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Abstract

Many-Body quantum systems are difficult to describe, due to their strong correlations in general. In the
field of fermionic ultracold quantum gases, a usual assumption beyond others is that one deals with dilute
weak interacting gases. In order to see if these beyond other approximations are still valid in the case
of the strong dipole-dipole interaction within two-dimensional systems, we are going to recapitulate the
Hartree-Fock equation starting from first principles. Then we will derive in the leading order for large
particle numbers the self-energy Σ(k,R) within Hartree-Fock approximation often used as a basic input for
the calculation of many-body physical quantities. Furthermore we will calculate this self-energy within the
semiclassical approximation commonly used in the field of ultracold quantum gases. Finally we compare both
approximations.





Selbstständigkeitserklärung

Hiermit versichere ich, die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer
als der angegebenen Hilfsmittel angefertigt zu haben. Die aus fremden Quellen direkt oder indirekt über-
nommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder im In- nochAusland
in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

(Ort, Datum) (Marek Xavier Schiffer)





Contents

1 Introduction 9
1.1 Introduction Ultracold Atomic Quantum Gases . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Experimental Breakthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Reaching Degeneracy for Fermi Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Dense Fermi Gases with Dipole-Dipole Interaction . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Motivation & Brief Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Mathematical Background 15
2.1 Grassmann Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Finite Dimensional Grassmann Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Infinite Dimensional Grassmann Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Fermionic Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Fermionic Coherent State Path Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 Derivation of the Free Partition Function with the Path Integral . . . . . . . . . . . . 52
2.2.2 Derivation of the Free Green Function with the Path Integral . . . . . . . . . . . . . . 57

2.3 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.1 Feynman Rules for the Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.2 Feynman Rules for the Interacting Green Function . . . . . . . . . . . . . . . . . . . . 65

2.4 Derivation of Dyson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.4.1 Hartree-Fock Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Ultracold Fermions in a Homogeneous System 75
3.1 Dipolar Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.1.1 Dipolar Interaction Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.2 Dipole-Dipole Interaction for Parallel Dipoles in Three Dimensions . . . . . . . . . . . 78
3.1.3 Dipole-Dipole Interaction for Parallel Dipoles in Two Dimensions . . . . . . . . . . . . 79

3.2 Fourier Transformation for Dipole-Dipole and Coulomb Interaction . . . . . . . . . . . . . . . 79
3.2.1 Fourier Transformation of the Three-Dimensional Dipole-Dipole Interaction . . . . . . 80
3.2.2 Fourier Transformation for Two-Dimensional Dipole-Dipole Interaction . . . . . . . . . 82
3.2.3 Fourier Transformation for Three-Dimensional Coulomb Interaction . . . . . . . . . . . 85
3.2.4 Fourier Transformation for Two-Dimensional Coulomb Interaction . . . . . . . . . . . 85

3.3 Self-Energy Derivation for a Homogeneous System . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.1 For Dipole-Dipole Interaction in Three Dimensions . . . . . . . . . . . . . . . . . . . . 86
3.3.2 For Dipole-Dipole Interaction in Two Dimensions . . . . . . . . . . . . . . . . . . . . . 92
3.3.3 For Coulomb interaction in Three-Dimensions . . . . . . . . . . . . . . . . . . . . . . . 99
3.3.4 For Coulomb interaction in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 101

7



CONTENTS

4 Two-Dimensional Fermi Gas within a Harmonic Trap 103
4.1 Large N Approximation for the Hartree-Fock Self-Energy . . . . . . . . . . . . . . . . . . . . 104

4.1.1 Derivation of the Hartree Self-Energy for Large Particle Numbers . . . . . . . . . . . . 106
4.1.2 Derivation of the Fock Self-Energy for Large Particle Numbers . . . . . . . . . . . . . 110

4.2 Semiclassical Approximation for the Hartree-Fock Self-Energy . . . . . . . . . . . . . . . . . . 115
4.2.1 Semiclassical Derivation of the Hartree Self-Energy . . . . . . . . . . . . . . . . . . . . 116
4.2.2 Semiclassical Derivation of the Fock Self-Energy . . . . . . . . . . . . . . . . . . . . . 117
4.2.3 Determination of Chemical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Discussion of the Hartree Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.2 Discussion of the Fock Self-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Summary and Outlook 125
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Bibliography 129

7 Acknowledgements 133

Appendices 135

A Saddle Point Approximation for n Integration 137

B Baker-Campbell-Hausdorff Formula 139

C Gauss Integrals 145

D Solving Differential Equation for Free Green Function 149

8



Chapter 1

Introduction

1.1 Introduction Ultracold Atomic Quantum Gases

Figure 1.1: A schematic overview on the transition from a classical gas at high temperatures to a Bose-Einstein
condensate below a critical temperature. Made and popularized by Wolfgang Ketterle. [1]

The field of ultracold quantum gases investigates the behavior of atomic gases below a certain temperature,
called the critical temperature, where the quantum mechanical nature of the considered particles takes effect.
Before we engage ourselves deeper with the interesting physical phenomena at low temperatures, we will give a
short outline of the history of ultracold quantum gases, which starts with two groundbreaking discoveries. The
experimental discovery of superfluidity in liquid Helium 4He in 1938 by Pyotar Kapitza [2], John Allen and
Don Misener [3] portrait a stunning demonstration, that in order to describe this directly visual observable
phenomenon classical physics was not sufficient. In the same year Fritz London [4] suggested that the
transition between liquid He I and liquid He II might be the result of the same process which causes Bose-
Einstein condensation, which again was proposed by Albert Einstein in 1925 in his two succeeding papers [5,6]
and takes the part of the first groundbreaking discovery.

Based on Satyendra Nath Bose’s new derivation of Max Planck’s black body radiation formula [7] using
only the assumption to split the phase space in quanta of !ν, Einstein expanded the model in his paper [6] to
particles with non vanishing rest mass and elaborated on the idea in the following year, where he made the
stunning proposal that by compressing the gas and therefore increasing the density to a given temperature,
a large number of particles would condense in the ground state.

Although this statement doesn’t seem too remarkable from a modern point of view, since alone due to
the Heisenberg uncertainty principle δx δp ≥ !

2 and the thermodynamic estimate δp ∝
√
mkBT one has the

relation δx ≥ !
2
√
mkBT

and the de’Broglie wavelength λdB would increase with lowering the temperature, it
was very groundbreaking for that time. See also Figure 1.1.
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CHAPTER 1. INTRODUCTION

Maybe just as remarkable as the idea of Bose-Einstein condensation was the idea of applying the concept
to liquid Helium, since Einstein’s derivation was made for an ideal gas which has no interaction, while liquid
Helium, on the contrary, possess strong interaction. Not surprisingly London’s idea was at first dismissed
and replaced by Lev Davidovich Landau’s two fluid model [8, 9]. For his contributions to condensate matter
physics and especially the explanation of liquid Helium, Landau later received the Nobel Prize in physics
in 1962. Contrary to London’s idea of connecting superfluidity with Bose-Einstein condensation, Landau’s
model had no such connection.

During 1953 and 1958 Richard P. Feynman provided several papers on liquid Helium and superfluidity
[10–12] supporting Landau’s theory from first principles and supporting London’s idea that, the superfluidity
could indeed be based on the same process as Bose-Einstein condensation. A theoretical proof that Bose-
Einstein condensation does indeed occur in liquid Helium was then given by Onsager and Penorose [13].

1.2 Experimental Breakthrough

While liquid Helium provided a natural substance to investigate superfluidity due to the fairly easily accessible
transition to quantum degeneracy at 2.172K. The experimental progress was pushed forward by the illusive
goal of reaching Bose-Einstein condensation. The first big step towards this goal was the invention of laser
cooling, which was proposed by Theodor Hänch in 1975 and finally realized by Steven Chu [14] in 1985.
The main principle is to shine lasers from several directions on a cloud of atoms, where the lasers have to
be chosen in such a way, that the frequency is slightly below the excitation frequency of the atoms. If an
atom now moves towards the laser it sees the laser light red shifted due to the Doppler shift, while it sees
the laser coming from behind blue shifted. As a consequence the atom will only absorb a photon if it moves
towards it. After the absorption of the photon, the atom will be exited and shortly afterwards emits again a
photon. But since the direction of this emission is randomly given, the atoms will eventually cool down. This
cooling process however has a natural limit, since the photons have a finite momenta, there exists a certain
temperature, where the atoms will be accelerated by the momenta of the photons and end up jiggling around.
The natural limit of laser cooling lies around 1µK and in order to achieve Bose-Einstein condensation a
second cooling process was needed.

Once the limit of laser cooling is reached the second mechanism called evaporative cooling comes into play.
By applying a magnetic or optical trap the atoms will be held into place. Driven by the collisions between
the atoms the most energetic atoms will leave the trapping potential and the remaining atoms can then
rethermalize, consequently lowering the temperature of the system. Once the critical temperature Tc ∼ nK,
is reached the phenomena of Bose-Einstein condensation was observed.

By combining this two cooling mechanisms the groups of Eric Cornell and Carl Wiemann as well as
Wolfgang Ketterle archived almost simultaneously the first experimental realized Bose-Einstein condensate
back in 1995 [15,16]. All three gained the Nobel Prize in physics 2001. After the discovery in 1995 the field
of ultracold atoms raised dramatically.

1.3 Reaching Degeneracy for Fermi Gases

Once the goal of realizing Bose-Einstein condensation was archived it was the obvious step to work towards
degeneracy of ultracold Fermi gases. However the cooling mechanism for bosons were not appropriate for
cooling down fermions, hence as just described collisions between the atoms are a fundamental part of
evaporative cooling. It took 4 years, to overcome some of the difficulties and in 1999 the group of Deborah
Jin finally succeeded using 40K [17]. The novelty here was to trap two different spin states of 40K, so
that collision was again possible. This mechanism is now called sympathetic cooling. Sympathetic cooling
describes the process of cooling down two species of fermions with distinguishable atoms or in different spin
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states, since then s-wave collisions are again possible and evaporative cooling can be applied. The experiment
had then to be performed in such a way, that the two spin state populations are in balance.

The next step considering fermions was now to not only cool down atoms but molecules composed of two
fermionic atoms. This goal was reached within a short time frame in the year 2004 by the groups of JILA
again using 40K [18] and among others by the group of Wolfgang Ketterle at MIT using 6Li [19].

Figure 1.2: Difference of the momentum distribution of a bosonic 7Li (left) and a fermionic 6Li (right) at
different temperatures due to the Fermi pressure in a dilute gas measured by Ref. [20]

Although the desired goal of superfluidity was not reached yet it was obvious that the degeneracy was
archived. Especially interesting was the comparison of 7Li and 6Li, were the difference of the bosonic to the
fermionic cloud could be observed by sheer comparison of the size difference caused by the Fermi pressure
see Figure 1.2. We should stress the fact that all descriptions up to this point are exclusively done for dilute
Fermi gases. The degeneracy is therefore only caused by the quantum nature of the system and not due to
the interaction. In dilute quantum gases the distance between the atoms are normally large enough to neglect
interactions other than contact interaction.

1.4 Dense Fermi Gases with Dipole-Dipole Interaction

The consideration of dense gases, which include long-range interaction such as the dipole-dipole interaction
opens up new possibilities, especially due to the anisotropic nature of the interaction. Particularly interesting
is the fact, that one can change the interaction from attractive to repulsive simply by adjusting an electric
field relative to the trapping potential. Alone due to that reason one can hope to find new physics.

While Bose gases with dipolar interaction have been studied experimentally [21], the realization of a
degenerated Fermi gas was much more difficult due to the forbidden s-wave scattering embedded by the
Pauli-exclusion principle, which makes the magnetic dipole-dipole interaction difficult to observe [22].

The first experimental realization of a spin-polarized degenerated dipolar Fermi gas was accomplished by
M. Lu [23]. With the help of sympathetic cooling, a mixture consisting of 161Dy and the bosonic isotop 162Dy
were cooled down to T/TF ∼ 0.2.

The magnetic moment of atoms is still very small to fully appreciate the influences of the dipole-dipole
interaction and for that matter the recent goal has more changed to cooling down diatomic molecules. The
electric dipole-dipole interaction is of a magnitude 104 higher than the magnetic dipole-dipole moment. The
cooling of such diatomic molecules again provide great difficulties for the experimentalists and two main
strategies have been developed in order to overcome the same. The first problem consists of the enormous
number of quantum states a diatomic molecule possesses, which makes it difficult to get the atom really
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in the rovibrational ground state. The strategy which lead to success was to first cool down atoms and
then coherently convert them to ground state molecules at low temperatures without heating the sample.
Mainly this is done by the use of Feshbach resonance to switch the interaction after the cooling process from
repulsive to attractive. In order to further lower the so created molecules, which at first are in a highly excited
vibrational state into the rovibrational ground state one uses lasers to stimulate emission of the electronic
states with appropriate lasers.

The second problem comes with the fact that most considered diatomic molecules such as the considered
KRb+KRb → K2 + Rb2 are highly chemical reactive [24, 25]. As has been shown by Miranda et all [26]
these chemical reactions can be significantly suppressed, if one confines the system of molecules in a quasi
two-dimensional plane in such a way, that the dipole moments are perpendicular to the confining potential
making the two-dimensional consideration of such systems not only interesting in regards of finding new
physics moreover necessary to investigate such molecules. Nevertheless the new possibilities due to this
confinement shouldn’t be underestimated, since both the quantum and interaction effects are stronger in the
case of two dimensions compared to three dimensions [27]. Experimentally the first two-dimensional Fermi
gas within a harmonic trap was realized in 2010 by Martiyanov et al. [28]

One way to compare the theoretical results with experiments is by measuring the collective oscillations of
the trapped sample in response to perturbations of the trapping potential. These oscillations then form the
collective oscillations of the system [29]. As mentioned by Mehrtash Babadi and Eugene Demler the mea-
surement of the frequency and the damping of these animations can be utilized to understand the properties
of the ground state and to gain informations about self-energy corrections. [29]

1.5 Theoretical Description

While early phenomenological investigations of ultracold atoms such as the previously mentioned of Einstein
and Landau, were very fruitful, a modern description has to be founded in the theoretical framework of
quantum mechanics. In contrast to ultracold bosons being in the Bose condensate phase, which are described
by a macroscopical wave function of one coordinate in position space, ultracold fermions have to be described
by a quantum mechanical wave function depending on each coordinate of the particles. In order to obtain this
wave function one can often use as the simplest approximation the Hartree-Fock method. Solving Hartree-
Fock equations self-consistently, like done within the description of molecules, is at the present time not
possible for a sample of ultracold atoms due to the sheer number of atoms. Within ultracold samples, one
can distinguish between a collisionless regime, where the mean free path of the atoms is larger than the size of
the sample and the hydrodynamic regime, where the mean free path of the atoms is smaller than the size of
the sample. From a theoretical point of view interactions are considered negligibly weak or suppressed within
the collisionless limit; while in the hydrodynamic limit the Fermi gas is supposed to be in the superfluid
phase or at least a strongly interacting Fermi liquid. In three dimensions and for dipolar interaction these
two regimes have been investigated by Sogo et al. [30] for the collisionless regime and by Lima et al. [31, 32]
in the hydrodynamic regime.

Therefore Sogo et al. started from the Hartree Fock approximation and used a semiclassical approach by
using a variational ansatz for the Wigner distribution, based on the Thomas-Fermi or local density approxi-
mation. Both approximations are used synonymously and assume that the local Fermi surface has the same
form at each spatial point as in the homogeneous case [30]. While starting from a Hartree-Fock approxima-
tion and switching to the Wigner representation, one can derive the collisionless Boltzmann-Vlasov equation.
Roughly speaking the difference to the collisional Boltzmann-Vlasov equation consists of an inhomogeneous
term, called the collision integral in the differential equation. Before discussing the Boltzmann-Vlasov equa-
tion a little deeper, we mention the path taken by Lima et al. to describe the hydrodynamic regime. They
used a variational approach to extremize the Hartree-Fock action with respect to a velocity potential as well
as the time-even Wigner function. In order to implement this variational approach they restrict their
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search to a velocity potential of a harmonic form and a time-even Wigner function within the local density
approximation with a deformed Fermi surface. By doing so they arrive at equations which describe the
static as well as the dynamic properties of a polarized dipolar Fermi gas. In a more recent work Babadi
et al. [29] started to investigated the intermediate region within a two-dimensional system, between the
collisionless and hydrodynamic limit by using the collisional Boltzmann-Vlasov equation, which considers the
collisional regime and makes therefore no prior assumptions of being in the collisionless or hydrodynamic
regime. As mentioned before and pointed out in [29], the Boltzmann-Vlasov equation can be viewed as
a generalization of the classical Boltzmann transport equation by including Pauli exclusion effects in the
collision integral and self-energy corrections to the quasiparticle dispersion. While their main goal is to study
oscillation frequencies and damping of the generated collective excitations, they also consider self-energy
corrections and find that the inclusion yields to significant corrections in the quantum degenerate regime.
They consider the self-energy within the local density approximation, after correctly stating, that non-local
Hartree contributions are neglectable. They then use the self-energy functional within a numerical calculation
to obtain a equilibrium solution for the Boltzmann-Vlasov equation. Finally we note here that just recently
a similar calculation has been carried out in three-dimensions be Wächtler et al. [33].

1.5.1 Motivation & Brief Overview

The importance of the self-energy corrections pointed out by [29] give reason to analyse the approximations
needed to determine the self-energy. This is especially true for the dipole-dipole interaction which is rather
strong at low distances, compared to the known Coulomb interaction. The confinement to two dimensions
additionally increases this ultraviolet divergence behaviour. For this it is not a priori clear that standard
assumptions within the field of ultracold quantum gases such as the local density approximation are still valid
and what kind of approximations are needed in order to obtain a valid approximation for the electronic self-
energy. In the following we restrict our investigation for the self-energy to the two-dimensional dipolar Fermi
gas in a harmonic trap. We will thereby compare the standard semiclassical approach to the self-energy with
a systematically calculated self-energy for large particle numbers. Both approaches are calculated within the
Hartree-Fock approximation. Due to the anisotropy of the dipole-dipole interaction, there exist stable and
unstable configurations. As we will see the semiclassical approximation describes the self-energy behaviour
well for stable configurations, with increasing deviations for particles away of the center of the trap. The two
approximations differs enormously for unstable dipole-dipole configurations.

The Thesis is structured as follows:
In chapter two we use a field theoretical description of the system by using the path integral formulation.
To maintain the Pauli exclusion principle the use of Grassmann numbers is necessary. Therefore we start
in section one with a detailed introduction to Grassmann algebras, where we develop some new notations
in order to deal not only with Grassmann functions but also with Grassmann functionals. Then we follow
the descriptions of [34] to introduce fermionic coherent states. Having worked out all the necessary tools, we
further proceed in section two by introducing the fermionic coherent state path integral and derive formulas
for the partition function as well as the free Green function. In order to deal with the dipole-dipole interaction
we will use a perturbation theory approach. Therefore we review in section three briefly the Feynman rules
for the partition function, with which we then derive the Feynman rules for the interacting Green function.
Finally in section four we derive Dyson’s equation from which we then obtain our Hartree-Fock equations.
Chapter three starts with a detailed discussion of the dipole-dipole interaction. We derive the interaction
behaviour and discuss the dipole-dipole interaction for three and two dimensions. Section two is devoted to
deriving the Fourier transformations in preparation to describe the homogeneous system. In section three
we then investigate the homogeneous three- and two-dimensional Fermi gas with dipolar interaction. This
investigations have previously carried out in [35]. To see further differences between two and three dimensions,
we compare our results with the corresponding Jellium systems. In chapter four we then calculate based on
the previously derived Hartree-Fock equations systematically in large particle numbers the self-energy within
a harmonic trap. In addition we calculate the same quantity in the semiclassical approximation and finally
compare the results.
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Chapter 2

Mathematical Background

"Since then I never pay any attention to
anything by "experts." I calculate everything
myself."

Richard P. Feynman [36]

2.1 Grassmann Algebra

We are going to discuss a fermionic system within the framework of the fermionic coherent state path integral.
In order to do so one needs Grassmann algebra to maintain the Pauli exclusion principle, when dealing with
fields instead of operators. In this chapter we will give an introduction to Grassmann algebra and elaborate
all necessary calculation rules in order to derive the path integral and later the Dyson equation for fermionic
functionals, which are consequently functionals of Grassmann functions. We will first start with the discrete
Grassmann algebra, and then proceed to a Grassmann algebra of infinite dimensions.

2.1.1 Finite Dimensional Grassmann Algebra

One introduces a finite dimensional Grassmann algebra U over a body K. K being either R or C, with the two
operations · : A×A −→ A; (ηi, ηj) −→ ηi ·ηj which is associative and anticommutative and + : A×A −→ A;
(ηi, ηj) −→ ηi + ηj which is associative and commutative. Further, the following distribution law holds

(η1 + η2)η3 = η1η3 + η2η3 ,

η1(η2 + η3) = η1η2 + η1η3 ,

λ(η1η2) = (λη1)η2 = η1(λη2) . (2.1.1)

The anticommutative property is mostly written as

ηiηj = −ηiηj ⇐⇒ ηiηj + ηjηi = 0 ⇐⇒ {ηi, ηj} = 0 . (2.1.2)

Here {•, •} is the anticommutator. One particular important property due to this relation is

η2k = 0 ∀k . (2.1.3)

A finite dimensional Grassmann algebra can be build from n such elements called generators {ηk} k = 1, . . . , n.
Due to the property (2.1.3), all elements of the algebra can then be expressed with a linear combination of
these generators

{1, ηλ1 , ηλ1ηλ2 , . . . , ηλ1ηλ2 · . . . · ηλn} . (2.1.4)
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Where we have 0 < ηk ≤ n and that the elements are by convention ordered as λ1 < λ2 < . . . < λn. Since
η2k = 0 no element of the higher products contains more than one ηk. Any element of the n-dimensional
Grassmann algebra can now be expressed as

f = f0 +
∑

p1

fp1η1 +
∑

p1<p2

fp1p2η1η2 + . . .+
∑

p1<p2<...<pn

fp1p2...pnηp1ηp2 . . . ηpn . (2.1.5)

The coefficients are complex numbers fk ∈ C or complex functions, in which case f is a function of the gener-
ators and a complex variable. We will therefore refer to objects of the form (2.1.5) as Grassmann functions.
In order to operate with Grassmann functions it is necessary to define analog operations to differentiation
and integration for Grassmann functions.

Definition: Differentiation with respect to Grassmann Variables

Differentiation with respect to a Grassmann variable (generator) is defined as

d

dηj
ηλ1ηλ2 . . . ηλn = δjλ1ηλ2 · . . . · ηλn − δjλ2ηλ1ηλ3 · . . . · ηλn

+ . . .+ (−1)n−1δjλnηλ1ηλ2 . . . ηλn−1 . (2.1.6)

Specifically the derivative is a left sided derivative. In essence one has to anticommute the variable to the
left and apply the rules

d

dηi
1 = 0

d

dηi
ηj = δij . (2.1.7)

Before we proceed to evaluate the derivation rules for Grassmann functions, we need to derive some peculiar
properties of Grassmann generators.

1 Every even number of Grassmann numbers commute with another even number of Grassmann numbers.

[η1η2 . . . η2n, ξ1ξ2 . . . ξ2k] = 0 . (2.1.8)

2 Any even number of Grassmann numbers commute with any odd number of Grassmann numbers.

[η1η2 . . . η2n, ξ1ξ2 . . . ξ2k+1] = 0 . (2.1.9)

3 Any odd number of Grassmann numbers anticommutes with any odd number of Grassmann numbers.

{η1η2 . . . η2n+1, ξ1ξ2 . . . ξ2k+1} = 0 . (2.1.10)

Proof of [ξ1ξ2 . . . ξ2n, η] = 0

First we note that any even number of Grassmann numbers commute with another Grassmann number. This
can easily be seen via induction. First we show

[η1η2, ξ] = η1η2ξ − ξη1η2

= −η1ξη2 − ξη1η2

= ξη1η2 − ξη1η2

= 0 . (2.1.11)
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Now we assume

[η1η2 . . . η2n, ξ] = 0, (2.1.12)

then the induction step reads

[η1η2 . . . η2n+2, ξ] = η1η2 . . . η2nη2n+1η2n+2ξ − ξη1η2 . . . η2nη2n+1η2n+2

= −η1η2 . . . η2nη2n+1ξη2n+2 − ξη1η2 . . . η2nη2n+1η2n+2

= η1η2 . . . η2nξη2n+1η2n+2 − ξη1η2 . . . η2nη2n+1η2n+2

= (η1η2 . . . η2nξ − ξη1η2 . . . η2n) η2n+1η2n+2

= [η1η2 . . . η2n, ξ]︸ ︷︷ ︸
=0 I.H

η2n+1η2n+2

= 0 . (2.1.13)

Proof of [η1η2 . . . η2n, ξ1ξ2 . . . ξk] = 0

Next we verify that an arbitrary number of even Grassmann numbers commute with any other number of
Grassmann numbers. Here and in the following proofs, we leave out the initial step as it is trivial. We are
going to do the induction over k. I.e. the induction hypothesis holds true for

[η1η2 . . . η2n, ξ1ξ2 . . . ξk] = 0 (2.1.14)

and conclude

[η1η2 . . . η2n, ξ1ξ2 . . . ξk+1] = η1η2 . . . η2nξ1ξ2 . . . ξk+1 − ξ1ξ2 . . . ξk+1η1η2 . . . η2n

= η1η2 . . . η2nξ1ξ2 . . . ξk+1 − ξ1ξ2 . . . ξkξk+1η1η2 . . . η2n

= η1η2 . . . η2nξ1ξ2 . . . ξk+1 − ξ1ξ2 . . . ξkη1η2 . . . η2nξk+1

= (η1η2 . . . η2nξ1ξ2 . . . ξk − ξ1ξ2 . . . ξkη1η2 . . . η2n) ξk+1

= [η1η2 . . . η2n, ξ1ξ2 . . . ξk]︸ ︷︷ ︸
=0 I.H

ξk+1 = 0 . (2.1.15)

Proof of {η1η2 . . . η2n+1, ξ1ξ2 . . . ξ2k+1} = 0

Next we will verify that two arbitrary odd numbers of Grassmann numbers anticommute. So first we have to
verify that one Grassmann number anticommute with an odd number of Grassmann variables, so we assume

{η1η2 . . . η2n+1, ξ} = 0 , (2.1.16)

then we get immediately

{η1η2 . . . η2k+3, ξ} = η1η2 . . . η2k+3ξ + ξη1η2 . . . η2k+3

= η1η2 . . . η2k+1η2k+2η2k+3ξ + ξη1η2 . . . η2k+3

= η1η2 . . . η2k+1ξη2k+2η2k+3 + ξη1η2 . . . η2k+3

= (η1η2 . . . η2k+1ξ + ξη1η2 . . . η2k+1) η2k+2η2k+3

= {η1η2 . . . η2k+1, ξ}︸ ︷︷ ︸
=0 I.H.

η2k+2η2k+3 = 0 . (2.1.17)

Now we are ready to do the next induction for an arbitrary n > 0 and do the induction over k. We assume

{η1η2 . . . η2n+1, ξ1ξ2 . . . ξ2k+1} = 0 , (2.1.18)

17



CHAPTER 2. MATHEMATICAL BACKGROUND

and do the induction

{η1η2 . . . η2n+1, ξ1ξ2 . . . ξ2k+3} = η1η2 . . . η2n+1ξ1ξ2 . . . ξ2k+3 + ξ1ξ2 . . . ξ2k+3η1η2 . . . η2n+1

= η1η2 . . . η2n+1ξ1ξ2 . . . ξ2k+3 + ξ1ξ2 . . . ξ2k+1ξ2k+2ξ2k+3η1η2 . . . η2n+1

= η1η2 . . . η2n+1ξ1ξ2 . . . ξ2k+3 + ξ1ξ2 . . . ξ2k+1η1η2 . . . η2n+1ξ2k+2ξ2k+3

= (η1η2 . . . η2n+1ξ1ξ2 . . . ξ2k+1 + ξ1ξ2 . . . ξ2k+1η1η2 . . . η2n+1) ξ2k+2ξ2k+3

= {η1η2 . . . η2n+1, ξ1ξ2 . . . ξ2k+1}︸ ︷︷ ︸
=0 I.H.

ξ2k+2ξ2k+3 . (2.1.19)

We can now summarize the results as

[even, even] = 0 [even, odd] = 0 {odd, odd} = 0 . (2.1.20)

With this properties, it is clear from (2.1.5) that two arbitrary Grassmann functions do not commute. So in
general we have

[f(η), g(η)] -= 0 . (2.1.21)

This leads immediately to the definition of even and odd Grassmann functions. Naturally they are given by

f+(η) := f0 +
∑

p1<p2

fp1p2ηp1ηp2 +
∑

p1<p2<p3<p4

fp1p2p3p4ηp1ηp2ηp3ηp4 + . . . +
∑

p1<p2<...<p2n

fp1p2...p2nηp1ηp2 . . . ηp2n ,

f−(η) := f0 +
∑

p1

fp1 +
∑

p1<p2<p3

fp1p2p3ηp1ηp2ηp3 + . . .+
∑

p1<p2<...p2n+1

fp1p2...p2n+1ηp1ηp2 . . . ηp2n+1 , (2.1.22)

respectively. Another form to characterize the element of a Grassmann algebra is by introducing an auto-
morphism P, which acts as a parity operator

P (ηλ1 . . . ηλn) = (−1)nηλ1 . . . ηλn . (2.1.23)

So, for an even function one has P (f+) = f+ and for an odd function one has P (f−) = −f−. Now all the
elements of the algebra U can be expressed by an even and an odd part of the algebra. The even parts of
the algebra will be called U+ the odd parts of the algebra will be denoted by U−. We will now write even
functions as f+ and odd functions as f−. From the properties (2.1.8),(2.1.9),(2.1.10) it immediately follows:

[
f+, g+

]
= 0 ,

[
f+, g−

]
= 0 ,

[
f−, g−

]
-= 0 ,

[
f, g+

]
= 0 ,

[
f, g−

]
-= 0 . (2.1.24)

At this point we are ready to introduce some differentiation rules for Grassmann functions. First we note
from formula (2.1.5), that with respect to any variable ηk we can write a Grassmann function as

f(ηk) = f+
1 + f−

1 + ηk(f
+
2 + f−

2 ) . (2.1.25)

We translate the above given commutator relations to

[even, even] = 0 ⇔ [f+
i , f+

j ] = 0 ,

[even, odd ] = 0 ⇔ [f+
i , f−

j ] = 0 ,

{odd, odd} = 0 ⇔
{
f−
i , f−

j

}
= 0 . (2.1.26)

Now we take two arbitrary functions and write them with respect to ηk as

f = f+
1 + f−

1 + η
(
f+
2 + f−

2

)

g = g+1 + g−1 + η
(
g+2 + g−2

)
, (2.1.27)
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where we have now simply written η instead of ηk. Now we can simply form the product

fg = f+
1 g+1 + f+

1 g−1 + f+
1 η(g+2 + g−2 ) + f−

1 g+1 + f−
1 g−1 + f−

1 η(g+2 + g−2 )

+ η(f+
2 + f−

2 )g+1 + η(f+
2 + f−

2 )g−1 + η(f+
2 + f−

2 )η(g+2 + g−2 )

= f+
1 g+1 + f+

1 g−1 + ηf+
1 (g+2 + g−2 ) + f−

1 g+1 + f−
1 g−1 − ηf−

1 (g+2 + g−2 )

+ η(f+
2 + f−

2 )g+1 + η(f+
2 + f−

2 )g−1 + η2(f+
2 − f−

1 )(g+2 + g−2 ) , (2.1.28)

and differentiate (2.1.28) as follows

∂(fg)

∂η
= f+

1 (g+2 + g−2 )− f−
1 (g+2 + g−2 ) + (f+

2 + f−
2 )g+1 + (f+

2 + f−
2 )g−1

= (f+
1 − f−

1 )(g+2 + g−2 ) + (f+
2 + f−

2 )(g+1 + g−1 )

=
[
f+
1 − f−

1 − η(f+
2 − f−

2 ) + η(f+
2 − f−

2 )
]
(g+2 + g−2 ) + (f+

2 + f−
2 )(g+1 + g−1 )

=
[
f+
1 − f−

1 − η(f+
2 − f−

2 )
]
(g+2 + g−2 ) + η(f+

2 − f−
2 )(g+2 + g−2 ) + (f+

2 + f−
2 )(g+1 + g−1 )

=
[
f+
1 − f−

1 − η(f+
2 − f−

2 )
]
(g+2 + g−2 ) + (f+

2 + f−
2 )η(g+2 + g−2 ) + (f+

2 + f−
2 )(g+1 + g−1 )

=
[
f+
1 − f−

1 − η(f+
2 − f−

2 )
]
(g+2 + g−2 ) + (f+

2 + f−
2 )[g+1 + g−1 + η

(
g+2 + g−2

)
]

= P (f)
∂g

∂η
+

∂f

∂η
g . (2.1.29)

In the last step we use the parity operator (2.1.23) on (2.1.25)

P (f) = f+
1 − f−

1 − η(f+
2 − f−

2 ) . (2.1.30)

Next we are going to need the chain rule. The chain rule for Grassmann functions seems to be omitted in the
literature. It is one mentioned in [37], however this chain rule seems to be limited to one dimension1. In the
standard introduction to Grassmann algebra from F.A. Berezin [38], there are also given just two examples
of the chain rule for Grassmann functions. Here we present two chain rules for Grassmann functions, one
combining Grassmann functions with analytic functions and one for actually chaining Grassmann functions.
We start with the definition and the proof of the discrete Grassmann chain rule with an analytic function.

Chain Rule for an Analytic Function and a Grassmann Function

If we have an analytic function f : C → C and a Grassmann function g : U− → U+, η → g(η), the following
chain rule holds true

∂

∂η
f(g(η)) =

∂g

∂ξ

∂f

∂g

∣∣∣∣
ξ=0

. (2.1.31)

Proof

First we note that any analytic function can be expressed with the Laurent series

f(z) =
∞∑

n=0

cn(z − z0)
n , UR(z0) ≤ ∞ . (2.1.32)

1The chain rule is given as ∂A
∂η = ∂f

∂η
∂A
∂f + ∂g

∂η
∂A
∂g where g is an even and f an odd function of η. Here A ≡ A(f, g). This chain

rule can be proven by assuming A has the following form A = a+
1 +a−

1 +g
(
a+
2 + a−

2

)
+f

(
a+
3 + a−

3

)
. However not all Grassmann

functions follow this form.
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The definition of chaining the analytic function and the Grassmann function is given via the Laurent expan-
sion. With the above introduced notation we can write g : U− → U+ in the form: g = g+1 + η g−2 . Obviously
then we have

P (g) = g+1 + (−η)(−g−2 ) = g+1 + ηg−2 = g =⇒ g ∈ U+ . (2.1.33)
First we observe

(
g+1 + ηg−2

)2
=

(
g+1 + ηg−2

) (
g+1 + ηg−2

)
=

(
g+1

)2
+ g+1 ηg

−
2 + ηg−2 g

+
1

=
(
g+1

)2
+ ηg−2 g

+
1 + ηg−2 g

+
1

=
(
g+1

)2
+ 2ηg−2 g

+
1

(
g+1 + ηg−2

)3
=

(
g+1 + ηg−2

) [(
g+1

)2
+ 2ηg−2 g

+
1

]

=
(
g+1

)3
+ 2g+1 ηg

−
2 g

+
1 + ηg−2 (g

+
1 )

2

=
(
g+1

)3
+ 2ηg−2 (g

+
1 )

2 + ηg−2 (g
+
1 )

2

=
(
g+1

)3
+ 3ηg−2 (g

+
1 )

2

...
(
g+1 + ηg−2

)n
= (g+1 )

n + n ηg−2 (g
+
1 )

n−1 , (2.1.34)

and look at

f(g) =
∞∑

n=0

cng
n =

∞∑

n=0

cn
(
g+1 + ηg−2

)n

=
∞∑

n=0

cn
[
(g+1 )

n + nηg−2 (g
+
1 )

n−1
]

=
∞∑

n=0

cn(g
+
1 )

n +
∞∑

n=0

cnnηg
−
2 (g

+
1 )

n−1 , (2.1.35)

then we have
∂f(g)

∂η
=

∞∑

n=0

cnng
−
2 (g

+
1 )

n−1

= g−2

∞∑

n=0

cnn(g
+
1 )

n−1 =
∂g

∂η

∞∑

n=0

cn
∂

∂g
gn

∣∣∣∣
η=0

=
∂g

∂η

∂

∂g

∞∑

n=0

cng
n =

∂g

∂η

∂f

∂g

∣∣∣∣
η=0

.

Here we have used
∂

∂g
gn

∣∣∣∣
η=0

ngn−1

∣∣∣∣
η=0

= n
(
g+1 + ηg−2

)n−1
∣∣∣∣
η=0

= n(g+1 )
n−1

and
∂g

∂η
=

∂

∂η

(
g+1 + ηg−2

)
= g−2 . (2.1.36)

The same chain rule doesn’t hold true for odd Grassmann functions of the form g : U− → U−. Which can
easily be seen by a counter example. However a very similar chain rule can be shown for this type of functions.

The last chain rule is (2.1.31) in contrast to the following chain rule, which only holds true for functions
of the form g : U− → U−.
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2.1. GRASSMANN ALGEBRA

Chain Rule for Two Grassmann Functions

Be F an arbitrary Grassmann function. That is we don’t make any restrictions for F to be even or odd.
Further be η1, . . . , ηn odd Grassmann functions: ηk ∈ U− then we have

∂

∂ξ
F (η1(ξ)η2(ξ), . . . ηn(ξ)) =

∑

k

∂ηk
∂ξ

∂F

∂ηk

∣∣∣∣
ξ=0

. (2.1.37)

Proof

Each ηk depends on ξ1, . . . , ξn. For each ξ$ we can write ηk(ξ$) = u−1k + ξ$u
+
2k. We are now going to write ξ

for our specific selected ξ$. Then we can write for any product

n∏

$=1

ηp# =
n∏

$=1

u−1p# + (−1)n−1ξ
1∑

k=n

(−1)n+2−k
n∏

$=1
# "=k

u−1p#u
+
2pk

=
n∏

$=1

u−1p# + ξ
1∑

k=n

(−1)2n+1−k
n∏

$=1
# "=k

u−1p#u
+
2pk

. (2.1.38)

Now let us look at an arbitrary function f for an odd transformation.

f = f0 +
∑

p1

fp1ηp1 +
∑

p1<p2

fp1p2ηp1ηp2 +
∑

p1<p2<p3

fp1p2p3ηp1ηp2ηp3

+ . . . +
∑

p1<p2<...<pn

fp1p2 . . . pnηp1ηp2 . . . ηpn

= f0 +
∑

p1

fp1(u
−
1p1 + ξu+2p1) +

∑

p1<p2

fp1p2




2∏

$=1

u−1p# + ξ
1∑

k=2

(−1)5−k
2∏

$=1
# "=k

u−1p#u
+
2pk





+
∑

p1<p2<p3




3∏

$=1

u−1p# + ξ
1∑

k=3

(−1)7−k
3∏

$=1
# "=k

u−1p#u
+
2pk





+ . . . +
∑

p1<p2<...<pn




n∏

$=1

u−1p# + ξ
1∑

k=n

(−1)2n+1−k
n∏

$=1
# "=k

u−1p#u
+
2pk





= ξ




∑

p1

fp1u
+
2p1 +

∑

p1<p2

fp1p2

1∑

k=2

(−1)5−k
2∏

$=1
# "=k

u−1p#u
+
2pk

+ . . .+
∑

p1<p2<...<pn




1∑

k=n

(−1)2n+1−k
n∏

$=1
# "=k

u−1p#u
+
2pk







+ Terms without ξ , (2.1.39)
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now follows

∂f

∂ξ
=

∑

p1

fp1u
+
2p1 +

∑

p1<p2

fp1p2

1∑

k=2

(−1)5−k
2∏

$=1
# "=k

u−1p#u
+
2pk

+ . . . +
∑

p1<p2<...<pn




1∑

k=n

(−1)2n+1−k
n∏

$=1
# "=k

u−1p#u
+
2pk



 . (2.1.40)

A few words about the notation. Obviously the sums run over a given set of coefficients to a given function
f . If in f a certain coefficient is not present it is zero. Equally if a coefficient in a given odd transformation
is not present.

Now we look at a function f (2.1.5) again, the derivation with respect to a certain ηk leads

∂f

∂ηk
= fk + (−1)P

(2)
pk

∑

p1/pk

f̂k p1ηp1 + (−1)P
(3)
pk

∑

(p1<p2)/pk

f̂k p1p2ηp1ηp2

+ ...+ (−1)P
(n)
pk

∑

(p1<p2<...<pn−1)/pk

f̂k p1...pn−1ηp1 ...ηpn−1

= fk + (−1)P
(2)
pk

∑

p1/pk

f̂kp1




1∏

$=1

u−1p# + ξ
1∑

k=1

(−1)5−k
1∏

$=1
# "=k

u−1p#u
+
2pk





+ (−1)P
(3)
pk

∑

(p1<p2)/pk

f̂k p1p2




2∏

$=1

u−1p# + ξ
1∑

k=2

(−1)7−k
2∏

$=1
# "=k

u−1p#u
+
2pk





+ . . .+

+ (−1)P
(n)
pk

∑

(p1<p2<...<pn−1)/pk

f̂kp1...pn−1




n−1∏

$=1

u−1p1 + ξ
1∑

k=n−1

+(−1)2n+1−k
n−1∏

$=1
# "=k

u−1p#u
+
2pk



 . (2.1.41)

Here the notation has to be understood as follows, P (2)
pk gives either an even or odd number, depending in

which position ηk in a given function stands. For example, for the first place pk = 1 P (n)
p1 = 0, for the second

place P (n)
p2 = 1 and so on. The sums again run over a set of given functions. Here the notation (p1 < p2)/pk

means, that no summand includes ηk. Finally we put a hat above f , hence by convention the generators are
ordered and the coefficients are also ordered by convention. Here we wrote k at the first place and therefore
introduced the hat.

∂f

∂ηk

∣∣∣∣
ξ=0

= fk + (−1)P
(2)
pk

∑

p1/pk

f̂kp1

1∏

$=1
# "=k

u−p# + (−1)P
(3)
pk

∑

(p1<p2)/pk

f̂kp1p2

2∏

$=1
# "=k

u−1p#

+ . . .+ (−1)P
(n)
pk

∑

(p1<p2<...<pn−1)/pk

f̂kp1...pn−1

n−1∏

$=1
# "=k

u−1p# . (2.1.42)
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Now for each ηk = u−1k + ξu+2k we have ∂ηk
∂ξ = u+2k . So it follows

∑

k

∂ηk
∂ξ

∂f

∂ηk

∣∣∣∣
ξ=0

=
∑

k

fku
+
2k +

∑

k

(−1)P
(2)
pk

∑

p1/pk

f̂kp1

1∏

$=1
# "=k

u−1p#u
+
2k +

∑

k

(−1)P
(3)
pk

∑

(p1<p2)/pk

f̂kp1p2

2∏

$=1
# "=k

u−1p#u
+
2k

+ . . .+
∑

k

(−1)P
(n)
pk

∑

(p1<p2<...<pn−1)/pk

f̂kp1...pn−1

n−1∏

$=1
# "=k

u−1p#u
+
2k . (2.1.43)

That the two expressions (2.1.40), (2.1.43) are equal is evident except for the minus sign. So first we notice
that in the second expression (2.1.43) each k-sum term has always alternating signs and starts with a plus.
The sum over k here goes over each ηk present in a given monomial to a given function, so each k-sum runs
over 1, 2, . . . , n summands. In the first expression (2.1.40) the sum starts either with a plus or minus sign,
but the sum runs through the expressions from k to 1 in opposite to the second expression, (2.1.43) which
runs from 1 to k. Hence we can have even and odd monomials and since the terms within the first expression
(2.1.40) alternates, starting with a minus sign due to 2n + 1 − k starting from k = n, the last summand
within this k-sum corresponds with the first summand in the second expression (2.1.43). We note that the
sign change in (2.1.43) is due to the outer product of the chain rule, which is always present if one defines
the chain rule in the common way. The alternation of the minus sign in the first expression (2.1.40) is only
present in the case of odd functions. That is why the chain rule dose not work for even functions. Before we
conclude the section on the discrete Grassmann algebra, we have to look at the following properties.

