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Abstract

In this thesis the quantum phase transition of spinless bosons in optical lattices is described within a

Ginzburg-Landau theory. To this end the underlying e�ective action is derived from the microscopic

Bose-Hubbard Hamiltonian by developing diagrammatic techniques for a resummed hopping expansion.

Thus, this Ginzburg-Landau theory inaugurates a new approach for determining the properties of

bosonic atoms in lattice systems. Already in second hopping order it exhibits a relative error of less

than 3 % for the boundary between the super�uid and the Mott insulator phase of a three-dimensional

cubic optical lattice when compared with the most recent results of Quantum Monte Carlo simulations.

In addition, the Ginzburg-Landau theory also allows to calculate near-equilibrium as well as non-

equilibrium quantities. Thus, this thesis shows that, although comparable with numerical methods

in terms of accuracy, the analytical Ginzburg-Landau theory presented here o�ers a much better

qualitative understanding of the respective system properties.

The thesis starts in Chapter 1 with a brief introduction of the experimental achievements and

the theoretical description of Bose-Einstein condensation in general and lattice physics in particular.

Afterwards, Chapter 2 discusses in more detail the theory of laser-generated optical lattices. Second-

order phase transitions are then covered in Chapter 3 with special emphasis on the physics of the

quantum phase transition between a Mott insulator and a super�uid.

The Ginzburg-Landau theory itself is developed systematically in Chapter 4. It contains the dia-

grammatic techniques, which are used to calculate the e�ective action of the lattice system in a power

series of the hopping parameter. To this end symmetry-breaking currents are coupled to the bosonic

operators and, by applying a Legendre transformation to the free energy, the resulting e�ective action

is obtained. This procedure leads to an e�ective resummation of the free energy which makes it possible

to analytically describe the properties of the di�erent phases of the lattice system.

Various applications of the Ginzburg-Landau theory are presented in Chapters 5 and 6. In Chapter 5,

the e�ective action is used to calculate various static and dynamical properties of cubic bosonic lattices

at both zero and �nite temperature. It shows an impressive accordance with the numerically calculated

quantum phase diagrams for two and three dimensions already at second hopping order. In addition,

the equivalence between condensate and super�uid density is demonstrated at �rst hopping order.

Furthermore, the spectra of the various collective excitations appearing in both the Mott insulator and

the super�uid phase are analyzed in detail. In Chapter 6, the Ginzburg-Landau theory is then adapted

to deal with the collapse and revival dynamics of matter waves in an optical lattice loaded with 87Rb

atoms according to the experiment performed in Ref. [1]. Our method is used to reproduce at least

qualitatively the observed damped oscillations of the coherence.
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Kurzzusammenfassung

In der vorliegenden Arbeit wird der Quantenphasenübergang spinloser Bosonen in optischen Gittern

im Rahmen einer Ginzburg-Landau-Theorie beschrieben. Hierzu wird die zugrunde liegende e�ektive

Wirkung ausgehend vom mikroskopischen Bose-Hubbard-Hamiltonian abgeleitet, indem eine diagram-

matische Technik zur Resummation einer Tunnel-Entwicklung ausgearbeitet wird. Die so erhaltene

Ginzburg-Landau-Theorie erö�net einen neuen Zugang, um die Eigenschaften bosonischer Atome in

einem Gittersystem zu bestimmen. Schon in zweiter Hopping-Ordnung ergibt sich ein Fehler von

nur 3 % für die Grenze zwischen der super�uiden und der Mott-Isolator-Phase eines dreidimen-

sionalen kubischen optischen Gitters im Vergleich zu neuesten Quanten Monte-Carlo-Simulationen.

Auÿerdem erlaubt die Ginzburg-Landau-Theorie, physikalische Gröÿen nahe des Gleichgewichtes und

im Nichtgleichgewicht zu berechnen. Die Arbeit zeigt daher, dass die hier vorgestellte analytische

Ginzburg-Landau-Theorie ein viel besseres qualitatives Verständnis der jeweiligen Systemeigenschaften

ermöglicht, auch wenn die Genauigkeit der Ergebnisse mit denen durch numerische Methoden erzielten

Ergebnisse vergleichbar ist.

Die Arbeit beginnt in Kapitel 1 mit einer kurzen Einführung in die experimentelle Errungenschaften

und die theoretische Beschreibung der Bose-Einstein-Kondensation im allgemeinen und der Gitter-

physik im besonderen. Anschlieÿend diskutiert Kapitel 2 detaillierter die Theorie der durch Laser

erzeugten optischen Gitter. Phasenübergänge zweiter Ordnung werden dann im Kapitel 3 behandelt,

wobei besonders die Physik des Quantenphasenübergangs vom Mott-Isolator zum Super�uid betont

wird.

Die eigentliche Ginzburg-Landau-Theorie wird systematisch in Kapitel 4 entwickelt. Sie beinhal-

tet die diagrammatischen Techniken, die zur Berechnung der e�ektiven Wirkung eines Gittersys-

tems als Potenzreihe des Tunnelparameters verwendet werden. Hierzu werden Symmetrie brechende

Ströme an die bosonischen Operatoren gekoppelt und die e�ektive Wirkung folgt durch eine Legendre-

Transformation der freien Energie. Dieses Verfahren führt zu einer e�ektiven Resummation der freien

Energie, die eine analytische Beschreibung der Eigenschaften in den verschiedenen Phasen des Gitter-

systems ermöglicht.

Verschiedene Anwendungen der Ginzburg-Landau-Theorie werden in den Kapiteln 5 und 6 vorgestellt.

In Kapitel 5 wird die e�ektive Wirkung verwendet, um die verschiedenen statischen und dynamischen

Eigenschaften von kubischen bosonischen Gittern sowohl bei verschwindender als auch bei endlicher

Temperatur zu berechnen. Es zeigt sich, dass die Quantenphasendiagramme für zwei und drei Dimen-

sionen schon in zweiter Tunnelordnung beeindruckend mit numerisch erzielten Ergebnissen überein-

stimmen. Ferner wird gezeigt, dass Kondensatdichte und super�uide Dichte in erster Tunnelordnung

äquivalent sind. Auÿerdem werden die Spektren der verschiedenen kollektiven Anregungen genauer

analysiert, die sowohl in der Mott-Isolator als auch in der super�uiden Phase auftreten. In Kapitel

6 wird die Ginzburg-Landau-Theorie angewandt, um die Kollaps-und-Wiederkehr-Dynamik von Ma-
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teriewellen in einem mit 87Rb Atome beladenen optischen Gitter zu behandeln, die im Experiment der

Ref. [1] beobachtet wurde. Unsere Methode ist in der Lage, die beobachteten gedämpften Oszillationen

der Kohährenz zumindest qualitativ zu reproduzieren.

Wir halten zusammenfassend fest, dass unsere Ginzburg-Landau-Theorie für Bosonen in optis-

chen Gittern verschiedene Überprüfungen beim Vergleich mit numerischen Simulationen und experi-

mentellen Resultaten erfolgreich bestanden hat. Daher erwarten wir, dass sie zur Planung und Analyse

künftiger Gitterexperimente nützlich sein wird.
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1. Introduction

1.1. Bose-Einstein Condensation

By applying the new quantum statistics developed by Satyendra N. Bose [2], Albert Einstein predicted

the possibility of a new state of matter emerging in extremely cold bosonic gases: the Bose-Einstein

Condensate (BEC) [3,4]. According to his theory, when a non-interacting bosonic gas is cooled until it

reaches a certain critical temperature, a phase transition occurs. Below such temperature, the number

of particles occupying the ground state of the system becomes macroscopic. Following these ideas, in

1938 [5], F. London was the �rst to suggest the formation of a BEC as the explanation for super�uidity

in 4He. Although Einstein's theory concerns only with ideal Bose gases, the prediction of London was

later experimentally con�rmed by using neutron scattering techniques [6].

Despite all the theoretical predictions, it took more 70 years before the extremely low temperatures

necessary for the realization of the �rst BEC became available. It was only in the early 1980s that

laser cooling techniques turned temperatures of the order of micro-Kelvin accessible to experiments.

For this achievement, Chu, Cohen-Tannoudji, and Phillips received the physics Nobel prize in 1997.

The basic idea of laser cooling is to use the Doppler e�ect due to the thermal motion of the atoms

in such a way that they absorb more photons when moving towards the light source than in other

directions. This e�ect is obtained by tuning the laser to a frequency a little smaller than an electronic

transition of the atom. This way, when an atom moves in the direction of the laser source, its transition

frequency matches the laser frequency due to the Doppler e�ect. By using two laser beams pointing

in opposite directions, the atom will absorb more photons whenever it moves towards a light source,

thus reducing its momentum. Later, when the excited atom spontaneously emits the absorbed photon,

it will receive the photon momentum in an arbitrary direction. The net e�ect of such a cycle of an

absorption and an emission process is an overall decrease in the speed of atom and, therefore, the

cooling of the gas.

Alkali atoms are particularly accessible to laser-based methods due to their peculiar electronic struc-

ture and because their transitions are reachable by available lasers. Such methods provided the basis

for the next step in achieving even lower temperatures by using a procedure called evaporative cooling

[7]. This technique consists in successively lowering the trapping potential so that the most energetic

atoms �y from the sample leaving behind a cooler gas. This �nally made possible the temperatures of

only a few nano-Kelvin which are necessary to produce a BEC.

Finally in 1995, the �rst BECs were experimentally produced using rubidium atoms by Wiemann

and Cornell [8], and using sodium atoms by Ketterle [9]. In these experiments the ultracold gas is

released from its magnetic trap so that the atomic cloud can freely expand for a few milliseconds before

a picture of the expanded cloud is taken by shining resonant laser light on it and capturing its shadow

using a CCD-camera. As the density distribution of the expanded cloud reproduces almost exactly the
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1. Introduction

Figure 1.1.: Observed ultracold rubidium gas at 400, 200, 50 nano-Kelvin from right to left [8]. High
momentum peaks at 200 and 50 nano-Kelvin indicates the presence of a BEC while at 50
Kelvin the system is still too hot to condensate.

momentum distribution before the expansion, the observed spike in the captured image corresponds to

a macroscopic population of atoms in low-momentum states, i.e., of a BEC inside the magnetic trap

(see Fig. 1.1).

The creation of these �rst condensates was soon followed by intense theoretical and experimental

activities. Unlike super�uid 4He, which exhibits strong inter-particle interactions, the weak interactions

between alkali atoms allows a theoretical picture where all atoms belong to a BEC and are described

by a single macroscopic wave function which is a solution of the so called Gross-Pitaevskii equation

(GPE) [10,11]. A more precise theory, which takes into account quantum and thermal �uctuations,

was already developed by Bogouliubov [12]. In this theory, these �uctuations are responsible for the

depletion of particles from the condensate. As typically the depletion in alkali BECs are only a few

percent, GPE together with the Bogouliubov theory turns out to be capable of covering nearly all

experimental measurements of BECs.

1.2. Bosons in optical lattices

Cubic optical lattices are produced by using electromagnetic standing waves generated by pairs of laser

beams orthogonally aligned to each other, with their crossing point positioned at the center of a BEC.

This way each atom feels an oscillating electric �eld which induces an electric dipole in the atom. Due

to the ac Stark e�ect, the combination of the oscillatory electric �eld and the induced dipole causes a

shift in the electronic energy levels according to ∆ε = −1
2α(ω)

〈
E2(t)

〉
, where α(ω) is the dynamical

polarizability, ω is the laser frequency, and 〈·〉 stands for the average over a time much larger than the

period of the light wave. When the laser frequency is slightly smaller than a given atomic resonance
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1.2. Bosons in optical lattices

Figure 1.2.: Schematic drawing of optical lattices. (a) Trapping of atoms due to the periodic potential
generated by orthogonal standing waves. (b) Three-dimensional lattice [20]. (c) Grid of
one-dimensional lattices generated when the potential barriers are much weaker along the
lattices than in its orthogonal directions [13]. (d) Array of two-dimensional triangular
lattices generated by a strong periodic potential perpendicular to the lattice and three
pairs of laser beams propagating in the lattice plane [21]. (e) Array of two-dimensional
Kagomé lattices generated by a strong periodic potential perpendicular to the lattice and
four pairs of laser beams propagating in the lattice plane [22].

frequency (red detuned), α(ω) will be positive and, therefore, the potential maxima occur at the points

where
〈
E2(t)

〉
= 0 while the potential minima occur at the maxima of

〈
E2(t)

〉
. The opposite scenario

happens when the laser frequency is larger than a given atomic resonance frequency (blue detuned),

i.e., α(ω) is negative and the lattice potential is in phase with
〈
E2(t)

〉
. By using di�erent frequencies

for each pair of laser beams, it is possible to create optical lattices in one [13�16], two [17�19], or three

dimensions [20,19]. In addition, by changing the angle between the laser, it is also possible to build

di�erent lattice topologies such as triangular [21] or Kagomé [22] as depicted in Fig. 1.2.

According to Bloch's theorem, the periodic potential of the lattice modi�es the energy spectrum

of the atoms so that it exhibits a band structure, i.e., energy gaps appear between the energy bands

which are limited within the �rst Brillouin zone. This periodicity makes it possible to study models

originally developed in condensed matter physics with many advantages over the solid-state systems.

Besides being practically perfect, optical lattices allow the creation of a vast number of potentials with

almost complete control over its respective parameters. Actually the potential can even be made time

dependent [1] or be completely switched o� during the experiment to study time-of-�ight experiments.

The role of the band structure in optical lattices was observed even before the creation of BEC

[23,24] where gases with temperatures of the order of micro-Kelvin subjected to strong external forces

induced non-adiabatic transition between Bloch bands. This phenomenon, known as Landau-Zener

tunneling, leads to a splitting of the wavefunctions of the atoms each time a band gap is crossed.

The inclusion of BEC in optical lattices o�ered even more possibilities for studying these e�ects. A

striking demonstration of the Landau-Zener tunneling involving a BEC in optical lattices was made by

Anderson and Kasevich [25], where the authors used the gravitational force of the earth on a vertically

oriented lattice in order drive the condensate through the lattice. In Fig. 1.3 we see the successive
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1. Introduction

Figure 1.3.: Absorption image of a BEC falling through an optical lattice at di�erent times. (a) 0 ms,
(b) 3 ms, (c) 5 ms, (d) 7 ms, and (e) 10 ms. (f) Integrated absorption pro�le for (e).
Figure from Ref. [25].

splinting of the macroscopic matter wave as it crosses the Brillouin zone edges.

BECs in optical lattices exhibit a much richer physics than that of cold atoms in magneto-optical

traps. This is due to the fact that gases with temperatures of the order of micro-Kelvin have typically

densities around 1010 cm3, whereas BECs have temperatures on the order of nano-Kelvin and densities

around 1014 or even higher [26]. The incredible low temperature of BECs assures that when the optical

lattice is adiabatically switched on, the system will remain very close to its ground state. In addition,

the high densities of BECs can lead to lattice �lling factors higher than unity, in contrast to cold

atoms which have �lling factors around 10−3. This increases dramatically the relevance of inter-atomic

interactions in BECs while they are practically negligible in just cold atoms.

When a BEC is loaded in a shallow lattice the system is in the weakly interacting regime and most

of the atoms remain condensed. However, by increasing the lattice potential, the system becomes

strongly interacting. This increase of the lattice potential leads to larger separations of the Bloch

bands in such a way that interband band transitions are highly suppressed. In this case, it is a good

approximation to assume that all atoms are con�ned in the lowest Bloch band so that, in this regime,

the system can be very well described by the so called Bose-Hubbard Hamiltonian. Optical lattices

were �rst proposed as a nearly perfect realization of the Bose-Hubbard Hamiltonian by Jaksch et. al.

[27].

Perhaps the most impressive demonstration of the role of interparticle interactions in the strongly

correlated regime is the super�uid-Mott insulator transition which was predicted with the help of the

Bose-Hubbard Hamiltonian by Fisher et. al. [28] and experimentally realized by Greiner et. al. [29].

From the Bose-Hubbard Hamiltonian follows that bosonic gases in optical lattices can exist in two
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1.2. Bosons in optical lattices

Figure 1.4.: Figure from Ref. [31] of absorption pictures of ultracold gases released from an optical
lattice for various lattice depths: (a) 8ER, (b) 14ER, (c) 18ER, and (d) 30ER. ER is the
recoil energy de�ned in Chapter 2. The �gures from left to right indicates the transition
from a super�uid phase to a Mott phase which are characterized by the clear interference
peaks in (a) and the broad pattern in (d), respectively.

di�erent phases which can be chosen by tuning the depth of the potential wells generated by the

optical waves. This model is characterized by two energies: the tunneling energy, which determines

the probability of an atom to tunnel from a lattice site to one of its neighboring sites, and the on-site

interaction energy which is the interaction energy between two atoms located in the same lattice site.

When the on-site interaction is small compared to the hopping amplitude, the ground state is super�uid

(SF), as the bosons are delocalized and the phase is coherent over the entire lattice. In the opposite

limit, where the on-site interaction dominates the hopping energy, the ground state is a Mott insulator

(MI) which is characterized by an integer number of bosons trapped in each potential minimum. These

di�erent phases are observable, for instance, in time-of-�ight absorption pictures which are taken after

switching o� the lattice potential. While the super�uid phase yields to distinct Bragg-like interference

peaks, the Mott phase is characterized by a broad di�usive interference pattern [30,31], as we can see

in Fig. 1.4.

In addition to the SF-MI transition, the loss of coherence in bosonic lattices, as the system approaches

the strongly correlated regime, can the demonstrated in other experiments. For instance, Bloch et. al.

[1] observed the interesting behavior of the macroscopic matter wave as the parameters of the system

are rapidly switched from the SF to the MI regime. In particular, the authors observed the collapse

and revival of the condensate after a sudden change of the potential depth from a small to a large

value. Besides the main frequency dependency of the collapse and revival process, the authors observed

a damping in the matter wave and suggested that it was caused by coherency loss due to the harmonic

trapping potential.

There are several numerical and analytical methods available in order to describe in- and out-of-

equilibrium bosons in optical lattices. Among the numerical methods we have density-matrix renormal-

ization group (DMRG) [32], applied to one-dimensional systems, and quantum Monte Carlo methods

(QMC) [33�35] which where applied in one, two, and three spatial dimensions. Former analytical

methods are in general based on mean �eld theories [28,36], renormalization group analysis [28,37,36]

or on a strong coupling expansion [37,32,38]. However, if we compare the results for the SF-MI phase

boundary obtained by mean-�eld theory and strong-coupling expansion with the numerical results

from high-precision Monte-Carlo simulations, as shown in Fig. 1.5 for the three-dimensional case, we

observe that the mean-�eld theory underestimates the critical hopping parameter which characterizes
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1. Introduction

Figure 1.5.: Quantum phase diagram of the �rst MI-SF lobe at T = 0 for three-dimensional cubic
optical lattice. Dot-dashed blue line is the mean �eld result [28], dotted black line is from
the third-order strong expansion [37], red dots are high-precision Monte-Carlo data [34].
The mean-�eld theory gives a relative error of 16% at the tip of the lobe while the third-
order strong-coupling expansion not only gives a relative error of 24% but also predicts an
unphysical cusp at the tip of the lobe.

the quantum phase transition, while the strong-coupling approach overestimates it. Thus, in view of

a more quantitative comparison with the experimental results, it was indispensable to further develop

analytical approximation methods [39,40]. In particular, to obtain accurate analytical results for the

phase boundary at arbitrary dimensions as well as chemical potentials can yield new insights beyond

the purely numerical data provided by Monte-Carlo simulations.

Motivated by the necessity of new precise analytical tools, this thesis was dedicated to the elaboration

of such tools. The e�ort culminated with the development of an elegant and powerful strong-coupling

e�ective potential method [39,40]. This method turned out to provide not only a better qualitative

understanding of the lattice system, but also to improve the former analytical methods. Actually, a

second-order hopping expansion already exhibits a relative error of less than 3% for the phase boundary

in the three-dimensional case which can be taken as exact for most practical purposes. Higher-order

calculations of the phase boundary were carried out in Refs. [41�44] and demonstrate an impressive

convergence for the hopping expansion. As this method is based in the imaginary-time formalism, it

had to be adapted to real time in order to make it able to deal with out-of-equilibrium problems at

zero temperature. In Chapter 6, this real-time e�ective action formalism is used to describe not only

the collapse and revival of matter waves observed in [1] but also the damping caused by the presence

of the overall harmonic trap. A proposal for the generalization of this method for out-of-equilibrium

system at �nite temperature by combining it with the Keldish formalism is found in Refs. [45,46].

1.3. Overview

In the �rst three chapters of this thesis, including this introduction, I include an overview of some

subjects necessary for a better the understanding of this thesis. The last three chapters contain the
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1.3. Overview

original contributions of my PhD work.

In Chapter 2, the general theory of optical lattices is discussed. It is described how laser generated

standing waves are used to produce periodic trapping potentials. These potentials are capable of

reproducing many features of solid-state systems with the advantage of a defect-free lattice for which

the tunnel coupling between di�erent potential wells can be tuned by both the intensity and the

frequency of the lasers. Due to the ac-Stark e�ect, the atoms are trapped in the maxima or minima of

the laser �eld depending on whether the laser are red or blue detuned, respectively [20].

In Chapter 3, a general introduction to second-order phase transitions according to the modern

classi�cation of phase transitions is made. In particular, I address the symmetry breakdown mechanism

which applies when the system passes from one more ordered to a less ordered phase of system. A

discussion is also made about the role of the order parameter and concept of universality as well as

its relation to the di�erent critical exponents characterizing di�erent systems. Special attention is

given to quantum phase transitions which are transitions that can happen even in systems at zero

temperature. Most of these discussions are made in the context of bosons in optical lattices so that

the theory of second-order phase transitions is speci�cally applied to the Mott insulator-super�uid

transition. Explicit calculation of the quantum phase diagram is performed by using mean-�eld theory

and the properties of the two di�erent phases are discussed.

In Chapter 4, a perturbation theory is developed by taking advantage of a diagrammatic notation

specially developed to deal with bosons in optical lattices. The calculation of the e�ective action, which

is de�ned through a Legendre transformation of the free energy, leads to an automatic resummation of

the hopping expansion. This allows the description of the system properties in both the Mott insulator

and super�uid phase. By using a set of diagrammatic rules, the e�ective action is calculated up to

second hopping order.

In Chapter 5, the e�ective action is used to calculate various static and dynamical properties of cubic

bosonic lattices at �nite and zero temperature. By comparing the compressibility in the super�uid

phase with the mean-�led result, it is shown some advantages of the e�ective-action approach over

the mean-�eld theory. The second-hopping order calculation of the quantum phase diagram exhibits

an impressive accordance with the numerically calculated phase diagrams for two and three dimen-

sions. This indicates that already at second-hopping order, our theory has enough precision for most

practical applications. In addition, the equivalence between condensed density and super�uid density

is demonstrated at �rst hopping order. The spectra of the various excitations appearing in the Mott

phase and super�uid phase are calculated. In particular, the gaps and masses of the gapped modes

are calculated as well as the sound velocity associated with the Goldstone mode.

In Chapter 6, is discussed the formation and dynamics of matter waves in a optical lattice loaded

with 87Rb atoms which was experimentally observed by Greiner at. al [1]. I use the results from our

e�ective action theory to reproduce the observed features in Ref. [1] and test our theory against the

experimental results.

In order to facilitate the comprehension of calculations in Matsubara space, some extra computational

details are included in the appendices A and B.
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2. Optical Lattice Potentials

In this chapter the general theory of optical lattices is discussed. It is described how laser generated

standing waves are used in order to produce periodic trapping potentials. These potential are capable

of reproducing many features of solid-state systems with the advantages of a defect-free lattice whose

tunnel coupling between di�erent potential wells can be tuned by both the intensity and the frequency

of the lasers. Due to the AC Stark e�ect, the atoms are trapped in maxima or minima of the laser

�eld depending on whether the lasers are red or blue detuned, respectively [20].

2.1. Laser forces

First, consider the Hamiltonian of a freely moving atom

ĤFree =
1

2m
p̂2 +

∑
n

En |n〉 〈n| , (2.1)

where m is the mass of the atom, p̂ is the center-of-mass momentum operator, and |n〉 are the internal
electronic states with energy En.

Now, let us consider the laser-generated electric �eld

E(t) = E0ε cos(ωt), (2.2)

where ε indicates the direction of polarization of the laser light.

In the dipole approximation [47,48], the e�ect of the oscillating electric �eld on the atom is taken

into account by adding the interaction term

Î(t) = −d̂ · E(t) (2.3)

to the Hamiltonian ĤFree, with the dipole momentum operator de�ned as

d̂ = −e
∑
i

r̂i, (2.4)

where e is the electric charge of the electron and r̂i is the position operator of the i-th atomic electron

relative to the nucleus.

As we are interested in systems at very low temperatures, the atom is considered to be in its

electronic ground state |0〉. In this case, the �rst non-vanishing contribution to the ground-state

energy is of second order and is given by [11,47]

∆E = −1

2
α(ω)|E(t)|2, (2.5)
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2. Optical Lattice Potentials

where f(t) stands for the time average of an arbitrary function f(t) over a period much larger than

2π/ω and the frequency-dependent polarizability α(ω) is given by

α(ω) = <
{
i lim
η→0

∫ ∞

0
dteit(ω+iη) 〈0| 1

~

[
ε · d̂(t), ε · d̂

]
|0〉
}

≈
∑
n6=0

∣∣∣〈n| ε · d̂ |0〉
∣∣∣2 [ En − E0 − ~ω

(En − Em − ~ω)2 + (~Γn/2)2
+ (ω → −ω)

]
, (2.6)

where in the last line, the �nite lifetime of excited atomic states was approximately accounted for by

writing 〈n| ε · d̂(t) |0〉 ≈ 〈n| ε · d̂ |0〉 eit(En−E0)/~−|t|Γn/2. In practice, the long lifetime of electronic states

implies Γn, Γm � |En − Em| /~ for any two atomic states |n〉 and |m〉. Therefore, the frequency-

dependent polarizability in the vicinity of the n-th atomic excitation frequency, i.e, for frequencies

ω = (En−Em)/~+ δn with |δn| = O(Γn) � |En −Em| /~, will be dominated by only a single term in

the above sum over excited states:

α(ω) ≈
∣∣∣〈n| ε · d̂ |0〉

∣∣∣2 1

~
(−δn)

δ2n + Γ2
n/4

, δn = ω − (En − E0)/~. (2.7)

Inserting this into Eq. (2.5), one �nds for the second-order shift of the atomic ground-state energy

∆E =
~Ω2

R

2

δn
δ2n + Γ2

n/4
, (2.8)

with the Rabi frequency

ΩR =
1

~

√∣∣∣〈n| d̂ · E(t) |0〉
∣∣∣2. (2.9)

Besides inducing an r-dependent shift ∆E to the atomic ground-state energy which resembles an

external potential experienced by atoms, the laser light will also be absorbed and excite atoms which

will make transitions |0〉 → |n〉 at a rate w0→n ∝ (Γn/δn)∆E which, in view of Eq. (2.8), will be

maximal at resonance (δn = 0). In order to avoid strong absorption which would be associated with

heating up the ultra�cold gas, the lasers must be detuned with δn as large as possible.

