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Preface

Bosonic atoms cooled down to very low temperatures in the micro or nano Kelvin regime
show features, which have fascinated experimental as well as theoretical physicists for
decades. Matter wave coherence properties, vortices, effects of superfluid flow and col-
lective excitations have been observed and theoretically studied. These macroscopic
quantum phenomena occur below a critical temperature, where Bosons form a coherent,
quantum state called Bose-Einstein condensate (BEC).

This new state of matter has been predicted by Einstein in 1924 [1] for non-interacting
gases, whose particles obey the Bose statistics [2]. Fourteen years later, London [3, 4] and
Tisza [5] applied these ideas to the qualitative description of superfluid Helium. However,
a quantitative agreement between experiment and theory failed because of the high den-
sity and strong interactions in Helium that prevent the formation of a real macroscopic
condensate. That is why in Helium only 10 percent of the atoms reside in the coherent
ground-state even at T' = 0. This led to the search of weakly-interacting Bose gases
with a higher condensate fraction. It took more than 70 years after their theoretical
prediction until Bose-Einstein condensates were first realized experimentally in 1995 in
dilute atomic gases for rubidium [6], sodium [7], and lithium [8, 9]. Based on advanced
laser and evaporative cooling techniques research groups at MIT and JILA were able to
produce condensates of more than 10° atoms. Their realization in the laboratory has en-
abled physicists to study fundamental quantum theory on large scales and was therefore
rewarded with the Nobel price of physics in 2001.

Today Bose-Einstein physics has become a highly interdisciplinary field. The new area
of quantum optics uses the coherence properties of the condensates to investigate the
possibility of building matter wave lasers and components for quantum computers [10].
Even in nuclear and particle physics the long-range correlations of ultracold bosons have
led to many applications in interferometry and heavy-ion reactions [11]. Bose conden-
sates were also found in other systems. In condensed matter physics, superconductivity
has been explained with the help of Bose condensed Cooper pairs [12] since the fifties of
the last century. Bose-Einstein condensation of excitons [13] and magnons [14] has been
predicted, however its experimental evidence is still pending.
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Figure 1: Finite temperature phase diagram in the a,-7 plane. The straight line indicates
the prediction of classical field theory valid locally in the vicinity of T(*). The global
structure of the whole phase diagram has not been investigated up to now.

Recently, another quantum state of matter has been discovered in which a boson gas is
trapped near zero temperature in an optically generated lattice of standing laser beams
[15]. Due to the tunnelling between adjoint potential wells and Bloch’s theorem, the
bosons lie in energy bands and behave similarly to free particles. Thus they form a
superfluid phase which is delocalized over the lattice. As the wells deepen, a quantum
phase transition occurs, localizing the atoms in the wells. The latter phase is analogous
to a Mott insulator in electronic systems, and its properties were discussed theoretically
in Refs. [16, 17]. With these experiments one enters a new field of physics with ultracold
gases as one can bring a dilute gas of bosons into a strongly correlated regime where
interaction induced correlations are dominant.

So far, most experimental work has dealt with BECs in magnetic traps and many
theoretical investigations have been focused on such systems [18-20]. However, there
are interesting unsolved theoretical problems also in homogeneous BECs with arbitrar-
ily weak two-particle interactions. For instance, one important fundamental property
of homogeneous BECs has been posing a long-time puzzle to field theorists: In which
direction and by which amount does a repulsive interaction push the critical tempera-
ture? Although this problem appears to be very simple, it has been answered in many
contradictory ways [21-43]. Most of these works are based on the classical limit of field
theory, where only the zero Matsubara modes of the fields are included. With this ap-
proximation one was able to calculate the leading shift in the critical temperature which
turned out to be linear in the s-wave scattering length a,. In a finite temperature phase
diagram of the a, — T plane, this corresponds to a linear curve starting at the critical
temperature TC(O) of a non-interacting gas where a, = 0 as illustrated in Fig. 1. The next
leading correction to this curve has been calculated recently by Arnold and co-workers
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[31] by matching the full quantum field theory to the classical three dimensional theory.
They obtained a second-order result in the shift of the critical temperature. However,
their result is not satisfactory as it is valid only for small a, and cannot reach the regime,
where the Mott insulator transition occurs. Thus, up to now the full phase diagram (Fig.
1) is yet unknown.

The goal of this thesis is to fill this gap and to understand the critical properties of both,
weakly interacting gases as well as strongly correlated optical boson lattices above and,
especially, below the critical point. Our results will be obtained from an application of
field-theoretical methods of many-body physics. In particular, we shall derive the full
phase diagram in the a; — T plane.

In more detail we shall proceed as follows:

1. We shall calculate the temperature dependent diagrams for the vacuum and the
self-energy in arbitrary dimensions d up to the second perturbative order. While
for fermions this has been done a long time ago, there exists for weakly interacting
bosons in the dilute limit only a calculation of the vacuum diagrams in exactly
d = 3 dimensions by Huang et al. [44-46]. As a first application we want to
investigate how nonzero Matsubara modes and therefore quantum effects influence
the shift of the critical temperature and compare our results with that of the work
of Arnold et al [31].

2. Next we shall investigate the entire phase diagram (Fig. 1). To this end we ap-
ply a systematic loop expansion, where the fluctuations of the bose fields around
the condensate are taken into account order by order. This allows us to find the
transition line in the whole temperature regime of the phase diagram [47, 48].

3. The same field-theoretical methods as mentioned above will then be applied to
Bose-Einstein condensates trapped in optical lattices [47]. There the periodicity
leads to a quasi-free behavior due to Bloch’s theorem, which enables us to treat
this system as effectively homogeneous. At 7" = 0, a quantum phase transition
from the Mott insulator to the superfluid phase is found and compared with recent
experimental data [15]. Furthermore, our calculations make theoretical predictions
for the behavior of the system at finite temperatures that can be tested experimen-
tally.

The work is organized as follows:

Partl: In Chapter 1 we review the properties of the ideal Bose gas at finite temperature
and show how weak interactions can be included. Optical boson lattices are introduced
as an experimental realization of the Bose-Hubbard model. In Chapter 2 the basic
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tools of thermal field theory such as Matsubara sum and effective action formalism are
provided. We end this part by reviewing a new resummation technique called variational
perturbation theory [49, 50] in Chapter 3. This powerful tool was developed in our group
to turn weak-coupling divergent series into strong-coupling convergent ones and will be
used in various contexts throughout this thesis (Chapter 7, Sections 9.2, 10.2).

Part2: Finite temperature perturbation theory up to the second order in the s-wave
scattering length is carried out for temperatures above the critical point. According to
the Feynman rules of many-body theory and Wick’s theorem the Hugenholtz diagrams
and their weights are obtained for the vacuum and self-energy in Chapter 4. In Chapters
5 and 6 we calculate these diagrams in dimensional regularization using the space-time
representation of the free propagator. As a first application, we investigate in Chapter
7 the influence of non-zero Matsubara modes on the shift of the critical temperature in
d = 3 dimensions.

Part3: A finite temperature loop expansion for the effective potential is performed in
Chapter 8 with the help of the background method. We introduce the Popov approx-
imation as a variationally resummed version of the Bogoliubov approximation for the
effective potential in Chapter 9 and calculate the number of non-condensed atoms. We
investigate the effective potential of dilute gases in the temperature regime below the
critical point and compute the whole phase diagram with the help of variational pertur-
bation theory (Chapter 10). Second, we calculate the phase diagram of optical boson
lattices with the help of a hopping expansion. At T = 0 we compare our results with
existing experimental values [15] and make theoretical predictions for the behavior at
finite temperatures (Chapter 11).



Part I:

Physical and Mathematical

Foundations







Chapter 1

Bose-Einstein Condensation

1.1 Ideal Bose Gas

In three dimensions, nature is made up of two different sorts of particles: fermions and
bosons. Fermions obey the Pauli exclusion principle which states that two fermions
cannot, occupy the same quantum state. Bose particles in contrast, like to occupy the
same quantum state, which can harbour an arbitrary number of them. In this section
we review the ideal Bose gas at finite temperature in the grand-canonical ensemble. It is
described by the fundamental Bose-Einstein distribution function:
1 S~ o Pletio—4]
I —Ole(k)—puln
(n(k)) = oo —1 nz ¢ ! (1.1)

=1

where (n(k)) denotes the mean occupation number per single particle energy level €(k),
B = 1/kgT is the inverse temperature and p the chemical potential. Because of the
positivity of the mean occupation number, the chemical potential cannot exceed the
ground-state energy €(0) and is limited to values below €(0)).

Consider now N bosons in a finite box of volume V' and impose periodic boundary con-
ditions. The total particle number is obtained from (1.1) by summing over all possible
quantum states:

N = zkxn(k)), (1.2)

where we have assumed spin zero for the bosons. In the thermodynamic limit, where N
and V' tend to infinity while the particle density n = N/V is kept fixed, the sum can be
replaced by an integral over all continuous energy levels (k) = h’k?/2m:

Zk: — /OOO gle)de, (1.3)

3
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where

_dX(e) 27V
9(9) = de  (27h)3

(2m)>/2eH/? (1.4)

is the density of states, which follows from the phase space volume ¥ in three dimensions:

/d3 / 27rh 27rf"z/ 2m) 3/2/ Ve de. (1:5)

Consequently, the particle number (1.2) is given by the integral

27rV Vv
N=2" 3/2/ de o= = 33 S2(2) (1.6)

In the last step we have introduced the polylogarithmic function ¢, (z) defined by

1 o ety & "
(2) = de— S (D5 E 1.7
G(z) T'(v) /0 CeBlem _ 1 = (1.7)

the thermal wave length \ = \/27rh26/m and the fugacity z = e®*. For z = 1 the poly-
logarithmic function (,(z) reaches its maximum value and reduces to Riemann’s zeta
function ¢, (1).

The above semi-classical consideration neglects one important detail: Although for big
volumes, the one-particle states are very dense, replacing the sum by an integral is not
really justified. This approximation (1.3) is wrong in the limit ¢ — 0. For particles in
a box with periodic boundary conditions, thus exists a ground-state described by the
wave function ¢o = 1/v/V, which does not contribute to the integral in (1.6) due to
the vanishing of the density of states. The state k = 0 plays an important role for the
phenomenon of BEC. It must be treated separately, changing (1.6) to

2
1—2"

v
N = Nex + Ny = e G32(2) + (1.8)
where N, is the number of particles in the excited states and Ny is the number of
particles residing in the ground state, obtained from (1.1) for the ground-state energy
€(0) = 0. This number diverges as soon as the chemical potential approaches the ground-
state energy: p = 0. How can this be understood physically? As we work in the
thermodynamic limit, we should better consider the particle density, which is a finite
quantity:
No

1
N = Nex + Ny = e C3/2(z)+7. (1.9)
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In the limit 2 — 1, the polylogarithmic function and thus the density of excited particles

max

reaches its maximum n™* = ((3/2)/)\*, and ny = N,/V is a finite quantity given by
ng = n — ne*. If now particles are added to the system, they would immediately reside
into the ground state, because nq, has already reached its maximum. This macroscopic
occupation of the ground-state level is called Bose-Einstein condensation (BEC) and ny

is called the condensate density. The condition ny = 0 is equivalent to

= C(3/2), (1.10)
and defines the critical temperature of BEC
9 h? 2/3
o - 27 (L) | (1.11)
mkp \ ((3/2)
with ((3/2) ~ 2.6124. From the proportionality n ~ A7 the relative part of the con-
densed atoms is given by
N, T \3?
vl (W) . (1.12)

One of the most amazing features of BEC is that it occurs even in ideal gases just because
of statistics, although we know from the theory of critical phenomena that long-range
correlations are responsible for phase transitions. That is why one often refers to BEC as
being driven by ”statistical interactions”. However, the above idealization is somewhat
artificial and, of course, we have to include real interactions to see how the nature of
Bose-Einstein condensation is affected.

1.2 Weak Interactions in Dilute Gases

Bosons interact with one another through binary collisions that are treated in the frame-
work of scattering theory. In general, the interaction potential is very complicated and
can only be computed in ab initio calculations. For an experimental realization of BEC
it is important to circumvent three-particle collisions that would lead to a solidification
of the gas. Therefore, the density of the gas is kept so low that the thermal wave length
A ~ n~ Y3 is much larger than the effective extension of the interaction potential. Thus,
the true complicated interatomic potential can be replaced by an effective two-particle
contact interaction [18]

Vine(x,x') = g 0(x — x'), (1.13)
where the coupling constant ¢ is related to the the s-wave scattering length a, via

4rhla,
9= :

- (1.14)
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This delta potential has to be interpreted for a; > 0 as a repulsive hard-core potential
that prevents mutual penetration of the atoms. In second quantization the most general
many-body action describing bosons of a grand-canonical ensemble with a two-particle
interaction Viy(x,x’) reads in imaginary-times (see Section 2.1):

hB
AR 7)) = [ [ (070, + B — i) (119
+% /OhﬂdT /ddx /ddx, (%, 7)Y (X', 7) Vine (%, X" )" (x, 7)™ (X', 7) }

where h(x) denotes the one-particle Hamilton operator

B) = 2 A+ Vi ) (1.16)

with an arbitrary external potential Ve (x). Including the interaction term (1.13), we
get
* hb d *
Ab(x,7), 0", 7)) = [ dr [ata (0 (x, )[R0, + () — plu(x,7)
g x
+§¢(x, 2% (x, 7)°} . (1.17)
In a typical BEC with a, of the order of A and particle distances of a few thousand A,

the gas parameter a;n'/? ~ ag\ is very small, which allows to describe the condensate as
a weakly interacting gas. In this weak-coupling regime, where the ratio v

¥ = Z:lt = 8ma,n'/? (1.18)

between the interaction energy ey, = gn and the kinetic energy ey, = h*n?/?/2m is small,
we are able to treat the interaction term in (1.17) in the framework of perturbation theory
(see Part 2). Note that this is based on the assumption A ~ n~'/3, which is in particular
true near TC(O). For the description of the condensate at lower temperatures the density
and thus the gas parameter increases and we have to use a different approach (see Part
3). From (1.18) we see that there is another possibility to reach the strong-coupling
regime, namely by increasing the scattering length as. This is indeed possible by using
a so-called Feshbach resonance [51]. This has been realized recently in ®*Rb, where the
scattering length a, has been tuned over several orders of magnitude and a collapse of the
condensate has been observed. In the next section we describe a third, entirely different
approach for reaching the strong correlated regime.
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Figure 1.1: Potential landscape build up from crossing laser beams

1.3 Strong Correlations in Optical Boson Lattices

A fascinating field in the physics of BEC is the possibility to store single atoms in a
periodic optical lattice potential of lattice spacing 9:

d
Viat(x) = V4 Zsin(qixi)2 , G =T7/0. (1.19)
i=1
Such a potential landscape is created by using a standing wave interference pattern of
two counter propagating laser beams where the lattice spacing § equals half of the laser
wave length A = 26. There, neutral atoms are stored due to interactions between the
light field of a laser beam and the induced dipole moment of the atoms. The wave vector
q defines the recoil energy E, = h?’q?/2m. The Hamiltonian for interacting bosonic
particles (1.13) in such an external trapping potential reads

- [ {wx, ! [—j—mA Vi) ] ) + L )20 t)?} . (1.20)

where 1) (x,t),1(x,t) are the boson field operators. Characteristic for particles in an
optical lattice is the emergence of a band structure. The wave function of a single par-
ticle in a periodic lattice potential is best described by so-called Wannier functions [52].
They constitute an orthogonal and normalized set of wave functions that are maximally
localized at individual lattice sites.

