψ2e⊥2)
∂P

∂µ
|∂Ω± +O

(
k2
⊥ρ

2ρz

a2

)
!

= 0, (2.102)

n · Hε1|∂Ω± ≈ Ψ5P (µ)|∂Ω± +O

(
k2
⊥
k2
‖

ρ2

a2

)
!

= 0. (2.103)

n · Hε2|∂Ω± = 0. (2.104)

Here Ψi is an arbitrary scalar function containing the two-dimensional harmonic
oscillator and its derivatives. Note that the only boundary dependent variable is
the µ coordinate. Therefore the only function we can adjust to the boundary con-
ditions is the function P . It is evident that we can not satisfy both conditions at
once. However this is no problem, since we started with a superposition of two dis-
tinct linearly independent vector modes. The constructed electromagnetic �eld is
purely transverse, whereas the boundary condition holds only up to a certain order
of perturbation theory which is also listed in the equations above. The obtained
information is

Aγqmε1(x) =∇× (euDγqm), (2.105)

Aγqmε2(x) =
1

|k|
∇ × ∇× (euvNγqm), (2.106)

Aγqm(x) =Aγqmε1(x) + Aγqmε2(x), (2.107)

A(x) =
∑
γqm

Aγqmε1(x) + Aγqmε2(x). (2.108)

The general vector solution is a superposition of Dirichlet and von Neumann modes,
where the subscript D or vN indicates the boundary condition for the scalar function
P . Thus the vector �eld to ε1 has a scalar Dirichlet seed function u, whereas the
other polarization ε2 requires a von Neumann seed function.

2.6 Boundary values and eigenvalues

The scalar function P from (2.72) contains two undetermined constants A and B.
Imposing the Dirichlet boundary condition for mode function we get

P (µ) = Aei
√

(γ2+m2−1)µ +Be−i
√

(γ2+m2−1)µ !
= 0. (2.109)

Since P has to be real, this can be either sin or cos. Let us de�ne the Dirichlet
seed function with P = sin. By choosing the von Neumann seed function with
P = cos, we can consider the two vector modes to the same value of γ, because the
von Neumann seed function requires the derivative of P to be zero. By demanding

P (µ0) = sin
(√

(γ2 +m2 − 1)µ0

)
!

= 0 (2.110)

25



we determine the unknown separation constant γ. This yields√
(γ2 +m2 − 1)

√
L

2R
!

= nπ, (2.111)

which is solved by

γnm = ±
√

2(nπ)2R

L
+ 1−m2. (2.112)

The newly introduced quantum number n labels the axial modes. This quantum
number is a pure result of the chosen boundary conditions. Usually plane waves in
an in�nite volume have a continuous spectrum. The corresponding eigenvalue of the
longitudinal Schrödinger-like Equation (2.71) is then

k‖nm =
γnm
a

=

√
2

RL

2(nπ)2R

L
+

2(1−m2)

RL
≈ 2nπ

L
, (2.113)

where in the last step we omitted the mixture of the angular momentum quantum
number with the axial one, because its contribution only behaves as 1/L, whereas
the �rst term is proportional to 1/L2. Of course, this is only valid, as long as the
angular momentum quantum number m is su�ciently small. A careful look on the
argument µ and its paraxial expansion (2.73) grants deeper insight in the obtained
result

γnmµ = k‖z

(
1 +

ρ2

2a2

)
. (2.114)

The leading order term represents the plane wave in a box and the additional con-
tribution arises from the curved mirrors. With the help of the Helmholtz equation
in oblate spheroidal coordinates we were able to construct the absolute value of the
total wave vector |k|. The �nal result after evaluating the di�erential equations and
boundary conditions is

|k| =
√
k2
‖ + q2, (2.115)

q2 =
2k(2l + |m|+ 1)

a
, (2.116)

k2
‖ =

(2πn)2

L2
. (2.117)

Unless the radial quantum number l and the angular quantum number m are su�-
ciently small, we have already shown that k2

‖ � q2. Thus we can expand the square
root for small transversal eigenvalues and obtain in leading order

|k| ≈ k‖ +
q2

2k‖
= k‖ +

(2l + |m|+ 1)

a
. (2.118)

Our investigation started with the electromagnetic �eld in the micro cavity. In
free space and homogeneous media, electromagnetic waves or light have a linear
dispersion relation in |k|

Enlm = ~c|k| ≈ ~c
(

2πn

L
+

(2l + |m|+ 1)

a

)
. (2.119)
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Clearly, ω splits into ω⊥ = c/a and ω‖ = 2πnc/L with a cut-o� frequency of ω‖ =
7πc/L = 2π5.1 · 1014 Hz, where the resonator length L is exactly 3.5 λ. From the
experimental side we already know that it is possible to e�ectively �x the longitudinal
quantum number n with an appropriate choice of the dye in the resonator. Therefore
considering k‖ as frozen out yields the energy

E = Ecut + Elm, (2.120)

where Ecut = ~ckcut is an energy o�set from the �xed longitudinal mode and
Elm = ~ω⊥(2l + |m| + 1) is the energy eigenvalue of the two-dimensional harmonic
oscillator with radial quantum number l, azimuthal quantum numberm and the typ-
ical vacuum �uctuations in D dimensions of D~ω⊥/2 = ~ω. The steps performed so
far were just a reinterpretation of the Helmholtz equation for the electromagnetic
�eld as an eigenvalue equation for massive bosonic particles. Due to the experimen-
tal setting, which means k‖ � k⊥ and the �xed k‖ = kcut, we were able to deduce an
e�ective two-dimensional oscillator from the linear dispersion relation of light. In
analogy, we will have a look at the dispersion relation of relativistic massive particles

E =
√
m2c4 + c2p2, (2.121)

which we expand for small velocities p2 � c2. Rewriting the momentum p in terms
of the wave vector k, we get

E = mc2 +
~2k2

2m
. (2.122)

Comparing Equations (2.118) and (2.119), we interpret

mc2 = ~ck‖ (2.123)

~2k2

2m
=

~cq2

2k‖
. (2.124)

Here the e�ective mass term is identi�ed with the �xed longitudinal wave number k‖,
then the remaining part of k2 is the absolute value of an e�ective two-dimensional
transverse wave vector q. Hence, the e�ective photon mass mph is

mph =
~7π

cL
= 7 · 10−36 kg. (2.125)

Furthermore, the trap frequency of the two-dimensional harmonic oscillator can be
speci�ed to

ω =
c

a
= 2π · 4.1 · 1010 Hz. (2.126)

The trap frequency from the boundary value problem is the same as in Ref. [9]. The
wave vector k of the cavity photons possesses a large constant k‖-component and the
transverse components can be counted in the energy level spacing of the harmonic
oscillator ~ω. Spectrally resolved, there is a huge gap between two longitudinal
modes ∆ω = ωn+1 − ωn = 2π · 1.5 · 1014 Hz in comparison to the transverse trap
frequency of ω = 2π · 4.1 · 1010 Hz, which is about three magnitudes smaller.
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2.7 Polarization vectors and ground-state energy

This section is devoted to the vector solution and its properties. The transversality of
vector modes is guaranteed by construction. So we have to check how the eigenvalues
|k|2 of the scalar function ulm correspond to the vectorial Helmholtz equation. It is
su�cient to investigate the vector potential A from which the electric and magnetic
�elds can be obtained. The non-constant unit vector n will give further contributions
to the Helmholtz equation. In order to evaluate the additional expressions, we
compare them with kA/a which represents the order of the transverse modes. There
are three important scales in the system k‖ � 1, a� z and z � 1 which determine
whether a term is large or negligible. By taking the micro cavity limes k‖z = const

while z → 0 and the plain cavity limes k/a = const while a =
√
LR/2 → ∞, we

can analyze the leading order of the eigenvalue problem

−∆A = |k|2A. (2.127)

For the ground state l = m = 0 the eigenvalue is

−∆A = (k2
‖ + 2k2

⊥)A. (2.128)

The factor two in front of k2
⊥ is due to the non-constant unit vector. Indeed if we

only take into account the leading order of the normal vector n = ez, we get

−∆A(0) = (k2
‖ + k2

⊥)A(0). (2.129)

This can be explained by a rotation around the z-axis, where now higher order
terms arising from n lead to an e�ective tilt o�-axis. This shift from the energetically
favored ez costs a small amount of energy. This e�ect may be related to the geomtric
spin hall e�ect of light [21].

a) b)

Figure 2.5: a) Vector �eld An
00 for z = 0.25 L. b) Schematic of the vectorial tilt

induced by the non-constant unit vector n.

Furthermore, we should have a look at the intensity pro�le |A00|2. The scalar
function u00 is proportional to a Gaussian. However, the vectorial ground state is
not of a Gaussian form due to its curl

A00 = ∇× (nuD00) +
1

k‖
∇× ∇× (nuvN00) (2.130)
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with the scalar functions

uD00 = e−ρ
2k/2a sin

[
k‖z(1 + ρ2/2a2)

]
, (2.131)

uvN00 = e−ρ
2k/2a cos

[
k‖z(1 + ρ2/2a2)

]
, (2.132)

where the derivatives of the Gaussian part lead to expressions ∼ ρ exp(ρ2) which do
not have any contribution to the center intensity. Only the next-to-leading order
term arising from the operator ∇× ∇× gives a negligible contribution ∼ 1/(k‖a).
This is the case even for a constant unit vector ez. For further illustration, see
Figure 2.6. Thus constructing the vectorial ground state with n and u00 does not
produce a proper Gaussian pro�le. Intuitively expected, it is interesting to ask what
is the condition for a purely transverse clean Gauss mode.

a) b)

Figure 2.6: a) Ground-state intensity pro�le in radial direction for z = 0.25 L.
b) Contour plot of the intensity pro�le in xy-plane for z = 0.25 L.

For spherical symmetry, there exists a method from Berestetski, Lifshitz and Pitaev-
skii, where one directly constructs the longitudinal mode and the transversal modes
[22]. The length of the k-vector is �xed and the transversal �eld is then the tangent
space to the radial pointing k-vector. In this case it is impossible to obtain a
purely transversal �eld with total angular momentum |J| = 0. The lowest spherical
harmonic Y00 is a constant, but within this frame work, it always appears with a
derivative. In the textbook of Messiah [23] the multipole expansion chapter provides
a general argument, why it is impossible to have a transverse �eld with |J| = 0: The
state |J| = 0 always corresponds to a longitudinal state. We will sketch the proof,
because it helps to understand and construct alternative solutions. The total angular
momentum is

J = L + S (2.133)

with L = r × p as the orbital angular momentum and S as the spin angular mo-
mentum. The action of L is to rotate the coordinates, while S rotates the vector
components itself. The spin angular momentum in three dimension consists of the
three spin matrices S1, S2, S3 de�ned in (2.136)

S :=

 S1

S2

S3

 . (2.134)
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The helicity is the projection of the spin onto the momentum p = ~k

h =
k

k
· S, (2.135)

where we can represent the spin S as the in�nitesimal generator of rotations in three
dimensions

S1 = −i

 0 0 0
0 0 1
0 −1 0

 , S2 = −i

 0 0 −1
0 0 0
1 0 0

 , S3 = −i

 0 1 0
−1 0 0
0 0 0

 .