Now we must take into account the fact that the laser generated standing wave possesses not only

a time-dependent electric �eld but also has a space dependency. Therefore, instead of Eq. (2.2), we

consider

E(r, t) = E0(r)ε cos(ωt) (2.10)

As the spatial variation of the electric �eld E(r, t) is negligible inside the atoms, we may assume

that the laser-induced electric �eld produces an e�ective external potential Vfull felt by each atom, this

spatio-temporal dependent electric �eld produces the spatially dependent potential

Vfull(r) = −1

2
α(ω)|E(r, t)|2. (2.11)

The intensity pro�le of a single Gaussian laser beams in cylindrical coordinates is given by [49]
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2.1. Laser forces

I(r) = |E(0, t)|2 w0

w(z)
e
− 2

w(z)2
r2
cos2(kLz), (2.12)

where z is the direction of propagation of the laser beam, w(z) = w0

√
1 + (z/zR) is the radius at which

the intensity drops to 1/e2 of its maximum, zR = πw2
0/λ is the Rayleigh length, λ is the wave length

of the lattice, and w0 is the beam waist size. The laser beams must be aligned so that the location of

their respective waists coincide. In this way, the approximation w(z) ≈ w0 can be made leading to a

potential of the form

Vfull(r) = −V0e
−2x2+y2

w2
0 cos2(kLz)− V0e

−2x2+z2

w2
0 cos2(kLy)− V0e

−2 y2+z2

w2
0 cos2(kLx). (2.13)

This can be rearranged to the form

Vfull(r) = Vtrap(r) + VOL(r) (2.14)

with trap and optical-lattice contributions

Vtrap(r) = −V0

(
e
−2x2+y2

w2
0 + e

−2 y2+z2

w2
0 + e

−2x2+z2

w2
0

)
≈ −3V0 +

4V0
w2
0

|r|2 , (2.15)

VOL(r) = Vx(r) sin
2(kLx) + Vy(r) sin

2(kLy) + Vz(r) sin
2(kLz), (2.16)

and the abbreviations

Vx(r) = V0e
−2 y2+z2

w2
0 ≈ V0 −

2V0
w2
0

(y2 + z2), (2.17)

Vy(r) = V0e
−2x2+z2

w2
0 ≈ V0 −

2V0
w2
0

(x2 + z2), (2.18)

Vz(r) = V0e
−2x2+y2

w2
0 ≈ V0 −

2V0
w2
0

(x2 + y2). (2.19)

Finally the full Hamiltonian which describes the motion of a single atom in a far detuned laser �eld

can be written as

Ĥfull =
1

2m
p̂2 + Vfull(r̂). (2.20)

In most applications, the atoms are concentrated in a region |r| � w0 near the center of the trap.

For this reason, deviations from periodicity in the full external potential Vfull(r) may be ignored, i.e.,

Vfull(r) ≈ −3V0 + V (r). Therefore, the only part that will be considered in following is

V (r) = V0
[
sin2(kLx) + sin2(kLy) + sin2(kLz)

]
, (2.21)

thus leading to the single atom Hamiltonian
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2. Optical Lattice Potentials

Ĥ ′ =
1

2m
p̂2 + V (r̂). (2.22)

2.2. Band structure

The Bloch theorem states that the eigenfunctions of the Schrödinger equation[
− ~2

2m
∇2 + V (r)

]
Ψ

(n)
k (r) = E

(n)
k Ψ

(n)
k (r) (2.23)

with a periodic potential V (r) has eigenfunctions of the form [50]

Ψ
(n)
k (r) = eik·rΦ

(n)
k (r), (2.24)

where the Bloch functions Φ(n)
k (r) have the same periodicity of V (r), n = (nx, ny, nz) is the collective

band index, and k is restricted to �rst Brillouin zone, i.e., its components are in the interval −π/a ≤
ki < π/a, with the lattice spacing a = π/kL = λ/2.

In many interesting cases the depth of the potential V (r) is large enough to trap the atoms in its wells

so that they move from one well to its neighbor by tunnel e�ect which is known as the tight-binding

limit. As the Bloch functions are spatially delocalized, it is convenient to de�ne a new set of wave

functions which are localized around each potential well. These are the so called Wannier functions

and are de�ned as [51]

U (n)(r− ri) =
1√
Ns

∑
k

e−ik·riΨ
(n)
k (r), (2.25)

where Ns is the total number of lattice sites, ri is the location of the i-th lattice site, and the sum

in k runs over the �rst Brillouin zone. From this de�nition it is possible to derive the orthonormality

property

∫ ∞

−∞
d3rU (n)(r− ri)

∗U (n′)(r− rj) =
1

Ns

∑
k′,k

eik
′·ri−ik·rj

∫ ∞

−∞
d3rΨ

(n′)
k′ (r)∗Ψ

(n)
k (r)

=
δn′,n

Ns

∑
k

eik·(ri−rj) (2.26)

= δn′,nδi,j ,

as well as the completeness property

∑
i,n

U (n)(r′ − ri)
∗U (n)(r− ri) =

1

Ns

∑
n

∑
k′,k

Ψ
(n)
k′ (r

′)∗Ψ
(n)
k (r)

∑
i

ei(k
′−k)·ri

=
∑
n

∑
k

Ψ
(n)
k (r′)∗Ψ

(n)
k (r) (2.27)

= δ(r− r′).
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2.2. Band structure

These conditions assure that any three-dimensional wavefunction can be expanded in terms of Wannier

functions.

As the equation (2.23) with the periodic potential given by (2.21) can be solved by separation of

variables, we can write its eigenfunctions and eigenvalues, respectively as

Ψ
(n)
k (r) = ψ

(nx)
kx

(x)ψ
(ny)
ky

(y)ψ
(nz)
kz

(z), (2.28)

E
(n)
k = ε

(nx)
kx

+ ε
(ny)
ky

+ ε
(nz)
kz

. (2.29)

And analogously with the Bloch and Wannier functions

Φ
(n)
k (r) = φ

(nx)
kx

(x)φ
(ny)
ky

(y)φ
(nz)
kz

(z), (2.30)

U (n)(r− ri) = u(nx)(x− xi)u
(ny)(y − yi)u

(nz)(z − zi), (2.31)

where ψ(n)
k (x) are solutions of the one-dimensional Schrödinger equation[

− ~2

2m

∂2

∂x2
+ V0 sin

2(kLx)

]
ψ
(n)
k (x) = ε

(n)
k ψ

(n)
k (x), (2.32)

with the one-dimensional Bloch and Wannier function de�ned as

ψ
(n)
k (x) = eikxφ

(n)
k (x), (2.33)

u(n)(x− xi) =
1

N
1/6
s

∑
k

e−ikxiψ
(n)
k (x). (2.34)

The one-dimensional Wannier functions also obey the orthonormality and completeness conditions

∫ ∞

−∞
dxu(n

′)(x− xi)
∗u(n)(x− xj) = δi,jδn,n′ , (2.35)∑

n,i

u(n)(x′ − xi)
∗u(n)(x− xi) = δ(x− x′). (2.36)

The Schrödinger equation (2.32) can be simpli�ed by expressing it in terms the dimensionless quantities

x′ =
π

a
x; k′ =

a

π
k; V ′

0 =
V0
ER

; ε̃(n) =
ε(n)

ER
, (2.37)

where the recoil energy is de�ned as

ER =
~2k2L
2m

. (2.38)

Thus, the dimensionless Schrödinger equation (2.32) reads
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Figure 2.1.: First four Bloch bands for di�erent values of V ′
0 . Left: V

′
0 = 1. Middle: V ′

0 = 10. Right:
V ′
0 = 20. Here we see that for high enough lattice potentials, each band energy can be

considered as momentum independent.

[
− ∂2

∂x′2
+ V ′

0 sin
2(x′)

]
ψ
(n)
k′ (x′) = ε̃

(n)
k′ ψ

(n)
k′ (x′). (2.39)

For the Bloch's function in dimensionless units we have[
k′2 − 2ik′

∂

∂x′
− ∂2

∂x′2
+ V ′

0 sin
2(x′)

]
φ
(n)
k′ (x′) = ε̃

(n)
k′ φ

(n)
k′ (x′). (2.40)

Due to its periodicity, the Bloch function can be expanded in a Fourier series according to

φ
(n)
k′ (x′) =

∞∑
l=−∞

c
(n)
k′,le

2ilx′ . (2.41)

Then Eq. (2.40) can be written in terms of the Fourier components[
(k′ + 2l)2 +

V ′
0

2

]
c
(n)
k′,l +

V ′
0

4
(c

(n)
k′,l+1 + c

(n)
k′,l−1) = ε̃

(n)
k′ c

(n)
k′,l. (2.42)

This discrete form of the eigenvalue equation (2.42) makes it ideal for numerical diagonalization. The

numerically calculated eigenvalues for di�erent bands are depicted in 2.1. That �gure illustrates the

known property from condensed matter systems, that the spectrum becomes more and more �at as V ′
0

is increased. In addition it shows that energy gap between the Bloch bands increases with V ′
0 . This

means for ultracold bosons in optical lattices, that the atoms can be considered as occupying only the

lowest Bloch band which considerably simpli�es the problem.
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2.3. Bose-Hubbard Hamiltonian

2.3. Bose-Hubbard Hamiltonian

An adequate description of many-body interacting systems consists in the inclusion of inter-particle

potentials in the many-body Schrödinger equation. Another well known technique do deal with such

systems is second quantization which greatly simplify the discussion of many-body interacting particles

[52]. One advantage of this approach is that it automatically incorporates the particle statistics with

no need for extra symmetrization or antisymmetrization for bosons and fermions, respectively. For the

case of nonrelativistic interacting identical bosonic particles moving in the external potential V (r), the

second quantized Hamiltonian is

Ĥ =

∫
d3rΨ̂†(r)

[
− ~2

2m
∇2 + V (r)− µ′

]
Ψ̂(r)

+
1

2

∫ ∫
d3r1d

3r2Ψ̂
†(r1)Ψ̂

†(r2)Vint(r1, r2)Ψ̂(r1)Ψ̂(r2), (2.43)

where Ψ̂(r) and Ψ̂†(r) are , respectively, the bosonic creation and annihilation �eld operators, Vint(r1, r2)

is the interparticle potential, µ′ denotes the grand-canonical chemical potential. The �eld operators

must obey the bosonic commutation rules

[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r− r′),

[
Ψ̂(r), Ψ̂(r′)

]
= 0,

[
Ψ̂†(r), Ψ̂†(r′)

]
= 0. (2.44)

For gases at low temperatures and densities, only two-body collisions have to be considered. In this

limit, the interparticle potential can be taken as [11,47]

Vint(r1, r2) =
4πaBB~2

m
δ(r1 − r2), (2.45)

where aBB is the s-wave scattering length. The many-body Hamiltonian can then be simpli�ed accord-

ing to

Ĥ =

∫
d3r

{
Ψ̂†(r)

[
− ~2

2m
∇2 + V (r)− µ′

]
Ψ̂(r) +

g

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

}
, (2.46)

where the coupling constant g = 4πaBB~2/m is introduced.

The �eld operators can be also expanded with respect to a complete set of functions in the single-

particle Hilbert space. In particular, the Wannier functions corresponding to the periodic potential

V (r) can be used as a basis for Ψ̂(r) and Ψ̂†(r). However, as ultracold atoms in deep periodic poten-

tials can be considered as occupying only the lowest Bloch band, only the Wannier functions U (0)(r)

corresponding to the �rst Brillouin zone have to be considered. As these are the only relevant Wannier

functions for the systems considered here, from now on, these functions will be written simply as U(r).
In this way, the �eld operators can be expanded as
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2. Optical Lattice Potentials

Ψ̂(r) =
∑
i

âiU(r− ri), (2.47)

Ψ̂†(r) =
∑
i

â†iU
∗(r− ri), (2.48)

where the operators â†i and âi are the creation and annihilation operators of particles at a given lattice

site, respectively. Using the orthonormality conditions, the following inverse relations can be derived

âi =

∫ ∞

−∞
d3rU∗(r− ri)Ψ̂(r), (2.49)

â†i =

∫ ∞

−∞
d3rU(r− ri)Ψ̂

†(r). (2.50)

Substituting the de�nitions (2.49) and (2.50)in Eqs. (2.44) and using the orthonormality relations, we

obtain the commutation relations for the lattice operator

[
âi, â

†
j

]
= δij , [âi, âj ] = 0,

[
â†i , â

†
j

]
= 0 (2.51)

Now, substituting the de�nitions (2.47) and (2.48) into (2.46) and using again the orthonormality

relations, we obtain the Bose-Hubbard Hamiltonian

ĤBH = −J
∑
〈ij〉

â†i âj +
U

2

∑
i

â†i â
†
i âiâi − µ

∑
i

â†i âi. (2.52)

where the sum in 〈ij〉 means that it must be carried over all nearest neighbors i and j. All other

contributions due to the overlapping between non-nearest neighbor Wannier functions are neglectable

and therefore discarded from the Bose-Hubbard Hamiltonian. Also from the same calculation, the

following Hamiltonian parameters can be obtained

J =

∫
d3rU∗(r− ri)

[
− ~2

2m
∇2 + V (r)

]
U(r− rj), (2.53)

U = g

∫
d3r |U(r)|4 , (2.54)

µ = µ′ −
∫
d3rU∗(r)

[
− ~
2m

∇2 + V (r)

]
U(r). (2.55)

Note that, due to discrete translational invariance, the hopping parameter J does not depend on which

nearest neighboring points ri and rj are considered. These parameters have a clear physical meaning:

the hopping parameter J is related to the probability of a given atom to jump from one lattice site

to its neighbors by tunnel e�ect, the on-site interaction energy controls the strength of interparticle

interactions of particle in the same lattice site, and the chemical potential µ controls the number of

particles in the systems in the grand-canonical ensemble.
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2.3. Bose-Hubbard Hamiltonian

2.3.1. Hamiltonian Parameters

As can be seen in Eqs. (2.53)-(2.55), a direct way for calculating the Bose-Hubbard parameters is

through direct integration of the Wannier functions. For the hopping parameter and chemical potential,

the de�nition (2.34) together with the equations (2.23)-(2.32) can be used for derivating alternative

formulas. By applying (2.32) and (2.34) to (2.53), we get

J =

∫
d3rU∗(r− ri)

[
− ~2

2m
∇2 + V (r)

]
U(r− rj)

=

∫ ∞

−∞
dxu∗(x− a)

[
− ~2

2m

∂2

∂x2
+ V0 sin

2(kLx)

]
u(x)

=
1

N
1/3
s

∑
k′k

eika
∫ ∞

−∞
dxφk′(x)

∗εkφk(x).

Observe the J depends on the dimension of the lattice only through the pre-factor 1/N1/3
s .

Due to the orthonormality of φk(x) this reduces to

J =
1

N
1/3
s

∑
k

eikaεk. (2.56)

Analogously for the chemical potential we have

µ = µ′ −
∫
d3rU∗(r)

[
− ~
2m

∇2 + V (r)

]
U(r) (2.57)

= µ′ − 3

∫ ∞

−∞
dxu∗(x)

[
− ~2

2m

∂2

∂x2
+ V0 sin

2(kLx)

]
u(x) (2.58)

= µ′ − 3
1

N
1/3
s

∑
k′k

∫ ∞

−∞
dxφk′(x)

∗εkφk(x). (2.59)

This leads to the �nal formula

µ = µ′ − 3

N
1/3
s

∑
k

εk. (2.60)

In particular, the hopping parameter J can be obtained in the limit V0 � ER from the exact result

for the width of the lowest band in the 1d Mathieu-equation [53]

J =
4√
π
ER

(
V0
ER

)3/4

e−2
√
V0/ER . (2.61)

In addition to these results, we present here two methods used to calculate the Wannier function

and the Bose-Hubbard parameters.
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2. Optical Lattice Potentials

Harmonic Approximation

The calculation of the Bose-Hubbard parameters using the harmonic approximation was carried out

in Ref. [54]. In this approach, the periodic potential is approximated by a harmonic potential at the

bottom of each well. The Wannier functions corresponding to a given lattice site are then considered

as eigenfunctions of the Schrödinger equation with harmonic potential centered at this site. In this

approximation, the equation for the one-dimensional Wannier function is[
− ~2

2m

∂2

∂x2
+ V0k

2
Lx

2

]
u(x) = εu(x). (2.62)

The ground-state of this equation gives the Wannier function corresponding to the �rst Bloch band

u(x) =
4

√
kL

√
2V0m

~π
exp

[
−kL

√
2V0m

2~
x2
]
=

4

√
π
√
V ′
0

a2
exp

[
−
π2
√
V ′
0

2

(x
a

)2]
. (2.63)

From this harmonic approximation, all system parameters can be obtained. First, the on-site interac-

tion parameter for the three-dimensional system is given by

U = g

∫
d3r |U(r)|4 = g

[∫ ∞

−∞
dx |u(x)|4

]3
. (2.64)

By solving the resulting Gaussian integral and using the de�nition of the coupling constant g, we have

U =
√
8π
ERaBB

a

(
V ′
0

)3/4
. (2.65)

The hopping parameter is given by

J =

∫
d3rU∗(r− ri)

[
− ~2

2m
∇2 + V (r)

]
U(r− rj) =

∫ ∞

−∞
dxu∗(x− a)

[
− ~2

2m

∂2

∂x2
+ V0 sin

2(kLx)

]
u(x).

(2.66)

A direct calculation of this integral leads to

J = −e
−π2

4

√
V0
ER

[
~2π2

2ma2

(
1

2

√
V0
ER

− π2V0
4ER

)
+
V0
2

(
e
−
√

ER
V0 + 1

)]
. (2.67)

For deep lattices, i.e, for large V0/ER, the exponential function e
−
√

ER
V0 can be approximated up to

�rst order in ER
V0
, thus leading to

J ≈ V0

(
π2

4
− 1

)
e
−π2

4

√
V0
ER = ERV

′
0

(
π2

4
− 1

)
e−

π2

4

√
V ′
0 . (2.68)

The chemical potential is given by

µ = µ′ −
∫
d3rU∗(r)

[
− ~2

2m
∇2 + V (r)

]
U(r) = µ′ − 3

∫ ∞

−∞
dxu∗(x)

[
− ~2

2m

∂2

∂x2
+ V0 sin

2(kLx)

]
u(x).

(2.69)
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Figure 2.2.: Numerically calculated Wannier functions. Left: V0 = 5ER. Right: V0 = 10ER. Blue:
lmax = 1. Green: lmax = 2. Red: lmax = 4.

For large V0/ER, the solution of the above integral gives

µ = µ′ − 3
√
ERV0. (2.70)

Numerical Calculations

The eigenvalue equation (2.42) can be written in matrix form



. . . −V ′
0
4

−V ′
0
4 g(−2) −V ′

0
4 0

−V ′
0
4 g(−1) −V ′

0
4

−V ′
0
4 g(0) −V ′

0
4

−V ′
0
4 g(1) −V ′

0
4

0 −V ′
0
4 g(2) −V ′

0
4

. . .





...

ck′,−2

ck′,−1

ck′,0

ck′,1

ck′,2
...


= εk′



...

ck′,−2

ck′,−1

ck′,0

ck′,1

ck′,2
...


, (2.71)

with g(l) = (k′ + 2l)2 +
V ′
0
2 . In order to numerically diagonalize the in�nity-dimensional system, it

must be truncated so that l runs from −lmax to lmax. From Fig. 2.2, we can see that for lmax = 4,

we already have very good results for large potential depths V ′
0 ≥ 5. For all numerically calculated

parameters presented here the value lmax = 10 is considered, in order to assure enough precision.

In Fig. 2.3, the Wannier functions calculated both numerically and using the harmonic approxi-

mation are shown. In Fig. 2.4, we can see the hopping parameter calculated from the approaches

presented here. The �gures 2.5 and 2.6, are, respectively, the corrections for the chemical potential

and on-site energy calculated in the harmonic approximation and numerically. From these �gures, we

see that although the harmonic approximation gives a small relative error for both the on-site energy

and the chemical potential, this is not true for the hopping parameter where the formula from Mathieu

equation gives much better results. This means that in all analytical approximations the formula (2.61)
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Figure 2.3.: Numerically calculated Wannier functions. Left: V0 = 5ER. Right: V0 = 10ER. Blue:
Harmonic approximation. Red: Numerical calculation.

must be used instead of (2.68).

2.3.2. Corrections due to Laser Inhomogeneity

Due to an inhomogeneous intensity pro�le of Gaussian laser beams, the lattice potential has same

deviations from its main periodic pro�le. Such deviations must then lead to corrections in the param-

eters of the Bose-Hubbard model. One obvious correction that can be seen in Eq. (2.15) comes from

the additional site-dependent potential Vtrap(r) which can be interpreted as a site-dependent shift in

the chemical potential. In addition to this, we have the site-dependent coe�cients V0x(r), V0y(r), and

V0z(r) which can be seen as site-dependent potential depths. As the Wannier functions are strongly

dependent on the potential V0, such variations must also be re�ected in the Bose-Hubbard parameters.

In general the Wannier functions can be expressed by

Ucorr(r) = u(x;V0x)u(y;V0y)u(z;V0z), (2.72)

where, for clearness, the V0-dependency of the one-dimensional Wannier function is made explicit.

The inhomogeneous Bose-Hubbard model turns into

ĤBH = −
∑
〈ij〉

J(ri; rj)â
†
i âj +

1

2

∑
i

U (ri) â
†
i â

†
i âiâi −

∑
i

µ (ri) â
†
i âi, (2.73)

Let us start with the chemical potential. In addition to the correction from Vtrap(r), we must consider

the e�ect of Ucorr(r) which leads to

µ (r) = µ′ + Vext(r)−
∫
d3rU∗(r)

[
− ~2

2m
∇2 + V (r)

]
U(r)

= µ′ + Vext(r)−
√
ER

(√
V0x(r) +

√
V0y(r) +

√
V0z(r)

)
≈ µ′ − 3

√
ERV0 +

mω2
L

2
|r|2 , (2.74)
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Figure 2.4.: Hopping parameter from: harmonic approximation (blue), Mathieu equation (Green),
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Figure 2.5.: Correction to chemical potential from: harmonic approximation (blue), numerical calcu-
lation (red).
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Figure 2.6.: On-site energy from: harmonic approximation (blue), numerical calculation (red).

where the trapping frequency ωR associated to the laser beams is [30]

ω2
R =

8V0 − 4
√
V0/ER

mw2
0

. (2.75)

In the following, we consider the corrections of the hopping parameter. By using formula (2.61), we

get the direction-dependent hopping parameters

J(r+ aex; r) = Jx =
4√
π
ER

(
V0x
ER

)3/4

e−2
√
V0x/ER , (2.76)

J(r+ aey; r) = Jy =
4√
π
ER

(
V0y
ER

)3/4

e−2
√
V0y/ER , (2.77)

J(r+ aez; r) = Jz =
4√
π
ER

(
V0z
ER

)3/4

e−2
√
V0z/ER , (2.78)

where ei are the coordinate unit vectors. By using the approximations (2.17)�(2.19), we have

Jx ≈ J0 + σ(y2 + z2), (2.79)

Jy ≈ J0 + σ(x2 + z2), (2.80)

Jz ≈ J0 + σ(x2 + y2), (2.81)

with the abbreviations
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2.3. Bose-Hubbard Hamiltonian

J0 =
4√
π
ER

(
V0
ER

)3/4

e−2
√
V0/ER , (2.82)

σ =
2

w2
√
π
ER

[
4

(
V0
ER

)5/4

− 3

(
V0
ER

)3/4
]
e−2

√
V0/ER . (2.83)

Now, for the on-site energy we have

U (r) =
√
8π
E

1/4
R aBB

a
(V 0xV 0yV 0z)

1/4 . (2.84)

By using the approximations (2.17)�(2.19), we have

U ≈ U0

(
1− |r|2

w2
0

)
. (2.85)

The limit of validity for the Homogeneous Bose-Hubbard Hamiltonian can now be extracted from

Eqs. (2.74),(2.79),(2.80),(2.81), and (2.85). These equations show that as long as the region, at the

center of the trap, is much smaller than the laser beam waist w, all system parameters can be considered

as homogeneous. In Chapter 6, I show how spatially dependent chemical potential contributes to the

observed damping of the condensate wave function in Ref. [1].
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3. Quantum Phase Transitions

In this chapter, a general introduction to second-order phase transitions according to the modern

classi�cation of phase transitions is made. In particular, I address the symmetry breakdown mechanism

which applies when the system passes from one more ordered to a less ordered phase of system. A

discussion is also made about the role of the order parameter and concept of universality as well as

its relation to the di�erent critical exponents characterizing di�erent systems. Special attention is

given to quantum phase transitions which are transitions that can happen even in systems at zero

temperature. Most of these discussions are made in the context of bosons in optical lattices so that

the theory of second-order phase transitions is speci�cally applied to the Mott insulator-super�uid

transition. Explicit calculation of the quantum phase diagram is performed by using mean-�eld theory

and the properties of the two di�erent phases are discussed.