1.3.1 Bose-Hubbard Hamiltonian

For low temperatures it is justified to assume that all particles move only in the lowest
band, so that the field operators 1)(x, t) can be expanded in the basis of Wannier functions
w(x — x;) of the lowest band:

P(x,t) = Z a;(t)w(x — x;), (1.21)

i
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where a;(t) is the particle annihilation operator acting on the ith lattice site in the
Heisenberg picture. For ¢*(x,t) the corresponding expansion coefficient is the creation
operator af(t). Both operators obey the canonical equal time commutation relation for
bosons [a;(t), a}(t)] = d;;. With this expansion the Hamilton operator (1.20) reduces to
the famous Bose-Hubbard Hamiltonian [16]:

H=—J Y ai(ay(t) — 1S mlt) + 5 Smilt)ma(t) ~ 1) (1.22)

<i,j>

where the particle operator n;(t) = aj(t)a;(t) counts the number of bosons on the ith
site. The first term describes the kinetic energy that delocalizes each atom over the
lattice through tunnelling. Here the corresponding sum includes only tunnelling between
neighboring lattice sites. It’s strength is given by the tunnelling matrix element

202
J = —/d?’xw(x—xi) (—h2v
m

+ Vlat(x)> w(x — X;) . (1.23)

The second term with the chemical potential i just acts as a Lagrangian multiplier to fix
the mean number of particles in the grand-canonical potential. The last term of (1.22)
describes the interaction between two atoms on a single lattice site with the interaction
strength

U :g/ lw(x — x;)|* dPx. (1.24)

For a; > 0 the interaction is repulsive and tends to localize the atoms to their lattice
sites. Thus the first and last term in (1.22) compete with each other. In the experiment
both parameters can be changed by varying the potential depth V{ of the optical lattice
potential (1.19). If the potential depth V} is increased the tunnelling barrier between
neighboring lattice sites is raised and thus J decreases. At the same time the on-site
interaction U increases, because of the tighter confinement of the wave function on a
lattice site. In analogy to condensed matter physics a state where the potential (1.19)
is so high that all atoms are localized at individual lattice sites is called Mott insulator.
In the opposite limit when the tunnelling matrix element dominates the Bose-Hubbard
Hamiltonian (1.22) the atoms are in the superfluid phase and are delocalized over the
whole lattice.

1.3.2 Tight Binding Approximation

If the individual potential wells are deep, i.e., Vj > FE,, the single particle Wannier
functions w(x —x;) in the nearly harmonic wells are given by oscillator ground-state wave

functions at the lattice sites with size ag = \/h/Mw, and energy hiwy ~ 2F, (%/Er)l/Q.
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Due to the low temperatures we can restrict our calculations to the lowest energy band
arising from Bloch’s theorem, which reads, up to a trivial additive constant,

e(k) = 2J z?’ju — cos(k:d)] . (1.25)

=1

This standard textbook result is valid for an arbitrary shaped periodic potential and
follows from simple perturbative calculations. The tight-binding approximation shows
that the width of the band 4.J depends on the tunnelling strength (1.23), which can be
calculated from the exact result for the width of the lowest band [52]:

=5 (3) e 2 ()] (120

The interaction strength U can be obtained from (1.24) by taking w(x) as the Gaussian
ground state in the nearly harmonic oscillator potentials [17, 52

a, 2hwy  2mag |8 %)3/4
U=— = \ =B | = . 1.27
Qo \/ﬁ A v <Er ( )

1.3.3 Superfluid-Mott Insulator Transition

Researchers from the Max Planck institute for quantum optics in Garching, Germany
were able to transform a dilute gas of cold atoms from a superfluid to a Mott insulator and
back again simply by varying the intensity of the laser beam.The experimental optical
lattice of Ref. [15] is made of laser beams with wavelength A = 20=852 nm and contains
about 2 x 10° atoms ®Rb with a, ~ 4.76 nm [18]. Its energy scale is E, ~ h x 20 kHz
~kp x 150 nK and V;/E, is raised from 12 to 22. In this range, J/FE, drops from 0.014
to 0.002, U/E, increases from 0.36 to 0.57, hwy/E, increases from 0.36 to 0.57.

Expanding the small-k behavior of the band energy (1.25) as h°k?/2M.g + . . ., the band
width 4. defines an effective mass Mg of the particles Mg = h2/2J6n2. We already
mentioned in the last section that in a typical BEC the gas parameter a,n'/? is very
small. For the particles tightly bound in an optical lattice, however, a.gn'/® = v/8x
can be made quite large. In the experiment [15] for temperatures near zero we have
v =U/J =0.0248 exp(2,/Vy/ E;), so that the increase of the potential depth V/E, from
12 to 22 raises aegn'/® from 1 to 11.7. The phase transition between the two states
occured around Vy &~ 13FE,. To find out which phase is present they released the atoms
from the trap and looked for the interference pattern which is present in the superfluid
phase and absent in the Mott insulator regime.

Above the quantum phase transition, they observed a gap in the excitation energies
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of the bosons, which pins the atoms to their potential wells. Expressed differently, the
Goldstone modes of translations have become massive and the associated phase fluctu-
ations decoherent, in accordance with the criterion found in Ref. [53]. For increasing
temperatures, we expect the critical aegn'/? to decrease until it hits zero as T reaches
roughly the free BEC critical temperature (1.11). In the above experiment where 14/ FE,
is raised from 12 to 22, the temperature TC(O) drops from 14.2 nK to 1.93 nK, implying
that TC(O)/ET drops from 0.094 to 0.013. Hence J, and kg1 are much smaller than hwy,
so that we can ignore all higher bands and the tight-binding approximation is justified.



Chapter 2

Thermal Field Theory

This chapter provides the basic field-theoretic methods of many-body theory that are
used extensively throughout the thesis. In fact, there are two different approaches to field
theory, the operator formalism and the functional integral formalism. All thermodynamic
properties at finite temperature and non-zero chemical potential follow from the grand-
canonical partition function, which is defined by a functional integral. As a first example
we calculate the grand-canonical potential and the Green function of a free Bose gas for
temperatures above the critical point of BEC in Section 2.1. Afterwards we introduce in
Section 2.2 the effective action as a thermodynamic potential that describes the behavior
of many-body systems below the phase transition.

2.1 Imaginary Time Formalism

In many-body theory [54] the problem is to evaluate the grand-canonical partition func-
tion

§Dv fpuress (At 01} 1)

where A[y*, 1] is the euclidian action (1.17) for bosons. Here the circle of the integral
indicates that the integration has to be performed over all periodic fields

w(X, 0) = ’Lb(X, hﬂ) ) w*(xa 0) = ’Lb*(X, hﬂ) (2'2)
in the imaginary time 7 € [0,23]. Note that for fermions the fields are anti-periodic in
the imaginary time 7.

2.1.1 Free Partition Function

We now consider the quantum statistical partition function

fw]{w* A7) (2.3)

11
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for an interaction-free Bose gas, which is described by the euclidian action (1.17) for
g=20:

AT )b = [ dr [ die e ) 100, 4 ()~ o). (24)

A common way to compute such a functional integral is to expand the bosonic fields with
respect to one-particle wave functions ¢y (x) which are chosen to be eigenfunctions of the
one-particle Hamilton operator (1.16):

h(x)t(x) = €(k)thic(x) . (2.5)

Because of the periodicity of the bosonic fields with respect to the imaginary times 7 in
(2.2) we also perform a so-called Matsubara decomposition with respect to 7:

w(xa T) = ; Z Ckmwk(x)eiime ) W(Xa T) = ; Z C;‘:mwlt(x)eime : (26)

The expansion coefficients ¢y, and cf,, are complex numbers. The periodicity of the
fields (2.2) leads to the condition exp (—ihfw,,) = 1, which can be full-filled with the
choice

2mm
L3’
These frequencies are called Matsubara frequencies. Inserting (2.6) into (2.4), we take
into account (2.5) and use the orthogonality relations

Wy = m=40,1,2,.... (2.7)

3 .
/0 i Wm—wm)T — "B Ommy s / d’z U (X) i (x) = Ok (2.8)
to obtain for the euclidian action:

A0 [*(x,7), % (x,7)] = Z Z Clom Cikern, [— 1wy, + €(k) — ] . (2.9)

A summation over all periodic fields ¥ (x,7) and ¢*(x,7) corresponds to a summation
over all expansion coefficients in (2.6), thus the functional measure becomes a product
of simple integrals over cy,, and cf,,:

?{Dz/;(x,r)pgb*(x,r) — l_k[mﬁoo/dc’{{m/dckm]\fkm (2.10)

with the normalization constant Ny, = (/27 [49]. Thus the partition function (2.3) is
given by

ZO=11 1I g / dChm / degme ™ Gem Cem[=ihwomte()=p] (2.11)
T

k m=—oo 2
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We decompose the complex expansion coefficients cy,, ¢y, into their real and imaginary
parts

Cem = Re gy + 1Im ey, Cem = Re€ Cip — ilm ey (2.12)

and apply the rules for a two-dimensional coordinate transformation

/dc;‘{m/dckm = 2/dRe c;‘{m/dlm Ckm (2.13)

to perform the complex Gaussian integrals in (2.11), yielding

= 1
20 = : 2.14
1;[ mgw —ihwpm, + €(k) — p (2.14)
From this we obtain the grand-canonical potential of thermodynamics
1 1 >
Q0 = 3 In 20 = 3 > Y In[—ihwn, +e(k) — p]. (2.15)
k m=—oc0

Now we calculate the sum over the Matsubara frequencies by applying the bosonic Pois-
son formula (A.15).

At first, we rewrite the Matsubara sum in (2.15) in a more convenient way:
M=2 % In[-ifiw, +ek) —pl= > In[h’w? +Ek)?, (2.16)

where we introduced the short-hand notation F(k) = e(k) — u. Second, we apply the
Poisson formula (A.15) to obtain

M = Z /oodxln

m=—o00 "

A2 x?
7

+ E(k)Q] e 2mima (2.17)

and replace the logarithm via identity (B.5) to arrive at

s 0 1 oo 2
M = Y - z—1_—E(k)*r
2 ( 82) {F(z) /0 drre

m=—00

00 4 2 2
X / dx exp ( T 72'x - 27rimx> } (2.18)
- 6 2z=0
The z integral can be calculated via quadratic completion, yielding:
[ R 0 1 /OO _3 5 3%*m?
M = — —— ) = drT*™" —FEk)T— (2.19
v =\ T Jo @7 e |TEMT =) 219)
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At z = 0 the Laurent expansion of the Gamma function I'(z) reads [55]

I(z) = % +0(2"). (2.20)

Thus we obtain the relationship
ARG
0z ) T'(2)

which is valid for functions f(z) that are analytic at 2 = 0. So we obtain for the sum in
(2.19):

= —f(0), (2.21)

2=0

~ (-52) CLrO+ 1@+

z=0

M = % mioo /Ooo drr % exp l—E(k)QT - ﬂZTZ] : (2.22)
Now we split the sum as follows:
M = Iy+1, (2.23)
with
Iy = —% /Ooo drr e~ PO’ (2.24)
and
I, =2 mil % /Ooo drr 3exp [—E(k)ZT - BZE (2.25)
The contribution [, gives directly
L = 2 / T drr 3P0 — BE(K). (2.26)
2\/m Jo

The remaining 7-integral in I,,, can be found in [55], yielding

B _2,/26E(k) © 1 L o—BE()m
I, = NG glmK_%(ﬁmE(k))_ 27;7 (2.27)

m Y
where we used the fact that the Bessel function K_; /5(2) can be related to the exponential

function [55] via
/ T
K_l/Q(Z) = g € . (228)



2.1. IMAGINARY TIME FORMALISM 15

If we consider the geometric sum

fi(x) = 5:1 2™l = gjo =5 i - (2.29)
an integration with respect to x yields together with f(0) =0
00 pm
mZ:1 = —In(l —z). (2.30)
Applying this result to (2.27) gives us the contribution I,,:
Iy, = 2In[1 — e AEM] (2.31)
So the final result for the Matsubara sum reads:
= BE(k) + 21n[1 — e~ #PMI] (2.32)
Inserting this result in (2.15) yields for the grand-canonical potential
00O = %Z le(k) — 1] + % S n{1— e Ay (2.33)
K K

The first part of this equation, the so-called vacuum contribution, does not depend on
the temperature and diverges as soon as we sum over all possible wave vectors. However,
we can ignore that contribution at the moment, because for T' > T, this can be absorbed
in the renormalization of the energy. Therefore we consider

_ % S in {1 — ¢ e} (2.34)
k

and differentiate this result with respect to the chemical potential to obtain the particle
number

N=-"Z =X a1 (2.35)

The sum goes over all possible states k. Therefore we read off the average number of
particles in the state k:

(k) = (2.36)

which is nothing else but the famous Bose-Einstein distribution function (1.1). In Sec-
tion 1.1 the equation (2.36) was the starting point for a thermodynamic discussion of a
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homogeneous BEC, where one replaces the sum over the wave vectors k by a continuous
integral (1.3). For the grand-canonical potential (2.34) this results together with (1.7) in
d dimensions to

O = %Cd/%l(z) (2.37)

The corresponding result for the particle density (1.6) has already been calculated in
Section 1.1 in d = 3 dimensions.