Exponential Function of Grassmann Numbers

Next we use the Baker-Campbell-Hausdorff formula [39] which reads as follows

exey = ez with Z = X +

∫ 1

0
dt g

(
eadxet ady

)
[y] and g(z) =

z log (z)

z − 1
. (2.1.44)

Where for G being a Lie algebra. adx : G → G is a linear map defined by

adx[y] := [x, y] . (2.1.45)

Now expanding Z till the third order one gets

Z ≈ x+ y +
1

2
[x, y] +

1

12
([x, [x, y]]− [y, [x, y]])− 1

24
[x, [y, [x, y]]] + . . . . (2.1.46)

From the expansion of the integral as done in Appendix D, it is evident that all higher cascading commutators
depend on [x, y] as the innermost commutator. Hence if [x, y] vanishes, all higher commutators vanish as
well. So we get immediately

e
∑

λk
ηλkηλk+1

...ηλ2k =
∏

λk

eηλkηλk+1
...ηλ2k ⇔ e

∑2n
λk

∏
k ηλk =

2n∏

λk

e
∏

k ηλk . (2.1.47)

Now the following relation is obvious
[
e
∑

λ ξλ1ξλ2 ...ξλ2k , η1 . . . ηn
]
=

∏

λk

[
eξλ1ξλ2 ...ξλ2k , η1 . . . ηn

]
=

∏

λk

[1− ξλ1ξλ2 . . . ξλ2k , η1 . . . ηn]

=
∏

λk

([1, η1 . . . ηn]︸ ︷︷ ︸
=0

− [ξλ1ξλ2 . . . ξλ2k , η1 . . . ηn]︸ ︷︷ ︸
=0

) = 0 . (2.1.48)
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In the same manner we can show
[
e
∑

λn
ηλ1 ...ηλ2n , e

∑
λk
ξλ1 ...ξλ2k

]
=

2n∏

λn

2k∏

λk

[1− ηλn , 1− ηλk ] =
2n∏

λk

2k∏

λk

[ηλn , ηλk ] = 0 . (2.1.49)

Furthermore, we immediately get the relation
[
ef

+(η), g(η)
]
= 0 , (2.1.50)

for any even Grassmann function f+(η) and any Grassmann function g(η). The last result will be used
extensively.

Involution of Grassmann Numbers

On every even Grassmann algebra of n = 2p, one can introduce an involution operation by associating with
each generator ηk one generator ηk and demand the following properties

(ηk) = ηk ,

(ηk) = ηk ,

(ληk) = ληkλ ∈ C , (2.1.51)

as well as

(ηλ1 , ηλ2 . . . ηλn) = ηλnηλn−1
. . . ηλ1 . (2.1.52)

The two generators ηk and ηk are completely independent and so all derived rules above are applicable.
Sometimes involuted Grassmann numbers are also called complex Grassmann numbers. However one should
keep in mind that there are also objects of the form η1 + η2, which are then called complex Grassmann
numbers.

It is worth pointing out that this relation (2.1.48) includes the often used relations
[
e
∑

λ ξλξλ , η
]
= 0 and

[
e
∑

λ ξλξλ , η1, . . . ηn
]
= 0 , (2.1.53)

We note that the general Hamiltonian in normal order is an operator of the form

Ĥ =
1

n!

∑

λ1,...λn

∑

µ1...µn

〈λ1 . . . λn|H |µ1 . . . µn〉 a†λ1 . . . a
†
λn
aµn . . . aµ1 (2.1.54)

so for any operator there is always an even combination of creation and annihilation operators, so we conclude
that we have

[
e−i ε!H[ϕ,ϕ], ξk

]
= 0 . (2.1.55)

Berezin Integration

The definition of Grassmann integration was introduced by F.A. Berezin [38] and we will call it explicitly
Berezin integration. Since every second derivative of a Grassmann variable vanishes, it is not possible to define
Grassmann integration as the inverse of differentiation. The idea now is rather to define Berezin integrals by

∫
dη 1 = 0 ,

∫
dηk η$ = δk $ . (2.1.56)
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Surprisingly this definition is sufficient to deal with Grassmann integrals. If we have involuted Grassmann
numbers, we shall write these to the left of the normal Grassmann integrals. So we will write

∫
dη

∫
dη and not

∫
dη

∫
dη , (2.1.57)

since obviously these two operations are not the same. We will need Berezin integrals in order to introduce
the overcompleteness relation within the fermionic coherent states and occasionally to solve a Grassmann
Gauss integral. The only non trivial thing when dealing with Berezin integration is the transformation law
for interchanging the integration variable. We outline here an elegant proof from [34]. The transformation
law to be shown is

∫
dη1dη1 . . . ηndηnP (η, η) =

∣∣∣∣
∂(ξ, ξ)

∂(η, η)

∣∣∣∣

∫
dξ1dξ1 . . . dξndξnP (η(ξ, ξ), η(ξ, ξ)) . (2.1.58)

Now the idea is to write the variables as
(
η1η2 . . . ηnηnηn−1 . . . η1

)
≡

(
η̃1η̃2 . . . η̃2n

)
,

(
ξ1ξ2 . . . ξnξnξn−1 . . . ξ1

)
≡

(
ξ̃1ξ̃2 . . . ξ̃2n

)
, (2.1.59)

and rewrite them as

η̃k = Mk$ ξ̃$ . (2.1.60)

So it is clear that in relation (2.1.58) only terms survive, which contain each η̃$ in one factor only once. This
can be written as p

∏2n
$=1 η̃. Thus the only thing remaining, is to determine J in the equation

∫
dη1dη1 . . . ηndηnp

2n∏

$=1

η̃$ = J

∫
dξ1dξ1 . . . dξndξnp

2n∏

$=1

(
∑

k

Mk$ξ̃k

)

. (2.1.61)

The left side can directly be evaluated to p(−1)n. Since each summand on the right side can include each
Grassmann variable only once, and there are 2n variables, the only non vanishing contribution on the right
arises, if the (2n)! permutations are present. Now one can calculate

p(−1)n = Jp

∫
dξ1 dξ1 . . . dξndξn

∑

P

∏

$

M$P#
ξ̃P#

= Jp
∑

P

∏

$

M$P#
(−1)P#

∫
dξ1dξ1 . . . ξndξnξ̃1ξ̃2 . . . ξ̃2n

= Jp(−1)ndet(M) , (2.1.62)

and therefore J = (det(M))−1. The Gauss integral is summarized with the other integrals in the Appenix C
.

2.1.2 Infinite Dimensional Grassmann Algebra

If we are dealing with Grassmann algebra in the limit n → ∞ and we have functionals instead of functions.
The basic property for Grassmann generators in infinite dimensions goes over in

{η(x), η(y)} = 0 . (2.1.63)
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The functional reads

F [η] = f0 +

∫
dx f1(x)η(x) +

∫
dx1dx2f2(x1, x2)η(x1)η(x2) + . . . (2.1.64)

The functions f ∈ C are chosen to be antisymmetric with respect to any two arguments. This property is
going to be important for the next properties. The derivative of a generator is simply given by the Dirac
delta distribution [40]

δη(x)

δη(z)
= δ(x− z) . (2.1.65)

The derivative is defined in analogy to the discrete form as

δ

δη(z)
[η(x1) η(x2) . . . η(xn)]

= δ(z − x1)η(x2) . . . η(xn)− δ(z − x2)η(x1)η(x3) . . . η(xn)

+ . . .+ (−1)n−1δ(z − xn)η(x1)η(x2) . . . η(xn−1) . (2.1.66)

In particular, we interested in functionals of two independent fields. As in the discrete form the complex
Grassmann fields η(x) and η(x) are independent. We define

F [η, η] := f0 +

∫
dx1 {f0(x1)η(x) + f1(x1)η(x1)}

+

∫
dx1dx2 {f0(x1, x2)η(x1)η(x2) + f1(x1, x2)η(x1)η(x2) + f2(x1, x2)η(x1)η(x2)}

+

∫
dx1dx2dx3 {f0(x1, x2, x3)η(x1)η(x2)η(x3) + f1(x1, x2, x3)η(x1)η(x2)η(x3)

+f2(x1, x2, x3)η(x1)η(x2)η(x3) + f3(x1, x2, x3)η(x1)η(x2)η(x3)}
+ . . . . (2.1.67)

In general we can write such a functional of two independent fields as

F [η, η] =
∞∑

n=0

n∑

k=0

n∏

$=1

[∫
dx$

]
fk(x1, ..., xn)

k∏

i=1

η(xi)
n∏

j=k+1

η(xj) , (2.1.68)

with f0(x1) ≡ f0. We are now going to derive the derivation rules for such functionals. First we consider the
derivation with respect to η(z) and then with respect to η(z), for the first case we have

δF [η, η]

δη(z)
=

∞∑

n=0

n∑

k=0

n∏

$=1

[∫
dx$

] n−k−1∑

m=0

(−1)k+mfk(x1, . . . , xn)δ(xk+m+1 − z)
k∏

i=1

η(xi)
n∏

j=k+1
j "=k+1+m

η(xj)

=
∞∑

n=0

n∑

k=0

n−k−1∑

m=0

n∏

$=1

[∫
dx$

]
(−1)k+mfk(x1, . . . , xn)δ(xk+m+1 − z)

k∏

i=1

η(xi)
n∏

j=k+1
j "=k+1+m

η(xj)

=
∞∑

n=0

n∑

k=0

n−k−1∑

m=0

n∏

$=1
# "=k+m+1

[∫
dx$

]
(−1)k+mfk(x1, . . . z︸︷︷︸

k+m+1

, . . . xn)
k∏

i=1

η(xi)
n∏

j=k+1
j "=k+m+1

η(xj)

=
∞∑

n=0

n∑

k=0

(−1)k(n− k)
n−1∏

$=1

[∫
dx$

]
fk(x1, . . . , z︸︷︷︸

k+1

, . . . xn−1)
k∏

i=1

η(xi)
n−1∏

j=k+1

η(xj) . (2.1.69)
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The last formula gives a practical way to obtain the derivative. In essence the sign is determined by the
number k of η generators before the first η by (−1)k. The value of the derived functional is then inserted at
the position k+1 of the function f , and the pre-factor (n− k) is defined by the number of generators η. Let
us now consider

δF [η, η]

δη(z)
=

∞∑

n=0

n∑

k=0

n∏

$=1

[∫
dx$

] k∑

m=1

(−1)m+1fk(x1, . . . , xn)δ(xm − z)
k∏

i=1
i"=m

η(xi)
n∏

j=k+1

η(xj)

=
∞∑

n=0

n∑

k=0

k∑

m=1

n∏

$=1

[∫
dx$

]
(−1)m+1fk(x1, . . . , xn)δ(xm − z)

k∏

i=1
i"=m

η(xi)
n∏

j=k+1

η(xj)

=
∞∑

n=0

n∑

k=0

k∑

m=1

k∏

$=1
# "=m

[∫
dx$

]
(−1)m+1fk(x1, . . . , z︸︷︷︸

m

, xn)
k∏

i=1
i"=m

η(xi)
n∏

j=k+1

η(xj)

=
∞∑

n=0

n∑

k=0

k
n−1∏

$=1

[∫
dx$

]
fk(z, . . . , xn−1)

k−1∏

i=1

η(xi)
n−1∏

j=k

η(xj) . (2.1.70)

By derivatating the value of the functional with respect to η, one has simply to take the number of the
generators η and insert the variable of the derivated function η(z) in the function fk at the first position

Next we want to have a short look what happens, if we have a general product of two functionals. For that
matter we simply look at one summand of the product given by F [η, η]G[η, η]. One such summand for fixed
n1, n2 and corresponding k1, k2 is, according to (2.1.67), given by

M =
n1+n2∏

$=1

[∫
dx$

]
fk1(x1, . . . , xn1)gk2(xn1+1, . . . , xn1+n2)

×
k1∏

i1=1

η(xi1)×
n1∏

j1=k1+1

η(xj1)
n1+k2∏

i2=n1+1

η(xi2)
n1+n2∏

j2=n1+k2+1

η(xj2) . (2.1.71)
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Now the derivative with respect to η yields

δM

δη(z)
=

n1+n2∏

$=1

[∫
dx$

] n1−k1−1∑

m=0

(−1)k+1+mfk1(x1, . . . , xn1)gk2(xn1+1, . . . , xn1+n2)δ(xk1+1+m − z)

×
k1∏

i1=1

η(xi1)
n1∏

j1=k1+1
j1 "=k1+1+m

η(xj1)
n1+k2∏

i2=n1+1

η(xi2)
n1+n2∏

j2=n1+k2+1

η(xj2)

+
n1+n2∏

$=1

[∫
dx$

] n2−k2−1∑

m=0

(−1)n1+k2+mfk1(x1, . . . , xn1)gk2(xn1+1, . . . , xn1+n2)δ(xn1+k2+1+m − z)

×
k1∏

i1=1

η(xi1)
n1∏

j1=k1+1

η(xj1)
n1+k2∏

i2=n1+1

η(xi2)
n1+n2∏

j2=n1+k2+1+m
j2 "=n1+k2+1+m

η(xj2)

= (−1)k1
n1+n2−1∏

$=1

[∫
dx$

]
fk1(x1, . . . , z︸︷︷︸

k1+1

. . . xn1−1)gk2(xn1 , . . . , xn1+n2−1)

×
k1∏

i1=1

η(xi1)
n1−1∏

j1=k1+1

η(xj1)
n1+k2−1∏

i2=n1

η(xi2)
n1+n2−1∏

j2=n1+k2

η(xj2)

+ (−1)n1+k2
n1+n2−1∏

$=1

[∫
dx$

]
fk1(x1, . . . xn1)gk2(xn1+1, . . . , z︸︷︷︸

n1+k2+1

. . . xn1+n2−1)

×
k1∏

i1=1

η(xi1)
n1∏

j1=k1+1

η(xj1)
n1+k2∏

i2=n1+1

η(xi2)
n1+n2−1∏

j2=n1+k2+1

η(xj2) . (2.1.72)
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and corresponding for η

δM

δη(z)
=

n1+n2∏

$=1

[∫
dx$

] k1−1∑

m=0

(−1)mfk1(x1, . . . xn1)gk2(xn1+1, . . . xn1+n2)δ(x1+m − z)

×
k1∏

i1=1
i1 "=m+1

η(xi1)
n1∏

j1=k1+1

η(xj1)
n1+k2∏

i2=n1+1

η(xi2)
n1+n2∏

j2=n1+k2+1

η(xj2)

+
n1+n2∏

$=1

[∫
dx$

] k2−1∑

m=0

(−1)n1+mfk1(x1 . . . xn1)gk2(xn1+1, . . . , xn1+n2)δ(xn1+1+m − z)

×
k1∏

i1=1

η(xi1)
n1∏

j1=k1+1

η(xj1)
n1+k2∏

i2=n1+1
i2 "=n1+1+m

η(xi2)
n1+n2∏

j2=n1+k2+1

η(xj2)

=
n1+n2−1∏

$=1

[∫
dx$

]
fk1(z, x1, . . . , xn1−1)gk2(xn1 , . . . , xn1+n2−1)

×
k1−1∏

i1=1

η(xi1)
n1−1∏

j1=k1

η(xj1)
n1+k2−1∏

i2=n1

η(xi2)
n1+n2−1∏

j2=n1+k2

η(xj2)

+
n1+n2−1∏

$=1

[∫
dx$

]
(−1)n1fk1(x1, . . . xn1)gk2(xn1+1, . . . , z︸︷︷︸

n1+1

, . . . xn1+n2−1)

×
k1∏

i1=1

η(xi1)
n1∏

j1=k1+1

η(xj1)
n1+k2−1∏

i2=n1

η(xi2)
n1+n2−1∏

j2=n1+k2

η(xj2) . (2.1.73)

Now that we know how this monomials act under the functional derivative, we can introduce the following
notation

ufuf :=
∫

dx1dx2f(x1, x2)η(x1)η(x2) +

∫
dx1dx2dx3dx4f1(x1, x2, x3, x4)η(x1)η(x2)η(x3)η(x4)

+ . . .+
∫

dx1dx2dx3dx4f2(x1, x2, x3, x4)η(x1)η(x2)η(x3)η(x4)

+ . . . (2.1.74)

So we gather up all monomials which are both uneven in η and in η. Likewise we define

gfgf : =

∫
dx1dx2dx3dx4f(x1, x2, x3, x4)η(x1)η(x2)η(x3)η(x4)

+

∫
dx1dx2dx3dx4dx5dx6f(x1, x2, x3, x4, x5, x6)η(x1)η(x2)η(x3)η(x4)η(x5)η(x6)

+ . . .+

+

∫
dx1dx2dx3dx4dx5dx6f(x1, x2, x3, x4, x5, x6)η(x1)η(x2)η(x3)η(x4)η(x5)η(x6)

+ . . . (2.1.75)
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Where we gathered all terms which consists of integrals, which are both even in η and η

ufgf : =

∫
dx1dx2dx3f(x1, x2, x3)η(x1)η(x2)η(x3)

+ . . .+

+

∫
dx1dx2dx3dx4dx5f(x1, x2, x3, x4, x5)η(x1)η(x2)η(x3)η(x4)η(x5)

+

∫
dx1dx2dx3dx4dx5dx6dx7f(x1, x2, x3, x4, x5, x6, x7)η(x1)η(x2)η(x3)η(x4)η(x5)η(x6)η(x7)

+ . . . (2.1.76)

Also we have gathered all the terms which are uneven in η and are even in η.

gfuf : =

∫
dx1dx2dx3f(x1, x2, x3)η(x1)η(x2)η(x3)

+

∫
dx1dx2dx3dx4dx5f(x1, x2, x3, x4, x5)η(x1)η(x2)η(x3)η(x4)η(x5)

+ . . .+

+

∫
dx1dx2dx3dx4dx5f(x1, x2, x3, x4, x5)η(x1)η(x2)η(x3)η(x4)η(x5)

+

∫
dx1dx2dx3dx4dx5dx6dx7f(x1, x2, x3, x4, x5, x6, x7)η(x1)η(x2)η(x3)η(x4)η(x5)η(x6)η(x7)

+ . . . (2.1.77)

Finally here we have gathered all the integrals which are even in η and uneven in η. Now with our new
notation we can write any functional as

F [η, η] := uf1uf1 + gf1gf1 + uf2gf2 + gf2uf2 . (2.1.78)

The notation has to be seen as a minimalistic wrtiting form. The indices f1 and f2, have only be introduced
to destinquish between u of the term uf1uf1 and u out of uf2gf2

Product Rule for Grassmann Functionals

We are now going to prove the product rule for functionals, where F and G are arbitrary Grassmann functionals

F = gf1gf1 + uf1uf1 + gf2uf2 + uf2gf2

G = gg1gg1 + ug1ug1 + gg2gg2 + ug2gg2 . (2.1.79)

The derivatives can then be written as follows

δF

δη(z)
= gf1

−1
↓
g f1 − uf1

−1
↓
u f1 + gf2

−1
↓
u f2 − uf2

−1
↓
g f2

δG

δη(z)
= gg1

−1
↓
g g1 − ug1

−1
↓
u g1 + gg2

−1
↓
g g2 − ug2

−1
↓
g g2 (2.1.80)

Here we have introduced the notation

−1
↓

g/u for the derivative regarding to the formulas (2.1.69),(2.1.70).
Obviously the derivative of an even integral term gives an odd integral term and vice versa. We are now
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going to look at the product of two functionals.

F ·G =
(
gf1gf1 + uf1uf1 + gf2uf2 + uf2gf2

)
·
(
gg1gg1 + ug1ug1 + gg2gg2 + ug2gg2

)

gf1gf1gg1gg1 + gf1gf1ug1ug1 + gf1gf1gg2gg2 + gf1gf1ug2gg2

+ uf1uf1gg1gg1 + uf1uf1ug1ug1 + uf1uf1gg2gg2 + uf1uf1ug2gg2

+ gf2uf2gg1gg1 + gf2uf2ug1ug1 + gf2uf2gg2gg2 + gf2uf2ug2gg2

+ uf2gf2gg1gg1 + uf2gf2ug1ug1 + uf2gf2gg2gg2 + uf2gf2ug2gg2

= gf1gg1gf1gg1 + gf1ug1gf1ug1 + gf1gg2gf1gg2 + gf1ug2gf1gg2

+ uf1gg1uf1gg1 − uf1ug1uf1ug1 + uf1gg2uf1gg2 − uf1ug2uf1gg2

+ gf2gg1uf2gg1 − gf2ug1uf2ug1 + gf2gg2uf2gg2 − gf2ug2uf2gg2

+ uf2gg1gf2gg1 + uf2ug1gf2ug1 + uf2gg2gf2gg2 + uf2ug2gf2gg2 . (2.1.81)

Now the products are of course again a sum which now corresponds to integrals, which have a certain
combination of η and η in them. In the second line we have brought each term in the sum to what one might
call normal form. That is all the η are on the left. Of course the sign changes accordingly to the normal
Grassmann commutator rules. We can now again apply the derivation rule (2.1.72),(2.1.73),(2.1.81) and get

δ(FG)

δη(z)

= gf1gg1

−1
↓
g f1gg1 + gf1gg1gf1

−1
↓
g g1 − gf1ug1

−1
↓
g f1ug1 − gf1ug1gf1

−1
↓
u g1 + gf1gg2

−1
↓
g f1gg2 + gf1gg2gf1

−1
↓
g g2

− gf1ug2

−1
↓
g f1gg2 − gf1ug2gf1

−1
↓
g g2 − uf1gg1

−1
↓
u f1gg1 + uf1gg1uf1

−1
↓
g g1 − uf1ug1

−1
↓
u f1ug1 + uf1ug1uf1

−1
↓
u g1

− uf1gg2

−1
↓
u f1gg2 + uf1gg2uf1

−1
↓
g g2 − uf1ug2

−1
↓
u f1gg2 + uf1ug2uf1

−1
↓
g g2 + gf2gg1

−1
↓
u f2gg1 − gf2gg1uf2

−1
↓
g g1

+ gf2ug1

−1
↓
u f2ug1 − gf2ug1uf2

−1
↓
u g1 + gf2gg2

−1
↓
u f2gg2 − gf2gg2uf2

−1
↓
g g2 + gf2ug2

−1
↓
u f2gg2 − gf2ug2uf2

−1
↓
g g2

− uf2gg1

−1
↓
g f2gg1 − uf2gg1gf2

−1
↓
g g1 + uf2ug1

−1
↓
g f2ug1 + uf2ug1gf2

−1
↓
u g1 − uf2gg2

−1
↓
g f2gg2 − uf2gg2gf2

−1
↓
g g2

+ uf2ug2

−1
↓
g f2gg2 + uf2ug2gf2

−1
↓
g g2 . (2.1.82)
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Next we evaluate the desired terms for the product rule. Here we will carry out the derivation rule and leave
them as they are.

P (F )
δG

δη
=

(
gf1gf1 + uf1uf1 − gf2uf2 − uf2gf2

)
(
gg1

−1
↓
g g1 − ug1

−1
↓
u g1 + gg2

−1
↓
g g2 − ug2

−1
↓
g g2

)
= (2.1.83)

= gf1gf1gg1

−1
↓
g g1 − gf1gf1ug1

−1
↓
u g1 + gf1gf1gg2

−1
↓
g g2 − gf1gf1ug2

−1
↓
g g2

+ uf1uf1gg1

−1
↓
g g1 − uf1uf1ug1

−1
↓
u g1 + uf1uf1gg2

−1
↓
g g2 − uf1uf1ug2

−1
↓
g g2

− gf2uf2gg1

−1
↓
g g1 + gf2uf2ug1

−1
↓
u g1 − gf2uf2gg2

−1
↓
g g2 + gf2uf2ug2

−1
↓
g g2

− uf2gf2gg1

−1
↓
g g1 + uf2gf2ug1

−1
↓
u g1 − uf2gf2gg2

−1
↓
g g2 + uf2gf2ug2

−1
↓
g g2 . (2.1.84)

Finally we have to evaluate the second part of the product rule, which reads

δF

δη(z)
G =

(
gf1

−1
↓
g f1 − uf1

−1
↓
u f1 + gf2

−1
↓
u f2 − uf2

−1
↓
g f2

)
(
gg1gg1 + ug1ug1 + gg2gg2 + ug2gg2

)

= gf1

−1
↓
g f1gg1gg1 + gf1

−1
↓
g f1ug1ug1 + gf1

−1
↓
g f1gg2gg2 + gf1

−1
↓
g f1ug2gg2

− uf1

−1
↓
u f1gg1gg1 − uf1

−1
↓
u f1ug1ug1 − uf1

−1
↓
u f1gg2gg2 − uf1

−1
↓
u f1ug2gg2

+ gf2

−1
↓
u f2gg1gg1 + gf2

−1
↓
u f2ug1ug1 + gf2

−1
↓
u f2gg2gg2 + gf2

−1
↓
u f2ug2gg2

− uf2

−1
↓
g f2gg1gg1 − uf2

−1
↓
g f2ug1ug1 − uf2

−1
↓
g f2gg2gg2 − uf2

−1
↓
g f2ug2gg2 . (2.1.85)

Comparing the results (2.1.84), (2.1.85) with (2.1.82) we finally have

δF [η, η]G[η, η]

δη(z)
= P (F [η, η])

δG[η, η]

δη(z)
+

δF [η, η]

δη(z)
G[η, η] . (2.1.86)

In the special case that F is even we have

P (F [η, η]) = gf1gf1 + (−uf1)(−uf1) = gf1gf2 + uf1uf1 = F [η, η] (2.1.87)

and therefore
δF [η, η]G[η, η]

δη(z)
= F [η, η]

δG[η, η]

δη(z)
+

δF [η, η]

δη(z)
G[η, η] . (2.1.88)

And in the same manner for F odd we have

P (F [η, η]) = gf2(−uf2) + (−uf2) = gf2 =
[
gf2uf2 + uf2gf2

]
= −F [η, η] (2.1.89)

and consequently

δF [η, η]G[η, η]

δη(z)
= −F [η, η]

δG[η, η]

δη(z)
+

δF [η, η]

δη(z)
G[η, η] . (2.1.90)

Finally we note that the same product rule (2.1.86) holds for derivations with respect to η(z).
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Chain Rule for an Analytic Function with a Grassmann Functional

We are now going to prove the Grassmann chain rule for an analytic function f and a functional,

δ

δη(z)
f(F ) =

[
δF

δη(z)

]
f ′(F ) . (2.1.91)

Where we again restrict the functional to be an even functional. According to our above introduced notation
we can write it as

F = uf1uf1 + gf1gf1 . (2.1.92)

The analytic function is again given by the Laurent series (2.1.32). We are now going derivate the series term
by term. The square of the functional is given by

F 2 =
(
uf1uf1 + gf1gf1

)2
=

(
uf1uf1 + gf1gf1

) (
uf1uf1 + gf1gf1

)

= uf1uf1uf1uf1 + uf1uf1gf1gf1 + gf1gf1uf1uf1 + gf1gf1gf1gf1

= −uf1uf1uf1uf1 + uf1gf1uf1gf1 + gf1uf1gf1uf1 + gf1gf1gf1gf1 . (2.1.93)

Now if we derivate this term, we have to keep track, which two terms belong to the same function f in the
integral expression. In order to do so we will underline them, thus giving

δF 2

δη(z)
= −uf1uf1

−1
↓
u f1uf1 + uf1uf1uf1

−1
↓
u f1 − uf1gf1

−1
↓
u f1gf1 + uf1gf1uf1

−1
↓
g f1

− gf1uf1

−1
↓
g f1uf1 − gf1uf1gf1

−1
↓
u f1 + gf1gf1

−1
↓
g f1gf1 + gf1gf1gf1

−1
↓
g f1

= −uf1uf1

−1
↓
u f1uf1 − uf1uf1

−1
↓
u f1uf1 − uf1gf1

−1
↓
u f1gf1 − gf1uf1

−1
↓
g f1gf1

− gf1uf1

−1
↓
g f1uf1 − uf1gf1

−1
↓
u g1gf1 + gf1gf1

−1
↓
g f1gf1 + gf1gf1

−1
↓
g f1gf1

= −2uf1uf1

−1
↓
u f1uf1 − 2uf1gf1

−1
↓
u f1gf1 − 2gf1uf1

−1
↓
g f1uf1 + 2gf1gf1

−1
↓
g f1gf1 . (2.1.94)

Now we look at the expected expression

2

(

−uf1

−1
↓
u f1 + gf1

−1
↓
g f1

)
(
uf1uf1 + gf1gf1

)

= −2uf1

−1
↓
u f1uf1uf1 − 2uf1

−1
↓
u f1gf1gf1 + 2gf1

−1
↓
g f1uf1uf1 + 2gf1

−1
↓
g f1gf1gf1

= −2uf1uf1

−1
↓
u f1uf1 − 2uf1gf1

−1
↓
u f1gf1 − 2gf1uf1

−1
↓
g f1uf1 + 2gf1gf1

−1
↓
g f1gf1 (2.1.95)

and we see, that the two expressions (2.1.94)(2.1.95) are in fact equal. Now we can show the other terms via
induction by using the previous derived product rule (2.1.85). We therefore assume

δ

δη(z)

(
uf1uf1 + gf1gf1

)n
= n

(
−uf1

−1
↓
u f1 + gf1

−1
↓
g f1

)
(
uf1uf1 + gf1gf1

)n−1
, (2.1.96)
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then

δ

δη(z)

(
uf1uf1 + gf1gf1

)n+1
=

[
δ

δη(z)

(
uf1uf1 + gf1gf1

) (
uf1uf1 + gf1gf1

)n
]

= P
(
uf1uf1 + gf1gf1

) δ

δη(z)

(
uf1uf1 + gf1gf1

)n
+

[
δ

δη(z)

(
uf1uf1 + gf1gf1

)] (
uf1uf1 + gf1gf1

)n

= P
(
uf1uf1 + gf1gf1

)
n(−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)

n−1 + (−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)

n

=
(
uf1uf1 + gf1gf1

)
n(−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)

n−1 + (−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)

n

= n(−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)(uf1uf1 + gf1gf1)

n−1 + (−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)

n

= (−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(n+ 1)(uf1uf1 + gf1gf1)

n

= (n+ 1)(−uf1

−1
↓
u f1 + gf1

−1
↓
g f1)(uf1uf1 + gf1gf1)

n . (2.1.97)

Now all that remains is to take out the derivatives to the left and resume the Laurent series to get the chain
rule (2.1.91).

Chain Rule for Grassmann Functionals

Finally we want to prove the following chain rule. Be η[ξ, ξ] and η[ξ, ξ] odd functionals of the form gh1
uh1 +

uh2gh2 and F an arbitrary Grassmann functional F [η, η] := uf1uf1 + gf1gf1 + gf2uf2 + uf2gf2 , then we have

δF [η, η]

δξ(z)
=

∫
ds

{
δη(s)

δξ(z)

δF [η, η]

δη(s)
+

δη(s)

δξ(z)

δF [η, η]

δη(s)

}
(2.1.98)

Proof

Now we remember that uf1uf1 stands for a sum of integrals, where each term has an uneven number of
η and η. According to (2.1.72),(2.1.73) we loose one η or η by derivating and one integral, due to the delta
function and the function of the summand will be evaluate at that particular point, given by the number of
proceeding η. Let us first derivate F with respect to η, thus leading

δF

δη(s)
= −uf1

−1
↓
u f1 + gf1

−1
↓
g f1 + gf2

−1
↓
u f2 − uf2

−1
↓
g f2 ,

δF

δη(s)
=

−1
↓
u f1uf1 +

−1
↓
g f1gf1 +

−1
↓
g f2uf2 +

−1
↓
u f2gf2 , (2.1.99)

Each η is given by

η = gh1
uh1 + uh2gh2 (2.1.100)

and each η as

η = gg1ug1 + ug2gg2 , (2.1.101)
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where u/g are dependent on ξ and u/g are dependent on ξ. We start with the derivative regarding ξ, by

δη

δξ(z)
=

(

gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)

,

δη

δξ(z)
=

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)

. (2.1.102)

Each monomial of F consists of a combination of even/odd generating functionals. For each such functional
one η/η (2.1.100) (2.1.2) has to be inserted. We will now denote these products by the exponents k$ and n$.
The combination of even and odd monomials is given by the functional F . We can now write the derivative
of F (2.1.99) with respect to η as

δF

δη(s)
= (2k1 + 1) f1

∣∣∣∣
s=1

(
gh1

uh1 + uh2gh2

)2k1 (gg1ug1 + ug2gg2
)2n1+1

+ 2k2 f1

∣∣∣∣
s=1

(
gh1

uh1 + uh2gh2

)2k2−1 (
gg1ug1 + ug2gg2

)2n2

+ 2k3 f2

∣∣∣∣
s=1

(
gh1

uh1 + uh2gh2

)2k3−1 (
gg1ug1 + ug2gg2

)2n3+1

+ (2k4 + 1) f2

∣∣∣∣
s=1

(
gh1

uh1 + uh2gh2

)2k4 (gg1ug1 + ug2gg2
)2n4 . (2.1.103)

The same procedure for the derivative of F with respect to η yields

δF

δη(s)
= − (2n1 + 1) f1

∣∣∣∣
s=2n1+2

(
gh1

uh1 + uh2gh2

)2k1+1 (
gg1ug1 + ug2gg2

)2n1

+ 2n2 f1

∣∣∣∣
s=2n2+1

(
gh1

uh1 + uh2gh2

)2k2 (gg1ug1 + ug2gg2
)2n2−1

+ (2n3 + 1) f2

∣∣∣∣
s=2ns+2

(
gh1

uh1 + uh2gh2

)2k3 (gg1ug1 + ug2gg2
)2n3

− 2n4 f2

∣∣∣∣
s=2n4+2

(
gh1

uh1 + uh2gh2

)2k4+1 (
gg1gg1 + ug2gg2

)2n4−1 (2.1.104)
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Using the above expressions the desired chain rule yields to the following result.
∫

ds

{
δη

δξ(z)

δF

δη(s)
+

δη(s)

δξ(z)

δF

δη

}

= (2k1 + 1) f1

∣∣∣∣
s=1

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k1 (gg1ug1 + ug2gg2
)2n1+1

+ (2k2) f1

∣∣∣∣
s=1

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k2−1 (
gg1ug1 + ug2gg2

)2n2

+ (2k3) f2

∣∣∣∣
s=1

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k3−1 (
gg1ug1 + ug2gg2

)2n3+1

+ (2k4 + 1) f2

∣∣∣∣
s=1

(

gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k4 (gg1ug1 + ug2gg2
)2n4

− (2n1 + 1) f1

∣∣∣∣
s=2n1+2

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2k1+1 (
gg1ug1 + ug2gg2

)2n1

+ (2n2) f1

∣∣∣∣
s=2n2+1

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2k2 (gg1ug1 + ug2gg2
)2n2−1

+ (2n3 + 1) f2

∣∣∣∣
s=2n3+2

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2k3 (gg1ug1 + ug2gg2
)2n3

− (2n4) f2

∣∣∣∣
s=2n4+2

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2k4+1 (
gg1ug1 + ug2gg2

)2n4−1
. (2.1.105)

We will now insert the transformations (2.1.100) directly in F and then use the product rule in order to
derivate the functional with respect to ξ.

F =
(
gh1

uh1 + uh2gh2

)2k1+1 (
gg1ug1 + ug2gg2

)2n1+1
+

(
gh1

uh1 + uh2gh2

)2k2 (gg1ug1 + ug2gg2
)2n2

+
(
gh1

uh1 + uh2gh2

)2k3 (gg1ug1 + ug2gg2
)2n3+1

+
(
gh1

uh1 + uh2gh2

)2k4+1 (
gg1ug1 + ug2gg2

)2n4 .

(2.1.106)
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Now derivating leads

δF

δξ(z)
= P

[(
gh1

uh1 + uh2gh2

)2k1+1
]
(2n1 + 1)

(
gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gg1ug1 + ug2gg2

)2n1

+ (2k1 + 1)

(
gg1

−1
↓
u g1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k1 (gg1ug1 + ug2gg2
)2n1+1

+ P
[(
gh1

uh1 + uh2gh2

)2k2] (2n2)

(
gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gg1ug1 + ug2gg2

)2n2−1

+ (2k2)

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k2−1 (
gg1ug1 + ug2gg2

)2n2

+ P
[(
gh1

uh1 + uh2gh2

)2k3] (2n3 + 1)

(
gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gg1ug1 + ug2gg2

)2n3

+ (2k3)

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k3−1 (
gg1ug1 + ug2gg2

)2n3+1

+ P
[(
gh1

uh1 + uh2gh2

)2k4+1
]
(2n4)

(
gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gg1ug1 + ug2gg2

)2n4−1

+ (2k4 + 1)

(

gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k4 (gg1ug1 + ug2gg2
)2n4

= − (2n1 + 1)

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2k1+1 (
gg1ug1 + ug2gg2

)2n1

+ (2k1 + 1)

(

gg1

−1
↓
u g1 − uh2

−1
↓
u h2

)
(
gh1

uh1 + uh2gh2

)2k1 (gg1ug1 + ug2gg2
)2n1+1

+ (2n2)

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2k2 (gg1ug1 + ug2gg2
)2n2−1

+ (2k2)

(

gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k2−1 (
gg1ug1 + ug2gg2

)2n2

+ (2n3 + 1)

(

gg1

−1
↓
u g1 − ug2

−1
↓
g g2

)
(
gh1

uh1 + uh2gh2

)2n3
(
gg1ug1 + ug2gg2

)2n3

+ (2k3)

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k3−1 (
gg1ug1 + ug2gg2

)2n3+1

− (2n4)

(
gg1

−1
↓
u g1 − ug2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k4+1 (
gg1ug1 + ug2gg2

)2n4−1

+ (2k4 + 1)

(
gh1

−1
↓
u h1 − uh2

−1
↓
g h2

)
(
gh1

uh1 + uh2gh2

)2k4 (gg1ug1 + ug2gg2
)2n4 . (2.1.107)

If we now compare the result of (2.1.107) and (2.1.105), the crucial point here is that any odd product of odd
functionals contains an odd number of u and u. Likewise an even product of odd functionals contains and
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even number of u and u, so that the P operator gives a minus/plus sign respectively. For even functionals
this is not the case and the chain rule does not hold true.

2.1.3 Fermionic Coherent States

In this section we are going to briefly introduce fermionic coherent states. Coherent states are defined to be
eigenstates of the annihilation operator aλ. So we require

aλ |ϕ〉 = ϕλ |ϕ〉 . (2.1.108)

Then it becomes evident, that we need Grassman numbers in order to proceed. To see this, we assume for a
moment that ϕλ1 and ϕλ2 are ordinary numbers. Then we can write

a†λ1a
†
λ2

|ϕ〉 = a†λ1ϕλ2 |ϕ〉 = ϕλ1ϕλ2 |ϕ〉 = ϕλ2ϕλ1 |ϕ〉

a†λ2a
†
λ1

|ϕ〉 = aλ2ϕλ1 |ϕ〉 = ϕλ2ϕλ1 |ϕ〉 (2.1.109)

out of this two equations we get the relation a†λ1a
†
λ2

|ϕ〉 = a†λ2a
†
λ1

|ϕ〉 which contradicts the anticommutator

relation
{
a†λ1 , a

†
λ2

}
= 0 , so that we need Grassmann numbers in order to define fermionic coherent states.

Hence the regular Fock space is build up of the direct sum of all n-dimensional Hilbert spaces, it has to be
extended in order to contain Grassmann numbers. One now associates for each annihilation operator aλ one
Grassmann generator ηλ and for each a†λ one Grassmann generator ηλ. The extended Fock space is then
formed by building the linear combination of the regular Fock space states and the Grassmann coefficients.
That is

|ϕ〉 =
∑

λ

χλ |ψλ〉 . (2.1.110)

Where χλ are Grassmann numbers, and |ψλ〉 is a state of the regular Fock space. In order to build coherent
states analog to the bosonic ones, one has to demand the following relations

{η, a} = 0, {η, a†} = 0,

{η, a} = 0 and {η, a†} = 0. (2.1.111)

as well as the following operations for involution

(ηa)† = a†η, (ηa†)† = aη,

(ηa)† = a†η and (ηa†)† = aη . (2.1.112)

The coherent states are now defined as
|ϕ〉 = e−

∑
λ ηλa

†
λ |0〉 . (2.1.113)

Due to the Baker-Campbell-Hausdorff formula (2.1.44) and the fact that
[
ηλka

†
λk
ηλ#a

†
λ#

]
= 0 , (2.1.114)

it follows
|ϕ〉 =

∏

λ

(1− ηλa
†
λ) |0〉 . (2.1.115)

With this definition it follows directly that |ϕ〉 is indeed an eigenstate of aλ. To see this, first observe

aλ(1− ηλa
†
λ) |0〉 = aλ |0〉 − aληλ |λ〉 = ηλaλ |λ〉 = ηλ |0〉

= (ηλ − 0) |0〉 = (ηλ − η2λa
†
λ) |0〉

= ηλ(1− ηλa
†
λ) |0〉 , (2.1.116)
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and thus

aλ |η〉 = aλe
−

∑
µ a†µ |0〉

= aλ
∏

µ

(1− ηµa
†
µ) |0〉

= aλ
∏

µ
µ"=λ

(1− ηµa
†
µ)(1− ηλa

†
λ) |0〉

=
∏

µ
µ"=λ

(aλ + ηµaλa
†
µ)(1− ηλa

†
λ) |0〉

=
∏

µ
µ"=λ

(aλ − ηµa
†
µaλ)(1− ηλa

†
λ) |0〉

=
∏

µ
µ"=λ

(1− ηµa
†
µ)aλ(1− ηλa

†
λ) |0〉

2.1.116
=

∏

µ
µ"=λ

(1− ηµa
†
µ)ηλ(1− ηλa

†
λ) |0〉

= ηλ
∏

µ
µ"=λ

(1− ηµa
†
µ)(1 − ηλa

†
λ) |0〉

= ηλ
∏

µ

(1− ηµa
†
µ) |0〉 = ηλ |η〉 . (2.1.117)

Next we notice

a†λ |λ〉 = a†λe
−

∑
µ ηµa

†
µ |0〉 = a†λ

∏

µ

(1− ηµa
†
µ) |0〉

= a†λ(1− ηλa
†
λ)

∏

µ
µ"=λ

(1− ηµa
†
µ) |0〉

= (a†λ + ηλ (a
†
λ)

2

︸ ︷︷ ︸
=0

)
∏

µ
µ"=λ

(1− ηµa
†
µ) |0〉

= a†λ
∏

µ
µ"=λ

(1− ηµa
†
µ) |0〉

= − ∂

∂ηλ
(1− ηλa

†
λ)

∏

µ
µ"=λ

(1− ηµa
†
µ) |0〉

= − ∂

∂ηλ

∏

µ

(1− ηµa
†
µ) |0〉

= − ∂

∂ηλ
|ϕ〉 . (2.1.118)
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The overlap of two coherent states is easily determined by
〈
η|η′

〉
= 〈0| e

∑
λ ηλaλe−

∑
λ η

′
λa

†
λ |0〉

= 〈0|
∏

λ

(1 + ηλaλ)
∏

λ

(1− η′λa
†
λ) |0〉

=
∏

λ

〈0| (1 + ηλaλ)(1− η′λa
†
λ) |0〉

=
∏

λ

〈0| 1− η′λa
†
λ + ηλaλ − ηλaλη

′
λa

†
λ |0〉

=
∏

λ



〈0|0〉 − η′λ 〈0|λ〉+ 〈0| ηλ aλ |0〉︸ ︷︷ ︸
=0

+ηλη
′
λ 〈0|αλa

†
λ |0〉︸ ︷︷ ︸

=1





=
∏

λ

(1 + ηλη
′
λ)

= e
∑

λ ηλη
′
λ . (2.1.119)

Finally we prove the overcompleteness relation
∫ ∏

λ

dηλdηλe
−

∑
λ ηληλ |ϕ〉 〈ϕ| = 1 . (2.1.120)

Proof

In order to prove this relation, we show that

〈
η′
∣∣
[∫ ∏

n

dϕndϕne
−

∑
n ϕnϕn |ϕ〉 〈ϕ|

]

|η〉

=

∫ ∏

n

dϕndϕn
〈
η′|ϕ

〉
e−

∑
n ϕnϕn 〈ϕ|η〉

=

∫ ∏

n

dϕndϕne
∑

n η
′
nϕne−

∑
n ϕnϕne

∑
n ϕnηn

2.1.53
=

∫ ∏

n
n"=N

dϕndϕn

(∫
dϕNdϕNe

∑
nn"=N

η′nϕn
eη

′
NϕN e−ϕNϕN eϕNηN e

−
∑

nn"=N
ϕnϕn

e
∑

nn"=N
ϕnηn

)

=

∫ ∏

n
n"=N

dϕndϕn

×
∫

dϕNdϕNe
∑

nn"=N
η′nϕn (

1− ϕNϕN + η′NϕN + ϕNϕNη′NηN
)
e
−

∑
nn"=N

ϕnϕn
e
∑

nn"=N
ϕnηn

=

∫ ∏

n
n"=N

dϕndϕn

(
e
∑

nn"=N
η′nϕn (

1 + η′NηN
)
e
−

∑
nn"=N

ϕnϕn
e
∑

nn"=N
ϕnηn

)

=

∫ ∏

n
n"=N

dϕndϕn

(
e
∑

nn"=N
η′nϕn

eη
′
NηN e

−
∑

nn"=N
ϕnϕn

e
∑

nn"=N
ϕnηn

)

...