3.1. Second-Order Quantum Phase Transitions

A common fact observed in nature is that matter in thermodynamical equilibrium exists in di�erent

phases. When a medium undergoes a transition from one phase to another, some of its properties

are modi�ed, often abruptly, as a result of the change in external conditions, such as temperature,

pressure, or even external electric and magnetic �elds. Some of these external conditions are quanti�ed

in terms of control parameters in the underlying system Hamiltonian. The values of the system

parameters, at which the phase transition happens, de�ne the phase boundary in the control parameter

space. More precisely, phase transitions are de�ned as points in the control parameter space where the

thermodynamical potential becomes non-analytic.

Such a non-analytical behavior of a thermodynamical potential seems, at �rst sight, to contradict

statistical mechanics, as for any �nite system, its partition function is a �nite sum of analytical func-

tions, and is therefore always analytic. This is not true, however, if the system's size together with its

total number of particles is considered to be in�nite, which is known as the thermodynamical limit. As

macroscopic systems typically contain about 1023 particles, the thermodynamic limit is considered to

be a very good approximation.

The modern classi�cation of phase transitions establishes two kinds of transitions depending on

whether a thermodynamical potential varies continuously or not at the transition point. Transitions

which involve latent heat are associated with a discontinuity in the thermodynamical potential and

are called �rst-order phase transitions. On the other hand, if a transition does not involve any latent

heat, then this thermodynamical potential is continuous and we have a second-order phase transition.

Non-analytic properties of systems near a second-order phase transition are called critical phenomena

[55�57]. The point in the phase diagram, where a second-order phase transition takes place, is called

critical point.
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3. Quantum Phase Transitions

In second-order phase transitions the symmetry present in one of the phases is reduced when the

phase boundary is crossed and the other phase is reached. Due to this reduction of symmetry, an

extra parameter is needed to describe the system in the less symmetrical phase. This extra parameter

is called order parameter. The choice of the order parameter is often dictated by its utility and is

usually taken in such a way that it vanishes in the symmetric phase and becomes non-zero in the non-

symmetric one. Among many well-known examples of order parameters is the density in solid/liquid or

liquid/gas transitions, and the net magnetization in ferromagnetic systems. Depending on the system

considered, the order parameter may take the form of a complex number, a vector, or even a tensor.

An interesting feature of second-order phase transitions is that the lack of analyticity is also present

in quantities which can be expressed as second derivatives of the free energy, such as the speci�c heat

or the compressibility, as they usually exhibit a singular power law behavior at the vicinity of the

transition point. In general, all non-analyticities of thermodynamical quantities with respect to one of

the system parameters are described by a set of exponents in terms of a power law associated to these

quantities. They are called critical exponents and are denoted by a list of Greek letters: α, β, γ, δ, η,

ν and for quantum systems we still have the so called dynamical critical exponent z [58].

Usually, the temperature is chosen to be the control parameter used to express the singularities.

Here we consider a general parameter g which has the value gc at the phase boundary. In the limit

g → gc, any thermodynamic quantity can be decomposed into a regular part, which remains �nite plus

a singular part which absorbs all singularities of this quantity. This singular part is assumed to be

proportional to some power of g − gc.

The �rst four exponents are de�ned considering the singularities in the free-energy density fs, the

order parameter ψ, and the susceptibility χ with respect to both g and the thermodynamic conjugate

of the order parameter J , as follows [59]

fs ∼ |g − gc|2−α , (3.1)

ψ ∼ |g − gc|β , (3.2)

χ ∼ |g − gc|−γ , (3.3)

ψ ∼J1/δ, (3.4)

where for the �rst three relations we must consider J = 0, while the last one clearly refers to the case

where J 6= 0. Observe that the equation (3.2) makes sense only when the phase boundary is approached

from the ordered phase as in the disordered phase the order parameter should vanish identically. The

other three equation are valid in both sides of the phase boundary.

The exponents ν and z describe the singularities of the correlation length ξ and correlation time τξ
at the vicinity of the phase boundary :

ξ ∼ |g − gc|−ν , (3.5)

τξ ∼ |g − gc|−νz . (3.6)

And, �nally, the parameter η relates to the power-law behavior of the correlation function at the phase
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3.2. Quantum Phase Transitions in Bosonic Lattices

boundary, as follows

G (r) ∼ r−(d+z−2+η). (3.7)

The early measures of critical exponents revealed the rather unexpected fact that many phase tran-

sitions occurring in apparently very di�erent systems had actually the same critical exponents. This

characteristic shared among many systems is known as universality . Such a peculiarity emerges in

regimes in which the correlation length and all relevant distances are much larger than the microscopic

scale, in other words, the main properties of the system near the critical point do not dependent on

its short-distance structure.

These critical exponents are actually not independent from one another. Instead, they are con-

strained by scaling laws for the system thermodynamic functions. These laws are usually derived from

the scaling hypothesis [59] which states that, near the critical point, the correlation length ξ is the

only relevant length of the system, in terms of which all other lengths can be measured. In the case of

quantum systems, where time plays a very important role, the scaling hypothesis must be extended by

considering that, together with the characteristic length ξ, we also have a characteristic time τξ which,

is the only relevant time in terms of which all other times must be measured.

Comparing the dimensions of the above quantities and considering the scaling hypothesis we get the

scaling laws [60], as follows

2− α = ν(d+ z) (3.8)

α+ 2β + γ = 2 (3.9)

β + γ = βδ (3.10)

ν(2− η) = γ. (3.11)

Those relations reduce the number of independent critical exponents from seven to only three.

3.2. Quantum Phase Transitions in Bosonic Lattices

Unlike classical phase transitions, where the variation in the temperature induces the transition, quan-

tum phase transitions can occur due to a competition between di�erent control parameters in the

system Hamiltonian. In the quantum case, the quantum �uctuations play the role of the thermal

�uctuations in the classical case. This means that the quantum character of the critical �uctuations

makes possible the occurrence of these phase transitions even at zero temperature.

As already discussed in Chapter 1, all low-temperature physics of spinless bosons loaded in optical

lattices can be described by the single-band Bose-Hubbard Hamiltonian

ĤBH = −
∑
i,i′

Jii′ â
†
i âi′ +

U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i. (3.12)

In the case of BEC, the order parameter is the macroscopic wave function of the condensate Ψ(r) =

〈Ψ̂(r)〉. For the Bose-Hubbard Hamiltonian, the order parameter can be similarly de�ned as ψi = 〈âi〉

35



3. Quantum Phase Transitions

which is simply ψ for a homogeneous system. In the ordered phase we have ψ = Aeiθ, with a well

de�ned phase θ while in the disordered phase we have ψ = 0. The phase θ of the condensate wave

function is a priory unknown, however, in order to attain the ordered phase, the system has to undergo

a spontaneous symmetry breaking, i.e., the phase θ has to pick a certain direction. In practice the

resulting direction is decided by an in�nitesimal external perturbation like a boundary condition.

When the system is not disturbed by an external perturbation, the di�erent values of the phase

θ correspond to a global U(1) phase symmetry in the Bose-Hubbard Hamiltonian (3.12), and each

microscopic con�guration belongs to a set of con�gurations with exactly the same energy, where only

the value of the phase θ is modi�ed. Now, according to Boltzmann's ergodic hypothesis, when a system

is in equilibrium all system states with the same energy have exactly the same probability and will be

equally populated, therefore yielding ψ = 0. This means that no ordered phase should ever occur.

The answer to this paradox lies in the fact that we are implicitly considering an in�nite system,

i.e., that we are working in the thermodynamical limit. The physical picture behind Boltzmann's

ergodic hypothesis is that, as time progresses, the system goes from one state to the next, and will

eventually visit all possible states. For a system with few degrees of freedom the transition rate between

any two states is appreciable, and thus the system does visit all available states in a relatively short

period of time. However, for large systems the situation can be very di�erent as the time, which

is necessary for the system to visit all microscopic con�gurations, may become in�nitely large as we

increase the system size. As a result, the system cannot explore the entire con�guration space as

Boltzmann assumed. Therefore, it is con�ned in a certain subspace which corresponds to ψ = Aeiθ.

Thus, spontaneous symmetry breaking happens dynamically, i.e., it is a manifestation of ergodicity

breaking.

In spite of these limitations, it doesn't mean that we cannot use the Boltzmann distribution anymore,

actually all we have to do is to impose a constraint limiting the statistical sum to the con�gurations

that the system can really explore. In 1932, John von Neumann [61] established that, in order to

obtain the density matrix operator ρ̂ corresponding to any statistical ensemble, all we have to do is to

�nd the Hermitean operator ρ̂ so that it maximizes the quantum mechanical entropy

S = −kBTrρ̂ ln(ρ̂), (3.13)

with the trace constraint Trρ̂ = 1 and all additional constraints corresponding to the ensemble in which

we are working, where kB is the Boltzmann constant. In order to obtain the Boltzmann distribution

one has to impose a constraint on the expectation value of the system energy E = 〈ĤBH〉, thus de�ning
the canonical ensemble. The grand-canonical ensemble is obtained when we also include a constraint

N =
∑

i〈n̂i〉 on the total number of particles in the system. The Lagrange parameters associated

with these two constraints are the inverse of the absolute temperature 1/T and the chemical potential

µ, respectively. This is equivalent to state that the grand-canonical distribution is a consequence of

minimizing of the thermodynamical potential

Γ = Trρ̂ĤBH + kBTTrρ̂ ln(ρ̂), (3.14)

where we rede�ned µi according to µi + µ → µi so that it absorbs the chemical potential µ. This
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3.2. Quantum Phase Transitions in Bosonic Lattices

variational principle constitutes the starting point for an adequate approach towards second-order

quantum phase transitions.

As already stated, in order to limit the statistical sum to the con�gurations that the system actually

visits, we must still impose a constraint to the system so that its order parameter has a given �xed

value. In the case of bosons in homogeneous optical lattices, we have the order parameters ψ = 〈âi〉
and ψ∗ = 〈â†i 〉 which leads to the introduction of Lagrange multipliers j and j∗ in (3.14) and the free

energy

F (j∗, j) = Γ + Trρ̂
∑
i

(
j∗âi + jâ†i

)
. (3.15)

The ψ-dependent e�ective thermodynamic potential is then called e�ective potential. This transfor-

mation is equivalent to modifying the Bose-Hubbard Hamiltonian in the following way

ĤBH(j
∗, j) = ĤBH +

∑
i

(
j∗âi + jâ†i

)
. (3.16)

By minimizing (3.15) with the constraint Trρ̂ = 1, we obtain the source-dependent density matrix

ρ̂(j∗, j) = Z−1e−βĤBH(j∗,j), (3.17)

where we de�ne β = 1/kBT and the partition function Z given by

Z(j∗, j) = Tre−βĤBH(j∗,j). (3.18)

Substituting ρ̂(j∗, j) into (3.15), we �nd the explicit form of the source-dependent free energy

F (j∗, j) = − 1

β
lnZ(j∗, j). (3.19)

The order parameter ψ as well as its complex conjugate ψ∗ can be found by di�erentiating the free

energy F (j∗, j) with respect to j∗ and j

ψ =
1

Ns

∂F

∂j∗
,

ψ∗ =
1

Ns

∂F

∂j
, (3.20)

where Ns is the total number of lattice sites.

It is important to keep in mind that, in order to �nd the minimum of (3.14), we still have to minimize

Γ with respect to ψ. This means that the value of ψ can be extracted from the equations

∂Γ

∂ψ
= 0, (3.21)

∂Γ

∂ψ∗ = 0. (3.22)

A direct consequence of the global phase invariance of ĤBH is that the e�ective potential Γ must

also exhibit an invariance with respect to the order parameter phase. The independence on the phase
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Figure 3.1.: Left: Mexican-hat potential typical of symmetry-broken phase. Right: potential with a
single minimum at the origin which characterizes the symmetric phase.

of ψ implies that Γ has to be a function of |ψ|2. This also implies that there is no unique solution for

(3.21) with ψ 6= 0, as any particular solution of (3.21) can be multiplied by an arbitrary phase factor

and still obeys this equation. As already discussed, this uncertainty in the phase of ψ characterizes a

symmetry-broken phase. However, if we have only the trivial solution ψ = 0, then there is no ambiguity

in de�ning the order parameter and, therefore, we have a symmetric phase.

Now, in order to know if a given set of control parameters in ĤHB leads to a symmetric or unsym-

metrical phase, we must �nd out whether the minimum of Γ is attained for |ψ| = 0 or |ψ| 6= 0. The

solution to this problem was given by Lev Landau and is based on analyzing the terms in the respective

expansion of Γ in a power series of |ψ|2

Γ = a0 + a2|ψ|2 + a4|ψ|4 + · · · . (3.23)

Landau argued that second-order phase transitions could, in general, be fully explained by only

considering the coe�cients a2 and a4. In the simplest case, where a4 > 0, the second-order phase

transition is characterized by the change in the sign of a2. This comes from the fact that, if a2 > 0, the

only solution of (3.21) is ψ = 0, thus corresponding to a symmetric phase, while if a2 < 0, the e�ective

potential Γ has a Mexican hat shape as depicted in Fig. 3.1. In the latter case Γ has in�nitely many

minima with |ψ| 6= 0 which di�er only in phase.

The condition a2 = 0 de�nes the boundary line which separates the ordered and disordered phases

in the control parameters space. At the vicinity of this boundary, the absolute value of the order

parameter can be calculated by using (3.21) and (3.23), which leads to

|ψ| =
√
− a2
2a4

. (3.24)

Up to this point we focused our attention on the second-order phase transitions where the global U(1)

phase symmetry of the system is broken by the emergence of a non-zero homogeneous order parameter.

Although this approach is well suited for dealing with most second-order phase transitions, due to the

38



3.2. Quantum Phase Transitions in Bosonic Lattices

assumption of homogeneity, we cannot apply this e�ective potential method to systems which may

exhibit spontaneous symmetry breaking with a site-dependent order parameter, i.e, systems where

the translation symmetry is also broken. There are many well known cases of this kind of phase in

the literature, perhaps the most famous of them being the anti-ferromagnetic phase in spin lattice

systems, where the spins of any two neighbor lattice sites are antiparallelly aligned to each other.

An e�ect similar to antiferromagnetism can also take place in bosonic optical lattices if the hopping

matrix elements in the Bose-Hubbard Hamiltonian could be tuned to become negative, as recently

suggested in Ref. [62]. In such cases we may also have second-order phase transitions, but unlike the

homogeneous case, the order parameter ψi = 〈âi〉 can be also be site dependent. Therefore, in order

to have a method capable of dealing also with site-dependent order parameters, we must introduce in

our method site-dependent sources, which lead to a more general thermodynamic potential Γ(ψ∗
i , ψi).

Analogously to the homogeneous case, this is accomplished by using site-dependent sources j∗i and ji,

which serve to impose the constraints 〈â†i 〉 = ψ∗
i and 〈âi〉 = ψi, respectively.

An even more general thermodynamical potential can be de�ned if we explore the similarities between

the quantum-mechanical evolution operator and the quantum-statistical density matrix. Considering

~ = 1, we observe that the operator e−βĤ has the same form of the evolution operator e−itĤ . Thus, we

can consider the operator e−βĤ as a quantum-evolution operator evolving in imaginary time from 0 to

β by making the Wick rotation it→ τ . Now, instead of considering only site-dependent source terms,

we can have time-dependent as well as site-dependent terms by de�ning the general Hamiltonian

ĤBH(τ) = ĤBH +
∑
i

[
j∗i (τ)âi + ji(τ)â

†
i

]
. (3.25)

The imaginary-time evolution operator therefore obeys a Schrödinger-like equation with τ = it, i.e.,

−∂Û(τ, τ0)

∂τ
= ĤBH(τ)Û(τ, τ0). (3.26)

The solution of (3.26) can be written as

Û(τ, τ0) = T̂ e
−

∫ τ
τ0
dτ ′ĤBH(τ ′)

. (3.27)

The source-dependent partition function is then de�ned by

Z[j∗i (τ), ji(τ)] = TrÛ(β, 0), (3.28)

and analogous to the time-independent case we de�ne the functional

F [j∗i (τ), ji(τ)] = − 1

β
lnZ[j∗i (τ), ji(τ)]. (3.29)

The use of this free-energy functional not only allows us to deal with more general phase transitions,

but it also makes possible to represent most of the system quantities by means of functional derivatives
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3. Quantum Phase Transitions

of F with respect to the sources. In particular, the space-time dependent order parameter is given by

ψi(τ) = β
δF

δj∗i (τ)
. (3.30)

Finally we are able to generalize the e�ective potential by means of a Legendre transformation. This

gives us the e�ective action

Γ [ψ∗
i (τ), ψi(τ)] = F − 1

β

∑
i

∫ β

0
dτ [ψ∗

i (τ)ji(τ) + ψi(τ)j
∗
i (τ)]. (3.31)

The physical value of the order-parameter is then obtained by minimizing Γ [ψ∗
i (τ), ψi(τ)] with

respect to ψi(τ) and ψ∗
i (τ) leading to the equations of motion

δΓ{ψ∗
i (τ), ψi(τ)}
δψi(τ)

= 0,

δΓ{ψ∗
i (τ), ψi(τ)}
δψ∗

i (τ)
= 0. (3.32)

The e�ective action Γ [ψ∗
i (τ), ψi(τ)] is the central element in our analysis as is contains all information

concerning the Bose-Hubbard Hamiltonian regardless of phase in which the system is.

3.3. Mean-Field Theory

In the mean-�eld theory, the central idea is to rewrite the �eld operator as a sum of its mean value

with its �uctuations, i.e.,

âi = 〈âi〉+ δâi (3.33)

and then neglect all products of �uctuations δâi and δâ
†
i , in the perturbation term, which in our case

is the hopping term. Here we treat the homogeneous Bose-Hubbard Hamiltonian at T = 0 with only

nearest-interactions. In this way, we express the hopping term according to

−J
∑
〈i,j〉

â†i âj = −J
∑
〈i,j〉

(〈
â†i

〉
+ δâ†i

)
(〈âi〉+ δâi)

= −J
∑
〈i,j〉

(〈
â†i

〉
âi + 〈âi〉 â†i −

〈
â†i

〉
〈âi〉+ δâ†iδâi

)
(3.34)

The mean-�eld approximation is achieved by neglecting products of �uctuations, i.e., neglecting the

term δâ†iδâi in Eq. (3.34), which results in
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3.3. Mean-Field Theory

−J
∑
〈i,j〉

â†i âj ≈ −J
∑
〈i,j〉

(〈
â†i

〉
âi + 〈âi〉 â†i −

〈
â†i

〉
〈âi〉

)
= −Jz

∑
i

(
ψ∗âi + ψâ†i − |ψ|2

)
. (3.35)

In the last step, homogeneity of the system was assumed implying the expectation value
〈
â†i

〉
= ψ

to be independent of the lattice site i. Then the hopping term will reduce to a single sum over all

lattice sites with z denoting the number of nearest-neighbor sites. By using the approximation (3.35),

we obtain the mean-�eld Hamiltonian

ĤMF = −Jz
∑
i

(
ψâ†i + ψ∗âi − ψ∗ψ

)
+
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i. (3.36)

Here we can observe that imposing the conditions

ψ∗ =
〈
â†i

〉
; ψ = 〈âi〉 (3.37)

to the ground state of ĤMF is equivalent to minimize the ground-state energy EMF as follows

∂EMF

∂ψ
= 0 ;

∂EMF

∂ψ∗ = 0. (3.38)

Our statement that ψ is site independent lies on the assumption that the translational symmetry

is never broken, as the order parameter is the same on every site. This approximation simpli�es

considerably the calculation of quantities related to our system due to fact that now our problem

is reduced to the analysis of independent identical Hamiltonians de�ned at each site of our lattice.

Notice also that ĤMF does not possess the explicit U(1) symmetric present in ĤBH. In order to recover

this symmetry, we must apply to the order parameter the same phase transformation applied in the

operators. This is necessary in order to allow for the possibility of symmetry-broken phases, while

symmetric phases will appear at the special value ψ = 0.

Due to this phase invariance the energy EMF must be a function of only |ψ|2 which can be calculated
perturbatively producing the Landau series

EMF(|ψ|2)
Ns

= a0 + a2 |ψ|2 +
1

2!2
a4 |ψ|4 + · · · , (3.39)

where Ns is the total number of sites and a0 is the ground state of ĤBH for case J = 0, while the

coe�cients a2 and a4 can be calculated using Rayleigh-Schrödinger perturbation theory.

The �rst step to calculate the Landau coe�cients is to �nd the ground state of the on-site Hamilto-

nian

Ĥ0 =
U

2
n̂(n̂− 1)− µn̂, (3.40)

here, as all sites are equivalent, we ignored the site indices. As this Hamiltonian involves only the

number operator n̂, its eigenstates are the states containing integer number of bosons per lattice site,
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3. Quantum Phase Transitions

and its eigenvalues are given by

εn =
U

2
n(n− 1)− µn. (3.41)

By comparing these di�erent eigenvalues we can express the integer n which minimizes εn by

n (µ/U) = 1 + bµ/Uc , (3.42)

where bµ/Uc is the largest integer less than or equal to x.

Now we can use Rayleigh-Schrödinger perturbation theory and obtain

a0 =εn (3.43)

a2 =(Jz)2
(

n+ 1

εn − εn+1
+

n

εn − εn−1

)
+ Jz, (3.44)

a4 = 4 (Jz)4
{

(n+ 2)(n+ 1)

(εn − εn+1)
2 (εn − εn+2)

+
n(n− 1)

(εn − εn−1)
2 (εn − εn−2)

−
[

n+ 1

(εn − εn+1)
2 +

n

(εn − εn−1)
2

](
n+ 1

εn − εn+1
+

n

εn − εn−1

)}
. (3.45)

As expected, we have a4 > 0, while a2 goes from positive to negative values as we increase the hopping

parameter, therefore evidencing the transition of EMF(|ψ|2) from convex potential to a Mexican hat

potential and demonstrating the existence of a second-order phase transition at least at the mean-

�eld level. In the quantum phase diagram, the points where a2 changes its sign de�ne the boundary

separating the ordered from the non-ordered phase. The explicit solution of the equation a2 = 0, then

gives the phase boundary

Jz

U
=

(n− µ/U) (µ/U − n+ 1)

1 + µ/U
. (3.46)

This formula enables us to construct the phase diagram as depicted Fig. 3.2. There we see a series

of lobes each one corresponding to an occupation number n. According to the mean-�eld theory,

inside the regions enclosed by each lobe, the particle density ρ is constant. This implies that the

compressibility ∂ρ/∂µ vanishes everywhere inside these regions, i.e., they are Mott insulating phases.

Outside these regions the order parameter becomes nonzero, which means that the system possesses a

macroscopic wave function, i.e, we have a Bose-Einstein condensate.

The existence such a wave function implies that a fraction of the system can move throughout the

lattice with no viscosity at all [40], in other worlds, it implies that the system is in a super�uid phase.

Inside the super�uid phase but still close to the phase boundary, the mean-�eld energy can be

explicitly minimized by using equation (3.39), which gives

|ψMF|2 = −2a2
a4

. (3.47)

This quantity is called condensate density, as it measures the density of particles sharing the con-

densate wave function. This quantity enables to �nally evaluate the ground-state energy
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3.3. Mean-Field Theory

1 2 3 4 5
Μ�U

0.05

0.10

0.15

Jz�U

Figure 3.2.: Mean-�eld quantum phase diagram for the Bose-Hubbard model. The �lled regions are
the successive Mott lobes corresponding to integer occupation numbers.
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Figure 3.3.: Total particle density. The blue, red, and green lines correspond to Jz
U = 0.1, JzU = 0.15,

and Jz
U = 0.2, respectively.
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Figure 3.4.: Compressibility as de�ned in (3.54). The blue, red, and green lines correspond to Jz
U = 0.1,

Jz
U = 0.15, and Jz

U = 0.2, respectively. For regions far from the lobe tip, there is an
unphysical negative compressibility which is a weaknesses of this mean-�eld theory.

E0 = EMF(|ψ|2)/Ns ≈ a0 −
a22
a4
. (3.48)

This theory allow us to calculate the so called thermodynamical exponents α, β, γ, and δ, giving

the result

α = 0 (3.49)

β =
1

2
(3.50)

γ = 1 (3.51)

δ = 3. (3.52)

Indeed these are the critical exponents of the universality class corresponding to a system in dimension

higher d ≥ 3 and with an order parameter with U(1) symmetry. The remaining critical exponents

can only be calculated by allowing space as well as imaginary-time dependent order parameters. In

Chapter 4, this possibility will be considered in the context of our e�ective action formalism.

The total density of particles and ρ as well as the compressibility κ can now be easily calculated

from this mean-�eld theory

ρ = −∂E0

∂µ
, (3.53)

κ = −∂
2E0

∂µ2
. (3.54)

The �gures 3.3 and 3.4 show some of the crucial weaknesses of this mean-�eld theory. Observe that

for the regions far from the lobe tip, there is an unphysical negative compressibility. In general the
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3.3. Mean-Field Theory

mean-�eld theory gives very bad if not contradictory results inside the super�uid phase.

In the next chapters we will see how these problems are �xed by using the e�ective potential and

e�ective action methods.
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4. Bosonic Lattices at Finite Temperature

In this chapter, a perturbation theory is developed by taking advantage of a diagrammatic notation

specially developed to deal with bosons in optical lattices. The calculation of the e�ective action, which

is de�ned through a Legendre transformation of the free energy, leads to an automatic resummation of

the hopping expansion. This allows the description of the system properties in both the Mott-insulator

and the super�uid phase. By using a set of diagrammatic rules, the e�ective action is calculated up to

second hopping order.

We treat the Bose-Hubbard model as belonging to a more general class of Hamiltonians which can

be written as a sum of a hopping term and a local term

Ĥ = Ĥh + Ĥl, (4.1)

with the respective terms being de�ned by

Ĥl =
∑
i

fi(n̂i), (4.2)

Ĥh = −
∑
ii′

Jii′ â
†
i âi′ . (4.3)

The Bose-Hubbard Hamiltonian is recovered if we choose fi(x) = U(x2 − x)/2− µx and Jij = J if ij

are nearest neighbors lattice sites while Jij = 0 otherwise.

In order to calculate the expectation values of physical quantities, we use the so-called Green's

functions

G(n,m)
(
τ1, i1; · · · ; τn, in|τ ′1, i′1; · · · ; τ ′m, i′m

)
= Z−1Tr

{
e−βĤ T̂

[
âi1(τ1) · · · âin(τn)â

†
i′1
(τ ′1) · · · â

†
i′m
(τ ′m)

]}
(4.4)

where the partition function is Z = Tre−βĤ and a time-dependent Heisenberg operator is de�ned from

the Schrödinger operator ÔS as Ô(τ) = eτĤÔSe
−τĤ .