2.1.2 Free Propagator

One of the most important quantities in nonrelativistic quantum field theory is the Green
function defined as the ensemble average of the free, time-ordered product of field oper-
ators

G(x1,71; X2, 2) = (T [w(Xlaﬁ)W(Xzﬂé)b , (2.38)

where the ensemble average of an arbitrary function of the field operators is defined by

Tr x1, 7)1 (xg, 7) | e BH—1N)
(f [w(xhﬂ)wT(Xz,n)}): f[w( Tr)f_ﬂ((H_uN))]e . (2.39)

Here H is the second-quantized Hamilton operator of the free system, N is the second
quantized particle number operator and T the time-ordering operator, which is defined
by
T {w(xlﬁl)wt(xmﬁ)] = O(n — T2)¢(X1,7'1)1PT(X2,7'2)
+6(7'2 —Tl)wt(XQ,TQ)w(Xl,Tl) . (240)

A short calculation shows that the Green function (2.38) fulfills the inhomogeneous
Schrodinger equation in imaginary times

(70, + h(x) — p] G(x1, 713 X2, 72) = ho (1 — 12)0@ (%1 — x3) (2.41)

where the first quantized one-particle Hamilton operator h(x) is shifted by the chemical
potential . One could consider this as a starting point for calculating the Green function,
but we choose another approach as we want to get familiar with functional integrals. In
the framework of functional integral quantization the definition of the Green function
(2.38) is equivalent to

Gl mixe,m) = (1, m)Y" (%, ) (2.42)
- % %Dw(x’ 7) %'D’Lﬂ*(x, T)(xy1, 71)Y" (X2, 7'2)67%“4(0)[1/’,1/1*} :
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which is also referred to as the two-point correlation function. Now we use the Matsubara
decomposition of the Bose fields (2.6) to get for the Green function:

G(Xl,Tl,XQ,TQ H H 271_2 Z Z Z ’Q/}kl X1 ¢ku(x2) (243)

k m=-—o0 k! m'=—oc0 k' m'"=—0c0

X e m! T gim ””/dckm/dckmck,, i Cirm €XD { = B¢y, Clom [—1hw,, + €(k) — p]} .

For (k'm’) # (k"m") the above integrals are odd in cgpm, ¢y, so that only diagonal
integrals with (k'm') = (k"m’") are nonzero:

G(Xl,Tl,XQ,TQ Z’g/}kl X1 ’Q/}k/ X2 Z 6“‘1 ((ra=1)
/8 % * *
— [ degry | dexrms Crspyr Crm €XP { =BGy it [— ihwny + €(K') — p]}
X H H g /dckm/dckmexp{ B Crm|—thw, + €(k) — p]} . (2.44)
kAk! m=—o0
m#m/'

With help of the decomposition (2.12) and the transformation (2.13), we can solve the
integrals to arrive at

e8] 7iu)m/(T17T2)

1
G(X1,71;X2,T2) = Z0) >t (x1)th(x2) Y- 5[—ihew o+ e(k) — p]?
K’ m/'=—o0 m

ad 1
X . 2.45
kl;{i’ ml}oo —ihwm + €(k) — p (2.45)
If we now insert the result (2.14) we obtain
1 . 00 6—iwm(7'1—7'2)
G(x1,71; X2, T2) = B §¢k(xl)¢k(x2) m;w it + (&) — 1 . (2.46)

Of course, this expression shows nothing else than the Matsubara decomposition of the
Green function

1 s .
Gl mixe ) = 7530 3 Glem(xa)ilx)e ™™ (2.47)

k m=—o0
with the expansion coefficient:

h

Gll,m) = —ihwm + €(k) —

(2.48)
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It remains to calculate the Matsubara sum

Sk (11— 72) = %m;oo _fh:::;()k) : (2.49)
This must be done by applying Poisson’s formula (A.15), leading to
i O oo p-2milmi—mthfn)/hB
Sk (i —m) = - n;oo [m dzx v BB K) 2 eI (2.50)
The fundamental integral on the right hand side
Loy = i /O:o dx;:a:b, b>0 (2.51)
is trivially evaluated. The denominator of the integrand has a singularity at = = —ib.

For a > 0, the integration contour on the real axis of the complex plane can be closed by
a semicircle in the lower half plane and the residue theorem yields

—iax
Res e —ab

I, = , ——=¢€
DT r = —ib 74 b

(2.52)

For a < 0 the contour has to be closed in the upper half of the complex plane. As the
integrand has no singularity there, the integral I,, vanishes. Thus we find for all values
of @ and b > 0:

Iy =O(a)e™. (2.53)
Inserting this result in (2.49), the sum reads

Sk(r1 —12) = Z O(r — 1 + hﬂn)ef%E(k)(TrTﬁhﬂn) . (2.54)

n=—oo

For (1, — ) € (0,h0), the Heaviside function forces the sum to run only over positive
n, so that we deal with a geometric series

e~ # EK)(r1—2~hf3/2)

G (Vo e E(m—m) N BBk _ 2.55
k(71— 72) e nz;; ¢ 2 sinh BE(K) /2 (2.55)
For 7 — 7 € (0, —hf) a similar calculation leads to:
) —LE(k)(T1—m2+hB3/2)
S (r — 1) = e EER)(n-m) —pEn _ ¢ " 2.56
k(11 — 72) er ngle 2sinh GE (k) /2 (2:56)
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So for (11 — 1) € (—hf3, +hB) we get the final result
Sk(T1 — 7'2) = @ (7'1 — 7'2) Sk (7'1 — 7'2)+ + @(7’2 — Tl)Sk (7’1 — 7'2)7
(—) (7-1 — 7'2) 67%E(k)(71*7'2*h6/2) + (—)(7-2 — Tl)ef%E(k)(TI*'Q‘Fh/B/Z)
2 sinh GE (k) /2 ’
(2.57)

which leads to the Green function
G(X1,T1;X2,Ty) = Zwk(xl)wi(XZ)
k

(—) (7'1 — 7-2) ef%E(k)(717727ﬁ6/2) + (—)(7-2 — Tl)ef%E(k)(TlfT2+ﬁﬁ/2)
2sinh BE(K) /2

(2.58)

It is worth noting that the Green function is homogeneous with respect to the imaginary
time.

So far we considered systems with an arbitrary one-particle Hamilton operator (1.16),where
Vext(X) is an arbitrary external potential. Now we restrict ourself to the free case
Vext (x) = 0, where the Green function (2.58) becomes also homogeneous in space, because

the one-particle wave functions 1 (x), 1 (x) solving (2.5) represent plane waves
1

1 tkx * _ _6—ikx
Uelx) = =™ ) = (2.59)

and the one-particle spectrum becomes e(k) = h’k?/2m. In this limit, we can replace
the sum in (2.58) by an integral analogous to (1.3):

dik .
G(x1 — X9, 7] — T2) = / ik(x1—x2)

(2m)¢
(—) (7'1 — 7-2) 6_%E(k)(7—1_7'2_hﬂ/2) + (—)(7-2 — Tl)e_%E(k)(TI_T2+hﬂ/2) 9 60
2sinh BE(k)/2 (2.60)
We end this section by specializing (2.60) to two important cases.
Special Case 1: Equal Arguments For equal arguments (2.60) simplifies to
ddk BE(k)/2 ddk 1
G(0,0) = / - = / , (2.61)
(2m)? 2sinh BE(k)/2 (27)d ePEK) — 1

which is nothing else but the particle number (1.2), yielding with (1.6) in d = 3 dimen-
sions:

G(0,0) = %Cg/z(z), (2.62)

where z = ¢’* denotes the fugacity.
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Special Case 2: High Temperature Limit Consider the Matsubara sum in (2.46).
For high temperatures T — oo, i.e. 3 — 0, all Matsubara frequencies (2.7), except the
zero mode m = 0, become infinite and thus give no contribution. As only the zero mode
survives, we get from (2.46):

2m/ ddk zk(xl X2)

0. 2.63
o A (2.6)

G(Xl - X27

2.2 Effective Action Formalism

In Section 2.1 we have calculated the grand-canonical potential of a free Bose gas above
the critical temperature of BEC. Now we develop a formalism that allows to calculate
thermodynamic quantities below T,. In that case the condensation of bosons into their
ground state means that the grand-canonical ensemble averages of the fields ¢ (x, 7), ¥*(x, 7)
do not vanish. To describe such a nonzero ensemble average we have to couple the fields
linearly to artificial current fields j(x,7), 7*(x, 7). Thus we consider the action

A0 0,5 = A = [ [t e ) 0 e iG] (260
and the resulting partition function
Z[j*,J] = § Do § Dyte FAV 9] (2.65)
The logarithm of this partition function yields the negative grand-canonical potential
Wlj.5* = n Z[5*, j). (2.66)

From that we can calculate the ensemble averages of the fields

n)e FABTETT(9.67)

\I]j(xlaTl) =V (xy, ), 7] = Z[j
and
Coax 1 o —1 *5d,3%
\Ij;(xhﬁ) = U (xy, 7)), j"] = m?{Dwfpw Y (xq1,11)e R AR (2.68)

as functional derivatives of W{j, j*] with respect to the currents fields

W, 5" W, 57

U,(xy,7) = h— , - .
ix1,m) 87*(x1,71) 87 (x1,71)

‘I’;(XI,TI) =h (269)
The index j of the fields indicates that these averages are of course functionals of the

current fields and by inversion one could, in principle, get the currents back as functionals
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of the fields. We use (2.69) as a motivation to define the effective action I'[W;, 7] as a
functional Legendre transformed of (2.66) with respect to the currents:

O, w1 = Wi, j] - / [t [, 1) 7) + W, (x,7)] L (2:70)

The functional derivative of the effective action with respect to the fields yields the
following Legendre identity:

ST, U] ng [],]] 07 (x,7)  OWI[j,j*] 6j(x,7)
5‘1’ XI,TI / / l .7 (X 51# (XI;TI) - 5j(XaT) 5w;(X1771)]

/hﬁ/ l fpj o) (X,T)—F%\I/;(X,T)] —%j(xl,ﬁ)_

Inserting the relationship (2.69) and doing the same calculation of (2.71) for the complex
conjugated field shows that the currents can be obtained by functional derivatives of the
effective action:

6F[\Ifj,\IJ;f] 1 6F[\Ilj,\IJ;f] 1
— 2 = S e ) 2.72
6\11;(}{1,7'1) h](Xth)’ 6\11]‘(}(1,7'1) h] (Xl,Tl) ( )
Let us consider the physical limit in which the artificially introduced current fields vanish,

i.e. j(xi,7) — 0 and j*(xq,7) — 0. In this limit the effective action (2.70) coincides
with the negative grand-canonical potential (2.66):

LW, 5] = W[0,0] =In Z. (2.73)
At the same time the ensemble averages (2.69) tend towards those physical fields ¥, and
U that extremize the effective action

SWE(x1, 71) lwo, g 0 (1, T1) lw,u

(2.71)

=0. (2.74)

This important observation enables us to formulate a general scheme for the description
of our system below T,:

e Compute the negative grand-canonical potential (2.66) from the partition function
2[5, j]

e Perform a functional Legendre transform with respect to the currents to obtain the
effective action (2.70) as a functional of the field averages.

e Extremize the effective action according to (2.74) to yield the grand-canonical po-
tential Q(T, p, V') = —['[¥y, ¥§]/6, which is now valid above and below T,. From
that follow all thermodynamic quantities above and below the critical point.

It is important to note that there exists a more efficient way to obtain the effective action,
the so-called background method. This method will be elaborated in Part 3 of this thesis
in the context of the finite temperature loop expansion.
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Chapter 3

Variational Perturbation Theory

3.1 Motivation

Useful approximate information of real physical systems is gained, for instance, via per-
turbation expansions. They are based on the fact that quite often a physical quantity
f can be exactly calculated for a special value gy of a coupling constant g. The whole
function f(g) is then determined perturbatively in the deviation g — go from this special
value gy. For the following discussion we assume without loss of generality that go = 0
and that the respective weak-coupling coefficients a,, are known up to some order N:

fnlg) = ﬁj ang" . (3.1)

A prominent example for such a weak-coupling series is the anomalous magnetic moment
of the electron g, which is expanded in powers of the Sommerfeld feinstructure constant
«. Theoretical calculations have been performed up to the order N = 3 [56] and yield a
numerical value which coincides with the experimental value g, = 2.0023193043(74) [57]
up to 9 digits. It is this impressive agreement which has established quantum electrody-
namics as the prototype for relativistic quantum field theories.

However, already in 1952, Freeman Dyson pointed out that the quality of this agree-
ment depends crucially on the smallness of the Sommerfeld feinstructure constant o ~
0.0073 [58]. He discovered that physical quantities in quantum electrodynamics have a
vanishing convergence radius with respect to the Sommerfeld feinstructure constant a.
Thus an expansion in powers of o can never converge for any positive value of o however
small it may be. In fact it turns out that the expansion of the anomalous magnetic
moment of the electron g, in powers of the Sommerfeld feinstructure constant « is not
an example for a convergent but for an asymptotic series (see Fig. 3.1). Whereas a
convergent series is expanded around a regular point gy = 0 in the complex g-plane and

23
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has a finite convergence radius, an asymptotic series is expanded around a singular point
go = 0. In the latter case, typically the negative Re g-axis does not belong to the conver-
gence region. Convergence occurs only in the sector of a circle, so the convergence radius
vanishes per definition. For practical purposes, both convergent and asymptotic series
have in common that they lead to good approximations as long as they are evaluated
for small coupling constants ¢g. The difference between a convergent and an asymptotic
series reveals itself, if one investigates their properties for an increase of the order N. For
a fixed value of the coupling constant g, an increase in N leads to an improved approxi-
mation for a convergent series as its weak-coupling coefficients a,, tend to zero in the limit
n — oo. For an asymptotic series one observes the phenomenon that the approximation
is improved as long as N is smaller than a critical value N,.. If N exceeds N, it turns out
that the approximation diverges. The reason for this is the large-order behavior of the
weak-coupling coefficients a,. They turn out not to decrease but to increase factorially
with n.