= e
∑N

λ η′NηN . (2.1.121)
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The overcompleteness relation can now be used to represent a state of the extended Fock space in terms of
coherent states.

|ψ〉 =
∫ ∏

λ

dϕλdϕλe
−

∑
λ ϕλϕλ |ϕ〉 〈ϕ|ψ〉

=

∫ ∏

λ

dϕλdϕλe
−

∑
λ ϕλϕλψ(ϕ) |ϕ〉 , (2.1.122)

where 〈ϕ|ψ〉 = ψ(ϕ) . With this definition, we immediately get

〈ϕ| aλ |ψ〉 =
∂

∂ηλ
〈ϕ|ψ〉

=
∂

∂ηλ
ψ(ϕ) (2.1.123)

and

〈ϕ| a†λ |ψ〉 = ηλ 〈ϕ|ψ〉
= ηλψ(ϕ) . (2.1.124)

Finally we have to evaluate the expectation value

〈ϕ|A[a†, a]
∣∣ϕ′〉 = 〈ϕ|

∞∑

k=1

cn(a
†a)n

∣∣ϕ′〉

= 〈ϕ|
∞∑

k=1

cn(ϕϕ)n
∣∣ϕ′〉

= e
∑

λ ϕλϕ
′
λA [ϕϕ′] . (2.1.125)

So we may also write

A[ϕ,ϕ′] =
〈ϕ|A[a†, a] |ϕ′〉

〈ϕ|ϕ′〉 . (2.1.126)

Finally we note that the inner product yields

〈n|ϕ〉 〈ϕ|m〉 =
(
ϕλp . . .ϕλ1

) (
ϕλ1 , . . .ϕλp

)

= ζp
2
(
ϕλ1 . . .ϕλp

) (
ϕλp . . .ϕλ1

)

= ζp
(
ϕλ1 . . .ϕλp

) (
ϕλp . . .ϕλ1

)

= 〈ζϕ|m〉 〈n|ϕ〉 . (2.1.127)

So if we have a complete set of states in the Fock space, the trace of an operator can be written as

Tr(A) =
∑

n

〈n|A |n〉

=

∫ ∏

λ

dϕλdϕλe
−

∑
λ ϕλϕλ

∑

n

〈n|ϕ〉 〈ϕ|A |n〉

=

∫ ∏

λ

dϕλdϕλe
−

∑
λ ϕλϕλ

∑

n

〈ζϕ|A |n〉 〈n|ϕ〉

=

∫ ∏

λ

dϕλdϕλe
−

∑
λ ϕλϕλ 〈ζϕ|A |ϕ〉 . (2.1.128)
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Now it is important to point out contrasts to bosonic coherent states, which are quantum mechanical states,
where a quantum mechanical system is near the classical limit. That is the classical field ϕ(x) describes the
same state as the coherent state |ϕ〉 = e

∫
dxϕ(n)ϕ†(a) |0〉. The fermionic coherent states are not in the Fock

space but rather in the extended Fock space. There is no classical fermionic field which is observable.

2.2 Fermionic Coherent State Path Integral

In this thesis we are applying the functional integral formalism. The purpose of this chapter is to give a short
overview over the functional integral and setting the mathematical framework we are using throughout this
thesis. We introduce the mathematical terminology used and establish certain conventions for the rest of the
text.

Short Introduction of Functional Integrals

Although Norbert Wiener has introduced a functional integral back in 1921, [41] the real breakthrough for
the functional integral came after Richard Feynman published his approach to quantum mechanics, which
he called the space-time approach, in 1948 [42]. In his article Richard Feynman derived, starting from what
he called a new composition law for probabilities, his path-integral formula. Later he repeated basically the
same approach in his famous textbook ”Quantum Mechanics and Path Integrals " [43], where he illustrated
the probability laws on an imaginary double slit experiment.
While Richard Feynman always derived his path integral formula from the probability laws of quantum
mechanics, the usual textbook approach today is to start from the time evolution operator and use its com-
position law N-times, while afterwards inserting the completeness relation N − 1-times. Then the appearing
integrals on the time-slice are approximated [39], [34], [44]. It should be mentioned that the so called path
integral is also a functional integral, although the term seems to be used more in the context of quantum
field theory. The original Feynman path integral, in configuration or momentum space, gives the probability
amplitude of a particle starting at a given point (xa, ta) to arrive at a final point (xb, tb). The functional
integral approach can also be used to calculate the partition function of a single particle2 Z = Tre−βĤ . This
so called imaginary-time or euclidean path integral is closely related to the original Feynman path integral
over the so called Wick rotation, which is in essence an analytical continuation with a variable transformation
t = −iτ . It should be mentioned that although the two path integral formulations are closely related in this
way, they are quite different. The standard path integral has an imaginary factor in the action and with that
comes an imaginary measure. The convergence of the integral thus relies on interference, while the euclidean
action in the imaginary-time path integral is given by the Wiener measure and so the integral can be given a
precise mathematical definition [34], [45]. While the path integral seems to be quite cumbersome in quantum
mechanics it provides a powerful tool in quantum field theory. Here we investigate a quantum gas in the
grand-canonical ensemble and we want to write down a path integral formulation for this purpose. Hence the
total number of particles is not conserved in the grand-canonical ensemble, we need a field theory approach
which is given by reformulating non relativistic quantum mechanics in a field theory over the single particle
wave functions, also known as second quantization. With the help of coherent states, which form an over
complete set in the Fock space it is possible to derive a path integral formulation for the partition function.

Detailed Derivation of the Fermionic Coherent State Path Integral

The coherent state path integral can be derived directly from the partition function, but to see some properties
regarding the time ordering, we are going to derive the path integral in three steps. The derivation is valid
for both bosons and fermions, but naturally we will focus on the fermionic case and pay special attention

2The generalisation to N-particles is then trivial.
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to derive the path integral with the fermionic rules given in the previous chapter. At some crucial points
the Grassmann rules will be written explicitly above the ≡ sign. First we will rewrite the overcompletness
relation (2.1.122)

|ψ〉 =
∫ ∏

λ

dϕλdϕλ
N

e−
∑

λ ϕλϕλψ(ϕ) |ϕ〉 with N :=

{
2πi Bosons
1 Fermions , (2.2.1)

in order to include the bosonic case. Now we extend the closure relation (2.1.120)
∫ ∏

λ

dϕλdϕλ
N

e−
∑

n ϕnϕn |ϕ〉 〈ϕ| = 1 (2.2.2)

for each time step k
∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k |ϕ〉 〈ϕ| = 1 . (2.2.3)

While slicing the time in N steps. The procedure is then the same for each component as for the standard
(non-field) coherent state path integral

〈ψF tF |ψItI〉 = 〈ψF |U(tN , tN−1)U(tN−1, tN−2) . . . U(t2, t1)U(t1, t0) |ψI〉

=
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

]

〈ψF |U(tN , tN−1) |ϕN−1〉

×
(

N−1∏

k=2

〈ϕk|U(tk, tk−1) |ϕk−1〉
)
〈ϕ1|U(t1, t0) |ψI〉 . (2.2.4)

Now in order to evaluate the necessary elements, we need to approximate the time evolution operator in the
following manner. If we have a Hamiltonian in normal order all the creation operators are on the left, then
we can write the time evolution operator in the following way

e−i ε! Ĥ[a†,a] =: e−i ε! Ĥ[a†,a] : +e−i ε! Ĥ[a†,a]− : e−i ε! Ĥ[a†,a] :

=: e−i ε! Ĥ[a†,a] : +
∞∑

n=0

(
−i ε!

)n

n!

(
Ĥn

[
a†, a

]
− : Ĥn

[
a†, a

]
:
)

=: e−i ε! Ĥ[a†,a] : +0 + 0 +
∞∑

n=2

(
−i ε!

)n

n!

(
Ĥn

[
a†, a

]
− : Ĥn

[
a†, a

]
:
)

=: e−i ε! Ĥ[a†,a] : +
∞∑

n=0

(
−i ε!

)n+2

(n+ 2)!

(
Ĥn+2

[
a†, a

]
− : Ĥn+2

[
a†, a

]
:
)

=: e−i ε! Ĥ[a†,a] : −
( ε
!

)2
∞∑

n=0

(
−i ε!

)n

(n+ 2)!

(
Ĥn+2

[
a†, a

]
− : Ĥn+2

[
a†, a

]
:
)
. (2.2.5)

The first zero comes from the difference of two ones and the second from the fact that we assumed the
Hamiltonian is in normal order. The operator : • : stands for the normal order operator, which is defined as
putting all the creation operators to the left. In the fermionic case this has to be done under consideration
of the necessary sign changes. The normal order is always defined with respect to the vacuum, which we will
address shortly. So if we have the Hamiltonian in normal order, we can replace the time-evolution operator
with

e−i ε! Ĥ [a†,a] ≈: e−i ε! Ĥ[a†,a] : +O(ε2) . (2.2.6)
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For the following calculation we will now assume, that the time evolution operator is in normal order and
that we have ignored the error of O(ε2). Now we will calculate the following elements

〈ϕ1|U(t0, t1) |ΨI〉 = 〈ϕ1| e−
i
! εĤ[a

†,a]
∫ ∏

λ

dϕλ,0dϕλ,0
N

e−
∑

λ ϕλ,0ϕλ,0ψ(ϕ) |ϕ0〉

=

∫ ∏

λ

dϕλ,0dϕλ,0
N

e−
∑

λ ϕλ,0ϕλ,0ψ(ϕ) 〈ϕ1| e−
i
! εĤ[a

†,a] |ϕ0〉

≈
∫ ∏

λ

dϕλ,0dϕλ,0
N

e−
∑

λ ϕλ,0ϕλ,0ψ(ϕ) 〈ϕ1| : e−
i
!εĤ[a

†,a] : +O(ε2) |ϕ0〉

=

∫ ∏

λ

dϕλ,0dϕλ,0
N

e−
∑

λ ϕλ,0ϕλ,0ψ(ϕ) 〈ϕ1|ϕ0〉 e−
i
! εH[ϕλ,1,ϕλ,0]

=

∫ ∏

λ

dϕλ,0dϕλ,0
N

e−
∑

λ ϕλ,0ϕλ,0ψ(ϕ)e
∑

λ ϕλ,1ϕλ,0e−
i
! εH[ϕλ,1,ϕλ,0] , (2.2.7)

where the following Grassmann rules have been used (2.1.48), (2.1.49) and (2.1.53). When calculating the
matrix element of the time evolution operator, the normal order has to be seen as ordering the summands of
the power series in normal order and then after applying the coherent states on each term resuming the series.
This is due to the definition of the normal order operator, which is given with respect to the vacuum [46].
The index λ on the Hamiltonian H

[
ϕλ,1,ϕλ,0

]
is not to be confused with a sum index. The same applies

later for the Hamiltonian H[ϕλ,k,ϕλ,k−1]. The matrix element was evaluated by (2.1.126). So it should be
noted, that if we later insert the Hamiltonian in normal order, it is given by

H
[
ϕλ,k,ϕλ,k−1

]
≡

〈ϕk| Ĥ[a†k, ak] |ϕk−1〉
〈ϕk|ϕk−1〉

, (2.2.8)

hence the scalar product of (2.1.119) will be inserted in the formula for the path integral. This means, that
later one can simply replace a Hamilton operator given in second quantization by one with the coherent
states. We can now derive the other two elements in the same manner. With c |a〉 ↔ 〈a| c we get

〈ψ| =
∫ ∏

λ

dϕλdϕλ
N

e−
∑

n ϕnϕnψ(ϕ) 〈ϕ| . (2.2.9)

The element is then given by

〈ψF |U(tN , tN−1) |ϕN−1〉 = 〈ψN |U(tN , tN−1) |ϕN−1〉

=

∫ ∏

λ

dϕλ,Ndϕλ,N
N

e−
∑

λ ϕλ,Nϕλ,Nψ(ϕ) 〈ϕN |U(tN , tN−1) |ϕN−1〉

≈
∫ ∏

λ

dϕλ,Ndϕλ,N
N

e−
∑

λ ϕλ,Nϕλ,Nψ(ϕ) 〈ϕN |ϕN−1〉 e−
i
! εH[ϕλ,N ,ϕλ,N−1]

=

∫ ∏

λ

dϕλ,Ndϕλ,N
N

e−
∑

λ ϕλ,Nϕλ,Nψ(ϕ)e
∑

λ ϕλ,Nϕλ,N−1e−
i
! εH[ϕλ,N ,ϕλ,N−1] .

(2.2.10)

And finally we can calculate the element

〈ϕk|U(tk, tk−1) |ϕk〉 = 〈ϕk| e−
i
! εĤ[a†,a] |ϕk−1〉

≈ 〈ϕk|ϕk−1〉 e−
i
!εH[ϕλ,k,ϕλ,k−1]

= e
∑

λ ϕλ,kϕλ,k−1e−
i
!εH[ϕλ,k,ϕλ,k−1] , (2.2.11)
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where again the Grassmann rules (2.1.48), (2.1.49) and (2.1.53) have been used. Now we are ready to calculate
the overlap for the coherent state path integral

〈ψF tF |ψItI〉
= 〈ψF |U(tN , tN−1)U(tN−1, tN−2) . . . U(t2, t1)U(t1, t0) |ψI〉

=
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

]
〈ψF |U(tN , tN−1) |ϕN−1〉

×
(

N−1∏

k=2

〈ϕk|U(tk, tk−1) |ϕk−1〉
)

〈ϕ1|U(t1, t0) |ψI〉

=
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

](∫ ∏

λ

dϕλ,0dϕλ,0
N

e−
∑

λ ϕλ,Nϕλ,NψF (ϕλ)e
∑

λ ϕλ,Nϕλ,N−1e−
i
! εH[ϕλ,Nϕλ,N−1]

)

×
(

N−1∏

k=2

e
∑

λ ϕλ,kϕλ,k−1e−
i
! εH[ϕλ,k,ϕλ,k−1]

)(∫ ∏

λ

dϕλ,Ndϕλ,N
N

e−
∑

λ ϕλ,0ϕλ,0ψI(ϕλ)e
∑

λ ϕλ,1ϕλ,0e−
i
! εH[ϕλ,1,ϕλ,0]

)

2.1.48
2.1.49
2.1.53
=

N∏

k=0

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e−

∑N
k=0

∑
λ ϕλ,kϕλ,kψF (ϕλ)

(
N∏

k=1

e
∑

λ ϕλ,kϕλ,k−1e−
i
!εH[ϕλ,k,ϕλ,k−1]

)
ψI(ϕλ)

2.1.47
=

N∏

k=0

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e−
∑N

k=0

∑
λ ϕλ,kϕλ,kψF (ϕλ)e

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]ψI(ϕλ)

2.1.53
=

N∏

k=0

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e−

∑N
k=0

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

! εH[ϕλ,k,ϕλ,k−1]ψF (ϕλ)ψI(ϕλ) . (2.2.12)

At this point one can differentiate two cases:
Case 1

e−
∑N

k=0

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

! εH[ϕλ,k,ϕλ,k−1]

2.1.53
= e−

∑
λ ϕλ,0ϕλ,0e−

∑N
k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

! εH[ϕλ,k,ϕλ,k−1]

= e−
∑

λ ϕλ,0ϕλ,0e
i
!ε

∑N
k=1

∑
λ i!ϕλ,k

(ϕλ,k−ϕλ,k−1
ε

)
−H[ϕλ,k,ϕλ,k−1] . (2.2.13)

Case 2

e−
∑N

k=0

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]

= e−
∑N

k=0

∑
λ ϕλ,kϕλ,ke

∑N−1
k=0

∑
λ ϕλ,k+1ϕλ,k− i

! εH[ϕλ,k+1,ϕλ,k]

2.1.53
= e−

∑
λ ϕλ,Nϕλ,N e−

∑N−1
k=0

∑
λ ϕλ,kϕλ,ke

∑N−1
k=0

∑
λ ϕλ,k+1ϕλ,k− i

!εH[ϕλ,k+1,ϕλ,k]

= e−
∑

λ ϕλ,Nϕλ,N e
∑N−1

k=0

∑
λ(ϕλ,k+1−ϕλ,k)ϕλ,k− i

! εH[ϕλ,k+1,ϕλ,k]

= e−
∑

λ ϕλ,Nϕλ,N e
∑N

k=1

∑
λ(ϕλ,k−ϕλ,k−1)ϕλ,k−1− i

! εH[ϕλ,k,ϕλ,k−1]

= e−
∑

λ ϕλ,Nϕλ,N e
i
! ε

∑N
k=1

∑
λ(−i !)

(ϕλ,k−ϕλ,k−1
ε

)
ϕλ,k−1−H[ϕλ,k,ϕλ,k−1] . (2.2.14)
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We can now define a symmetric path integral in the following way

〈ψF tF |ψI tI〉 =
N∏

k=0

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e−
1
2

∑
λ(ϕλ,Iϕλ,I+ϕλ,Nϕλ,N)

× e
i
! ε

∑N
k=1

∑
λ

i !
2

[
ϕλ,k

(ϕλ,k−ϕλ,k−1
ε

)
−
(ϕλ,k−ϕλ,k−1

ε

)
ϕλ,k−1

]
−H[ϕλ,k,ϕλ,k−1]ψF (ϕλ)ψI(ϕλ) , (2.2.15)

if the final and initial states are also coherent states, we get instead

〈ϕF tF |ϕI tI〉 =
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e

1
2

∑
λ(ϕλ,Iϕλ,I+ϕλ,Nϕλ,N)

× e
i
!ε

∑N
k=1

∑
λ

i !
2

[
ϕλ,k

(ϕλ,k−ϕλ,k−1
ε

)
−
(ϕλ,k−ϕλ,k−1

ε

)
ϕλ,k−1

]
−H[ϕλ,k,ϕλ,k−1] . (2.2.16)

We note here that the symmetrization is not necessary if we are interested in the partition function, since
due to the trace another factor e−

∑
λ ϕλϕλ comes in and the sum on the left side of the coherent state form

of (2.2.12), which only differs in the change of k,N from 0 and N to 1 and N − 1, as in (2.2.16). In the case
that the initial and final states are coherent states the overlap (2.2.12) reads

〈ϕF tF |ϕI tI〉 =
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e−

∑N−1
k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1] . (2.2.17)

We are now performing the Wick rotation in the discrete form, that is due to the transformation t = −iτ we
get

εt = tn − tn−1 = −iτn + iτn−1 = −i(τn − τn−1) = −iετ . (2.2.18)

If we now introduce the Hamiltonian Ĥ−µN̂ , where µ is the chemical potential and N̂ is the particle operator,
we arrive with

〈ϕI , 0| e−β(Ĥ−µN̂) |ϕF , !β〉

=
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e−
∑N−1

k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− 1

! ε(H[ϕλ,k,ϕλ,k−1]−N[ϕλ,k,ϕλ,k−1])

=
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e−
∑N−1

k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− 1

! ε(H[ϕλ,k,ϕλ,k−1]−µϕλ,kϕλ,k−1) .

(2.2.19)

The partition function can now be expressed in the form
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Z = Tr e−β(Ĥ−µN̂)

=

∫ ∏

λ

dϕλdϕλ
N

e−
∑

λ ϕλϕλ 〈ζϕ| e−β(Ĥ−µN̂) |ϕ〉

=
N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e−
∑N

k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− 1

! ε(H[ϕλ,k,ϕλ,k−1]−µϕλ,kϕλ,k−1)

=
N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e
∑N

k=1

∑
λ ϕλ,k(ϕλ,k−1−ϕλ,k)− 1

!ε(H[ϕλ,k,ϕλ,k−1]−µϕλ,kϕλ,k−1)

=
N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e
− ε

!
∑N

k=1

∑
λ !ϕλ,k

(ϕλ,k−ϕλ,k−1
ε

)
+H[ϕλ,k,ϕλ,k−1]−µϕλ,kϕλ,k−1

=
N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e
− ε

!
∑N

k=1

∑
λ ϕλ,k

(
!
ϕλ,k−ϕλ,k−1

ε −µϕλ,k−1

)
+H[ϕλ,k,ϕλ,k−1] . (2.2.20)

Now due to the cycling property of the trace

Tr 〈ϕF |U(tN , tN−1)U(tN−1, tN−2) . . . U(t1, t0) |ϕI〉 = Tr 〈ϕF |U(t1, t0)U(tN , tN−1) . . . U(t2, t1) |ϕI〉 (2.2.21)

we obtain the periodic, antiperiodic boundary condition

ζϕλ,N = ϕλ,0 . (2.2.22)

This can be expressed explicitly by writing

Z = Tre−β(Ĥ−µN̂)

=
N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e
− ε

!
∑N

k=2

∑
λ ϕλ,k

(
!
ϕλ,k−ϕλ,k−1

ε −µϕλ,k−1

)
+H[ϕλ,k,ϕλ,k−1]

+
ε

!

[
∑

λ

ϕλ,1

(
!ϕλ,1 − ϕλ,0

ε
− µϕλ,0

)
+H

[
ϕλ,1,ϕλ,0

]
]

=
N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e
− ε

!
∑N

k=2

∑
λ ϕλ,k

(
!
ϕλ,k−ϕλ,k−1

ε −µϕλ,k−1

)
+H[ϕλ,k,ϕλ,k−1]

+
ε

!

[
∑

λ

ϕλ,1

(
!ϕλ,1 − ζϕλ,N

ε
− µζϕλ,N

)
+H

[
ϕλ,1, ζϕλ,N

]
]
. (2.2.23)

Now it is common to define the discrete action

SN [ϕ,ϕ] =
ε

!

N∑

k=2

∑

λ

ϕλ,k

(
!ϕλ,k − ϕλ,k−1

ε
− µϕλ,k−1

)
+H

[
ϕλ,k,ϕλ,k−1

]

+
ε

!

[
∑

λ

ϕλ,1

(
!
ϕλ,1 − ζϕλ,N

ε
− µζϕλ,N

)
+H

[
ϕλ,1, ζϕλ,N

]
]

, (2.2.24)

so we have the path integral

Z = lim
N→∞

N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e−SN [ϕ,ϕ] , (2.2.25)
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introducing the trajectory notation

ϕλ(τ)!
∂ϕλ(τ)

∂τ
: = ϕλ,k

(
!ϕλ,k − ϕλ,k−1

ε

)

ϕλ(τ) : = ϕλ,k−1

H[ϕλ(τ),ϕλ(τ)] : = H
[
ϕλ,k,ϕλ,k−1

]
, (2.2.26)

we obtain the trajectory path integral form

Z =

∫
DϕDϕe

− 1
!
∫ !β
0 dτ

∑
λ ϕλ

(
! ∂ϕλ(τ)

∂τ −µϕλ(τ)
)
+H[ϕλ(τ),ϕλ(τ)] . (2.2.27)

It should be pointed out, that the trajectory form of the path integral is merely a symbolic form of the
discrete definition (2.2.25). This is also most evident from the fact that the derivative ∂τ := 1

ε (ϕλ,k − ϕλ,k−1)
is indeed a derivative for bosons but does not make sense for Grassmann numbers in which case just the
limit is defined. Furthermore the above form has been derived in an O(ε2) approximation. There are cases
in which this approximation is not sufficient and higher orders have to be considered as has for example been
pointed out in [47] in the context of the Chern-Simons theory. Although the trajectory notation is a nice way
to write down the path integral, the calculations should be checked within the discrete form [34]. Finally it
should not be left unnoticed that sometimes it can be useful to rewrite the path integral with the help of
fields in space coordinates as done uniformly in [48]. We will quickly outline the procedure to do so. First
recall the transformation rule

a†λ =
∑

λ̃

〈λ̃|λ〉a†
λ̃

↔ aλ̃ =
∑

λ̃

〈λ|λ̃〉a†λ . (2.2.28)

which in the case for the continuous space coordinates yields

ψ̂†(x) := a†x =
∑

λ̃

〈λ̃|x〉a†
λ̃

↔ a†
λ̃
=

∫
d3x 〈x|λ̃〉ψ̂†(x) =

∫
d3xϕλ̃(x)ψ̂

†(x) . (2.2.29)

Now every coherent state can be rewritten as

|ϕ〉 = eζ
∑

λ ϕλa
†
λ |0〉 = eζ

∑
λ ϕλ(

∫
dxϕλ(x)ψ̂†(x)) |0〉 = eζ

∫
dx(

∑
λ ϕλϕλ(x))ψ̂†(x) |0〉 =: eζ

∫
dxχ(x)ψ̂†(x) |0〉 ,

(2.2.30)

so the transition can simply be made by replacing the sum with the integral, through the functions in fact
do change. The path integral in this form reads

Z =

∫
DψDψe

1
!
∫ !β
0 dτ

∫
d3x{ψ(x,τ)(!∂τ−µ)ψ(x,τ)+H[ψ(x,τ),ψ(x,τ)]} . (2.2.31)
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Time Ordered Property of the Functional Integral

We are now going to take one step back to see the time ordered property of the functional integral. The standard
way of showing the time ordered property for the path integral is to add two operators evaluated at two different
times t1 and t2 to the path integral formula and then use the composition law as well as the definition for the
probability amplitude via the time evolution operator, to show that in the cases, where t1 > t2 and t1 < t2,
the path integral automatically orders the two operators in the right way, that is as demanded from the time
order operator. In the case of the coherent state path integral we have to go back to the discrete form of the
path integral and bring the operators to the right position of the time-slice. It is very instructive to do this in
the same way as for the normal path integral, i.e., consider two operators evaluated at two different times, and
bring them to the right time-slice point for the both cases t1 > t2 and t1 < t2. The main difference here is that
one evaluated operator has to be brought to the right of the time evolution operator and the other to the left.
This is due to the fact, that the creation operator has to act on the bra of the inserted closure relation and the
annihilation operator has to act on the corresponding ket. In both cases the time-slice is the same and one has
to identify the discrete time close to the time where the operator is evaluated. Here we are going to show the
principle directly via the time ordered operator T̂, which is defined as

T̂ [Oλ1(t1)Oλ2(t2) . . . Oλ3(t3)] := ζP ÔλP1
(tλP1

)ÔλP2
(tλP2

) . . . ÔλPn
(tλPn

) , (2.2.32)

where the operators are now ordered such that

tP1 > tP2 > . . . > tPn . (2.2.33)

The time order operator is tailor-made for fermions and bosons, so that in the fermionic case the anticommutation
takes place due to the time ordering. Furthermore, the time ordering process shall be in such a way, that the
operators at the same time are in normal order, if we have to order creation and annihilation operators at the
same time. We will now indicate the operator with ã for being either a creation or annihilation operator. So we
will start with

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

ϕλ1(t1) . . .ϕλn(tn)ϕλn+1
(tn+1) . . .ϕλ2n(t2n)e

−
∑N−1

k=1

∑
λ ϕλ,kϕλ,k

× e
∑N

k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
ϕ̃λP1

(tP1) . . . ϕ̃λP2n
(tP2n)e

−
∑N−1

k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

! εH[ϕλ,k,ϕλ,k−1] .

(2.2.34)

Now we find depending on whether we have a creation or annihilation operator the corresponding time-slice
element

∃tm−1 tP1 ∼ tm−1 ∨ ∃tm tP1 ∼ tm

∃tn−1 tP2 ∼ tn−1 ∨ ∃tn tP2 ∼ tn
...

∃t#−1 tP2n ∼ t$−1 ∨ ∃t# tP2n ∼ t$ . (2.2.35)

We can now proceed with
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ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

ϕ̃λP1
(tP1) . . . ϕ̃λP2n

(tP2n)e
−

∑N−1
k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
ϕ̃λP1

(t̃m) . . . ϕ̃λP2n
(t̃$)e

−
∑N−1

k=1

∑
λ ϕλ,kϕλ,ke

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
e−

∑N−1
k=1

∑
λ ϕλ,kϕλ,k ϕ̃λP1

(t̃m) . . . ϕ̃λP2n
(t̃$)e

∑N
k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

]

ϕ̃λP1
(t̃m) . . . ϕ̃λP2n

(t̃$)e
∑N

k=1

∑
λ ϕλ,kϕλ,k−1− i

!εH[ϕλ,k,ϕλ,k−1]

We now split the time slice, according to where the fields are evaluated, and bring them to the left or right of
the time-evolution

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

]
ϕ̃λP1

(t̃m) . . . ϕ̃λP2n
(t̃$)

(
N∏

k=m+1

e
∑

λ ϕλ,kϕλ,k−1− i
! εH[ϕλ,k,ϕλ,k−1]

)

× e
∑

λ ϕλ,mϕλ,m−1− i
! εH[ϕλ,m,ϕλ,m−1]

×
(

m−1∏

k=$+1

e
∑

λ ϕλ,kϕλ,k−1− i
! εH[ϕλ,k,ϕλ,k−1]

)

e
∑

λ ϕλ,#ϕλ,#−1− i
! εH[ϕλ,n,ϕλ,n−1]

(
$−1∏

k=1

e
∑

λ ϕλ,kϕλ,k−1− i
! εH[ϕλ,k,ϕλ,k−1]

)

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

](
N∏

k=m+1

e
∑

λ ϕλ,kϕλ,k−1− i
!εH[ϕλ,k,ϕλ,k−1]

)

× e
∑

λ ϕλ,mϕλ,m−1− i
! εH[ϕλ,m,ϕλ,m−1]ϕ̃λP1

(t̃m)

× . . .× ϕ̃λP2n
(t̃$)e

∑
λ ϕλ,#ϕλ,#−1− i

!εH[ϕλ,n,ϕλ,n−1]

(
$−1∏

k=1

e
∑

λ ϕλ,kϕλ,k−1− i
!εH[ϕλ,k,ϕλ,k−1]

)

Next we will use de definition of the time evolution operator and then define temporarily an operator Ũ ,Ũ †

depending on the position of a or a†.

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

](
N∏

k=m+1

〈ϕk| Û(tk, tk−1) |ϕk−1〉
)

〈ϕm| Û(tm, tm−1)âλP1 ,m−1 |ϕm−1〉

× . . .× 〈ϕ$| â†λP2n
Û(t$, t$−1) |ϕ$−1〉

(
$−1∏

k=1

〈ϕk| Û(tk, tk−1) |ϕk−1〉
)

= ζP2n

N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

e−
∑

λ ϕλ,kϕλ,k

](
N∏

k=m+1

〈ϕk| Û(tk, tk−1) |ϕk−1〉
)

〈ϕm| Ũ(tm, tm−1) |ϕm−1〉

× . . .× 〈ϕ$| Ũ †(t$, t$−1) |ϕ$−1〉
(
$−1∏

k=1

〈ϕk| Û(tk, tk−1) |ϕk−1〉
)

= ζP2n 〈ψF |U(tN , tN−1)U(tN , tN−2) . . . U(tm+1, tm)Ũ (tm, tm−1) . . . Ũ
†(t$, t$−1)U(t$, t$−1) . . . U(t2, t1)U(t1, t0) |ϕI〉

= ζP2n 〈ψF |U(tN , tN−1)U(tN , tN−2) . . . U(tm+1, tm)U(tm, tm−1)âλP1 ,m−1︸ ︷︷ ︸
Ũ(tm,tm−1)

. . . â†λP2n ,$U(t$, t$−1)
︸ ︷︷ ︸

Ũ†(t#,t#−1)

. . . U(t2, t1)U(t1, t0) |ϕI〉

= 〈ψF tF | T̂ aλ1(t1) . . . aλn(tn)a
†
λn+1

(tn+1) . . . a
†
λ2n

(t2n) |ψItI〉 (2.2.36)
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The only question remaining is, what happens if two operators are acting at the same time tk. Then we must in
order to be consistent with the definition of the time-order operator bring the operators at equal times in normal
order. By doing so, two coherent states can be brought to one time evolution operator. That is one will have an
element like

〈ϕm| â†λP2 ,m−1Û(tm, tm−1)âλP1 ,m−1 |ϕm−1〉 (2.2.37)

and the pre-factor ζP2n will be in accordance with the definition of the time order operator. That means if we
have a creation and annihilation operator acting at the same time, the creation operator will be evaluated one
time step later than the corresponding annihilation operator. So finally we obtain the identity

〈ψF tF | T̂ aλ1(t1) . . . aλn(tn)a
†
λn+1

(tn+1) . . . a
†
λ2n

(t2n) |ψItI〉

=
N−1∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

ϕλ1(t1) . . .ϕλn(tn)ϕλn+1
(tn+1) . . .ϕλ2n(t2n)e

−
∑N−1

k=1

∑
λ ϕλ,kϕλ,k

× e
∑N

k=1

∑
λ ϕλ,kϕλ,k−1− i

! εH[ϕλ,k,ϕλ,k−1] .
(2.2.38)
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2.2.1 Derivation of the Free Partition Function with the Path Integral

We want to express the Green function with the path integral, and then thread the interaction via perturbation
theory. Derive the partition function for the free Hamiltonian. In this chapter we follow the way taken by
John W. Negele and Henri Orland from [34] and evaluate the partition function and the Green function in
the discrete form of the path integral. For that matter we are now considering the Hamiltonian of a free
particle

H0 =
∑

λ

ελa
†
λaλ . (2.2.39)

The discrete action (2.2.24) can then be rewritten as follows

SN [ϕ,ϕ] =
ε

!

N∑

k=2

[
∑

λ

ϕλ,k

(
!ϕλ,k − ϕλ,k−1

ε
− µϕλ,k−1

)
+H

[
ϕλ,k,ϕλ,k−1

]
]

+
ε

!

[
∑

λ

ϕλ,1

(
!ϕλ,1 − ζϕλ,N

ε
− µζϕλ,N

)
+H

[
ϕλ,1, ζϕλ,N

]
]

=
ε

!

N∑

k=2

∑

λ

[
ϕλ,k

(
!ϕλ,k − ϕλ,k−1

ε
− µϕλ,k−1

)
+ ελϕλ,kϕλ,k−1

]

+
ε

!
∑

λ

ϕλ,1

[(
!ϕλ,1 − ζϕλ,N

ε
− µζϕλ,N

)
+ ζελϕλ,1ϕλ,N

]

=
N∑

k=2

∑

λ

[
ϕλ,k

(
ϕλ,k − ϕλ,k−1 −

ε

!µϕλ,k−1

)
+

ε

!ελϕλ,kϕλ,k−1

]

+
∑

λ

[
ϕλ,1

(
ϕλ,1 − ζϕλ,N − ε

!µζϕλ,N
)
+

ε

!ζελϕλ,1ϕλ,N
]

=
N∑

k=2

∑

λ

[
ϕλ,kϕλ,k − ϕλ,kϕλ,k−1 −

ε

!µϕλ,kϕλ,k−1 +
ε

!ελϕλ,kϕλ,k−1

]

+
∑

λ

[
ϕλ,1ϕλ,1 − ζϕλ,1ϕλ,N − ε

!µζϕλ,1ϕλ,N +
ε

!ζελϕλ,1ϕλ,N
]

=
N∑

k=2

∑

λ

[
ϕλ,kϕλ,k −

[
1− ε

! (ελ − µ)
]
ϕλ,kϕλ,k−1

]

+
∑

λ

[
ϕλ,1ϕλ,1 − ζ

[
1− ε

! (ελ − µ)
]
ϕλ,1ϕλ,N

]

=
N∑

k=2

∑

λ

(
ϕλ,kϕλ,k − aλϕλ,kϕλ,k−1

)
+

∑

λ

(
ϕλ,1ϕλ,1 − ζaλϕλ,1ϕλ,N

)
. (2.2.40)

Where we have defined

a := 1− ε

! (ελ − µ) . (2.2.41)

The advantage of writing the action in this form is that we can now express it in matrix form. The fact that
no interaction is present makes the matrix almost diagonal and we will be able to solve the partition function.
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We now define the matrix M as:

M (λ) =





1 0 . . . 0 −ζaλ
−aλ 1 0 0

0 −aλ 1
. . . ...

0 −aλ
. . . 0

... 0
. . . 1 0

0 . . . −aλ 1





, (2.2.42)

where the last entry in first line takes care of the boundary term. If we first derive

M (λ) · ϕ =





1 0 . . . 0 −ζaλ
−aλ 1 0 0

0 −aλ 1
. . . ...

0 −aλ
. . . 0

... 0
. . . 1 0

0 . . . −aλ 1





·





ϕλ,1
ϕλ,2

...

ϕλ,N−1

ϕλ,N





=





ϕλ,1 − ζaλϕλ,N
−aλϕλ,1 + ϕλ,2
−aλϕλ,2 + ϕλ,3

...
−aλϕλ,N−2 + ϕλ,N−1

−aλϕλ,N−1 + ϕλ,N





, (2.2.43)

we can next evaluate the element

ϕλ ·M (λ) · ϕλ =
(
ϕλ,1,ϕλ,2, . . . ,ϕλ,N

)
·





ϕλ,1 − ζaλϕλ,N
−aλϕλ,1 + ϕλ,2
−aλϕλ,2 + ϕλ,3

...
−aλϕλ,N−2 + ϕλ,N−1

−aλϕλ,N−1 + ϕλ,N





= ϕλ,1ϕλ,1 − ζaλϕλ,1ϕλ,N − aλϕλ,2ϕλ,1 + ϕλ,2ϕλ,2 + ϕλ,3ϕλ,3

− . . .− aλϕλ,N−1ϕλ,N−2 + ϕλ,N−1ϕN−1 − aλϕλ,Nϕλ,N−1 + ϕλ,Nϕλ,N

=
N∑

k=2

(
ϕλ,kϕλ,k − aλϕλ,kϕλ,k−1 + ϕλ,1ϕλ,1 − ζaλϕλ,1ϕλ,N

)
. (2.2.44)

Comparing this with (2.2.40) we can finally rewrite the action as

SN =
∑

λ

N∑

i=1
j=1

ϕλ,iM
(λ)
ij ϕλ,j . (2.2.45)

So we have rewritten the action in a Gaussian form, where the field components decouple but the time does
not. In other words for each λ we get a sum of a λ2 term times a sum over the time components. The
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partition function now reads

Z0 = lim
N→∞

N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]

e−
∑

λ

∑N
i,j=1 ϕλ,iM

(λ)
ij ϕλ,j

= lim
N→∞

N∏

k=1

[∫ ∏

λ

dϕλ,kdϕλ,k
N

]
∏

λ

e−
∑N

i,j=1 ϕλ,iM
(λ)
ij ϕλ,j

= lim
N→∞

N∏

k=1

∏

λ

[∫
dϕλ,kdϕλ,k

N
e−

∑N
i,j=1 ϕλ,iM

(λ)
ij ϕλ,j

]

= lim
N→∞

∏

λ

[
N∏

k=1

∫
dϕλ,kdϕλ,k

N
e−

∑N
i,j=1 ϕλ,iM

(λ)
ij ϕλ,j

]

= lim
N→∞

∏

λ

[
detM (λ)

]−ζ
. (2.2.46)

Since the determinant of M (λ) (2.2.42) is given by

det M(λ) = lim
N→∞

[
1− ζ

(
1− β(ελ − µ)

N

)N
]

= 1− ζe−β(ελ−µ) , (2.2.47)

one gets the standard expression for the free partition function

Z0 =
∏

λ

(
1− ζeβ(ελ−µ)

)−ζ
. (2.2.48)

Derivation of the Inverse Matrix

Next we need to determine the inverse of the matrix M(λ), because it is related to the free Green function as
we will see in a moment, thus





1 0 . . . 0 −ζaλ
−aλ 1 0 0

0 −aλ 1
. . . ...

0 −aλ
. . . 0

... 0
. . . 1 0

0 . . . −aλ 1





·





η11 η21 . . . . . . ηN1

η12 η22 . . . . . . ηN2
...

...
...

η1N η2N . . . . . . ηNN





=





η11 − ζaλη1N η21 − ζaλ η2N . . . . . . ηN1 − ζaλ ηNN

−aλ η11 + η12 −aλ η21 + η22 . . . . . . −aλ ηN1 + ηN2

−aλ η12 + η13 −aλ η22 + η23 . . . . . . −aλ ηN2 + ηN3

−aλ η13 + η14 −aλ η23 + η24 . . . . . . −aλ ηN3 + ηN4
...

... . . . . . .
...

−aλ η1N−2 + η1N−1 −aλ η2N−2 + η2N−1 . . . . . . −aλ ηNN−2 + ηNN−1

−aλ η1N−1 + η1N −aλ η2N−1 + η2N . . . . . . −aλ ηNN−1 + ηNN





!
= 1 . (2.2.49)
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The rows can now be solved via recursion. I.e :

η11 = 1 + ζaλη1N

η12 = aλ η11 = aλ(1 + ζaλη1N ) = aλ + ζa2λη1N

η13 = aλ η12 = aλ(aλ + ζa2λη1N ) = a2λ + ζa3λη1N
...