(2.136)

Note here that the components Si satisfy the commutation relation

[Si, Sj] = iεijkSk. (2.137)

This is natural, since J follows the same commutation relations. The de�nition of
the helicity can be identi�ed with the vector operation

S · p = ∇× (2.138)

(S · p)2 − p2 = ∇∇ · . (2.139)

The transverse �elds ful�ll (S · p)2 − p2 = 0, while the longitudinal �elds satisfy
(S · p)2 = 0. The longitudinal modes can have the helicity h = 0 corresponding to
|S| = 0. Thus lowest possible total angular momentum for longitudinal modes is
|J| = 0 while transverse modes start at least with |J| = 1. The key idea is now to
hide the |J| = 1 in the spin component. Therefore it useful to introduce eigenvectors
to the helicity operator which are chosen as circularly polarized unit vectors with
eigenvalues +1 and −1

e+ = ex + iey, (2.140)

e− = ex − iey. (2.141)

So instead of n, we use e+ as a unit vector for the construction of the vector modes.
The advantage is that the theorem for the vector solution to Helmholtz equation
holds now exactly. Considering again the boundary conditions (2.24) and (2.25), we
get the following result for the vector mode

A00 = ∇× (e+uvN00) +
1

k‖
∇× ∇× (e+uD00), (2.142)

where as usual the subscript D or vN indicates the boundary condition for the scalar
function P (µ). Due to the new unit vector the boundary condition for the scalar
solution swapped. This state has of course the lowest energy eigenvalue

−∆A00 = (k2
‖ + k2

⊥)A00. (2.143)

Its intensity pro�le is shown in Figure 2.7.
In principle, the vector solution Aez

00 with ez, u00 and |J| = 0 but also A
e+
00 with e+,

u00 and |J| = 1 meet all requirements for the solution of the vectorial Helmholtz
equation and its boundary conditions in leading order. Since Aez

00 possesses zero
angular momentum, the next order expansion of the oblate spheroidal coordinate
µ(z, ρ) reveals a bigger transversal component than the state with |J| = 1. That is
why we will prefer the Gaussian ground state for later considerations.
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a) b)

Figure 2.7: a) Ground state intensity pro�le in radial direction for z = 0.25 L. b)
Contour plot of the intensity pro�le in xy plane for z = 0.25 L.

2.8 Field quantization

We now have constructed suitable vector eigenmodes for the Maxwell equations. In
this section, we will take advantage of the eigenmodes and its eigenvalues in order
to quantize the electromagnetic �eld inside the resonator. It is helpful to start with
normalized mode functions. Therefore we demand∫

volc

dAA∗lm ·Alm
!

= 1, (2.144)

where Alm is the total vector �eld containing both polarizations (2.107) labeled
with the radial quantum number l and the angular momentum quantum number m.
The quantization volume is two-dimensional. The integral yields a normalization
constant for the mode Alm. The explicit calculation of the normalization can be
found in Appendix A. In this section, we just provide the normalized mode function

Alm = Γlm(∇× e+uvNlm) +
Γlm
klm

(∇× ∇× e+uDlm) (2.145)

with the normalization constant for each of the vector mode (A.23)

Γlm =

√(
klm
a

)m−1
1

πa2

l!

(l +m)!
. (2.146)

Here klm is the absolute value of wave vector k with a �xed longitudinal quantum
number n and two parameter-like transverse quantum numbers l,m.
In terms of the vector �eld A and its spectral decomposition (2.108), the energy of
the electromagnetic �eld in homogeneous polarized medium is

H =
ε0
2
N2

∫
volc

dA
{
E∗ · E + c2B∗ ·B

}
(2.147)

=
ε0
2

∫
volc

dA
∑
lm

{
N2
lmω

2
lmA∗lm ·Alm + c2N2

lm∇× A∗lm · ∇ × Alm

}
(2.148)

=
ε0
2

∫
volc

dA
∑
lm

{
N2
lmω

2
lmA∗lm ·Alm − c2N2

lm∆A∗lm ·Alm

}
. (2.149)
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The occurring factor c is the speed of light in the medium and N normalizes the
electromagnetic �eld to correct dimension. In the last step partial integration, zero
divergence and the vanishing �elds on boundary were used. This is similar to the
calculation of the mode function, where one also has to shift the operator ∇×, see
Appendix (A.3). We replace −c2∆ by c2|klm|2 = ω2

lm to �nd

H = ε0
∑
lm

N2
lmω

2
lm


∫
volc

dAA∗lm ·Alm

 . (2.150)

The integral over the mode functions is normalized to 1 and can be found in Ap-
pendix A. Note here that the two-dimensional volume integral is performed in polar
coordinates. The actual advantage of the eigenmodes is that the Hamiltonian be-
comes simply a sum over eigenvalues

H = ε0
∑
lm

N2
lmω

2
lm

!
= ~

∑
lm

ωlm. (2.151)

This �nally �xes the normalization constant to

Nlm =

√
~

cklmε0
. (2.152)

Knowing the mode function, we perform the canonical �eld quantization. Therefore,
we introduce the creation and annihilation operators, which obey the canonical
commutation relation

[âlmε, âjkε′ ] =
[
â†lmε, â

†
jkε′

]
= 0

[
âlmε, â

†
jkε′

]
= δljδmkδεε′ , (2.153)

where the commutator is [Â, B̂] = ÂB̂− B̂Â and the subscript ε denotes the respec-
tive polarization. Applying the corresponding operators on the Fock space yields

âlmε |nε〉 =
√
nlm |n00, . . . , nlm − 1, . . .〉ε (2.154)

â†lmε |nε〉 =
√
nlm + 1 |n00, . . . , nlm + 1, . . .〉ε . (2.155)

Note here that the distinct polarizations have distinct operators. The ket vector
|nε〉 is the number base counting cavity photons with the quantum numbers l,m
and polarization ε. With the help of these operators acting on the Fock space, we
de�ne the operator-valued vector potential Â

Â(x) =
∑
lm

Almε1(x)âlmε1 + Almε2(x)âlmε2 ,

Â†(x) =
∑
lm

A∗lmε1(x)â†lmε1 + A∗lmε2(x)â†lmε2 . (2.156)

Since the double sum over the quantum numbers l and m appears frequently, we
de�ne the short hand notation ∑

lm

=
∞∑
l=0

∞∑
m=−∞

. (2.157)
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These �eld operators have to obey the canonical commutation relation[
Â†i (x), Âj(x

′)
]

= δ
(2)
⊥ (x− x′)δij (2.158)[

Âi(x), Âj(x
′)
]

=
[
Â†i (x), Â†j(x

′)
]

= 0 (2.159)

where δ
(2)
⊥ (x− x′)δij is the transverse delta function in two dimensions with modu-

lation in z-direction. The calculation of the transverse delta function is presented in
Appendix B. We are automatically in the transverse subspace due to the Coulomb
gauge (2.15). In fact one should evalutate commutator of the canonical conju-
gate �elds A and Π = Ȧ arising from the Lagrangian of the elecromagnetic �eld[
Â†i , Π̂j

]
= i~δ⊥(x− x′)δij, but this exactly corresponds to (2.158) and (2.159).

The vector character of these operators is carried by the orthonormalized mode
functions Almεi . The subscript εi indicates the two di�erent polarizations arising
from the two di�erent vector modes proportional to ∇× and ∇ × ∇×. Replacing
the vector modes by the operators (2.156), the electromagnetic �eld Hamiltonian in
Equation (2.150) is equivalent to

Ĥ = ~
∑
lm

ωlm


∫
volc

dA
(
A∗lmε1 ·Almε1 â

†
lmε1

âlmε1 + A∗lmε2 ·Almε2 â
†
lmε2

âlmε2

)
= ~

∑
lm

ωlm

{
â†lmε1 âlmε1 + â†lmε2 âlmε2

}
, (2.160)

where we have explicitly used the orthonormality of the mode function Almε1 and
Almε2 . The quantized cavity photon �eld can be described by a set of harmonic
oscillators. Equivalently, massive bosons in a harmonic trap can be described with
Equation (2.160). This will be shown in the next section.
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Chapter 3

Calculating the BEC

The normal mode expansion (2.156) of the cavity photon �eld is an ideal starting
point for investigating the possible occurrence of Bose-Einstein condensation. In or-
der to determine the critical particle number of the two-dimensional phase transition,
we need to introduce some methods of thermodynamics and quantum many-body
theory.
From classical electrodynamics, we could already obtain the e�ective photon mass
and the e�ective two-dimensional trap frequency. The quantization of the electro-
magnetic �eld with normal modes always yields continuous distributed harmonic
oscillators in space. In this sense, it is natural to reinterpret this �eld as a many-
body ensemble of trapped bosons. The most important thing is, that this point of
view holds in the special case of the cavity photon �eld. Here, the various photons
with their distinct wave vectors k were given a huge non-vanishing k‖-component.
Even the reinterpretation of the three-dimensional Helmholtz equation as a two-
dimensional Schrödinger equation would fail, if we did not have this extraordinary
cavity-dye setup, because the rest mass term in the Schrödinger equation is then
just zero. However, in the setting we are analyzing, it is possible to consistently
map cavity photons onto an ensemble of massive trapped bosons. In the previous
section we introduced the Fock space for the photons (2.155). This is now the same
space to e�ciently describe the massive trapped bosons.

3.1 Ultra cold versus room temperature Bose gas

The determination of the phase boundary between the gas and the BEC phase is
of fundamental interest. In the case of ultra cold Bose gases, one considers the
critical temperature Tcrit(N) as a function of the particle number N . However,
in the present experimental setting the temperature T is given-namely the room
temperature T = 300 K-and the unknown critical particle number Ncrit(T ) for
the onset of Bose-Einstein condensation has to be calculated. The comfort of this
situation is that we do not have to extract the temperature by inverting the equation
of state for the particle number. Another interesting fact to note is that the ratio
of the trap energy versus the thermal energy β~ω ≈ 1/150 is roughly the same as
for the atomic BEC experiments. The harmonic oscillator energy ~ω for the cavity
photons and the thermal energy kBT at room temperature ∼ 300 K are both about
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a factor 109 larger than for the usual atomic BEC, with typical trap frequencies in
the ∼ 100 Hz regime and ultra cold temperatures of 10−7 K. In three dimensions,
the semiclassical treatment of the Bose gas in a trap yields a su�cient description.
However, in lower dimensions the interacting Bose gas in a semiclassical treatment
is problematic, because it involves some polylogarithmic functions which have to be
careful approximated. The present work circumvents this di�culties by calculating
every quantity quantum mechanically, meaning, we evaluate the occurring discrete
sums without any semiclassical approximation.