In order to facilitate the calculation of G(n,m), we de�ne a new time-dependent Hamiltonian by

adding to it a time-dependent source term, according to

Ĥ(τ) = Ĥ + Ĥs(τ), (4.5)

where

Ĥs(τ) =
∑
i

[
j∗i (τ)âi + ji(τ)â

†
i

]
. (4.6)
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4. Bosonic Lattices at Finite Temperature

The partition function for Ĥ(τ) is then given by the functional

Z [j∗, j] = TrÛ(β, 0), (4.7)

where the imaginary-time evolution operator Û(τ, τ0) obeys the evolution equation

− ∂

∂τ
Û(τ, τ0) = Ĥ(τ)Û(τ, τ0) (4.8)

with the initial condition Û(τ0; τ0) = 1̂. In the following, we show that all Green functions can be

obtained from functional derivatives of Z [j∗, j] with respect to j∗ and j. To this end note that equation

(4.8) together with its initial condition can be rewritten in the integral form

Û(τ, τ0) = 1̂−
∫ τ

τ0

Ĥ(τ ′)Û(τ ′, τ0)dτ
′, (4.9)

which can be solved iteratively leading to the Born series

Û(τ, τ0) = 1̂−
∫ τ

τ0

dτ1Ĥ(τ1) +

∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2Ĥ(τ2)Ĥ(τ1) (4.10)

−
∫ τ

τ0

dτ1

∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3Ĥ(τ3)Ĥ(τ2)Ĥ(τ1) + · · · . (4.11)

Using the time-ordering operator we have

Û(τ, τ0) = 1̂−
∫ τ

τ0

dτ1Ĥ(τ1) +
1

2!

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2T̂
[
Ĥ(τ2)Ĥ(τ1)

]
− 1

3!

∫ τ

τ0

dτ1

∫ τ

τ0

dτ2

∫ τ

τ0

dτ3T̂
[
Ĥ(τ3)Ĥ(τ2)Ĥ(τ1)

]
+ · · · (4.12)

This series can be summarized by the formula

Û(τ, τ0) = T̂ e
−

∫ τ
τ0
Ĥ(τ ′)dτ ′

. (4.13)

It is also useful to observe the semi-group property of the imaginary-time evolution operator

Û(τ, τ0) = Û(τ, τ ′)Û(τ ′, τ0), if τ ≥ τ ′ ≥ τ0. (4.14)

This semi-group property allows us rewrite the evolution operator by isolating a subinterval from τ−∆

to τ +∆, with ∆ > 0, i.e.,

Û(β, 0) = Û(β, τ +∆)Û(τ +∆, τ −∆)Û(τ −∆, 0). (4.15)

The functional derivative of Û(β, 0) with respect to j∗i (τ) can be expressed as

δ

δj∗i (τ)
Û(β, 0) = Û(β, τ +∆)

δÛ(τ +∆, τ −∆)

δj∗i (τ)
Û(τ −∆, 0). (4.16)
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4.1. Perturbation Theory

Using equation (4.12), we see that

δÛ(τ +∆, τ −∆)

δj∗i (τ)
= −âi +

∫ τ+∆

τ−∆
dτ1

[
Θ(τ − τ1)âiĤ(τ1) + Θ(τ1 − τ)Ĥ(τ1)âi

]
− · · · . (4.17)

By substituting (4.17) into (4.16) and taking the limit ∆ → 0 we obtain

δÛ(β, 0)

δj∗i (τ)
= −Û(β, τ)âiÛ(τ, 0) = −Û(β, 0)âi(τ), (4.18)

where âi(τ) = Û−1(τ, 0)âiÛ(τ, 0). Observe that we get back to the de�nition of Heisenberg operators

in (4.4) by setting j∗i (τ) = ji(τ) = 0.

By taking more functional derivatives of (4.18) with respect to the source �elds, we �nally obtain

the formula

δ(n+m)Û(β, 0)

δj∗i1(τ1) · · · δj
∗
in
(τn)δji′1(τ

′
1) · · · δji′m(τ ′m)

= Û(β, 0)T̂
[
âi1(τ1) · · · âin(τn)â

†
i′1
(τ ′1) · · · â

†
i′m
(τ ′m)

]
. (4.19)

The trace of this equation �nally leads us to the formula for Green's functions as functional derivatives

of the generating functional Z [j∗, j]

G(n,m)
(
τ1, i1; · · · ; τn, in|τ ′1, i′1; · · · ; τ ′m, i′m

)
= Z [j∗, j]−1 δ(n+m)Z [j∗, j]

δj∗i1(τ1) · · · δj
∗
in
(τn)δji′1(τ

′
1) · · · δji′m(τ ′m)

∣∣∣∣∣
j∗=j=0

.

(4.20)

4.1. Perturbation Theory

In order to calculate Û(τ, 0) as a power series of the hopping matrix element Jij , we split the full

imaginary-time dependent Hamiltonian Ĥ(τ) into an unperturbed part Ĥ0(τ) = Ĥl + Ĥs(τ) plus the

hopping-dependent perturbation Ĥh, i.e,

Ĥ(τ) = Ĥ0(τ) + Ĥh. (4.21)

The imaginary-time dependent evolution operator can now be factorized as an unperturbed part

times an interaction part

Û(τ ; 0) = Û0(τ ; 0)ÛI(τ ; 0), (4.22)

where the unperturbed evolution operator obeys the following evolution equation:

− ∂

∂τ
Û0(τ ; 0) = Ĥ0(τ)Û0(τ ; 0), (4.23)

which analogously to Eq. (4.13) has the solution

Û0(τ ; τ0) = T̂ e
−

∫ τ
τ0
Ĥ0(τ ′)dτ ′ . (4.24)
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4. Bosonic Lattices at Finite Temperature

Using (4.8) and (4.23) we deduce the evolution equation for the interaction part of evolution operator

− ∂

∂τ
ÛI(τ ; 0) = ĤI

h(τ)ÛI(τ ; 0), (4.25)

where

ĤI
h(τ) = Û−1

0 (τ ; 0)ĤhÛ0(τ ; 0). (4.26)

Here we can repeat the same iterative procedure as in (4.13) and obtain the solution for (4.25) as

ÛI(τ ; 0) = T̂ e−
∫ τ
0 dτ ′ĤI

h(τ
′). (4.27)

The full partition function (4.7) can now, with (4.22) and (4.27), written as

Z [j∗, j] = Tr
[
Û0(β; 0)T̂ e

−
∫ β
0 dτ ′ĤI

h(τ
′)
]

(4.28)

Thus, using the (4.3) and (4.19), we can express Z [j∗, j] in terms of functional derivatives of the

unperturbed partition function Z0 [j
∗, j] via

Z [j∗, j] = e
∑

ij Jij
∫ β
0 dτ δ2

δj∗
i
(τ)δjj(τ)Z0 [j

∗, j] , (4.29)

where we have

Z0 [j
∗, j] = Tr

[
Û0(β, 0)

]
. (4.30)

4.2. Lattice Diagrammatics

Let us now consider the unperturbed partition function in more detail. For Jij = 0, the system splits

into independent lattice sites in such a way that the partition function can be factorized as

Z0 [j
∗, j] =

∏
i

Zi [j
∗, j] . (4.31)

In practice, in order to avoid the annoying β−1 prefactor appearing in equations (3.29) and (3.31), we

use instead, in our diagrammatic calculations, the functional

W [j∗, j] = lnZ [j∗, j] = −βF [j∗, j] . (4.32)

For a reason that will become clear later we can also call W [j∗, j] the generating functional of the con-

nected Green's functions Gc, while the partition function Z [j∗, j] can be also be named the generating

functional of the full Green's function G. The functional W can also be represented as a power of the

sources j and j∗ as follows
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W [j∗, j] =W (0) +
∑
ii′

∫ β

0
dτ

∫ β

0
dτ ′W

(2)
ii′
(
τ ; τ ′

)
j∗i (τ) ji

(
τ ′
)

+
1

2!2

∑
i1i2,i′1i

′
2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ ′1

∫ β

0
dτ ′2W

(4)
i1i2;i′1i

′
2
(τ1, τ2; τ

′
1, τ

′
2)j

∗
i1(τ1)j

∗
i2(τ2)ji′1(τ

′
1)ji′2(τ

′
2) + · · ·

(4.33)

For the case Jij = 0, the Eq. (4.31) implies that

W0 [j
∗, j] =

∑
i

Wi [j
∗
i , ji] , (4.34)

where each of these local terms can be expanded in a power of the sources j∗ and j

W0i [j
∗, j] =W

(0)
0i +

∫ β

0
dτ

∫ β

0
dτ ′W

(2)
0i (τ ; τ ′)j∗i (τ)ji(τ

′) (4.35)

+
1

2!2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ ′1

∫ β

0
dτ ′2W

(4)
0i (τ1, τ2; τ

′
1, τ

′
2)j

∗
i (τ1)j

∗
i (τ2)ji(τ

′
1)ji(τ

′
2) + · · · ,

where the functions W (2n)
0i (τi, · · · , τn; τ ′1, · · · , τ ′n) are the so called local 2n-point correlation functions.

4.3. Diagrammatic Representation

Now, by using a diagrammatic notation similar to the one in Ref. [63], we represent diagrammatically

the local correlation functions as

W
(2n)
0i (τi, · · · , τn; τ ′1, · · · , τ ′n) =

τ ′n

τ ′2

τ ′1

τn

τ2

τ1

i
, (4.36)

where the central point as well as its label stands for a given lattice site while the external legs are

labeled with the respective time variables.

Similarly the functional W0 [j
∗, j] can be represented as a sum of 1-vertex diagrams

W0[j
∗, j] = + +

1

2!2
+

1

3!2
+ · · · , (4.37)

where each diagram corresponds to a term in the series (4.35). Unlike (4.36), it is not necessary to

include the imaginary-time indices attached to the legs nor the site index i attached to the central

point of a diagram, as these are only dummy indices. Nevertheless, we must keep in mind that an

unlabeled point means a sum running over all lattices sites while unlabeled inward (outward) lines

mean a multiplication by j (j∗) and integration from 0 to β in imaginary time. This leads to an exact

correspondence between the terms in (4.35) and (4.37). Observe that each diagram has a symmetry

factor 1
n!2

, where n!2 is the number of permutations of inward and outward lines.
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4. Bosonic Lattices at Finite Temperature

The unperturbed partition function is by de�nition given by Z0 = e−βF
(0)
. Here, in order to simplify

our notation we represent the l-th term in (4.37) by Dl. Thus, the unperturbed partition function

becomes

Z0 = e
∑∞

l=0Dl =
∞∏
l=0

eDl =
∞∏
l=0

∞∑
nl=0

1

nl!
Dnl
l , . (4.38)

This means that Z(0) is composed by sums of all possible products of powers Dnl
l of Dl multiplied

by the symmetry factor 1
nl!
. Such products of diagrams are also named disconnected diagrams. The

unperturbed partition function can then be diagrammatically expressed as

Z(0){j∗, j} = e

{
+

1

2!
+

1

2!2
+

1

2!2
+

1

3!
+

1

3!2
+ · · ·

}
, (4.39)

According to (4.29), we can obtain the n-th order hopping correction to the full partition function by

applying n times the operator
∑

ii′ Jii′
∫ β
0 dτ

δ2

δj∗i (τ)δji′ (τ)
to Z(0) and multiplying the result by 1

n! . We

translate diagrammatically the e�ect of the functional derivatives δ
δji(τ)

or δ
δj∗i (τ)

on a local diagram Dl

as the introduction of the index i to the central point of the diagram and of the time variable τ to its

inward or outward lines, respectively. Similarly the e�ect of the full operator
∑

ii′ Jii′
∫ β
0

δ2

δj∗i (τ)δji′ (τ)

acting on a product of diagrams is to generate a sum of all products of diagrams which are generated

by joining an inward line of a diagram to the outward of another disconnected diagram. This process

creates other kinds of diagrams which contain vertices connected by internal lines.

Now we can diagrammatically represent the full partition function to any desired order in the sources,

as well as in the hopping elements Jij . For example, up to 2nd order in the currents j∗ and j, and �rst

order in Jii′ , we have

Z{j∗, j} = e

{
+

1

2!
+

1

2!2
+ +

+ +
1

2!
+

1

2!
+ · · ·

}
. (4.40)

An interesting property of the series above is that its logarithm contains only connected diagrams

as consequence of the so-called linked-cluster theorem [64]. That is the reason why we call W [j∗, j]

the generating functional of connected diagrams whose expansion is given by

W{j∗, j} = + +
1

2!2
+ +

1

2!
+

1

2!
+ · · · ,

(4.41)

Now we summarize the diagrammatic rules for calculating Z [j∗, j] and W [j∗, j] as follows:

• The generator of disconnected diagram Z is obtained from the generator of connected diagrams
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4.4. E�ective Action and 1-Particle Irreducible Diagrams

by Z = eW .

• The functional W is composed by a sum of diagrams each one multiplied by a symmetry factor.

Each diagram has nv vertices, nl external lines evenly divided in outward and inward lines, and

ni internal lines connecting all nv vertices into one single piece. We also denote nvl the number

of vertices in a diagram which are connected with lines.

• The perturbation theory is based on two expansions, one with respect to the sources j∗ and j,

and another with respect to the hopping matrix elements. The order of a diagram with respect

the sources j and j∗ is given by the number of inward and outward lines in this diagram. The

order of a diagram with respect to the hopping matrix Jij is given by the number of internal

lines in a diagram. Therefore, in order to compute the term of n-th order in the sources and

m-th order in the hopping matrix, we must sum up all diagrams containing n external lines and

m internal lines multiplied by their respective symmetry factor.

• The symmetry factor of a diagram can be calculated following the steps

1. Take 1
ni!

2. Multiply by 1
nvi !

for each kind of vertex present in the diagram.

3. For each vertex multiply with 1
nji

!nj∗
i
! , where nji and nj∗i are respectively the number of

external lines going inward and outward the diagram, respectively.

4. Multiply by the number of ways of joining the diagram vertices so that we obtain di�erent

topologies.

Now for sake of illustration let us calculate the symmetry factor for the diagram

(4.42)

Following the rules presented above, we have

1. Two internal lines: 1
2! · · ·

2. One four-line and one two-line vertex: 1
2! ×

1
1! ×

1
1! · · ·

3. One inward line and one outward line connected to the lower vertex: 1
2! ×

1
1! ×

1
1! ×

1
1! ×

1
1! · · ·

4. The two internal lines can be connected to the vertices in two di�erent ways: 1
2! ×

1
1! ×

1
1! ×

1
1! ×

1
1! × 2 = 1

4.4. E�ective Action and 1-Particle Irreducible Diagrams

In the previous section, we have shown that the diagrammatic representation remarkably simpli�es

the calculation of the system partition function. It shows that real computational e�ort is actually

concentrated in the connected n-point functions. However, this diagrammatic approach allows us to
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4. Bosonic Lattices at Finite Temperature

simplify even further our calculations by using the so called 1-particle irreducible (1PI) diagrams. A

1PI diagram is de�ned as any connected diagram which cannot be separated into two di�erent pieces

by simply cutting one of its internal lines.

As the �rst example, let us take the two-point function which is also denoted as the Green function

and plays a crucial role in the theory of critical phenomena as discussed in Chapter 3. By following

the diagrammatic rules from the previous section, we can represent the Green function by

Wii′(τ ; τ
′) =

i′; τ ′ i; τ
= δii′

τ ′
τ

i
+
τ ′

τ
i′ i

+
τ ′

τ
i′ i

+
τ ′

τ
i′ i

+ δii′
τ ′

τ
i

+
τ ′

τ
i′ i

+
τ ′

τ
i′ i

+
τ ′

τ
i′ i

+ · · ·

(4.43)

The 1PI Green function is de�ned as the sum of all 1PI diagrams in (4.43), i.e.,

W
(1PI)
ii′ (τ ; τ ′) =

i′; τ ′ i; τ
= δii′

τ ′
τ

i
+ δii′

τ ′
τ

i
+
τ ′

τ
i′ i

+ · · · (4.44)

The full Green's function (4.43) can then be reconstructed by combining the 1PI Green's function in

(4.44) with the hopping matrix. This can be diagrammatically represented as

i′; τ ′ i; τ
=
i′; τ ′ i; τ

+
i′; τ ′ i; τ

+
i′; τ ′ i; τ

+ · · · (4.45)

In general all n-point functions can be constructed out of 1PI diagrams. For example, for the 4-point

function, we have

W
(4)
i1i2;i′1i

′
2
(τ1, τ2; τ

′
1, τ

′
2) =

i′1; τ
′
1

i′2; τ
′
2

i1; τ1

i2; τ2

=

i′1; τ
′
1

i′2; τ
′
2

i1; τ1

i2; τ2

. (4.46)

Now, in addition to the generating functionals Z and W of the disconnected Green's functions and

connected Green's function, we can also de�ne the generating functional of the 1PI functions by a

Legendre transformation of W :

−βΓ [ψ∗
i (τ), ψi(τ)] =W +

∑
i

∫ β

0
dτ [ψ∗

i (τ)ji(τ) + ψi(τ)j
∗
i (τ)]. (4.47)

Here the β factor in front of the �rst term is used in order to identify this generator with the e�ective

action in (3.31).

The e�ective action also can be expressed as a power series of the �elds ψi(τ) and ψ
†
i (τ), according

to
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−βΓ [ψ∗, ψ] =Γ(0) +
∑
ii′

∫ β

0
dτ

∫ β

0
dτ ′Γ

(2)
ii′
(
τ, τ ′

)
ψ∗
i (τ)ψi′

(
τ ′
)

+
1

2!2

∑
i1i2,i′1i

′
2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ ′1

∫ β

0
dτ ′2Γ

(4)
i1i2;i′1i

′
2
(τ1, τ2; τ

′
1, τ

′
2)ψ

∗
i1(τ1)ψ

∗
i2(τ2)ψi′1(τ

′
1)ψi′2(τ

′
2) + · · ·

(4.48)

By performing the Legendre transformation of (4.35) order by order in the �elds ψ∗ and ψ, we get

the respective coe�cients of (4.48)

Γ(0) =W (0),

Γ
(2)
ii′
(
τ, τ ′

)
=−

[
W (2)

]−1

ii′

(
τ, τ ′

)
,

Γ
(4)
i1i2;i′1i

′
2

(
τ1, τ2; τ

′
1, τ

′
2

)
=

∑
i′′1 i

′′
2 ,i

′′′
1 i

′′′
2

∫ β

0
dτ ′′1

∫ β

0
dτ ′′2

∫ β

0
dτ ′′′1

∫ β

0
dτ ′′′2 W

(4)
i′′1 i

′′
2 ;i

′′′
1 i

′′′
2

(
τ ′′1 , τ

′′
2 ; τ

′′′
1 , τ

′′′
2

)
(4.49)

×
[
W (2)

]−1

i1i′′1

(
τ1, τ

′′
1

) [
W (2)

]−1

i2i′′2

(
τ1, τ

′
2

) [
W (2)

]−1

i′′′1 i
′
1

(
τ ′′′1 , τ

′
1

) [
W (2)

]−1

i′′′2 i
′
1

(
τ ′′′2 , τ

′
2

)
.

These functions can now be diagrammatically expressed as

Γ
(2)
ii′ =

i′; τ ′ i; τ
(4.50)

Γ
(4)
i1i2;i′1i

′
2
(τ1, τ2; τ

′
1, τ

′
2) =

i′1; τ
′
1

i′2; τ
′
2

i1; τ1

i2; τ2

. (4.51)

In general, these n-point diagrams are also named n-point amputated diagrams, as two-point function

W
(2)
ii′ (τ, τ

′) must still be attached to its legs in order to generate the n-point connected function, as

depicted in (4.46) for the case of 4-point functions.

Now we can have our �nal formula for the e�ective action in terms of only 1PI diagrams

−βΓ = Γ(0) + +
1

2!2
+

1

3!2
+ · · · (4.52)

The explicit calculation of these 1PI will be shown in the following sections.

4.5. Matsubara Representation

Due to the time invariance of the systems considered in this thesis, our calculations can be even more

simpli�ed if, instead of using the imaginary-time as an independent variable, we work in frequency

space. As our imaginary-time variable runs from 0 to β, we must perform a so-called Matsubara

transformation in all our functions. For an arbitrary single-variable function g(τ), such as the source
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�eld ji(τ) or the order order-parameter �eld ψi(τ), this transformation has the form

f(ωn) =

∫ β

0
dτeiω

(l)τf(τ), (4.53)

where the discrete variable ω(l) = (2π/β)l are known as Matsubara frequencies. Analogously, for an

arbitrary multivariable function M(τ1, · · · , τn; τ ′1, · · · , τ ′n) like W (2n) and Γ(2n), the Matsubara trans-

formation reads

M(ω1, · · · , ωn;ω′
1, · · · , ω′

n) =∫ β

0
dτ1 · · ·

∫ β

0
dτn

∫ β

0
dτ ′1 · · ·

∫ β

0
dτ ′ne

i(ω1τ1+···+ωnτn−ω′
1τ

′
1−···−ω′

nτ
′
n)M(τ1, · · · , τn; τ ′1, · · · , τ ′n),

where we dropped here the upper l indices in order to simplify the notation.

The inverse Matsubara transformations are given by

f(τ) =
1

β

∑
ω

e−iωτf(ω), (4.54)

M(τ1, · · · , τn; τ ′1, · · · , τ ′n) =
1

β2n

∑
ω1···ωn

∑
ω′
1···ω′

n

e−i(ω1τ1+···+ωnτn−ω′
1τ

′
1−···−ω′

nτ
′
n)M(ω1, · · · , ωn;ω′

1, · · · , ω′
n).

(4.55)

Now we can express all our functionals in Matsubara space. For example, by substituting (4.54) and

(4.55) into (4.56)and (4.48), we have

W [j∗, j] =W (0) +
1

β2

∑
ii′

∑
ωω′

W
(2)
ii′
(
ω, ω′) j∗i (ω) ji (ω′) (4.56)

+
1

2!2
1

β4

∑
i1i2,i′1i

′
2

∑
ω1ω2;ω′

1ω
′
2

W
(4)
i1i2;i′1i

′
2
(ω1, ω2;ω

′
1, ω

′
2)j

∗
i1(ω1)j

∗
i2(ω2)ji′1(ω

′
1)ji′2(ω

′
2) + · · ·

−βΓ [ψ∗, ψ] = Γ(0) +
1

β2

∑
ii′

∑
ωω′

Γ
(2)
ii′
(
ω, ω′)ψ∗

i (ω)ψi
(
ω′) (4.57)

+
1

2!2
1

β4

∑
i1i2,i′1i

′
2

∑
ω1ω2;ω′

1ω
′
2

Γ
(4)
i1i2;i′1i

′
2
(ω1, ω2;ω

′
1, ω

′
2)ψ

∗
i1(ω1)ψ

∗
i2(ω2)ψi′1(ω

′
1)ψi′2(ω

′
2) + · · ·

Observe that functionals (4.56) and (4.57) are very similar to (4.33) and (4.48). In fact they di�er

only by the substitutions
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4.6. Zeroth-Hopping Order E�ective Action

τn → ωn, (4.58)∫ β

0
dτn → 1

β

∑
ωn

. (4.59)

This means that all diagrammatic rules previously discussed here also apply to Matsubara space if we

consider the substitutions (4.58) and (4.59).

Another advantage of using the Matsubara representation is that all n-point functions are invariant

under the transformation

fi(n) → fi(n) + inω,

ωn → ωn + ω. (4.60)

4.6. Zeroth-Hopping Order E�ective Action

The starting point in our calculations is to �nd the e�ective action for Jij = 0. In this case the system

is split into independent lattice sites and, therefore, its e�ective action can be represented as

Γ [ψ∗, ψ] =
∑
i

Γi (ψ
∗
i , ψi) , (4.61)

where the local actions Γi are given by

−βΓi (ψ∗
i , ψi) = Γ

(0)
0i +

∫ β

0
dτ

∫ β

0
dτ ′Γ

(2)
0i

(
τ, τ ′

)
ψ∗
i (τ)ψi

(
τ ′
)
+ (4.62)

+
1

2!2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ ′1

∫ β

0
dτ ′2Γ

(4)
0i (τ1, τ2; τ

′
1, τ

′
2)ψ

∗
i (τ1)ψ

∗
i (τ2)ψi(τ

′
1)ψi(τ

′
2) + · · · .