η1k = ak−1
λ + ζakλη1N . (2.2.50)

Now we can evaluate the last entry by

η1N = aN−1
λ + ζaNλ η1N ⇔ η1N (1− ζ aNλ ) = aN−1

λ ⇔ η1N =
aN−1
λ

1− ζaNλ
, (2.2.51)

=⇒ η1k = ak−1
λ + ζakλ

aN−1
λ

1− ζaNλ
=

ak−1
λ (1− ζaNλ )

1− ζaNλ
+

ζaN+k−1
λ

(1− ζaNλ )
=

ak−1
λ − ζaN+k−1

λ + ζaN+k−1
λ

1− ζ aNλ
=

ak−1
λ

1− ζaNλ

Now we do the same thing for the second row

η21 = ζaλη2N

η22 = 1 + aλη21 = 1 + a2λζη2N

η23 = aλη22 = aλ(1 + a2λζη2N ) = aλ + a3λζη2N
...

η2k = ak−2
λ + akλζη2N . (2.2.52)

So now we can again calculate the last entry

η2N = aN−2
λ + aNλ ζη2N ⇔ η2N (1− ζaNλ ) = aN−2

λ ⇔ η2N =
aN−2
λ

1− ζaNλ
(2.2.53)

η2k = ak−2
λ + akλζ

aN−2
λ

1− ζaNλ
=

(1− ζaNλ )a
k−2
λ

(1− ζaNλ )
+ akλζ

aN−2
λ

1− ζaNλ
=

ak−2
λ − ζaN+k−2

λ + ζaN+k−2
λ

1− ζaNλ
=

ak−2
λ

1− ζaNλ

and for the next entry follows

η31 = ζαλη3N

η32 = aλη31 = a2λζη3N

η33 = 1 + aλη32 = 1 + a3λζη3N

η34 = aλη33 = aλ(1 + a3λζη3N ) = aλ + a4λζη3N

η35 = aλη34 = aλ(aλ + a4λζη3N ) = a2λ + a5λζη3N
...

η3k = ak−3
λ + akλζη3N . (2.2.54)

So for the last entry we get

η3N = aN−3
λ + aNλ ζη3N ⇔ η3N (1− ζaNλ ) = aN−3

λ ⇔ η3N =
aN−3
λ

1− ζaNλ
(2.2.55)

η3k = ak−3
λ + akλζ

aN−3
λ

1− ζaNλ
=

ak−3
λ (1− ζaNλ )

(1− ζaNλ )
+ ζ

aN+k−3
λ

(1− ζaNλ )
=

ak−3
λ − ζaN+k−3

λ + ζaN+k−3
λ

1− ζaNλ
=

ak−3
λ

1− ζaNλ
.
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So now the pattern should be clear and in general we get

η$k = ak−$λ + akλζ
aN−$
λ

1− ζaNλ
=

ak−$λ (1− ζaNλ )

1− ζaNλ
+

ζaN+k−$
λ

1− ζaNλ
=

ak−$λ − ζaN+k−$
λ + ζaN+k−$

λ

1− ζaNλ
=

ak−$λ

1− ζaNλ
.

(2.2.56)

With all of these terms we can now write down the inverse matrix as

M (λ)−1
=

1

1− ζaNλ





1 ζaN−1
λ ζaN−2

λ . . . ζaλ
aλ 1 ζaN−1

λ ζa2λ
a2λ aλ 1
... a2λ aλ

...
a2λ

aN−3
λ

aN−2
λ aN−3

λ ζaN−1
λ

aN−1
λ aN−2

λ aN−3
λ . . . 1





. (2.2.57)
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2.2.2 Derivation of the Free Green Function with the Path Integral

Definition of the Green Function

We will now define the imaginary Green function and then express it with the help of the path integral. We
start with the definition

G(n)(λ1τ1 . . .λnτn|λ′
1τ

′
1 . . .λ

′
nτ

′
n) := 〈T̂aλ1(τ1) . . . aλn(τn)a

†
λ′n
(τ ′n) . . . a

†
λ′1
(τ ′1)〉 (2.2.58)

where the creation and annihilation operators are given in the Heisenberg representation

aλ(τ) = e
(Ĥ−µN̂)τ

! aλe
−(Ĥ−µN̂)τ

! ,

a†λ(τ) = e
(Ĥ−µN̂)τ

! a†λe
−(Ĥ−µN̂)τ

! . (2.2.59)

The thermal average is defined as

〈Â〉 =
∑

λ 〈ψλ| e−β(Ĥ−µN̂)Â |ψλ〉∑
λ 〈ψλ| eβ(Ĥ−µN̂) |ψλ〉

=
1

Z0
Tr

(
e−β(Ĥ−µN̂)Â

)
. (2.2.60)

with

Z0 = Tre−β(Ĥ−µN̂) . (2.2.61)

Now we will rewrite the Green function with the path integral formalism. The last step makes use of the
time ordered property of the path integral which was shown (2.2.36) in the previous section, we again write
ã for either a or a†

G(n)
(
λ1τ1 . . .λnτn|λ′

2nτ
′
2n . . . λ

′
n+1τ

′
n+1

)
= 〈T̂aλ1(τ1) . . . aλn(τn)a

†
λ′n
(τ ′n+1) . . . a

†
λ′1
(τ ′2n)〉

=
1

Z0
Tr

[
e−β(Ĥ−µN̂)T̂aλ1(τ1) . . . aλn(τn)a

†
λ′n+1

(τ ′n+1) . . . a
†
λ′2n

(τ ′2n)
]

=
1

Z0
Tr

[
e−β(Ĥ−µN̂)ζPãλP1

(τP1)ãλP2
(τP2) . . . ã

†
λP2n

(τP2n)
]

=
1

Z0
ζPTr

[
e−β(Ĥ−µN̂)ãλP1

(τP1)ãλP2
(τP2) . . . ã

†
λP2n

(τP2n)
]

=
1

Z0
ζPTr

[
e−β(Ĥ−µN̂)e(Ĥ−µN̂)τP1 ãλP1

(τP1)e
−(Ĥ−µN̂)τP1e(Ĥ−µN̂)τP2 ãλP2

(τP2)e
−τP2(Ĥ−µN̂)

]

. . . e(Ĥ−µN̂)τP2n ãλP2n
(τP2n)e

−(Ĥ−µN̂)τP2n

]
. (2.2.62)

Now we need (2.1.44)

e
−

∫ β
τP1

(Ĥ−µN̂)
= e−[β(Ĥ−µN̂)−(Ĥ−µN̂)τP1 ]

= e−β(Ĥ−µN̂)e(Ĥ−µN̂)τP1 , (2.2.63)

and

e
−

∫ τP1
τP2

dτ ′(Ĥ−µN̂)
= e−[(Ĥ−µN̂)τP1−(Ĥ−µN̂)τP2 ]

= e−(Ĥ−µN̂)τP1+(Ĥ−µN̂)τP2

= e−(Ĥ−µN̂)τP1e(Ĥ−µN̂)τP2 , (2.2.64)
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and likewise

e
−

∫ τk
τk+1

dτ ′(Ĥ−µN̂)
= e−[(Ĥ−µN̂)τk−(Ĥ−µN̂)τk+1]

= e−(Ĥ−µN̂)−τk+(Ĥ−µN̂)τk+1

= e−(Ĥ−µN̂)τke(Ĥ−µN̂)τk+1 . (2.2.65)

With these expressions we can proceed

G(n)
(
λ1τ1 . . .λnτn|λ′

2nτ
′
2n . . .λ

′
n+1τ

′
n+1

)
(2.2.66)

=
1

Z0
ζPTr

[
e
−

∫ β
τP1

(Ĥ−µN̂)
ãλP1

(τP1)e
−

∫ τP1
τP2

dτ ′(Ĥ−µN̂)
ãλP2(τP2)e

−
∫ τP2
τP3

dτ ′(Ĥ−µN̂)

. . . e
−

∫ τP2n−1
τP2n

dτ ′(Ĥ−µN̂)
ãλP2n

(τP2n)e
−

∫ τP2n
τP2n+1

dτ ′(Ĥ−µN̂)
]

=
1

Z0
ζPTr

[
e
−

∫ β
τP1

(Ĥ−µN̂)
ãλP1

(τP1)e
−

∫ τP1
τP2

dτ ′(Ĥ−µN̂)
ãλP2

(τP2)e
−

∫ τP2
τP3

dτ ′(Ĥ−µN̂)

. . . e
−

∫ τP2n−1
τP2n

dτ ′(Ĥ−µN̂)
ãλP2n

(τP2n)e
−

∫ τP2n
τ0 dτ ′(Ĥ−µN̂)

]

=
1

Z0
Tr

[
T̂e−

∫ β
0 (Ĥ−µN̂)aλ1(τ1)aλ2(τ2) . . . aλN (τN )a†λN+1

(τN+1)a
†
λN+2

(τN+2) . . . a
†
λ2N

(τ2N )
]

=
1

Z0

∫
DϕλDϕλ ϕλ1(τ1)ϕλ2(τ2) . . .ϕλn(τn)ϕλn+1

(τn+1) . . .ϕλ2n(τ2n)e
− 1

!
∫ !β
0 dτ

∑
λ ϕλ(!∂τ−µ)ϕλ(τ)+H[ϕλ,ϕλ] .

The last formula states, that we integrate over all field configurations of the system with different phases
given by the Hamiltonian and multiplied by the fixed fields, ϕλk(τk) and ϕλ′k(τ

′
k). Since these fields are only

acting on a certain time and the rest of the integration is the same the Green function gives us the change
of the system, when one particle ϕ(τ) at a given time is present or ϕ(τ ′) absent. Next we will see, that
the so defined Green function is indeed a Green function in the mathematical sense of being a solution to a
differential equation, with a Delta distribution or an inhomogeneous local source term. Now we are going to
calculate the free two point Green function with the discrete path integral. In order to do so, we associate

τ1 ∼ q
β

N
and τ2 ∼ r

β

N
, (2.2.67)

then follows from (2.2.66) and (2.2.45) directly,

G0(ατ1|βτ2) =
1

Z0

∫
DϕλDϕλ e

− 1
!
∫ !β
0 dτ

∑
λ[ϕλ(!∂τ−µ)ϕλ(τ)+H0[ϕλ,ϕλ]] ϕα(τ1)ϕβ(τ2)

= lim
N→∞

1

ZN
0

N∏

k=1

[
∏

λ

∫
dϕλ,kdϕλ,k

N

]
e−

∑
λ

∑N
i,j=1 ϕλ,iM

(λ)
ij ϕλ,j ϕα,qϕβ,r

= lim
N→∞

1

ZN
0

N∏

k=1

∏

λ

[∫
dϕλ,kdϕλ,k

N
e−

∑N
i,j=1 ϕλ,iM

(λ)
ij ϕλ,j ϕα,qϕβ,r

]
. (2.2.68)
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where ZN
0 stands for the discrete form of the partition function. Since the action does not couple to different

field components, integrating an odd function over a symmetric interval, results to zero, thus we can write

G0(ατ1|βτ2) = δα,β lim
N→∞

1

ZN
0

N∏

k=1

∏

λ

[∫
dϕλ,kdϕλ,k

N
e−

∑N
i,j=1 ϕλ,iM

(α)
ij ϕλ,j ϕα,qϕβ,r

]

= δα,β lim
N→∞

ζ

ZN
0

∂

∂Jq∂Jr

N∏

k=1

∏

λ

∫
dϕλ,kdϕλ,k

N
e−

∑N
i,j=1 ϕλ,iM

(α)
ij ϕλ,j+

∑
i Jiϕα,i+ϕβ,iJi

∣∣∣∣
J=J=0

= δα,β lim
N→∞

ζ

ZN
0

∂

∂Jq∂Jr

∏

λ

N∏

k=1

∫
dϕλ,kdϕλ,k

N
e−

∑N
i,j=1 ϕλ,iM

(α)
ij ϕλ,j+

∑
i Jiϕα,i+ϕβ,iJi

∣∣∣∣
J=J=0

= δα,β lim
N→∞

ζ

ZN
0

∂

∂Jq∂Jr

∏

λ

[det(M)]−ζ e
∑N

i,j=1 JiM
(α)
ij

−1
Jj

∣∣∣∣
J=J=0

= δα,β lim
N→∞

ζ

ZN
0

∂

∂Jq∂Jr

∏

λ

[det(M)]−ζ

︸ ︷︷ ︸
=ZN

0

∏

λ

e
∑N

i,j=1 JiM
(α)
ij

−1
Jj

∣∣∣∣
J=J=0

= δα,β lim
N→∞

ζ
∂

∂J q∂Jr

∏

λ

e
∑N

i,j=1 JiM
(α)
ij

−1
Jj

∣∣∣∣
J=J=0

= lim
N→∞

δα,βM
(α)
qr

−1
. (2.2.69)

Here we see, that the matrix M (α)
qr

−1
gives the discrete version of the Green function. So we see, that

G0(ατ1|ατ2) is indeed a Green function, as it is the (discrete) solution to the differential equation

(!∂τ + εα − µ)G0(ατ1|ατ2) = δ(τ1 − τ2) . (2.2.70)

Indeed, without the subtlety of what happens at equal times one can also solve the differential equation by
considering the boundary conditions. See Appendix D. Elaborating on the above, we can now more precisely
say, that the Green function gives the expectation value of a system, where a particle is inserted or created in
a state ϕλ at a time τ1, travels through the medium to a time τ2 and is removed, destroyed there. We should
say, that we have introduced the J and J terms, which again in the fermionic case are Grassmann numbers.
These terms are called source terms and are eventually set to zero, so they do not have a physical significance.
With the inverse matrix (2.2.57) we can now evaluate the two-point Green function. The diagonal represents
the case when τq = τr. In the upper triangle we have τq ≤ τr and in the lower triangle τq ≥ τr. According to
our observation after (2.2.38) we have to use the upper triangle in case of equal times. Now we can calculate
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for q < r

lim
N→∞

M (α)
qr

−1
= lim

N→∞

aq−r

1− ζaN

= lim
N→∞

aq−r

(
1

1− ζaN

)

= lim
N→∞

aq−r

(
1− ζ aN

1− ζaN
+

ζaN

1− ζaN

)

= lim
N→∞

aq−r

(
1 +

ζaN

1− ζaN

)

= lim
N→∞

aq−r

(
1− 1

a−N − ζ

)

= lim
N→∞

(1− ε

! (εα − µ))q−r

(
1− 1

(1− ε
! (εα − µ))−N − ζ

)

= lim
N→∞

(1− β

N
(εα − µ))

N
β (τq−τr)

(
1− 1

(1− ε
! (εα − µ))−N − ζ

)

= e−(εα−µ)(τq−τr)
(
1− ζ

eβ(εα−µ) − ζ

)
, (2.2.71)

where we made use of (2.2.41). For q ≤ r, we now get in the same manner

lim
N→∞

M (α)
qr

−1
= lim

N→∞

ζaN+q−r

1− ζaN

= lim
N→∞

aq−r ζaN

1− ζaN

= lim
N→∞

aq−r ζ

a−N − ζ

= lim
N→∞

[
1− ε

! (εα − µ)
]q−r ζ

(1− ε
!εα − µ)−N − ζ

= lim
N→∞

[
1− β

N
(εα − µ)

]N
β (τq−τr) ζ

(1− ε
!εα − µ)−N − ζ

= e−(εα−µ)(τq−τr) 1

eβ(εα−µ) − ζ
. (2.2.72)

If we further introduce the usual bosonic and fermionic occupation number

nα :=
1

eβ(εα−µ) − ζ
, (2.2.73)

we can write the two point Green function as

G0(ατ1|βτ2) = δα,βe
−(εα−µ)(τ1−τ2)

[
θ(τ1 − τ2 − η)(1 + ζnα) + ζθ(τ2 − τ1 + η)nα

]

= δα,α′gα(τ1 − τ2 − η) , (2.2.74)

where the η prescription acts as a reminder, that the second term is to be used if τ1 = τ2. The whole
derivation in this manner was done in order to justify the evaluation of the path integral at equal times.
Otherwise the continuous expression (2.2.70) could be used immediately as done in most textbooks. See also
Appendix D.
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2.3 Perturbation Theory

Since it is not possible to calculate the interacting Green function for our system because of the dipolar
interaction, we have to use perturbation theory to take the interaction into account. Our goal is to express
the interacting Green function via perturbation theory and then calculate the self-energy, which is given by
the Dyson equation. Before we derive the perturbation theory for the Green function, we need the Wick
theorem, which we will now derive first.

Wick Theorem

We can now easily show the Wick theorem by looking at the following identity. Again we concentrate on the
fermionic case. We start with the following identity for Grassmann integrals. See Appendix C

G(J, J) =

∫
DϕDϕe−

∑
ij ϕiMijϕj+

∑
i Jiϕi+ϕiJi

∫
DϕDϕ e

∑
ij ϕiM

−1
ij ϕj

= e
∑

ij=1 JiM
−1
ij Jj . (2.3.1)

Now with the help of the chain rule for Grassmann functions (2.1.31) we get

∂

∂J1
G(J, J) =

1
∫

DϕDϕe
∑

ij ϕiM
−1
ij ϕj

∫
DϕDϕ (ζϕ1) e

−
∑

ij ϕiMijϕj+
∑

i Jiϕi+ϕiJi

=
1

∫
DϕDϕe

∑
ij ϕiM

−1
ij ϕj

∫
DϕDϕe−

∑
ij ϕiMijϕj+

∑
i Jiϕi+ϕiJi (ζϕ1) . (2.3.2)

Where in the second line we have used again the fact, that the exponent just consists of an even number of
Grassmann variables. Now we can proceed as follows

∂2

∂J2∂J1
G(J, J) =

1
∫

DϕDϕe
∑

ij ϕiM
−1
ij ϕj

∫
DϕDϕ (ζϕ2) e

−
∑

ij ϕiMijϕj+
∑

i JiϕiϕiJi (ζϕ1)

=
1

∫
DϕDϕe

∑
ij ϕiM

−1
ij ϕj

∫
DϕDϕe−

∑
ij ϕiMijϕj+

∑
i JiϕiϕiJi

(
ζ2ϕ2ϕ1

)
. (2.3.3)

Continuing in this way, we arrive at

∂n

∂Jn...∂J1
G(J, J) =

1
∫

DϕDϕe
∑

ij ϕiM
−1
ij ϕj

∫
DϕDϕe−

∑
ij ϕiMijϕi+

∑
i Jiϕi+ϕiJi (ζnϕn...ϕ1) . (2.3.4)

Next up we proceed with the derivative with respect to J and get

∂n+1

∂Jn∂Jn...∂J1
G(J, J) =

1
∫

DϕDϕe
∑

ij ϕiM
−1
j ϕj

∫
DϕDϕ (ϕn) e

−
∑

ij ϕiMijϕj+
∑

i Jiϕi+ϕiJi (ζnϕn...ϕ1)

=
1

∫
DϕDϕe

∑
ij ϕiM

−1
j ϕj

∫
DϕDϕe−

∑
ij ϕiMijϕj+

∑
i Jiϕi+ϕiJi (ζnϕnϕn...ϕ1)

...
∂2n−1

∂J2n−1...∂Jn∂Jn...∂J1
G(J, J) =

1
∫

DϕDϕe
∑

ij ϕiM
−1
ij ϕj

∫
DϕDϕe−

∑
ij ϕjMijϕi+

∑
i Jiϕi+ϕiJi (ζnϕ2n−1...ϕnϕn...ϕ1)

∂2n

∂J1...∂Jn∂Jn...∂J1
G(J, J) =

1
∫

DϕDϕe
∑

ij ϕiM
−1
ij ϕ1

∫
DϕDϕe−

∑
ij ϕjMijϕi+

∑
i Jiϕi+ϕiJiζn (ϕ1...ϕnϕn...ϕ1) .

(2.3.5)
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In the next step we derivate the right side of the identity (2.3.1)

∂

∂J1
G(J, J) =

(

ζ
∑

i

J iM
−1
i1

)

e
∑

ij JiM
−1
ij Jj

∂2

∂J2∂J1
G(J, J) = ζ2

(
∑

i

J iM
−1
i2

)(
∑

i

J iM
−1
i1

)
e
∑

ij JiM
−1
ij Jj

...

∂n

∂Jn...∂J1
G(J, J) = ζn

(
∑

i=1

J iM
−1
in

)
. . .

(
∑

i=1

J iM
−1
i2

)(
∑

i

J iM
−1
i1

)
e
∑

ij JiM
−1
ij Jj . (2.3.6)

Now obviously for Grassmann numbers only terms survive, which contain each Jk only once. Hence we
derivated n-times, we have nn-terms. The second index of M corresponds with J , thus we can write the last
line as

∂n

∂Jn...∂J1
G(J, J) = ζn

n∑

$

∏

P#
P# "=#

JP#M
−1
P#,$

e
∑

ij JiM
−1
ij Jj . (2.3.7)

This sum is best pictured as a block of n × n summands. For Grassmann numbers all terms vanish, which
contain any Jk more than once. Then of all the nn-terms only n! terms remain. Since in all of this terms all
permutations of Jk are present, the derivation with respect to all Jk leave only terms, which are independent
of J, J outside of the exponent plus terms which still contain J due to the product rule. However if we set
J = J = 0 only the n! permutations independent of J, J outside of the exponential remain. In the bosonic
case the terms of (2.3.7) are all present but if we derivate with respect to all J again only terms which had
each J present survive. In this way we have arrived at the identity

∂2n

∂J1 . . . ∂Jn∂Jn . . . ∂J1

(
e
∑

i,j=1 JiM
−1
ij Jj

) ∣∣∣∣
J=J=0

=
∑

P

ζPM−1
Pn,n

. . .M−1
P1,1

(2.3.8)

Now by setting J = J = 0 in (2.3.5) we arrive at the form
∫

DϕDϕϕ1 . . .ϕnϕn . . .ϕ1e
−

∑
ij ϕiMijϕj

∫
DϕDϕ e

∑
ij ϕiM

−1
ij ϕj

=
∑

P

ζPM−1
Pn,n

. . .M−1
P1,1

. (2.3.9)

To write Wick’s theorem in the standard form, one defines so called contractions:

ϕα(τ1)ϕβ(τ2) := 〈ϕα(τ1)ϕβ(τ2)〉0
ϕβ(τ2)ϕα(τ1) := 〈ϕβ(τ2)ϕα(τ1)〉0 . (2.3.10)

Hence the expectation value vanishes, if the two fields are both Grassmann fields, or both convoluted Grass-
mann fields (2.3.10) implies

ϕα(τ1)ϕβ(τ2) = ϕβ(τ2)ϕα(τ1) = 0 . (2.3.11)

We calculated the two point Green function as (2.2.74) so we can see the contractions as Green functions
(propagators)

ϕα(τ1)ϕβ(τ2) := δα,βgα(τ1 − τ2)

ϕβ(τ2)ϕα(τ1) := ζδα,βgα(τ1 − τ2) . (2.3.12)
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With this definitions and the representation for the discrete Green function given by (2.2.69), we can write
the Wick Theorem in the standard form

〈ψ̃λ1(τ1) . . . ψ̃λn(τn)〉0 =
∑

all complete contractions (2.3.13)

2.3.1 Feynman Rules for the Partition Function

Since the dipole-dipole interaction will be seen as a two point interaction, we now have to consider a Hamil-
tonian of the form

H =
∑

λ

ελψλ(τ)ψλ(τ)−
1

2

∑

αβ γ δ

〈αβ|V |γ δ〉ψα(τ)ψβ(τ)ψγ(τ)ψδ(τ) , (2.3.14)

where we have now written ψ, to emphasize that we are dealing with an interacting Hamiltonian. With the
thermal average expressed for any functional F , with the path integral as

〈
F
[
ψα(τi),ψβ(τj), . . . ,ψγ(τk),ψδ(τ$), . . .

]〉
0

(2.3.15)

:=
1

Z0

∫

ψ(!β)=ζψ(0)
DψDψe−

1
!
∫ !β
0 dτ

∑
λ ψλ(!∂τ+ελ−µ)ψλF

[
ψα(τi),ψβ(τj), . . . ,ψγ(τk),ψδ(τ$), . . .

]

we can rewrite the partition function as

Z =

∫

ψ(!β)=ζψ(0)
DψDψe−

1
!
∫ !β
0 dτ

∑
λ ψλ(!∂τ+ελ−µ)ψλ+V [ψα(τ1)ψβ(τj )...ψγ(τk)ψδ(τ#)...]

=

∫

ψ(!β)=ζψ(0)
DψDψe−

1
!
∫ !β
0 dτ

∑
λ ψλ(!∂τ+ελ−µ)ψλe−

1
!
∫ !β
0 dτ V [ψα(τ1)ψβ(τj)...ψγ(τk)ψδ(τ#)...]

= Z0

〈
e−

1
!
∫ !β
0 dτ V [ψα(τ1)ψβ(τj)...ψγ(τk)ψδ(τ#)...]

〉

0
. (2.3.16)

In order to apply perturbation theory, we use the series of the exponential function and rewrite the partition
function as

Z

Z0
=

〈 ∞∑

n=0

(−1)n

n! !n

[∫ !β

0
dτ V (ψα(τ)ψβ(τ), . . . ,ψγ(τ)ψδ(τ), . . .)

]n〉

0

=

〈 ∞∑

n=0

(−1)n

n! !n
∫ !β

0
dτ1 . . . dτn V (ψα(τ1)ψβ(τ1), . . . ,ψγ(τ1)ψδ(τ1), . . .)

× . . .× V (ψα(τn)ψβ(τn), . . . ,ψγ(τn)ψδ(τn), . . .)

〉

0

=

〈 ∞∑

n=0

(−1)n

n! !n
n∏

k=1

[∫ !β

0
dτkV (ψα(τk)ψβ(τk), . . . ,ψγ(τk)ψδ(τk), . . .)

]〉

0

=
∞∑

n=0

(−1)n

n! !n
n∏

k=1

∫ !β

0
dτk

〈
V (ψα(τk)ψβ(τk), . . . ,ψγ(τk)ψδ(τk), . . .)

〉

0

. (2.3.17)
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Considering a two-body interaction like the dipole-dipole interaction it follows from the Hamiltonian (2.3.14)

Z

Z0
=

〈
e−

1
2!

∫ !β
0

∑
α,β,γ,δ〈αβ|V |γ δ〉ψα(τ)ψβ(τ)ψγ (τ)ψδ(τ)

〉

0

=

〈 ∞∑

n=0

(−1)n

(2!)nn!
∑

α1,β1,γ1,δ1

. . .
∑

αn,βn,γn,δn

〈α1 β1|V |γ1 δ1〉 . . . 〈αn βn|V |γn δn〉
∫ !β

0
dτ1 . . . dτn

× ψα(τ1)ψβ(τ1)ψγ(τ1)ψδ(τ1) . . .ψα(τn)ψβ(τn)ψγ(τn)ψδ(τn)

〉

0

=
∞∑

n=0

(−1)n

(2!)nn!

n∏

k=1

∑

αk,βk,γk,δk

〈αk βk|V |γk δk〉
n∏

k=1

[∫ !β

0
dτk

]〈 n∏

k=1

ψα(τk)ψβ(τk)ψγ(τk)ψδ(τk)

〉

0

. (2.3.18)

With the help of Wick’s theorem it is now possible to justify Feynman rules for the series expansion. Since we
can expand the expectation value with the help of Wick’s theorem in all the contractions, one represents the
contractions, which are according to (2.3.12) Green functions, with a directed line from ψλi(τi) to ψλj (τj).
The corresponding interaction vertices 〈αk βk|V |γk δk〉 will be represented by vertices with the incoming lines
γk δk and two outgoing lines αk βk. Acting on a time τk. So we introduce:

τj

τj
α

β

= δα,β gα(τj − τi)

(a)

τi

α β

γ δ

= 〈αβ| V |γ δ〉

(b)

Figure 2.1: Diagrammatic representation of propagators and vertices

Going back to formula (2.3.18), we see that each summand of order n has n vertices and (for the two body
interaction) 2n fields in the expectation value, leading to (2n)! contractions. Since the diagrams are seen
just as a representation of the contributing terms, they are not uniquely defined. Merely two diagrams are
equal, if they can be transformed into each other smoothly. That is by conserving the arrows and labels of
the diagram. Finally we must consider the pre-factor (−1)n

2nn! for each diagram. But for fermions as can be seen
from formula (2.3.12), each contraction brings a ζ factor and so one has to find the right sign. Each vertex has
two incoming and two outgoing lines (propagators). Since we are only dealing with complete contractions,
all vertices connections form a closed loop. Each of such a loop consists of less than n vertices. Each vertex
has an even number of fields in it. A specific closed loop uses two of the given fields. Hence even Grassmann
fields commute with even Grassmann fields, the enclosed fields can be brought to the left of a given closed
cycle, so that the closed cycle has the form:

ψ1ψ1 . . .ψ2ψ2 . . . . . .ψnψn . . . , (2.3.19)

so the inner contractions ψψ each lead to a (+1) factor, while the outer contraction ψψ gives a ζ. Since the
remaining loops are made of the remaining even Grassmann fields, they can be brought in the same form and
have the same sign. So we conclude, that each closed loop leads to the factor ζnc , where nc is the number of
closed loops. Thus we have the following rules for Feynmann diagrams for the partition function.

1 In order to construct all diagrams of order n, one has to draw all distinct diagrams with n vertices
of the Figure 2.1b, and connect these with the propagators (2.1a). The diagrams are distinct, if they
cannot be transformed into each other by conserving labels and propagator direction.
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2 Each propagator gets an index and is assigned the quantity gα(τk − τ$) (2.2.74).

3 Each vertex stands for the matrix element 〈αβ|V |γ δ〉.

4 Include the sum over each index and the integral over all times, where the integrals run from [0, !β].

5 Include the pre-factor consisting of (−1)n

2n n! ζ
nc .

It should be mentioned, that one can reduce the number of diagrams dramatically, by analysing which
diagrams lead to the same contribution. In order to do so one has to define the symmetry factor, which in
essence boils down to investigate in which cases the time integration and the spatial integration within the
interaction overlap matrix can be interchanged. However, since we are interested in the Feynman rules for
the Green function, we will skip this discussion here.

2.3.2 Feynman Rules for the Interacting Green Function

We are now going to derive the Feynman rules for the interacting Green function

G(n)
(
α1β1 . . .αnβn|α′

1β
′
1 . . .α

′
nβ

′
n

)
=

〈
e−

1
!
∫
dβV [ψ,ψ]ψα1(β1) . . .ψαn(βn)ψαn

(β′
n) . . .ψα

′
1(β

′
1)

〉

0〈
e−

1
!
∫
dβV [ψ,ψ]

〉

0

. (2.3.20)

The external time are now denoted β to distinguish these from the internal time. We now want to apply the
so called replica trick, for that matter we introduce the n fields

{
ψ
σ
λ,ψ

σ
λ

}
, with 1 ≤ σ ≤ n and define:

Gm :=
1

Zm
0

∫ m∏

σ=1

Dψ
σ
Dψσψα(β1) . . .ψαn(βn)ψα′

n
(β′

n) . . .ψα′
1
(β′

1)e
− 1

!
∑

σ=1n
∫
dτ

∑
λ ψ

σ
λ(!∂τ+ελ−µ)ψ

σ
λ+V [ψσ

ψσ] .

(2.3.21)

Before we proceed in developing the Feynman rules for the interacting Green function it is useful to have a
closer look at formula (2.3.20). According to formula (2.3.6), we can develop the nominator and denominator
with the help of the above given perturbation theory. Then we see immediately that in the denominator
only contractions between the interaction arise, which are not connected to the external fields, ψ$(β), while
the nominator does couple the interaction with the external fields. One now expects that the disconnected
parts, that is disconnected to the external field, cancel with the disconnected fields in the denominator. We
will now see, with the help of the replica method, that this is indeed the case. We already know that the
Green function describes the expectation value of the system if a particle is (inserted) or removed in the
system at a time τ1 and (removed) inserted at a time τ2. If the above expression is evaluated with the help of
perturbation theory, the interacting Green function will be given, as the free Green function added by some
correction terms.

Noting that the two fields corresponding to one time τ are an even number apart, it follows

Gm =
1

Z0

∫ m∏

σ=1

Dψ
σ
Dψσψα1(β1)ψα′

1
(β′

1)e
− 1

!
∑n

σ=1

∫
dτ

∑
λ ψ

σ
λ(!∂τ+ελ−µ)ψσ

λ+V [ψ
σ
,ψσ ]

× 1

Zm−1
0

∫ m∏

σ=2

Dψ
σ
Dψσψα2(β2) . . .ψαn(βn)ψα′

n
(β′

n) . . .ψα′
2
(β′

2)e
− 1

!
∑

σ

∫
dτ

∑
λ ψλ(!∂τ+ελ−µ)ψλV [ψ

σ
,ψσ]

=

〈
e−

1
!
∑

λ

∫
dτV [ψσ

ψσ]ψα1(β1)ψα′
1
(β′

1)

〉

0

〈
e−

1
!
∑n

σ=1

∫
dτV [ψσ

ψσ]ψα2(β2) . . .ψαn(βn)ψα′
n
(β′

n) . . .ψα′
2
(β′

2)

〉m−1

0

.

(2.3.22)
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Now Gm produces G(n) (2.3.21) for m = 0. Now we can expand Gm as follows

Gm =
1

Zm
0

∫ m∏

σ=1

Dψ
σ
Dψσψσα1

(β1) . . .ψαn(βn)ψα′
n
(β′

n) . . .ψα′
1
(β′

1)e
− 1

!
∑

σ

∫
dτ

∑
λ ψα(!∂τ+ελ−µ)ψλe−

1
!
∑n

σ=1

∫
dτV [ψσ

ψσ] .

(2.3.23)

Expanding the series

e−
1
!
∑m

σ=1

∫
dτV [ψσ

ψσ] =
∞∑

p=0

(−1)p

!pp!

p∏

k=1

∑

σk

∫
dτkV

[
ψ
σkψσk

]

= 1 +
(−1)

!
∑

σ1

∫
dτV

[
ψ
σ1ψσ1

]
+

(−1)2

!22!
∑

σ1σ2

∫
dτ1dτ2V

[
ψ
σ1ψσ1

]
V
[
ψ
σ2ψσ2

]

+
∑

p=3

(−1)p

!pp!

p∏

k=1

∑

σk

∫
dτkV

[
ψ
σk
ψσk

]
, (2.3.24)

then yields

Gm =
1

zm0

∫ m∏

σ=1

Dψ
σ
Dψσe

− 1
!
∑

σ

∫
dτ

∑
λ ψ

σ
λ(!∂τ+ελ−µ)ψσ

λ

+
(−1

!
∑

σ1

∫
dτ1

[
1

zm0

∫ m∏

σ=1

Dψ
σ
Dψσe−

1
!
∑

σ

∫
dτ

∑
λ ψ

σ
λ(!∂τ+ελ−µ)ψσ

λψα1(β1)ψα′
1
(β′

1)V
[
ψ
σ1ψσ1

]]

+
1

!22
∑

σ1σ2

∫
dτ1dτ2

[
1

zm0

∫ m∏

σ=1

Dψ
σ
Dψσe−

1
!
∑

σ

∫
dτ

∑
λ ψ

σ
λ(!∂τ+ελ−µ)ψσ

λψα2(β2)ψα′
2
(β′

2)V
[
ψ
σ1ψσ1

]
V
[
ψ
σ2ψσ2

]]

+
(−1)p

!pp!

∞∑

p=3

p∏

k=1

∑

σk

∫
dτk

[
1

zm0

∫ m∏

σ=1

Dψ
σ
Dψσe−

1
!
∑

σ

∫
dτ

∑
λ ψ

σ
λ(!∂τ+ελ−µ)ψσ

λ

× ψα3(β3) . . .ψαn(βn)ψα′
n
(β′

n) . . .ψα′
1
(β′

1) . . . V
[
ψ
σkψσk

]]

= 1 +
(−1)

!
∑

σ

∫
dτ1

〈
ψα1(β1)ψα′

1
(β′

1)V
[
ψ
σ1 ,ψσ1

]〉

0

+
(−1)2

!22
∑

σ1σ2

∫
dτ1dτ2

〈
ψα2(β2)ψα′

2
(β′

2)V
[
ψ
σ1 ,ψσ1

]
V
[
ψ
σ2ψσ2

]〉

0

+
∞∑

p=3

(−1)p

!pp!

p∏

k=1

∑

σk

∫
dτk

〈
ψα3(β3) . . .ψαm(βm) . . .ψα′

1
(β′

1)V
[
ψ
σ1 ,ψσ1

]〉

0

=:
∞∑

p=0

(−1)p

!pp!

p∏

k=1

∑

σk

∫
dτk

〈 p∏

k=1

ψαk(βk) . . .ψα′
k
(β′

k)V
[
ψ
σkψσk

]〉

0

. (2.3.25)

As we can see the external vertices ψi(βi) and ψi(βi) are associated with the index σ1. The diagrams now
have an index σ ∈ [1,m]. The propagators attached to the external fields ψi(βi) and ψi(βi) all carry the
index σ = 1. Furthermore all propagators connected to the same vertex conserve the replica index, since
the propagators are given by δα,α′gα(τ1 − τ2). So the p parts that are not connected to the external legs are
proportional to the replica index np. By setting m = 0, we get the Green function and thus only diagrams
which are connected to the external legs.
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Since we are only dealing with connected diagrams, the diagrams only consist of directed lines and closed
loops connected by the vertex, but not connected over a propagator. Since the propagators within a loop are
directed the time-label is fixed and cannot be permuted within a loop and we are dealing only with connected
diagrams. One time label in a given loop fixes the time label in a connected loop. So by recursion, all time
labels are fixed and cannot be permuted. Since therefore both interchanges of integration are suppressed,
the symmetry factor for the Green function is always S = 1. Now the final task consist in determining the
pre-factor sign of the Wick contractions. By definition of the Green function all ψα′

k
(β′

k) are an even number
of fields separated from ψαk(βk), so that the contraction always gives +1. If one now fixes one arbitrary
ψα′

k
(β′

k) and considers the contractions with a permutation of it’s counterpart, the sign changes to ζP where
P is the necessary permutation. Then one can add the other contractions to form a closed loop. By bringing
them again in the form (2.3.19) one gets the additional factor ζnc . being the closed propagator loops.
We are now ready to give the Feynman rules for the interacting Green function:

1 First one has to draw all distinct unlabeled diagrams, starting with the n external points and with the
r interaction vertices. The diagrams are distinct if they cannot be transformed into each other by fixing
the external points and keeping the direction of the propagators fixed.

2 The external legs are given by the to be calculated Green function, which have to be assigned first to
the interaction vertices. Then the free legs have to be connected with propagators and each propagator
is given an index. Then each propagator is assigned with the propagator (2.1a) .

3 Then include for each vertex the matrix element 〈αβ|V |γ δ〉.

4 Finally for each internal index one includes a sum and for each internal time label one integral, where
the integration runs from [0, !β].

5 Finally the pre-factor (−1)rζP ζnc is included.

Finally we note, that we can produce the n-particle Green function over a generating function defined by

G(Jλ, Jλ) =
〈
e−

1
!
∫ !β
0 dτ

∑
λ[Jλψλ+ψJλ]

〉

=
1

Z

∫
DψλDψλe

− 1
!
∫ !β
0 dτ

∑
λ ψλ(∂τ−µ)ψλψλ+H[ψλ,ψλ]+Jλψλ+ψλJλ . (2.3.26)

Where the average is now to be taken with respect to the source field. Note that we have suppressed the τ
of the functions, but kept it on the integral for better readabillity. Now the thermal n-point Green function
can be expressed as

G(n)(α1τ1 . . .αnτn|α′
1τ

′
1 . . .α

′
nτ

′
n) =

!2n
ζn

δ2nG(Jλ, Jλ)

δJα1(τ1) . . . δJαn(τn)δJα′
n
(τ ′n) . . . δJα′

1
(τ ′1)

∣∣∣∣
J=J=0

. (2.3.27)

Connected Green Function

Now that we have derived the Feynman rules for the Green function we see, that the diagrams are connected
to all the external fields. However the diagrams are not all connected, which means they are build out of
lower order Green functions. It is therefore useful to cut these parts off once again. Naturally this can be
done with the replica technique once again. The connected parts will then again be proportional to p. So
this time we simply write

W [Jλ, Jλ] = lim
p→0

∂

∂p
G(Jλ, Jλ)

p

= log
(
G(Jλ, Jλ)

)
(2.3.28)
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and the connected n-point Green function is then given by

G(n)
c (α1τ1 . . .αnτn|α′

1τ
′
1 . . .α

′
nτ

′
n) = ζn

δ2nW (Jλ, Jλ)

δJα1(τ1) . . . δJαn(τn)δJα′
n
(τ ′n) . . . δJα′

1
(τ ′1)

∣∣∣∣
J=J=0

. (2.3.29)

2.4 Derivation of Dyson’s Equation

In this section we will derive the Dyson equation and define the self energy. By using the previously derived
Feynman rules for the interacting Green function, we can derive the Feynman rules for the self-energy. Using
these rules we will then derive the Hartree-Fock equations in first order perturbation theory. First we define
the so called average field as the derivative of the generator of the connected Green functions

ϕλ = 〈ψλ〉J,J = − δ

δJλ
W [J, J ] ,

ϕλ = 〈ψλ〉J,J = −ζ
δ

δJα
W [Jλ, Jλ] , (2.4.1)

and perform a Legendre transformation. Here we define the Legendre transformation in a functional sense. It
should be noted, that the Legendre transformation can not be defined in the usual way, that is analog to one
dimensional functions f

(
∂f
∂x

)
= ∂f

∂xx− f . Where the standard way in physics is to let the y-axis show in the
negative direction, in order to let the Legendre transformation work for convex functions rather than concave
ones. Here the definition is tailor made to work with the Grassmann derivative as we shall see shortly. So we
take the Legendre transformation

Γ[ϕλ,ϕλ] = −W [Jλ, Jλ]−
∑

λ

∫
dτ ′

[
ϕλJλ + Jλϕλ

]
. (2.4.2)

Note that if W [J, J ] is of the form W [J, J ] = uw1uw1 + gw2
gw2 then ϕλ is of the form gw1

uw1 + uw2gw2 .
Likewise ϕλ will be of the form ϕλ = uw1gw1 + gw2

uw2 therefore ϕλ,ϕλ ∈ U−. In order to apply the chain
rule (2.1.98) it is necessary that J, J ∈ U−, derivating Γ with respect to ϕ yields.