3.2 Density matrix

Expectation values of general states in quantum many-body theory can be calculated
with the help of the density matrix ρ̂〈

Ô
〉

= tr
{
ρ̂ Ô
}
, (3.1)

where Ô is any observable of the system. The density matrix ρ̂ is a positive de�nite
hermitian trace class operator with tr(ρ̂) = 1. Depending on the quantum state one
considers di�erent forms of the underlying density matrix. We examine a thermal
ensemble of bosons, because the key ingredient is the thermalization of photons in
the transverse modes. This corresponds to

ρ̂ =
1

Z
e−βĤ (3.2)

with the inverse temperature β = 1/kBT and the grand-canonical partition function
Z de�ned as

Z = tr
{

e−βĤ
}
. (3.3)

All relevant thermodynamic properties can be deduced from the e�ective action

Γ = − 1

β
lnZ. (3.4)

The introduced e�ective action Γ of course depends on the order parameters ψ, ψ∗

of the system. The extremalization of the e�ective action with respect to the corre-
sponding order parameter

δΓ[ψ∗(x), ψ(x)]

δψ∗(x)

∣∣∣∣
(ψ∗ext(x),ψext(x))

!
= 0 (3.5)

yields the extremal order parameters ψ∗ext(x), ψext(x), which are physically realized.
The e�ective action with extremal physical �elds is then identical to the free energy
[24] of the system,

F = Γ[ψ∗ext(x), ψext(x)]. (3.6)

In order to perform further investigations, it is required to have a closer look at how
to calculate the partition function or the e�ective action, respectively.
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3.3 E�ective action

Calculating the grand-canonical partition function or the e�ective action respectively
requires the system Hamiltonian in second quantization. Before we specify the full
�eld Hamiltonian, we discuss a possible interaction. In the case of electromagnetic
�elds additional interaction terms can be implemented by modeling the dye solution
as a non-linear material, e.g. with the Kerr-e�ect

Di = ε0Ei + Pi = ε0Ei + ε0
∑
j

χjiEj + ε0
∑
jkl

χjkli EjEkEl. (3.7)

Here, χji denotes the components of the linear susceptibility and χjkli are the ele-
ments of the non-linear susceptibility. The Kerr-e�ect is an e�ect of third order in
the electromagnetic �elds which is especially strong in certain liquids and crystals.
This interaction leads to e�ects like self-focussing and self-phase modulation.
Assuming that the dye solution is an isotropic medium and the resulting polarization
is parallel to the electric �eld, the linear susceptibility χji = χ has identical compo-
nents for all three directions. Due to the isotropy and for further simpli�cation, the
non-linear susceptibility has identical entries χjkli = χ(2). With these assumptions,
Equation (3.7) can be simpli�ed to

D ≈ ε0(1 + χ+ χ(2)|E|2)E, (3.8)

where the non-linear polarisation is further reduced to the �eld intensity times the
electric �eld. The de�nition of the polarization (3.8) does not �x the order of the
electromagnetic �elds and their conjugate. We only know that the conjugate non-
linear polarization has to involve two conjugate �elds and a non-conjugate one.
Furthermore there is no explicit scalar product for the �elds in the brackets since it
depends on how to simplify the non-linear susceptibility tensor. Thus the alternative
introduction for the non-linear polarization is

D = ε0(1 + χ)E + ε0χ
(2)E∗(E · E), (3.9)

D∗ = ε0(1 + χ)E∗ + ε0χ
(2)(E∗ · E∗)E. (3.10)

De�ning the �elds in this way directly leads to a normal ordered Hamiltonian, which
is later advantageous for the �eld quantization. The expression in the brackets (3.8)
is the refraction index squared. Expanding for χ(2) � 1, the Kerr non-linearity
directly leads to an intensity dependent refraction index

n = (1 + χ+ χ(2)|E|2)
1
2 ≈ n0 +

1

2
χ(2)|E|2 ≈ n0 + n2I (3.11)

with the linear refraction index of the medium n0 =
√

1 + χ and the non-linear
refraction index n2 = χ(2)/[2(1 + χ)]. Taking into account the non-linearity, the
Hamiltonian for the electromagnetic �eld Hem becomes

Hem =
ε0
2
N2

∫
volc

dA
{
E∗ · E + c2B∗ ·B

}
+ ε0n2N

4

∫
volc

dA {E∗ · E∗E · E}+O(n2
2). (3.12)
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According to Equation (2.147), the �rst line already contains the linear polarization
and the second line involves the non-linear part. Under the condition n2 � 1
the occurring higher order interaction terms are omitted. The �elds are arranged in
normal order and we consider (3.12) as the starting Hamiltonian for the quantization.
For the ongoing calculation we reexpress the Hamiltonian in terms of the vector
potential (2.7), (2.8). Then we use the normalization constant N from (2.152) and
the de�nition of A (2.108) to �nd

Hem =

∫
volc

dA
∑
jk

∑
lm

~√ωjkωlmA∗jk ·Alm

+
g̃

2
n2

∫
volc

dA

{∑
jk

∑
lm

A∗jk ·A∗lm

}{∑
op

∑
rs

Aop ·Ars

}
. (3.13)

Taking into account relation E = ic|k|A from (2.7) and the leading order of |k| = k‖
from (2.119), yields an interaction parameter g̃ = ~2c2k2

‖/ε0. According to (2.159)

we introduce the vector-valued �eld operators Â and Â† and realize that the Hamil-
tonian (3.13) has the quantized form

Ĥem =

∫
volc

dA Â†(x)h0Â(x) +
g̃

2
n2

∫
volc

dA Â†(x)Â†(x)Â(x)Â(x) (3.14)

where we used the orthogonality of the Fock base and replaced the eigenvalue ~ωlm
with the corresponding two dimensional single-particle Hamiltonian h0

h0(x)ulm = ~ωlmulm. (3.15)

Here ulm is the scalar seed function (2.87) for vector �eld Alm. The derivation of the
paraxial Helmholtz equation showed that it su�ces to describe the cavity photon gas
as a two-dimensional harmonic oscillator plus the kinetic energy term the z-direction

h0(x) =
p2

2mph

+ V (x) = − ~2∆

2mph

+
mph

2
ω2ρ2. (3.16)

Plugging (3.16) into (3.14) we �nd

Ĥem =

∫
volc

dA Â†(x)

[
− ~2∆

2mph

+ V (x)− µ′
]

Â(x)

+
g̃

2
n2

∫
volc

dA Â†(x)Â†(x)Â(x)Â(x) (3.17)

where µ′ is the chemical potential. In the last steps we have linked the electro-
magnetic Hamiltonian with interaction term to a second quantized massive trapped
bosonic Hamiltonian. The expression arising from the Kerr non-linearity provides
the interaction, while the harmonic oscillator expression corresponds to the non-
interacting �eld Hamiltonian. Introducing the bosonic �eld operators ψ̂†, ψ̂, the

38



quantization of the electromagnetic �eld (2.156) already yields the mode expansion
for our e�ective massive boson �eld

ψ̂(x) = Â(x) =
∑
lm

Almε1(x)âlmε1 + Almε2(x)âlmε2 (3.18)

ψ̂†(x) = Â†(x) =
∑
lm

A∗lmε1(x)â†lmε1 + A∗lmε2(x)â†lmε2 . (3.19)

The respective canonical commutation relations are[
ψ̂†i (x), ψ̂j(x

′)
]

= δ
(2)
⊥ (x− x′)δij, (3.20)[

ψ̂i(x), ψ̂j(x
′)
]

=
[
ψ̂†i (x), ψ̂†j(x

′)
]

= 0. (3.21)

Thus, the derivation of the e�ective two-dimensional massive Hamiltonian is just
an reinterpretation of the �eld operators. These �eld operators inherit the vector
character from the mode functions Almεi . Rede�ning the chemical potential, we
compensate the constant energy o�set arising from �xed longitudinal wave vector
k‖

µ = µ′ +
~2k2

‖

2m
, (3.22)

and get the second quantized Hamiltonian for an e�ective massive two-dimensional
harmonic oscillator

Ĥ =

∫
volc

dA ψ̂†(x)

[
− ~2∆

2mph

+ V (x)− µ
]
ψ̂(x)

+
g̃

2
n2

∫
volc

dA ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (3.23)

The two-dimensional Hamiltonian (3.23) is consequently an e�ective two-dimensional
harmonic oscillator with a modulation in ζ-direction, which is mainly the z-axis, see
Figure 3.1. The spatial intensity modulation is the relict from the translation of

a) b)

Figure 3.1: Intensity pro�le in xz-plane for the ground-state of Dirichlet modes a)
and von Neumann modes b). The z-axis is horizontal and the x-axis vertical.

three-dimensional Helmholtz equation into a two-dimensional Hamiltonian.
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3.3.1 Condensate and �uctuations

Before we determine the phase transition, it is useful to investigate the order param-
eter for Bose-Einstein condensation, and the dependency of the partition function
on the order parameter. This section provides tools and methods for the evaluation
of the partition function.
If the ground state has a macroscopic occupation, we can separate the �eld opera-
tors into a condensate term lm = 00 and the non-condensate excited components
lm 6= 00

ψ̂(x) = ψ00(x) + δψ̂(x) (3.24)

ψ̂†(x) = ψ∗00(x) + δψ̂†(x) (3.25)

with the condensate wave function ψ00 and the �uctuation δψ̂ de�ned as

ψ00(x) =
∑
ε

A00ε(x)a00ε δψ̂(x) =
∑

lm6=00,ε

Almε(x)âlmε (3.26)

ψ∗00(x) =
∑
ε

A∗00ε(x)a∗00ε δψ̂†(x) =
∑

lm6=00,ε

A∗lmε(x)â†lmε. (3.27)

The condensate function has two di�erent contributions arising from the polariza-
tions. The expression of the �eld operators (3.24), (3.25) implicitly introduced the
Bogoliubov approximation, in which the operators â00ε and â

†
00ε are replaced by the

complex numbers a00ε =
√
N00ε and a

∗
00ε =

√
N∗00ε such that 〈â†00εâ00ε〉 = N00ε yields

the average occupation number of the ground state with the respective polarization ε.
Thus the total photon number for the degenerate ground state is N00 = N00ε1 +N00ε2 .
Along the lines of Yamamoto [25], we will describe the phase transition due to spon-
taneous symmetry breaking as follows. The de�nition of the �eld operators (3.24),