This series can also be diagrammatically represented as

−βΓ0i = Γ
(0)
0i +

i
+

1

2!2 i
+

1

3!2 i
+ · · · (4.63)

Here −βΓi (ψ∗
i , ψi) is the Legendre transform ofWi (j

∗
i , ji). This means that the term Γ

(0)
0i appearing

in its expansion must be equal to W (0)
0i which, therefore

Γ
(0)
0i = ln

∞∑
n=0

e−βfi(n). (4.64)

If someone is interested only in the zero-temperature, must observe that in this limit we have

−β−1Γ
(0)
0i → fi(n). (4.65)
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The next term to be considered is Γ(2)
0i . According to (4.49), it can be obtained by inverting

W
(2)
0i (τ, τ ′) =

1

Z0
Tr
{
e−βĤ0 T̂

[
â†i (τ

′)âi(τ)
]}

. (4.66)

The direct evaluation yields

W
(2)
0i (τ, τ ′) =

1

Z0

∞∑
n=0

e−βfi(n)
{
θ(τ − τ ′)(n+ 1)e(τ−τ

′)[fi(n)−fi(n+1)] + θ(τ ′ − τ)ne(τ
′−τ)[fi(n)−fi(n−1)]

}
,

(4.67)

which is given, in the Matsubara representation, by

W
(2)
0i (ω, ω′) = βδω,ω′gi(ω), (4.68)

where δω,ω′ is the Kronecker delta symbol and

gi(ω) =
1

Z0i

∞∑
n=0

(n+ 1)
e−βfi(n+1) − e−βfi(n)

iω + fi(n)− fi(n+ 1)
. (4.69)

Now the inverse must obey the equation

1

β

∑
ω′′

W
(2)
0i (ω, ω′′)Γ

(2)
0i (ω

′′, ω′) =
1

β

∑
ω′′

Γ
(2)
0i (ω, ω

′′)W
(2)
0i (ω′′, ω′) = −βδωω′ . (4.70)

The diagonal form of W (2)
0i in the Matsubara representation makes its inversion very simple, thus

giving

Γ
(2)
0i (ω, ω

′) = −βδω,ω′Z0

[ ∞∑
n=0

(n+ 1)
e−βfi(n+1) − e−βfi(n)

iω + fi(n)− fi(n+ 1)

]−1

. (4.71)

In order to get the zero-temperature limit of Γ(2)
0i (ω, ω

′), we must at �rst observe that the Matsubara

sums and Kronecker deltas transform in this limit into frequency integrals and Dirac deltas, respectively,

according to

1

β

∑
ω

→ 1

2π

∫
dω, (4.72)

βδω,ω′ → 2πδ(ω − ω′). (4.73)

Therefore the zero-temperature limit of Γ(2)
0i (ω, ω

′) reads

Γ
(2)
0i (ω, ω

′) → −2πδ(ω − ω′)

[
n

iω + fi(n− 1)− fi(n)
− n+ 1

iω + fi(n)− fi(n+ 1)

]−1

. (4.74)

Now we must calculate the term Γ
(4)
0i , in order to construct our Ginzburg-Landau expansion. Its

diagrammatic representation is
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Γ
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) =

ω′
1

ω′
2

ω1

ω2

i
i

i

i i

(4.75)

This representation shows that Γ(4)
0i can be constructed from W (4) and Γ(2) according to

Γ
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) =

1

β4

∑
ω′′
1ω

′′
2ω

′′′
1 ω

′′′
2

W
(4)
0i (ω′′

1 , ω
′′
2 ;ω

′′′
1 , ω

′′′
2 )Γ

(2)
0i (ω1;ω

′′
1)Γ

(2)
0i (ω2;ω

′′
2)Γ

(2)
0i (ω

′′′
1 ;ω

′
1)Γ

(2)
0i (ω

′′′
2 ;ω

′
2).

(4.76)

This means that we must calculate �rst the explicit form ofW (4)
0i , in order to obtain an explicit formula

for Γ(4)
0i .

In the imaginary-time representation W (4)
0i reads

W
(4)
0i (τ1, τ2; τ

′
1, τ

′
2) = G

(4)
0i (τ1, τ2; τ

′
1, τ

′
2)−W

(2)
0i (τ1; τ

′
1)W

(2)
0i (τ2; τ

′
2)−W

(2)
0i (τ1; τ

′
2)W

(2)
0i (τ2; τ

′
1), (4.77)

where G(4)
0i (τ1, τ2; τ

′
1, τ

′
2) explicitly reads

G
(4)
0i (τ1, τ2; τ

′
1, τ

′
2) =

1

Z0i
Tr
{
e−βĤ0T̂

[
âi(τ1)âi(τ2)â

†
i (τ

′
1)â

†
i (τ

′
2)
]}

=
1

Z0i

∞∑
n=0

e−βfi(n)

×
{
θ(τ1 − τ2)θ(τ2 − τ ′1)θ(τ

′
1 − τ ′2)(n+ 1)(n+ 2)

× eτ1[fi(n)−fi(n+1)]eτ2[fi(n+1)−fi(n+2)]eτ
′
1[fi(n+2)−fi(n+1)]eτ

′
2[fi(n+1)−fi(n)]

+θ(τ1 − τ ′1)θ(τ
′
1 − τ2)θ(τ2 − τ ′2)(n+ 1)2

× eτ1[fi(n)−fi(n+1)]eτ
′
1[fi(n+1)−fi(n)]eτ2[fi(n)−fi(n+1)]eτ

′
2[fi(n+1)−fi(n)]

+θ(τ ′1 − τ1)θ(τ1 − τ2)θ(τ2 − τ ′2)n(n+ 1)

× eτ
′
1[fi(n)−fi(n−1)]eτ1[fi(n−1)−fi(n)]eτ2[fi(n)−fi(n+1)]eτ

′
2[fi(n+1)−fi(n)]

+θ(τ ′1 − τ ′2)θ(τ
′
2 − τ ′1)θ(τ1 − τ2)n(n− 1)

× eτ
′
1[fi(n)−fi(n−1)]eτ

′
2[fi(n−1)−fi(n−2)]eτ1[fi(n−2)−fi(n−1)]eτ2[fi(n−1)−fi(n)]

+θ(τ ′1 − τ1)θ(τ1 − τ ′2)θ(τ
′
2 − τ2)n

2

× eτ
′
1[fi(n)−fi(n−1)]eτ1[fi(n−1)−fi(n)]eτ

′
2[fi(n)−fi(n−1)]eτ2[fi(n−1)−fi(n)]

+θ(τ1 − τ ′1)θ(τ
′
1 − τ ′2)θ(τ

′
2 − τ2)n(n+ 1)

× eτ1[fi(n)−fi(n+1)]eτ
′
1[fi(n+1)−fi(n)]eτ

′
2[fi(n)−fi(n−1)]eτ2[fi(n−1)−fi(n)]

+
τ1 ↔ τ2

τ ′1 ↔ τ ′2

}
, (4.78)

where the last line denotes the remaining permutations of τ1 with τ2 and of τ ′1 with τ
′
2.

Now we have to calculate G(4)
0i in the Matsubara representation. In principle, it would be a very

long calculation as we should calculate a total of 6 four-fold integrals, each one corresponding to a

single term in (4.78). However, due to time-translation invariance of the considered system, we have
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to calculate only 3 three-fold integrals. In Appendix A, it is shown that we actually can set one of the

imaginary-time variables equal to zero and integrate the other variables so that G(4)
0i is given, in the

Matsubara representation, by

G
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) = βδω′

1+ω
′
2,ω1+ω2

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ ′1e

−i(ω1τ1+ω2τ2−ω′
1τ

′
1)G

(4)
0i (τ1, τ2; τ

′
1, 0). (4.79)

By inserting the formula (4.78) for G(4)
0i , we get

G
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) =

β

Z0i
δω′

1+ω
′
2,ω1+ω2

×
∞∑
n=0

e−βfi(n)
{
(n+ 1)2I

[
iω2 + fi(n)− fi(n+ 1),−iω′

1 + fi(n+ 1)− fi(n), iω1 + fi(n)− fi(n+ 1)
]

(4.80)

+ (n+ 1)(n+ 2)I
[
iω2 + fi(n)− fi(n+ 1), iω1 + fi(n+ 1)− fi(n+ 2),−iω′

1 + fi(n+ 2)− fi(n+ 1)
]

+ n(n+ 1)I
[
−iω′

1 + fi(n)− fi(n− 1), iω2 + fi(n− 1)− fi(n), iω1 + fi(n)− fi(n+ 1)
]

+ω′
1 ↔ ω1

}
, (4.81)

where the function I(x3, x2, x1) represents the integral

I(x3, x2, x1) =

∫ β

0
dτ3

∫ τ3

0
dτ2

∫ τ2

0
dτ1e

x3τ3+x2τ2+x1τ1 . (4.82)

The direct calculation of this integral gives
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4.6. Zeroth-Hopping Order E�ective Action

I
[
iω2 + fi(n)− fi(n+ 1),−iω′

1 + fi(n+ 1)− fi(n), iω1 + fi(n)− fi(n+ 1)
]

=
e−β[fi(n+1)−fi(n)] − 1

[fi(n+ 1)− fi(n+ 2) + iω1] [fi(n)− fi(n+ 1) + iω2] [fi(n+ 2)− fi(n+ 1)− iω′
1]

− e−β[fi(n+2)−fi(n)] − 1

[fi(n+ 1)− fi(n+ 2) + iω1] [fi(n)− fi(n+ 2) + iω1 + iω2] [fi(n+ 2)− fi(n+ 1)− iω′
1]

(4.83)

+
βδω1,ω′

1
e−β[fi(n+1)−fi(n)]

[fi(n+ 2)− fi(n+ 1)− iω′
1] [fi(n)− fi(n+ 1) + iω2]

− e−β[fi(n+1)−fi(n)] − 1

[fi(n+ 2)− fi(n+ 1)− iω′
1] [fi(n)− fi(n+ 1) + iω1 + iω2 − iω′

1] [fi(n)− fi(n+ 1) + iω2]
,

I
[
−iω′

1 + fi(n)− fi(n− 1), iω2 + fi(n− 1)− fi(n), iω1 + fi(n)− fi(n+ 1)
]

=
e−β[fi(n−1)−fi(n)] − 1

[fi(n)− fi(n+ 1) + iω1] [fi(n− 1)− fi(n) + iω2] [fi(n)− fi(n− 1)− iω′
1]

− e−β[fi(n−1)−fi(n)] − 1

[fi(n)− fi(n+ 1) + iω1] [fi(n− 1)− fi(n+ 1) + iω1 + iω2] [fi(n)− fi(n− 1)− iω′
1]

(4.84)

−
βδω2,ω′

1

[fi(n)− fi(n+ 1) + iω1] [fi(n− 1)− fi(n) + iω2]

+
e−β[fi(n+1)−fi(n)] − 1

[fi(n)− fi(n+ 1) + iω1] [fi(n− 1)− fi(n+ 1) + iω1 + iω2] [fi(n)− fi(n+ 1) + iω1 + iω2 − iω′
1]
,

I
[
iω2 + fi(n)− fi(n+ 1),−iω′

1 + fi(n+ 1)− fi(n), iω1 + fi(n)− fi(n+ 1)
]

=
e−β[fi(n+1)−fi(n)] − 1

[fi(n)− fi(n+ 1) + iω1] [fi(n)− fi(n+ 1) + iω2] [fi(n+ 1)− fi(n)− iω′
1]

−
βδω2,ω′

1

[fi(n)− fi(n+ 1) + iω1] [fi(n+ 1)− fi(n)− iω′
1]

+
βδω2,ω′

1
e−β[fi(n+1)−fi(n)]

[fi(n)− fi(n+ 1) + iω1] [fi(n)− fi(n+ 1) + iω2]

(4.85)

− e−β[fi(n+1)−fi(n)] − 1

[fi(n)− fi(n+ 1) + iω1] [fi(n)− fi(n+ 1) + iω1 + iω2 − iω′
1] [fi(n)− fi(n+ 1) + iω2]

.

By substituting these results into (4.81) and simplifying the terms with the help of the condition

ω′
1 + ω′

2 = ω1 + ω2, we get
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4. Bosonic Lattices at Finite Temperature

G
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) =

β2

Z0i

(
δω1,ω′

1
δω2,ω′

2
+ δω1,ω′

2
δω2,ω′

1

)
×

∞∑
n=0

e−βfi(n)
[

n+ 1

fi(n+ 1)− fi(n)− iω2
+

n

fi(n− 1)− fi(n) + iω2

]
×
[

n+ 1

fi(n+ 1)− fi(n)− iω1
+

n

fi(n− 1)− fi(n) + iω1

]
(4.86)

+
β

Z0i
δω′

1+ω
′
2,ω1+ω2

∞∑
n=0

e−βfi(n)

×
(

(n+ 2)(n+ 1)

[fi(n+ 1)− fi(n)− iω′
2] [fi(n+ 2)− fi(n)− iω′

1 − iω′
2] [fi(n+ 1)− fi(n)− iω1]

+
n(n− 1)

[fi(n− 1)− fi(n) + iω2] [fi(n− 1)− fi(n) + iω′
1] [fi(n− 2)− fi(n) + iω1 + iω2]

−
{

n+ 1

[fi(n+ 1)− fi(n)− iω1] [fi(n+ 1)− fi(n) + iω′
1]

+
n

[fi(n− 1)− fi(n) + iω1] [fi(n− 1)− fi(n) + iω′
1]

}
×
{

n+ 1

fi(n+ 1)− fi(n)− iω′
2

+
n

fi(n− 1)− fi(n) + iω2

}
+

ω′
1 ↔ ω′

2

ω1 ↔ ω2

)
.

This leads to the �nal expression for W (4)
0i

W
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) =

β2

Z0i

(
δω1,ω′

1
δω2,ω′

2
+ δω1,ω′

2
δω2,ω′

1

)
×

{ ∞∑
n=0

e−βfi(n)
[

n+ 1

fi(n+ 1)− fi(n)− iω2
+

n

fi(n− 1)− fi(n) + iω2

]
×
[

n+ 1

fi(n+ 1)− fi(n)− iω1
+

n

fi(n− 1)− fi(n) + iω1

]
− 1

Z0i

∞∑
m,n=0

e−β[fi(n)+fi(m)]

[
n+ 1

fi(n+ 1)− fi(n)− iω2
+

n

fi(n− 1)− fi(n) + iω2

]
(4.87)

×
[

m+ 1

fi(m+ 1)− fi(m)− iω1
+

m

fi(m− 1)− fi(m) + iω1

]}
+

β

Z0i
δω′

1+ω
′
2,ω1+ω2

∞∑
n=0

e−βfi(n)
(

(n+ 2)(n+ 1)

[fi(n+ 1)− fi(n)− iω′
2] [fi(n+ 2)− fi(n)− iω′

1 − iω′
2] [fi(n+ 1)− fi(n)− iω1]

+
n(n− 1)

[fi(n− 1)− fi(n) + iω2] [fi(n− 1)− fi(n) + iω′
1] [fi(n− 2)− fi(n) + iω1 + iω2]

−
{

n+ 1

[fi(n+ 1)− fi(n)− iω1] [fi(n+ 1)− fi(n)− iω′
1]

+
n

[fi(n− 1)− fi(n) + iω1] [fi(n− 1)− fi(n) + iω′
1]

}
×
{

n+ 1

fi(n+ 1)− fi(n)− iω′
2

+
n

fi(n− 1)− fi(n) + iω2

}
+

ω′
1 ↔ ω′

2

ω1 ↔ ω2

)
.
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4.7. First-hopping order e�ective action

Finally we can construct Γ(4)
0i in following way

Γ
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) =

W
(4)
0i (ω1, ω2;ω

′
1, ω

′
2)

g(ω1)g(ω′
1)g(ω2)g(ω′

2)
. (4.88)

The zero-temperature of Γ(4)
0i (ω1, ω2;ω

′
1, ω

′
2) can be obtained by observing that

W
(4)
0i (ω1, ω2;ω

′
1, ω

′
2) →

+ 2πδ(ω′
1 + ω′

2 − ω1 − ω2)

(
(n+ 2)(n+ 1)

[fi(n+ 1)− fi(n)− iω′
2] [fi(n+ 2)− fi(n)− iω′

1 − iω′
2] [fi(n+ 1)− fi(n)− iω1]

+
n(n− 1)

[fi(n− 1)− fi(n) + iω2] [fi(n− 1)− fi(n) + iω′
1] [fi(n− 2)− fi(n) + iω1 + iω2]

−
{

n+ 1

[fi(n+ 1)− fi(n)− iω1] [fi(n+ 1)− fi(n)− iω′
1]

+
n

[fi(n− 1)− fi(n) + iω1] [fi(n− 1)− fi(n) + iω′
1]

}
×
{

n+ 1

fi(n+ 1)− fi(n)− iω′
2

+
n

fi(n− 1)− fi(n) + iω2

}
+

ω′
1 ↔ ω′

2

ω1 ↔ ω2

)
, (4.89)

while for gi(ω) we have

gi(ω) →
n

iω + fi(n− 1)− fi(n)
− n+ 1

iω + fi(n)− fi(n+ 1)
. (4.90)

This completes all the terms necessary for our Ginzburg-Landau theory.

4.7. First-hopping order e�ective action

Now, by observing the diagrammatic expansions, we see that W (1PI)(2)
ii′ (τ, τ ′) is the only 1PI function

which has a �rst-order hopping contribution. It means that at �rst-hopping order only Γ(2) has to be

corrected. From equation (4.49), it can be obtained by inverting W (2)
ii′ (τ, τ

′), which up to �rst order is

given by

Wii′(τ ; τ
′) = δii′

ω′ ω

i
+
ω′ ω

i′ i
+ · · · (4.91)

Order by order inversion of (4.91) leads to

Γ
(2)
ij (ω;ω′) = δij

ω′ ω

i
+ βδω,ω′Jij + · · · (4.92)

Thus, by using the result for Γ(2)
0i in (4.71), we can explicitly write (4.92) up to �rst-hopping order

in the Matsubara space

Γ
(2)
ij (ω, ω′) ≈ βδω,ω′Jij − βδω,ω′δijZ0

[ ∞∑
n=0

(n+ 1)
e−βfi(n+1) − e−βfi(n)

iω + fi(n)− fi(n+ 1)

]−1

. (4.93)

This means that up to �rst hopping order, the e�ective action has a very simple form
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4. Bosonic Lattices at Finite Temperature

Γ [ψ∗, ψ] ≈ − 1

β2

∑
ω

∑
ij

Jijψ
∗
i (ω)ψj(ω) + Γ0 [ψ

∗, ψ] . (4.94)

4.8. Second-hopping order e�ective action

Now we will calculate the second-order correction to Γ(2). This correction is given by

δij
ω′ ω

i
(4.95)

In order to calculate this diagram, we must �rst calculate the second-order correction to W (2) which

can be represented as

δij
ω′ ω

i
(4.96)

Now we can make use of the transformation (4.60) so that we can set ω = ω′ = 0 in W (4)
0i and later

make the transformation fi(n) → fi(n)− inω.

According to our diagrammatic rules, this diagram can be constructed fromW
(4)
0i andW (2)

0i , according

to

ω′ ω

i
=

1

β

∑
j

J2
ij

∑
ω′′

W
(4)
0i (ω′′, ω′;ω′′, ω)gj(ω

′′) (4.97)

where W (4)
0i (ω, 0;ω, 0) is obtained from (4.87) and can rewritten as
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4.8. Second-hopping order e�ective action

Z(0)

β
W

(4)
0i (ω, 0;ω, 0) = βδω,0

{ ∞∑
n=0

e−βfi(n)
[

n+ 1

fi(n+ 1)− fi(n)− iω
+

n

fi(n− 1)− fi(n) + iω

]2

− 1

Z(0)

( ∞∑
n=0

e−βfi(n)
[

n+ 1

fi(n+ 1)− fi(n)− iω
+

n

fi(n− 1)− fi(n) + iω

])2


+ β

{ ∞∑
n=0

e−βfi(n)
[

n+ 1

fi(n+ 1)− fi(n)− iω
+

n

fi(n− 1)− fi(n) + iω

]
(4.98)

×
[

n+ 1

fi(n+ 1)− fi(n)
+

n

fi(n− 1)− fi(n)

]

− 1

Z(0)

 ∞∑
m,n=0

e−β[fi(n)+fi(n)]
[

n+ 1

fi(n+ 1)− fi(n)− iω
+

n

fi(n− 1)− fi(n) + iω

]

×
[

m+ 1

fi(m+ 1)− fi(m)
+

m

fi(m− 1)− fi(m)

])}
+

∞∑
n=0

i
[
e−βfi(n+1) − e−βfi(n)

]
ω − i [fi(n)− fi(n+ 1)]

{
(n+ 2)(n+ 1)

[
1

fi(n+ 2)− fi(n+ 1)
+

1

fi(n)− fi(n+ 1)

]2
+n(n+ 1)

[
1

fi(n)− fi(n− 1)
+

1

fi(n)− fi(n+ 1)

]2}

−
∞∑
n=0

i
[
e−βfi(n+2) − e−βfi(n)

]
ω − i [fi(n)− fi(n+ 2)]

(n+ 2)(n+ 1)

[
1

fi(n+ 1)− fi(n+ 2)
+

1

fi(n+ 1)− fi(n)

]2
+

∞∑
n=0

e−βfi(n+1) − e−βfi(n)

{ω − i [fi(n)− fi(n+ 1)]}2

[
(n+ 2)(n+ 1)

fi(n+ 2)− fi(n+ 1)
+

n(n+ 1)

fi(n)− fi(n− 1)
+ 2

(n+ 1)2

fi(n)− fi(n+ 1)

]
.

This form of writing W (4)
0i (ω, 0;ω, 0) is particularly useful, as it can be used to obtain (4.97) with the

help of the formulas in Appendix B. For the special case of homogeneous systems, i.e., if fi(n) = f(n),

W
(4)
0i (ω, 0;ω, 0) =W

(4)
0 (ω, 0;ω, 0), and gi(ω) = g(ω), we have
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4. Bosonic Lattices at Finite Temperature

(
Z(0)

)2
β

∑
ω

W
(4)
0 (ω, 0;ω, 0)g(ω) = −β


∞∑
n=0

e−βf(n)b(n)2 − 1

Z(0)

[ ∞∑
n=0

e−βf(n)b(n)

]2
∞∑
n=0

e−βf(n)b(n)

+ β
∑
m6=n

(n+ 1)(m+ 1) [a(n) + b(n)]
e−β[f(n)+f(m+1)] − e−β[f(m)+f(n+1)]

{[f(n)− f(n+ 1)]− [f(m)− f(m+ 1)]}2

+ β2
∑
m6=n

(n+ 1)(m+ 1)

[f(n)− f(n+ 1)]− [f(m)− f(m+ 1)]

{
e−β[f(m)+f(n+1)]a(n) + e−β[f(n)+f(m+1)]b(n)

}

+
β2

Z(0)

[ ∞∑
n=0

e−βf(n)b(n)

] ∞∑
m 6=n

(m+ 1)(n+ 1)
e−β[f(n)+f(m+1)] − e−β[f(m)+f(n+1)]

[f(m)− f(m+ 1)]− [f(n)− f(n+ 1)]

+ β
∑
m6=n

(m+ 1)c(n)
e−β[f(m)+f(n+1)] − e−β[f(n)+f(m+1)]

[f(m)− f(m+ 1)]− [f(n)− f(n+ 1)]
(4.99)

+ β

∞∑
m,n=0

(m+ 1)d(n)
e−β[f(m)+f(n+2)] − e−β[f(n)+f(m+1)]

[f(m)− f(m+ 1)]− [f(n)− f(n+ 2)]

+
β3

2

∞∑
n=0

e−β[f(n+1)+f(n)](n+ 1)2 [a(n)− b(n)]

+
β3

Z(0)

[ ∞∑
n=0

e−βf(n)b(n)

][ ∞∑
n=0

(n+ 1)2e−β[f(n+1)+f(n)]

]

− β2
∞∑
n=0

e−β[f(n+1)+f(n)](n+ 1)c(n),

where

a(n) =
n+ 2

f(n+ 2)− f(n+ 1)
+

n+ 1

f(n)− f(n+ 1)

b(n) =
n

f(n)− f(n− 1)
+

n+ 1

f(n)− f(n+ 1)

c(n) = (n+ 2)(n+ 1)

[
1

f(n+ 2)− f(n+ 1)
+

1

f(n)− f(n+ 1)

]2
(4.100)

+ n(n+ 1)

[
1

f(n)− f(n− 1)
+

1

f(n)− f(n+ 1)

]2
d(n) = −(n+ 2)(n+ 1)

[
1

f(n+ 1)− f(n+ 2)
+

1

f(n+ 1)− f(n)

]2
.

Now, by applying the transformation fi(n) → fi(n) − inω, we can obtain the �nal result for the

second-order correction to Γ(2)

66



4.8. Second-hopping order e�ective action

ω′ ω

i
=

δω,ω′
∑

j J
2
ij

g(ω)2
(
Z(0)

)2
−β


∞∑
n=0

e−βf(n)b(n, ω)2 − 1

Z(0)

[ ∞∑
n=0

e−βf(n)b(n, ω)

]2
∞∑
n=0

e−βf(n)b(n, ω)

+ β
∑
m6=n

(n+ 1)(m+ 1) [a(n, ω) + b(n, ω)]
e−β[f(n)+f(m+1)] − e−β[f(m)+f(n+1)]

{[f(n)− f(n+ 1)]− [f(m)− f(m+ 1)]}2

+ β2
∑
m6=n

(n+ 1)(m+ 1)

[f(n)− f(n+ 1)]− [f(m)− f(m+ 1)]

{
e−β[f(m)+f(n+1)]a(n, ω) + e−β[f(n)+f(m+1)]b(n, ω)

}

+
β2

Z(0)

[ ∞∑
n=0

e−βf(n)b(n, ω)

] ∞∑
m6=n

(m+ 1)(n+ 1)
e−β[f(n)+f(m+1)] − e−β[f(m)+f(n+1)]

[f(m)− f(m+ 1)]− [f(n)− f(n+ 1)]

+ β
∑
m6=n

(m+ 1)c(n, ω)
e−β[f(m)+f(n+1)] − e−β[f(n)+f(m+1)]

[f(m)− f(m+ 1)]− [f(n)− f(n+ 1)]
(4.101)

+ β

∞∑
m,n=0

(m+ 1)d(n, ω)
e−β[f(m)+f(n+2)] − e−β[f(n)+f(m+1)]

[f(m)− f(m+ 1)]− [f(n)− f(n+ 2)]− iω

+
β3

2

∞∑
n=0

e−β[f(n+1)+f(n)](n+ 1)2 [a(n, ω)− b(n, ω)]

+
β3

Z(0)

[ ∞∑
n=0

e−βf(n)b(n, ω)

][ ∞∑
n=0

(n+ 1)2e−β[f(n+1)+f(n)]

]

−β2
∞∑
n=0

e−β[f(n+1)+f(n)](n+ 1)c(n, ω)

]
,

where

a(n) =
n+ 2

f(n+ 2)− f(n+ 1)− iω
+

n+ 1

f(n)− f(n+ 1) + iω

b(n) =
n

f(n)− f(n− 1)− iω
+

n+ 1

f(n)− f(n+ 1) + iω

c(n) = (n+ 2)(n+ 1)

[
1

f(n+ 2)− f(n+ 1)− iω
+

1

f(n)− f(n+ 1) + iω

]2
(4.102)

+ n(n+ 1)

[
1

f(n)− f(n− 1)− iω
+

1

f(n)− f(n+ 1) + iω

]2
d(n) = −(n+ 2)(n+ 1)

[
1

f(n+ 1)− f(n+ 2) + iω
+

1

f(n+ 1)− f(n)− iω

]2
.