δΓ[ϕλ,ϕλ]

δϕλ
= − δW

δϕλ
−

∑

γ

∫
dτ ′

{
P (ϕγ)

δJγ
δϕλ

+
δϕγ
δϕλ

Jγ + P (Jγ)
δϕγ
δϕλ

+
δJγ
δϕλ

ϕγ

}

= − δW

δϕλ
−

∑

γ

∫
dτ ′

{
ζϕγ

δJγ
δϕλ

+
δϕγ
δϕλ

Jγ +
δJγ
δϕλ

ϕγ

}

= −
∑

γ

∫
dτ ′

[
δJγ
δϕλ

δW

δJγ
+

δJγ
δϕλ

δW

δJγ

]
−

∑

γ

∫
dτ ′ {. . .}

= −
∑

γ

∫
dτ ′

[
−ζ

δJγ
δϕλ

ϕγ −
δJγ
δϕλ

ϕγ

]
−

∑

γ

∫
dτ ′ {. . .}

=
∑

γ

∫
dτ ′

[
ζ
δJγ
δϕλ

ϕγ +
δJγ
δϕλ

ϕγ

]
−

∑

γ

∫
dτ ′

[
ζϕγ

δJγ
δϕλ

+
δϕγ
δϕλ

Jγ +
δJγ
δϕλ

ϕγ

]

=
∑

γ

∫
dτ ′

[
ζϕγ

δJγ
δϕλ

+
δJγ
δϕλ

ϕγ

]
−

∑

γ

∫
dτ ′

[
ζϕγ

δJγ
δϕλ

+
δϕγ
δϕλ

Jγ +
δJγ
δϕλ

ϕγ

]

= −
∑

γ

∫
dτ ′

[
Jγδγ,λδ(τ − τ ′)

]
= −Jλ(τ) . (2.4.3)
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The counterpart can be evaluated to

δΓ[ϕλ,ϕλ]

δϕλ
= − δW

δϕλ
−

∑

γ

∫
dτ ′

{
P (ϕγ)

δJγ
δϕλ

+
δϕγ
δϕλ

Jγ + P (Jγ)
δϕγ
δϕλ

+
δJγ
δϕλ

ϕγ

}

= − δW

δϕλ
−

∑

γ

∫
dτ ′

{
ζϕγ

δJγ
δϕλ

+ ζJγ
δϕγ
δϕλ

+
δJγ
δϕλ

ϕγ

}

= −
∑

γ

∫
dτ ′

[
δJγ
δϕλ

δW

δJγ
+

δJ

δϕλ

δW

δJγ

]
−

∑

γ

∫
dτ ′ {. . .}

= −
∑

γ

∫
dτ ′

[
−ζ

δJγ
δϕλ

ϕγ −
δJγ
δϕλ

ϕγ

]
−

∑

γ

∫
dτ ′ {. . .}

=
∑

γ

∫
dτ ′

[
ζ
δJγ
δϕλ

ϕγ +
δJγ
δϕλ

ϕγ

]
−

∑

γ

∫
dτ ′

{
ζϕγ

δJγ
δϕλ

+ ζJγ
δϕγ
δϕλ

+
δJγ
δϕλ

ϕγ

}

=
∑

γ

∫
dτ ′

[
ϕγζ

δJγ
δϕλ

+
δJγ
δϕλ

ϕγ

]
−

∑

γ

∫
dτ ′

{
ζϕγ

δJγ
δϕλ

+ ζJγ
δϕγ
δϕλ

+
δJγ
δϕλ

ϕγ

}

= −ζ
∑

γ

∫
dτ ′Jγδγ,λδ(τ − τ ′) = −ζJλ(τ) . (2.4.4)

So now in order to derive the Dyson equation we need the following terms

δϕλ3(τ3)

δϕλ1(τ1)
=

δ

δϕλ1

[
− δW

δJλ3

]
= −

∑

λ2

∫
dτ2

[
δJλ2
δϕλ1

δ2W

δJλ2δJλ3
+

δJλ2
δϕλ1

δ2W

δJλ2δJλ3

]

= −
∑

λ2

∫
dτ2

[
− δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3
− ζ

δ2Γ

δϕλ1δλ2

δ2W

δJλ2δJλ3

]

=
∑

λ2

∫
dτ2

[
δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3
+ ζ

δ2Γ

δϕλ1δλ2

δ2W

δJλ2δJλ3

]
. (2.4.5)

The next term is given by

δϕλ3(τ3)

δϕλ1(τ1)
=

δ

δϕλ1

[
−ζ

δW

δJλ3

]
= −ζ

∑

λ2

∫
dτ2

[
δJλ2
δϕλ1

δ2W

δJλ2δJλ3
+

δJλ2
δϕλ1

δ2W

δJλ2δJλ3

]

= −ζ
∑

λ2

∫
dτ2

[
−ζ

δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3
− δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3

]

=
∑

λ2

∫
dτ2

[
δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3
+ ζ

δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3

]
. (2.4.6)

Now we calculate
ϕλ3(τ3)

δϕ1(τ1)
=

δ

δϕ1(τ1)

[
− δW

δJλ3

]
= −

∑

λ2

∫
dτ2

[
δJλ2
δϕλ1

δ2W

δJλ2δJλ3
+

δJλ2
δϕλ1

δ2W

δJλ2δJλ3

]

= −
∑

λ2

∫
dτ2

[
−ζ

δ2Γ

δϕλ1ϕλ2

δ2W

δJλ2δJλ3
− δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3

]

=
∑

λ2

∫
dτ2

[
ζ

δ2Γ

δϕλ1ϕλ2

δ2W

δJλ2δJλ3
+

δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3

]
, (2.4.7)
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and finally

ϕλ3(τ3)

δϕλ1(τ1)
=

δ

δϕλ1

[
−ζ

δW

δJλ3

]
= −ζ

∑

λ3

∫
dτ2

[
δJλ2
δϕλ1

δ2W

δJλ2δJλ3
+

δJλ2
δϕλ1

δ2W

δJλ2δJλ3

]

= −ζ
∑

λ2

∫
dτ2

[
−ζ

δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3
− δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3

]

=
∑

λ2

∫
dτ2

[
δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3
+ ζ

δ2Γ

δϕλ1δϕλ2

δ2W

δJλ2δJλ3

]
. (2.4.8)

So now we can rewrite the four equations in matrix form i.e.

∑

λ2

∫
dτ2




δ2Γ

δϕλ1
δϕλ2

δ2Γ
δϕλ1

δϕλ2
δ2Γ

δϕλ1
δϕλ2

δ2Γ
δϕλ1

δϕλ2








δ2W

δJλ2δJλ3

ζ δ2W
δJλ2

δJλ3

ζ δ2W
δJλ2δJλ3

δ2W
δJλ2

δJλ3



 = δλ3,λ1δ(τ3 − τ1)

(
1 0
0 1

)
. (2.4.9)

From this equation we immediately see that the matrix of the right hand side is the inverse of the matrix on
the left hand side, which in itself consists of the connected Green function. With the notation

Γϕ,ϕ =
δ2Γ

δϕδϕ
, Γϕ,ϕ =

δ2Γ

δϕδϕ
, Γϕ,ϕ =

δ2Γ

δϕδϕ
and Γϕ,ϕ =

δ2Γ

δϕδϕ
, (2.4.10)

we can rewrite the inverse matrix as
(
Γϕ,ϕ Γϕϕ
Γϕ,ϕ Γϕ,ϕ

)
= ζ

(
〈ψψ〉 〈ψψ〉
〈ψψ〉 〈ψψ〉

)−1

. (2.4.11)

In the absence of symmetry breaking the Green functions which consists of an unequal number of ψ and ψ
vanish and the above equations reduce to

∑

λ2

∫
dτ2G

(1)
c (λ3τ3|λ2τ2)Γϕλ1

,ϕλ2
= δλ3,λ1δ(τ3 − τ1) ,

∑

λ2

∫
dτ2G

(1)
c (λ3τ3|λ2τ2)Γϕλ1

,ϕλ2
= δλ3,λ1δ(τ3 − τ1) . (2.4.12)

This gives us the inverse Green function immediately as

G(1)
c

−1
(λ3,λ2) = Γϕλ1

,ϕλ2
. (2.4.13)

It is now convenient to express Γϕλ1
,ϕλ2

in terms of the self-energy Σ, which is defined as the difference
between the vertex function or inverse Green function of the interacting system and non interacting system.
That is

Γϕλ1
,ϕλ2

= Γ(0)
ϕλ1

,ϕλ2
+ Σϕλ1

,ϕλ2
, (2.4.14)

or equivalently

G−1 = G−1
0 +Σ . (2.4.15)

Now multiplying this equation by G from the right and G0 from the left, and doing so successively one
obtains the Dyson equation

G = G0 −G0ΣG = G0 −G0ΣG0 +G0ΣG0ΣG0 . . . . (2.4.16)
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Which has of course to be read as a matrix equation, including summation over all indices and integration
over internal ones. The Dyson equation can now be expressed diagrammatically via

= − Σ

= − Σ +

Σ

Σ

− Σ

Σ

Σ

. . .

Figure 2.2: Digrammatic expression of the Dyson equation.

As can be seen in Figure 2.2, the Dyson equation is dressed. That means the whole Green function stand
on both sided of the equation. In Figure 2.2 this is indicated the the double arrow. In the second line
the full Green function has been inserted and only the first terms are considered. This corresponds to a
perturbative description. So we can see, that if we calculate the self-energy we get the correction of the
non-interacting Green function to the interacting Green function. Where the interacting Green function is
now reduced to the connected Green function. Finally we want to see, how we can express the self-energy
in terms of the diagrammatic perturbation theory derived for the interacting Green function. Therefore two
standard definitions are required. The corrections to the connected Green function consists of all diagrams,
which are connected and have, in the case of the one-particle Green function one incoming and one outgoing
line. We will now define the so called amputated diagrams. A diagram is called amputated, if one removes
the two external lines ψα(β) and ψ

′
α(β

′) of a connected diagram. This means the incoming and outgoing
non interacting Green functions are not connected to a propagator. Therefore each external point must be
connected directly to the interaction. Further a diagram is called n-particle irreducible, if it can not be
disconnected into two or more disconnected pieces by separating internal propagators. Hence we are already
dealing with the connected Green functions, it follows now, that the self-energy is given by all the irreducible
amputated diagrams connecting the points (α1, τ2) and (α2, τ2). The Feynman rules for the self-energy
therefore are given by

1 First we have to construct all unlabeled one-particle irreducible amputated diagrams consisting of the
n-interaction vertices. The ingoing line is labeled by (α,β) and the outgoing line by (α′,β′). All the
inner vertices are connected by propagators. Two diagrams are equal if they can be transformed into
each other by conserving the external legs, and the direction of the propagators.

2 For each internal time label include the propagator gγ(τ1 − τ2).

3 For each vertex the matrix 〈αβ|V |γ δ〉 has to be added. If the external legs are connected to the same
interaction vertex, the factor δ(β − β′) has to be added.

4 Now one has to sum over all internal single-particle indices and integrate over all time labels τi, where
the integrals run over [0, !β].

5 Finally one must add the pre-factor (−1)n−1ζnc, where nc is the number of closed loops.
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"Do not trust arguments based on the lowest
order of perturbation theory"

Steven Weinberg [49]

2.4.1 Hartree-Fock Equation

We are now in the position to derive the Hartree-Fock equation in first order perturbation theory. The first
2 diagrams given by the above Feynman rules are

(a) (b)

Figure 2.3: The Hartree (left) and Fock (right) diagrams for the self-energy.

From these diagrams we obtain the self-energy

Σ(α1 β1|α2β2) = δ(β1 − β2)
∑

γ

(
〈α1 γ|V (int) |α2 γ〉+ ζ 〈α1 γ|V (int) |γ α2〉

)
nγ . (2.4.17)

The Hartree-Fock equation thus gives us the self-energy to a given interaction. We are now ready to calculate
the self-energy for dipolar interaction. As long as we are dealing with a homogeneous system, we can transfer
to the Fourier space by rewriting the Fourier transformation and simply substituting the relative positions
R = r1 − r2. Then one integration can be carried out; in particular

〈k1 k2|V (int)(r1 − r2) |k3 k4〉 : =
∫

dDr1 dD r2
V 2

eir1·(k1−k3)V (int)(r1 − r2)e
ir2·(k2−k4)

=

∫
dDR dr2

V 2
V (int)(R)ei(R+r2)(k1−k3)eir2·(k2−k4)

=

∫
dDR dDr2

V 2
V (int)(R)eiR(k1−k3)eir2·(k1+k2−k3−k4)

=

∫
dDR

V 2
V (int)(R)eiR(k1−k3)

∫
dDr2
V

eir2·(k1+k2−k3−k4)

=

∫
dDR

V
δk1+k2,k3+k4 V

(int)(R)eiR(k1−k3) . (2.4.18)

Now we see that for the Hartree, term for which we have k2 = k4, follows that we have to evaluate V (k = 0).

Σ (k1β1|k2β2) = δ (β1 − β2)
∑

k

(
〈k1k|V (int) |k2k〉+ ζ 〈k1k|V (int) |kk2〉

)
nk

= δ (β1 − β2)
∑

k

∫
dDR

(
δk1+k,k2+kV

(int)(R)eiR(k1−k2) + ζδk1+k,k+k2V
(int)(R)eiR(k1−k)

)
nk

= δ (β1 − β2)
∑

k

∫
dDR

V

(
δk1,k2V

(int)(R)eiR(k1−k2) + ζδk1,k2V
(int)(R)eiR(k1−k2)

)
nk

= δ (β1 − β2)
∑

k

∫
dDR

V

(
V (int)(R)eiR0 + ζV (int)(R)eiR(k1−k)

)
nk .

(2.4.19)
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Since in this form the self-energy only depends on k1 − k2, we can rewrite it as

Σ(k1) :=
1

V

∑

k

[
V (int)(k = 0) + ζV (int) (k1 − k)

]
nk . (2.4.20)
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Chapter 3

Ultracold Fermions in a Homogeneous
System

3.1 Dipolar Interaction

In the following chapter we investigate how the interaction of an ultracold quantum gas affects its properties.
In order to do so we will use the classical derived interaction energies of dipole-dipole interaction and Coulomb
interaction. In a real system of course all interactions are present, but depending on the chosen substance
the dipolar or Coulomb interaction or other interactions, will be more dominant. The classical dipole-dipole
interaction formula, which we are going to use, is in itself an approximation and it seems reasonable to recap
shortly how the Coulomb potential and the dipole-dipole interaction are defined. In a 3-dimensional system
the Coulomb potential is given by

ϕCou(r) =
e

4πε0

1

|r− r′|
=: K

e

|r− r′|
, (3.1.1)

where r is the location of the potential and r′ is the location of the charge and e is the charge of the particle.
Here and in the following pages K will always be 1

4πε0
and ε0 is the vacuum permittivity. The Coulomb

potential is given here as the solution for a point charge of the Poisson equation in three dimensions. The
two dimensional Poisson equation can naturally also be solved, but is then not a representation of the real
law of nature. Here we will use the three-dimensional law and restrict it to two dimensions. To describe a
dipole it is easiest to create one out of two point particles of opposite charges. It is pointed out, that the
formula of a dipole is defined as the result of this simple construction, and normally just identified with this
formula in a multipole expansion. So if two point charges of opposite charges are given at a distance, then
by simply adding the respective potentials of two point charges, we get

φ = φ1 + φ2 = eK

(
1

r′2
− 1

r′1

)
= eK

(
1∣∣r− rs − d

2

∣∣ −
1∣∣r− rs +

d
2

∣∣

)
, (3.1.2)

where d is the distance of the two point charges. Now approximating the denominator, by assuming 2R 7 d,
for which the derived potential will only be valid, with

[

1± d cos (α)

2R
+

(
d

2R

)2
]− 1

2

≈ 1∓ d

2R
cos (α), (3.1.3)

where R := r− rs and α describes the angle between d and R, one gets the classical potential of a dipole

φ ≈ eK
d ·R
R3

. (3.1.4)
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Together with the definition for the dipole moment p = ed we get the commonly known potential

φDip(r) =
p ·R
R3

. (3.1.5)

Now with the potential we can calculate the electric field of a dipole by simply taking the gradient.

E = −∇φ = −K

[
∇ (p ·R)

R3
+ (p ·R)∇

(
1

R3

)]

= K
3 (p · n)n− p

R3
. (3.1.6)

where n = R
R is the distance between the two point-charges.

3.1.1 Dipolar Interaction Energy

We are now calculating the interaction energy of two dipoles. In order to do so, we consider one dipole in the
potential of the other. The electrostatic energy is then given by [50]

W =

∫
d3r ρ(r)ϕ(r) . (3.1.7)

By Taylor expansion of the external field ϕ(r) and bringing the expansion in the right form, so that the
classical dipole field (3.1.6) is recognized, one gets

ϕ(r) = ϕ(0) − r ·E(0)− . . . , (3.1.8)

where we have neglected the quadrupole moment and higher momenta. With this expression the energy is
given by

W = eϕ(0) − p ·E(0) + . . . . (3.1.9)

Here the dipole moment is defined by p =
∫

dV ρ(r′)r′, which is equivalent to the above definition for the
special charge distribution

ρ(r′) = eδ

(
r′ − d

2

)
− eδ

(
r′ +

d

2

)
. (3.1.10)

The dipole-dipole interaction can now be derived by inserting the field (3.1.6) in (3.1.8). The result is

W12 = K
p1 · p2 − 3(p1 · n)(p2 · n)

|r1 − r2|3
. (3.1.11)

where n = r1−r2
|r1−r2| denotes the direction between the two dipoles. This formula represents the dipole-dipole

interaction, that we will use in this form as a two-body interaction for the rest of this work. It is customary
to write V for the dipole-dipole interaction. Furthermore it will be useful to define the first and second part
of the dipole-dipole interaction in the following way

V (int) = V (int)
1 + V (int)

2 = K
p1 · p2

|r1 − r2|
+K

(p1 · n) (p2 · n)
|r1 − r2|

. (3.1.12)

Furthermore we will often restrict ourselves to the case, that the two dipoles are parallel and restricted to
the x-z plane. That is momentarily writing q for p2 q1 = p1, q3 = p3 and q2 = p2 = 0. The second part of
the dipole-dipole interaction (3.1.12) then reads

V2(x, y) = −3K
(p2 · n)(p2 · n)

r3
= −3K

x2p21

(x2 + y2)
5
2

. (3.1.13)
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In order to work with (3.1.11), we will switch to spherical coordinates or polar coordinates, respectively. To
do this, we will now introduce the following angle definitions

Figure 3.1: Definitions of the angles for a configuration of two dipoles.

p1 = p1




sin (α1) cos (β1)
sin (α1) sin (β1)

cos (α1)



 , p2 = p2




sin (α2) cos (β2)
sin (α2) sin (β2)

cos (α2)



 , r = r




sin (ϑ) cos (ϕ)
sin (ϑ) sin (ϕ)

cos (ϑ)



 . (3.1.14)

The dipoles p1 and p2 are now described by the angles given in (3.1.14) as illustrated in Figure 3.1. These
definitions will now be used to derive the dipole-dipole interaction for the special cases of parallel dipoles in
three and two dimensions respectively.
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3.1.2 Dipole-Dipole Interaction for Parallel Dipoles in Three Dimensions

Figure 3.2: Angles ϑ and ϕ for two parallel dipoles
in three dimensions. Since the two dipoles are al-
ways parallel, only the ϑ angle is relevant.

Figure 3.3: The angles for two dipoles in the two-
dimensional plane. The dipoles are restricted to the
x-z plane, therefore the ϕ angle changes the relative
orientation of the two.

If we now assume that we apply an external electric
field, which is strong enough to align all dipoles along
it, as in Figure 3.2, we have p1||p2. By denoting the
angle between p1 and n, according to (3.1.14) as ϑ ,
we get

V (int) (r) = K
p1 p2
r3

(
1− 3 cos2 (ϑ)

)

= −K
2p1 p2
r3

P2(cos (ϑ)) (3.1.15)

where P2(x) = 1
2

(
3x2 − 1

)
is the second Legendre

polynom. Here the electric field is directed in z-
direction. The first dipole is set in the origin of a
given coordinate system and the second dipole is at a
distance r. Since the dipoles are parallel and always
pointing in the z-direction, the system is symmetric
regarding the azimuth angle ϕ.

11 Π
36

Π
2

25 Π
36

"2.0

"1.5

"1.0

"0.5

0.5

1.0

α

−2P2(cos (ϑ))

Figure 3.4: Plot of −2P2(cos (ϑ)). The function
changes from negative (attractive) to positive (re-
pulsive).

The whole setting of these configurations is then given by the angle ϑ. For ϑ = π
2 the dipoles are restricted

to the x-y plane for ϑ = 0, the dipoles are in front of each other, where we expect the peak of attraction.
This holds true by looking at the sign change of the function as shown in Figure 3.4. The critical angle for
which the interaction changes from repulsive to attractive is the magic angle ϑ := arccos

(
1√
3

)
which is well

known from NMR [51]. As we can see from Figure 3.4, the interaction is repulsive for ϑ with

55◦ =
11π

36
≈ arccos

(
1√
3

)
< ϑ < π − arccos

(
1√
3

)
≈ 25π

36
= 125◦ . (3.1.16)
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3.1.3 Dipole-Dipole Interaction for Parallel Dipoles in Two Dimensions

If we now turn to the two-dimensional system it turns out that, if we consider the dipoles parallel in the x-y
plane, the angular dependencies of the dipole-dipole interaction vanishes. Therefore we consider the electric
field to be tilted against the z-direction. By doing so, and starting from (3.1.14) and setting α2 −→ α1 =:
α,β2 −→ β1, and β1 −→ 0 we arrive at

V (int) (r) = K
p1 p2
r3

[
1− 3 sin 2(α) cos2 (ϕ)

]
. (3.1.17)

Now here the angle α describes the tilting of the
dipole’s towards the z-direction and ϕ describes the
angle in the plane of their relative position. Because
we have set β = 0 both dipoles will only move in
the x-z plane, so if they are tilted they will always
point in x-direction see Figure 3.3. For ϕ = 0 and
α = π

2 the two dipoles are aligned in the x-axis.
The head of one pointing to the tail of the other.
In this scenario, we have the strongest attraction.
In contrast for α = π

2 and ϕ = π
2 , the two dipoles

are lying in the x-y plane and we have repulsion. If
we now consider α = 0 the dipoles will be parallel
for every ϕ and the interaction is the same since
they are simply parallel. This can also directly be
seen in (3.1.17). Obviously it does not matter if
the second dipole lies left or right to the first dipole
and likewise the interaction will be the same, if the
second dipole lies above the first one or under the
first one so the only angles we have to consider are
0 ≤ α,ϕ ≤ π

2 . In the two dimensional case the crit-
ical angle ϕ, where the interaction potential van-
ishes, depends on the orientation of α. Explicitly
this dependency is given by

Figure 3.5: Aerial view on the x-y plane of the two-
dimensional dipole-dipole configuration for the four
angles ϕ = 0, π6 ,

π
3 ,

π
2 .

ϕ = arccos

(
1√

3 sin2 (α)

)

. (3.1.18)

We will later look for the 4 different angles α = 0, π6 ,
π
3 ,

π
2 , which are shown in Figure 3.5 at the dispersion

relation. The interaction potential changes then as shown in Figure 3.6.

3.2 Fourier Transformation for Dipole-Dipole and Coulomb Interaction

In order to solve the Hartree-Fock equation we will transform to Fourier space. This is only possible, because
we have a translation invariant system. We will derive the Fourier transformation for the three and two
dimensional system and compare them later.
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0. 0.5 1. 1.5 2. 2.5 3.
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Figure 3.6: in Dipole-dipole interaction changes from attractive to repulsive for the four different positions of
the orientation of the dipole to the z axis. The angles α used are 0 (red) π

6 (blue) π
3 (green) and π

2 (black).

3.2.1 Fourier Transformation of the Three-Dimensional Dipole-Dipole Interaction

We will now set the k-vector in the z-direction, so α1 is then the angle between z and p1. The electric field
aligns the dipoles, so that it points also in the direction of p1.The Fourier transformation of (3.1.11) reads in
spherical coordinates

V Dipole
3D (k) = K

∫ R

ε
drr2

∫ ϑ

0
dϑ sin (ϑ)

∫ 2π

0
dϕ

p1 · p2 − 3(p1 · n)(p2 · n)
r3

e−ikr cos (ϑ) (3.2.1)

= Kp1p2

∫ R

ε
dr

1

r

∫ π

0
dϑ sin (ϑ)

∫ 2π

0
dϕ e−ikr cos (ϑ)

{
[sin (α1) sin (α2) cos (β1 − β2) + cos (α1) cos (α2)]

− 3
[
cos2(ϑ) cos(α1) cos(α2) + sin2(ϑ) sin(α1) sin(α2) cos(β1 − ϕ) cos(β2 − ϕ)

+ cos(ϑ) sin(ϑ) [cos(ϕ) cos(β2 − ϕ) sin(α2) + cos(β1 − ϕ) sin(α1) cos(α2)]

}
,

where we have introduced the two cutoff parameters ε and R to be discussed at the end. The ϕ integration
can now immediately be executed and leads to

V Dipole
3D (k) = K

∫ R

ε
r2 dr

∫ π

0
dϑ sin (ϑ)

∫ 2π

0
dϕ

p1 · p2 − 3(p1 · n)(p2 · n)
r3

e−ikr cos (ϑ)

= Kπ

∫ R

ε
dr

1

r

∫ π

0
dϑ sin (ϑ)e−ikr cos (ϑ)

×
{
sin (α1) sin (α2) cos (β1 − β2)

[
2− 3 sin2 (ϑ)

]
+ cos (α1) cos (α2)

[
2− 6 cos2 (ϑ)

]}
.

(3.2.2)

Now we calculate
∫ π

0
sin (ϑ)dϑ

[
2− 3 sin2 (ϑ)

]
e−ikr cos (ϑ) =

∫ 1

−1
dη

[
2− 3(1− η2)

]
e−ikrη =

4 sin (kr)

kr
+

12 cos (kr)

(kr)2
− 12

sin (kr)

(kr)3
.

(3.2.3)

In quite the same way we can derive
∫ π

0
dϑ sin (ϑ)

[
2− 6 cos2 (ϑ)

]
e−ikr cos (ϑ) =

∫ 1

−1
dη[2− 6η2]e−ikrη = −8 sin (kr)

kr
+

24 sin (kr)

(kr)3
− 24 cos (kr)

(kr)2
.

(3.2.4)
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Combining these results we get the intermediate result the intermediate result

V Dipole
3D (k) = K

∫ R

ε
drr2

∫ ϑ

0
dϑ sin (ϑ)

∫ 2π

0
dϕ

p1 · p2 − 3(p1 · n)(p2 · n)
r3

e−ikr cos (ϑ) (3.2.5)

= A

∫ R

ε

dr

r

[
4 sin (kr)

kr
+

12 cos (kr)

(kr)2
− 12

sin (kr)

(kr)3

]
+B

∫ R

ε

dr

r

[
24 sin (kr)

(kr)3
− 24 cos (kr)

(kr)2
− 8 sin (kr)

kr

]
,

where we have set

A := πp1p2 sin (α1) sin (α2) cos (β1 − β2) , B := πp1p2 cos (α1) cos (α2) . (3.2.6)

The respective sin (kr)
r#

integrals can now be brought in the following form via partial integration

∫ b

a
dr

sin (αr)

r2
=

[
sin (αa)

a
− sin (αb)

b

]
+ α

∫ b

a
dr

cos (αr)

r
∫ b

a
dr

cos (αr)

r3
=

1

2

[
cos (αa)

a2
− cos (αb)

b2

]
− α

2

[
sin (αa)

a
− sin (αb)

b

]
− α2

2

∫ b

a

cos (αr)

r
dr

∫ b

a
dr

sin (αr)

r4
=

1

3

[
sin (αa)

a3
− sin (αb)

b3

]
+

α

6

[
cos (αa)

a2
− cos (αb)

b2

]

− α2

6

[
sin (αa)

a
− sin (αb)

b

]
− α3

6

∫ b

a
dr

cos (αr)

r
. (3.2.7)

Then the first part yields
∫ R

ε
dr

[
4 sin (kr)

kr2
+

12 cos (kr)

k2r3
− 12

sin (kr)

k3r4

]
= −4 sin (kε)

k3ε3
+

4 sin (kR)

k3R3
+

4cos (kε)

k2ε2
− 4 cos (kR)

k2R2

= 4

(
j1(kR)

kR
− j1(kε)

kε

)
, (3.2.8)

where j1 denotes the spherical Bessel function

j1(x) :=
sin(x)

x2
− cos (x)

x
. (3.2.9)

In the same way the second term leads
∫ R

ε

dr

r

[
24 sin (kr)

(kr)3
− 24 cos (kr)

(kr)2
− 8 sin (kr)

kr

]
= 8

(
j1(kε)

kε
− j1(kR)

kR

)
. (3.2.10)

The whole Fourier transformation (3.2.6) then reduces to

V Dipole
3D (k) = K

∫ R

ε
drr2

∫ ϑ

0
dϑ sin (ϑ)

∫ 2π

0
dϕ

p1 · p2 − 3(p1 · n)(p2 · n)
r3

e−ikr cos (ϑ)

= 4K

[
A

(
j1(kR)

kR
− j1(kε)

kε

)
+ 2B

(
j1(kε)

kε
− j1(kR)

kR

)]

= 4πKp1p2

[
sin (α1) sin (α2) cos (β1 − β2)

(
j1(kR)

kR
− j1(kε)

kε

)

+2cos (α1) cos (α2)

(
j1(kε)

kε
− j1(kR)

kR

)]
. (3.2.11)
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We now check the calculation for the case that the two dipoles are parallel, that is if α1 = α2 and β1 = β2.
We then have

V (int)
3D (k) = πKp1 · p2

{
4 sin2 (α1)

(
j1(kR)

kR
− j1(kε)

kε

)
+ 8cos2 (α1)

(
j1(kε)

kε
− j1(kR)

kR

)}

= 8πKp1p2

(
j1(kε)

kε
− j1(kR)

kR

)
P2(cos (α1)) , (3.2.12)

which agrees with the result of Ref. [35].
We will now try to take the limits of both cutoff parameters. If k > 0 is arbitrarily given, the limits can be
taken for ε → 0 and R → ∞ and the terms tend to 1

3 and 0 accordingly. Explicitly writing down the series
representation for sin and cos

j1(x)

x
=

1

x

(
sin (x)

x2
− cos (x)

x

)
=

∞∑

n=0

(−1)n
[

1

(2n + 1)!
− 1

(2n)!

]
x2n−2

=
∞∑

n=1

(−1)n+1

[
2n

(2n+ 1)!

]

︸ ︷︷ ︸
≥0

x2n−2 ≤
∞∑

n=1

1

3
x2n−2 =

−1

3(x2 − 1)
x→∞−→ 0 , (3.2.13)

gives the limit for R → ∞. In order to see the limit for ε → 0, we simply observe that the exact sum in
(3.2.13) start with 1

3 and all higher terms are of positive powers of x. So the final formula in the limit ε → 0
and R → ∞ yields

V (int)
3D (k) =

8πKp1p2
3

P2(cos (α1)) . (3.2.14)

3.2.2 Fourier Transformation for Two-Dimensional Dipole-Dipole Interaction

We will now consider the two-dimensional case. In order to derive the Fourier transformation in two-
dimensions we have to use polar coordinates. Furthermore the dipoles are now restricted to the x-y plane, so
naturally the r vector will also be restricted to the x-y plane, i.e. we have ϑ = π

2 . Thus from (3.1.14) follows
directly

p1 · p2 = p1p2 [sin (α1) sin (α2) cos (β1 − β2) + cos (α1) cos (α2)] ,

(p1 · n)(p2 · n) = p1p2 [cos(β1 − ϕ) cos(β2 − ϕ) sin(α1) sin(α2)] . (3.2.15)

Before we will start to tackle the task of deriving the Fourier transformation it will be necessary to previously
assemble some integrals and relations for Bessel functions. We start with the integral representation in [52]
for the Bessel functions, which follows directly from the Poisson’s integral representation

∫ 2π

0
dϕe−ix cos (ϕ) = 2πJ0(x) ∀x x > 0 . (3.2.16)

We also need the two following recurrence relations for Bessel functions [53]

dJν(z)

dz
= −Jν+1(z) +

ν

z
Jν(z) , (3.2.17a)

2νJν(z)

z
= Jν+1(z) + Jν−1(z) . (3.2.17b)

The Bessel functions obey also the following symmetry [53]

J−ν(z) = (−1)νJν(z) . (3.2.18)
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In order to calculate the Fourier integral, we will need the following identities
∫ 2π

0
dϕ cos2 (ϕ)e−ikr cos (ϕ) =

∫ 2π

0
dϕe−ikr cos (ϕ) −

∫ 2π

0
dϕ sin2 (ϕ)e−ikr cos (ϕ) . (3.2.19)

The second integral is now determined by differentiating twice under the integral sign and partial integration,
as well as relations (3.2.17a), (3.2.18)

∫ 2π

0
sin2 (ϕ)e−ikr cos (ϕ) =

1

ikr

∫ 2π

0
dϕ sin (ϕ)

∂

∂ϕ
e−ikr cos (ϕ) =

1

ikr

[
−i

∂

∂(kr)

∫ 2π

0
dϕe−ikr cos (ϕ)

]

=
−1

kr

∂

∂(kr)
J0(kr) =

2π

kr
J1(kr) , (3.2.20)

so that we now also obtain the integral (3.2.19) by using (3.2.17b)
∫ 2π

0
dϕ cos2 (ϕ)e−ikr cos2 (ϕ) = 2π

[
J0(kr)−

J1(kr)

kr

]
= 2π

[
J1(kr)

kr
− J2(kr)

]
. (3.2.21)

To integrate over r we will need the following integrals, where we have used partial integration as well as
relation (3.2.17a):

∫ R

ε

dr

r2
J0(kr) =

[
1

ε
J0(kε)−

1

R
J0(kR)

]
− k [J1(kR)− J1(kε)] − k

∫ kR

kε
dxJ2(x) . (3.2.22)

Next we observe, that by the same procedure we get the relation
∫ R

ε
dr

J2(r)

r2
=

[
−1

r
J2(kr)

]R

ε

+ k

∫ R

ε

J1(kr)

r
dr − 2

∫ R

ε

J2(kr)

r2
. (3.2.23)

Since we have now the same integrals on both sides of the equation we can rewrite equation (3.2.23) as

3

∫ R

ε
dr

J2(r)

r2
=

[
−1

r
J2(kr)

]R

ε

+ k

∫ R

ε

J1(kr)

r
dr

=

[
J2(kε)

ε
− J2(kR)

R

]
+ k [J1(kR)− J1(kε)] + k

∫ kR

kε
J2(x)dx . (3.2.24)

Finally we look at the integral, by using (3.2.21) and (3.2.20)
∫ 2π

0
dϕ cos(β1 − ϕ) cos(β2 − ϕ)e−ikr cos(ϕ)

= cos(β1) cos(β2)

∫ 2π

0
dϕ cos2(ϕ)e−ikr cos(ϕ) + sin(β2) sin(β1)

∫ 2π

0
dϕ sin2(ϕ)e−ikr cos(ϕ)

= 2π

[
cos(β1) cos(β2)

(
J1(kr)

kr
− J2(kr)

)
+ sin(β2) sin(β1)

J1(kr)

kr

]

= 2π

[
cos(β1 − β2)

J1(kr)

kr
− cos (β1) cos(β2)

J2(kr)

kr

]

= 2π

[
cos(β1 − β2)

[
1

2
J0(kr) +

1

2
J2(kr)

]
− cos(β1) cos(β2)

J2(kr)

kr

]

= 2π

[
cos(β1 − β2)

J0(kr)

2
+

(
cos(β1 − β2)

2
− cos(β1) cos(β2)

)
J2(kr)

kr

]

= π

[
cos(β1 − β2)J0(kr)− [cos(β1) cos(β2)− sin(β1) sin(β2)]

J2(kr)

kr

]

= π

[
cos(β1 − β2)J0(kr)− cos(β1 + β2)

J2(kr)

kr

]
. (3.2.25)
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Now we are in position to derive the Fourier transformation

V Dipole
2D (k) = K

∫ R

ε
rdr

∫ 2π

0
dϕV2D(r,ϕ)e

−ikr cos(ϕ) (3.2.26)

= Kp1p2

∫ R

ε

dr

r2

∫ 2π

0
dϕ

{
[cos(α1) cos(α2) + cos(β1 − β2) sin(α1) sin(α2)] e

−ikr cos(ϕ)

− 3 sin(α1) sin(α2) cos(β1 − ϕ) cos(β2 − ϕ)e−ikr cos(ϕ)

}
.

The ϕ integration yields using (3.2.25)

V Dipole
2D (k) = K

∫ R

ε
rdr

∫ 2π

0
dϕV2D(r,ϕ)e

−ikr cos(ϕ) (3.2.27)

= 2πKp1p2

∫ R

ε

dr

r2

{
[cos(α1) cos(α2) + cos(β1 − β2) sin(α1) sin(α2)]J0(kr)

− 3

2
sin(α1) sin(α2)

(
cos(β1 − β2)J0(kr)− cos(β1 + β2)

J2(kr)

kr

)}

= πKp1p2

∫ R

ε

dr

r2
{[2 cos(α1) cos(α2)− cos(β1 − β2) sin(α1) sin(α2)] J0(kr) (3.2.28)

+3 sin(α1) sin(α2) cos(β1 + β2)
J2(kr)

kr

}
.

The r-integration can be done with the relations (3.2.22), (3.2.24)

V Dipole
2D (k) = πKp1p2

{
[2 cos (α1) cos (α2)− sin (α1) sin (α2) cos (β1 − β2)]

[(
J0(kε)

ε
− J0(kR)

R

)
(3.2.29)

−k [J1(kR)− J1(kε)]− k

∫ kR

kε
J2(x)dx

]
+ [sin (α1) sin (α2) cos (β1 + β2)]

[(
J2(kε)

ε
− J2(kR)

R

)

+ k [J1(kR)− J1(kε)] + k

∫ kR

kε
J2(x)dx

]}

In the case, that the two dipoles are parallel, we have α2 = α1 and β1 = β2, and therefore

[2 cos (α1) cos (α2)− sin (α1) sin (α2) cos (β1 − β2)] = 2 cos2 (α1)− sin2 (α1) cos (0) = 2P2(cos (α1)) ,

[sin (α1) sin (α2) cos (β1 + β2)] = sin2 (α1) cos (2β1) . (3.2.30)

Thus we obtain the final result

V Dipole
2D (k) = 2πKp1p2P2(cos (α1))

{(
J0(kε)

ε
− J0(kR)

R

)
− k [J1(kR)− J1(kε)] − k

∫ kR

kε
J2(x)dx

}

+ πKp1p2 sin (α1)
2 cos (2β1)

{(
J2(kε)

ε
− J2(kR)

R

)
+ k [J1(kR)− J1(kε)] + k

∫ kR

kε
J2(x)dx

}
.

(3.2.31)

This result agrees with the one given in Ref. [35]. Now due to the behaviour of the Bessel functions the only
terms that remain in the limit ε → 0 and R → ∞ are the integrals, and the first term, which diverges. We
keep the term with its 1

ε behavior and get

V Dipole
2D (k) = 2πKp1p2P2(cos (α1))

(
1

ε
− k

)
+ πKp1p2k sin

2 (α1) cos (2β1) . (3.2.32)
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Mandatory to calculate the integral it was necessary to introduce the ultraviolet cutoff ε. Now one runs
into the problem, that the Fourier transformation diverges for ε → 0. The only chance one has to obtain a
final result is, if the Hartree and Fock diagrams cancel out this ultraviolet divergency. This happens in the
homogeneous case, which makes it possible to carry out the calculation. We will use this obtained knowledge
later in the trapped case to gain finite results.

3.2.3 Fourier Transformation for Three-Dimensional Coulomb Interaction

To calculate the Fourier transformation of the Coulomb potential

V (r) = K
1

|r− r′|
= K

1

|R|
, (3.2.33)

we will use the Schwinger trick by rewriting the integral representation of the Gamma function as

1

ax
=

1

Γ(x)

∫ ∞

0
dττx−1e−ax . (3.2.34)

With this we can now simply rewrite the Fourier transformation as

K

∫
d3R

1

|R|e
−ikR = K

∫
d3R

1√
R2

e−ikR = K
1

Γ
(
1
2

)
∫

d3R

∫ ∞

0
dτ τ

1
2−1e−τR

2
e−ikR

= K
1√
π

∫ ∞

0
dτ τ−

1
2

∫
d3Re−(τR2+ikR) , (3.2.35)

completing the square now leads to

= K
1√
π

∫ ∞

0
dτ τ−

1
2 e

k2

4τ

∫
d3Re

−
(√

τR− ik
2
√

τ

)2

, (3.2.36)

and with the substitution

η =

(√
τR− −ik

2
√
τ

)2

, Det
(
∂R

∂η

)
=

1
√
τ3

, (3.2.37)

we conclude that

K

∫
d3R

1

|R|e
−ikR = Kπ

∫ ∞

0
dτ

1

τ2
e−

k2

4τ . (3.2.38)

The last integration can be performed with the substitution u := 1
τ and we arrive at

K

∫
d3R

1

|R|
e−ikR = K

4π

k2
. (3.2.39)

3.2.4 Fourier Transformation for Two-Dimensional Coulomb Interaction

In two dimensions we can do the Fourier transformation as follows, first we note

K

∫ ∞

0
rdr

∫ 2π

0
dϕ

1

r
eikr cos (ϕ) = K

∫ ∞

0
dr

∫ 2π

0
dϕ eikr cos (ϕ) = 2πK

∫ ∞

0
dr J0(kr) , (3.2.40)
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where we have used (3.2.16) to get the Bessel function J0. Now in order to calculate the second integral one
has to use a trick analog to the three-dimensional Yukawa trick, by introducing a converging making factor
as follows

∫ ∞

0
dre−αrJ0(kr) =

1

2π

∫ ∞

0
dr e−αr

∫ 2π

0
dϕ e−ikr cos (ϕ) α > 0

=
1

2π

∫ 2π

0
dϕ

∫ ∞

0
dr e−[α+ik cos (ϕ)]r

=
1

2π

∫ 2π

0
dϕ

−1

α+ ik cos (ϕ)
e−[α+ik cos (ϕ)]r

∣∣∣∣
∞

0

=
1

2π

∫ 2π

0
dϕ

1

α+ ik cos (ϕ)
,

=
1

2π

2π√
α2 − (−ik)2

=
1√

α2 + k2
(3.2.41)

where we have used the Kepler integral. Now with α = 0 and for k > 0 follows

V (int)
Col (k) := K

2π

k
. (3.2.42)

3.3 Self-Energy Derivation for a Homogeneous System within Hartree-
Fock Approximation

3.3.1 For Dipole-Dipole Interaction in Three Dimensions

Figure 3.7: Illustration of considered angles. The figure is adapted from [35] .
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If we are dealing with ultracold gases T ≈ 0 the Fermi function tends towards the Θ-distribution and we can
substitute the sum with the integral

1

V

∑

k′

1

|k− k′|2nk −→
∫

d2k′

(2π)2
1

|k− k′|2 , (3.3.1)

where the integration extends over the Fermi sphere.
Before we proceed we again stress the point, that (2.4.20) are the Hartree-Fock equation in first order

perturbation theory. That is we will not solve the self-consistent Hartree Fock equation, which would change
the distribution nk in (2.4.20) and consequently deforme the Fermi sphere in the upcoming integrals. While
higher perturbations have already been considered [54], we are not aware of a fully self-consistent calculation
at the present time. We now calculate the Hartree-Fock self-energy for the homogeneous system. We start
by inserting the Fourier transformation (3.2.14) in equation (2.4.20):

ΣHF
3D (k) =

1

V

∑

k′

[
V3D(k = 0)− V3D(k− k′)

]
nk′

= −8πKp1 · p2

3

∑

k′

P2(cos (αk−k′))nk′ . (3.3.2)

We will now replace again the sum with the integration, as explained in (3.3.1). Then we get

ΣHF
3D (k) = −8πKp1 · p2

3

∫

k′≤kF

d3k′

(2π)3
P2(cos (αk−k′)) , (3.3.3)

The angle αk−k′ denotes the angle between the z-axes and the vector k− k′ and can be expressed according
to Figure 3.7. 1

cos (αk−k′) =
k cos (ϑk)− k′ cos (ϑk′)

|k− k′| =
k cos (ϑk)− k′ cos (ϑ′

k)√
k2 + k′2 − 2kk′ cos (αk−k′)

, (3.3.7)

where ϑk and ϑk′ are the angles between the z-axis and k, k′ and α is the angle between k and k′. If we
write cos (αk−k′) = sin (ϑk) sin (ϑk′) cos (ϕk − ϕk′) + cos (ϑk) cos (ϑk′) we get

cos (αk−k′) =
k cos (ϑk)− k′ cos (ϑk′)√

k2 + k2′ − 2kk′ [sin (ϑk) sin (ϑk′) cos (ϕk − ϕk′) + cos (ϑk) cos (ϑk′)]
. (3.3.8)

1A more pedestrian way to see this relation is

q = q




sin(α) cos (β)
sin(α) sin (β)

cos(α)



 k = k




sin(ϑk) cos(ϕk)
sin(ϑk) cos(ϕk)

cos(ϑk)



 k′ = k′




sin(ϑ′

k) cos(ϕ
′
k)

sin(ϑ′
k) cos(ϕ

′
k)

cos(ϑ′
k)



 (3.3.4)

ẑ · q = (k− k′) = (k − k′) cos(α) = k cos(ϑk)− k′ cos(ϑ′
k) (3.3.5)

cos(αk−k′) =
k cos(ϑk)− cos(ϑk)

|k− k′| (3.3.6)
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Together with the definition of the Legendre polynomials, it follows

ΣHF
3D (k) = −8πKp1 · p2

3

∫

k′≤kF

d3k′

(2π)3
P2(cos (αk−k′)) (3.3.9)

= −Kp1 · p2

3π2

×





∫

k′≤kF

d3k′
3(k cos (ϑk)− k′ cos (ϑk′))2

2
(
k2 + k2′ − 2kk′ [sin (ϑk) sin (ϑk′) cos (ϕk − ϕk′) + cos (ϑk) cos (ϑk′))

]
︸ ︷︷ ︸

:=IntA

−
∫

k′≤kF

d3k′
1

2




.