(3.25) already implies that the expectation value of 〈ψ̂(x)〉 is non-zero. This would
not be possible if the condensate state is in a Fock state |N0〉. The classical wave
function ψ00, which is in the present case the sum of vector potentials A00ε1 +A00ε2 ,
plays the role of the order parameter in the cavity system and determines the con-
densate density n00(x) = |ψ00|2. While the ground state particle number N00 �xes
the amplitude of the wave function or the vector potential respectively, the phase of
the order parameter e.g. eiα is left completely arbitrary. For a BEC phase transition,
the condensate system spontaneously chooses a particular phase α. From a quantum
�eld theoretical point of view this spontaneous breaking of gauge symmetry is taken
into account by saying that the condensate state is in or close to a coherent state
[26],

â00ε |αε〉 = αε |αε〉 (3.28)

with |αε|2 = N00ε. Expressed in the Fock base the coherent state is

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉. (3.29)

The Bogoliubov decomposition allows an explicit treatment of the order parameter
ψ00(x).
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3.3.2 Two-dimensional phase transitions

As mentioned the order parameter has U(1) symmetry. The phase transition to the
BEC phase is described by spontaneous symmetry breaking. However we will discuss
here an another kind phase transition, namely the Berezinskii�Kosterlitz�Thouless
transition (BKT transition) [27, 28]. This is a phase transition of in�nite order,
while the classical BEC theory is described by a phase transition of second order.
In the BKT case one especially considers the phase factor of the order parameter,
whose gradient yields a velocity �eld. The occurrence of vortices and the periodic
structure of the phase lead to a correlation in two dimensions whose long-range order
decays algebraically. Usually, an exponential behavior is expected. The explicit
check whether or not the BKT applies here, might be an additional subject for this
particular system but not for the present thesis.
Plugging the Bogoliubov decomposition (3.24) and (3.25) into the second quantized

Hamiltonian Ĥ (3.23) with the rescaled µ (3.22), we �nd

Ĥ0 =

∫
dAψ∗00(x) [h0(x)− µ]ψ00(x) + δψ̂†(x) [h0(x)− µ]ψ00(x)

+ ψ∗00(x) [h0(x)− µ] δψ̂(x) + δψ̂†(x) [h0(x)− µ] δψ̂(x). (3.30)

which, due to the normal mode expansion (3.18), (3.19) reduces to

Ĥ0 =

∫
ψ∗00(x) [h0(x)− µ]ψ00(x) +

∫
δψ̂†(x) [h0(x)− µ] δψ̂(x). (3.31)

The orthogonality of the vector modes Almε cannot be used in the interacting case,
because the product of four mode functions has to be evaluated. Thus the decom-
posed interacting part in normal order is

Ĥint =
g

2

∫
|ψ00(x)|4 + 2 |ψ00(x)|2 ψ∗00(x)δψ̂(x) + (ψ∗00(x))2δψ̂(x)δψ̂(x)

+ 2 |ψ00(x)|2 ψ00(x)δψ̂†(x) + 4 |ψ00(x)|2 δψ̂†(x)δψ̂(x)

+ 2ψ∗00(x)δψ̂†(x)δψ̂(x)δψ̂(x) + (ψ00(x))2δψ̂†(x)δψ̂†(x)

+ 2ψ00(x)δψ̂†(x)δψ̂†(x)δψ̂(x) + δψ̂†(x)δψ̂†(x)δψ̂(x)δψ̂(x). (3.32)

Here the interaction parameter g is de�ned as

g = g̃n2. (3.33)

The precise value of g depends on the material, namely on the non-linear refraction
index n2 which is assumed to be small. In a later section we will give the its explicit
number. All terms of zeroth order in the �uctuation operators δψ̂, δψ̂† represent
the usual Gross-Pitaevskii theory. The terms proportional to δψ̂†δψ̂ are the Hartree
and the Fock contributions. Expressions containing δψ̂†δψ̂† and δψ̂δψ̂ correspond
to the Bogoliubov channel. The higher order �uctuation terms can be considered as
corrections to the mentioned theories.
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For the calculation of the e�ective action (3.4) we need to evaluate the exponential
of (3.30), (3.32)

Γ = − 1

β
ln
{

tr
(

exp[−β(Ĥ0 + Ĥint)]
)}

(3.34)

The fundamental problem of this operator exponential are the terms which are
not quadratic or quartic in the �uctuation operators δψ̂ , δψ̂† so we cannot close
the algebra. This exponential produces an in�nite series of nested commutators
without hitting the unit element or the normal form δψ̂†δψ̂; for further reading
check Zassenhausen formula [29] for exponentials of operators. The Hamiltonian

Ĥ0 contains only zeroth order and quadratic terms in δψ̂, whereas the interacting
Hamiltonian Ĥint also involves terms of the order δψ̂, δψ̂3. The problem is not
exactly solvable, but we can try to �nd a solution with a perturbative approach in
the interaction Hamiltonian Ĥint.

3.3.3 Perturbation theory in the interacting Hamiltonian

The parameter g will be small in comparison to the non-interacting term as long as
the intensity of the electromagnetic �eld is not extraordinary high. A �rst pertur-
bative approach to the e�ective action (3.34) with respect to the interacting part
leads to

Γ = − 1

β
ln
{

tr
(

e−βĤ0 [1− βĤint]
)}

. (3.35)

Using the series expansion of the logarithm

ln(1− x) = −
∞∑
p=1

xp

p
, (3.36)

the de�nition of the partition function (3.3) and the unperturbed expectation value

〈•〉(0) =
1

Z0

tr
(
e−βĤ0•

)
, (3.37)

we �nally get the e�ective action with a linearized interaction part

Γ = − 1

β
lnZ0 +

〈
Ĥint

〉
(0)
. (3.38)

The trace is performed over the Fock base |n〉 = |{nlmε}〉l∈N,m∈Z\l=0,m=0, where the

ground state is excluded according to the de�nition of δψ̂, δψ̂† in (3.26), (3.27). The

unperturbed Hamiltonian Ĥ0 in (3.31) is diagonalized in the Fock base. Performing
the trace always means summing over the diagonal elements of the full Hamiltonian.
Thus, we can simplify the expectation value of the perturbed Hamiltonian in the
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e�ective action

Γ =− 1

β
lnZ0 +

〈
Ĥint

〉
(0)

(3.39)

=− 1

β
lnZ0

+
g

2

∫ 〈
|ψ00(x)|4 + 4 |ψ00(x)|2 δψ̂†(x)δψ̂(x) + δψ̂†(x)δψ̂†(x)δψ̂(x)δψ̂(x)

〉
(0)

+
〈
O(δψ̂†, δψ̂, δψ̂δψ̂, δψ̂†δψ̂†, δψ̂†δψ̂δψ̂, δψ̂†δψ̂†δψ̂)

〉
(0)

(3.40)

=− 1

β
lnZ0 +

g

2

∫
|ψ00(x)|4

+
g

2

∫
4 |ψ00(x)|2

〈
δψ̂†(x)δψ̂(x)

〉
(0)

+
g

2

∫ 〈
δψ̂†(x)δψ̂†(x)δψ̂(x)δψ̂(x)

〉
(0)
.

(3.41)

Applying the Wick-rule in order to simplify the expectation value of the four �eld
operators, we get〈

δψ̂†(x)δψ̂†(x)δψ̂(x)δψ̂(x)
〉

(0)
= 2

〈
δψ̂†(x)δψ̂(x)

〉2

(0)
. (3.42)

Then the e�ective action can be written in the compact form

Γ =− 1

β
lnZ0 +

g

2

∫
|ψ00(x)|4 + 2g

∫
|ψ00(x)|2

〈
δψ̂†(x)δψ̂(x)

〉
(0)

+ g

∫ 〈
δψ̂†(x)δψ̂(x)

〉
(0)

〈
δψ̂†(x)δψ̂(x)

〉
(0)
. (3.43)

3.4 E�ective action for ideal cavity photon gas

Calculating the e�ective action for the ideal cavity photon gas, i.e. g = 0, we have
to evaluate

Γ0 = − 1

β
lnZ0 = − 1

β
ln

{∑
n

〈n| e−βĤ0 |n〉

}
. (3.44)

The mode functions Almε(x) in the bosonic �eld operators are eigenstates of the
single-particle non-interacting Hamiltonian h0 (3.16). By taking advantage of the
constructed orthogonal modes, the second quantized non-interacting Hamiltonian
Ĥ0 (3.31) reads

Ĥ0 =
∑
ε

(~ω − µ)

∫
dA |A00ε(x)|2

+
∑
ε

∑
lm6=00

(~ωlm − µ)

∫
dA
{

A∗lmε(x) ·Almε(x)â†lmεâlmε

}
, (3.45)
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where |ψ00(x)|2 =
∑

ε |A00ε(x)|2 is the condensate density and the expression in curly
brackets is the density operator n̂lmε(x) of the respective excited states. Additionally,
the mode functions are normalized, which yields

Ĥ0 =
∑
ε

(~ω − µ)N00ε +
∑
ε

∑
lm6=00

(~ωlm − µ)â†lmεâlmε. (3.46)

Taking into account that the photon number operator â†lmεâlmε = n̂lmε acts only on
its distinct energy slot of the total state |n〉, the e�ective action becomes

Γ = − 1

β
ln

{
e−β

∑
ε(~ω−µ)N00ε

∏
ε,lm6=00

∞∑
nlmε=0

〈nlmε| e−β(~ωlm−µ)n̂lmε |nlmε〉

}
. (3.47)

Here the sum over the di�erent energy levels lmε in the exponential is rewritten
into a product of the summands. The sum appearing behind the product is just the
rewritten trace for each energy slot, since every energy level can be occupied by an
arbitrary number nlmε, whereas the occupation number of the condensate is �xed
to N00 = N00ε1 + N00ε2 . Due to the two polarizations the photonic ground state is
degenerate, whereas the usual massive BEC with its scalar-valued �eld operators is
non-degenerate.
Demanding that µ < Elm, we apply the geometric series

∞∑
p=0

xp =
1

1− x
for all |x| < 1 (3.48)

to Equation (3.47). The trace is evaluated in the eigenstates of the Hamiltonian.
Thus, replacing the operators n̂lmε in Equation (3.47) by the eigenvalues nlmε and
using the geometric series results in

Γ = (~ω − µ)N00 −
1

β
ln
∏
lm6=00

1

(1− exp{−β[Elm − µ]})
1

(1− exp{−β[Elm − µ]})
.