Thus asymptotic series have to be resummed in order to extract from them reasonable
physical results. The crudest method to approximate a function f(g) with an asymp-
totic series employ Padé approximants [59]. These are rational functions with the same
power series expansions as f(g). A better approximation can be found by using in ad-
dition the large-order behavior of the weak-coupling coefficients a,,. By means of Borel
transformations the factorial growth of a,, can be eliminated [60], and a successive Padé
approximation is applied. The resulting Padé-Borel method approximates the left-hand
cut of the function f(g) in the complex g-plane by a string of poles. This procedure can
be improved further by a conformal mapping technique in which the complex g-plane is
mapped into a unit circle which contains the original left-hand cut on its circumference
[61].

Another powerful tool for extracting physical results from asymptotic series is pro-
vided by variational methods which were initially invented by many research groups in
quantum mechanics and then applied to quantum field theory. For instance, the so-
called d-expansion amounts to a resummation of perturbation series (see, for instance,
Refs. [62-70]) which is performed by introducing artificially an effective harmonic oscilla-
tor and by optimizing the trial frequency according to the principle of minimal sensitivity
[71]. Tt turns out that the d-expansion procedure corresponds to a systematic extension
of a variational approach in quantum statistics [72-75] to arbitrary orders [49, 76, 77]
and is now called variational perturbation theory. It allows to evaluate the asymptotic
series (3.1) for all values of the coupling constant g. As a special case it also converts the
weak-coupling series (3.1) into its strong-coupling limit which typically reads

flg) = gp/q Z b(m)gﬂm/q_ (3.2)
m=0
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Img Img
a) A b) A
° > Reg > Reg

Figure 3.1: Comparing schematically analytic properties of convergent a) and asymptotic
b) series.

Here p and ¢ denote real numbers which determine the strong-coupling behavior and 5™
represent the strong-coupling coefficients. For the ground-state energy of the anharmonic
oscillator with p = 1 and ¢ = 3, the convergence was shown to be exponentially fast even
for infinite coupling strength [78-80].

In recent years, variational perturbation theory has been extended in a way, which
also allows for the resummation of divergent perturbation expansions which arise from
renormalizing the ¢*-theory of critical phenomena [77, 81-83]. The corresponding per-
turbation coefficients are available up to six and partly to seven loops in d = 3 [84, 85]
and up to five loops in d = 4 — € dimensions [86]. The most important new feature of
this field-theoretic variational perturbation theory is that it accounts for the anomalous
power approach to the strong-coupling limit which the d-expansion cannot do. Accord-
ing to (3.2) this approach is governed by an irrational critical exponent w = 2/¢ as
was first shown by Wegner [87] in the context of critical phenomena. In contrast to the
0-expansion, the field-theoretic variational perturbation expansions cannot be derived
from adding and subtracting a harmonic term. Instead, a self-consistent procedure is set
up to determine this irrational critical Wegner exponent. The theoretical results of the
field-theoretic variational perturbation theory are in excellent agreement with the only
experimental value measured so far with a challenging accuracy, the critical exponent «
governing the behavior of the specific heat near the superfluid phase transition of *He.
The high accuracy was reached by performing a microgravity experiment in a satellite
orbiting around the earth [88, 89].
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3.2 General Procedure

In this section we follow Refs. [49, 83] and outline the general procedure for resumming
an asymptotic perturbation series with the help of variational perturbation theory. In
order to estimate the quality of the resummation we emphasize, in particular, how to
convert given weak-coupling expansions into their strong-coupling limit.

3.2.1 Arbitrary Coupling Constant

Consider the weak-coupling series (3.1) of a physical quantity f as a function of a coupling
constant ¢ which is truncated at order N. Rewrite this weak-coupling expansion by
introducing an auxiliary parameter x which rescales the quantity f and the coupling
constant g by a factor k? and k7, respectively, and set afterwards x = 1:

N g n
— D -
9) =" an </~6‘1>
n=0
Here p and ¢ denote parameters which will determine the strong-coupling behavior as we

will see below. Now we introduce the variational parameter K according to Kleinert’s
square-root trick

(3.3)

k=1

k=Ky\/1+ gr, (3.4)

r—1<;_22—1> . (35)

Substituting (3.4) into the truncated weak-coupling series (3.3), we obtain

and define the abbreviation

N

fN(g) — Z anKp*"q(l + gr)(anq)/2gn . (3.6)
n=0

Then the factor (1 + gr)* with a = (p — nq)/2 is expanded by means of generalized
binomials, i.e.

(1+ gr)® NZ ( > (——1>kg"+0(gN") : (3.7)

with the binomial being defined as

ay _ F(a+1)
(k> T+ D) (a—k+1) (3.8)
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Furthermore, in deriving (3.7) we have used (3.5) and have set k = 1. Thus the function
fn(g) becomes K-dependent and reduces to

g, K) =3 [NZ <(p o 2) (1) K] ang" (39)

n=0 Lk=0

According to the principle of minimal sensitivity [71], we minimize the influence of K on
fn(g, K) by searching for local extrema, i.e., from the condition

afN(gaK)

T =0. (3.10)

K=Kn(g)

It may happen that this condition is not solvable. In this case, in accordance with the
principle of minimal sensitivity [71], we look for turning points instead, i.e., we determine
the variational parameter Ky(g) by solving

aZfN(gaK)

e =0. (3.11)

K=Kn(g)

The solutions of Eqgs. (3.10) or (3.11) then yield the variational result fy(g, Kn(9g))
which turns out to be a good approximation for the function f(g) for all values of the
coupling constant g. The quality of this approximation can be estimated by investigating
the strong-coupling limit as a special case.

3.2.2 Strong-Coupling Limit

A careful analysis of the conditions (3.10) and (3.11) for the function (3.9) shows that
the variational parameter Ky (g) turns out to have the strong-coupling behavior

Ky(g) =g"" (K + K{g 7+ ...) . (3.12)
Thus the approximation fy(g, Kn(g)) of f(g) behaves in the strong-coupling limit as
(g, Kn(9) = g b (K + bR (K, K™ + . . (3.13)

We see that the fraction p/q tells us the leading power behavior in ¢ and 2/¢ indicates

the approach to scaling. The leading strong-coupling coefficient bgg)(K](\?)) turns out to
be given by

W) =3 3 (P70 y e, .14
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where the inner sum can be further simplified, using [55, Eq. (0.151)]

dL o) a—1
=D ) = (=" : 3.15
> 0(p) = () 315)
Thus the strong-coupling coefficient (3.14) reduces to

) = 3o (00 e, 3.16)

In order to optimize the variational parameter K](\?), we look again for an extremum

86(0) K(O)
w =0 (3.17)
0Ky
or for a saddle point
250) ( f(0)
L(ON) ~0. (3.18)
OK )

Inserting the optimized K](\(,]) in (3.16) then leads to the approximation bgg)(K](\?)) of the

strong-coupling coefficient.
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Chapter 4

Second-Order Perturbation Theory

4.1 Grand-Canonical Potential

In this section we treat the weak two-particle interaction (1.13) in the framework of
finite temperature perturbation theory. The starting point of our considerations is the
functional integral for the partition function

z = f Dy 7{ Dytre AW AT} (4.1)
where A denotes the free part (2.4) of the euclidian action in (4.1)
hB
AV ), 5 ()] = [ dr [dl e mho, + h(x) - plpGe ) (42)
0

and A includes the two-particle delta interaction (1.13) which is valid for dilute Bose
gases:

np
A7), (7)) = 2 / dr [t v, 70 (x, 7). (43)

Here the coupling constant ¢ is assumed to be a small quantity. Thus we are allowed
to evaluate the exponential function exp(—.A" /A) into a Taylor series up to the order

O(g%):

int « 2
e A — g = I [y Lo [ [ utetuiig + 007). (1)
2h J1 8h” J1 /2

Here we have introduced a short-hand notation for the space and imaginary time integrals

hg
/dTi /ddxi E/i , (4.5)
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and the Bose fields:
Y(xi, ) =i, Y (x,T) =Y. (4.6)

Inserting the expansion (4.4) into (4.1) and defining the ensemble average for an arbitrary
function F' of the Bose fields v, ¢* as

(F(y(x,7),9"(x,7))) = % 7{ Dy 7{ DY F(y(x,7), v (x,7)) e #ATYT (4.7)

yields the partition function evaluated up to the second order in the coupling constant

y
z = z0fi- & [ & [ [wrere] (48)

where Z() was defined by (2.3).

One of the most important statements of quantum field theory is encountered through
Wick’s theorem. It states that an unperturbed average of a n fold product of fields can
be reduced by a contraction to a (n — 2) fold product:

(V1thy .. abn) = (P1the) (D3ta . n) + (D1fs) (oha .. ) + (019n) (Yatds . .. b _1)(4.9)

Through its iteration, a n fold product can be therefore represented through summation
over all possible contractions. Consequently, the averages in (4.8) can be represented
through two-point correlation functions according to

(Wr*y7) = 2(4ien) (4.10)

and

(Wi 2sPpid)y = Al )? (h3he)? + 16(ebn) (Diabe) (i) (Wiehs)
+4(WTY2)? (P3en)*. (4.11)

Note that the remaining two-point correlation or Green function
(Vi) = G(xi, 1%, 75) = G- (4.12)

has already been calculated (2.58). Thus the partition function (4.8) is given by

2
z = z0 {1 — %/1G11 + % /1/2 [GUGQQ + 4G11G92G12Go1 + G%2G§1]} (4.13)
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The connection to thermodynamics is established by the grand-canonical potential:
1
Q:—Ban. (4.14)

After a Taylor expansion of the logarithm we obtain the grand-canonical potential up to
second order in perturbation theory:

Q———an hﬂ/G 2%2// [4G 11 GasGhoGin + GG + O(g) . (4.15)

This perturbative result can be represented through diagrams according to the following
Feynman rules of our theory. A straight line with an arrow stands for the interaction-free
Green function (2.60)

dp erP(x1—x2)
= G2 = / 3
(277)% 2 sinh (— — u)

2M

« [@(71_72)6%(%0(71 ) | o0 — e %(Wu)(nrfr%)]

and a vertex represents the 1)* interaction

X = 4ﬁhas/d3 /dT. (4.17)

Thus the diagrammatic representation of (4.15) reads

Q(V,T,u):—%an:Q i @+2 er% @

Note that it is possible to set up a graphical recursive construction method for the
Hugenholtz diagrams [90] contributing to the grand-canonical potential [91].

4.2 Self-Energy

We introduce the Green function for the interacting system as

. . 1 . v —1(40 % int %
G*(x1, 7 %e, T2) = Gy = fpwfpw iy ek AV ITHAT ) (4.18)
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and denote the corrections to the free Green function G2 due to interactions as self-
energy io:

Y(x1, 715X, T2) = Y12 = Gy — G$5'. (4.19)

Multiplying Eq. (4.19) with the free and the interacting Green function and integrating
over space and imaginary time yields the Dyson equation

G(I:Z - G12 —+ /3 A G13234G22 . (420)

In analogy to the previous section we perform a Taylor expansion of the interaction part
(4.4) in (4.18) and obtain with help of the definitions (4.5)-(4.7) a second order result for
the Green function of the Weakly interacting Bose gas:

2g?
Gy, = Gia—— / G13G33G32 + = // 2G13G34G43G14G3o
+2G13G34G44G33G42 + G13G34G43] +0(g°) . (4.21)
Inserting this result into the Dyson equation (4.20) we read off the corresponding expan-

sion for the self energy:

2g 4q°
Yipg=—7=96
12 5 12G11 + Wz

In analogy to (4.18) the self energy (4.22) can be represented diagramatically

SRR S

Let us briefly discuss some characteristic properties of the self-energy. In case of homo-
geneous BEC’s, where the external potential is zero, the free Green function possesses
translational invariance in space and imaginary time (2.60), which transfers itself because
of Wick’s theorem to the interacting Green function (4.18)

G(x1,T1; X2, T2) = G (X1 — X9, 71 — Tp) (4.23)

2
—5 G19G1Ga + 52 G%gGm + 0(93) . (4.22)

and also to the self energy (4.19)
Z(Xl,Tl;XQ,TQ) = E(Xl — X9, 71 —7'2) (424)

evaluated up to arbitrary orders in the coupling constant g. Because of this symmetry,
(4.22) simplifies to

D7) = 2L BAG0,0) + 5 G0,0)G (5 7)G(-x, )
+2—92G(X, 7)2G(—x,—7). (4.25)
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Furthermore, we perform a Matsubara decomposition of the self-energy

1 - —iWm T ddp ipX
B =g5 2 ¢ /(mﬂ)dep "5 (p,wm) (4.26)

=—00

where the expansion coefficients are given by
hg ) )
Y(p, wm) = / dr e“"mT/dda: e~ Py (x, 7). (4.27)
0

The mathematical structure of the coefficient (4.27) can be restricted through a further
symmetry consideration. As the Green function (4.18) is rotational invariant, the self-
energy possesses the same property:

Y(Rxy,; Rxa,T2) = X(X1, T1; X2, T2) , (4.28)

which is valid for every unitary matrix with RRT = 1. Because of
g . .
Y(Rp, wm) (420 / dr e“’mT/ddx e*Zp(RTX)/hE(X, T)
0
. I .
x ,é{Tx / dr eZ“mT/ddx' e~ px /hz(RXI, 7_)
0

KB , .
(428) / dr ezme/dd!L‘ o~ PX /hz(x, 7_)
0

20 S (p,wn) (4.29)

the rotational invariance of the self energy implies the same property for its Fourier-
and Matsubara coefficient ¥(p,w,,). Therefore ¥(p,w,,) has the following expansion for
small momenta:

(P, wm) = S0(0, W) + 22(0,w,,)p? + O(p?). (4.30)

4.3 Renormalization

In the last section we observed that also the Green function (4.18) possesses translational
invariance. Thus it can be decomposed in analogy to (4.26). Of course the relationship
(4.19) holds also for the expansion coefficients of such a decomposition:

G p,wm) = G (P, wm) — S(P, W) - (4.31)

With the result (2.48) we get for the Fourier- and Matsubara coefficient of the Green
function

1 h
G° m) = = . 4.32
(B, m) G p,wm)  —iliwn, + p?/2m — u — hS(p,wnm) (432)
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By means of this equation we want to discuss the physical meaning of the self energy.
For the free Bose gas, where ¥ = 0 and G° = G, the chemical potential p as well as the
physical mass m can be obtained from the inverse of the Fourier-Matsubara coefficient
(2.48):

1= —hG~'(0,0) (4.33)

and
1
1 _on oG 1(p,0)

: 4.34
- oo (4.34)
Eq. (4.33) shows an important physical fact: For the free Bose gas the phase transition
can be defined by the vanishing of the bare chemical potential p. This implies that
the two-point correlation function and therefore the corresponding correlation length di-
verges at the critical point, which indicates that the phase transition is directly related

to long-range correlations.