The second integral can be evaluated immediately

1

2

∫

k′≤kF

d3k′ =
1

2

∫
dΩ

∫ kF

0
k′dk′ =

2πk3F
3

. (3.3.10)

Now lets evaluate the first integral. We first note that, due to the cylindrical symmetry, we can project the k
vector in the kz−kx plane, i.e. we put ϕk = 0. Furthermore we shall define the following shorthand notations

A = 3k′2 sin (ϑk′)
[
k cos (ϑk′)− k′ cos (ϑk′)

]2
,

B = 2[k2 + k′2 − 2kk′ cos (ϑ) cos (ϑk′)],

C = −4kk′ sin (ϑk), (3.3.11)

so with this notation we get

IntA =

∫ kF

0
dk′

∫ π

0
dϑk′

∫ 2π

0
dϕk′

A

B + C cos(ϕk′)
. (3.3.12)

This is the Kepler integral, which can be solved analytically as long as the following relations (3.3.13) are
fulfilled. Now we note that 0 ≤ ϑk ≤ π and 0 ≤ ϑk′ ≤ π and k, k′ > 0. So we have

0 ≤ 4(k − k′)4 ≤ B2 ≤ 4(k + k′)4

−4kk′ ≤ C2 ≤ 0

}
=⇒ B2 − C2 > 0 ∀k ,=k′∀ϑ,ϑ′ ,=π , (3.3.13)

so we can use the following formula
∫ 2π

0
dϕk′

A

B + C cos(ϕk′)
= 2A

∫ π

0

dϕk′

B + C cos (ϕk′)
=

2Aπ√
B2 − C2

. (3.3.14)

Now we can concentrate on the ϑ′ integral. Again it will be necessary to introduce some new notations

u = cos (ϑk),

K1 = k2 + k′2,

L1 = 2kk′,

H1 = K2
1 − L2

1 sin
2 (ϑk),

H2 = 2K1L1 cos (ϑk) . (3.3.15)

If we now return to the integral keeping in mind, that we have to change the measure du
dϑk′

= − sin (ϑk′) and
have u(0) = 1 as well u(π) = −1, we can switch the integral immediately and use the minus sign as follows
∫ π

0
dϑk′

3πk′2 sin (ϑk′) [k cos (ϑk)− k′ cos (ϑk′)]2√
[k2 + k′2 − 2kk′ cos (ϑk) cos (ϑk′)]2 − 4k2k′2 sin (ϑk)

2
=

∫ 1

−1
du

3k′2π [k cos (ϑk)− k′u]2√
H1 + L2

1u
2 −H2u

(3.3.16)
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again introducing new notations and expanding the integrand we arrive at
∫ 1

−1
du

3k′2π [k cos (ϑk)− k′u)2√
H1 + L2

1u
2 −H2u

=

∫ 1

−1
du

I1√
H1 + L2

1u
2 −H2u

.

+

∫ 1

−1
du

I2u√
H1 + L2

1u
2 −H2u

+

∫ 1

−1
du

I3u2√
H1 + L2

1u
2 −H2u

(3.3.17)

with

I1 = 3πk2k′2 cos (ϑk),

I2 = −6πkk′
3
cos (ϑk),

I3 = 3πk′
4
. (3.3.18)

The integrals can be solved in the following way as long as

4L2
1H1 − (−H2)

2 = 16k2k21(k
2 − k21)

2 sin (ϑk)
!
> 0 , (3.3.19)

which is the case as long as k -= k′. Note that the integral can also be solved for k = k′. Just its form is
different. Using the following integrals

∫
dx√

ax2 + bx+ c
=

1√
a
arsinh

(
2ax+ b√
4ac− b2

)
+ C1, (3.3.20)

∫
dx

x√
ax2 + bx+ c

=

√
ax2 + bx+ c

a
− b

2a

[
1√
a
arsinh

(
2ax+ b√
4ac− b2

)
+ C2,

]

∫
dx

x2√
ax2 + bx+ c

=

(
x

2a
− 3b

4a2

)√
ax2 + bx+ c+

3b2 − 4ac

8a2

[
1√
a
arsinh

(
2ax+ b√
4ac− b2

)
+ C3

]
,

we can simplify the expression (3.3.17) to
∫ 1

−1
du

3k′2π [k cos (ϑk)− k′u]2√
H1 + L2

1u
2 −H2u

(3.3.21)

=

[
I1√
L2
1

− I2H2

2L2
1

√
L2
1

+ I3

(
3H2

2 − 4L2
1H1

8L4
1

√
L2
1

)][
arsinh

(
2L2

1 +H2√
4L2

1H1 −H2
2

)
− arsinh

(
−2L2

1 +H2√
4L2

1H1 −H2
2

)]

+

[
I2
L2
1

− 3H2I3
4L4

1

](√
L2
1 +H2 +H1 −

√
L2
1 −H2 +H1

)
+

I3
2L2

1

(√
L2
1 +H2 +H1 +

√
L2
1 −H2 +H1

)
.

We will first look at the argument of the arsinh in the following way

±2L2
1 −H2√

4L2
1H1 −H2

2

=: ϕ , (3.3.22)

and use the identity
arsinh(x) = log

(
x+

√
x2 + 1

)
, (3.3.23)

with which we can deduce

arsinh

(
2L2

1 +H2√
4L2

1H1 −H2
2

)

− arsinh

(
−2L2

1 +H2√
4L2

1H1 −H2
2

)

= log

[
(k + k′)

(k − k′)
tan

(
ϑk

2

)]
− log

[
(k − k′)

(k + k′)
tan

(
ϑk

2

)]

= log

[
(k + k′)2

(k − k′)2

]
. (3.3.24)
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The next step is to evaluate the square root terms. First notice
√

L2
1 ±H2 +H1 =

√
k2 + k′2 ± 2kk′ cos 2(ϑk) = k2 + k′

2 ± 2kk′ cos (ϑk) . (3.3.25)

In the last step we could leave the square root, due to the fact that k, k′ > 0 and 0 ≤ ϑk ≤ π and hence

k2 + k′
2
+ 2kk′ cos (ϑk) ≥ k2 + k′

2
+ 2kk′ cos (π) = k2 + k′

2
+ 2kk′ = (k + k′)2 ≥ 0

k2 + k′
2 − 2kk′ cos (ϑk) ≥ k2 + k′

2
+ 2kk′ cos (0) = k2 + k′

2 − 2kk′ = (k − k′)2 ≥ 0 . (3.3.26)

With that we can finally write this cumbersome expression in the simple form
√
L2
1 +H2 +H1 −

√
L2
1 −H2 +H1 = −4kk′ cos (ϑk) ,

√
L2
1 +H2 +H1 +

√
L2
1 −H2 +H1 = 2(k2 + k′

2
) . (3.3.27)

Next we evaluate the other terms, keeping in mind, that we are not really interested in simplifying them yet.
We sort by k′, and start with

I1√
a
− I2b

2a
√
a
+ I3

(
3b2 − 4ac

8a2
√
a

)]
=

3kπ
[
3 cos2 (ϑk)− 1

]

16
k′ −

3π
[
3 cos2 (ϑk)− 1

]

8k
k′

3

+
3π

[
3 cos2 (ϑk)− 1

]

16k3
k′5 ,

[
I2
a

− 3bI3
4a2

]
=

−15π cos (ϑk)

16k
k′ +

9π cos (ϑk)

16k3
k′3 . (3.3.28)

We already calculated the last factor, so we are ready to put it together and define new constants
∫ 1

−1
du

3k′2π [k cos (ϑk)− k′u2

√
H1 + L2

1u
2 −H2u

=
3kπ

[
3 cos2 (ϑk)− 1

]

16
k′ log

[
(k + k′)2

(k − k′)2

]
−

3π
[
3 cos2 (ϑk)− 1

]

8k
k′3 log

[
(k + k′)2

(k − k′)2

]

+
3π

[
3 cos2 (ϑk)− 1

]

16k3
k′5 log

[
(k + k′)2

(k − k′)2

]
+

3π[5 cos2 (ϑk) + 1]

4
k′2 − 3π[3 cos2 (ϑk)− 1]

4k2
k′4

= G1k
′ log

(k + k′)2

(k − k′)2
+G2k

′3 log

[
(k + k′)2

(k − k′)2

]
+G3k

′5 log

[
(k + k′)2

(k − k′)2

]
+G4k

′2 +G5k
′4 , (3.3.29)

where we have introduced

G1 =
3kπ

[
3 cos2 (ϑk)− 1

]

16
G2 = −

3π
[
3 cos2 (ϑk)− 1

]

8k

G3 =
3π

[
3 cos2 (ϑk)− 1

]

16k3
G4 =

3π[5 cos2 (ϑk) + 1]

4

G5 = −3π[3 cos (ϑk)
2 − 1]

4k2
. (3.3.30)

The integration over k can now be done analytically. Since the logarithm is zero at the point one, all integrals
vanish at the lower boundary and we get

∫ kF

0
dk′ k′ log

[
(k + k′)2

(k − k′)2

]
=

1

2

(
k2F − k2

)
log

[
(k + kF )2

(k − kF )2

]
+ 2kkF ,

∫ kF

0
dk′ k′3 log

[
(k + k′)2

(k − k′)2

]
=

1

4
(k4F − k4) log

[
(k + kF )2

(k − kF )2

]
+

k

3
k3F + k3kF ,

∫ kF

0
dk′ k′5 log

[
(k + k′)2

(k − k′)2

]
=

1

6
(k6F − k6) log

[
(k + kF )2

(k − kF )2

]
+

2

15
kk5F +

2

9
k3k3F +

2

3
k5kF . (3.3.31)
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Remembering the first integral we calculated immediately at the start (3.3.10), and also keeping in mind that
it has a minus sign, we can write the integral over P2 as

∫

k′<kF

dk′P2(cos (αk−k′)) =




3kπ

(
3 cos (ϑk)

2 − 1
)

16




[
1

2

(
k2F − k2

)
log

(
(k + kF )2

(k − kF )2

)
+ 2kkF

]

−
[
3π

(
3 cos2 (ϑk)− 1

)

8k

][
1

4
(k4F − k4) log

(
(k + kF )2

(k − kF )2

)
+

k

3
k3F + k3kF

]

+

[
3π

(
3 cos2 (ϑk)− 1

)

16k3

][
1

6
(k6F − k6) log

(
(k + kF )2

(k − kF )2

)
+

2

15
kk5F +

2

9
k3k3F +

2

3
k5kF

]

+

[
3π

(
5 cos2 (ϑk) + 1

)

4

]
1

3
k3F

−
[
3π

(
3 cos2 (ϑk)− 1

)

4k2

]
1

5
k5F

− 2π

3
k3F . (3.3.32)

∫

k′<kF

dk′P2(cos (αk−k′) =
(
3 cos2 (ϑk)− 1

) [πkF
8k2

(k4 − k4F ) +
πk3F
3

− π

32k3
(k2 − k2F )

3 log

(
(k + kF )2

(k − kF )2

)]

=
(
3 cos2 (ϑk)− 1

) π

24
k3F




3

(
k

kF

)2

− 3
1

(
k
kF

)2 + 8 +

3

(
1−

(
k
kF

)2
)3

2
(

k
kF

)3 log

(
|1 + k

kF
|

|1− k
kF

|

)




= P2(cos(ϑk))k
3
F I3D

(
k

kF

)
, (3.3.33)

with the definition

I3D(x) :=
π

12

[

3x2 − 3
1

x2
+ 8 +

3
(
1− x2

)3

2x3
log

(
|1 + x|
|1− x|

)]

. (3.3.34)

The whole integral follows the same notations as introduced in [35]

ΣHF
3D (k) = −k3F

Kp1p2
3π2

P2(cos(ϑk))I3D

(
k

kF

)

= −2λE3D
kF P2(cos(ϑk))I3D

(
k

kF

)
, (3.3.35)

with defining the dimensionless dipolar interactions

λ :=
Kp1p2mkF

3π2!2 and the Fermi energy E3D
kF =

!2k2F
2m

. (3.3.36)

91



CHAPTER 3. ULTRACOLD FERMIONS IN A HOMOGENEOUS SYSTEM

0 1 2 3 4 5
0

1

2

3

4

5

6

k
kF

I 3
D

(
k k f

)

Figure 3.8: The integral I3D as a function of k
kF

,
converging for large k, against 4π

3 .
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Figure 3.9: Comparison of the whole energy (green)
with the free dispersion (red).

The function (3.3.34) shown in Figure 3.8 converges
against 4π

3 . Therefore the self-energy (3.3.35) will
be lowered by a constant factor for high momenta
k. This behaviour can also be seen in Figure 3.9.
Where the whole energy dispersion is compared to
the free dispersion. The convergence of (3.3.34)
manifests itself in the curvature of the dispersion,
which is dominated by the free dispersion. The
Fermi surface in Figure 3.10 shown for λ = 1

2π
is now elongated along the kz direction. This is
expected since the dipoles are directed in the z-
direction. The ratio of dilatation in z-direction of 1

2
is an accompanied by a compression in x-direction
of approximately 1

8 . The strength of the deforma-
tion certainly changes with the chosen value of λ.
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Figure 3.10: The Fermi surface in first order pertur-
bation theory for the dipolar interaction compared
to the Fermi surface with spherical symmetric in-
teraction for λ = 1

2π .

3.3.2 For Dipole-Dipole Interaction in Two Dimensions

We use the two-dimensional potential as from (3.2.32) in order to calculate the Hartree-Fock energy (2.4.20)

ΣHF
2D (k) =

1

V

∑

k′

[
V2D(k = 0)− V2D(|k− k′|)

]
nk′

= 2πKp1 · p2

∑

k′

P2(cos(α))|k − k′|nk′ − πKp1 · p2

∑

k′

|k− k′| sin2 (α) cos (2βk−k′)nk′ .

Again we take β → ∞ and arrive at the integral

ΣHF
2D (k) = 2πKp1 · p2

∫

k≤kF

d2k

(2π)2
P2(cos(α))|k − k′|− πd2

∫

k≤kF

d2k

(2π)2
|k− k′| sin2 (α) cos (2βk−k′) .

(3.3.37)

These are the integrals we want to solve, but we will start a little bit different to control the divergence for
ε → 0. Fortunately it will cancel due to the difference, as we shall see now. For that matter we first look at
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the difference

V2D(k = 0)− V2D(|k− k′|) = 2πKp1 · p2P2(cos(α))|k − k′|− πKp1 · p2|k− k′| sin2 (α) cos (2βk−k′) .
(3.3.38)

Now to control the cos (2x) we use the identity cos(2x) = 2 cos2 (x)− 1, since we have the angle between the
x-axis and the vector k− k′ the following identity holds true

cos (βk−k′) =
k cos (ϕk)− k′ cos (ϕk′)

|k − k′|
. (3.3.39)

Inserting both yields to

V2D(k = 0)− V2D(|k− k′|) (3.3.40)

= πKp1 · p2
[
2P2(cos(α)) + sin2 (α)

]√
k2 + k′2 − 2kk′ cos (ϕk − ϕ′

k)− 2πKp1 · p2 sin
2 (α0)

×



k2 cos2 (ϕk)
1√

k2 + k′2 − 2kk′ cos (ϕk − ϕ′
k)

+ k′2
cos2 (ϕk′)√

k2 + k′2 − 2kk′ cos (ϕk − ϕ′
k)

−2kk′ cos (ϕk)
cos (ϕk′)√

k2 + k′2 − 2kk′ cos (ϕk − ϕ′
k)





=: Int1 + Int2 , (3.3.41)

where

Int1 : = πKp1 · p2
[
2P2(cos(α)) + sin2 (α)

]√
k2 + k′2 − 2kk′ cos (ϕk − ϕ′

k)

Int2 : = rest . (3.3.42)

First we rewrite the integral
∫ 2π

0
dϕk′

1

|k− k′| =
∫ 2π

0
dϕk′

1√
k2 + k′2 − 2kk′ cos (ϕk − ϕ′

k)
=

∫ 2π−ϕk

−ϕk

dσ
1√

k2 + k′2 − 2kk′ cos (σ)

=

∫ 2π

0
dσ

1√
k2 + k′2 − 2kk′ cos (σ)

=
4√

(k + k′)2

∫ π
2

0
dω

1√
1− 4kk′

(k+k′)2 sin
2 (ω)

=
4√

(k + k′)2
K

(
2
√
kk′√

(k + k′)2)

)

. (3.3.43)

Here we have introduced the elliptic integral

K(x) :=

∫ π
2

0
dϕ

1√
1− x2 sin2 (ϕ)

, (3.3.44)

which is also shown in Figure 3.11. Second we will evaluate the integrals over ϕk′ .
∫ 2π

0
dϕk′

cos2 (ϕk′)

|k− k′| =

∫ 2π

0
dϕ

cos2 (ϕk′)√
k2 + k′2 − 2kk′ cos (ϕk − ϕ′

k)
=

∫ 2π−ϕk

−ϕk

dσ
cos2 (σ + ϕk)√

k2 + k′2 − 2kk′ cos (σ)

(3.3.45)
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Figure 3.11: Elliptic Integral K.
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Figure 3.12: Elliptic Integral E.

Now we separate the cos2 (α + ϕk) as follows

cos2 (σ + ϕk) =
1

2
− 1

2
cos (2ϕk) + cos (2ϕk) cos

2 (σ)− 2 cos (ϕk) sin (ϕk) cos (σ) sin (σ) (3.3.46)

and write the first integral as
∫ 2π

0
dϕk′

cos2 (ϕk′)

|k− k′| =
1

2

4√
(k + k′)2

K

(
2
√
kk′√

(k + k′)2

)

− 1

2
cos (2ϕk)

4√
(k + k′)2

K

(
2
√
kk′√

(k + k′)2

)

+ cos (2ϕk)

∫ 2π

0
dσ

cos2 (σ)√
k2 + k′2 − 2kk′ cos (σ)

− 2 cos (ϕk) sin (ϕk)

∫ 2π

0
dσ

cos (σ) sin (σ)√
k2 + k′2 − 2kk′ cos (σ)

. (3.3.47)

The last integral must be zero since the integrand is an odd function. The next integral can be written with
the help of the relation for elliptic integrals

∫ 2π

0
dσ

cos2 (σ)√
a− b cos (σ)

=
−8a(a− b)E

(√
− 2b

a−b

)
+ 4(2a2 + b2)K

(√
− 2b

a−b

)

3
√
a− b b2

, (3.3.48)

where we again introduced the elliptic integral

E(x) :=

∫ π
2

0
dϕ

√
1− x2 sin2 (ϕ) , (3.3.49)

which is also shown in Figure 3.12. Further we need the following relations

K(iσ) =
1√

1 + σ2
K

(
σ√

1 + σ2

)
,

E(iσ) =
√

1 + σ2E

(
σ√

1 + σ2

)
, (3.3.50)

so we can write the integral as:

∫ 2π

0
dσ

cos2 (α)√
a− b cos (σ)

=
−8a(a− b)

√
1 + σ2E

(
σ√
1+σ2

)
+ 4(2a2 + b2) 1√

1+σ2
K

(
σ√
1+σ2

)

3
√
a− b b2

. (3.3.51)
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With σ =
√

2b
a−b , and resubstituting a = k2 + k′2 as well as b = 2kk′, we can rewrite the whole integral as

∫ 2π

0
dσ

cos2 (σ)√
k2 + k′2 − 2kk′ cos (σ)

=

−2(k2 + k′2)
√

(k + k′)2E

(
2
√
kk′√

(k+k′)2

)
+ 2(k4 + k′4 + 4k2k′2) 1√

(k+k′)2
K

(
2
√
kk′√

(k+k′)2

)

3k2k′2
. (3.3.52)

By adding all together, we arrive at

∫ 2π

0
dϕk′

cos2 (ϕk′)

|k− k′| =
2√

(k + k′)2
K

(
2
√
kk′√

(k + k′)2

)

− cos (2ϕk)
2√

(k + k′)2
K

(
2
√
kk′√

(k + k′)2

)

+ cos (2ϕk)





−2(k2 + k′2)
√

(k + k′)2E

(
2
√
kk′√

(k+k′)2

)
+ 2(k4 + k′4 + 4k2k′2) 1√

(k+k′)2
K

(
2
√
kk′√

(k+k′)2

)

3k2k′2



 .

(3.3.53)

Finally we have to solve the following integral
∫ 2π

0
dϕk′

cos (ϕk′)

|k− k′| = cos (ϕk)

∫ 2π

0
dσ

cos (σ)√
k2 + k′2 − 2kk′ cos (σ)

− sin (ϕk)

∫ 2π

0
dσ

sin (σ)√
k2 + k′2 − 2kk′ cos (σ)

.

(3.3.54)

The second integral vanishes again, by the same argument as above, so again the function is uneven and
integrated over a symmetric interval, that leaves us with:

∫ 2π

0
dϕk′

cos (ϕk′)

|k− k′| = cos (ϕk)

∫ 2π

0
dσ

cos (σ)√
k2 + k′2 − 2kk′ cos (σ)

. (3.3.55)

This time we need the following relation

∫ 2π

0
dσ

cos (σ)√
a− b cos (σ)

=
4√

a− b b

[

(b− a)E

(√
− 2b

a− b

)

+ aK

(√
− 2b

a− b

)]

. (3.3.56)

Together with the relation from above we can rewrite it as So we have for this integral

∫ 2π

0
dϕk′

cos (ϕk′)

|k− k′| =
2cos (ϕk)

kk′

[
k2 + k′

2

√
(k + k′)2

K

(
2
√
kk′√

(k + k′)2

)

−
√

(k + k′)2E

(
2
√
kk′√

(k + k′)2

)]

. (3.3.57)
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Now we will rewrite the second term of the original integral

Int2 = 2πKp1 · p2 sin
2 (α)

[

k2 cos2 (ϕk)
4√

(k + k′)2
K

(
2
√
kk′√

(k + k′)2

)

+ k′2
2√

(k + k′)2
K

(
2
√
kk′√

(k + k′)2

)

− k′
2
cos (2ϕk)

2√
(k + k′)2

K

(
2
√
kk′√

(k + k′)2

)

+ k′2 cos (2ϕk)

×





−2(k2 + k′2)
√

(k + k′)2E

(
2
√
kk′√

(k+k′)2

)
+ 2(k4 + k′4 + 4k2k′2) 1√

(k+k′)2
K

(
2
√
kk′√

(k+k′)2

)

3k2k′2





−
4 cos (ϕk)k2K

(
2
√
kk′√

(k+k′)2

)

√
(k + k′)2

−
2 cos (2ϕk)k′

2K

(
2
√
kk′√

(k+k′)2

)

√
(k + k′)2

−
2k′2K

(
2
√
kk′√

(k+k′)2

)

√
(k + k′)2

+2cos (2ϕk)
√
(k + k′)2E

(
2
√
kk′√

(k + k′)2

)
+ 2

√
(k + k′)2E

(
2
√
kk′√

(k + k′)2

)]
. (3.3.58)

The last term of (3.3.58) does not carry a cos (2ϕk) and we will remove it from this second anisotropic part
and carry it over to Int1 of (3.3.41). Without this last term (3.3.58) reads

Intani := Int2 − 2
√

(k + k′)2E

(
2
√
kk′√

(k + k′)2

)

= 2π sin2 (α0)

[
−k′ cos (2ϕk)

4√
(k + k′)

K

(
2
√
kk′√

(k + k′)2

)

+ k′ cos (2ϕk)





−2(k2 + k′2)
√

(k + k′)2E

(
2
√
kk′√

(k+k′)2

)
+ 2(k4 + k′4 + 4k2k′2) 1√

(k+k′)2
K

(
2
√
kk′√

(k+k′)2

)

3k2k′2





+ 2cos (2ϕk)
√

(k + k′)2E

(
2
√
kk′√

(k + k′)2

)
. (3.3.59)

Now, before we proceed here, let us carry the lost term to the isotropic part of the whole integral. This now
reads

Intiso := Int1 + 2
√

(k + k′)2E

(
2
√
kk′√

(k + k′)2

)

= 8πp1 · p2|k − k′|P2(cos (α0))E

(
2
√
kk′√

(k + k′)2

)

. (3.3.60)

Returning to the anisotropic part and simplify it a little more

Intani = 2πKp1 · p2 sin
2 (α0) cos (2ϕk)

√
(k + k′)2

2

3k2

[
(
k − k′

)2
K

(
2
√
kk′√

(k + k′)2

)

+ (2k2 − k′2)E

(
2
√
kk′√

(k + k′)2

)]

.

(3.3.61)

Next we can perform the integration of the second part, keeping in mind, that we still need the k′ factor from
the Jacobian, so we get

Iiso =
2

3
k3FKp1 · p2 sin

2 (α0) cos (2ϕk)I
ani
2D

(
k

kF

)
, (3.3.62)
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Figure 3.13: The functions I iso
2D and Iani

2D .

with the definition

Iani
2D (x) : = 2π

∫ 1

0
dx′x′

1

x2

√
(x+ x′)2



(x− x′
)2

K



 2
√
xx′√

(x+ x′)2



+
(
2x2 − x′2

)
E



 2
√
xx′√

(x+ x′)2









= 2π

∫ 1

0
dx′

x′|x+ x′|
x2

[
(
x− x′

)2
K

(
2
√
xx′

x+ x′

)

+
(
2x2 − x′

2
)
E

(
2
√
xx′

x+ x′

)]

. (3.3.63)

Now we write the isotropic part in a similar way, again keeping in mind, that we need the k′ factor from the
Jacobian as

Intiso =
2

3
Kp1 · p2P2(cos (α0))k

3
F I

iso
2D

(
k

kF

)
, (3.3.64)

with the definition

I iso
2D

(
k

kF

)
= 12π

∫ 1

0
dx′x′

∣∣x− x′
∣∣E

(
2
√
xx′

x+ x′

)
. (3.3.65)

The whole energy can now be written as, remembering the factor 1
(2π)2 coming out of the Fourier transfor-

mation

ΣHF
2D (k) =

Kp1 · p2mkF
3π2!2

!2k2F
2m

{
P2(cos (α))I

iso
2D

(
k

kF

)
− sin2 (α) cos (2ϕk)I

ani
2D

(
k

kF

)}

= λ3DEkF

{
P2(cos (α))I

iso
2D

(
k

kF

)
− sin2 (α) cos (2ϕk)I

ani
2D

(
k

kF

)}
, (3.3.66)

with the notation of

λ3D : =
Kp1 · p2mkF

3π2!2

EkF :=
!2k2F
2m

. (3.3.67)
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As we can see the Fermi surface in two-dimensions
resembles a circle for the case α = 0. This is a di-
rect consequence of the isotropy of the system. If
the dipoles are tilted towards the critical angle ϑ
the elongation along the kx axies reaches the max-
imal value. In Figure 3.13 the functions I iso

2D(x)
and Iani

2D (x) are shown, hence P2(cos (α)) only runs
in in intervall

[
−π

2 , 1
]
, the main contribution to

the self-energy comes from the isotropic part. As
we have seen the scenarios of dipole-diople inter-
action are quite different in two and three dimen-
sions. The anisotropy of the dipole-dipole inter-
action camouflages the main contribution a little,
hence the anisotropy and the more divergent poten-
tial in two-dimensions contribute to the self-energy.
Therefore we will look at the Coulomb interaction
in the next chapter to estimate how strong the con-
straining to two-dimension affects the self-energy.
Before we do so, we shall look at the dispersion in
more detail.
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Figure 3.14: Deformed Fermi surfaces for the angles
α = 0 (black), α = arccos

(
1√
3

)
(red) and the angle

α = π
2 (blue) for lambda = 0.02.
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(b) α = π
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(c) α = π
3 .
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(d) α = π
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Figure 3.15: The self-energy for four different settings α of the dipole-dipole interaction. For each setting
four different settings of ϕk 0 (red), π

6 (blue), π
3 (green), π

2 (black) are given. λ = 0.02.

In Figure 3.15 the self-energy is given for four dipole settings α. For each setting four different dispersion
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directions ϕk are shown. In the first Figure 3.15a the configuration α = 0 is shown. Since the dipole-dipole
interaction (3.1.17) is isotropic in that case the dispersion is also the same for each value ϕk. The next
Figure 3.15b shows the dispersion relation for α = π

6 . Due to the anisotropy of the dipole-dipole interaction
a splitting occurs depending on the propagation of the quasiparticle. The dipoles are restricted to the x-z
plane, pointing in x-direction. As can be seen from the figure the propagation along the x-direction, that is
ϕk = 0 is lower than a propagation with a perpendicular component. The positive curvature indicates, that
the dipole-dipole interaction is still repulsive and that the system is stable. The Figure 3.15c shows that once
the critical angle is passed, the curvature of the dispersion relies on the angle ϕk. This corresponds with
our previous observations regarding the angle dependency (3.1.18) for the dipole-dipole interaction. For the
angle α = π

2 Figure 3.15d the change from a negative curvature to a positive one happens for greater ϕk.
This dependency also corresponds with our observations in Figure 3.6 .

3.3.3 For Coulomb interaction in Three-Dimensions

In order to get a better understanding of what happens when a three-dimensional system is restricted to a
two-dimensional plane, we will also consider a Coulomb gas in three and two dimensions. At first we notice
that for the Coulomb interaction the Hartree term is infinity. This is a well known problem for the Coulomb
gas, which is normally bypassed by demanding the gas to be neutral of charge and adding a term of the form∑

k1,k2
4πe2

k2 ρkψk1−k2ψk, which neutralizes the Hartree term. This model is commonly referred to as Jellium
model. We will therefore neglect the Hartree term as well. The Fourier transformation (3.2.39) yields to solve
the integral

∫
d3k′

(2π)3
1

|k− k′|2 =

∫
d3k′

(2π)3
1

k2 + k′2 − 2kk′ cos (ϑ)

=
1

(2π)2

∫ kF

0
dk′k′2

∫ 1

−1
du

1

k2 + k′2 − 2kk′u
. (3.3.68)

We now first evaluate the u-integral, for this we make the substitutions A := k2 + k′2

and B := 2kk′ so we get
∫ 1

−1

du

k2 + k′2 − 2kk′u
= − log (k2 + k′2 − 2kk′)

2kk′
+

log (k2 + k′2 + 2kk′)

2kk′
. (3.3.69)

Next we evaluate the integrals of the form

± 1

2k

∫ kF

0
dk′k′ log (k2 + k′2 ± 2kk′) , (3.3.70)

so we will have a closer look at

±
∫ kF

0
dk′k′ log (k2 + k′2 ± 2kk′) =±

[
k′2

2
log (k2 + k′2 ± 2kk′)

]kF

0

∓
∫ kF

0
dk′

k′3

k2 + k′2 ± 2kk′
− k

∫ kF

0
dk′

k′2

k2 + k′2 ± 2kk′
. (3.3.71)
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Next we evaluate the two remaining integrals, we start with
∫ kF

0
dk′

k′3

k2 + k′2 ± 2kk′
=

∫ kF

0
dk′

k′3

(k ± k′)2
=

∫ k±kF

k
dα

(α − k)3

α2

=

[∫ k±kF

k
dα

−k3 + 3k2α− 3kα2 + α3

α2

]
(3.3.72)

=

[
∓ k2kF
k ± kF

∓ 2kkF +
k2F
2

+ 3k2 log

(∣∣∣∣
k ± kF

k

∣∣∣∣

)]
, (3.3.73)

and now we can do the integral
∫ kF

0

k′2

k2 + k′2 ± 2kk′
dk′ =

∫ kF

0

k′2

(k ± k′2)
dk′

= ±
∫ k±kF

k

(α− k)2

α2
dα = ±

∫ k±kF

k
dα

α2 + k2 − 2αk

α2

= kF +
kkF

k ± kF
∓ 2k log

(∣∣∣∣
k ± kF

k

∣∣∣∣

)
. (3.3.74)

Now we can go back to our original integral with
∫ kF

0
k′ log (k2 + k′2 + 2kk′) =

k2F
2

log (k2 + k2F + 2kk2F )−
[
− k2kF
k + kF

− 2kkF +
k2F
2

+ 3k2 log

(
k + kF

k

)]

− k

[
kF +

kkF
k + kF

− 2k log

(
k + kF

k

)]

=
k2F
2

log (k2 + k2F + 2kk2F ) + kkF − k2F
2

− k2 log

(
k + kF

k

)
, (3.3.75)

and

−
∫ kF

0
log (k2 + k′

2 − 2kk′) = −
[
k2F
2

log (k2 + k2F − 2kkF )

]
+

[
k2kF
k − kF

+ 2kkF +
k2F
2

+ 3k2 log

(
k − kF

k

)]

− k

[
kF +

kkF
k − kF

+ 2k log

(
k − kF

k

)]

=
−k2F
2

log (k2 + k2F − 2kkF ) + kkF +
k2F
2

+ k2 log

(∣∣∣∣
k − kF

k

∣∣∣∣

)
. (3.3.76)

We keep in mind, that we need the factor 1
2k , so this yields to

∫
d3k′

(2π)3
1

|k− k′|2 =
1

(2π)2

([
k2F
4k

log (k2 + k2F + 2kk2F ) +
kF
2

− k2F
4k

− k

2
log

(∣∣∣∣
k + kF

k

∣∣∣∣

)]

+

[
−
k2F
4k

log (k2 + k2F − 2kkF ) +
kF
2

+
k2F
4k

+
k

2
log

(∣∣∣∣
k − kF

k

∣∣∣∣

)])

=
kF
8π2

[
2 +

k2F − k2

kF k
log

(∣∣∣∣
k + kF
k − kF

∣∣∣∣

)]
. (3.3.77)

Finally we derived
∫

d3k′

(2π)3
1

|k− k′|2 =
kF
8π2

[
2 +

k2F − k2

kF k
log

(∣∣∣∣
k + kF
k − kF

∣∣∣∣

)]
, (3.3.78)
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Figure 3.16: The dispersion relation in contrast to the free electron gas in three (left) and (two) dimensions

and we define the element as

I3DCou(x) :=
1

8π2

[
2 +

1

x

(
1− x2

)
log

(∣∣∣∣
x+ 1

x− 1

∣∣∣∣

)]
. (3.3.79)

The Hartree-Fock energy can then be written as

ΣHF (k) :=
!2k2
2m

− 8πK
e2

2a0
I3DCou

(
k

kF

)
. (3.3.80)

For the electron gas it is customary [55] to introduce the electron density ρ0 as
1

ρ0
=

4π

3
a0r

3
s , (3.3.81)

where a0 = 1
K

!2
me2 is the Bohr radius and rs is a dimensionless parameter. One can see from (3.3.81) that

rsa0 defines the radius of a sphere which on average includes one electron or particle. The Fermi wave vector
can now be expressed via the electron density as

kF =
(
3π2ρ0

) 1
3 . (3.3.82)

Suitable units to describe the electron gas are then

!2k2
2m

=
!2

2ma20

(
k

kF

)2(1.92

rs

) 1
3

, e2kF =

(
1.92

rs

)
e2

a0
with

(
9π

4

) 1
3

≈ 1.92 , (3.3.83)

and since !2
2ma20

= K e2

2a0
, we can Plot (3.3.80) in units of !2

2ma20
.

3.3.4 For Coulomb interaction in Two Dimensions

The integral is now very similar to the dipole case, so we keep the integration here short. We start with
∫ 2π

0
dϕk′

1

|k− k′| =
∫ 2π−ϕk

−ϕk

dα
1√

k2 + k′2 − 2kk′ cos (α)

=

∫ 2π

0
dα

1√
(k + k′)2 − 4kk′ cos2

(
α
2

) =
4

|k + k′|

∫ π
2

0
dβ

1√
1− 4kk′

(k+k′)2 sin
2 (β)

=
4

|k + k′|K
(

2
√
kk′

|k + k′|

)

. (3.3.84)
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Figure 3.17: The correction function to the free electron interaction in Hartree-Fock approximation in two
dimensions.

Where K is the elliptic integral (3.3.44) Now we will rewrite the k′ integral as follows:

∫
d2k′

(2π)2
1

|k− k′| =
1

(2π)2

∫ kF

0
dk′ k′

4

|k + k′|K
(

2
√
kk′

|k + k′|

)

=
1

(2π)2
k2F

∫ 1

0
dx′ x′

4

kF |x+ x′|K
(

2x
√
xx′

x|x+ x′|

)

=
kF
π2

∫ 1

0
dx′ x′

1

|x+ x′|K
(

2
√
xx′

|x+ x′|

)

. (3.3.85)

Finally we define

I(2D)
Cou (x) :=

1

π2

∫ 1

0
x′dx′

1

|x+ x′|K
(

2
√
xx′

|x+ x′|

)
. (3.3.86)

and we can write the Hartree-Fock energy in two dimensions as

Σ2D
Cou(k) =

!2k2
2m

− 4πK
e2

2a0
I(2D)
Cou

(
k

kF

)
. (3.3.87)

As we can see from Figure 3.16 the difference of the self-energy in dependence of the dispersion k
kF

is almost
twice as big as the self-energy for the three-dimensional case. In contrast to the dipole-dipole interaction the
Coulomb interaction is one power of r less divergent and yet the difference between two and three dimensions is
significant. These observation together with the difference between the isotropic and anisotropic contributions
in (3.3.66) let us conclude that the main contributions for the self-energy comes from the long range character
of the dipole-dipole interaction.
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Chapter 4

Two-Dimensional Fermi Gas with Dipolar
Interaction within a Harmonic Trap

Until now we have considered a homogeneous systems without any external trapping potential. In any
experiment of ultracold system the atoms must be trapped. For a two-dimensional system this can for
example be done with a reflecting laser beam forming a standing wave and therefore forming a so called
pancake trap. In reality the system is then quasi two-dimensional. That is the third dimension is highly
surepressd. We will take the electronic or optical trap in the Hamiltonian in the following form

V (trap)(x) =
mω2

2

(
x2 + y2

)
. (4.0.1)

The H0 Hamiltonian now reads

H0 = − !2
2m

∇2 + V (trap)(x) . (4.0.2)

Since this is the known one-particle Hamiltonian for the harmonic oscillator, we can give the eigenfunctions
as

ψn(x) =
2∏

i=1

e−
mωix

2
i

2!
1√

2nini!

(mωi

π!

) 1
4
Hni

(√
mωi

! xi

)
. (4.0.3)

To calculate the self-energy according to the theory outlined above one has to evaluate the self-energy matrix
in the eigenfunctions of H0. Therefore one has to calculate (2.4.17) with the following matrix elements

〈α γ|V (int) |δ γ〉 =
∫

d2r′d2r′′
〈
αγ|r′ r′′

〉
V (int) 〈r′r′′|δ γ

〉

=

∫
d2r′d2r′′ψα(r

′)ψγ(r
′′)V (int)(r′ − r′′)ψδ(r

′)ψγ(r
′′)

〈α γ|V (int) |γ δ〉 =
∫

d2r′d2r′′
〈
αγ|r′ r′′

〉
V (int) 〈r′r′′|γ δ

〉

=

∫
d2r′d2r′′ψα(r

′)ψγ(r
′′)V (int)(r′ − r′′)ψγ(r

′)ψδ(r
′′) , (4.0.4)

and then diagonalize the whole Hamiltonian with respect to the quantum numbers. This approach however
is to cumbersome dealing with fermions, where we have to take the nγ sum only up to the Fermi edge. In
order to proceed we will therefore calculate the self-energy matrix in position space. The self-energy matrix
given by the Fourier transformation of the relative coordinates and the center of mass is a quantity frequently
used in the field of ultracold quantum gases [29, 56]. We will calculate the Hartree and Fock self-energy
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Σ(k,R) systematically within leading orders of the particle number N as well as within the semiclassical
approximation often used in the field of ultracold quantum gases. The semiclassical approximation is well
established approximation in this field, however the combination of the strong dipole-dipole interactions
combined with the restriction to two-dimensions motivates us to investigate the self-energy as the simplest
quantity possible to compare both approaches.

4.1 Large N Approximation for the Hartree-Fock Self-Energy

We will start with evaluating the matrix elements of (2.4.17) in position space as follows

ΣH
γ (r1 τ1|r2 τ2) = δ(τ1 − τ2) 〈r1 γ|V (int) |r2 γ〉

= δ(τ1 − τ2)

∫
d2r′d2r′′

〈
r1 γ|r′ r′′

〉
V (int)(r′ − r′′)

〈
r′ r′′|r2 γ

〉

= δ(τ1 − τ2)

∫
d2r′d2r′′δ(r1 − r′)ψγ(r

′′)V (int)(r′ − r′′)δ(r′ − r2)ψγ(r
′′)

= δ(τ1 − τ2)

∫
d2r′′δ(r1 − r2)ψγ(r

′′)V (int)(r1 − r′′)ψγ(r
′′)

= δ(τ1 − τ2)δ(r1 − r2)

∫
d2rψγ(r)V

(int)(r1 − r)ψγ(r) (4.1.1)

ΣF
γ (r1 τ1|r2 τ2) = −δ(τ1 − τ2) 〈r1 γ|V (int) |γ r2〉

= −δ(τ1 − τ2)

∫
d2r′d2r′′

〈
r1 γ|r′ r′′

〉
V (int)(r′ − r′′)

〈
r′ r′′|γ r2

〉

= −δ(τ1 − τ2)

∫
d2r′d2r′′δ(r1 − r′)ψγ(r

′′)V (int)(r′ − r′′)ψγ(r
′)δ(r′′ − r2)

= −δ(τ1 − τ2)ψγ(r2)V
(int)(r1 − r2)ψγ(r1) . (4.1.2)

Since the Green functions are all evaluated at the same vertex, we can integrate out the imaginary time
by using the Fourier transformation. Here ωm are the antiperiodic Matsubara frequencies. The Fourier
transformation then reads

Σ(k,ωm,R) :=

∫ !β

0
d(τ1 − τ2)e

iωm(τ1−τ2)Σ(k,R, τ1 − τ2) , (4.1.3)

and can immediately be executed for the Hartree and Fock term. Next we will perform the Fourier transfor-
mation for the relative coordinates of the Fock term. For the Hartree term, we will just need to perform the
Fourier transformation of the relative coordinate. Before we proceed we introduce the relative and the center
of mass coordinate

rr := r1 − r2 r1 =
r1 + r2

2
+

r1 − r2
2

= R+
rr
2

,

R =
r1 + r2

2
r2 =

r1 + r2
2

− r1 − r2
2

= R− rr
2

. (4.1.4)

For the Hartree and Fock matrices (4.1.1), (4.1.2) this yields

ΣH(k,R) =

∫
d2rψγ (R− r)V (int)(r)ψγ(R− r),

ΣF(k,R) = −
∫

d2rψγ
(
R− r

2

)
V (int)(r)ψγ

(
R+

r

2

)
e−ikr . (4.1.5)
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With these two matrix elements, we arrive at the following formula for the self-energy in the center of mass
and relative momentum representation

Σ (k,R) =
∑

γ

∫
d2rV (int)(r)

[
ψγ (R− r)ψγ(R− r)− ψγ

(
R− r

2

)
ψγ

(
R+

r

2

)
e−ikr

]
nγ . (4.1.6)

Since the dipole-dipole interaction is highly divergent at the point r = 0, we will have to find a way to control
the divergence. In order to do so we will add a zero in the following form

Σ (k,R) =
∑

γ

∫
d2rV (int)(r)

{
(ψγ(R− r)ψγ(R− r)− f(R, r)]−

[
ψγ

(
R− r

2

)
ψγ

(
R+

r

2

)
e−ikr − f(R, r)

]}
nγ .