(3.49)

The explicit product of the same expression reminds of the two distinct polarizations.
With the help of the logarithmic laws and the Taylor expansion of the logarithm
(3.36), we �nd

Γ = (~ω − µ)N00 −
2

β

∞∑
p=1

∑
ml 6=00

exp{−β(Elm − µ)p}
p

. (3.50)

The prefactor two arises naturally from the two possible polarizations. In the case of
a broken symmetry between the polarizations, as for example by polarized mirrors
or di�erent energy eigenvalues for the each polarization, this simpli�cation would
not hold any longer.
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Inserting the explicit form of the energy eigenvalues Elm from (2.119), we �nd

Γ = (~ω − µ)N00

− 2

β

∞∑
p=1

e−β(~ω−µ)p

p

{
∞∑
l=0

∞∑
m=−∞

e−β~ω2lpe−β~ω|m|p − 1

}
(3.51)

= (~ω − µ)N00

− 2

β

∞∑
p=1

e−β(~ω−µ)p

p

{
∞∑
l=0

(
2
∞∑
m=0

e−β~ω2lpe−β~ω|m|p − e−β~ω2lp

)
− 1

}
. (3.52)

The geometric series over the radial quantum number l and the angular momentum
quantum number m leads to

Γ = (~ω − µ)N00−
2

β

∞∑
p=1

e−β(~ω−µ)p

p

{
2

(1− e−β~ω2p)(1− e−β~ωp)
− 1

(1− e−β~ω2p)
− 1

}
. (3.53)

This concise form of the e�ective action Γ is the fundament for the determination
of the relevant thermodynamic quantities.

3.5 Critical number for non-interacting cavity pho-

ton gas

We have found a reduced expression for the non-interacting e�ective action Γ in
(3.53). In thermodynamics, the particle number is de�ned as

N = −∂F
∂µ

= −∂Γ

∂µ
(3.54)

= N00 + 2
∞∑
p=1

e−β(~ω−µ)p

{
2

(1− e−β~ω2p)(1− e−β~ωp)
− 1

(1− e−β~ω2p)
− 1

}
.

In order to obtain the critical particle number for the onset of the phase transition,
we need to determine the critical chemical potential. Applying the Gross-Pitaevskii
theory, the extremalization of the e�ective action Γ0 (3.44) with respect to the
condensate �eld ψ∗00ε yields

δΓ

δψ∗00ε

= (h0(x)− µ)ψ00ε(x)
!

= 0. (3.55)

Note here once again that this has to be performed for both polarizations ε1, ε2.
Equation (3.55) is the Gross-Pitaevskii equation for the ideal Bose gas. This equa-
tion possesses two solutions; either ψ00ε = 0 which corresponds to the gas phase or
~ω = µ and ψ00ε 6= 0, where latter describes the condition for a BEC. Thus, the
critical chemical potential for the non-interacting case corresponds to ground state
energy

µcrit = E00 = ~ω. (3.56)
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Since we are looking for the phase boundary between the gas phase and the BEC,
we set N00 = 0 and plug µcrit from (3.56) into Equation (3.54)

Ncrit = 2
∞∑
p=1

{
2

(1− e−β~ω2p)(1− e−β~ωp)
− 1

(1− e−β~ω2p)
− 1

}
(3.57)

The sum is absolutely convergent, and its value can be determined numerically
with a program like mathematica. The critical particle number for an e�ective two
dimensional ideal photon gas in a curved micro cavity can be speci�ed to

Ncrit ≈ 74300. (3.58)

Using the semiclassical approximation β~ω � 1 for harmonically trapped Bose gases
in two dimensions yields

Ncrit,semi =2
ζ(2)

(β~ω)2
≈ 72800. (3.59)

The deviation of about two percent from the quantum mechanical exact value can
be explained by �nite-size corrections [30] which can be included via

Ncrit,semi+fs =2

{
ζ(2)

(β~ω)2
+
−ln(β~ω) + γ − 1/2

β~ω

}
≈ 74300, (3.60)

with the Euler-Mascheroni constant γ. The good agreement of both results is found
in the small ratio of β~ω = 0.0067� 1 which allows a semiclassical expansion. How-
ever, provided the temperature is given, one should apply the quantum summation
which already includes �nite-size e�ects and can even be used for anisotropic traps.
Comparing with the experimental result Ncrit = (6.3± 2.4) · 104, the theoretical pre-
diction lies within the error bar. Experimentally, the particle number is controlled
via the pump laser. When reaching a critical input power, which corresponds to a
certain photon number, the condensation sets in. Thus the total photon number
N is the control parameter for the cavity system, see Figure 3.2. The condensate
fraction in terms of the total number is

N00

N
= 1− Ncrit

N
, (3.61)

whereNcrit contains the all excited states. Of course, below a critical particle number
the ground state is occupied, but this is rather negligible. Hence the condensate
fraction �rst rises signi�cantly for N > Ncrit and correspondingly µ = µcrit. In
order to avoid divergences in the ground state occupation number for µ = µcrit, we
have treated the ground state explicitly. This is the reason for a rather sharp phase
transition shown in Figure 3.2.
In the next section, we will study the impact of interaction on this result.
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Figure 3.2: Condensate fraction as function of the total photon number N .

3.6 E�ective action for interacting cavity photon

gas

The interaction considered here arises from the Kerr-e�ect (3.8). Within a pertur-
bative approach in the interaction parameter g, the e�ective action can be written
in the form (3.43),

Γ =− 1

β
lnZ0 +

g

2

∫
|ψ00(x)|4 + 2g

∫
|ψ00(x)|2

〈
δψ̂†(x)δψ̂(x)

〉
(0)

+ g

∫ 〈
δψ̂†(x)δψ̂(x)

〉
(0)

〈
δψ̂†(x)δψ̂(x)

〉
(0)

(3.62)

A quantity to determine is the expectation value of δψ̂†(x)δψ̂(x). By de�nition this
term is 〈

δψ̂†(x)δψ̂(x)
〉

(0)
=

1

Z0

{∑
n

〈n|
∑

lmε,lm6=00

∑
l′m′ε′,l′m′ 6=00

A∗lmε(x) ·Al′m′ε′(x)â†lmεal′m′ε′e
−βĤ0 |n〉

}
. (3.63)

Applying the orthogonality of the Fock base immediately leads to〈
δψ̂†(x)δψ̂(x)

〉
(0)

=
1

Z0

∑
n

〈n|
∑

lmε,lm6=00

A∗lmε(x) ·Almε(x)n̂lmεe
−βĤ0 |n〉 (3.64)

Since the trace is performed in the eigenstates of the number operators n̂lmε we re-
place them by their eigenvalues (2.155), and with de�nition of the partition function
(3.3), the expectation value reads〈

δψ̂†(x)δψ̂(x)
〉

(0)
=

e−β(~ω−µ)N00

Z0

∏
opε′′ 6=lmε,lm6=00

∞∑
nopε′′=0

e−β(Eop−µ)nopε′′

×
∞∑

nlmε=0

∑
lmε,lm6=00

A∗lmε(x) ·Almε(x)nlmεe
−β(Elm−µ)nlmε , (3.65)
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where the trace and the exponential are decomposed as in the previous sections. The
occurring nlmε in the sum can be replaced by its respective energy derivative; this
is a trick from classical statistics in order to simplify the calculation of the particle
number expectation value. The geometric series for the summation over nlmε and
each Fock base slot nopε′′ converts the expectation value to〈

δψ̂†(x)δψ̂(x)
〉

(0)
=− e−β(~ω−µ)N00

βZ0

∏
opε′′ 6=lmε,lm6=00

1

{1− e−β(Eop−µ)}2
(3.66)

× 1

1− e−β(Elm−µ)

∑
lmε

A∗lmε(x) ·Almε(x)
∂

∂Elm

1

1− e−β(Elm−µ)
,

where one geometric series factor with lm arises from nopε′′ = nlmε′′ 6= nlmε with
another polarization ε′′ 6= ε, which is currently not summed in the second line.
Taking the derivative and the de�nition of the partition function Z0, we get〈

δψ̂†(x)δψ̂(x)
〉

(0)
=

∑
lmε,lm6=00

|Almε(x)|2 1

eβ(Elm−µ) − 1
. (3.67)

The result is the mode density times the Bose-Einstein statistics. Inserting the
expectation value (3.67) into the e�ective action for the interacting case (3.43) leads
to

Γ =− 1

β
lnZ0 +

g

2

∫
|ψ00(x)|4 + g

∫
2 |ψ00(x)|2

∑
lmε,lm6=00

|Almε(x)|2 1

eβ(Elm−µ) − 1

+ g

∫ ( ∑
lmε,lm6=00

|Almε(x)|2 1

eβ(Elm−µ) − 1

)2

. (3.68)

The evaluation of the mode function product involving the double sum over the
quantum numbers l and m is explicitly performed in the Appendix C.11, it is closely
connected to the Wick rotated propagator and the Green function. The rewritten
double sum (3.67) is

∑
lmε,lm6=00

|Almε(x)|2 1

eβ(Elm−µ) − 1
=
k

πa

∞∑
p=1

e−β(~ω−µ)p

{
e−

k
a

tanh(~ωp/2)ρ2

(1− e−β2~ωp)
− e−

k
a
ρ2

}
.

(3.69)

Here the quantity k is the absolute value of the vector, which is in leading order
k = k‖. The small a is the scaling constant derived from the boundary value

problem a =
√
RL/2. In combination the parameter k/a is exactly k2

⊥. What is
left from the double sum in (3.69) is a single sum over rescaled Gaussians. This
is a tremendous simpli�cation which now allows the determination of the integrals
in (3.68). The condensate density |ψ00(x)|2 (3.26) is a scalar product of the lowest
vector mode functions A00. All appearing scalar products of mode functions are
evaluated approximatively with an expansion in the micro cavity and large curvature
limes k‖z = const and k⊥ = const, while z → 0 and the curvature radius R→∞.
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Thus the �rst integral in (3.62) is the product of the condensate densities

I002 =
g

2

∫
dA |ψ00(x)|4 (3.70)

≈g
2
N2

00

k

aπ
2
k

a

∫
e−

k
a

2ρ2ρdρ (3.71)

=
g

2

k

2πa
N2

00, (3.72)

where N00 is the de�ned condensate particle number and the other occurring con-
stants arise from the normalization which can be found in Appendix A.23. The
integration over condensate and excited states yields

I00exc =2g

∫
dA |ψ00(x)|2

∑
lmε,lm6=00

|Almε(x)|2 1

eβ(Elm−µ) − 1
(3.73)

≈2gN00
k

aπ

2k

a

∞∑
p=1

e−β(~ω−µ)p

∫
e−

k
a
ρ2

{
e−

k
a

tanh(~ωp/2)ρ2

(1− e−β2~ωp)
− e−

k
a
ρ2

}
ρdρ (3.74)

=2gN00
k

πa

∞∑
p=1

e−β(~ω−µ)p

{
1

(1 + tanh(~ωp/2))(1− e−β2~ωp)
− 1

2

}
. (3.75)