In the zero-temperature limit, we have
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ω′ ω

i
= 2πδ(ω − ω′)

∑
j

J2
ij


×
(

(n+ 1)n [a(n, ω) + b(n, ω)]

{[f(n)− f(n+ 1)]− [f(n− 1)− f(n)]}2
− (n+ 1)n [a(n− 1, ω) + b(n− 1, ω)]

{[f(n− 1)− f(n)]− [f(n)− f(n+ 1)]}2

+
(n+ 1)c(n− 1, ω)

[f(n)− f(n+ 1)]− [f(n− 1)− f(n)]
− nc(n, ω)

[f(n− 1)− f(n)]− [f(n)− f(n+ 1)]
(4.103)

+
(n+ 1)d(n− 2, ω)

[f(n)− f(n+ 1)]− [f(n− 2)− f(n)]− iω
− nd(n, ω)

[f(n− 1)− f(n)]− [f(n)− f(n+ 2)]− iω

)
×
[

n

iω + f(n− 1)− f(n)
− n+ 1

iω + f(n)− f(n+ 1)

]−2

.

The expansion for the e�ective action calculated in this chapter is the starting point for the calcu-

lation of various properties of bosonic lattices in homogeneous as well as in inhomogeneous systems.

These calculations and performed in the next chapters.
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5. Homogeneous Lattices

Having developed our �eld-theoretical approach for the general Hamiltonian in the previous chapter, we

can now apply it to the speci�c case of the homogeneous Bose-Hubbard Hamiltonian in D-dimensional

cubic optical lattices. To this end, we must make following identi�cations

fi(n) =
U

2
(n2 − n)− µn, (5.1)

Jij =

 J,

0,

if i and j are nearest neighbors

otherwise.
(5.2)

5.1. Quasi-Momentum Representation

The discrete translation symmetry in the homogeneous case allows us to further simplify our formalism

by performing a discrete Fourier transformation to our �elds, thus leading to the quasi-momentum

representation

ψ(k) =
∑
i

e−ik·riψi, (5.3)

were ri denotes the location of the i-th lattice site and components kα of quasi-momentum k are re-

stricted to the �rst Brillouin zone. Analogously all site-dependent functions are transformed according

to

M(k1, · · · ,kn;k′
1, · · · ,k′

n) =
∑

i1,··· ,in;i′1,··· ,i′n

e
−i(k1·ri1+···+kn·rin−k′

1·ri′1
−···−k′

n·ri′n )Mi1,··· ,in;i′1,··· ,i′n . (5.4)

The inverse transformations read

ψi =
( a
2π

)D ∫
dDkeik·riψ(k), (5.5)

Mi1,··· ,in,i′1,··· ,i′n =
( a
2π

)2Dn ∫
dDk1 · · ·

∫
dDkn

∫
dDk′

1 · · ·
∫
dDk′

ne
i(k1·ri1+···+kn·rin−k′

1·ri′1
−···−k′

n·ri′n)

×M(k1, · · · ,kn;k′
1, · · · ,k′

n). (5.6)

These transformations can be checked by using the formula
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∑
i

e−ik·ri =

(
2π

a

)D
δ(k). (5.7)

This formula enables us to relate δ(k = 0) and the total number of lattice sites NS according to

δ(k = 0) =
( a
2π

)D
Ns. (5.8)

By combining this discrete Fourier transformation with the Matsubara transformation, we can

rewrite the e�ective action in (4.48) and (4.57) according to

−βΓ [ψ∗, ψ] = Γ(0) +
1

β2

( a
2π

)2D∑
ωω′

∫
dDk

∫
dDk′Γ(2)

(
k, ω;k′, ω′)ψ∗ (k, ω)ψ

(
k′, ω′)

+
1

2!2
1

β4

( a
2π

)4D ∑
ω1ω2;ω′

1ω
′
2

∫
dDk1

∫
dDk2

∫
dDk′

1

∫
dDk′

2Γ
(4)(k1, ω1,k2, ω2;k

′
1, ω

′
1,k

′
2, ω

′
2)

×ψ∗(k1, ω1)ψ
∗(k1, ω2)ψ(k

′
1, ω

′
1)ψ(k

′
2, ω

′
2) + · · · . (5.9)

From (4.92) and (4.95) we know the 2-point 1PI Green's function up to second hopping order

Γ
(2)
ij (ω;ω′) = δij

ω′ ω

i
+ βδω,ω′Jij + δij

ω′ ω

i
+ · · · (5.10)

From (4.71) and (4.101), we see that for homogeneous lattices, both diagrams in (5.10) are site inde-

pendent. Thus, using (5.4) and (5.10), we have

Γ(2)(k, ω;k′, ω′) =

(
2π

a

)D
δ(k− k′)

ω′ ω

i
+ βδω,ω′J(k) +

ω′ ω

i
+ · · ·

 (5.11)

with the Fourier transformed hopping

J(k) = 2J
∑
α

cos(kαa). (5.12)

For the 4-point 1PI function, we know only its zeroth-order contribution

Γ
(4)
i1i2;i′1i

′
2
(ω1, ω2;ω

′
1, ω

′
2) = δi1i2δi′1i2δi1i′1

ω′
1

ω′
2

ω1

ω2

i
i

i

i i

+ · · · (5.13)

From (4.87) and (4.88), we observe that the diagram in (5.13) is also site independent. By using (5.4)

and (5.13), we get
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Γ(4)(k1, ω1,k2, ω2;k
′
1, ω

′
1,k

′
2, ω

′
2) =

( a
2π

)D
δ(k1 + k2 − k′

1 − k′
2)

ω′
1

ω′
2

ω1

ω2

i
i

i

i i

+ · · · (5.14)

5.2. Static Properties

In the homogeneous optical lattices discussed here, the spatial and temporal translation symmetry of

the Bose-Hubbard Hamiltonian is preserved in its equilibrium state. Therefore, in order to calculate

many of their equilibrium properties it is enough to consider the e�ective action for an order parameter

which is homogeneous in both space and imaginary time, i.e.

ψi(τ) = ψeq. (5.15)

This can be expressed in the quasi-momentum Matsubara representation according to

ψeq(k, ω) = β

(
2π

a

)D
δω,0δ(k)ψeq. (5.16)

For homogeneous order parameters, it is usual to work with the so called e�ective potential [39,40]

which is de�ned as the e�ective action per lattice site: Γpot = Γ/Ns. Considering this de�nition and

substituting (5.16) into (5.9), we obtain the Landau expansion

Γpot(ψ
∗, ψ) = a0 + a2 |ψ|2 +

1

2!2
a4 |ψ|4 + · · · , (5.17)

with the coe�cients given by

a0 = −β−1 ln

∞∑
n=0

e−βfi(n), (5.18)

a2 = −Γ(2)(0, 0;0′, 0)

βNs
= β−1

 0 0

i
+ βJ(0) +

0 0

i
+ · · ·

 , (5.19)

a4 =
Γ(4)(0, 0,0, 0;0, 0,0, 0)

βNs2!2
=

1

β2!2

0

0

0

0

i
i

i

i i

+ · · · . (5.20)

5.2.1. First Hopping Order

According to the discussion in Chapter 4, we must �rst check whether the condition a4 > 0 is satis�ed.

It can be directly calculated form Eqs. (4.87), (4.88), and (5.20). The positivity of a4 can be seen

from Fig. 5.1. Once this condition is satis�ed, the phase boundary separating the Mott insulator and

the super�uid phases is given by the condition a2 = 0.

In the �rst hopping order approximation, the phase boundary is obtained by ignoring second and

higher hopping orderin (5.19) and imposing the condition a2 = 0 on the system parameters, which
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Figure 5.1.: Coe�cient a4 at di�erent temperatures. Red: β → ∞. Green: β = 50/U . Blue: β =
10/U . Orange: β = 3/U . The positivity of this quantity makes possible the determination
of the phase of the system by looking at the sign of a2.

explicitly reads

Jcz = −β−1 0 0

i
, (5.21)

where z = 2D is the lattice coordination number and Jz = J(0). By using Eq. (4.71), we obtain the

explicit formula for the critical value of the hopping parameter

Jcz = Z0

[ ∞∑
n=0

e−βfi(n+1) − e−βfi(n)

fi(n)− fi(n+ 1)

]−1

. (5.22)

In Fig. 5.2, we have a plot of the quantum-phase diagram for di�erent temperatures in the �rst

hopping order approximation, obtained using Eq. (5.22).

The equilibrium value for the condensate density in the ordered phase is then given by

|ψeq|2 = −2a2
a4

. (5.23)

Substituting back into (5.17), the e�ective potential becomes

Γpot ≈ a0 −
a22
a4
. (5.24)

By evaluating the derivatives of Γpot, many of the thermodynamical quantities can be obtained. For

instance, the particle density is given by

ρ = −∂Γpot

∂µ
(5.25)

and, correspondingly, the compressibility κ = ∂ρ/∂µ follows from
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Figure 5.2.: Quantum phase diagram in the �rst hopping order approximation. Each line separating
the Mott insulator from the super�uid phase corresponds to a di�erent temperature. Blue:
β → ∞. Green: β = 30/U . Red: β = 10/U . Black: β = 5/U .

κ = −∂
2Γpot

∂µ2
. (5.26)

In Fig. 5.3, these quantities are plotted for di�erent values of temperature and hopping parameter.

By taking the zero temperature limit in Eq. (5.22), i.e., by making β → ∞, we recover the mean-

�eld formula (3.46). This, however, does not imply the equivalence between the mean-�eld theory and

the �rst hopping order e�ective potential. In fact, at zero temperature, the results obtained from the

e�ective potential have a wider range of validity than the ones from mean-�eld theory as illustrated

in the Fig. 5.4. While the mean-�eld theory predicts unphysical results like negative compressibility

far from the boundary, the e�ective potential leads to a monotonically increasing particle density with

respect to µ and therefore to an always positive compressibility.

5.2.2. Second Hopping Order

As the e�ective potential approach at �rst hopping order reproduces the same MI-SF phase boundary

from mean-�eld theory, the �rst non-trivial result for the quantum phase diagram is obtained only at

second order level. In order to facilitate the calculations at second hopping order, it is useful to isolate

the hopping dependency of the diagrams in Eq. (5.11) according to

0 0

i
= βα0, (5.27)

0 0

i
= J2zβα2. (5.28)

In this way, the condition a2 = 0, imposed to the system parameters, is equivalent to
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Figure 5.3.: Total particle density (left) and compressiblity (right) for di�erent values of temperature
and hopping parameter. The blue and red lines correspond to Jz

U = 0.15 and Jz
U =

0.18, respectively. Dashed and continuous lines correspond to β → ∞ and β = 10/U ,
respectively.
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Figure 5.4.: Total particle density (left) and compressibility (right) at zero temperature. The blue and
red lines correspond to Jz

U = 0.13 and Jz
U = 0.2, respectively. Dashed and continuous lines

are obtained using mean-�eld theory and e�ective potential, respectively.
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Figure 5.5.: Quantum phase diagram in the second hopping order approximation. Each line separating
the Mott insulator from the super�uid phase corresponds to a di�erent temperature. Blue:
β → ∞. Green: β = 30/U . Red: β = 10/U . Black: β = 5/U .

α0 + Jcz + J2
c zα2 = 0. (5.29)

This second-degree algebraic equation has two solutions. In fact, this approach always leads to algebraic

equations whose degree depends on the order of the hopping expansion considered. These equations

can have, in principle, many real roots depending on its degree. However, as these expansions are valid

only for small values of the hopping parameter, only the solution corresponding to the smallest value

of Jc must be considered as physical. All other solutions must be discarded as they are arti�cially

introduced. Therefore, the critical value of the hopping parameter at second hopping order reads

Jcz = − z

2α2

(
1−

√
1− 4α0α2/z

)
. (5.30)

In this formula we can observe that in the limit z → ∞, the critical hopping reproduces the mean-

�eld result (3.46). This comes from the fact that the mean-�eld theory becomes exact as the system

dimension tends to in�nity [36].

In Fig. 5.5, we have a plot of the quantum-phase diagram for di�erent temperatures in the second

hopping order approximation, obtained using Eq. (5.30).

In Fig. 5.6, the results from our e�ective potential method [39] are compared, for the �rst MI-SF

lobe, with the mean-�eld phase-boundary [28,36], with third-order strong-coupling expansion [37], and

with numerical data obtained by using the density-matrix renormalization-group technique [32] for one

dimension as well as quantum Monte Carlo simulations [34,35] for two and three dimensions. In this

�gure, we see that our e�ective potential method provides very accurate results for the �rst MI-SF

lobe in comparison with Monte Carlo data. This indicates that our method also gives essentially exact

results for any MI-SF lobe in more than one dimension, where no Monte Carlo simulations have been

yet performed systematically.

For d = 1, the quantum phase boundary of the Bose-Hubbard model is more complicated as it is a
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Figure 5.6.: Quantum phase diagram of the �rst MI-SF lobe (n = 1) at zero temperature. Solid green
lines are results from our e�ective potential potential method [39], dot-dashed blue lines
are from mean-�eld theory [28], dotted black lines are from third-order strong-coupling
expansion [37], and red dots are numerical data. For the one-dimensional case the data
stem from density-matrix renormalization-group calculations [33], while the data for two
and three dimension are obtained from quantum Monte Carlo simulations [34,35].

Kosterlitz-Thouless type of phase transition [65,36]. This nonanalytic behavior is reproduced in Fig.

5.6 quite well by both the precise density-matrix renormalization-group results and strong-coupling

expansion [38]. However, our e�ective potential method cannot deal with this. In fact, it leads to a

�nite interval of the chemical potential where no real solution for the phase boundary exists. This

�nding is insofar consistent as the e�ective action approach is expected to be applicable only for small

values of the hopping parameter J .

In Fig. 5.7, we can clearly observe how the phase boundary predicted by our method approaches

the mean-�eld phase boundary as the dimension d of the system increases which is consistent with the

fact the at large dimensions the mean-�eld results becomes exact [36]. Such an agreement with the

mean-�eld for d→ ∞ can also be checked directly in (3.46) and (5.30).

Finally, we observe that so far our method yields a phase boundary for d = 3 dimensions which turns

out to be analytical at the lobe tip. This �nding is consistent with the theory of critical phenomena

as a quantum phase transition in d spatial dimensions belongs e�ectively to the universality class of

a standard phase transition in d + 1 dimensions [28,36,37]. In contrast to that, the strong-coupling

expansion of Ref. [37] leads in each order to a pronounced arti�cial cusp at the lobe tip. At present,

it remains open to resolve the analytical structure of lobe tips via QMC simulations [34]. This is

certainly demanding as the lobe tip is the most sensible region of the Mott lobe with respect to �nite-

size scalings. The analytic structure of our e�ective action approach makes it ideal for dealing with

experimental situations where the MI-SF phase boundary is crossed at �xed particle number density.

5.3. Dynamical Properties

5.3.1. Super�uid Density

By relaxing the condition of spacial homogeneity of the order parameter, we are able to determine

many other quantities as, for instance, the super�uid density of the system. The super�uid density is

de�ned as the e�ective �uid density that remains at rest when the entire system is moved at constant

velocity [66,67]. As is well known in quantum mechanics, such an uniform velocity corresponds to

imposing twisted boundary conditions. Equivalently, we introduce Peierls phase factors
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Figure 5.7.: Quantum phase diagram of MI-SF lobes at zero temperatures for di�erent dimensions.
Solid green lines are results from our e�ective potential method, dot-dashed blue lines
are from mean-�eld theory, and dotted black lines are from third-order strong-coupling
expansion [37]. The nonphysical ten-dimensional case is included to show that our method
converges to the mean-�eld theory [28] in the limit d → ∞, as is expected on general
grounds [36].
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âi → âie
i(ri·φ)/L (5.31)

in the Bose-Hubbard Hamiltonian. Here φ is related to the velocity of the system according to v =

φ/m∗L, where m∗ = 1/(2J) is the e�ective particle mass, and L is the extent of the system in the

direction of v. In the e�ective action, Eq. (5.31) has the same e�ect as the transformation

ψi(τ) → ψi(τ)e
i(ri·φ)/L (5.32)

in the e�ective action Γ [ψ∗, ψ], where we denote Γ(φ) the e�ective action transformed by the phase φ.

Equating the kinetic energy of the super�uid with the di�erence Γ(φ)−Γ(0), the super�uid density

is de�ned as [66,67]

ρs = lim
|φ|→0

2m∗L2

Ns |aφ|2
[Γ(φ)− Γ(0)] . (5.33)

Let us consider the �rst hopping order e�ective action in Eq. (4.94). The equilibrium order parameter

in Matsubara space is given by

ψi(ω) = βδω,0ψeq, (5.34)

where ψeq is given in Eq. (5.23). By making the transformation (5.32) and substituting into (5.33) we

have

ρs = lim
|φ|→0

2m∗L2

Ns |aφ|2
|ψeq|2

∑
ij

Jij

[
1− e−i(ri−rj)·φ/L

]
. (5.35)

Now, by choosing the direction of φ along one of the lattice vectors and Jij according to (5.2), we have

ρs = lim
φ→0

L2

(aφ)2
|ψeq|2 [2− 2 cos(aφ/L)] = |ψeq|2 . (5.36)

This interesting result shows that, at �rst hopping order, both the condensate density and the super-

�uid density coincide. Therefore, for small values of the hopping parameter we can always assume a

numerical equivalence between these two quantities.

An expected feature of bosonic lattices, is the increase of the condensate density as the system

parameters go deeper in the super�uid phase. As we see in Fig. 5.8, the mean-�eld theory predicts

again unphysical results as the system goes far from the phase boundary while the e�ective potential

predicts the correct monotonic increase of |ψeq|2 with respect to the hopping parameter.

5.3.2. Excitation Spectra

The excitation spectra of a system is the set of relations between the frequency ω and the momentum

k associated with its excitations. For a given excitation, the function ω(k) relating its frequency and

momentum is known as dispersion relation. The dispersion relations of excitations in both BEC [68,69]

and optical lattices [70,71] have been experimentally investigated using Bragg spectroscopy [20,70] and

modulation of the lattice potential [16]. Theoretical studies of the excitation spectra of optical lattices
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Figure 5.8.: Condensate and super�uid density. The blue, green, and red lines correspond to µ/U = 0.1,
µ/U = 0.2, and µ/U = 0.5, respectively. Dashed and continuous lines are obtained using
mean-�eld theory and e�ective potential, respectively.

were performed using the lattice Gross-Pitaevskii equation [72], slave-bosons approach [73], random-

phase approximation [74], and the Keldysh formalism [45,46]. Here, will be discussed the di�erent

excitations appearing in both the Mott-insulator and super�uid phases and spectra corresponding to

each excitation will be calculated.

In our approach, these excitations are treated as linear perturbations δψ to the equilibrium value

ψeq of the order parameter �eld. In order to obtain the linearized equations of motion for δψ, we must

make the substitution ψ → ψeq + δψ in our e�ective action and consider only the terms up to second

order in δψ. However, as the excitation spectra is related in the real-time dynamics of the system

near equilibrium, we must transform this e�ective action from imaginary to real time. In the linear

approximation the transition from imaginary to real time can be done by performing the following

transformations [52,75,76]

1

β

∑
ω

−→ 1

2π

∫ ∞

−∞
dω, (5.37)

ω −→ −iω (5.38)

in the e�ective action, where the frequency ω must now be treated as a continuous variable. Here a

remark must be made: as the transformation ω −→ −iω works only for 2-point functions [52,75,76],

it can be used only for e�ective actions which are of second order in the the �elds δψi(t). If we were

interested in higher-order corrections, it would be necessary to reformulate the entire formalism from

the beginning in real time.

Spectra in the Mott-Insulator Phase

In the MI phase, the equilibrium value of the order-parameter �eld is ψeq = 0. Therefore, the e�ective

action for the excitations can be obtained by substituting ψ → δψ into (5.9), expanding it up to second
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Figure 5.9.: Excitation spectra of a cubic lattice in the Mott-insulator phase with β = 30/U and
µ = 0.4U and di�erent values of the hopping parameter. Left: Jz = 0.13U . Middle:
Jz = 0.15U . Right: Jz = 0.17U .

order in δψ, and making the transformations (5.37) and (5.38). This �nally yields

Γreal [δψ
∗, δψ] = −β−1Γ(0) +

1

2π

( a
2π

)2D ∫
dω

∫
dDkξ0 (k, ω) |δψ (k, ω)|2 , (5.39)

where the function ξ0 is given by

ξ0(k, ω) = −β−1Γ(2)(k,−iω;k,−iω)

= −J(k) + Z0

[ ∞∑
n=0

(n+ 1)
e−βfi(n+1) − e−βfi(n)

ω + fi(n)− fi(n+ 1)

]−1

. (5.40)

By extremalizing (5.39), we obtain the equation of motion

ξ0 (k, ω) δψ (k, ω) = 0, (5.41)

which has nontrivial solutions only if

ξ0 (k, ω) = 0. (5.42)

This is the equation which relates the frequencies and momenta of the excitations in the system and

de�nes the dispersion relations ω(k) for each of these excitations. The MI phase is characterized by

the existence of gaps in the dispersion relations of all excitations, i.e., for all excitations we must

have |ω(0)| > 0. In fact, since the phase boundary is de�ned by ξ0 (0, 0) = 0, the gap of at least

one excitation must vanish as the phase boundary is approached from the MI phase. The numerical

solution of (5.42) can be seen in Fig. 5.9 for a cubic lattice at �nite temperate in the MI phase. There

we can observe how the gaps become smaller as we approach the MI-SF phase boundary.

Now, by observing that ξ0(k, ω) in Eq. (5.40) is invariant under the transformations
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Figure 5.10.: Energy gaps given by the distance, along the µ axis, between a point in the phase diagram
and the MI-SF phase boundary.

ω −→ ω + C, (5.43)

µ −→ µ− C, (5.44)

we see that for a given point of the phase diagram, inside the MI phase, there are two modes whose

gaps ∆ = ω(0) are related to the two critical chemical potentials µc(J) by

∆ = µc(J)− µ. (5.45)

This is illustrated in Fig. 5.10 for the �rst lobe of an optical cubic lattice at zero temperature.

These two modes are also called particle and hole excitations and the gaps associated to each of

them are actually the energy necessary to create a particle or a hole with momentum k = 0.

From Fig. 5.10, we see that the kind of excitation whose gap vanishes depends on whether the

phase boundary is approached atthe left or the right side of its lobe tip. If the phase boundary is

approached at the left side of the lobe tip, the hole excitation becomes gapless while the particle

excitation becomes gapless if the phase boundary is approached at the right side of the lobe tip. If the

lobe tip is approached from the Mott phase then the gaps of both particle and hole excitations become

simultaneously gapless.

For small values of ω and |k|, the dispersion relations can be estimated by expanding (5.42) up to

second order in both ω and k, thus giving

D2ω
2 +D1ω +D0 ≈ −Ja2 |k|2 . (5.46)

By solving this equation for ω, we get

ω± = − D1

2D2
± 1

2

√
D2

1

D2
2

− 4
D0 + Ja2 |k|2

D2
. (5.47)
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The expansion of (5.47) up to second order in k gives

ω± ≈ ∆± ± 1

2m′ |k|
2 , (5.48)

where the gaps ∆± associated with each excitation in the system and the e�ective mass m′ of the

excitations are given by

∆± = − D1

2D2
± 1

2

√
D2

1

D2
2

− 4
D0

D2
, (5.49)

m′ =

√
D2

1 − 4D0D2

2a2J
. (5.50)

For sake of illustration, let us consider the zero-temperature case with n = 1. In this case, the

coe�cients are given by

D0 = −Jz − (µ− U)µ

µ+ U
, (5.51)

D1 = −−U2 + 2µU + µ2

(µ+ U)2
, (5.52)

D2 = − 2U2

(U + µ)3
. (5.53)

By substituting these coe�cients into (5.49) and (5.50), we get the gaps ∆± and the mass m′ in

terms of the system parameters. In Fig. 5.11, we present the plots of both the gaps ∆± and mass m′

for β → ∞ and n = 1.

The transformations (5.43) and (5.44) imply that the derivatives of ξ0(k, ω) with respect to ω or µ

are, actually, identical. Therefore the conditions

ξ0(0, 0) = 0, (5.54)

∂ξ0(0, 0)

∂µ

∣∣∣∣
µ=0

= 0, (5.55)

which characterizes the phase boundary and the location of the lobe tip, respectively, are equivalent

to

D0 = 0, (5.56)

D1 = 0. (5.57)

Observe that the expansion (5.48) is not valid if both D0 and D1 vanish. In fact, in this case, then

Eq. (5.46) can be solved according to
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Figure 5.11.: Energy gaps (right) and excitation mass (left) within the MI phase. Left: Excitation
mass within the Mott phase for β → ∞ and n = 1. The colors red, green, and blue
correspond to Jz = 0.11U , Jz = 0.13U , and Jz = 0.15U , respectively. The vanishing
of the gaps and mass of both particle and hole excitations indicates that the spectrum
becomes linear at this point.

ω2 = c2tip |k|
2 , (5.58)

where the sound velocity at the tip of the lobe is given by

ctip =

√
−Ja

2

D2
. (5.59)

Another consequence of the conditions (5.54) and (5.55) is that the mass of the excitations must

vanish at the Mott lobe according to Eq. (5.50). Fig. 5.11 illustrates the vanishing of the mass and

the gaps associated with both particle and hole excitations.

Spectra in the Super�uid Phase

Let us now consider the perturbations to the order parameter �eld in the super�uid phase, where we

have ψeq 6= 0. To this end, we express the order parameter �eld as

ψ(k, ω) = ψeq(k, ω) + δψ(k, ω), (5.60)

then substitute (5.60) into (5.9) and expand the e�ective action up to second order in δψ, assuming

that ψeq is a real number. It leads us to

−βΓ [δψ∗, δψ] ≈ Γ(0) + Γ(2) (0, 0;0, 0) +
1

2!2
Γ(4)(0, 0,0, 0;0, 0,0, 0)ψ2

eq

+
1

β2

( a
2π

)2D∑
ωω′

∫
dDk

∫
dDk′

[
Γ(2)

(
k, ω;k′, ω′)+ Γ(4)(k, ω,0, 0;k′, ω′,0, 0)ψ2

eq

]
×δψ∗ (k, ω) δψ

(
k′, ω′)

+
1

2!2
1

β2

( a
2π

)2D∑
ω;ω′

∫
dDk

∫
dDk′Γ(4)(k, ω,k′, ω′;0, 0)ψ2

eq

×
[
δψ (k, ω) δψ

(
k′, ω′)+ δψ∗ (k, ω) δψ∗ (k′, ω′)]+ · · · . (5.61)

However, as we are interested in the real-time dynamics of the system, we must transform our
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e�ective action from imaginary to real time. This is done by performing the transformations (5.37)

and (5.38) [52,75,76].