Now we consider the case where the interaction is included and thus the self energy
does not vanish. Inserting (4.30) into (4.32) yields
1 171
Gc_l(pawm) = _iwm - ﬁ [M - th(O,wm)] + ﬁ T 2h22(07wm) p2 + O(p4) (435)
m

We see that in the interacting case the role of the bare chemical potential and the bare
physical mass is played by its renormalized quantities defined by

iy = —hG7'(0,0) = p + h3(0,0) (4.36)
and
11 5
11, 08m0)) (4.37)
m, m op?  Ip=o

We define now the phases transition through the requirement that (4.32) diverges at the
critical point and thus shows long-range correlations. Consequently, the critical point is
reached as soon as the renormalized chemical pontential p, is zero:

=00, (4.38)

Finally, we state the perturbation expansion for the renormalized chemical potential,
which can be obtained from (4.25), (4.27) and (4.36):

hB 2g
_ d _ ., _ =7
fr = /L+/O dT/de(x,T)—u hG(0,0)
4g2 o
+7_l—92c:(0,0)/0 dT/dde(X,T)G(—X, 7
2g% (B
— /0 dr / d'z G (x, 7)2G(—x, —7) (4.39)



Chapter 5

Calculation of Vacuum Diagrams

The goal of this chapter is to calculate the second-order contributions to the grand-
canonical potential (4.15) of a dilute weakly interacting Bose gas, which can be decom-
posed as follows

Q=09 400 4 ®, (5.1)

The zeroth order term Q(®) has already been calculated in (2.37):

QO = _B In2©® = ﬁ)\dfd/zﬂ( z). (5.2)

The first order contribution QW follows from the translational invariance of the free
Green function and the result (2.62):

2V
= (0 . .
V= e =ave.0 = 25 () Gl (53)
The second order contribution Q® consists of two diagrams
2 1
O = _ZT_ —p=_ // // 2 G2 4
51 935 5 7 |, [, GGGt — 25 w2/, ), G1Gars (5.4)

where T denotes the so-called triple chain and B the basketball diagram. Both diagrams
are more involved and are therefore calculated in the next two sections.

5.1 Triple Chain

The triple chain diagram is given by (5.4):

9\’ o [P he d d
T = <_ﬁ> G(O, 0) / dTl/ dTQ/d l‘l/d l‘QG(Xl,Tl;XQ,TQ)G(XQ,TQ;Xl,Tl),
0 0
(5.5)

37
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where G(x1, T1; X2, T2) is the many-body Green function for bosons (2.58):

I 1%6; [ %6 dd ddq
T = — (——) / dr / dr /ddx /ddx / /
Cd/2 1 2 1 2 27rh (27rh)d

(B2 ) (r-m -t
1 L'p(XﬁXQ)@(Tl—Tg)e ﬁ(m ”)(1 . )+(1<:>2)
X—eh
2 sinh 2 (— — u)
1 [ &® hB
AT (TlfTQ*f)
" @zq(m—m)g(ﬁ —T)e ('z 5) : T+ (1+=2) ' (5.6)
sinh 5 (;—m — u)
At first, we calculate the spatial integrals
/d%l /ddxg erx1=x2)(P=a) — v/ (277)? 5@ (p — q) . (5.7)

If we insert this delta function, one of the momentum integrals in (5.6) breaks down.
At the same time we can simplify the fractions by using the definition of the Heaviside
function 6 to arrive at:

h,B %] d _ _

T o_ 174 2 Capa(2) in d’p 0(r — 1) +0 (2 — 1)  (5.8)
4 A\2d (27h)* 8 2

sinh § (57 — 1)

The remaining integrals with respect to the imaginary time just give a dimensionless
constant

%e] ha
/0 dTl 0 d72[9(71—72)+9(7'2—7'1)]:hﬁ. (59)

Finally, we are left with one momentum integral:

_ BV g\ Gap(2)? p dp 1
T = 4 ( h) )\2(1 /(27h)d81nh§(%_u)2 (510)

Partial integration yields together with (1.7):

1AV 2
_ f% (_%) Cupa(2)2Capari(2). (5.11)

Finally replacing the coupling constant ¢ in favor of the s-wave scattering length via
(1.14) results in

= 5 (%) ), 5.12)
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5.2 Basketball

The definition of the basketball diagram (5.4) reads:

g\* ("8 hp d d 2 2
B = (-g) /0 dTl/[) dTQ/d l‘l/d 9 G(Xl,Tl;XQ,TQ) G(XQ,TQ;Xl,Tl) . (513)

We insert (2.58)

() [ | [ [

_1l(p” _ P—— __B
]_ ip(X17X2)9 (7—1 - 7-2) & h (2m u)( e ) + (]. < 2)
X—eh 5
s1nh§ (;—m - )
_1(a® Ly B
iq(xl—x2)9(71_7—2)6 h(2m ﬂ)( 1—T2 z) _|_(1 <:>2)
X—eh 5
smhg (;—m — ,u)
(K (g B
1 Lk(X27X1)9 (7_2 _ 7_1) e h (2m p’)( 2 1 2 ) + (1 — 2)
X—eh 5
2 s1nh§ (;‘— — u)
1 (12 A3
(2 n) (1)
Xle%l(xz—M)g (o —m1)e ( 6) | + (1 <= 2) | (5.14)
2 smh§(2 — )

and follow the same steps as in the previous section. At first we calculate the spatial
integrals

/ddxl /ddxg eri=x)era—k=) — y (97p)l 6D (p 4 q—k —1) . (5.15)

Then we simplify the fractions by using the definition of the Heaviside function 6 to
arrive at

B = 1—16< ) ////27rh ) (p+q-— k—l)/de1 Ohﬁdﬁ

. (1 —12) (=) 4 (1= 2)
sinh (ng) sinh (gEq) sinh (gEk) sinh (gEl)

, (5.16)

where we have introduced the short-hand notation

E, =p*/2m —pu (5.17)
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and
v=—(Ep+ Eq— Ex — E) /h. (5.18)

Now we compute the integrals with respect to the imaginary times:

16 6] 2
/ T1/ dry { (11 — 7'2)67(71 n=17) +0 (1 — 7'2)67(71 nti)| = iBsinhh’ﬁ.

vy 2
(5.19)
Inserting this result in (5.16) yields
QBV////ZWE Jp+aq—k—1) sinhZ(E,+ Eq— Eyx — E)) (5.20
Ey + Eq— Ex— E1 sinh B% sinh B% sinh 22k ginh 8217

We make contact with the Bose distribution, which can be expressed through the hyper-
bolic sine function:

1 _BE _BE

e 2 e 2
E) = = = . 5.21
n( ) @BE - 1 eBTE — 6757E QSinh ﬂTE ( )

So the basketball (5.20) becomes:

o= s i M

X {6ﬁ(Ek+El) _ 6B(EP+EQ)] . (522)

The Bose distribution (5.21) has the interesting property
n(E)e’? =n(E)+1, (5.23)

which, at first, complicates (5.22):

B:gﬂV////Qﬂh J(p+ra—k—1)

% l”(Ep)n(Eq) n(Ek) + n(Ep)n(Eq)n(Er) 4+ n(Ep)n(Eq)
E, + Eq — Ex — Ej
_n(Bp)n(Ex)n(F) + n(Eq)n(Ex)n(F) + n(E)n(Fr)
E,+ Eq— Ex — Ey

(5.24)

But by permuting the integration variables, one can show

n(Ep)n(Eq)n(Ex)=n(Ep)n(Eq)n(E)= — n(Ep)n(Ex)n(E)= — n(Eq)n(Ex)n(£)
(5.25)
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and
n(Epn(Ey) = —n(En(E), (5.26)

which finally simplifies the basketball (5.24):

B=26V [ | [ [(2xn)'6¥ (p+a—k-1) 2(Ey )ngi)ZjiE_“)Et’i(gj’)"(Eq)(az?)

Let us first consider the term in (5.27) containing three Bose distributions:

I = / / / / 277) 6@ (p+ q — k — 1) g:ipz(?%z(?%. (5.28)

With the help of

e the Fourier representation of the delta function:

2rh) 69D (p+q-—k—-1) = / dg etPra-k=D/h (5.29)

e the modified Schwinger trick (B.3)

1
Ep+ Eq — Ex — Ey

~ Relim /0 e~ (FotPa=Be=Fi=ioh (5 30)

e and the series representation of the Bose distribution function (1.1)

o0

n(Ep)n(Eq)n(Ek) = Z Z 6*5(Epa+Eqb+EkC) , (531)
a=1b=1c=1
we rewrite the momentum integrals in (5.28):

a= le=

o0

Za-l—b-i—c Rehm/ d)\e—ze)\/dd / —p—m Ba-l—)\)-i- Xp
1

1b=1c=
x/e_g—m(ﬂbJr/\)Jr%xq/e A (Be-2)- /e At X (5.32)
q k !

which are simple Fresnel integrals [55], yielding :

/2 —Tﬁi
oA+ ixl / —EaEx <B> ¢
/le ; e D o VT (5.33)

<2

5 . d/2 *m
/e*mwa*k)fgxp _ <E> . (5.34)
P 2m he (Ba — N)
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Hence, the integral (5.32) becomes

I (m)m : iii “tRelim [ d) ¢
= —_— z 1m
ALY === W o TN (Ba = ) (85 = ) (e + N
1 1 1 1
e _mx (1 . 5.35
</ “Xp{ o1 <A+ﬂa—)\+ﬂb—)\+ﬂc+)\>} (5.35)
Evaluating the spatial integral, we obtain
3d/2 00 0o oo .
L= <7m ) B33 2 Re [ dA ! .
2’3 a—1 b=1 =1 0 [abe + 2abX — (a + b+ ¢) X2/
(5.36)
In the same way one gets for the second integral in (5.27):
n(Ep)n(Eq)
L = / / / / (2h)" k—1 p/M % .
> 7r '(p+a- )EerEq_Ek_E1 (5.37)
3d/2 s oo :
_ <L> B3 2 Re [ dA ! . (5.38)
21?3 a=1b=1 0 [2ab — (a + b) A]Y2 \d/2
Thus the preliminary result for the basketball diagam (5.13) reads:
- 3d,/2 2V
B = 2 Vv 2B + By) =8 2B, + B 5.39
PV () @B B =STL CR B 639
where:
00 00 00 ico 1
B, = LR, / ) C (5.40
' ;;; 0 [abe — 2ab\ — (a + b+ ¢) A2]%/* (540)
B, = HRe [ da . 5.41
’ ;,; 0 [—2ab — (a + b) \]*/? \d/2 (541)

Calculation of B, At first we consider (5.41) as it easier to calculate than (5.40). The
denominator in (5.41) is treated with the Schwinger trick (B.1) yielding:

ZZZaH) Rez/ dp 2421 QZabx/ A N"2e=(@tar (5 49

a=1b=1

2

d/2

The remaining integrals are simple Gamma functions [55] and thus we obtain:

217(1 a+b

By, = “T() I'(1—d/2)['(d—1)cos(nd/2) ZZ

z

. (5.43)
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We replace the term 1/(a + b)'~%2 in (5.43) according to the Schwinger trick (B.1) to
make contact with polylogarithmic functions (A.1):

21=41(d — 1) cos T foo 2
By =— (F(d/2; 2 /0 dr =424, (eﬂ”_‘”) : (5.44)

If we now apply Robinson’s formula (A.4) we have to calculate integrals of the general
form

d/2 —a—1)T(1 - d/2)

o —d/2 a F(
/0 drx / (_ﬂljl—i_x) - F(—a)

(5.45)

Note that the argument of the Gamma function in the denominator would be always
a negative integer so that it diverges and the whole expression tends to zero. However
there are two terms of the Robinson expansion that survive for d = 3:

R e A O R
—2((d—2)T(2 — d) (—ﬂu+x)d1]. (5.46)

The integration produces compensating divergent Gamma functions, yielding

21741(d — 1)T'(1 — d/2) cos ¢ sa/2—3 L'(2 — d)*T'(3 — 3d/2)
B = - T'(d/2) l(_ﬂ“) / (4 — 2d)
2 (oo a9 LT, (5.47)

According to the rules of dimensional regularization (see Appendix B) we evaluate (5.47)
in d = 3 — 2¢ dimension into a power series with respect to the deviation € and realize
that By is zero in the physical limit € — 0:

By *Z° O(e) . (5.48)

Thus we conclude that B, does not contribute to the basketball diagram in three dimen-
sions.