Finally the integral containing the excited state squared is equal to

Iexc2 =g

∫
dA

( ∑
lmε,lm6=00

|Almε(x)|2 1

eβ(Elm−µ) − 1

)2

(3.76)

=g
k

πa

∞∑
q=1

∞∑
p=1

e−β(~ω−µ)(p+q)

{
1

2
− 1

(1 + tanh(~ωq/2))(1− e−β2~ωq)

− 1

(1 + tanh(~ωp/2))(1− e−β2~ωp)

+
1

(tanh(~ωq/2) + tanh(~ωp/2))(1− e−β2~ωp)(1− e−β2~ωq)

}
. (3.77)

The appearing sums over p and q converge, because we have taken out the ground
state. The e�ective action for interacting photon gas is

Γ = − 1

β
lnZ0 + I002(µ) + I00exc(µ) + Iexc2(µ). (3.78)

3.7 Shift of chemical potential due to interaction

Due to the interaction, there will be a shift of the chemical potential and furthermore
the ground state is changed. We expand both the ground state wave function which
is the order parameter ψ00 and the chemical potential µ in orders of g

ψ00(x) = ψ
(0)
00 (x) + ψ

(1)
00 (x) + . . . , µ = µ(0) + µ(1) + . . . . (3.79)
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Extremizing the e�ective action (3.43) with respect to the condensate wave function
ψ∗00 yields

δΓ

δψ∗00

=

{
[h0 − µ+ g|ψ00(x)|2] + 2g

〈
δψ̂†(x)δψ̂(x)

〉
(0)

}
ψ00(x)

!
= 0. (3.80)

The expression in the squared brackets represents the Gross-Pitaevskii equation for
an interacting Bose gas. Plugging in the expansion for ψ00 and µ and then sorting
the orders of g yields in zeroth order

[h0 − µ(0)]ψ
(0)
00 (x)

!
= 0. (3.81)

Thus, the zeroth order of µ is identical to the ground state energy

µ(0) = E00 = ~ω (3.82)

for condensate phase, where ψ
(0)
00 6= 0. The �rst order in g is

[
h0 − µ(0)

]
ψ

(1)
00 (x) = −

{
g
∣∣∣ψ(0)

00 (x)
∣∣∣2 − µ(1) + 2g

〈
δψ̂†(x)δψ̂(x)

〉
(0)

}
ψ

(0)
00 (x).

(3.83)

This is just one equation for the two unknown ψ
(1)
00 (x) and µ(1). Multiplying (3.83)

with ψ
∗(0)
00 (x) from the left and then integrating results in∫
ψ
∗(0)
00 (x)

[
h0 − µ(0)

]
ψ

(1)
00 (x) =

−
∫
ψ
∗(0)
00 (x)

{
g
∣∣∣ψ(0)

00 (x)
∣∣∣2 − µ(1) + 2g

〈
δψ̂†(x)δψ̂(x)

〉
(0)

}
ψ

(0)
00 (x). (3.84)

Due to the hermiticity of h0 and Equation (3.82), the left-hand side vanishes and
the remainder can be solved for µ(1)

µ(1) =
g

N00

∫
ψ
∗(0)
00 (x)

{∣∣∣ψ(0)
00 (x)

∣∣∣2 + 2
〈
δψ̂†(x)δψ̂(x)

〉
(0)

}
ψ

(0)
00 (x). (3.85)

The expression on the right-hand side corresponds to [2I002(µ
(0)) + I00exc(µ

(0))]/N00.
The critical chemical potential until �rst order in g is

µcrit = ~ω +
1

N00

[2I002(~ω) + I00exc(~ω)]. (3.86)

3.8 Critical number for the interacting cavity pho-

ton gas

The critical particle number for an interacting photon gas follows from

N =− ∂F

∂µ
= −∂Γ

∂µ
. (3.87)
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Here we take the e�ective action with interaction (3.78). In order to get the critical
point between the gas phase and the condensate phase, we set N00 = 0 and µ = µcrit

to �nd

Ncrit =2
∞∑
p=1

e−β(~ω−µcrit)p
{

2

(1− e−β~ω2p)(1− e−β~ωp)
− 1

(1− e−β~ω2p)
− 1

}
− ∂Iexc2(µ)|µ=µcrit

∂µ
. (3.88)

Inserting (3.77) and (3.86) into Equation (3.88) and expanding up �rst order in g
yields

Ncrit =2
∞∑
p=1

{
2

(1− e−β~ω2p)(1− e−β~ωp)
− 1

(1− e−β~ω2p)
− 1

}

×

(
1 + pg2

k

aπ

∞∑
l=1

{
1

(1 + tanh(~ωl/2))(1− e−β2~ωl)
− 1

2

})

−gβ k

aπ

∞∑
q=1

∞∑
p=1

(q + p)

{
1

2
− 1

(1 + tanh(~ωq/2))(1− e−β2~ωq)

− 1

(1 + tanh(~ωp/2))(1− e−β2~ωp)

+
1

(tanh(~ωp/2) + tanh(~ωq/2))(1− e−β2~ωp)(1− e−β2~ωq)

}
. (3.89)

In order to evaluate these sums, the interaction parameter g is required. This
parameter includes the non-linear refraction index n2, which is a material parameter.
Fortunately, there exists an estimate based on numerical simulations of the Gross-
Pitaevskii equation, which were �tted to the experimental data [31]. The parameter
has the de�nition

g =
~2

mph

g, (3.90)

where g is the dimensionless parameter obtained from the Gross-Pitaevskii �t. Its
value is g = 7 · 10−4. De�ning g in this way, the prefactor of the interacting term
resembles the familiar expression for a two-dimensional harmonically trapped Bose
gas

gβ
k

aπ
=
gβ

π

~2

mph

mphω

~
=
g

π
β~ω (3.91)

with the e�ective photon mass term mph = ~k‖/c.
The result obtained with the program mathematica is

Ncrit ≈ 74300 + 100− 150 = 74250. (3.92)

The interaction has only a small contribution to the critical photon number, which
is not surprising, since the interaction parameter for the atomic BECs is g = 10−2−
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10−1 [32]. Here we introduced the Kerr-e�ect as an e�ective two-body contact
interaction in our second quantized Hamiltonian (3.23). We suggest to implement
other possible interactions in the geometry which shifts the oscillator level trap
frequency or possibly the higher order correction from the mode analysis lead to a
non-negligible contribution, when evaluated in the double sums for the free energy.

3.9 Density and correlation

In this section, we take advantage of the vector modes and present the mode pro�les
for the BEC of photons. Of course, these pro�les include the thermal contribu-
tion and the condensate part. The bilocal density of the introduced bosonic �eld
operators is

n(x,x′) =
〈
ψ̂†(x)ψ̂(x′)

〉
(0)

= tr

{
ρ̂

(∑
lmε

∑
l′m′ε′

A∗lmε(x) ·Al′m′ε′(x
′)â†lmεâl′m′ε′

)}
.

(3.93)

Applying the orthogonality of the Fock base and the Bogoliubov decomposition
(3.24), (3.25) immediately leads to

n(x,x′) =
1

Z0

∑
n

〈n|
∑
ε

ψ∗00ε(x)ψ00ε(x
′)e−βĤ0 |n〉

+
1

Z0

∑
n

〈n|
∑

lmε,lm6=00

A∗lmε(x) ·Almε(x
′)n̂lmεe

−βĤ0 |n〉 . (3.94)

The evaluation of the trace is performed as in the section of the free energy for the
interacting photon gas, thus the obtained expression is similar to (3.67),

n(x,x′) =
∑
ε

ψ∗00ε(x)ψ00ε(x
′) +

∑
lmε,lm6=00

A∗lmε(x) ·Almε(x
′)

1

eβ(Elm−µ) − 1
. (3.95)

Here the bilocal density contains the condensate and the excited states which are
required for the full density pro�le. According to Appendix (C.9), the excited state
density can be rewritten into

n(x,x′) =
∑
ε

ψ∗00ε(x)ψ00ε(x
′) (3.96)

+
k

aπ

∞∑
p=1

e−β(~ω−µ)pe−
k
2a

(ρ2+ρ′2)

{
e−

z
(1−z)

k
a

(ρ2+ρ′2)

(1− z)
e2 k

a

√
ρ2ρ′2z
(1−z) cos(φ−φ′) − 1

}
,

where the parameter z is z = e−β~ω2p. In the special case x = x′, we �nd the spatial
autocorrelation of the �eld which corresponds to the intensity. The autocorrelation
has the simple form (C.11)

n(x) = |ψ00(x)|2 +
k

aπ

∞∑
p=1

e−β(~ω−µ)p

{
e−

k
a
ρ2 tanh(~ωp/2)

(1− e−β~ω2p)
− e−

k
a
ρ2

}
. (3.97)
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In the following section the transverse wave number k⊥ is denoted as k⊥ = ktrans =√
k/a in order to correspond with mathematica plots. Figure 3.3 shows a plot of the

autocorrelation below and above criticality. The condensate part is localized in the
trap center, whereas the excited states dominate for ρktrans > 2. The logarithmic
plot in Figure 3.3 illustrates the Gaussian decay of the ground state. Evaluating the
Gaussian of the ground state, we can specify the spatial extension of the BEC

e−
k
a
ρ2 !