(4.1.7)

The above introduced function f(R, r) has yet to be determined. Roughly speaking the function f(R, r) has to
be chosen in such a way that it cancels the probability density ψγ(R−r)ψγ(R−r) and ψγ

(
R− r

2

)
ψγ

(
R+ r

2

)

in the limit r → 0, respectively. In order to make the notation more clear, we will write the new Hartree and
Fock contributions to the self-energy as

ΣH′(k,R) :=
∑

γ

∫
d2rV (int)(r) [ψγ (R− r)ψγ(R− r)− f(R, r)]nγ ,

ΣF′(k,R) := −
∑

γ

∫
d2rV (int)(r)

[
ψγ

(
R− r

2

)
ψγ

(
R+

r

2

)
e−ikr − f(R, r)

]
nγ . (4.1.8)

Next we approximate the wave functions with the help of the Stirling approximation [57] for Hermite poly-
nomes

ψn(x) =
1√
2nn!

(mω

π!

) 1
4
e−

mω
2! x2

Hn

(√
mω

! x

)

≈
(mω

π!

) 1
4 1√

2nn!

(
2n

e

)n
2 √

2 cos

(√
mω

!
√
2nx− n

π

2

)(
1−

mω
! x2

2n

)− 1
4

, (4.1.9)

which is valid for large quantum numbers n, that is high energies En = !ω
(
n+ 1

2

)
. In the following we will

use in various expressions that the oscillating part of the wave function can be neglected for high energy
levels when integrating over the position. We will demonstrate this approximation exemplarily within the
evaluation of the normalization constant of ψn(x).

∫
dx |ψn(x)|2 =

∫ √
2!n
mω

−
√

2!n
mω

dxN
2
(mω

π!

) 1
2 1

2nn!

(
2n

e

)n

2

(
2n

2n− mω
! x2

) 1
2

cos2
(√

mω

!
√
2nx− n

π

2

)

=

∫ √
2!n
mω

−
√

2!n
mω

dxN
2
(mω

π!

) 1
2 1

2nn!

(
2n

e

)n

2

(
2n

2n− mω
! x2

) 1
2
[
1

2
+

1

2
cos

(
2

√
mω

!
√
2nx− nπ

)]
.

(4.1.10)

By using
∫ √

2n

−
√
2n

dx

√
2n

2n− x2
=

√
2n

∫ 1

−1
dx

1√
1− x2

, (4.1.11)

and
∫ √

2n

−
√
2n

dx

√
2n

2n − x2
cos

(√
2nx− n

π

2

)
= cos (nπ)

√
2n

∫ 1

−1
dx

1√
1− x2

cos (4nx) . (4.1.12)
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we obtain for large n that the cos integrand is highly oscillating compared to the smooth root function on the
interval [−1, 1], so we can neglect it. The non oscillating part of the integral (4.1.10) can easily be performed
and we get

∫ √
2!n
mω

−
√

2!n
mω

dx

(
2n

2n− mω
! x2

) 1
2

=

∫ √
2!n
mω

−
√

2!n
mω

dx
1√

1− mω
2n!x

2
=

√
2n!
mω

∫ 1

−1
du

1√
1− u2

=

√
2n!
mω

π .

The N factor is then given by

N =

√
enn!

√
2πnn+ 1

2

. (4.1.13)

With this, we arrive at the normalized wave function that we are going to use

ψn(x) = D
1

(2n − mω
! x2)

1
4

cos

(√
mω

!
√
2nx− n

π

2

)
with D :=

(
4mω

π2!

) 1
4

. (4.1.14)

These eigenfunction approximations (4.1.14) maybe recognized as the WKB wave functions of the harmonic
oscillator. The wave functions certainly only consider the probability density within the harmonic trap.
Naturally there exists a probability density outside of the harmonic potential which decays exponentially.
Here these regions are neglected and set to zero. Note that this neglection as well as the neglection of the
oscillatory terms in the wave function used further below is exact when we are interested in the leading
N → ∞ behaviour likewise for of the self-energy and particle number. This is mainly based on the fact, that
in leading order N → ∞ both quantities are diverging meaning, that in the nγ sum (4.1.8) large quantum
numbers n are most important.

4.1.1 Derivation of the Hartree Self-Energy for Large Particle Numbers

Now we will rewrite the Hartree term in two dimensions first ignoring the artificial subtraction term. Before
we do so, we will use the Poisson sum formula [39], which justifies for N → ∞ that the summation over the
quantum numbers n can be converted to an integral.

∞∑

n=−∞
f(m) =

∞∑

$=−∞

∫ ∞

−∞
dzf(z)e2πi$z . (4.1.15)

In our case this yields

nF∑

n=mω
2! x2

1√
2n− mω

! x2
=

∞∑

$=0

∫ nF

mω
2! x2

dz
1√

2z − mω
! x2

ei2π$z . (4.1.16)

Here we have used that the wave function is considered zero outside of the trap. Now as long as the function
f in (4.1.15) does not vary much over the interval 2π, the Fourier coefficient on the right hand side will
oscillate heavily and the only contribution to the sum comes from the 7 = 0 term. Therefore it is safe to
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substitute the sum with the integral. We will put this now into action in the first part of the Hartree term.

ΣH(k,R) =
∑

γγ′≤nF

∫
dx dy V (int)(x, y)ψγ(X − x)ψγ(X − x)ψγ′(Y − y)ψγ′(Y − y)

=
D4

2

∫ nF−κ
2 (Y−y)2

κ
2 (X−x)2

dn1

∫ nF−n1

κ
2 (Y−y)2

dn2

∫
dx

∫
dy V (int)(x, y)

1√
n1 − κ

2 (X − x)2
1√

n2 − κ
2 (Y − y)2

× cos2
(√

mω

!
√
2n1 (X − x)− n1

π

2

)
cos2

(√
mω

!
√
2n2 (Y − y)− n2

π

2

)

≈ 1

4

D4

2

∫ nF−κ
2 (Y−y)2

κ
2 (X−x)2

dn1

∫ nF−n1

κ
2 (Y−y)2

dn2

∫
dx

∫
dy V (int)(x, y)

1√
n1 − κ

2 (X − x)2
1√

n2 − κ
2 (Y − y)2

=
1

4
D4

∫
dx

∫
dy

∫ nF−κ
2 (Y−y)2

κ
2 (X−x)2

dn1V
(int)(x, y)

1√
n1 − κ

2 (X − x)2

∫ nF−n1

κ
2 (Y−y)2

dn2
1√

n2 − κ
2 (Y − y)2

=
1

4
D4

∫
dx

∫
dy

∫ nF−κ
2 (Y−y)2

κ
2 (X−x)2

dn1V
(int)(x, y)

√
(nF − n1)− κ

2 (Y − y)2
√

n1 − κ
2 (X − x)2

. (4.1.17)

Where we have used the following canonical definition

κ =
mω

! , (4.1.18)

and wrote n1 and n2 for the quantum numbers γ. Next we will calculate the n1 integral, which can also be
done analytically

∫ nF−κ
2 (X−x)2

κ
2 (Y−y)2

dn1

√√√√(nF − n1)− κ
2 (Y − y)2

n1 − κ
2 (X − x)2

=

∫ nF−κ
2 (X−x)2

κ
2 (Y−y)2

dn1

√√√√√
nF

[
(1− n1

nF
)− κ

2nF
(Y − y)2

]

nF (
n1
nF

− κ
2nF

(X − x)2)

= nF

∫ 1− κ
2nF

(X−x)2

κ
2nF

(Y−y)2
du

√√√√ (1− u)− 1
2nF

(Y − y)2

u− 1
2nF

(X − x)2
. (4.1.19)

For 1
2nF

(Y − y)2 + 1
2nF

(X − x)2 < 1 then follows

∫ 1− 1
2nF

(X−x)2

1
2nF

(Y−y)2
du

√√√√(1− u)− 1
2nF

(X − x)2

u− 1
2nF

(Y − y)2
= arctan(0)−

(
1

2nF
(X − x)2 +

1

2nF
(Y − y)2 − 1

)
arctan(∞)︸ ︷︷ ︸

=π
2

= −π

2

[
κ

2nF
(Y − y)2 +

κ

2nF
(X − x)2 − 1

]
. (4.1.20)

Here we have executed the n integrals first. However, since we can exchange the order of integration, the
previous argument about the x integration still holds and we can neglect the oscillating part. In order to
proceed we will now need to look at the subtracting factor f(R,k), (4.1.8) as well. To make the calculation
more clear, we will at first focus on the first part (3.1.12) of the dipole-dipole interaction. The restriction
of the WKB wave function to the interior of the harmonic trap gives the following integration region for the
x, y-integration in (4.1.17)

mω

! (X − x)2 +
mω

! (Y − y)2 ≤ 2nF . (4.1.21)
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To fulfill it, we will switch to polar coordinates. We now proceed with introducing

η = (X − x)
ξ = (Y − y)

and η = r cos(ϕ)
ξ = r sin(ϕ)

}
=⇒ (X − η)2 + (Y − ξ)2 = R2 + r2 − 2r[X cos(ϕ) + Y sin(ϕ)] .

Here we have written R =
√
X2 + Y 2. As we can see from (4.1.17) with (4.1.20) the Hartree integral without

the subtraction term is still divergent at the point r = 0. In order to get rid of this divergence we will now
choose the function f(R, r) as

f(R, r) :=
1√

2n1 − κX2

1√
2n2 − κY 2

cos

(√
mω

!
√
2n1 (X − x)− n1

π

2

)
cos

(√
mω

!
√
2n2 (Y − y)− n2

π

2

)
.

(4.1.22)

Then we can do the same approximation within the n1 and n2 integrals as before and obtain for the modified
Hartree self-energy, were the integration boundary (4.1.21) is denoted by circle

ΣH′(1)(k,R) =

− KD4nFπ

8
p1 · p2

{∫

circle
dxdy

1

(x2 + y2)
3
2

[
ζ(X − x)2 + ζ(Y − y)2 − 1

]

−
∫

V
dxdy

1

(x2 + y2)
3
2

[
ζX2 + ζY 2 − 1

]
}

= −πKD4nFp1 · p2

8

{∫

circle
dxdy

[
ζ(η2 + ξ2)− 1

]

[(X − η)2 + (Y − ξ)2]
3
2

−
∫

V
dxdy

[
ζ(X2 + Y 2)− 1

]

[(X − η)2 + (Y − ξ)2]
3
2

}

. (4.1.23)

Here we have set ζ := κ
2nF

and V denotes the whole volume. Furthermore the (1) indicates that we are only
dealing with the first part of the dipole-dipole interaction. By introducing a parametrization for X and Y in
the form of

(
X
Y

)
=

√
X2 + Y 2

(
cos(ϑ)
sin(ϑ)

)
,

we can further simplify the expression to

ΣH′(1)(k,R) = −KD4nFp1 · p2π

8






∫ √
2!nF
mω

0
rdr

∫ 2π

0
dϕ

(
ζr2 − 1

)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
3
2

−
∫ ∞

0
rdr

∫ 2π

0
dϕ

ζR2 − 1

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
3
2

}

= −KD4nFp1 · p2π

8






∫ √
2!nF
mω

0
rdr

∫ 2π

0
dϕ

ζ(r2 −R2)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
3
2

−
∫ ∞
√

2!nF
mω

rdr

∫ 2π

0
dϕ

ζR2 − 1

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
3
2

}

. (4.1.24)

In the final step the integrals have been rewritten in such a way, that the one on the left hand side is convergent
at r = R and the integral on the right hand side is then of course convergent on the interval [2nF ,∞].
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The same procedure must now be done for the second part of the dipole-dipole interaction. Here we will
restrict ourselves to the case, that the two dipoles are again parallel and restricted to the x-z plane (3.1.13).
The contribution of the second part to ΣH′ yields

ΣH′(2)(k,R) =
3πKD4nFp21

8






∫ √
2!nF
mω

0
rdr

∫ 2π

0
dϕ

ζ(X2 − 2Xr cos(ϕ) + r2 cos2(ϕ))(r2 −R2)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
5
2

−
∫ ∞
√

2!nF
mω

rdr

∫ 2π

0
dϕ

X2 − 2Xr cos(ϕ) + r2 cos2(ϕ)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
5
2

(
ζR2 − 1

)
}

. (4.1.25)

We can now write the whole Hartree term as

ΣH′(k,R) =

− KD4nFp1 · p2π

8






∫ √
2!nF
mω

0
rdr

∫ 2π

0
dϕ

ζ(r2 −R2)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
3
2

−
∫ ∞
√

2!nF
mω

rdr

∫ 2π

0
dϕ

ζR2 − 1

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
3
2

}

+
3πKD4nFp21

8






∫ √
2!nF
mω

0
rdr

∫ 2π

0
dϕ

ζ(X2 − 2Xr cos(ϕ) + r2 cos2(ϕ))(r2 −R2)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
5
2

−
∫ ∞
√

2!nF
mω

rdr

∫ 2π

0
dϕ

X2 − 2Xr cos(ϕ) + r2 cos2(ϕ)

[R2 + r2 − 2Rr cos(ϕ− ϑ)]
5
2

(
ζR2 − 1

)
}

. (4.1.26)

In order to calculate the Hartree contribution, these four integrals have to be solved. This can be done
analytically, if the r-integration is executed first, however the result is extremely cumbersome. Below we
shall show that the Fock self-energy is much larger than the Hartree self-energy for N → ∞, which leads us
to not show this analytical result and treat the rest numerically as it is mandatory in the Fock term. Finally
to see the N dependence, we will rewrite the Hartree term with the relation

nF =
√
2N , (4.1.27)

where N is the particle number. The verification of (4.1.27) will be shown below, after we have derived both
approximations. The final form of the Hertree self-energy now reads

ΣH′(k,R) =

− 1

2
5
4π

Kp1 · p2

(mω

!

) 3
2
N

1
4

{∫ 1

0
rdr

∫ 2π

0
dϕ

(r2 − R̃2)

[R̃2 + r2 − 2R̃r cos(ϕ− ϑ)]
3
2

−
∫ ∞

1
rdr

∫ 2π

0
dϕ

R̃2 − 1

[R̃2 + r2 − 2R̃r cos(ϕ− ϑ)]
3
2

}

+
3

2
5
4π

Kp21

(mω

!

) 3
2
N

1
4

{∫ 1

0
rdr

∫ 2π

0
dϕ

(X̃2 − 2X̃r cos(ϕ) + r2 cos2(ϕ))(r2 − R̃2)

[R̃2 + r2 − 2R̃r cos(ϕ− ϑ)]
5
2

−
∫ ∞

1
rdr

∫ 2π

0
dϕ

X̃2 − 2X̃r cos(ϕ) + r2 cos2(ϕ)

[R̃2 + r2 − 2R̃r cos(ϕ− ϑ)]
5
2

(
R̃2 − 1

)}

. (4.1.28)
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where we have defined dimensionless quantities as follows.

R̃ :=
R√

!
mω2

3
4N

1
4

and X̃ :=
X√

!
mω2

3
4N

1
4

. (4.1.29)

4.1.2 Derivation of the Fock Self-Energy for Large Particle Numbers

We will now look at the Fock term (4.1.8). Before we proceed, we will rewrite the appearing cosine terms in
(4.1.8), and again introduce some short notations.

cos





√
mω

!
√
2n

︸ ︷︷ ︸
=:a1

(
X − x

2

)
− n

π

2︸︷︷︸
=:b1



 cos

(√
mω

!
√
2n

(
X +

x

2

)
− n

π

2

)

=: cos
(
a1X − a1

x

2
− b1

)
cos

(
a1X + a1

x

2
− b1

)

=
1

2
cos(a1x) +

1

2
cos(2a1X − 2b1) (4.1.30)

and similarly with a2 and b2. Now we multiply out

1

4
cos(a1x) cos(a2y) +

1

4
cos(a1x) cos(2a2Y − 2b2) +

1

4
cos(2a2X − 2b1) cos(a2y)

+
1

4
cos(2a1X − 2b1) cos(2a2Y − 2b2) , (4.1.31)

and we are in position to rewrite the Fock term (4.1.34) as

ΣF (k,R) = D4
∑

n1n2

∫
dxdyV (int)(x, y)

×
{

1

(2n1 − κ(X − x
2 )

2)
1
4

1

(2n1 − κ(X + x
2 )

2)
1
4

1

(2n2 − κ(Y − y
2 )

2)
1
4

1

(2n2 − κ(Y + y
2 )

2)
1
4

×
(
1

2
cos(a1x) +

1

2
cos(2a1X − 2b1)

)(
1

2
cos(a2y) +

1

2
cos(2a2Y − 2b2)

)
e−i(kxx+kyy)

− 1√
2n1 − κX2

1√
2n2 − κY 2

×
(
1

2
+

1

2
cos(2a1(X − x)− 2b1)

)(
1

2
+

1

2
cos(2a2(Y − y)− 2b2)

)}
. (4.1.32)

For large quantum numbers we are again neglecting the oscillating parts of the integrals. However this time
we cannot neglect the first term in (4.1.31) since this term exactly cuts the r > 0 divergence of the non-
oscillating second term in (4.1.32). The other cosine terms in (4.1.31) can be neglected since they are again
highly oscillating and will not contribute in leading order to the n-integral. For more details see Appendix
A. The Fock term then reads

ΣF′(k,R) =
1

4
KD4

∑

n1n2

∫
dxdyV (int)(x, y)

{
1

(2n1 − κ(X − x
2 )

2)
1
4

1

(2n1 − κ(X + x
2 )

2)
1
4

(4.1.33)

1

(2n2 − κ(Y − y
2 )

2)
1
4

1

(2n2 − κ(Y + y
2 )

2)
1
4

cos(a1x) cos(a2y)e
−i(kxx+kyy) − 1√

2n1 − κX2

1√
2n2 − κY 2

}

.
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The main contribution to the integral for N → ∞ comes from the integration region
√
r : 1, which leads

us to the neglection of the r-depndence of the prefactor of the first term in (4.1.33) and further on we can
extend the integration region to the whole x− y plane leading to

ΣF′(k,R) ≈ D4
∑

n1n2

∫
dx

∫
dyV (int)(x, y) (4.1.34)

×
{
1

4

1√
2n1 − κX2

1√
2n2 − κY 2

cos(a1x) cos(a2y)e
−i(kxx+kyy) − 1

4

1√
2n1 − κX2

1√
2n2 − κY 2

}

=
1

4
D4

∑

n1n2

∫
dx

∫
dyV (int)(x, y)

1√
2n1 − κX2

1√
2n2 − κY 2

[
cos(a1x) cos(a2y)e

−i(kxx+kyy) − 1
]
.

Concentrating ourselves on the first part of the dipole-dipole interaction, we get

ΣF ′(1)(k,R)

= KD4p1 · p2

4

∑

n1n2

∫
dx

∫
dy

1

(x2 + y2)
3
2

1√
2n1 − κX2

1√
2n2 − κY 2

[
cos(a1x) cos(a2y)e

−i(kxx+kyy) − 1
]

= KD4p1 · p2

4

∑

n1n2

∫ Rf

0
dr

∫ 2π

0
dϕ

1√
2n1 − κX2

1√
2n2 − κY 2

× 1

r2

[
cos (a1r cos(ϕ)) cos (cos(a2r sin(ϕ)) e

−i[kxr cos (ϕ)+kyr sin (ϕ)] − 1
]
. (4.1.35)

Together with the subtraction part the whole angle integration over ϕ is given by
∫ 2π

0
dϕ

[
cos(a1r cos(ϕ)) cos(a2r sin(ϕ))e

−i[kxr cos(ϕ)+kyr sin(ϕ)] − 1
]

=
π

2

[
J0

(√
(a1 − kx)2 + (a2 − ky)2r

)
− 1 + J0

(√
(a1 − kx)2 + (a2 + ky)2r

)
− 1

+J0

(√
(a1 + k2)2 + (a2 − ky)2r

)
− 1 + J0

(√
(a1 + kx)2 + (a2 + ky)2r

)
− 1

]
. (4.1.36)

We now rewrite a1 and a2 as a1 =
√
κ
√
2n1 a2 =

√
κ
√
2n2 and execute the r-integration after substituting

out of the square roots, which leads to

ΣF ′(1)(k,R) = KD4√κ
p1 · p2π

8

∑

n1n2

1√
2n1 − κX2

1√
2n2 − κY 2

[√(√
2n1 − k̂x

)2
+
(√

2n2 − k̂y
)2

(4.1.37)

+

√(√
2n1 − k̂x

)2
+

(√
2n2 + k̂y

)2
+

√(√
2n1 + k̂x

)2
−

(√
2n2 + k̂y

)2
+

√(√
2n1 + k̂x

)2
+

(√
2n2 + k̂y

)2
]

.

Here we have introduced the dimensionless wave vector components k̂$ = k#√
κ
. If we now replace the sum

with the integral, which is possible due to the Poisson formula approximation argued above we arrive at the
integral

ΣF′(1)(k,R)

= −KD4√κ
p1 · p2π

8

∫ nF

κX2

2

dn1

∫ nF−n1

κY 2

2

dn2
1√

2n1 − κX2

1√
2n2 − κY 2

[√
(
√
2n1 − k̂x)2 + (

√
2n2 − k̂y)2

+
√

(
√
2n1 − k̂x)2 + (

√
2n2 + k̂y)2 +

√
(
√
2n1 + k̂x)2 + (

√
2n2 − k̂y)2 +

√
(
√
2n1 + k̂x)2 + (

√
2n2 + k̂y)2

]
.

(4.1.38)
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We will now also consider the second part of the dipole-dipole interaction. In order to do so, we will again
restrict the dipoles to the condition of being parallel and lying in the x-z plane (3.1.13). Before we start, we
first have to solve the integral:

∫ 2π

0
dϕ cos (2ϕ) cos (a1r cos (ϕ)) cos (a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr sin (ϕ)) (4.1.39)

= cos (2ϑ)

∫ 2π

0
dϕ cos (2(ϕ ± ϑ)) cos (a1r cos (ϕ)) cos (a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr sin (ϕ))

± sin (∓2ϑ)

∫ 2π

0
dϕ sin (2(ϕ± ϑ)) cos (a1r cos (ϕ)) cos (a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr sin (ϕ)) ,

where the ϑ has been introduced in accordance with four parametrizations for a± k̂ as
(
a1 − k̂x
a2 − k̂y

)
=

√
(a1 − k̂x)2 + (a2 − k̂y)2

(
cos(ϑ1)
sin(ϑ1)

)

(
a1 − k̂x
a2 + k̂y

)
=

√
(a1 − k̂x)2 + (a2 + k̂y)2

(
cos(ϑ2)
sin(ϑ2)

)

(
a1 + k̂x
a2 − k̂y

)
=

√
(a1 + k̂x)2 + (a2 − k̂y)2

(
cos(ϑ3)
sin(ϑ3)

)

(
a1 + k̂x
a2 + k̂y

)
=

√
(a1 + k̂x)2 + (a2 + k̂y)2

(
cos(ϑ4)
sin(ϑ4)

)
. (4.1.40)

The integral can now be executed and yields
∫ 2π

0
dϕ cos (2ϕ) cos (a1r cos (ϕ)) cos (a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr sin (ϕ)) (4.1.41)

= −π

2

[
cos (2ϑ1)J2

(√
(a1 − k̂x)2 + (a2 − k̂y)2 r

)
+ cos (2ϑ2)J2

(√
(a1 − k̂x)2 + (a2 + k̂y)2 r

)

+cos (2ϑ3)J2

(√
(a1 + k̂x)2 + (a2 − k̂y)2 r

)
+ cos (2ϑ4)J2

(√
(a1 + k̂x)2 + (a2 + k̂y)2 r

)]

= −π

2
[cos (2ϑ1)J2(−−) + cos (2ϑ2)J2(−+) + cos (2ϑ3)J2(+−) + cos (2ϑ4)J2(++)]

=
π

2
[J2(−−) + J2(−+) + J2(+−) + J2(++)]

− π
[
cos2 (ϑ1)J2(−−) + cos2 (ϑ2)J2(−+) + cos2 (ϑ3)J2(+−) + cos2 (ϑ4)J2(++)

]
, (4.1.42)

where we have introduced the notation

J2 (±;±) := J2

(√
(a1 ± kx)2 + (a2 ± ky)2r

)
. (4.1.43)
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To solve the first ϕ integral of (4.1.34) we proceed as before:
∫ 2π

0
dϕ cos2 (ϕ) cos (a1r cos (ϕ)) cos (a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr sin (ϕ))

=
1

2

∫ 2π

0
dϕ cos (a1r cos (ϕ)) cos a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr cos (ϕ))

+
1

2

∫ 2π

0
dϕ cos (2ϕ) cos (a1r cos (ϕ) cos (a2r sinϕ)e

−i(k̂xr cos (ϕ)+k̂yr cos (ϕ))

= −π

4
[J0(−−) + J0(−+) + J0(+−) + J0(++)] +

π

4
[J2(−−) + J2(−+) + J2(+−) + J2(++)]

− π

2

[
cos2 (ϑ1)J2(−−) cos2 (ϑ2)J2(−+) + cos (ϑ3)J2(+−) + cos2 (ϑ4)J2(++)

]
. (4.1.44)

For the r-integration, we again substitute the square roots out of the Bessel functions and bring the −1 of
the subtracted Green function to the Bessel function J0 in order to make it convergent. The integration over
the Bessel functions of second order combined with the factor 1

r2 simply gives 1
3 . With that said we get:

∫ ∞

0
dr

∫ 2π

0
dϕ

1

r2

[
cos2 (ϕ) cos (a1r cos (ϕ)) cos (a2r sin (ϕ))e

−i(k̂xr cos (ϕ)+k̂yr sin (ϕ)) − cos2 (ϕ)
]

(4.1.45)

= −π

4

[√
−−+

√
−++

√
+−+

√
++

]

+
π

12

[√
−−+

√
−++

√
+−+

√
++

]

− π

6

[
cos2 (ϑ1)

√
−−+ cos2 (ϑ2)

√
−++ cos2 (ϑ3)

√
+−+ cos2 (ϑ4)

√
++

]

= −π

6

[√
−−+

√
−++

√
+−+

√
++

]
− π

6

[
(a1 − k̂x)2√

−−
+

(a1 − k̂x)2√
−+

+
(a1 + k̂x)2√

+−
+

(a1 + k̂x)2√
++

]

where we have introduced in accordance with (4.1.43) the short-hand notation

√
(±;±) :=

√(
a1 ± k̂x

)2
+

(
a2 ± k̂y

)2
. (4.1.46)

The whole second integral can now be written as:

ΣF′(2)(k,R)

= −KD4 3p
2
1

4

∑

n1n2

1√
2n1 − κX2

1√
2n2 − κY 2

∫
dxdy

1

(x2 + y2)
5
2

(
x2 cos (a1x) cos (a2y)e

−i(k̂xx+k̂yy) − x2
)

= KD4πp
2
1

8

∑

n1,n2

1√
2n1 − κX2

1√
2n2 − κY 2

[(√
−−+

√
−++

√
+−+

√
++

)

+

(
(a1 − k̂x)2√

−−
+

(a1 − k̂x)2√
−+

+
(a1 + k̂x)2√

+−
+

(a1 + k̂x)2√
++

)]
. (4.1.47)

113



CHAPTER 4. TWO-DIMENSIONAL FERMI GAS WITHIN A HARMONIC TRAP

We can now combine the first (4.1.38) and second (4.1.47) part of the dipole-dipole interaction to

ΣF′(k,R) = −1

4
KD4

∑

n1,n2

∫
dxdyV (int)(x, y)

1√
2n1 − κX2

1√
2n2 − κY 2

(
cos (a1x) cos (a2y)e

−i(k̂xx+k̂yy) − 1
)

= KD4πp
2
3

8

∑

n1,n2

1√
2n1 −X2

1√
2n2 − Y 2

{[√
−−+

√
−++

√
+−+

√
++

]

+ p21

[
(a1 − k̂x)2√

−−
+

(a1 − k̂x)2√
−+

+
(a1 + k̂x)2√

+−
+

(a1 + k̂x)2√
++

]}
. (4.1.48)

The final form for the Fock term reads then explicitly

ΣF′(k,R) = KD4√κ
πp23
8

∫ nF

κX2

2

dn1

∫ nF−n1

κY 2

2

dn2
1√

2n1 − κX2

1√
2n2 − κY 2

×
{
p23

[√(√
2n1 − k̂x

)2
+

(√
2n2 − k̂y

)2
+

√(√
2n1 − k̂x

)2
+
(√

2n2 + k̂y
)2

+

√(√
2n1 + k̂x

)2
+

(√
2n2 − k̂y

)2
+

√(√
2n1 + k̂x

)2
+

(√
2n2 + k̂y

)2
]

+ p21




(
√
2n1 − k̂x)2√(√

2n1 − k̂x
)2

−
(√

2n2 + k̂y
)2

+
(
√
2n1 − k̂x)2√(√

2n1 − k̂x
)2

+
(√

2n2 + k̂y
)2

+
(
√
2n1 − k̂x)2√(√

2n1 + k̂x
)2

+
(√

2n2 − k̂y
)2

+
(
√
2n1 + k̂x)2√(√

2n1 + k̂x
)2

+
(√

2n2 + k̂y
)2









.

(4.1.49)

Finally we will rewrite the Fock term in such a way that we can see the N dependence upon it. As in the
case of the Hartree self-energy we use (4.1.27). The final form then reads

ΣF′(k,R) =
1

2
3
4π

K
(mω

!

) 3
2
N

3
4

∫ 1

X̃2
dn1

∫ 1−n1

Ỹ 2
dn2

1√
n1 − X̃2

1√
n2 − Ỹ 2

×
{

p23

[√(√
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)2
+

(√
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)2
+

√(√
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+

(√
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)2

+

√(√
n1 + k̃x

)2
+

(√
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)2
+

√(√
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+

(√
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]
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
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n1 − k̃x
)2

−
(√
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


.

(4.1.50)
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Where we have set

k̃$ :=
k̂$√

!
mω2

3
2N

1
4

and X̃$ :=
X$√

!
mω2

3
2N

1
4

(4.1.51)

4.2 Semiclassical Approximation for the Hartree-Fock Self-Energy

The standard way to calculate the self-energy for ultracold quantum gases would be to use the semiclassical
approximation. In order to do compare our results, we will now evaluate the Hartree Fock diagrams (2.3)
with the semiclassical Green functions which is given for equal times by [58]

G (x1τ |x2τ) = −
∫

dp2

(2π!)2
eip(x1−x2) 1

eβ(H[x1,x2;p]−µ) + 1
, (4.2.1)

where the Hamiltionian is evaluated as follows

H[x1,x2;p] =
p2

2m
+ V (trap)

(
x1 + x2

2

)
− µ . (4.2.2)

We will now evaluate the Hartree-Fock equations with the semiclassical Green function. We start again with
the Hartree term

ΣH(r1, τ1|r2, τ2) = ζn1δ(τ1 − τ2)

∫
d2r3d

2r4 〈r1r3|V |r2r4〉G(r4τ |r3τ)

= −δ(τ1 − τ2)

∫
d2r3d

2r4δ(r1 − r2)δ(r3 − r4)V (r2 − r4)G(r4τ |r3τ)

= −δ(τ1 − τ2) δ(r1 − r2)

∫
d2rV (int) (r1 − r)G (r, τ1|r, τ1)

= −δ(τ1 − τ2)δ(r1 − r2)

∫
d2r′′ V (int)(r′′)G

(
r1 − r′′, τ1|r1 − r′′, τ1

)

= −δ(τ1 − τ2)δ(rr)

∫
d2r′′ V (int)(r′′)G

(
R+

rr
2

− r′′, τ1

∣∣∣∣R+
rr
2

− r′′, τ1

)
. (4.2.3)

In the same manner we get the following term for the Fock diagram

ΣF (r1, τ |r2, τ) = δ(τ1 − τ2)

∫
d2r3d

2r4 〈r1r3|V |r4r2〉G(r4τ |r3τ)

= δ(τ1 − τ2)

∫
d2r3d

2r4δ(r1 − r4)δ(r3 − r2)V
(int)(r4 − r2)G(r4τ |r3τ)

= δ(τ1 − τ2)V
(int)(r1 − r2)G(r1, τ1|r2, τ2) . (4.2.4)

and in analogy to above we again perform the Fourier transformation in time and relative space

ΣH(k′,R) = −
∫

d2rre
−ik′·rrδ(rr)

∫
d2r′′ V (int)(r′′)G

(
R+

rr
2

− r′′, τ1

∣∣∣∣R+
rr
2

− r′′, τ1

)

= −
∫

d2r′′ V (int)(r′′)G
(
R− r′′, τ1|R− r′′, τ1

)
. (4.2.5)

For the Fock term we arrive at

ΣF (k′,R) = δ(τ1 − τ2)

∫
d2rr e

−ik′rrV (int)(rr)G

(
R+

rr
2

∣∣∣∣R− rr
2

)
. (4.2.6)
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To control the singularity at V (0) we add
∫

d2rV (int)(r)G(R,R) , (4.2.7)

to the Hartree term and again subtract it from the Fock term. We will again write these terms with the
prime and arrive for the Hartree term at

ΣH′(k′,R) = −
∫

d2r′′ V (int)(r′′)
{
G
(
R− r′′, τ1|R− r′′, τ1

)
−G (R,R)

}
(4.2.8)

=

∫
d2r′′ V (int)(r′′)

×
{

1

(2π)2

∫ 2π

0
dϕk

∫ ∞

0
k dkΘ

(
Ef − !2k2

2m
− V (R− r′′)

)

− 1

(2π)2

∫ 2π

0
dϕk

∫ ∞

0
kdkΘ

(
Ef − !2k2

2m
− V (R)

)}

=

∫
d2r′′ V (int)(r′′)

{
m

(2π)!2
[
Ef − V (R− r′′)

]
Θ
(
EF − V

(
R− r′′

))
− m

(2π)!2 [Ef − V (R)]

}
.

Where we have evaluated the Greens function for T ≈ 0 as

G

(
R+

rr
2

∣∣∣∣r−
rr
2

)
=

∫
d2k

(2π)2
e−ikrrΘ

(
Ef − !2k2

2m
− V (R)

)
(4.2.9)

as well as

G (R|R) =

∫
d2k

(2π)2
Θ

(
Ef − !2k2

2m
− V (R)

)
. (4.2.10)

Now we subtract again the term
∫
d2rr V (rr)G(R,R) and arrive at the following Fock term

ΣF ′(k′,R) =

∫
d2rr V

(int)(rr)
{
G
(
R+

rr
2
|R− rr

2

)
e−ik′rr −G(R,R)

}

= −
∫

d2rr V
(int)(rr)

∫
d2k

(2π)2

{
e−irr(k′−k)Θ

(
Ef −

!2k2
2m

− V (R)

)
−Θ

(
Ef −

!2k2
2m

− V (R)

)}

= −
∫

d2k

(2π)2

{
V (int)(k′ − k)− V (int)(k = 0)

}
Θ

(
Ef − !2k2

2m
− V (R)

)

=

∫
d2k

(2π)2

{
V (int)(k = 0)− V (int)(k′ − k)

}
Θ

(
Ef − !2k2

2m
− V (R)

)
(4.2.11)

4.2.1 Semiclassical Derivation of the Hartree Self-Energy

Due to the Theta function the first integral of the Hartree term has to be taken over the following region

(X − x′′)2 + (Y − y′′)2 ≤
2Ef

mω2
. (4.2.12)
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The second integral has to be taken over the whole volume. We arrive at the following semiclassical Hartree
term

ΣH′(k′,R) =
m

(2π)!2

∫

circle
d2r′′V (int)(r′′)

[
Ef − V (R− r′′)

]
− m

(2π)!2

∫

V
d2r′′V (int)

1 (r′′) [Ef − V (r)]

=
m

(2π)!2

{∫

circle
dx′′dy′′V (int) (x, y)

(
Ef − mω2

2

[
(X − x′′)2 + (Y − y′)2

])

−
∫

V
d2x′′V (int) (x, y)

[
Ef − mω2

2
(X2 + Y 2)

]}

=
m

(2π)!2

{∫

circle
d2ηV (int) (x, y)

[
Ef − mω2

2
(η2 + ξ2)

]
−

∫

V
d2ηV (int)(x, y)

[
Ef − mω2

2
(X2 + Y 2)

]}
.

(4.2.13)

As we can see this integral corresponds exactly to our previous derived Hartree integral (4.1.23).

4.2.2 Semiclassical Derivation of the Fock Self-Energy

The Fock term can most easily be evaluated with the help of the previous derived Fourier transformation

ΣF′(k′,R) =

∫
d2k

(2π)2

{
V (int)(k = 0)− V (int)(k′ − k)

}
Θ

(
Ef −

!2k2
2m

− V (X)

)

=

∫ √
2m
! (Ef−V (X))

0
kdk

∫ 2π

0
dϕk

{
V (int)(k = 0)− V (int)(k′ − k)

}

= ΣHF
2D

(√
2m

!

[
Ef − mω2

2
(X2 + Y 2)

])
. (4.2.14)

Here we have used the solution for the homogeneous case ΣHF
2D (3.3.66). Therefore we get for the Fock term

ΣF′(k′,R) =
2

3

1

(2π)2
Kp1p22

9
4N

3
4

(mω

!

) 3
2
[
1−

(
X̃2 + Ỹ 2

)]3
2 (4.2.15)

×





P2(cos (α)I

iso
2D




k̃√

1−
(
X̃2 + Ỹ 2

)



− sin2 (α) cos (2ϕk)I
ani
2D




k̃√

1−
(
X̃2 + Ỹ 2

)









.

where we have again used the dimensionless quantities (4.1.29).

4.2.3 Determination of Chemical Potential

In order to compare the results, we have to calculate the chemical potentials within the large N and semi-
classical approximation independently. The particle number is defined as

N =

∫
d2r n(r) . (4.2.16)

For the large N calculation the density has to be evaluated as

n(r) =
∑

γ

|ϕγ(r)|2nγ =
D4

4

∫ nF

κx2

2

dn1

∫ nF−n1

κ y2

2

dn2
1√

2n1 − κx2
1√

2n2 − κy2

= −D4

16

πmω

!

[
x2 + y2 − 2nF

κ

]
Θ

(
2nF

κ
− x2 − y2

)
. (4.2.17)
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Here we have again used that the cosine terms can be neglected for the n-integration, see also Appendix A
Therefore we get

N =
D4

16

πmω

!

∫ √
2nF
κ

0
rdr

∫ 2π

0
dϕ

[
r2 − 2nF

κ

]
=

n2
F

2
. (4.2.18)

If we substitute EF := !ωnF we get

N =
E2

F

2ω2!2 (4.2.19)

The same calculation can now be done for the semiclassical approximation as

n(x) =

∫
d2k

(2π)2
Θ

(
EF − !2k2

2m
− V (x)

)

=
1

4π

[
2m

!2

(
EF − mω2

x
(x2 + y2)

)]
(4.2.20)

So now we can calculate N for

N =
1

4π

∫ √
2EF
mω2

−
√

2EF
mω

dy

∫ √
2EF
mω −y2

−
√

2EF
nω −y

dx
2m

!2

[
EF − mω2

2
(x2 + y2)

]
=

E2
F

2ω2!2 (4.2.21)

As we can see the two probability densities (4.2.17) and (4.2.20) are the same. So the difference of the two
approximations lies in the off diagonal elements of the Green function.
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4.3 Discussion

In the following we use Σ̃H and Σ̃F as dimensionless self-energies calculated from (4.1.28) and (4.1.50) by
setting Kp1 · p2

(
mω
!
) 3

2 = 1. Where we have considered parallel dipoles and calulculatd the components for
each given dipole setting α. By comparing (4.1.28) with (4.1.50) in the large N approximation or (4.2.15)
with (4.2.13) respectively we see that the Fock self-energy dominates over the Hartree-energy by a factor N

1
2

for large particle numbers. Furthermore the Hartree contribution has no k dependencies and therefore only
provides a constant shift in the one-particle energy. For that matter we will consider the Hartree and Fock
self-energy separately

4.3.1 Discussion of the Hartree Self-Energy

"1. "0.5 0. 0.5 1.
"1.8

"1.4

"1.

"0.6

"0.2

0.2

0.6

|X̃|

Σ̃
H
′( k̃

,X̃
)

Figure 4.1: Shown are the Hartree contribution to the self-energy ΣH′ as a function of X̃ for Ỹ = 0 and for
the four different dipole settings α = 0 (red), π

6 (blue), π
3 (green) and π

2 (black).

As already mentioned the large N and the semiclassical approximation for the Hartree self-energy coincide.
Due to the divergence of the Hartree and Fock self-energies separately, which has its origin in the strong
dipole-dipole interaction in two dimensions, we had the freedom to choose the function f(R,k) in (4.1.8)
in order to make them each finite. Similar holds true for the semiclassical approximation. For that reason
the Hartree contribution to the self-energy in both approximations is equal only by construction. We note
here that the so calculated semiclassical Hartree self-energy (4.2.13) includes non-local contributions to the
self-energy, which exceed the local density approximation. These contributions are clearly beyond the first
order gradient approximation. In Figure 4.1 we show the dimensionless Hartree self-energy as a function
of X̃ and Ỹ = 0 for various dipole settings. The convex-concave behaviour of the curves is independent of
the chosen value of Ỹ . We obtain from the figure, that by passing the critical angle ϑ the curvature of the
Hartree self-energy changes from concave to convex. This behaviour corresponds with the Fock self-energy
given below.

4.3.2 Discussion of the Fock Self-Energy

In contrast to the Hartree self-energy the dominant Fock self-energies differ in the Large N and semiclassical
approximation. First we will look at the Fock self-energy as a function of X̃ for Ỹ =0 for various k̃ directions
given by ϕk and |k̃| = 1√

2
. For this we show in Figure 4.2 Σ̃F′ for the large N approximation (left panel)

and the semiclassical approximation (right panel) where each row corresponds to one dipole setting. We see
from Figure 4.2 that the Fock self-energy varies for different values of ϕk. This splitting increases for larger
values of α. This corresponds to the increasing instability of the dipole-dipole interaction for larger α-values.
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By passing the critical angle ϑ the Fock self-energy even switches within the stable region from a concave to
a convex behaviour. This general behaviour is in general independent of the chosen value of |k̃| > 0. For
|k̃| = 0 the splitting vanishes. We obtain further from Figure 4.2 that the two approximations to the Fock
self-energy coincide at X̃ = 0. This is true in general independent of the chosen values for α, k̃ at the origin
R̃ = 0. In Figure 4.3 we show Σ̃F′ for exemplary selected (α,ϕk) configurations for Ỹ = 0 and |k̃| = 1√

2
. Here

both approximations to the self-energy are shown in one plot. We obtain from the figure that for increasing
α-values the difference between the large N and the semiclassical approximation increases. In the instability
region of the dipole-dipole interaction the differences between both approximations increase drastically.