By applying these transformations, the e�ective action in real-time becomes

Γreal[δψ
∗, δψ] ≈ Γpot +

1

2π

( a
2π

)2D ∫
dω

∫
dDkξ1(k, ω) |δψ (k, ω)|2 (5.62)

+
1

2

1

2π

( a
2π

)2D ∫
dω

∫
dDkξ2(k, ω) [δψ (k, ω) δψ (−k,−ω) + δψ∗ (k, ω) δψ∗ (−k,−ω)]

where, for simplicity, we suppressed the integration limits and made the following identi�cations

ξ1(k, ω) = −β−1Γ(2)(k,−iω;k,−iω)− β−1Γ(4)(k,−iω,0, 0;k,−iω,0, 0)ψ2
eq, (5.63)

ξ2(k, ω) = −1

2
β−1Γ(4)(k,−iω,−k, iω;0, 0,0, 0)ψ2

eq, (5.64)

with the equilibrium value of the order-parameter �eld

ψ2
eq = −2

Γ(2)(0, 0;0, 0)

Γ(4)(0, 0,0, 0;0, 0,0, 0)
. (5.65)

Substituting this expression for ψeq into (5.63) and (5.64), we get the identity

ξ1(0, 0) = ξ2(0, 0). (5.66)

In addition, due to the permutation symmetries of Γ(4), we see that the ξ2(k, ω) is an even function

with respect to both k and ω. This yields to

∂ξ2(k, ω)

∂ki

∣∣∣∣
ki=ω=0

=
∂ξ2(k, ω)

∂ω

∣∣∣∣
ki=ω=0

= 0. (5.67)

where ki stands for the three components of k.

By extremalizing (5.62), we �nally get the equations of motion for δψ in frequency-momentum space

ξ1(k, ω)δψ (k, ω) + ξ2(k, ω)δψ
∗ (−k,−ω) = 0, (5.68)

ξ1(k, ω)δψ
∗ (k, ω) + ξ2(k, ω)δψ (−k,−ω) = 0. (5.69)

From these equations, we can immediately observe that any function δψ which is both stationary

and purely imaginary, will automatically solve (5.68) and (5.69). This is a result of the global phase

invariance of (5.9) and the non-stationary generalization of these solutions are gapless excitations

known as Goldstone modes.

The solution to the equations (5.68) and (5.69) can be obtained by expressing (5.69) as

δψ∗ (k, ω) = − ξ2(k, ω)

ξ1(k,−ω)
δψ (k, ω) (5.70)
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Figure 5.12.: Excitation spectra of a cubic lattice in the super�uid phase with β = 30/U , µ = 0.4U
and di�erent values of the hopping parameter. Left: Jz = 0.18U , middle: Jz = 0.20U ,
right: Jz = 0.22U .

and substituting it back into (5.68), so that we get[
ξ1(k, ω)−

ξ2(k, ω)
2

ξ1(k,−ω)

]
δψ (k, ω) = 0. (5.71)

Therefore, the dispersion relations of the excitations in the super�uid phase must obey the equation

ξ1(k, ω)ξ1(k,−ω)− ξ2(k, ω)
2 = 0. (5.72)

The numerical solution of (5.72) can be seen in Fig. 5.12 for a cubic lattice at �nite temperate in

the super�uid phase. In this �gure, we can observe the gapless mode corresponding to the Goldstone

excitation in addition to the gapped mode whose gap becomes smaller as we approach the MI-SF phase

boundary. There, we can also see that the Goldstone mode exhibits a linear spectrum for small ω and

k. In fact, such a linear spectrum is a general characteristic of the Goldstone excitations [56].

Observe that over the whole phase boundary, where ψeq = 0, the Eqs. (5.68) and (5.69) are both

reduced to (5.41) which describes the particle and hole excitations. This means that, the modes in the

SF phase, i.e., both the gapped and the Goldstone excitations are continuously transformed into the

particle and hole excitations as the phase boundary is approached from the super�uid side.

In the SF phase, the dispersion relations of the excitations for small ω and |k| can also be calculated

as in the MI phase. To this end, we �rst expand both ξ1 and ξ2 in power series of ω and k, as follows

ξ1(k, ω) ≈ A0 +A1ω +A2ω
2 + Ja|k|2, (5.73)

ξ2(ω) ≈ A0 +B2ω
2, (5.74)

where the coe�cients are given by
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5. Homogeneous Lattices

A0 = ξ2(0, 0) = ξ1(0, 0), (5.75)

A1 =
∂ξ1(0, ω)

∂ω

∣∣∣∣
ω=0

, (5.76)

A2 =
1

2

∂2ξ1(0, ω)

∂ω2

∣∣∣∣
ω=0

, (5.77)

B2 =
1

2

∂2ξ2(0, ω)

∂ω2

∣∣∣∣
ω=0

. (5.78)

By substituting the approximations (5.73) and (5.74) into (5.72), we get the equation

[
2A0Ja|k|2 + (Ja|k|2)2

]
+
[
2A0(A2 −B2)−A2

1 + 2A2Ja|k|2
]
ω2 + (A2

2 −B2
2)ω

4 = 0, (5.79)

which has the following general solution

ω2 = −2A0(A2 −B2)−A2
1 + 2A2Ja|k|2

2(A2
2 −B2

2)

×

1±

√√√√√√1− 4
(A2

2 −B2
2)
[
2A0Ja|k|2 + (Ja|k|2)2

]
[
2A0(A2 −B2)−A2

1 + 2A2Ja|k|2
]2
 . (5.80)

The dispersion relations for small ω and |k| can now be obtained by expanding (5.80) up to second

order in |k|. By considering the plus sign in (5.80), the dispersion relation for the gapped mode is

obtained as follows

ω2 =
A2

1 − 2A0(A2 −B2)

A2
2 −B2

2

+ 2
A0(A2 −B2)

2 −A2
1A2

(A2
2 −B2

2) [A1 + 2A0(B2 −A2)]
a2J |k|2. (5.81)

This can be further approximated to

ω = ±
(
∆+

1

2m′ |k|
2

)
, (5.82)

with excitation gap and mass given by

∆ =

√
A2

1 − 2A0(A2 −B2)

A2
2 −B2

2

, (5.83)

m′ =

[
A2

1 − 2A0(A2 −B2)
]2

2
[
A0(A2 −B2)2 −A2

1A2

]√ A2
2 −B2

2

A2
1 − 2A0(A2 −B2)

. (5.84)

Now, if we take the minus sign in Eq. (5.80) and expand it up to second order in |k|, we get the
dispersion relation of the Goldstone mode, as follows
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Figure 5.13.: Energy gap (left) and excitation mass (right) within super�uid phase for β → ∞ and
n = 1. Right: Excitation mass within the super�uid phase. The colors: red, green, and
blue correspond to Jz = 0.14U , Jz = 0.16U , and Jz = 0.18U , respectively.
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Figure 5.14.: Sound velocity for β → ∞ and n = 1. The colors: red, green, and blue correspond to
Jz = 0.14U , Jz = 0.16U , and Jz = 0.18U , respectively.

ω2 = c2|k|2, (5.85)

where the sound velocity is given by

c =

√
2A0Ja2

A2
1 − 2A0(A2 −B2)

. (5.86)

At the lobe tip, where the coe�cients A0, A1, and B2 vanish, both the gap and the mass of the

gapped mode vanish according to Eqs. (5.83) and (5.84). If we look at Eq. (5.81), we see that this

comes from the fact that there is no gapped mode at lobe tip. In addition, at the lobe tip, A2 becomes

identical to D2 which means that Eq. (5.86) becomes equivalent to Eq. (5.59). From this, we conclude

that the analysis in both the Mott and the super�uid phase shows that, at the lobe lip, there must exist

only one kind of excitation which has a linear spectrum and its sound velocity given by Eq. (5.59).

The analysis in the Mott phase shows that for the points over the phase boundary and out of the

lobe tip, there are two excitation modes where both of them are quadratic in |k|. This means that
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the sound velocity of of the Goldstone mode must vanish as these points are approached from the SF

phase. This can be checked by considering Eq. (5.86) with A0 = 0 and A1 6= 0.

For simplicity, let us consider the zero-temperature case with n = 1. In this case, the coe�cients

(5.75)�(5.78) can be explicitly calculated, thus yielding

A0 =
(−1 + µ′)µ′ + J ′z(1 + µ′)

1 + µ′
, (5.87)

A1 =
[
−2(−1 + µ′)2µ′2

(
−18 + 42µ′ − 23µ′2 + 8µ′3 + µ′4

)
J ′z
(
9− 66µ′ + 103µ′2 + 12µ′3 − 117µ′4 + 46µ′5 − 3µ′6

)]
/µ′(1 + µ′)2

(
9− 30µ′ + 46µ′2 − 32µ′3 + 5µ′4 + 2µ′5

)
U, (5.88)

A2 =
[
3J ′ (27− 135µ′ + 207µ′2 − 23µ′3 − 185µ′4 + 165µ′5 − 41µ′6 + µ′7

)
+ µ′

(
−27 + 351µ′ − 1197µ′2 + 1907µ′3 − 1639µ′4 + 739µ′5 − 137µ′6 + 3µ′7

)]
/(3− 2µ′)2(−1 + µ′)µ′(1 + µ′)3

(
3− 5µ′ + 5µ′2 + µ′3

)
U2 (5.89)

B2 = − 12µ′ [(−1 + µ′)µ+ J ′z(1 + µ′)]

(1 + µ′)3 (3− 5µ′ + 5µ′2 + µ′3)U2
, (5.90)

where µ′ = µ/U and J ′ = J/U .

By substituting these coe�cients into (5.83) and (5.84), we obtain the gap and mass of the gapped

mode above the �rst Mott lobe as depicted in Fig. 5.13. The sound velocity above the �rst Mott lobe

is obtained by substituting these coe�cients into (5.86) and is shown in Fig. 5.14.

By numerically solving Eqs. (5.42) and (5.72), the properties of the excitation spectra in both the

MI and SF phases can be analyzed in an even more precise way. In Fig. 5.15, these properties are

exposed in detail according to the various points considered in the phase diagram. In C1 and C3, we

see the hole excitations becoming gapless as the phase boundary is approached from the MI phase

which indicates that the hole excitation transforms into the Goldstone mode as the phase boundary is

crossed. In C2 and C3, the coincidence between both the mass and the gap of the particle excitation

and the SF gapped excitation indicates that the particle excitation transforms into the SF gapped

mode as the phase boundary is crossed from the MI phase. The roles of particle and hole excitations

are exchanged at the other side of the lobe tip, as we can see in A1-A3. In this case, the particle

excitation is the one which gives rise to the Goldstone mode while the hole excitation becomes the SF

gapped mode, as depicted in A2 and A3. At the Mott lobe, we have a special situation where both

particle and hole excitations are merged into single linear excitations as the lobe tip is approached

form the MI phase as shown in B1. In addition, the vanishing masses and gaps at the lobe tip in B2

and B3 shows the absence of any gapped or massive mode at the lobe tip. In fact, the only possible

mode at this point is the linear mode with �nite sound velocity indicated in B3 as opposed to the

other points over the boundary, where the vanishing sound velocity in A3 and C3 indicates that only

massive modes exist.
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5.3.3. Critical Exponents

In this chapter, some properties of the excitation spectra such as gaps and masses of the various

modes were calculated by means of expansions of the dispersion relations in powers of ω and |k|,
as in Eqs. (5.48) and (5.81). This kind of approximation becomes better and better as the phase

boundary is approached, since in the vicinity of the critical points only excitations with low energy

and momenta play relevant roles. Therefore, these approximations are enough for the discussion of the

critical properties at the MI-SF transition.

At �rst, it is important to distinguish the transitions at the lobe tip from the ones occurring across

the other points of the MI-SF border. At the lobe tip, the relativistic dispersion relations implies

that the transitions occurring at this point belong to universality classes which are di�erent from the

transitions crossing the other points.

Let us �rst concentrate on the transitions occurring away from the lobe tip where the phase boundary

is crossed vertically with µ constant. In the MI phase, the correlation length is related to the coe�cient

of |ψ|2 in the e�ective action according to [56,57,60]

ξ−2 ∼ Γ(2)(0, 0;0, 0). (5.91)

From Eq. (5.40), we have

Γ(2)(0, 0;0, 0) ∼ |J − Jc| , (5.92)

where Jc denotes the critical hopping. The critical exponent ν is de�ned according to

ξ ∼ |J − Jc|ν . (5.93)

The combination of (5.91)�(5.93) leads to

ν =
1

2
. (5.94)

The de�nition of the susceptibility [36,56,60] is also related to Γ(2)(0, 0;0, 0) according to

χ ∼ Γ(2)(0, 0;0, 0)−1, (5.95)

while the critical exponent χ is de�ned by

χ ∼ |J − Jc|−γ . (5.96)

By combining (5.95) and (5.96) with (5.92) we get another coe�cient

γ = 1. (5.97)

The critical exponent z is related to the way in which an excitation vanishes at the critical point [36]

according to

∆ ∼ |J − Jc|νz . (5.98)
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From (5.49) and (5.83), we see that

∆ ∼ |J − Jc| . (5.99)

Using the value of ν from (5.94) with (5.98) and (5.99), we have

z = 2. (5.100)

Another possibility is crossing the phase boundary horizontally with J constant. In this case, all

the discussion made above can be repeated by considering |µ− µc| instead of |J − Jc| in such a way

that the critical exponents are the same. For both paths, the remaining coe�cients can be obtained

by using the scaling relations (3.1)�(3.4), thus giving

α = −1

2
, (5.101)

β =
3

4
, (5.102)

δ =
7

3
, (5.103)

η = 0. (5.104)

Now let us consider the transition where the lobe tip is crossed vertically. Since the equation (5.92)

also holds when the lobe tip is approached, the exponents ν and γ have the same value. However, in

Fig. 5.10, we see that, due to the parabolic shape of the phase boundary near the lobe tip, the gaps

of the excitations must vanish according to

∆ ∼ |J − Jc|2 . (5.105)

From Eq. (5.98), we can then infer for the lobe tip that

z = 1. (5.106)

By using the scaling relations (3.1)�(3.4), we get the remaining critical exponents at the lobe tip

α = 0, (5.107)

β =
1

2
, (5.108)

δ = 3, (5.109)

η = 0. (5.110)

Another possible critical behavior can be observed when the lobe tip is approached horizontally from

the SF phase without penetrating into the MI phase. To this end, we must use the e�ective action in

the SF phase. In particular, the coe�cients ν and γ which are related to the correlation length and

the susceptibility, respectively, can be obtained from
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ξ−2 ∼ ξ1(0, 0), (5.111)

χ ∼ ξ1(0, 0)
−1, (5.112)

where ξ1 is de�ned in (5.63). Note that, at the Mott lobe, the derivative of ξ1 with respect to µ vanishes

since the derivatives of both Γ(2)and Γ(4) go to zero at this point. Therefore, at the Mott lobe, we

must have

ξ1(0, 0) ∼ (µ− µc)
2. (5.113)

This allows us to �nd the coe�cients

ν = 1, (5.114)

γ = 2. (5.115)

From (5.83) and Fig. 5.13 we see that the gap of the SF gapped mode behaves according to

∆ ∼ |µ− µc| (5.116)

along the horizontal path which touches the Mott lobe. This leads us to our next coe�cient

z = 1. (5.117)

The remaining coe�cients can now be calculated using (3.1)�(3.4), thus giving

α = −2, (5.118)

β = 1, (5.119)

δ = 3, (5.120)

η = 0. (5.121)

These results are summarized in Fig. 5.16 with the various transitions corresponding to the di�erent

crossings of the MI-SF border discriminated.
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Figure 5.15.: Figure extracted from [45] and [46]. Excitation spectra are plotted in A1�C1 for di�erent
values of µ/U and J/U , which are marked in the phase diagram (left). In the MI phase
(green lines) and on the phase boundary (blue lines), the two modes can be interpreted
as particle (dotted lines) and hole (dashed lines) excitations. At the tip of the Mott lobe
(B), both modes become gapless, whereas for larger (smaller) chemical potentials µ, only
the gap of the particle (hole) mode vanishes. In the SF phase (red), the gapless mode
turns into a sound mode, but a gapped mode is also present everywhere in the SF phase.
The smooth transition from the MI excitation to the SF excitation is further analyzed in
A2�C2 and A3�C3, where the e�ective mass m and the gap of each mode are plotted as
a function of J/U . The sound velocity c of the massless SF excitation, plotted in A3�C3,
vanishes at the phase boundary except at the tip, indicating the existence of a di�erent
universality class in this con�guration.
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Figure 5.16.: The critical exponents depend on the position and direction of the phase transition. The
gray lines of constant densities in the SF phase are obtained via the e�ective action.
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6. Collapse and Revival of Matter Waves

This chapter discusses the formation and dynamics of matter waves in an optical lattice loaded with

2× 105 87Rb atoms which was experimentally observed by Greiner et al. [1]. In particular, we analyse

the observed collapse and revival of the condensate �eld after a sudden change of the potential depth

from a small value VA to a large value VB. Various examples of such e�ect have been observed not

only with the matter waves in a BEC [1,77,78], but also for the coherent light �eld interacting with a

single atom in cavity quantum electrodynamics [79] and for a single ion captured in a trap [80].

Besides the main frequency dependency of the collapse and revival process on the laser potential,

the authors in Ref. [1] detected a clear di�erence between the revival and collapse times which also

depend on the external laser potential. Additionally, a damping of those matter waves is perceived

which was possibly caused by a loss of coherence due to the harmonic trapping potential. Here we use

the results from our e�ective action theory to reproduce the observed features in Ref. [1] and to test

our theory against the experimental results. Therefore, all numeric parameters used here are the same

as in Ref. [1].

For su�ciently large values of the laser beam intensity V0, the hopping parameter can be neglected,

so that our system is described by the Bose-Hubbard Hamiltonian

ĤBH =
U

2
n̂i (n̂i − 1) + Vin̂i, (6.1)

with Vi = (1/2)mω2|r|2i and ω2 = ω2
m + ω2

l . Here ω2
m = 2π × 24 Hz is the magnetic trap frequency

and, due to the Gaussian pro�le of the laser beams, an additional contribution ω2
l must be taken into

account, which reads according to (2.15)

ω2
l =

8V0
mw2

0

, (6.2)

with m being the mass of the 87Rb atoms. Here we consider the values VA = 8 ER and VB = 22 ER

as in Ref. [1]. This gives for the laser-generated angular frequencies the values ωA = 225 Hz and

ωB = 389 Hz corresponding to the potentials VA and VB, respectively, where, we have used the laser

beam wavelength λ = 838 nm and the beam waists w0 = 125 µm.

6.1. Equations of motion for J = 0

The Hamiltonian (6.1) allows us to treat the system as a set of independent lattice points. Therefore,

in an analogous way to (5.39), the real-time e�ective action for a small ψi is given by

Γreal [ψ
∗
i , ψi] = −β−1Γ(0)/NS +

1

2π

∫
dωξ (ω) |ψi (ω)|2 , (6.3)
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where, for β → ∞, the function ξ is given by

ξ(ω) =

[
n

ω + fi(n− 1)− fi(n)
− (n+ 1)

ω + fi(n)− fi(n+ 1)

]−1

(6.4)

with the following identi�cation

fi(n) =
U

2
(n2 − n) + Vin. (6.5)

By extremalizing (6.3), we obtain the equation of motion

ξ (ω)ψi (ω) = 0. (6.6)

Therefore, the order parameter ψi(ω) is nonzero only for frequencies obeying

ξ (ω) = 0. (6.7)

By using (6.6) and (6.5), we conclude that these frequencies are

ω1 =
UBni
~

+
mω2

B

2~
r2i , (6.8)

ω2 =
UB(ni − 1)

~
+
mω2

B

2~
r2i , (6.9)

where we recovered the explicit dependency on the Planck constant ~ by dimensional analysis. This

means that the general evolution of ψi(t) is given by

ψi(t) =
[
A+
i e

−iUBni
~ t +A−

i e
−iUB(ni−1)

~ t
]
e−i

mω2
B

2~ r2i t, (6.10)

where A+
i and A

−
i are constants which are determined by the initial conditions.

6.2. Exact solution for J = 0

Here we consider that the initial lattice potential is very small so that we can consider our initial state

as a direct product of on-site coherent states

|Φ〉 =
∏
i

⊗|φi〉, (6.11)

with the local states

|φi〉 = e−
1
2
|ψi|2

∞∑
ni=0

ψni
i√
ni!

|ni〉. (6.12)
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The time evolution of the order �eld ψi is then given by

ψi(t) = 〈φi|e
it
~ Ĥiaie

−it
~ Ĥi |φi〉. (6.13)

A direct evaluation of (6.13) with (6.1) �nally leads to

ψi(t) = ψi exp
{
|ψi|2

[
e−

itUB
~ − 1

]}
e−i

mω2
B

2~ r2i t. (6.14)

6.3. Initial conditions

Initial equilibrium situations happening deep in the super�uid phase can be described by the lattice

version of the Gross-Pitaevskii equation

−JA
∑
j∈n.n

ψj + UA|ψi|2ψi + Viψi = µψi. (6.15)

Now we use the Thomas-Fermi approximation as solution of (6.15)

ψi =

√
zJA + µ− Vi

UA
. (6.16)

The constant zJA + µ is determined from the initial total number of condensed atoms which in our

case is Nc = 0.6× 2× 105. Here the factor 0.6 corresponds to the initial coherent fraction observed in

Ref. [1].

Since in Ref. [1], there was around 150,000 populated lattice sites, we can consider the Thomas-

Fermi radius as being much larger than the lattice spacing a, in such a way that ri can be regarded as

a continuous variable. The explicit formulas for the constant zJA + µ and the Thomas-Fermi radius

R are given by

zJA + µ =

(
15UAa

3Nc

8π

)2/5 (
mω2

A/2
)3/5

, (6.17)

R =

√
2 (zJA + µ)

mω2
A

, (6.18)

where, in our case, we have UA = 4.84× 10−31J which leads to the Thomas-Fermi radius R = 32.6a.

The solution (6.16) can be directly used as the initial condition of (6.14). However, since Eq. (6.10)

determines only the sum A+
i + A−

i , the di�erence A
+
i − A−

i between the amplitude modes has to be

determined from the minimum of the observed oscillations of Nc.

6.4. Momentum distributions

In the limit of validity of the Bose-Hubbard model the condensate wave function in coordinate space

is given by

Ψ(r, t) =
∑
i

U(r− ri)ψi(t). (6.19)
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6. Collapse and Revival of Matter Waves

In order to compare our results with the experiments, we must explicitly calculate the momentum

distribution of the condensate wave function. Due to the periodicity of the Wannier function U(r), it
has the simple form

Ψ(k, t) = U(k)ψ(k, t) (6.20)

with the quasi-momentum distribution ψ(k, t) given by

ψ(k, t) =
∑
l

eik·rlψ(rl, t), (6.21)

where the function ψ(r, t) is de�ned in such a way that

ψ(ri, t) = ψi(t). (6.22)

In order to compare the results from our equations of motion with the experimental results from

Ref. [1], we must take into account that the condensed atoms are observed only in domains Dk around

the interference peaks located at kn. Therefore we must integrate the condensate density distribution

only in these domains. As ψ(k, t) is a periodic function with period δk = 2π/a, the observed number

of condensed atoms is given by

Nc(t) =
∑
n

∫
Dk

d3k|Ψ(k+ kn, t)|2 =
∫
Dk

d3k|ψ(k, t)|2
∑
n

|U(k+ kn)|2. (6.23)

Here the factor containing the Wannier functions can be further simpli�ed as follows

∑
n

|U(k+ kn)|2 =
1

(2π)3

∫ ∫
drdr′U∗(r′)U(r)

∑
n

ei(k+kn)·(r−r′). (6.24)

By applying the Poisson's formula ∑
n

eikn·r = a3
∑
l

δ(r− rl), (6.25)

together with the orthonormality relation∫
drU∗(r+ rl)U(r) = δ0,l, (6.26)

we obtain ∑
n

|U(k+ kn)|2 =
( a
2π

)3
. (6.27)

Substituting this back in (6.23), we �nally have

Nc(t) =
( a
2π

)3 ∫
Dk

d3k|ψ(k, t)|2. (6.28)

Additionally, the quasi-momentum distribution can be written in terms of the continuous Fourier
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6.4. Momentum distributions
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Figure 6.1.: Observed coherent fraction. Left: calculated from formula (6.10). Right: calculated from
formula (6.14). The green lines are obtained using approximation (6.36). The red lines
stem from a numerical calculation of Eq. (6.21). The blue dots are experimental points
from [1]. The lower lines correspond to the momentum-space window δk = 2.0× 106m−1

whereas the upper lines correspond to δk = 3.0× 106m−1.

transform. In order to see this, we rewrite Eq. (6.21) in the following form

ψ(k, t) =
∑
l

∫
d3rδ(r− rl)e

ik·rψ(r, t). (6.29)

Using the Poisson formula (6.25) once more, we have

ψ(k, t) =
(2π)3/2

a3

∑
n

ψc(k+ kn, t), (6.30)

where ψc(k, t) is the usual continuous Fourier transform of the order parameter �eld

ψc(k, t) =
1

(2π)3/2

∫
dreik·rψ(r, t). (6.31)

Now observe that Eqs. (6.10) and (6.14) can both be written in the form

ψ(rl, t) = p(rl, t)e
−imω2

B
2~ r2l t, (6.32)

where p(r, t) is a periodic function in t with period U/h. Substitution of (6.32) into (6.21), reveals an

additional frequency mode with period T = 4π/mω2
Ba

2. Eq. (6.32) also enables us to evaluate the

integral (6.31) for large times by using a saddle-point approximation which gives

ψc(k, t) ≈
1

(imω2
Bt)

3/2
exp

(
i

k2

2mω2
Bt

)
p

(
k

mω2
Bt
, t

)
. (6.33)

Additionally, if the function ψc(k, t) is localized in a region with side smaller than δk, we can ignore
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6. Collapse and Revival of Matter Waves

all terms with n 6= 0 in Eq. (6.30), which leads to

ψ(k, t) ≈ (2π)3/2

a3
ψc(k, t). (6.34)

Now we can substitute (6.33) into (6.28) and obtain

Nc(t) ≈
1

a3

∫
Dr

d3r|p(r, t)|2, (6.35)

where Dr is the domain Dk contracted by a factor mω2
Bt. As the width of the function p(r, t), which

is given by the Thomas-Fermi radius in Eq. (6.18), can be considered as much larger than the lattice

spacing a, we can approximate the above integral as a sum over the lattice points

Nc(t) ≈
∑
i∈Dr

|p(ri, t)|2. (6.36)

In order to be consistent with the results obtained from the time-of-�ight pictures in Ref. [1], the

region Dk must be taken as a rectangular parallelepiped with dimensions δk × δk × 2π/a. This leads

to a loss of the observed condensed fraction to the region outside of Dk as the momentum distribution

|ψ(k, t)|2 becomes less localized. From Eqs. (6.35) and (6.36) we see that the loss process starts exactly

at the moment when the function |p(r, t)|2 stops �tting into the domain Dr due to its contraction.