= e−1, (3.98)

which leads to

ρ0 =

√
a

k
= 14.1 µm. (3.99)

This result coincides with the estimate of the Equipartition theorem for the harmonic
oscillator

mphω
2ρ2

2
=

~ω
2
. (3.100)

Solving for the radius we get

ρ0 =

√
~

mphω
=

√
~ca
~kc

=

√
a

k
, (3.101)

where we used the de�nition of the e�ective photon mass (2.125) and the result for
the trap frequency (2.126).
Due to the knowledge of the complete mode structure it is possible to determine the
spatial correlation for the photon gas (3.97). Figure 3.4 shows a radial correlation
at a spatial point, where the trapped BEC gives only a small contribution due to
the spatial inhomogeneity. Above criticality, the correlation decays slower in central
direction, due to the presence of the condensate, whereas abroad the center ,for
ρktrans > 2 , the decay is almost alike. It is remarkable to see that in the central
region the condensate yields the major contribution. For large ρ, i.e. ρktrans > 2,
the thermal excited states begin to dominate.
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Figure 3.3: a) Radial autocorrelation below and above criticality, normalized to
density of the photons gas below criticality at ρ = 0 and ktrans =

√
k/a. The

intensity is decomposed in ground state (gs) and excited states (exc). b) Logarithmic
plot of a).
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Figure 3.4: a)Radial correlation below and above criticality at ρktrans = 2 with
ktrans =

√
k/a, normalized to the density of the photons gas below criticality at

ρ = 0. b) Logarithmic plot of a) with additionally ground state (blue curve) plotted.
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Chapter 4

Conclusion and outlook

This thesis systematically derived the Bose-Einstein condensation of photons from
classical electrodynamics. We studied the mode functions in a resonator, revealing
a classical frequency o�set. The resonator geometry mimics an e�ective potential,
which is a prerequisite for a BEC. Fixing the longitudinal quantum number as pre-
scribed in the experiment, the underlying mode structure corresponds to that of a
massive two-dimensional harmonically trapped Bose gas. Here we have explicitly
shown the analogy between the quantized electromagnetic �eld with a �xed quan-
tum number and the bosonic �eld operators, which inherit the structure from the
solutions of the classical Maxwell equations. Finally, correlations and densities were
studied to con�rm the signatures of BEC. The obtained boundary value problem
for this resonator yields in leading order the trap frequency described in the Weitz
experiment [9], as well as the e�ective mass term. Furthermore, the whole wave vec-
tor structure and the dispersion relation could be recovered. The main result is the
complete construction of the electromagnetic �eld, which grants access to relevant
quantities such as correlations, intensities and photon numbers.
In particular, the BEC of photons inherits a vector character, arising from the two
di�erent polarizations and the wave vector k. A consequence is the degeneracy of
the ground state, but also of all other states. To reveal the vectorial structure of the
photon BEC, we suggest to put a polarization �lter in front of the detector. Depend-
ing on the decrease of the corresponding intensity, one can check whether one of the
two polarizations is preferred, i.e whether the BEC is right- or left-handed. Further-
more, one should discuss the feasibility of polarized BEC with some special media
in the resonator or polarized pump light. Investigating the modes, the creation of
a doughnut-shaped ground state is interesting. This requires a mechanism which
forbids the Gaussian ground state, as for example a dye excitation and reemission,
which macroscopically populates the |m| = 1 state and blocks the |m| = 0 state due
to selection rules. We do not know whether or not dyes with a suitable dipole tran-
sition exist. There are still open questions concerning the phase transition of this
two-dimensional system. In the present work, the phase transition was calculated
as if it was arising from spontaneous breaking of the U(1) symmetry. However, it
should be possible to check whether or not the BKT-theory [33] applies to the BEC
of photons.
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Appendix A

Normalizing the vector modes

In this chapter we present the calculation of the normalized modes in (2.145).
Mostly we will use the Einstein sum convention, meaning upper and lower indices
are summed. The integral (2.144) is the L2 scalar product of the vectorial mode
function Alm

1
!

=

∫
volc

dAAlm ·A∗lm (A.1)

=Γ2
lm

∫
volc

dA (∇× e+uvNlm) · (∇× e∗+u
∗
Dlm)

+
Γ2
lm

k2
lm

(∇× ∇× e+uDlm) · (∇× ∇× e∗+u
∗
vNlm), (A.2)

where in the second step we already left out the scalar product of the mixed terms,
since we know that the∇×-mode and the∇×∇×-mode are orthogonal by construc-
tion. The subscript D and vN indicates the Dirichlet and von Neumann boundary
condition for the scalar function P , respectively.
The following vector analytic identity simpli�es the occurring curl expressions

∇× T · ∇ × T∗ =εijkεlmne
i · el∂jT k∂mT ∗n (A.3)

=∂jTk∂
jT ∗k − ∂jTk∂kT ∗j (A.4)

=∂j
[
(∂jTk)T

∗k]− (∆Tk)T
∗k + (∂j∂kT

k)T ∗j − ∂k
[
(∂jTk)T

∗j] .
(A.5)

We wrote this expression explicitly without integral. Due to the two-dimensional
integral in (A.2), we have take care of the occurring z-derivatives, because partial
integration with respect to z does not apply. Plugging (A.5) into the second line in
(A.2) with T = ∇× e+uDlm, the divergence term ∂kT

k vanishes automatically. The
x, y divergence expressions of ∂j

[
(∂jTk)T

∗k] and ∂k [(∂jTk)T
∗j] vanish by integration

over the xy-plane due to the rapid decay of scalar solution, only the divergence with
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respect to z remains. So we are left the integral

1
!

=Γ2
lm

∫
volc

dA(∇× e+uvNlm) · (∇× e∗+u
∗
vNlm) + (∇× e+uDlm) · (∇× e∗+u

∗
Dlm)

(A.6)

+
Γ2
lm

k2
lm

∂z
∫
volc

dA
[
(∂zTk)T

∗k − (∂jTz)T
∗j] (A.7)

The second line can be neglected, because the largest contribution arises from the
derivative with respect to z. In order to compensate the term 1/k2

lm, it requires two
z-derivatives. We set j = z for �rst term in the second line and j = k = z for second
term to �nd the leading order

∂z
[
(∂zTk)T

∗k − (∂zTz)T
∗
z

]
=∂z [(∂zTx)T

∗x + (∂zTy)T
∗y] (A.8)

=∂z [(∂z∂zuDlm)u∗Dlm − (∂z∂zuDlm)u∗Dlm] (A.9)

=0. (A.10)

Above we showed how to shift the operator∇× and then replace it by −∆T = k2
lmT.

Applying (A.5) again to (A.6) with T = e+uDlm and P = e+uvNlm, we get

1
!

= −Γ2
lm

∫
volc

dA∆(uDlmu
∗
Dlm + uvNlmu

∗
vNlm) (A.11)

+ Γ2
lm

∫
volc

dA∂j(∂jTkT
∗k + ∂jPkP

∗k) (A.12)

+ Γ2
lm

∫
volc

dA∂jT
k∂kT

∗j + ∂jP
k∂kP

∗j. (A.13)

Integrating the divergence expressions in the second line over x and y, only the
integral over the divergence with respect to z remains

∂zTkT
∗k + ∂zPkP

∗k =k‖|Rlm(x, y)|2(− sin(k‖z) cos(k‖z) + sin(k‖z) cos(k‖z))
(A.14)

=0, (A.15)

where Rlm(x, y) is transversal solution (2.65), which is independent from z. The
third line (A.13) does not involve any z-derivatives, because the vectors do not have
a z-component. The arguments x and y always appear in a quadratic form in the
mode function uDlm and uvNlm (2.87). Thus, the derivative of each mode function is
of the order k‖ρ/a� k‖, deriving the obtained prefactor another time would result
in k2

⊥ = k‖. However, due to the single appearing derivatives we neglect the third
line (A.13). The result is then

1
!

= −Γ2
lm

∫
volc

dA∆(uDlmu
∗
Dlm + uvNlmu

∗
vNlm) (A.16)

= Γ2
lmk

2
lm

∫
volc

dA (uDlmu
∗
Dlm + uvNlmu

∗
vNlm). (A.17)
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In the next steps we calculate the normalization factor Γlm. In paraxial approxima-
tion the quantization volume is the area perpendicular to the optical axis. Since this
area is rotational invariant under the azimuthal angle φ, we perform the integration
of (A.17) in polar coordinates

1
!

= Γ2
lmk

2
lm

2π∫
0

∞∫
0

|Rlm(ρ)|2
[
P 2

D(z) + P 2
vN(z)

]
ρdρdφ (A.18)

= Γ2
lmk

2
lm2π

∞∫
0

|Rlm(ρ)|2ρdρ, (A.19)

where we used that the absolute value of the mode function (2.87) is independent
from φ and the functions P 2

D(z) = sin2(k‖z) and P 2
vN(z) = cos2(k‖z) add up to 1.

Discussing the transverse extension of these modes, we have already recognized a
strong con�nement close the optical axis, i.e. the z-axis, which means contributions
from abroad are only tiny perturbative corrections. Furthermore, in the limit for
small curvature meaning a → ∞, it is justi�ed to set the upper integration limit
ρ0 = ∞, while the angle θ ≈ ρ/a in oblate spheroidal coordinates remains small or
at least constant, check also the discussion on open and closed cavities (2.67) and
Figure 2.3. In order to integrate (A.19), we substitute x = ρ2klm/a to arrive at

1
!

= Γ2
lm

(
a

klm

)m
aklm2π

∞∫
0

e−xxm {Lml (x)}2 dx, (A.20)

where we used the transverse solution R(ρ) from (2.65). The integral expression is
the exact de�nition for the L2-measure of the Laguerre polynomials. This is what
we expected from the orthogonal mode system. The Laguerre integral has the value

∞∫
0

e−xxm {Lml (x)}2 dx =
(l +m)!

l!
. (A.21)

Thus the evaluated total mode function integral is explicit

1
!

= Γ2
lm

(
a

klm

)m
aklmπ

(l +m)!

l!
. (A.22)

Hence the normalization constant is

Γlm =

√(
klm
a

)m−1
1

πa2

l!

(l +m)!
. (A.23)
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Appendix B

Transverse delta function

We present an outline of the derivation for the canonical commutation relation of
the constructed transverse vector potential operators Â and Â† in (2.159). The

canonical commutator for the vector potential Â and its canonical conjugate �eld

Π̂ =
˙̂
A is

N2
[
Â†i (x), Π̂j(x

′)
]

=iN2
[
Â†i (x), ωÂj(x

′)
]

(B.1)

=iN2
∑

(n)lmε

∑
opε′

ei · ejωopAi
∗
(n)lmε(x)Ajopε′(x

′)

×
[
â†lmε, âopε′

]
(B.2)

=i
∑
lmε

N2
lmδijωlmA

i∗
lmε(x)Ajlmε(x

′) (B.3)

=Cijε1(x, x′) + Cijε2(x, x′), (B.4)

where we used the commutator for the annihilation and creation operators (2.153)
which yields δloδmpδεε′ . The appearing Nlm (2.152) gives the components of Ai of
the vector modes A the proper dimension. In the next steps we will treat each
polarization ε separate. With the de�nition of the vector �elds (2.94) and the scalar
mode function uvNlm (2.87) we get for one polarization

Cijε1(x, x′) =i
∑
lm

N2
lmΓ2

lmω(n)lmεiktεiop∂
k [e+uvNlm(x)]t ∂′o

[
e∗+u

∗
vNlm(x′)

]p
(B.5)

=i
∑
lm

N2
lmΓ2

lmωlm(δkoδtp − δkpδto)∂k [e+uvNlm(x)]t ∂′o
[
e∗+u

∗
vNlm(x′)

]p
.

(B.6)

The index t on [e+uvNlm(x)]t denotes the component t from the vector e+uvNlm.
Summing over the components t and p of e+ and e∗+, only the components of the
same index do not cancel out. Taking into account that a derivative with a prime
∂′o acts only on primed variables, we take out the partial derivatives

=i
(
∂k∂

′k − ∂k∂′o
)∑
lmε

N2
lmΓ2

lmωlmuvNlm(x)u∗vNlm(x′). (B.7)

(B.8)
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Performing analogous steps for the other polarization yields

Cijε2(x, x′) =

i
∑
lm

δijN
2
lm

Γ2
lm

k2
lm

ωlm [∇ ×∇ × e+uDlm(x)]i
[
∇′ ×∇′ × e∗+u

∗
Dlm(x′)

]j
.