Within the Thomas-Fermi picture, we interpret the calculated local self-energy ΣH′ (R,k) + ΣF ′ (R,k)
together with the free energy as the energy of a quasiparticle added to the system at position R with
momentum k. The whole Green function within the gradient expansion is in general given by G−1(k,R) =
G−1

0 (k,R) +Σ(k,R). This relation is not to be confused with the matrix equation (2.4.15) and is only valid
within the gradient expansion. For details we refer to [59]. Within the semiclassical approximation the G−1

0

is given by
(
ω − !2k2

2m − V (R)
)
. The spatial spectrum is then given by E(k,R) = !2k2

2m −Σ(k,R)+V (R). In
oder to give the same interpretation using the large N approximation one would also have to evaluate G−1

0 .
However this interpretation only becomes interesting once the spatial self-energy is experimentally accessible.

We show in Figure 4.4 the Fock self-energy Σ̃F ′(R,k) as a function of |k̃| for R̃ = 0 for various α and
ϕk settings within both approximations. In correspondence with the discussion above we obtain a larger
dispersion splitting as a function of ϕk for increasing values of α. The curvature of the self-energy even
becomes negative in the instability regions of the dipole-dipole interaction. This behaviour then corresponds
to the dispersion behaviour of the homogeneous system already discussed in (3.3.2). We obtain furthermore
from the figure no deviations of the Fock self-energy within the large N and the semiclassical approximation.
This behaviour is only exactly fulfilled at the center of the trap, where the trap potential varies least. In Figure
4.5 we now show the Fock energy dispersion away from the center of the trap, for X̃ = 1√

2
and Ỹ = 0 for both

approximation. Corresponding to the previous discussion, concerning the dispersion behaviour in the stable
and unstable regions of the dipole-dipole interaction, we obtain here a similar behaviour. We furthermore
obtain from the figure, that now even in the stable configurations of the interaction the deviations of the
semiclassical and large N approximations are significant.

We note here, that the assumption of large particle numbers N 7 1 is in general fulfilled in ultracold
trapped Fermi systems. This means that our large N approximation for the self-energy is almost exact
within the Hartree-Fock approximation. This is not fulfilled for the semiclassical approximation of the
Hartree-Fock self-energy, which uses a short-time short-distance, approximation for the non-interacting Green
function. This approximation even neglects leading terms in ! being important for high energy levels. One
well known example that this neglection can be substantial is known from the semiclassical approach to
quantum chaos [39], where this short-time, short-distance approximation to the Green function leads only to
the classical smeared contribution to the density of states. In fact the true density of states for high energy
levels in quantum systems is largely affected by approximations going beyond short-time, short-distance for
the Green function.

Finally we like to address the possibility to access the spatial self-energy experimentally. To our knowledge
it is not yet possible to measure the one-particle excitation spectrum experimentally. Experiments, which have
be carried out in this direction use Raman-Bragg spectroscopy [60] and photon emission spectroscopy [61]. For
the Bragg experiments in a homogeneous system the structure factor is directly correlated with the spectrum
of the system [62]. Within the local density approximation the local structure factor can be determined. The
local structure is then weighted by the local particle number in order to obtain the global experimentally
accessible structure factor. In that sense the local excitation spectrum can be determined. This is a rather
rough approximation where the differences between the self-energy calculated in semiclassical and large N
approximation should not be seen. The situation certainly changes once, as proposed in [61], the spatial
energy spectrum is accessible.
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Figure 4.2: Center of Mass dependency of ΣF ′ for the large N (left column) and semiclassical (right column)
approximation. Each row corresponds to one dipole setting (form top to botom) α = 0, π6 ,
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Figure 4.3: Comparison of the large N approximation (solid) and semiclassical (dashed) approximation.
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Figure 4.5: Expemplarly selected dispersion relation for X = 1
2 , Y = 0 and |k̃| = 1 and for different dipole

settings as well as different ϕk dependencies.
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Chapter 5

Summary and Outlook

5.1 Summary

The description of Many-Body quantum systems from first principles is only possible by taking into ac-
count several approximations. One approximation often made in the field of ultracold quantum gases is
the assumption that one deals with dilute weak interacting systems. Further accounting for the fact that a
low-dimensional system such as the here considered dipolar interaction within two dimensions increases the
ultraviolet divergence, it is worth to recapitulate if standard assumptions are still valid. For that matter we
started by deriving the fermionic coherent state path integral, which is often just carried on the side of the
bosonic coherent state path integral [34, 46, 48], not really outlining the Grassmann character of the theory.
Therefore, we made an extra effort and started by deriving all needed calculation rules for the underlying
Grassmann algebra. Beyond some standard rules the main goals of this part were to derive the product as
well as the chain rule for Grassmann functions (2.1.29), (2.1.31), (2.1.37) and functionals (2.1.86), (2.1.91),
(2.1.98). For the product rule the order of the derivated and non-derivated terms now matter. The same
holds true for the chain rule, were the order of the inner and outer derivative is now important. We registered,
that one has to distinguish between the chaining of the analytic functions with Grassmann functions (2.1.31)
or functionals (2.1.91), respectively, and the chaining of Grassmann functions/functionals with Grassmann
functions/functionals (2.1.37), (2.1.98). As it turned out for Grassmann functions and functionals the chain
rule only holds true for certain functions. For details see (2.1.31), (2.1.37) and (2.1.91), (2.1.98). The chain-
rule for Grassmann functions was later used to derive the Wick theorem (2.3.9). The product rule and chain
rule for Grassmann functionals were needed to derive the Dyson equation (2.4.16) from which we then derived
our main Hartree-Fock equations (2.4.17). Once the Grassmann algebra rules were assembled, the fermionic
coherent states could be constructed (2.1.113) and their overcompletness (2.1.121) was proven. Equipped
with the necessary tools we derived the fermionic coherent state path integral (2.2.15) and derived expres-
sions such as the partition function (2.2.23) and the imaginary-time Green function (2.2.66). For the free
system we derived the Fermi-Dirac statistic (2.2.73) and the free imaginary Green function (2.2.74). While
the free system can be threated analytically, the situation changes when interactions come into play. In order
to consider interactions, we used perturbation theory. Using the path integral (2.2.23) and the Wick theorem
(2.3.9), we could establish the Feynman rules for the partition function (2.3.1), which then again were used to
derive the Feynman rules for the interacting Green function (2.3.2). By deriving the Dyson equation (2.4.16)
and further reducing the Feynman graphs by only considering the connected Green function (2.3.29), we
could finally develop the Feynman rules for the self-energy (2.4). Taking the first-order Feynman graphs, we
arrived at the Hartree-Fock equation for the self-energy (2.4.17) in first order perturbation theory.

The second part starts by taking a closer look at the dipole-dipole interaction (3.1.11). We derived the
special cases for parallel dipoles in three dimensions (3.1.15) and parallel dipoles in two-dimensions (3.1.17).
Considering parallel dipoles was motivated by the assumption, that one considers a system with an external
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electric field, which polarizes the dipoles. The anisotropy of the interaction causes the existence of stable and
unstable regions depending on the angle between the dipoles and the external electric field. While in three-
dimensions the change from stable to unstable systems is characterized by the critical angle ϑ in (3.1.16), the
two-dimensional stability depends not only on the orientation of the dipoles to the electric field, but also on
the orientation between the two dipoles Figure 3.6 . Having discussed the dipole-dipole interaction, we next
calculated the Hartree-Fock equations for the self-energy in first order perturbation theory for a homogeneous
Fermi gas at T ≈ 0 (2.4.20). Due to the translational invariance of the system, the self-energy can be derived
using Fourier transformation. As it turned out the Fourier transformation for the dipole-dipole interaction in
three-dimensions is well defined (3.2.14), while the Fourier transformation for the dipole-dipole interaction in
two-dimensions contains an ultraviolet divergence (3.2.32). This divergence originates in the 1

r3 dependence of
the dipole-dipole interaction and is not present in the Fourier transformation of the two-dimensional Coulomb
interaction (3.2.42). The Coulomb interaction was mainly considered to compare the two interactions in two
and three dimensions. Using the Fourier transformation we calculated the self-energy for the three and two-
dimensional system. The calculation for the three-dimensional system leads to the solution (3.3.35). The
anisotropic character of the self-energy only depends on the orientation of the dipoles and the dispersion is
independent of the azimuth angle. Compared to the three-dimensional system the two-dimensional calculation
inherits the subtlety that, as mentioned before, the Fourier transformation is divergent in two dimensions.
However, since the divergence turns out to appear in the Hartree and Fock term it canceled out in (2.4.20)
and the final result is finite. The result was then given in (3.3.66). As already mentioned, the repulsive or
attractive interaction depends not only on the orientation of the dipoles towards the electric field, but also
on the orientation of the dipoles to each other. This behaviour manifests itself in the calculated quasiparticle
dispersions, which changes from a positive (stable) to negative (unstable) curvature as can be seen in Figure
3.15. We then shortly proceeded in calculating the self-energy for the Coulomb interaction as well (3.3.87).
As can be seen in Figure 3.16, the self-energy to free-energy ratio is significantly larger in two dimensions than
in three. The same holds true for the dipole-dipole interaction, where the ratio is even larger, as can be seen
from Figure 3.13. We also mention that we cannot say that the difference between the 1

r3 dependence of the
dipole-dipole interaction compared to the 1

r2 dependence of the Coulomb interaction causes the divergence,
as the Hartree term is divergent in the case of the Coulomb interaction and the self-energy was only derived
by assuming there exists an equally large background field, due to charge neutrality, so the negative divergent
Hartree term cancels with this positive background field.

In the next chapter we investigated an ultracold Fermi gas within an electric trapping potential in two-
dimensions (4.0.1). Starting from the Hartree-Fock equations (2.4.17) we evaluate them in position space,
before transforming to relative and center-of-mass coordinates, so we arrived at the self-energy expression
for Σ(k,R). As observed in the homogeneous case (3.3.66), while the Hartree and Fock terms are divergent
separately, they converge together. By introducing the function f(R,k) (4.1.22) we were able to make the
Hartree and Fock term convergent separately. We approximated the exact Green function systematically in
leading order of large particle numbers N and derived expressions for the Hartree (4.1.28) and Fock self-energy
(4.1.50). Next we took the semiclassical Green function (4.2.1), and calculated the Hartree and Fock diagrams
(2.3) by making them convergent using the same technique as in the large N approximation. It turns out the
Hartree terms are the same in both approximations, however due to the freedom of choosing f(R,k), they are
equal only by construction. In contrast to the Hartree term, the Fock term in the large N and semiclassical
approximation are different. Finally we compared the results for both approximations starting with the Fock
self-energy dependence of X̃ for the value Ỹ = 0 and |k̃| = 1√

2
. We saw that both approximations reveal a

characteristic ϕk dependence of the self-energy. This ϕk dependence splitting increases for larger values of
α, that is the more the dipoles are tilted towards the plane. This behaviour is in correspondence with the
stability behaviour of the dipole-dipole interaction. The self-energy even switches from a concave behaviour
(stable) to a convex (unstable) behaviour according to Figure (4.2). Independent of the chosen values of α and
|k̃| the two approximations coincide at the center of the trap R̃ = 0. In accordance with this we saw that the

126



5.2. OUTLOOK

dispersion relation within the center of the trap is identical for the large N and semiclassical approximation
Figure 4.4. This behaviour only holds true for the center of the trap and away from the center of mass we saw
significant differences Figure (4.2) within the dispersion relation. As noted before the large particle number
assumption N 7 1 is in general fulfilled in ultracold systems making our large N approximation almost
exact within the Hartree-Fock approximation. We also pointed out, that this does not hold in general for the
semiclassical Green function, which uses a short-time short-distance approximation.

5.2 Outlook

The investigation of degenerated Fermi systems in two dimensions represents a relatively fresh research
field just on the boundary of experimental breakthrough. Therefore, the theoretical descriptions for real
systems become more interesting. Descriptions of ultracold Fermi systems are either made in the collisonless
or hydrodynamic limit. A more accurate description considers the regime in between of these two extreme
cases. Here the self-energy has a significant contribution. However we have to say that already the calculation
of the local self-energy lies on the boundary of what is possible analytically, so it is questionable if the large
N approximation can be used further in this form. However it would be interesting trying to calculate
the real spectrum within the large N approximation. Also it would be interesting to calculate the large N
approximation in three-dimensions and again compare the two approximations.
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Appendix A

Saddle Point Approximation for n
Integration

So far we have just stated that the cosine terms vanish when the integration over the quantum numbers
n is executed. To see that the cos

(√
2nx− nπ2

)
can indeed be neglect for the n-integration, we will now

demonstrate, that exemplary in one dimension. For that matter we look at the integral:
∫ nF

x2

2

dn
1√

2n− x2
cos2

(√
2nx− n

π

2

)
=

1

2

∫ nF

x2

2

dn
1√

2n − x2
+

1

2

∫ nF

x2

2

dn
cos(2

√
2nx− nπ)√

2n− x2
. (A.0.1)

The integral we are interested in is
∫ nF

x2

2

dn
cos(2

√
2nx− nπ)√

2n − x2
=

1

2

∫ nF

x2

2

dn
1√

2n− x2

(
e−i(2

√
2nx−nπ) + e−i(2

√
2nx−nπ)

)
. (A.0.2)

The suppressions away from the saddle point is then the same as for the n-integration (4.1.12). So the only
integration regime remaining to discuss is around the saddle point. If we define the function

a(x) = 2
√
2nx− nπ. (A.0.3)

We can make a saddle point approximation around ns where a′(ns) = 0.

a′(n) =
1√
2n

x− π

a′′(n) =
x√
2nn3

2

a′(ns) = 0 =⇒ ns =
2n2

π2

a(n − ns) = a(n − ns) + a′(ns)∆n2 =
2x2

π
− π3

8x2
∆n2, (A.0.4)
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where ∆n := n− n2. We now just look on one of the integrals (A.0.2) nF 7 1

∼
∫ nF

x2

2

dn
1√

2ns − x2
ei

2x2

π −i π3

8x2∆n2 =

∫ nF

x2

2

dn
1√

x2( 4
π2 − 1)

e
i 2x

2

π −i π3

8x2n2
s

= ei
2x2

π

∫ nF

x2

2

dn
1√

x2( 4
π2 − 1)

ei
2x2

π e
−i π3

8x2n2
s (A.0.5)

= e
i2x2

π

√
8

(4− π2)π

∫ π
3
2√
8x2

π
3
2

4
√

2x

dη e−iη2 . (A.0.6)

The integral (A.0.6) is finite. Therefore the contribution to (A.0.1) is neglectable compared to the leading
divergent terms.
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Appendix B

Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorff formula is used various times throughout this text. For a proof we refer
to [39]. Here we want to show how to use the linear map adx[y] in (2.1.44) to arrive at the relation (2.1.46)
from the integral representation.

exey = ez (B.0.1)

Z = X +

∫ 1

0
dtg

(
eadxet ady

)
[y] mit g(z) =

z log (z)

z − 1
. (B.0.2)

First we use the following series representation for the logarithm

log (z) =
∞∑

n=0

(−1)n

(n+ 1)
(z − 1)n+1 . (B.0.3)

Now we can write

g(z) =
z

z − 1
log (z) =

z

z − 1

∞∑

n=0

(−1)n

(n+ 1)
(z − 1)n+1

=
z

z − 1

[
(z − 1)− 1

2
(z − 1)2 +

1

3
(z − 1)3 − 1

4
(z − 1)4 +

1

5
(z − 1)5 − . . .

]

=
1

z − 1
[1 + (z − 1)]

[
(z − 1)− (z − 1)2

2
+

(z − 1)3

3
− (z − 1)4

4
+

(z − 1)5

5
− . . .

]

=
1

z − 1

(
(z − 1)− (z − 1)2

2
+

(z − 1)3

3
− (z − 1)4

4
+

(z − 1)5

5
− . . .

+(z − 1)2 − (z − 1)3

2
+

(z − 1)4

3
− (z − 1)5

4
+

(z − 1)6

6
− . . .

)

=

(
1− (z − 1)

2
+

(z − 1)2

3
− (z − 1)3

4
+

(z − 1)4

5
− . . .

+(z − 1)− (z − 1)2

2
+

(z − 1)3

3
− (z − 1)4

4
+

(z − 1)5

6
− . . .

)

= 1 + (z − 1)

(
1− 1

2

)
+ (z − 1)2

(
1

3
− 1

2

)
+ (z − 1)3

(
1

3
− 1

4

)
+ (z − 1)4

(
1

5
− 1

4

)
+ . . .

= 1 + (z − 1)

(
1

1
− 1

2

)
− (z − 1)2

(
1

2
− 1

3

)
+ (z − 1)3

(
1

3
− 1

4

)
− (z − 1)4

(
1

4
− 1

5

)
+ . . .

(B.0.4)

139



APPENDIX B. BAKER-CAMPBELL-HAUSDORFF FORMULA

and with
(

1
m − 1

m+1

)
= m+1

m(m+1) −
m

m(m+1) =
1

m(m+1) we get

g(z) = 1 +
∞∑

m=1

1

m(m+ 1)
(−1)m+1(z − 1)m . (B.0.5)

Then we expand the expression

eadxet ady =

( ∞∑

n=0

(adx)n

n!

)( ∞∑

k=0

t (ady)k

k!

)

=

(
1 +

(adx)

1!
+

(adx)2

2!
+

(adx)3

3!
+ . . .

)(
1 +

t (ady)

1!
+

t2 (ady)2

2!
+

t3 (ady)3

3!
+ . . .

)

= 1 +
(adx)

1!
+ (adx)2

2! + (adx)3

3! +
t (ady)

1!
+ t (adx)(ady)

1!1! + t (adx)2(ady)
2!1! +

t (adx)3(ady)

3!1!

+ t2 (ady)2

2! + t2 (adx)(ady)2

1!2! +
t2 (adx)2(ady)2

2!2!
+

t3 (adx)2(ady)3

2!3!

+ t3 (ady)3

3! +
t3 (adx)(ady)3

1!3!
+

t3 (adx)2(ady)3

2!3!
+

t3 (adx)3(ady)3

3!3!

= 1 +
adx

1!
+

t (ady)

1!
+

(adx)2

2!
+

t2 (ady)2

2!
+

t (adx)(ady)

1!1!
+

+
(adx)3

3!
+

t3 (ady)3

3!
+

t (adx)2(ady)

2!1!
+

t2 (adx)(ady)2

1!2!
+ . . . (B.0.6)

and now consider

(z − 1) =
(
eadxetadx − 1

)

=

(
adx

1!
+

t ady

1!
+

(adx)2

2!
+

t2 (ady)2

2!
+

t (adx)(ady)

1!1!

+
(adx)3

3!
+

t3 (ady)3

3!
+

t (adx)2(ady)

2!1!
+

t2 (adx)2(ady)2

1!2!
+ . . .

)
(B.0.7)
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The second term is then given by
(
eadxetady − 1

)2

=

(
ad2

x
1!1! + t (adx)(ady)

1! + (adx)3

2! + t2 (adx)(ady)2

1!2! + t (adx)2(ady)
1!1!1!

+
(adx)4

1!3!
+

t3 (adx)(ady)3

1!3!
+

t (adx)3(ady)

1!2!1!
+

t2 (adx)3(ady)2

1!1!2!
+ . . .

+ t(ady)(adx)
1!1! + t2(ady)2

1!1! + t(ady)(adx)2

1!2!

+ t3(ady)3

1!2! + t2(ady)(adx)(ady)
1!1!1! +

t(ady)(adx)3

1!3!

+
t4(ady)4

1!3!
+

t2(ady)(adx)2(ady)

1!2!1!
+

t3(ady)(adx)2(ady)2

1!1!2!
+ . . .

+ (adx)3

2!1! + t(adx)2(ady)
2!1! +

(adx)4

2!2!
+

t2(adx)2(ady)2

2!2!

+
t (adx)3(ady)

2!1!1!
+

(adx)5

2!3!

+
t3(adx)2(ady)3

2!3
+

t (adx)4(ady)

2!2!1!
+

t2 (adx)4(ady)2

2!1!2!
+ . . .

+ t2(ady)2(adx)
2!1! + t3(ady)3

2!1! +
t2(ady)2(adx)2

2!2!
+

t4(ady)4

2!2!
+

t3(ady)2(adx)(ady)

2!1!1!

+
t2(ady)2(adx)3

2!3!
+

t5(ady)5

2!3!
+

t3(ady)2(adx)(ady)

2!2!1!
+

t4(ady)2(adx)2(ady)2

2!1!2!
+ . . .

+ t (adx)(ady)(adx)
1!1!1! + t2 (adx)(ady)2

1!1!1! +
t (adx)4(ady)(adx)2

1!1!2!
+
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1!1!2!

+
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1!1!1!1!
+

t (adx)(ady)(adx)3

1!1!3!
+

t4 (adx)(ady)4

1!1!3!

+
t2 (adx)(ady)(adx)2(ady)

1!1!2!1!
+

t3 (adx)(ady)(adx)2(ady)2

1!1!1!2!
+ . . .

)
. (B.0.8)

Now we will have a look at the third term
[
adx + tady +

(adx)2

2!
+ . . .

] [
adx + tady

(adx)2

2!
+ . . .

]

= ad2
x + t (adx)(ady) +

(adx)3

2!
+ t(ady)(adx) + t2(ady)

2 +
t (ady)(adx)2

2!

+
(adx)3

2!
+

t (adx)2(ady)

2!
+

(adx)4

2!2!
+ . . . (B.0.9)
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[
adx + t ady +

(adx)2

2!

]3

= ad3
x + t (adx)2(ady) +

(adx)4

2!
+ t (adx)(ady)(adx) + t2 (adx)(ady)2 +

t (adx)(ady)(adx)2

2!

+
(adx)4

2!
+

t (adx)3(ady)

2!
+

(adx)5

2!2!

+ t(ady)(adx)2 + t2(ady)(adx)(ady) +
t (ady)(adx)3

2!

+ t2 (ady)2(adx) + t3 (ady)3 +
t2 (ady)2(adx)2

2!
+

t (ady)(adx)3

2!
+

t2 (ady)(adx)2(ady)

2!

+
t (ady)(adx)4

2!2!
+

(adx)4

2!
+

t (adx)3(ady)

2!
+

(adx)5

2!2!
+

t (adx)2(ady)(adx

2!

+ t2
(adx)2(ady)2

2!
+ t

(adx)2ady(adx)2

2!2!
+

(adx)5

2!2!
+ t

(adx)4(ady)

2!2!
+

(adx)6

2!2!2!
(B.0.10)

Then we can write g as

g
(
eadxetady

)
= 1 +

1

2

[
adx

1!
+

t(ady)

1!
+ (adx)2

2! + t2(ady)2

2! + t (adx)(ady)
1!1!

+ (adx)3

3! + t3(ady)3

3! + t (adx)2(ady)
2!1! +

t2 (adx)2(ady)2

1!2!
+ . . .

]

−1

6

[
(adx)2 + t(adx)(ady)

1! + (adx)3

2! + t2(adx)(ady)2

1!2! + t(adx)2(ady)
1!1!1!

+ t(ady)(adx)
1!1! + t2(ady)2

1!1! + t(ady)(adx)2

2!1! + t3(ady)3

2!1! + t2(ady)(adx)(ady)
1!1!1!

+ (adx)3

2!1! + t(adx)2(ady)
2!1!

+ t2(ady)2(adx)
2!1! + t3(ady)3

2!1! + t (adx)(ady)(adx)
1!1!1! + t2(adx)(ady)2

1!1!1! + . . .

]

+
1

12

[
(adx)3 + t (adx)2ady + t (adx)(ady)(adx) + t2 (adx)(ady)2 + t (ady)(adx)2

+ t2 (ady)(adx)(ady) + t2 (ady)2(adx) + t3 (ady)3 + . . .
]

(B.0.11)
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g
(
eadxetady

)
= 1 +

1

2
adx + tady

+ (adx)2

4 + t2(ady)2

4 + t(adx)(ady)
2 − (adx)2

6 − t(adx)(ady)
6 − t(ady)(adx)

6
− t2(ady)2

6

+ (adx)3

12 + t3(ady)3

12 + t(adx)2(ady)
4 − (adx)3

12 − t(adx)2(ady)
6

− t(ady)(adx)2

12 − t3(ady)3

12 − t2(ady)(adx)(ady)
6 − (adx)3

12 − t(adx)2(ady)
12

− t2(ady)2(adx)
12 − t3(ady)3

12 − t(adx)(ady)(adx)
6 − t2(adx)(ady)2

6

+ (adx)3

12 + t(adx)2(ady)
12 + t(adx)(ady)(adx)

12 +
t2(adx)(ady)2

12
+ t(ady)(adx)2

12

+ t2(ady)(adx)(ady)
12 + t2(ady)2(adx)

12 + t3(ady)3

12 + . . .

= 1 +
adx

2
+

t

2
ady

+
1

12
(adx)

2 +
1

12
t2(adx)

2 +
1

3
t(adx)(ady)−

1

6
t(ady)(adx)

+
1

12
t(adx)

2ady +
1

4
t2(ady)(adx)(ady)−

1

12
t(adx)(ady)(adx)−

1

12
t2(adx)(ady)

2 . (B.0.12)

The integration now yields
∫ 1

0
dtg

(
eadxetady

)
= 1 +

adx

2
+

ady

4

+
1

12
(adx)

2 +
1

36
(ady)

2 +
1

6
(adx)(ady)−

1

12
(ady)(adx)

+
1

24
(adx)

2ady +
1

12
(ady)(adx)(ady)−

1

24
(adx)(ady)(adx)−

1

36
(adx)(ady)

2 + . . .

(B.0.13)

∫ 1

0
dtg

(
eadxet ady

)
[y] = y +

1

2
[x, y] + [y, y] +

1

12
[x, [x, y]] +

1

36
[y, [y, y]]

+
1

6
[x, [y, y]] − 1

12
[y, [x, y]]

+
1

24
[x, [x, [y, y]]] +

1

12
[y, [x, [y, y]]]

− 1

24
[x, [y, [x, y]]] − 1

36
[x, [y, [y, y]]]

= y +
1

2
[x, y] +

1

12
[x, [x, y]] − 1

12
[y[x, y]]

− 1

24
[x, [y, [x, y]]] + . . . . (B.0.14)

And so we finally get

z = x+

∫ 1

0
dtg

(
eadxetady

)
[y] =

x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] − [y, [x, y]]) − 1

24
[x, [y, [x, y]]] + . . . . (B.0.15)
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Gauss Integrals

Gauss Integrals

While dealing with the path integral the use of Gaussian integrals is unavoidable, here we shortly assemble
the most needed properties: We start with the standard Gauss integral, as it is well known, the derivation
start by taking the square and switching to polar coordinates. The result reads

∫ ∞

−∞
dx e−x2

=
√
π. (C.0.1)

The next step to take is making a simple substitution, which leads to
∫ ∞

−∞
dx e−ax2

=

∫ ∞

−∞
dx e−(

√
ax)2 =

1√
a

∫ ∞

−∞
dη e−η

2
=

√
π

a
. (C.0.2)

The next step is to take a linear term into account. The formula can then be brought to the standard form
(C.0.1) by a quadratic expansion.

∫ ∞

−∞
dx e−ax2+bx =

∫ ∞

−∞
dx e

−(
√
ax− b

2
√

a
)2+ b2

4a =

√
π

a
e

b2

4a Re(a) > 0. (C.0.3)

Complex Gauss integrals are defined as
∫

d(z, z) e−zwz :=

∫ ∞

−∞
Re(z)

∫ ∞

−∞
Im(z) e−zwz. (C.0.4)

By rewriting the complex numbers with the their real and imaginary part as z = zx + izy and w = wx + iwy

(zx − izy)(wx + iwy)(zx + izy) = (wx + iwy)z
2
x + (wx + iwy)z

2
y = wz2x + wz2y (C.0.5)

the complex Gauss integral (C.0.4) can be solved with the help of (C.0.1)
∫

d(z, z) e−zwz =

∫ ∞

−∞
dzx

∫ ∞

−∞
dzye

−(wz2x+wz2y) =

√
π

w

∫ ∞

−∞
dzxe

−wz2x =
π

w
Re(w) > 0 . (C.0.6)

In the same way we can can solve
∫

d(z, z)e−zwz+uz+zv =

∫ ∞

−∞
dzxe

−wz2x+(u+v)zx

∫ ∞

−∞
dzy e

−wz2y+i(u−v)zy

=
π

w
e

(u+v)2−(u−v)2

4w =
π

w
e

(u2+v2+2uv−u2−v2+2uv
4w

=
π

w
e

uv
w Re(w) > 0 . (C.0.7)
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APPENDIX C. GAUSS INTEGRALS

Multidimensional Gauss integrals

Based on the above expressions we can now go over to the really needed multidimensional Gauss integrals.
For simplicity we assume a real Matrix A which is symmetric and positive. Then there exits an orthogonal
transforamtion D with DTD = DTD = 1 and DTAD = diag(λ1,λ2, ...,λn) =: B. With this we can now
solve the integral

∫
dve−vTAv =

∫
dve−vT (DDT )A(DDT )v =

∫
dve−(vT D)DTAD(DT v)

=

∫
due−uTBu =

N∏

n=1

[∫
dxne

−λnu2
n

]

=
N∏

n=1

[√
π

λn

]
= π

N
2

N∏

n=1

1√
λn

= π
N
2

1√∏N
n=1 λn

= π
N
2

1√
det(A)

. (C.0.8)

The n-dimensional analogue to (C.0.3) can be solved by considering the following matrix transformations
u = v +A−1j ⇒ v = u−A−1j ⇒ vT = uT − jT

(
A−1

)T ,

−vTAv − 2jTv = −
[
uT − jT

(
A−1

)T ]
A

[
u−A−1j

]
− 2

[
jTu− jTA−1j

]

= −uTAu+ uTAA−1j+ jT
(
A−1

)T
Au− jT

(
A−1)TAA−1j− 2jTu+ 2jTA−1j

]

= −uTAu+ uT j+ jT
(
A−1

)T
Au− jT

(
A−1)T j− 2jTu+ 2jTA−1j

]
. (C.0.9)

Due to the fact, tat the inverse of a symmetric matrix is again symmetric, we can write
(
A−1

)T
= A−1, with

which follows:

−vTAv − 2jTv = −
[
uT − jT

(
A−1

)T ]
A

[
u−A−1j

]
− 2

[
jTu− jTA−1j

]

= −uTAu+ uTAA−1j+ jT
(
A−1

)T
Au− jT

(
A−1)TAA−1j− 2jTu+ 2jTA−1j

]

= −uTAu+ uT j+ jT
(
A−1

)T
Au− jT

(
A−1)T j− 2jTu+ 2jTA−1j

]
. (C.0.10)

With this considerations we can solve the following Gauss integral
∫

dve−vTAv−2jTv = ej
TA−1j

∫
due−uTAu = π

N
2

1√
det(A)

ej
TA−1j . (C.0.11)

Other forms of writing the last expressions are
∫

dve−vTAv±2jTv = π
N
2

1√
det(A)

ej
TA−1j . (C.0.12)

Next we look at the n-dimensional complex Gauss integral. In this case we consider a hermetic Matrix
A, that is A = A†, then there exists a unitary transformation U with UU† = U†U = 1, such that
U†AU = diag(λ1,λ2, . . .λN ) =: B where λi ∈ C are the eigenvalues of the matrix A. Then the following
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complex Gauss integral can be solved
∫

d(v,v†) e−v†Av =

∫
d(v,v†) e−v†(UU†)A(UU†)v =

∫
d(v,v†) e−(v

†U)U†AU(U†v)

=

∫
d(a,a†) e−a†Ba =

N∏

i

∫
d(a,a) e−aiλiai

=
N∏

i

π

λi
= πN 1∏

i λi

= πN 1

det(A)
. (C.0.13)

By considering the transformation

v† = u† +w†A−1 v = u+A−1w′ ,

we can conclude

−v†Av +w†v+ v†w′ = −
[
u† +w†A−1

]
A

[
u+A−1w′]+w† [u+A−1w′]+

[
u† +w†A−1

]
w′

= −u†Au− u†AA−1w′ −w†A−1Au−w†A−1AA−1w′ +w†u

+w†A−1w′ + u†w′ +w†A−1w′

= −u†Au− u†w′ −w†u−w†A−1w′ +w†u+w†A−1w′ + u†w′ +w†A−1w′

= −u†Au+w†A−1w′ , (C.0.14)

and finally solve the following n-dimensional complex Gauss integral
∫

d(v,v†) = e−v†Av+w†v+v†w′
=

∫
d(u,u†)e−u†Au+w†A−1w′

= ew
†A−1w′

∫
d(u,u†)e−u†Au

= πN 1

det (A)
ew

†A−1w′
. (C.0.15)

Finally we have to consider the Grassmann Gauss integral.
∫

dη

∫
dη e−ηaη . (C.0.16)

According to to our convention (2.1.57( and the fact that we can expand the expontental function due to
Baker-Campbell-Hausdorff formula (2.1.44), we can immediately solve the simple Gauss integral

∫
dη

∫
dη (1− ηa η) = −a

∫
dη

∫
dη η η = a

∫
dη

∫
dη η η = a

∫
dηη = a

Next we use a hermetic transformation UU† = U†U = 1 so that U diagonalizes the matrix A, that is
U†AU = diag(λ1,λ2, . . .λN ) =: B. Now we can solve the Grassmann Gauss integral the same way as the
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complex Gauss integral
∫

d(v†,v)e−v†Av =

∫
d(v†,v)ev

†Av =

∫
d(v,v†)ev

†(UU†)A(U†U)v

=

∫
d(v†,v)ev

†(UU†)A(U†U)v

=

∫
d(v†,v)ev

†U(U†AU)U†v

=
N∏

i=1

∫
dui dui e

uiλiui

=
N∏

i=1

∫
dui dui (1− λiuiui)

=
N∏

i=1

λi = det (A) . (C.0.17)

Next we consider the integral
∫

d(v†,v)e−v†Av+ρ†v+v†ρ =
N∏

i=1

∫
dvidvi e

−viAi jvj+ρivi+viρi v, v, ρ, ρ ∈ Grassmann A hermetic ,

(C.0.18)

and make the substitution

u = v −A−1ρ ⇔ v = u+A−1ρ or vi = ui +A−1
ij ρj

u† = v† −A−1ρ† ⇔ v† = u+A−1ρ or vi = ui +Aij
−1

ρj .

(C.0.19)

With this substitution we are in position to rewrite the exponent as

−v†Av + ρ†v + v†ρ =
[
u† + ρ†

(
A−1

)†]
A

[
u+A−1ρ

]
+ ρ†

(
u+A−1ρ

)
+

(
u† + ρ†

(
A−1

)†)
ρ

= −
[
u†Au+ u†AA−1ρ+ ρ†

(
A−1

)†
Au+ ρ†

(
A−1

)†
AA−1ρ

]

+ ρ†u+ ρ†A−1ρ+ u†ρ+ ρ†
(
A−1

)†
ρ

= −u†Au− u†ρ− ρ†
(
A−1

)†
Au− ρ†

(
A−1

)†
ρ+ ρ†u+ ρ†A−1ρ+ u†ρ+ ρ†

(
A−1

)†
ρ

= −u†Au− u†ρ− ρ†A−1Au− ρ†A−1ρ+ ρ†u+ ρ†A−1ρ+ u†ρ+ ρ†A−1ρ

= −u†Au− ρ†u+ ρ†u+ ρ†A−1ρ

= −u†Au+ ρ†A−1ρ . (C.0.20)

Now we are able to solve the Grassmann Gauss integral as follows
∫

d(v†,v)e−v†Av+ρ†v+v†ρ =

∫
d(v†,v)e−u†Au+ρ†A−1ρ

= eρ
†A−1ρ

∫
d(v†,v)e−u†Au

= eρ
†A−1ρ det(A) . (C.0.21)
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Appendix D

Solving Differential Equation for Free Green
Function

We have derived the expression for the Green function using the path integral. Thereby it was crucial
to analyse what happens at equal times. It is instructive to see how one can derive the Green function
immediately, if the subtlety of equal times is not given. For completeness this derivation is shown here. We
can also solve the differential equation

(!∂τ + ελ − µ)G
(
λ τ |λτ ′

)
= δ(τ − τ ′) , (D.0.1)

with the boundary condition
G
(
λ!β|λτ ′

)
= ζG

(
λ 0|λτ ′

)
(D.0.2)

First we set a = ελ − µ and y := τ − τ ′ ⇒ ∂f
∂τ = ∂f

∂y and solve the homogenious part

(!∂y + a)G(y) = 0

⇒ G(y) = G(0)︸ ︷︷ ︸
=:K

e−
a
! y = Ke−

a
! y . (D.0.3)

To solve the inhomogenious part, we use the Fourier transformation, therefore we start with

1

2π

∫ ∞

−∞
dωg(ω)e−iωy and δ(y) =

1

2π

∫ ∞

−∞
dωe−iωy , (D.0.4)

so one gets

(!∂y + a)
1

2π

∫ ∞

−∞
dωg(ω)e−iωy =

1

2π

∫ ∞

−∞
dωe−iωy ⇒ g(ω) =

1

a− i!ω . (D.0.5)
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Now we have to solve
the integral

1

2π

∫ +∞

−∞
dω

1

a− i!ω e−iωy a > 0 .

(D.0.6)
For that look at

1

2π

∫ R

−R

1

a− i!ω e−iωydω

(D.0.7)
and for the lower con-
tour we have

γ(t) = Re−it 0 ≤ t ≤ 0

γ′(t) = −Re−it

(D.0.8)

R−R

τ − τ ′ > 0

0

Im(ω)

Re(ω)
ω = − i

!a

Now we can make the estimation
∣∣∣∣
1

2π

∫

γ
dω

1

a− i!ω e−iωy

∣∣∣∣ =
∣∣∣∣
1

2π

∫ π

0
dt

1

a− i!Re−it
e−iyRe−it (−Rie−it

)∣∣∣∣

≤ 1

2π

∫ π

0
dt

∣∣∣∣∣
eiyR(cos(t)−i sin(t))

a− i!Re−it
R

∣∣∣∣∣ =
1

2π

∫ π

0
dt

Re−Ry sin(t)

|a− i!Re−it|
2
≤ 1

2π

∫ 2π

0
dt

Re−Ry sin(t)

R ! =
1

2π!

∫ 2π

0
dt e−Ry sin(t)

=
1

2π!2
∫ π

2

0
dt e−Ry sin(t) =

1

π!

∫ π
2

0
dt e−Ry sin(t)

3
≤ 1

2π!

∫ π
2

0
dt e−Ry 2

π t

=
1

π!
π(1− e−yR)

2R
=

1

2!
(1− e−yR)

R
R→∞−→ 0 . 1 (D.0.9)

Where we have used

|a− i!Re−it| = |(−1)
(
−a+ i!Re−it

)
| = |i!Re−it − a| ≥ |!R − a| ≥ !R (D.0.11)

1For any ε > 0 there exists an R0 such that 1
2R0ε > 1 ⇔ 2

R0
< ε

∣∣∣∣
1− e−R

R

∣∣∣∣ ≤
1 + e−yR

R
≤ 2

R
< ε ∀R>R0 (D.0.10)
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sin (t) ≥ 2

π
t with 0 ≤ t ≤ π (D.0.12)

tπ
2

0

1

sin (x)

2
πx

So we have
∫ ∞

−∞
dt

1

a− i!ω e−iωy = lim
R→∞

∫ R

−R

dt1

a− i!ω e−iωy = 2πiRes(ω;− i

!a)

Res(ω;− i

!a) = lim
ω→− i

!a

(
ω − (− i

!a)
)

1

a− i!ω e−iωy

= lim
ω→− i

!a

1

(−i!)e
−iωy =

1

−i!e
− 1

!ay (D.0.13)

Therefore we get

1

2π

∫ ∞

−∞
dω

1

a− i!ω e−iωy = −2πi

2π

(
1

−i!e
− 1

!ay
)

=
1

!e
− 1

!ay (D.0.14)

For y < 0 we take the upper contour
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And the integral leads
∫ ∞

−∞
dω

1

1− i!ω e−iωy = 0 (D.0.15)

For the upper contour we have

γ(t) = Reit 0 ≤ t ≤ 0

γ′(t) = Reit (D.0.16)

R−R

τ − τ ′ < 0

0

Im(ω)

Re(ω)
ω = − i

!a

For the upper contour we have the curve. We now write for y < 0

y < 0 − iy → i|y| (D.0.17)

So we can make the estimation
∣∣∣∣
1

2π

∫

γ
dω

1

a− i!ω eiω|y|
∣∣∣∣ =

∣∣∣∣
1

2π

∫ π

0
dt

1

a− i!Reit
ei|y|Reit

(
Rieit

)∣∣∣∣

≤ 1

2π

∫ π

0
dt

∣∣∣∣∣
ei|y|R(cos(t)+i sin(t))

a− i!Reit
R

∣∣∣∣∣ =
1

2π

∫ π

0
dt

Re−R|y| sin(t)

|a− i!Reit|
2
≤ 1

2π

∫ 2π

0
dt

Re−R|y| sin(t)

R ! =
1

2π!

∫ 2π

0
dt e−R|y| sin(t)

=
1

2π!2
∫ π

2

0
dt e−R|y| sin(t) =

1

π!

∫ π
2

0
dt e−R|y| sin(t)

3
≤ 1

2π!

∫ π
2

0
dt e−R|y| 2π t

=
1

π!
π(1− e−|y|R)

2R
=

1

2!
(1− e−|y|R)

R
R→∞−→ 0 1 (D.0.18)

The general solution reads

G(y) = Ke−
a
! y +

1

!e
− 1

!ay θ(y) (D.0.19)

or

G(λτ |λτ ′) = Ke−
1
! (ελ−µ)(τ−τ ′) +

1

!e
− 1

! (ελ−µ)(τ−τ ′) θ(τ − τ ′) . (D.0.20)
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From the boundary condition, we now get for K

K =
ζe−aβθ(!β − τ ′)− θ(−τ ′)

!(1− ζe−aβ)
. (D.0.21)

Inserting now back to

G(τ − τ ′) =
1

!e
−a(τ−τ ′)

!

[
ζe−aβθ(!β − τ ′)− θ(−τ ′)

(1− ζe−aβ)
.+ θ(τ − τ ′)

]
(D.0.22)

Now it is 0 < τ ′ < !β

[. . .] =
1

!e
−a (τ−τ ′)

!

[
ζe−aβ

(1− ζe−aβ)
+ θ(τ − τ ′)

]

[. . .] = 1 +
ζ

eaβ − ζ
τ > τ ′ and [. . .] =

ζ

eaβ − ζ
τ ′ > τ . (D.0.23)

The result we can combine to

G(λτ |λτ ′) = 1

!e
− 1

! (ελ−µ)(τ−τ ′) [(1 + ζnλ) θ(τ − τ ′) + ζnλθ(τ
′ − τ)

]
. (D.0.24)
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