Calculation of B; As before we first apply (B.1) to (5.40)

— = a+b+c [ d/2—1 _—abcx
B, F(d/Q)ZZZZ Rez/o dx x e

x | dXexp {2iaba) — (a+b+c)x\’} . (5.49)
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With the help of the standard integrals [55]

TN = (98) T D, (= 5.50
/ : (28) " T(w)e e (5.50)
o T (8) (z 4 k)" v B v+B+1 z2—k

tz 1+,3/2D 2 — \/7_1' F | = =
/0 dte t 71/(\/H) 26+U/2_1F((l/—|—ﬂ—|—1)/2)2 1 2727 9 ,Z—|—I{?
(5.51)
where D, (z) are parabolic cylinder functions, we get:
21 d F 00 00 00 Za+b+c
B, il Ds sy (5:52)
I(d/2)I( T) a=1b=1c=1 abc) > Vatbte
XRei2F1 l,d 1,d+1, ab
27 2 2 cla+b+c)

The above hypergeometric function is still a complex one as one can see with help of its
integral representation [55]

oFy (o, 8,7, 2) = /dwﬂl 177071 (1 = 12)7° (5.53)

But by transforming the argument [55] according to

NIy —a—p)

F aaﬁa y ) = F 7570[4_5_ +171_Z
(009 = 1 oy -y 2 b
—a—p P (@ + 5 —7)
1—2z)77 F(y—a,y—fBy—a—f+1,1—
+( Z) F(a)F(ﬁ) 2 1(7 a, 7y 5,7 « 6+ ) Z)a
(5.54)
we can separate out its imaginary part:
Iy F, l,d—l,d+1, ab
27 2 2 cla+b+c)
2I(4H) ab : 3 ab
=— Fld/2,1, -, ——m | . 5.55
N(Eh \cla+b+c)) > /21,5 cla+b+oc) (5.55)

to arrive at
227d\/7_1.1—\(d_1) 00 00 00 Za+b+c 3 CLb
B, = - ZZZ T oF (df21,5, —————
L(d/2)T(%F) =152 &= (ab) 2 (a+b+c) cla+b+c)
(5.56)
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After simplifying the Gamma functions [55], we state the preliminary result for By:

) a+b+c 3 ab

F (d21,2, —— 2 ) 557
g;;czl abd/2lcd/2(a+b+) 1</ 2 c(a+b+c)> (5.57)

It is useful to transform the argument of the hypergeometric function yielding

SEE atbe 3—d 3 b

= 35y or (12500 o) 6o)
a=1b=1 c=1 (abc) (a+c)(b+c) 2 "2 (a+c)(b+c)

If we would now set d = 3, we were left with the famous sum of Huang et al. [44-46]:

a+b+c

;;;\/—Ca+c)(b+c)' (5.59)

However, we are interested in the phase transition (4.38) and thus in an expansion in
powers of the chemical potential p. This is connected with the appearance of UV diver-
gencies characterized by € poles for d = 3 — 2¢. To separate out these poles we need the
above generalization (5.58) of the Huang result for arbitrary dimension d.

As we are not really interested in the basketball itself, but in its contribution to the
particle number we differentiate (5.58) with respect to the chemical potential pu:

1831 o0 00 00
B o szlz

Thmte=1 ( abcd/Q1(a-|-c)(b-|-c)2

) (a+c)(b+c)>(5'60)

Because of the symmetry of the sums, (5.60) is equivalent to

(a+ b+ c)zotbte ( 3—d 3 ab
1 ) Y

1 0B, X & (2a + c¢)z%ate 3—d 3 ab
Fon T = 1(’ 5 ’5’(a+c)(b+c)>(5'61)

S S (b)) (@t o) (b+e)
To get the desired expansion for small chemical potential i, we take the series represen-
tation of the hypergeometric function [55]

_ T &Te+a)l(e+p)
yielding
10B, V1 JTH A+ &S (2a + ¢)z0+b+e
T TS T e S @ s g 9

(5.63)
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For the denominator in 1/ (a + b)*™" we apply (B.1) to make contact with polylogarithmic
functions (A.1):

1 8B1 . 71' > 3_d +q .
Gon ~ wEH 5T q+12r —|—q/ dra [ dyy!
X [QCd/22q(zez)Cd/21q(26y)Cd/21(zexy)
+Cd/2—1—q(zeI)Cd/2—1_q(zey)Cd/2_2(zeIy)] ) (5.64)

Now we have expressed the basketball contribution to the particle density through poly-
logarithmic functions in arbitrary dimensions. This is a very nice result, because we can
now use the Robinson expansion (A.4) to calculate all contributions for a small chemical
potential .

Singular pieces At first we calculate only the singular terms of the Robinson expan-
sion. To do so, it is more convenient to start at (5.60) and to write with (B.1):

1 1 o0
btc= - / dz 52~ (@tbH0 5.65
E L P s R T SR (5.65)
yielding
1 831 e 3 d + q)
- - 1(q), 5.66
3 op ; q+12r( R 500
where
1 0y foo 00
R
(4) L(—=1)Jo 2% Jo )y Y
XCd/Q,I,q(26_$_z)<d/2,1,q(26_y_z)<—d/2,1(Z€_x_y_z) . (567)
The singular terms of the Robinson formula (A.4) are
GE(e") =T(1 —v)(—2)""". (5.68)

Thus we obtain from (5.67) the singular term

r"e(g) = (—ﬁu)3d/2—5r(2+q_rd(/_2§(2_d/2) /ooo dzz7*(1+2)*™" (5.69)

X / dr 29(1 + fv)d/Q_Q“’/ dyy'(1+y) P21+ 2+ y) P72,
0 0
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The first integral can be done immediately. The last integral is one of the integral
representations of the hypergeometric function [55]. So we are left with a standard
integral over Gauss hypergeometric function
. ['(2 —d/2)’I'(2 - d/2)T'(3 — d)I'(1 ['(5—3d/2
I'4—d+q)'(4—3d/2)

x / draf(1+2) Y2 29, F (2 - d/2,3—d4—d+q,—z), (5.70)
0

which gives once more a hypergeometric one [55]:
/OO de29(1 4 2)¥*7 270, F (2 - d/2,3 —d, 4 —d+ q,—x) =
0

Fr1+¢)l(1—-4d/2)
[(2+q—d/2)
I'4—d+qTl'(4—-3d/2)I'(d/2 - 1)

['(2—-d/2)T(5+q—3d/2)
X3Fy(3—d,4—3d/2,2+q—d/2,5+q—3d/2,2—-d/2,1) . (5.71)

Because of the argument 3 — d = 2¢ in both hypergeometric functions, we can now
evaluate them up to O(e):

3By (2—d/2,3—d,g+1,4—d+q,d/2,1) = 1+ (4—4In2)e+ O(?), (5.72)

and

3Fy (3 —d,4—3d/2,2+q—d/2,5+q—3d/2,2—d/2,1) = 1—4In2¢+ O(?).
(5.73)

The remaining sums can be simply calculated:

> T34+ T2 +¢—d/2)>  T(5HT(2 - d/2) E

;)q!F(%+Q)F(5+q—3d/2) =2 V(5 — 3d/2) [1+(2—1Ind)e] = ;+4+O(6),
2T+ r2+q—d/2) 1—202 9

qz:‘a FE+ql(d—d+q) 4m—;—81n2+4+0(6). (5.74)

Putting all together and evaluating all terms up to the order O(¢) gives us the singular
contribution of By to the particle number:

sing 3/2
1 aBl d=3—2¢ s /

B Ou NS

So the overall contribution of the basketball diagram to the particle number, which comes
only from the zero matsubara modes, reads:

10BS"s 5 o, Vot
1 d=3-2 a T {_4-2—101n2—37—31n(—ﬂﬂ)+61n)‘
€

1
t +2-101n2 — 3y — 31n(—fp)

LO%).  (5.75)

Tl ey (5.76)
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Comparison with High Temperature Limit Integrating the result above we arrive
at
a’Vrs

)\5

. 1

B = 32 e <—+8—3 102 - 3luz + 61 A). 5.77
B | = Y n nz+6ln (5.77)

This is the most singular contribution to the fully temperature dependent basketball. Tt

was calculated by only considering the singular Robinson terms which corresponds to

zero Matsubara modes. To compare this result with the classical limit of ¢* theory we

. 3e
multiply B8 with the commonly used MS scale (61;2) :

sin a2V7r3/2 1 i
Bys = —32 \5 V=B [Z+8—41n2—|—61n (W)] ’ (578)

where M = \/—2mu. Indeed, this expression coincides exactly with the high temperature
or classical limit of the basketball diagram in ¢* field theory [92].

Regular pieces In the vicinity of the phase transition the renormalized chemical po-
tential vanishes. Therefore, we only need to expand physical quantities, for instance,
the particle number up to O(u%), if we want to calculate its critical properties. To get
these constant contributions which stem from regular Robinson terms we start at (5.64).
There we can neglect all ¢ > 0 terms, which are either of order O(u) or of order O(e).

q=0 00 s
%m;; - /0 dx/o dy [2@/2,2(ze“’”)(d/%l(ze—y)cd/%l(ze—x—y)
+ Cappa (Yo (2N Cappa (2] (5.79)
Using
d oy .
e =~z (5.80)

integration by parts yields

/000 dzC1/2(ze ")Crya(ze ") = Gp2(2)Ciy2(ze™?) — /UOO dzCiyz(ze ") Crpa(ze "7Y).
(5.81)
Inserting (5.81) into (5.79) yields

1081
B ou

- Il _IQ, (582)
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where
I =2G,(2) /OOO duCya(ze)? (5.83)
and
b= /ooo e /000 dyCiya(ze™")Crya(2e ") Corpa(ze™ ) (5.84)

This is the starting point for an expansion with respect to small chemical potential .
We substract in (5.83) the singular pieces of the Robinson formula (A.4) and set d = 3
and g = 0 in the rest

I = 20y 1(2)0(2 —d/2) /000 lr(z —d/2) (—Bp+z)"*

+2¢(d/2 — 1) (—ﬁu+x)d/22] + 47Cy (5.85)
where (' is a constant, which is given by:
1 foo s
— lim — Bu—z\2 _
o = E%4nﬁ; mkaﬂe ) —ﬂu+x]' (5.86)

A numerical evaluation leads to
Cy ~ —0.57. (5.87)

We calculate the integrals and evaluate the remaining polylogarithmic function in (5.85)
to obtain

oing _ 20(d/2 = VT2 = d/2)*(=pw)*>  8T(2 = d/2)*((d/2 = 1)(=pw)*
! d—3 d—2
+87C,¢(d)2 — 1) + O[(=Bu)¥>71]. (5.88)

[1 -

Here Tfing is the contribution in (5.83) corresponding only to singular Robinson terms,
which has been already calculated and is included in B¢ (5.77):

_20(2 - /2y

e = 3 +87C (2 — d/2) (=) (5.89)
3/2 1
d=3-2¢ T [
= — —3In(—pFu —37—61n2+80} . 5.90
/_ﬁﬂ € ( ) 1 ( )
The whole integral gives in d = 3 — 2e:
I G Y 37— 61In2 + 8C 5.91
1 = \/_—BIL;_ n(—ﬂﬂ)— Y —06In2+ 1} ( )

11 1
+7TC(%) E — 2In(—Bu) — gfy— Ean - §ln7'('— % +8C — 8} + O/ —0u) .
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The second integral is a little bit more elaborate:
L = T(3—d/2) (=82 12— d/2) / dx/ dy
< [1+2) 2 A+ (12 +y) 7
2D(2 — d/2)0(3 — d/2¢(d/2 — 1) (—Bu)™ 3/ da:/ dy
X [(1 +2) 142+ y)d/2_3]

+47Cy + O <\/—7u> (5.92)

The constant Cy is given by substracting the above singular pieces from the polyloga-
rithmic functions and setting d = 3 in the rest:

= iy [ e [T dy [tz Ytz ) ole ) (5.9
2 ~ 7¢(1/2)

Qe L o T L e el o TR U T R

A numerical evaluation leads to

Cy ~ 0.26. (5.94)

The first integral includes once more the singular pieces, which are already included in
Bs"&. We can calculate them with the same method used there, yielding:

£ = T3 —d/2) (—Au)* P2 - d)2) / d:c/ dy

x(1+2)"2 (149" (14w 49"
d=3_2¢ 2m%21n2

=7 —. 5.95
VT (5:99)
The second integral is standard [55], yielding:
[ e [T dy (14 ) ()
0 0
00 00 2
= dz (1 d*4/ dy (1 . 5.96
f e [Ty ) = s (5.96)
So the result for the second integral reads:
we . AD(2 = d/2)D(3 = d/2)¢(d/2 = 1) (=Bp)"
I = ;" ArCy+ O/ —
des 2 2m3/21n?2 1 5 11 1 i
Foe 227 1/2) [= —2In(—fBu) — =y — —In2— —In7 — —
g+ /D) [ - 2B~ Gy - G2 - ]

AT Cy + O(\/—Bp) . (5.97)
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So the result for the ¢ = 0 contribution to the particle number, which includes all
regular terms up to O(,/1) is:

10B{™" 72 11
i o - T ;—31n(—5u)—37—81n2+801
_8mC(1/2) + 8#((%)01 _ 4xCLO(/E).- (5.99)

Final Result The contribution of the whole basketball diagram to the particle number,
expanded up to O(y/—fFu), reads:

10B 1662V ( 73/2 11
~9r ~ _3In(— 6In\—3v—10In2+ 2 + 8C
3 an 3 { —5/1{6 n(—pu) 4 61n v n2+2+8C

—87C(1/2) + 87C(1/2)C, — 47r02} + O/, (5.99)

where the constants ¢; and ¢, are given by (5.87) and (5.94) respectively. We have already
mentioned that the terms of the first line in (5.99) correspond to the results of classical
field theory [92]. On the other hand, the finite temperature contribution

Ky = —87((1/2) + 87((1/2)Cy — 47Cy ~ 54.4 (5.100)

agrees well with the result of Arnold et al. in [31, (5.30)] obtained from a matching
calculation.
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Chapter 6

Calculation of Self-Energy Diagrams

We consider all contributions of the self-energy (4.19) which are necessary to determine
the renormalized chemical potential . According to (4.39) they are contained in

2(0, wnm = 0) = 21(0,0) + 2®(0,0), (6.1)

where the first order term yields (2.62)

2
2M(0,=0) = —=2G(0,0) = —

a,
- (™) (6.2)

and the second order contribution

2 492 hé d
23 (0,0) = 4D + 25 = ?0(0,0)/ dT/d 2 G(x,7)G(—x, —7)
0
29° "
12 Jo
will be calculated in the next two sections. Here D denotes the double chain and S the
sunset diagram in (6.3).

v ? / d'z G (x, 7)2G(—x, —7) (6.3)

6.1 Double Chain

The integrals in the double chain diagram

2

D = %G(0,0) /OhﬂdT / d'z G (x, 7)G(—x%, —7) (6.4)

have already been computed in Section 5.1, yielding

D = 4v (%)2@/2(2)@/21(@. (6.5)

53
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6.2 Sunset
The sunset diagram is defined by
g> [ d 2
S = ?/ dr/d rG(x,7)°G(—x, —T). (6.6)
0

Inserting (2.60) yields

5 = (‘%) /ohﬂ‘”/ ddx/ (zig)d/ (Qis)d/ (zig)d

T < —T)

—_
-
D
—~
\]
SN—
|
St|=
/N
no
. 3 |.°w
|
N——"
—
3
|
>t
‘V|m
N—
—~

X —erT* .
s1nh§(2q—2 I
(0 S AR 7}
1 _i 0(7)e h(m ”)( 2)+(7'<:>—7')
X =€ F - (6.7)
2 smhg(;—m— )

Now we repeat the same steps, that were necessary to calculate the basketball diagram:
e performing the space integrations,
e simplifying the fractions by using the definition of the Heaviside function,
e and working out the 7-integrals.