(B.9)

Again the primed variables do not act on the unprimed variables. Thus, we can take
out (∇ ×∇ × )(∇′ ×∇′ × ). Using the indentity (∇ ×∇ ×) = ∇∇ · −∆ and the
argument for summation over all the vector components of e+ and e∗+ we �nd

= i
(
∂k∂

k − ∂k∂o
) (
∂′k∂

′k − ∂′k∂′o
)∑
lm

N2
lm

Γ2
lm

k2
lm

ωlmuDlm(x)u∗Dlm(x′). (B.10)

Finally the full commutator has the form

N2
[
Â†i (x), Π̂j(x

′)
]

=

i
(
∂k∂

′k − ∂k∂′o
)∑
lm

N2
lmΓ2

lmωlmuvNlm(x)u∗vNlm(x′)

+i
(
∂k∂

k − ∂k∂o
) (
∂′k∂

′k − ∂′k∂′o
)∑
lm

N2
lm

Γ2
lm

k2
lm

ωlmuDlm(x)u∗Dlm(x′). (B.11)

In the next step we explicitly write down the scalar function u (2.87) and use the
constants Γlm (A.23) and Nlm (2.152)

D(x, x′) =
∑
lm

l!

(l +m)!

~
ε0kaπ

(
k

a
ρρ′
)|m|

L
|m|
l

(
k

a
ρ2

)
L
|m|
l

(
k

a
ρ′2
)

× e−
k
2a

(ρ′2+ρ2)eim(φ−φ′)P (k‖z)P (k‖z
′). (B.12)

Here P (z) is the transverse solution (2.65), with no �xed boundary condition, such
that the next steps hold four both polarizations.
We need to show the completeness relation for the Laguerre polynomials. Therefore
we introduce the symmetric kernel polynomial

Km
n (x, y):=

l∑
i=0

i!Lmi (x)Lmi (y)

(i+m)!
(B.13)

=
(l + 1)!

(l +m)!

L
(α)
l (x)Lml+1(y)− Lml+1(x)Lml (y)

x− y
. (B.14)

Such a kernel exists for all orhtogonal polynomials (Christo�el-Darboux theorem).
Combining the kernel with the respective L2 measure of the Laguerre polynomials
leads to a delta function in L2, which is then understood distribution in a convolution
integral

yme−yKm
n (·, y)→ δ(y − ·). (B.15)
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Setting x = k
a
ρ2 and y = k

a
ρ′2 we apply (B.15) to (B.12), then the l sum can be

replaced

D(x, x′) =
∑
m

~
ε0kaπ

(
ρ′

ρ

)|m|
e−

k
a

(ρ′2−ρ2)δ

[
k

a
ρ2 − k

a
ρ′2
]

eim(φ−φ′)P (k‖z)P (k‖z
′).

(B.16)

A property of the delta distribution is

δ[f(x)] =
∑
x0

δ(x− x0)

|f ′(x0)|
, (B.17)

where the x0 ful�ll f(x0) = 0. Using this property the sum gets the form

D(x, x′) =
∑
m

~
ε0kaπ

a

k2ρ
δ [ρ− ρ′] eim(φ−φ′)P (k‖z)P (k‖z

′). (B.18)

Another representation of the delta function is

δ(x) =
1

2π

∞∑
n=−∞

einx, (B.19)

which reduces the sum to

D(x, x′) =
~

k2ε0ρ
δ(ρ− ρ′)δ(φ− φ′)P (k‖nz)P (k‖nz

′). (B.20)

We can further replace in the second line of (B.10) the operator ∂′k∂
′k → −k2

lm and
omit the expression ∂′k∂

′o, because the scaling with 1/k2
lm makes this term negligible.

Then the commutator (B.1) is

N2
[
Â†i (x), Π̂j(x

′)
]

=

i~
ε0
δij
(
∂k∂

k − ∂k∂o
) 1

k2ρ
δ(ρ− ρ′)δ(φ− φ′)

{
cos(k‖(z + z))

}
. (B.21)

The term in curly brackets is cos(k‖n(z+z)) = cos(knz) cos(knz
′)−sin(knz) sin(knz

′)
with longitudinal cut-o� wave number k‖.
Since the considered mode functions uD(n)lm and uvN(n)lm are well behaved, it is
always possible to Fourier transform, which means we can interchange derivatives
with wave vectors. Thus we further simply the obtained expression,

N2
[
Â†i (x), Π̂j(x

′)
]

=
i~
ε0

(
δij − ∂i

1

k2
∂j

)
δ(2)(x− x′) cos(k‖(z + z)), (B.22)

which then resembles the de�nition of the transverse delta function [34]

δij⊥(x− x′) =

{
δij − ∂i

1

∆
∂j

}
δ(3)(x− x′). (B.23)

The �xed longitudinal quantum number makes (B.22) to an e�ective two-dimensional
transverse delta function with spatial modulation in z-direction.
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Appendix C

Correlation function

This appendix deals with the explicit calculation of the double sum over the quantum
numbers l and m appearing in the expectation value of the excited states in (3.67)
and as bilocal expression in (3.95). The expectation value is〈

δψ̂†(x)δψ̂(x′)
〉

(0)
= nexc(x,x

′) =
∑

lmε,lm6=00

A∗lmε(x) ·Almε(x
′)

1

eβ(Elm−µ) − 1
(C.1)

This expression is also understood as the bilocal density for the excited states
nexc(x,x

′). The evaluation of the product of the vectorial mode functions is per-
formed approximatively by taking the micro cavity limes k‖z = const and k⊥ = const
while z → 0, see also Appendix (A), where the scalar product is performed always
regarding the leading order terms. Applying the de�nition of the vector modes
(2.145) with the scalar solution (2.87), the expansion yields

nexc(x,x
′) =

1

aπ

∑
lm6=00

klm
l!

(l + |m|)!
1

eβ(Elm−µ) − 1
e−im(φ−φ′)

×
(
klmρρ

′

a

)|m|
e−

klm
2a

(ρ2+ρ′2)L
|m|
l

(
klmρ

2

a

)
L
|m|
l

(
klmρ

′2

a

)
. (C.2)

The klm depends on the summation indices l, m. In paraxial approximation the
leading order of the absolute value klm (2.118) is klm = k‖. Thus every combination
with ρ2 and klm is replaced by k‖ρ

2 and only the expression directly behind the
sum symbols is expanded to the next order. The expansion in klm (2.118) contains
expressions of the form (2l + |m|)/a, which have to be summed. An analysis of the
summands yields expressions proportional to

l!

(l + |m|)!

(
k‖ +

(2l + |m|)
a

)
1

eβ~ω(2l+|m|) − 1
e−

k‖
a

(ρ2ρ′2)Lml

(
k‖
a
ρ2

)
Lml

(
k‖
a
ρ′2
)
.

(C.3)

Since k‖ is about 1000 times larger than 1/a, only summands larger than l = 500
are comparable with k‖. Then the exponential 1/(eβ~ω2l−1) from the Bose-Einstein
statistics e�ectively surpresses the contribution, because the factor β~ω2l becomes
much larger than 1. Figure C.1 illustrates the behavior of the summand as function
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Figure C.1: Relative contributions of the summands in (C.3) as function of l for
m = 0 and ρ = ρ′ = 0. The contribution of next order in klm (red curve) is negligible
in comparison to the leading order k‖ (blue curve). For large l the Bose-Einstein
statistics surpresses all contributions.

of l. An Analogous argument holds for the sum over m. Physically this e�ective
suppression originates from the enhanced cut-o� energy or more precise it arises
from the large energy spacing between the longitudinal and the transversal modes.
If k‖ was much smaller, the additional contribution from l and m would be non-
negligible.
Rewriting the Bose-Einstein factor into a geometric series and using the explicit
form of the scalar solution (2.87) leads to

nexc(x,x
′) =

k‖
aπ

∞∑
p=1

e−β[~ω−µ]pe−
k‖
2a

(ρ2+ρ′2)

×

{
∞∑

m=−∞

∞∑
l=0

k‖e
−β[~ω(2l+|m|)p l!

(l + |m|)!

(
k‖ρρ

′

a

)|m|
×L|m|l

(
k‖ρ

2

a

)
L
|m|
l

(
k‖ρ
′2

a

)
e−im(φ−φ′) − 1

}
(C.4)

The following identity is adapted from Gradshteyn and Ryzhik [20, 8.976 ]

∞∑
l=0

l!

Γ(l +m+ 1)
Lml (x)Lml (y)zl =

(xyz)−
1
2
m

1− z
exp

(
−zx+ y

1− z

)
Im

(
2

√
xyz

1− z

)
,

(C.5)

for all |z| < 1. Here Im is the modi�ed Bessel function and Γ is the gamma function.
First we identify x = kz/aρ

2, y = kz/aρ
′2 and z = e−β~ω2p. Then formula (C.5) leads
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to

nexc(x,x
′) =

k‖
aπ

∞∑
p=1

e−β(~ω−µ)pe−
1
2

(x+y)

×

{
e−

z
(1−z) (x+y)

(1− z)

∞∑
m=−∞

e−im(φ−φ′)Im

(
2

√
xyz

1− z

)
− 1

}
. (C.6)

Making explicit use of the Jacobi-Anger identity

eq cos(t) =I0(q) + 2
∞∑
m=1

Im(q) cos(mt), (C.7)

and the recursion formula for the the modi�ed Bessel function [20, 8.486.7]

I(q)−m = Im(q) for all m ∈ Z, (C.8)

the sum over the angular momentum quantum number m can also be resolved.
Applying (C.7) to (C.6) and substituting back all variables �nally yields

nexc(x,x
′) =

k‖
aπ

∞∑
p=1

e−β(~ω−µ)pe−
k‖
2a

(ρ2+ρ′2)

×

e−
z

(1−z)
k‖
a

(ρ2+ρ′2)

(1− z)
e2

k‖
a

√
ρ2ρ′2z
(1−z) cos(φ−φ′) − 1

 , (C.9)

with z = e−β~ω2p. In the special case of x = x
′
it can be further simpli�ed to

nexc(x) =
k‖
aπ

∞∑
p=1

e−β(~ω−µ)p

{
e−

k
a
ρ2 1−2

√
z+z

(1−z)

(1− z)
− e−

k
a
ρ2

}
(C.10)

=
k‖
aπ

∞∑
p=1

e−β(~ω−µ)p

{
e−

k
a
ρ2(β~ωp/2)

(1− e−β~ω2p)
− e−

k
a
ρ2

}
. (C.11)
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