This allows us to calculate the critical time when the loss process starts

tc =
δk

2mω2
BR

. (6.37)

6.5. Comparison with Experiments

Now we compare the results obtained in Ref. [1] for Nc(t) with the exact numerical evaluation of (6.28)

using Fast-Fourier transform algorithms as well as with the analytical approximation of (6.28) given

by (6.36). In Fig. 6.1, we present the results for Nc calculated both numerically, using Fast-Fourier

transform algorithms, and using formula (6.36).

In Eq. (6.37), we see that the critical time, after which the loss in the observed coherent density

begins, depends linearly on the side δk of the observed momentum domain Dk. In the experiments of

Ref. [1], the observations are restricted to a squares with width δx = 130µm, around the interference

peaks in the pictures obtained after the time-of-�ight tflight = 16ms. The corresponding δk is related

to the width δx = 130µm according to

δx =
~δk
m

tflight. (6.38)

This leads us to a momentum domain with width δk = 1.11× 107m−1. According to our theory, such

a big momentum domain should give no observable loss of the condensate during the time interval

between 0 and tc = 2.4ms. In fact, our theoretical results become comparable with the the experimental

data only if we consider δk to be one order of magnitude smaller, as we can see in Fig. 6.1. A possible

explanation for such a disagreement may come from the fact that, in Ref. [1], part of the atoms
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inside the domain Dk are considered as belonging to the thermal could. This may lead to systematic

underestimations of the coherent fraction and, therefore, to a condensate loss much higher than the

theoretically expected.
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7. Summary and Conclusion

Since 1989, despite many experimental and theoretical advancements, the most accurate analytical

calculation of the MI-SF quantum phase diagram was based on the mean-�eld theory in Ref. [28].

In comparison with the high-precision Quantum Monte Carlo data [34], it underestimates by 16% the

location of the �rst lobe tip for three-dimensional cubic lattices. An alternative way to obtain the

MI-SF phase boundary at zero temperature is based on a strong-coupling expansion as is worked out

in detail in Ref. [37]. However, the position of the �rst MI-SF lobe tip in the third-order hopping

expansion is overestimated by 24% in three-dimensional lattices. For the two-dimensional case, the

situation is in favor of the third-order hopping expansion which overestimate the position of the �rst

lobe tip by 13% while the mean-�eld theory underestimates it by 28% [35]. The strong-coupling

expansion has a clear advantage when one-dimensional systems are considered as it is even capable of

reproducing the correct Kosterlitz-Thouless behavior in these systems.

This constituted the state-of-the-art treatment of bosons in a optical lattice at the time this thesis

work was started. Precise results could be extracted from numerical simulations while physical un-

derstanding of the system was limited by inadequate analytical theories. Moreover, since numerical

simulations are necessarily restricted to �nite regions of the phase diagram, all published numerical

studies concerning the MI-SF phase transition were concentrated in the region around the �rst Mott

lobe. This means that there was a total lack of precise results for the regions with densities larger than

one particle per lattice site. In view of a better quantitative comparison with experimental results,

where the harmonic con�nement is dealt within the local density approximation and, thus, usually

involves more than one Mott lobe, it was indispensable to further develop analytical approximation

methods.

Driven by this necessity of new precise analytical methods to deal with bosons in optical lattices,

this thesis was dedicated to elaborate a set of tools which culminated in the development of an elegant

and powerful Ginzburg-Landau theory [39,40]. This method turned out to provide not only a better

qualitative understanding of the lattice system, but also to improve the former analytical methods.

Actually, the �rst-order hopping expansion reproduces the above mentioned mean-�eld results and our

second-order hopping expansion already exhibits a relative error of less than 3% for the phase boundary

in the three-dimensional case which can be considered as exact for most practical purposes. In this way,

our accurate analytical results for the phase boundary at arbitrary dimensions, chemical potentials,

and temperatures, yields new insights beyond the purely numerical data provided by Quantum Monte

Carlo simulations.

After the initial application of our new Ginzburg-Landau theory to cubic lattices in two and three

dimensions [39,40], a stream of papers were published both using the quantum phase diagram ob-

tained from our method as reference data [81�83] and applying our Ginzburg-Landau theory in various

situations involving bosons in optical lattices [41�46,84�86].
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7. Summary and Conclusion

In our �rst two papers, where the general techniques were introduced [39,40], the actual computations

were performed only at �rst and second hopping order. A systematic study of our theory for higher

orders of the hopping parameter was performed by the group of Martin Holthaus in Oldenburg [41�44]

and demonstrated an impressive convergence for the hopping expansion. In fact, their extrapolation of

the 10th hopping order results are indistinguishable from the Quantum Monte Carlo data [34]. After

that, our theory was applied by the authors of Ref. [84] to obtain the phase boundary separating

the Mott insulator phase from the so called pair super�uid phase (PSF) which is induced by excited

molecules loaded into the optical lattice. In Ref. [85], the authors used our theory to study the

phase diagram of attractive atoms with three-body constraint in optical lattices. In particular, they

calculated the MI-SF phase boundary as well as the phase boundary separating the MI phase and

a dimer super�uid phase (DSF). The application for triangular and hexagonal optical lattices was

made in Ref. [86] where the authors generated the �rst reference data for optical lattices with these

geometries. In Refs. [45,46], our e�ective action approach was combined with the Keldysh formalism

in order to describe cubic optical lattices in out-of-equilibrium conditions.

The �rst three chapters of this thesis introduce the physics of optical lattices and serve as an overview

over some subjects which are relevant for a better understanding of the methods developed here. The

last three chapters contain the original contributions of my PhD work.

In Chapter 2, the general theory of optical lattices was discussed. It was described how laser

generated standing waves are used to produce periodic potentials as in Eq. (2.21). These potentials

are capable of reproducing many features of solid-state systems with the advantage of a defect-free

lattice whose tunnel coupling can be tuned by both the intensity and the frequency of the lasers. Due

to the ac-Stark e�ect, the atoms are trapped in the maxima or minima of the laser �eld depending on

whether the lasers are red or blue detuned, respectively. The Bloch theorem states that the spectrum

of free particles moving through the lattice has a band structure as depicted in Fig. 2.1. Since

the separation between Bloch bands increases with the lattice depth, the assumption of deep enough

lattices at temperatures close to zero allows to describe these systems in terms of the so called Bose-

Hubbard Hamiltonian (2.52). By an explicit calculation of the Wannier function (2.25), it was possible

to obtain the Bose-Hubbard parameters de�ned in Eqs. (2.53)-(2.55). Approximate expressions for the

hopping parameter and the on-site energy are shown in (2.61) and (2.65), which are compared with

the numerically calculated parameters in Figs. 2.4 and 2.6. The e�ects due to the inhomogeneities

of the generating laser beams are considered in the inhomogeneous Bose-Hubbard Hamiltonian (2.73)

and the corresponding expressions for system parameters are provided in Eqs. (2.74), (2.79)�(2.81),

and (2.85).

In Chapter 3, a general introduction to second-order phase transitions was provided according to

the modern classi�cation of critical phenomena. In particular, the symmetry breaking mechanism

was addressed, which applies when the system passes from one more ordered to a less ordered phase.

A discussion was also made on the role of the order parameter and the concept of universality as

well as its relation to the di�erent critical exponents characterizing the immediate vicinity of a phase

transition. Special attention was given to quantum phase transitions which are transitions that can

happen even at zero temperature. Most of these discussions are made in the context of bosons in

optical lattices so that the theory of second-order phase transitions was speci�cally applied to the
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MI-SF transition. It was also described how to apply quantum statistical mechanics to systems with

spontaneous symmetry breaking. This method consists in minimizing the Von Neumann entropy

(3.13) subjected to constraints in the order parameter in addition to the constraints of the considered

ensemble. In the grand-canonical ensemble, this generates the e�ective potential (3.14) which depends

on the order parameter. The �rst step for the actual calculation of the e�ective potential is to obtain

the free energy according to Eq. (3.15). This free energy depends on the symmetry-breaking sources

which are also the Lagrange multipliers used to enforce the constraints in the order parameter. The

e�ective potential itself must be obtained from the Legendre transformation of (3.15). By analyzing

the expansion of the e�ective potential in a power series of the order parameter (3.23), it is possible

to determine the phase of the system depending on the values of its control parameters. The e�ective

potential was also generalized to the so called e�ective action by allowing the order parameter to vary

both in space and imaginary time. This generalization was essential for the diagrammatic approach

developed in Chapter 4 and for the calculation of dynamical properties like the excitation spectra in

Chapter 5. The explicit expression for the MI-SF phase boundary calculated using mean-�eld theory

is given by Eq. (3.46) and the corresponding phase diagram is displayed in Fig. 3.2. The unphysical

decreasing of the total particle density with the chemical potential shown in Fig. 3.3 and the consequent

negative compressibility in Fig. 3.4 are pointed out as weaknesses of the mean-�eld theory.

In Chapter 4, a perturbation theory was developed by taking advantage of a diagrammatic notation

which has been specially developed to deal with bosons in optical lattices. Such a notation follows

the ideas introduced in Ref. [63], where a diagrammatic expansion for the fermionic Hubbard model

is considered. In the bosonic case, the calculation of the e�ective action, which is de�ned through a

Legendre transformation of the free energy, leads to an automatic resummation of the hopping expan-

sion. This allows the description of the system properties in both the Mott insulator and super�uid

phase. By de�ning a set of diagrammatic rules, the e�ective action was calculated up to second hop-

ping order. At �rst, by analyzing the expansion of the partition function (4.7) in a power series of

both the order parameter and the hopping parameter, it was possible to �nd the general formula

(4.29). This formula not only simpli�es the computation of the terms in the partition function but

also allows us to construct the set of diagrammatic rules for our calculations. Further simpli�cation of

our calculations was possible by de�ning the generating functional of connected diagrams (4.32) and

the generating functional of the 1PI diagrams (4.47) which represent the diagrammatic content of the

free energy and the e�ective action, respectively. The Matsubara representation was introduced and

it was shown that, in this representation, the same rules used for imaginary time can also be applied

if we take into account the transformations (4.58) and (4.59). The most relevant terms in the e�ective

action are then systematically calculated up to second hopping order and are given by (4.71), (4.88),

(4.92), and (4.101). In order to facilitate the comprehension of calculations in Matsubara space, some

computational details are relegated to the appendices A and B.

In Chapter 5, the e�ective action was used to calculate various static and dynamical properties

of cubic bosonic lattices at both zero and �nite temperature. In Fig. 5.4, the comparison of the

total particle density and the compressibility in the super�uid phase with the mean-�eld results shows

that the unphysical features of the mean-�eld results are not present in our theory. Eq. (5.30) gives

the critical hopping based on our second-order hopping expansion. This result shows an impressive
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accordance with the numerically calculated phase diagrams for two and three dimensions, as depicted in

Fig. 5.6. This indicates that already at second-hopping order our theory has enough precision for most

practical applications. In addition, the equivalence between condensed density and super�uid density

was demonstrated at �rst hopping order by using the de�nition of super�uid density (5.33). Here it

should be noted, however, that this property does not necessarily hold for higher orders of the hopping

expansion [87]. By considering the �uctuations of the order parameter around its equilibrium value

in (5.9) and using (5.37) and (5.38) to Wick rotate from imaginary time to real time, it was possible

to �nd the equations de�ning the dispersion relations for collective excitations in the MI phase (5.42)

and SF phase (5.68), (5.69). In the MI phase, the solution of Eq. (5.42) shown in Fig. 5.9 indicates

the existence of two excitations which are known as particle and hole excitations with positive and

negative gaps, respectively. In order to evaluate the gaps and masses associated with these excitations

in (5.49) and (5.50), the Eq. (5.42) was solved in the limit of large wavelengths and small frequencies.

In the SF phase, the solution of (5.68) and (5.69) in Fig. 5.12 exhibits a gapless excitation known as

Goldstone mode in addition to the gapped mode. By solving Eqs. (5.68) and (5.69) in the limit of

large wavelengths and small frequencies, the gap and mass of the gapped mode in Eqs. (5.83) and

(5.84) as well as sound velocity in Eq. (5.86) associated with the Goldstone mode are calculated. The

mass and gap of the gapped mode are shown in Fig. 5.13, while the sound velocity was depicted in

Fig. 5.14.

Chapter 6 discusses the formation and dynamics of matter waves in an optical lattice loaded with
87Rb atoms which was experimentally observed by Greiner et al. [1]. The results from our theory

are used to reproduce the features observed in Ref. [1] and to test our theory against the respective

experimental results. The real-time e�ective action for small oscillations of the order parameter was

considered in Eq. (6.3) which makes it possible to construct the general solution (6.10). The exact

solution for the order parameter time evolution was also considered in (6.14). The initial conditions

are taken from the Thomas-Fermi approximation (6.16). In order to reproduce the experimentally

observed decay of the coherent fraction, it was necessary to consider the fact that the experiment is

restricted to a �nite region of momentum space according to Eq. (6.28). This allows us to compare

the time evolution of the coherent fraction obtained from the solutions (6.10) and (6.14) with the

experimental results as shown in Fig. 6.1. In addition, the critical time after which the coherent

fraction starts to decay was calculated in Eq. (6.37).

In this thesis, a new e�ective action approach combined with diagrammatic techniques was developed

and applied to analyze static and dynamic properties of spinless bosons in optical lattices. These

new tools can also be applied to a wide range of atomic systems in optical lattices by adapting the

diagrammatic rules to the Hamiltonian of interest where the Legendre transformation leading to the

e�ective action must be made according to the order parameters of the considered system. More

precisely, a new source term must be added to the Hamiltonian for each order parameter considered.

By making such modi�cations, our formalism was already applied, for example, in Refs. [84,85]. Among

other possible systems, where this formalism can be applied, we have Bose-Bose [88,89] and Bose-Fermi

mixtures, optical lattices with non-trivial geometries such as triangular [86,90] and Kagomé [22], and

even other realizations of lattice systems as QED lattices [91].

Bose-Bose mixtures can be obtained, for instance, by using heteronuclear mixtures as in Ref. [89],
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where the authors trapped 87Rb and 41K atoms in a 3D optical lattice, or by con�ning a mixture

of atoms of the same species but in di�erent hyper�ne states as in Ref. [88], where the hyper�ne

states |F = 2,mF = −2〉 and |F = 1,mF = −1〉 of 87Rb were used. In these cases a two-species Bose-

Hubbard Hamiltonian has to be considered [92�95]. A natural generalization for such systems consists

in considering two order parameter �elds corresponding to the macroscopic wave function of each

species.

Bose-Fermi mixtures can be realized for example by using 40K-87Rb or 40K-23Na mixtures as in

Ref. [96]. There, in addition to the usual super�uid order parameter, extra order parameters must be

included in order to distinguish between di�erent non-super�uid phases as the charge density and spin

density waves [96].

Di�erent geometries can also be treated with our approach, as was shown in Ref. [86] for triangular

and hexagonal lattices. Another geometry, which could be considered, is the Kagomé geometry [22].

A straightforward application of the methods developed here is in the �eld of optical QED lattices

where the so called Jaynes-Cummings-Hubbard model can be used to describe the Bose-Einstein con-

densation of polaritons in a way analogous to the condensation of bosonic atoms in optical lattices.

This problem was treated in the diploma thesis in Ref. [91], where further references to this interesting

topic can be found.

We conclude that our Ginzburg-Landau theory for bosons in optical lattices has successfully passed

various tests against numerical simulations and experimental results. Therefore, we expect it to be

useful for planning and analyzing future lattice experiments.
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A. Appendix 1

This appendix contain the derivation of the general formula used in Chapter 4 to simplify the calculation

of Matsubara transformed Green functions.

The objective is to calculate the general multiple integral

C(ωn, · · · , ω1) =

∫ β

0
dτn · · ·

∫ β

0
dτ1e

i(ω1τ1+···+ωnτn)Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô1(τ1)

]}
, (A.1)

here Matsubara frequencies are ωn = (2π/β)n, where n are integer numbers. Ĥ is an arbitrary

time-independent Hamiltonian and Ôi(τi) are arbitrary operators in Heisenberg representation, i.e,

Ôi(τi) = eτĤÔi(0)e
−τĤ .

The �rst observation that we have to make is that, due to invariance of the trace under cyclic

permutations, we have

Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô1(τ1)

]}
= Tr

{
e−βĤ T̂

[
Ôn(τn − τ1) · · · Ô2(τ2 − τ1)Ô1(0)

]}
. (A.2)

By making the transformation τi → τi + τ1 in the variables {τn, · · · , τ2}, we can rewrite (A.1) as

C(ωn, · · · , ω1) =∫ β

0
dτ1e

i(ω1+···+ωn)τ1

∫ β−τ1

−τ1
dτn · · ·

∫ β−τ1

−τ1
dτ2e

i(ω2τ2+···+ωnτn)Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
.

(A.3)

The integration interval (−τ1, β − τ1) of the variables {τn, · · · , τ2} can be spited into the two sub-

intervals (−τ1, 0) and (0, β − τ1), i.e,

∫ β−τ1

−τ1
dτn · · ·

∫ β−τ1

−τ1
dτ2e

i(ω2τ2+···+ωnτn)Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
=

(∫ β−τ1

0
dτn +

∫ 0

−τ1
dτn

)
· · ·
(∫ β−τ1

0
dτ2 +

∫ 0

−τ1
dτ2

)
ei(ω2τ2+···+ωnτn)Tr

{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
.

(A.4)

It means that Eq. (A.4) is composed by a sum of multiple integrals where, in each of these terms, a

given variable τi is integrated in either the interval (−τ1, 0) or (0, β− τ1). Let us consider an arbitrary

109



A. Appendix 1

term which has l − 1 variables {τil , · · · , τi2} integrated in the interval (0, β − τ1) and n − l variables{
τin , · · · , τil+1

}
integrated in the interval (τ1, 0). Such a term can be expressed as

∫ 0

−τ1
dτin · · ·

∫ 0

−τ1
dτil+1

∫ β−τ1

0
dτil · · ·

∫ β−τ1

0
dτi2e

i(ωi2
τi2+···+ωinτin)Tr

{
e−βĤ T̂

[
Ôin(τin) · · · Ôi2(τi2)Ô1(0)

]}
(A.5)

=

∫ 0

−τ1
dτin · · ·

∫ 0

−τ1
dτil+1

∫ β−τ1

0
dτil · · ·

∫ β−τ1

0
dτi2e

i(ωi2
τi2+···+ωinτin)

× Tr
{
e−βĤ T̂

[
Ôil(τil) · · · Ôi2(τi2)

]
Ô1(0)T̂

[
Ôin(τin) · · · Ôil+1

(τil+1
)
]}

,

where the right-hand side of this equation is obtained by observing that τ < 0 if τ ∈
{
τin , · · · , τil+1

}
and τ > 0 if τ ∈ {τil , · · · , τi2}.
Now, by making the transformation τ → τ − β in the variables

{
τin , · · · , τil+1

}
we have

∫ 0

−τ1
dτin · · ·

∫ 0

−τ1
dτil+1

∫ β−τ1

0
dτil · · ·

∫ β−τ1

0
dτi2e

i(ωi2
τi2+···+ωinτin)Tr

{
e−βĤ T̂

[
Ôin(τin) · · · Ôi2(τi2)Ô1(0)

]}
=

∫ β

β−τ1
dτin · · ·

∫ β

β−τ1
dτil+1

∫ β−τ1

0
dτil · · ·

∫ β−τ1

0
dτi2e

i(ωi2
τi2+···+ωinτin )

× Tr
{
e−βĤ T̂

[
Ôil(τil) · · · Ôi2(τi2)

]
Ô1(0)e

−βĤ T̂
[
Ôin(τin) · · · Ôil+1

(τil+1
)
]
eβĤ

}
=

∫ β

β−τ1
dτin · · ·

∫ β

β−τ1
dτil+1

∫ β−τ1

0
dτil · · ·

∫ β−τ1

0
dτi2e

i(ωi2
τi2+···+ωinτin )

× Tr
{
e−βĤ T̂

[
Ôin(τin) · · · Ôil+1

(τil+1
)
]
T̂
[
Ôil(τil) · · · Ôi2(τi2)

]
Ô1(0)

}
=

∫ β

β−τ1
dτin · · ·

∫ β

β−τ1
dτil+1

∫ β−τ1

0
dτil · · ·

∫ β−τ1

0
dτi2e

i(ωi2
τi2+···+ωinτin )

×Tr
{
e−βĤ T̂

[
Ôin(τin) · · · Ôi2(τi2)Ô1(0)

]}
,

(A.6)

This means that the integration limits (0,−τ1) in Eq. (A.4) can actually be substituted by the new

limits (β, β − τ1), i.e,

(∫ β−τ1

0
dτn +

∫ 0

−τ1
dτn

)
· · ·
(∫ β−τ1

0
dτ2 +

∫ 0

−τ1
dτ2

)
ei(ω2τ2+···+ωnτn)Tr

{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
=

(∫ β−τ1

0
dτn +

∫ β

β−τ1
dτn

)
· · ·
(∫ β−τ1

0
dτ2 +

∫ β

β−τ1
dτ2

)
ei(ω2τ2+···+ωnτn)

×Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
, (A.7)

which is equivalent to
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∫ β−τ1

−τ1
dτn · · ·

∫ β−τ1

−τ1
dτ2e

i(ω2τ2+···+ωnτn)Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
=

∫ β

0
dτn · · ·

∫ β

0
dτ2e

i(ω2τ2+···+ωnτn)Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
.

Substituting this result back into (A.3), we �nally obtain our �nal result

C(ωn, · · · , ω1) = βδ0,ωn+···+ω1

∫ β

0
dτn · · ·

∫ β

0
dτ2e

i(ω2τ2+···+ωnτn)Tr
{
e−βĤ T̂

[
Ôn(τn) · · · Ô2(τ2)Ô1(0)

]}
(A.8)
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Consider a function f(x) which decays faster than |x|−1 as |x| → ∞ and whose only divergences are

simple poles located at ω±
i = ia±i with a+i > 0 and a−i < 0. Then

∞∑
n=−∞

f(
2π

β
n) =

∫ ∞

−∞
dω

∞∑
n=−∞

δ

(
ω − 2π

β
n

)
f(ω) =

β

2π

∞∑
n=−∞

∫ ∞

−∞
dωeiβωnf (ω)

=
β

2π

(
2πi

∑
i+

∞∑
n=0

e−βa
+
i nc+i − 2πi

∑
i−

−1∑
n=−∞

e−βa
−
i nc−i

)
, (B.1)

where we used the Poisson formula. The coe�cients c±i are the residues associated with the poles ω±
i .

The sum over n gives

∞∑
n=−∞

f

(
2π

β
n

)
= iβ

(∑
i+

c+i

1− e−βa
+
i

−
∑
i−

eβa
−
i c−i

1− eβa
−
i

)
(B.2)

= iβ
∑
i

ci
1− e−βai

. (B.3)

Here the index i labels all poles above and below the real line of the complex plane.

Below we show some very useful application of this formula

∞∑
n=−∞

1

ωn − iµ
= iβ

1

1− e−βµ
(B.4)

∞∑
n=−∞

1

(ωn − iµ) (ωn − iν)
= iβ

(
1

1− e−βµ
1

iµ− iν
+

1

1− e−βν
1

iν − iµ

)
= β

e−βµ − e−βν

(1− e−βµ) (1− e−βν) (µ− ν)

(B.5)
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∞∑
n=−∞

1

(ωn − iµ) (ωn − iν) (ωn − iη)
= iβ

(
1

1− e−βµ
1

(iµ− iν) (iµ− iη)

+
1

1− e−βν
1

(iν − iµ) (iν − iη)
+

1

1− e−βη
1

(iη − iµ) (iη − iν)

)
= iβ

[
1

(ν − µ) (ν − η)

(
1

1− e−βµ
− 1

1− e−βν

)
(B.6)

+
1

(η − ν) (η − µ)

(
1

1− e−βµ
− 1

1− e−βη

)]
In the cases where we have higher-order divergences, we can calculate the sums by taking derivatives

of functions with only single poles. Here are some examples

∞∑
n=−∞

1

(ωn − iµ)2
= −i∂µ

∞∑
n=−∞

1

ωn − iµ
= −β2 e−βµ

(1− e−βµ)
2 = β2

[
1

1− e−βµ
− 1

(1− e−βµ)
2

]
(B.7)

∞∑
n=−∞

1

(ωn − iµ)2 (ωn − iν)
= −i∂µ

∞∑
n=−∞

1

(ωn − iµ) (ωn − iν)

= iβ

[
e−βµ − e−βν

(µ− ν)2 (1− e−βµ) (1− e−βν)
+

βe−βµ

(µ− ν) (1− e−βµ)
2

]

∞∑
n=−∞

1

(ωn − iµ)3
=

−i
2
∂µ

∞∑
n=−∞

1

(ωn − iµ)2
= −iβ3

[
e−2βµ

(1− e−βµ)
3 +

e−βµ

2 (1− e−βµ)
2

]
(B.8)
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