This yields the intermediate result:

zﬁv/// (27h)* 6@ (p+q — k) sinh & (B, + Eq — Ex) | (6:5)
E + Eq — Fx sinh ﬂ% sinh ﬂ% sinh 22k

Furthermore we
e make contact with the Bose distribution function

E
sinh% = 2n(E)eB‘TE, (6.9)

e use its property

n(E)e’” =n(F)+1, (6.10)
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e and permutate the indices using
n(Ep)n(B)=n(Eq)n(Ey) (6.11)

to arrive at

s = oov [ [ [ en'5 e +a-k siuute _+"éEp_)"E(fq) B

(6.12)

Now we consider the easiest piece, which contains only one Bose distribution:

I = /// (27h)" 6@ (p + g — k) I f(glk)_ B (6.13)

and calculate it by using the well known tricks (5.29)-(5.31) to obtain

ZRehm iood)\e(ﬂie)/\/ddx/e 22 ati xp/e Zm/\Jrhxq/efﬁ(ga N-fxk
“0 70 a k

- (6.14)

The momentum integrals contained in I3 are standard Fresnel integrals (5.33) and (5.34),
yielding

m\3d/2 1 X ico elu—ie)A
_ Bura ;
I; = <27r> hMZe Releljl})l/o d)\)\d(ﬁa—)\)d/Q
2

X /ddxexp{—% (% + ﬁ)} : (6.15)

The remaining space integral in I3 is Gaussian and is calculated immediately. Finally,
we are left with a one dimensional integral

, m \d g & Su 00 N eBuA
— - o . 1
’ <27rh> b agl ‘ Re/o (2a) — )\2)d/2 (6.16)
The other integrals can be calculated in exactly the same manner, yielding:
Ep)n (Ek)
L = 2 / / / (2rh)"* —k (
- < ) F03 S PR / d\ e (6.17)
ot 0 (2bX + ab — A2)"/?
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and
Ep)n(Eq)
I, = _/// 2rh)? 5 k n(Ep a
2 o). (27)" 6 (p + q — )E+E ~h
1—d Bu(a+b) B’BW\
N (%h) b ZZ@ Re/ dA SvIVER (6.18)
a=1b=1 )
Inserting (6.16)-(6.18) in (6.12) yields:
4a®V
S = \2d—4 (255 = S2 + 51) (6.19)
where
S i B R /Ood etbux
= 2 e Rei | dv s 6.20
1 2iax+x2)d/2 (6.20)
'L,Bux
S. = 66# (a+b) Rez/ de — & 6.91
i le; ab+1‘2)d/2 ( )
o0 0 Zﬂux
S — eﬂ,u(a-i-b) Rel/ dl‘ ‘ 622
3 ,;,; 0 (Qixb+ab+x2)d/2 ( )

Our aim is now an expansion of the above sunset sums up to O(v/—0pu).

Calculation of S; Substituting the sums in S; by integrals like in Section A.2.2 yields
the most singular contribution corresponding to the singular Robinson terms:

S / da e"r Rez/ At ——— e (6.23)
(2iax + xQ)d/ 2
We can separate out the dependence of this integral from the chemical potential:
SiE = (—pBu)t? /oo dae ® Rei/oo dx % : (6.24)
0 0 (2iax + 2?)

This means that [; is of order O(—3p) in three dimension.

The same result can be obtained from a Taylor expansion of the exponential function in
(6.20):

k

(6.25)

S, = i (ﬁ:' Gh+ Zeﬁua/ dx

k=0

(2iaz 4 22)**

J

=1
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The integral I; can be calculated with the Schwinger trick (B.1):

I kfd/2/0 dyyd/%lef(%aﬂﬁ)y (6.26)

yielding

v an DA+ —d/2)0(d—1— k)

I, = (2ia) F(d/2)

(6.27)

Inserting (6.27) in (6.25) yields:

cos (2 —d) X2 (=B T+ k—d/2T(d—1—k) & eh
24-10(d/2) lg) 7l > o (6.28)

a=1

St

The sum running over index a can be identified as a polylogarithmic function (A.1):

cos T(2—d) & 28 (—Buw) T(1+k—d/2)T(d—1—k »
51 = zd—lr(d/2),§) — X = )Cd—k—l(@ﬁ)-(&”)

This expression is the starting point for an analysis of the sunset part S; for small (.
For this purpose we expand the polylogarithmic function according to Robinson formula
(A.4).

Camhot (€M) =T+ k —d) (=)™ 2+ ¢(d — k= 1) + O(Bp). (6.30)

We see immediately that the singular Robinson term gives a contribution of O(3u) and
thus has not to be considered in our analysis. The second term also vanishes because the
cosine in the above sum gives zero and we have no compensating singularity for £ = 0.
Thus we obtain

=O(=Bp). (6.31)

Calculation of S, From (6.21) we get for the singular piece of Sy:

6722‘)

siime (L d—3/°°d /°° dbe (D R '/ood _° (632
( /Blu) 0 a 0 € et 0 x(ab+x2)d/2 ( )
The remaining integral can be calculated numerically, if we set d = 3:
sgne =P / da/ db e+ / gy 7 g g LTS, (6.33)
(ab + 22
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However, we are able to calculate S5"¢ exactly. To this end we introduce polar coordinates
a =rcos¢ and b = rsin ¢:

Smg = drr / dep e T(cos Hsing) /oo dx sin 7 . (6.34
/ ¢ 0 (r2sin ¢ cos ¢ 4 12)*/* (6:54)

Transforming the angle

1
= 6.35
u(9) 1+ tan¢ ( )
and the radial variable
1+t
R(r) = r———® o (6.36)
\/1+ tan2 ¢
results in
1 00 1
s = [T dRRe™ [ du [T do S (6.37)
0 (R?*u — R*u? 4 22) /
Computing the u-integral yields
Smg_4/ dR R —R/ dp — 0T 6.38
‘ z(R? + 4:1:2) (6.38)
We decompose the denominator
Syne — 4/ dR— / dz sin ( i ) (6.39)
x  R?2+4+ 427
and calculate both z-integrals with the help of basic residue theory yielding:
©  sinx T
d = — 6.40
/0 v x 2 ( )
and
o0 rsinx s
dt———— = ——e /2, 6.41
/0 "R /4 + a? 2° (6.41)

The remaining integral over the radial component is straightforward

o ( o d
S5in8 — o ( ; ER el — ; KR 6_3R/2> =27 ln; : (6.42)
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This coincides exactly with the numerical value (6.33)

To get the regular contribution of order O(y/—fu), we make a Taylor expansion

i (6.43)

(5# k+1 b)
Sy = Rei** e Pulat / de ————~ .
,;) k! azlbzl ab+:c?)d/2

/

-~

=TI

The following analysis is similar to the calculation of I;. Therefore we only state the
results:

Lotk F(k'H)F(M)

b= (o) = (6.44)
Inserting (6.44) into (6.43) yields
00 k T k+1 —k—1 9
5, = 3 OWreoss B VDRI ((omy? . ()

=0 2I'(k + 1)['(d/2)

Because of the cosine, every second term of the sum is zero. Inserting the Robinson
expansion for the polylogarithmic function

Cajoi (™) =T(L+k — d/2) (=Bp)* " +¢(d/2— k) + O(Bu),  (6.46)

gives a square root contribution for £ = 1 and d = 3 coming from mixing the singular
term and the zeta function by the square of the polylogarithmic function:

(d_

reg  _ 2
S o

;/Q)T)<<d;2> (—Bu) T +0(Bu) = 2/m C(1/2)y/—Bu + O(Bp) .
(6.47)

So the final result for S, reads:
3
Sy —27rln—+2\/_C(1/2)\/ B+ O(B) (6.48)

Calculation of S3; The part S3 is the most complicate one. We are not able to calculate
its singular terms as straightforward as for Sy. Thus, we expand the exponential function
in a Taylor series

LL‘k

Sy = Z (515) Re jF+1 Z Z Bu(ath) /

T . 6.49
k=0 a=1b=1 0 (2@1‘b+ab+1’2)d/2 ( )
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In analogy to (5.50) we treat the denominator with the Schwinger trick (B.1) and make
use of (5.51) to obtain
21—d\/7_r o0 E
Sy = > (Bp)"T (d—k —1)Red**
TR (E) 5
2 & 65”(““’) k+1 d—k—-1 d+1 b
1+—-1.
X2 1“(2’ 2’2’+a>

a1b1(ab) =

(6.50)

The above hypergeometric function is still a complex one, as one can see with its integral
representation (5.53). It can be transformed to real hypergeometric functions with the
identity (5.54). Consequently, S3 consists of two major parts

Ss = S31 4+ Ss2 (6.51)
with
o 2 (3T =k = 1ycos (5 (k + 2)
31 —
T (d/2) = (k+1)F( 129 1)
0 2 eﬂu(a+b> (d—k k3 b)
« ,F, A+5,5 (6.52)
2; = 5 2'2 4
and
e Tl k- oo (5+1)
32 =
L2 & D(1+5)r(55)
0 00 Bu(a+b) k+1 d-k—-11 b
aglbzzl dk12 1< 9 9 :57_E>' (653)

As we will see later on, it is easier to transform the argument of the hypergeometric
function in (6.52) from —b/a to b/(b+ a):

—92dr = (Bp)*T (d—k — 1) cos (3 (k +2))

S31 =
I'(d/2) = r(%)r( )
N Bula+b) E3—d+k 3 b
X ZZ cjifk 1+E 2F1 (1 57 2+ ,5,1) >(654)
a=1b=1 a%/2=k=1p5" =1 (q 4 b) +a
and
. ol = (Bp)* T (d—k —1)cos (3 (k+1))
32 =
I'(d/2) (= r(1+§)r(d;2k)
SRS ¢frla+d) E+1 k—d 1 b
X ol 1+ =, 6.55
;bz_‘iad/wlbd’“(ﬁb)’%“( 2 2 2b+a>( )



6.2. SUNSET 61

We use the series representation of hypergeometric functions (5.62) and the Schwinger
trick (B.1) to make contact with polylogarithmic functions:

B < (Bp)* T (d —k —1)cos (5 (k +2))
S = I'(d/2) ,;)F(’i)r(m)r(ug)r(m)

2

/OO dx x§+q§d/2,k,1(ze’I)Cgflfq(ze’z) (6.56)
0 .

and
P 9l—dr3 53 (Bu)* T (d — k — 1) cos (5 (k +1))
Y TR ST+ 5T () TR+ 59
D(1+q+ 24 k=1

Here, z denotes the fugacity z = e#*.

Singular Terms The UV divergencies only arise from the £ = 0 contribution of S5,
_ (34 + q)
Sy’ = X: /)dxﬂ@pl( e ") Capa—1—-q(ze7") . (6.58)

If we insert only the singular terms of the polylogarithmic functions (A.4), we obtain

00 F 3— d_|_
s = L S
q=0

The z-integral represents Gamma, functions yielding

iﬁ+@r@+q—dp)
+q)F(4+q— d)

.(6.60)

Sk Osing  _ g(_ﬁﬂ)d_ﬂ—‘(d 3 d/2 i

The remaining sum can be reduced to a geometric one by simplifying the Gamma func-
tions with the identities in [55]

k=0,sing __ \/7_r d—3 4—2d
Sk = O = TR = /) s (6.61)

This yields in d = 3 — 2¢ dimensions

1
Sk 0,sing — 71_(2_6_31112_,),_1113;4_1) X (662)
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To calculate terms with £ > 0 it is more convenient to start at (6.52). As there are no UV
divergencies for £ > 0, we can set d = 3 from the beginning. The cosine function in the
numerator enables us to transform the index from k to 2k, because all odd contributions
vanish. Furthermore, we use the series representation of the hypergeometric function to
obtain

k>0 _ 0T — )(ﬁu)QkF( — 2k)
S = 52 + ST =T =BT+ k)

i qF(_ _!ﬁ(—k q)F)(l +k+q) Cg—k+q(z)<%—k—q(z) . (6.63)

Considering the singular parts of the polylogarithmic functions and solving the ¢ sum by
simplifying the Gamma functions as before, we get gives:

k>0,sing __ \/7_T - 1 i F(Q B Qk)F(k B %)
Sa1 = T X <"> rl—mk (6.64)

which is evaluated to be

> /1\"1 m 15

Sk:>0 smg ™ <_> [ __1 — 665
22\1%) F 72 (6.65)

A similar calculation for Si3®, where all even terms vanish, yields:
Seing T (6.66)

23
Thus we conclude
. 1 4
Sglng:ﬂ<2——31n2—’y—lnx—|—1+1n§>- (6.67)
€

Regular terms A dimensional analysis shows that all regular terms with k£,¢ > 0 in
S3o are of Order O(—f3u). So we only need to evaluate:

2—d
S = By ) e = [T oy e (669

We already calculated this integral, when we considered the basketball diagram (5.83).
The result was:

Sara=0 = ghma=0sing _ g S [ Buc(1/2) + 4nCy + O(—Bp) (6.69)
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where SEZ9=%5"¢ omes from the singular Robinson terms, that are included in S58 .
A similar analysis for S3, shows, that we only need to consider £ =1 and ¢ = 0:

SE=L=0 — %/ﬂw drCapa—o(z€")Ca21(2e77). (6.70)

The Robinson expansion (A.4) and separating the singular terms yields

d/2—1) N d—1
Sk 1,4=0 _ Sk 1,q=0,sing _9 C( . dj2—2 Ol(— 1. 6.71
—(d—2)(d—4)( Bu)* 2+ O[(=Bp)=]. (6.71)
This is evaluated in d = 3 dimensions
—1.0=0.5i 1
k=1,q=0 — k=1,q=0,sing 9 _ - - 92
Sz Saa + \/7_T\/ ﬁMC(Q) + O[(=Bu)] . (6.72)
Finally, we add all contributions (6.67), (6.69) and (6.72) for S5 to obtain
1 4 1
Sg:7T<Z—31n2—7—1nx+1+1n§—2\/7_n/—ﬁu<(§)> (6.73)

Final result Now we have calculated all pieces S7, S; and S3 that belong to the sunset
diagram:
40V [

S = V2 [ +2n =27y —2rlnx +4nrIn A — 47w ln 3

+8rCy — v/ —BnC(3) + a—m] . (6.74)

For comparison with the high temperature limit we multiply the part of the sunset
corresponding to singular Robinson terms

2
Ssing — S;lng + Ssmg 4a°V

( + 27 — 21y —2rlnx +4rln )\ — 47r1n3> (6.75)
€

\2
with the MS scale (81;2)26 and recall that A = (27h%3/m)'/? is the thermal wavelength
to get
a*Vr s 2
W= ST [ (o) 424 ammg] .
Sar 32 [ n{ga7) 2+ ngf, (6.76)

where M = \/=2myu. This agrees with the sunset diagram of classical ¢*-field theory [92].
Contrary to the calculation of the basketball diagram (5.99), the matching calculation

of Arnold et al. [31] allows no comparison with the finite temperature contributions in
(6.74)

Ks = 870, — v/~ 5 (3) (6.77)
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Chapter 7

Shift of Critical Temperature

As a first application of our results in Chapters 5 and 6 we answer the question how
the critical temperature has changed due to weak interactions. In analogy to (1.9) the
starting point for calculating the critical temperature is the particle density

1 09 10
St o ORI 1O B 01 7.1
n o Vo ( + + ) ) ( )

which turns out to be with (5.1)-(5.4), (5.12), and (5.99):

4ag 16a? 8a?
v Gar2(2)Capz1(2) + de/2(z)Cd/271(Z)2 + 2

nA = Caa(2) — (Z)QCd/2—2(Z)
8a2 n3/? 1

+ A2 NG
[sﬂclc(l /2) — 87¢(1/2) — 47Ch] + O(a?) (7.2)

2—4In2 1
—|— n +6n<2M>+801

)\2

where 2z = exp (—x) = exp ([u) is the fugacity and the second-order contribution has
already been evaluated in d = 3 — 2¢ dimensions. From (4.38) we know that the phase
transition is determined from the vanishing of the renormalized chemical potential, which
can be obtained from the self-energy calculated in (6.1)-(6.3), (6.5), and (6.74):

4a, 16a
Cd/z( z) — \2

+41n (2]5\4) +2+41n§+8C’1 6% (1/2)| +O(a?), (7.3)

where z, = exp (—z,) = exp ( Su,). Now we replace the bare chemical potential y in (7.2)
in favor of the renormalized chemical potential .. To this end we invert relationship

., = z—hfE(p=0,w,=0)=x+
8ajm [1
-

*Cay2(2)Caj2-1(2)

€
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(7.3) to obtain

_Aa, 8a?m [1 s
r = x Cd/Q(Zr)—i- 2 [6—1-41 <2M>—|—2

NZS
Inserting (7.4) into (7.2) yields three different contributions to the renormalized particle
density coming from the zeroth, first and second order term.

+41n 2 S +8C - VA /2)] . (7.4)

Contributions from O(a%): We start with the free energy for the free gas

A 2 Cua(z(2). (7.5)
Inserting (7.4) and evaluating up to the order O(a?) yields:
2

A () + %Cd/z(zr)Cd/2—1(Zr) + %Cd/Q(ZT)QCd/Q—Q(Z")

8a2m 1 2 8
—2 G (2) l +41n <2M> +2441In 3 +8C; - \‘/F_gu/z)] (7.6)
To evaluate this expression to order O(e?) for d = 3 — 2¢, we remember that the right-
hand side of (7.5) has to be multiplied with the scale (e7s?/47) as soon as we work in

the MS scheme, see for instance (5.99). With that modification we get

2
s Y C3/2(2r) + %@/2(2’1")(1/2(2’1") + %Qﬂ(zrﬁclﬂ(%)

8alm3/?2 1 [1 2 8
— “S; ﬁl—+61n<ﬁ>+2+4ln§+801 Svr (1/2)]

\/_
80259 1
BE C(z
1
+1(27—141n2—6ln7r—7r)+21n)\5] . (7.7)

€

1 s 2
) [ +41n<2M>+2+41n§+801

Contributions from O(al): The vacuum contribution of order O(al) reads:

4da, oz
nxt @ G (€77 Gapa (7). (7.8)

The renormalization yields in d = 3 — 2¢ dimensions:

da, :
nAd = aCl/Q(zr)C3/2(Zr) 1iC2LSC1/2(Z’")2§3/2(Z7")

16a
22

*C_1/2(2)Cap2 () (7.9)
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Contributions from O(a?): In the second order contribution to the particle density
(7.2), we only need to replace x by z, and set d = 3:

3 (2 16a
n\’ = 2

8a2 w32 11 S
5 —+2—-4In2+61 (—) SC]
+ A2z, Le + net+om 2M T8t

8‘;\%” 8C1C(1/2) — 8C(1/2) — 4CY) . (7.10)

2 8(1,2
> <3/2(Zr)C1/2 (Zr)2 + )\—25<3/2(Zr)2@1/2(2r)

+

Final result We collect the results (7.7), (7.9), (7.10) and expand for small z, to obtain

4

2 2
3 _ _ a9 32 2% 1 o |1 (i)
nA ((3/2) = 2v/my/E; — 320" In g e 8#((1/2))\2[6 +an (57

2 1
+2—|—41n§ + 1(27— 14In2 —6lnm —7) +21n)\5+4Cg/C(1/2)] . (7.11)

On the basis of equation (7.11) we deal now with some questions, which we set up in the
introduction of this work.

Classical Field Limit Let us first consider only the terms in (7.11) stemming from the
classical limit of field theory, e.g. zeroth- and second-order terms that are proportional
to 1/y/Z,. The leading shift of the critical temperature can be obtained from (7.11) as
soon as we consider the critical limit x, = 0 and make the ansatz

T, =T + AT,. (7.12)
Inserting (7.12) into (7.11) yields
i(j[;)c = ao\ 2 + \/% (agn'/?)?, (7.13)
where
SO0 Vi oy — B4 In(4/3) (7.14)
' kT 3¢(3/2) 3C(3/2)%/?

Thus perturbation theory shows no first order shift of the critical temperature (7.13)

due to weak two-particle delta interactions. Now the question may arise: How does this

result fit with the fact that in many publications such a linear contribution
AT, 13

W = C1 agN

(7.15)
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was computed? The reason is, that those are non-perturbative results stemming from

the term in (7.13) that is proportional to 1/\/:57(9). If we compare (7.15) with (7.13) we
can read off the coeflicient

qzéh@, (7.16)

where

f2(9) = ao + azg”, 9= (7.17)

Inserting (7.17) into (7.16) shows that ¢; is infrared (IF) divergent at the critical point,
where 7(?) = 0, e.g. g = co. But as the particle density and the shift of the critical
temperature is a finite quantity even in the thermodynamic limit, their resummation
should also be finite. Thus the calculation of (7.16) is a typical strong-coupling problem.
We master this problem with the help of variational perturbation theory. To this end we
follow the procedure in Chapter 3 and identify (7.17) with (3.1) for N = 2 and a; = 0.
As the renormalized chemical potential p, defines the natural scale of our theory, it
corresponds to the artificial scale x in (3.3). Thus it follows from dimensional reasons
that we have to choose p = 1/2 and ¢ = 1/2 in (3.3). Next we introduce a variational

parameter K according to (3.4) and reexpand f5(g, K') similar to (3.9):
1 3 1 ¢

“sEmEht

f2(9,K) = gﬁao + ﬁao

Using the principle of minimal sensitivity (3.10), the strong-coupling limit of the varia-
tional parameter (3.12) turns out to be

as . (7.18)

80,2 2

Ky(g) = 3.0+ O(g?). (7.19)
Qo
Inserting (7.19) into (7.18) yields
3apa -
f2lg) = 2g ; 2+ 0(g7%). (7.20)

Thus the leading coefficient (7.16) becomes

3
e =2/ “g‘” ~ 3.059. (7.21)

Of course this has to be understood as a very rough approximation for ¢; as the above
resummation was based on only two weak-coupling coefficients ay and ay. However, we
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have observed that the leading shift of critical temperature is solely determined by the
classical field limit. Thus the physics at T(”) can be described in terms of an effective
three-dimensional field theory for the Matsubara mode m = 0. As the high temperature
or classical limit of the Green function (2.63) is much simpler than the full tempera-
ture dependent one (2.60), one was able to calculate diagrams of higher orders in the
coupling constant g [92] which were also connected with IF divergencies at the critical
point. Recently, a resummation of these IF divergent terms was accomplished in our
group with the help of VPT up to five loops resulting in a linear shift of the critical
temperature with the proportionality constant ¢; = 1.3 [35]. In the meantime this five
loop calculation has been extended to six loops [43] with ¢; = 1.25, which is the most
accurate analytical calculation so far. This result has to be compared with recent Monte
Carlo data which estimate ¢; & 1.30 [40]. Other analytic estimates are ¢; ~ 2.90 [25],
2.33 from a 1/N-expansion [26], 1.71 from an improved 1/N-expansion [30], and 3.06
from an inapplicable d-expansion [32] to three loops, and 1.48 from the same d-expansion
to five loops, with a questionable evaluation at a complex extremum [33]. Note that all
these results have in common that the shift in the critical temperature is positive. which
can be explained within a reasonable physical argument: In a gas with the expansion
parameter a,n'/? the shift of the critical temperature is determined by two competing
effects: For positive s-wave scattering lengths one expects the shift to become negative
as the repulsive interaction suppresses condensation. On the other hand, the density of
the system and thus the long-range correlations becomes larger, which stimulates con-
densation. As the second effect dominates for small interactions, the leading shift in the
critical temperature is positive.

Quantum Fluctuations We now consider the terms in (7.11) coming from nonzero
Matsubara modes. They still contain an ultraviolet (UV) divergency connected with the
€ pole, which at first forbids the further evaluation of this expression. We assume that
this UV divergence is waived by the renormalization of the physical mass m and therefore
the computation of the second term in the expansion (4.30) becomes necessary. At the
time of the delivery of this diploma thesis the renormalization of the physical mass was
not yet final. However dimensional arguments indicate that it has the general form

)\2

where ¢ is an unknown second-order coefficient that depends on the mass scale s. With
(7.22) a mass renormalization of the second term in (7.11), which is proportional to the
square root of the physical mass as T(”) ~ m (see (1.11)), cancels the UV divergence.
Thus, using (7.12), the shift of the critical temperature turns out to have the general
form

a’ /1
m=m, |1+8r= (— + c) ; (7.22)
€

—=< = cra,n'® + a;n3 () Inan'? + c) (7.23)
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where ¢; is solely determined by the classical field limit. The result (7.23) has also been
found by Arnold et al [31] with the coefficients ¢, = —647((1/2)/3((3/2)% ~ 19.75
and ¢y & 75.7. If one enters these results into the finite temperature phase diagram of
Fig. 10.1, a very unsatisfactory result shows up. Even at infinitely high temperatures
the existence of a BEC is forecast. Unfortunately, we cannot indicate own values for
the coefficients ¢, and ¢y as we did not calculate the coefficient ¢ in (7.22) up to now.
However, in Part 3 of this work a physically meaningful result for the phase diagram has
been computed without explicitly calculating the renormalization of the physical mass.



Part Ill:
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Chapter 8

Background Method

In many cases a perturbation expansion in terms of free fields, as elaborated in Part 2
of this thesis, cannot produce a useful insight into the physics of a many-body system.
In particular, if the average of the field ¢ (x, ) is not zero, even small fluctuations show
huge effects and can drive the system to a nonzero field configuration. If this equilibrium
value is not small, perturbation theory is not applicable.

In Section 2.3 we introduced the effective action by a functional Legendre transformation
as an ideal tool to describe a many-body system for non-vanishing field configurations.
In practice, this procedure is quite cumbersome. Therefore, we present now an alterna-
tive way to obtain the effective action by using the so-called background method. This
method is based on the idea to decompose the Bose field 1(x, 7) in a non-vanishing back-
ground field ¥(x,7), which can be identified as the order parameter of our theory, and
fluctuations d1(x, 7) around it. As we will apply this method to effectively homogeneous
systems, the background field can be assumed to be constant: W(x,7) = W. Thus the
effective action reduces to an effective potential V(¥, ¥*) whose optimal value with re-
spect to W, U* is the grand-canonical potential valid for T" < T..

In the following we evaluate this effective potential V(¥, ¥*) in the framework of a loop
expansion where the fluctuations around the constant background fields ¥, U* are treated
as small. By doing so, we investigate the global structure of the finite temperature phase
diagram for weakly interacting gases as well as strong correlated bosons in optical lattice
potentials.

8.1 Effective Potential

Like in perturbation theory the starting point of our considerations is the functional
integral for the partition function

z - % Dy 7{ Dot e~ AW @) @/ (8.1)

73
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The action of a dilute, weakly interacting Bose gas was already mentioned in (1.17). We
now expand the Bose fields around the so-called background field W:

P(x,7) =T+ 5(x, 1), P (x,7) = U 40t (x, 7). (8.2)
Here we identify |¥|? with the order parameter, e.g. the condensate density, which

is constant in space as long as we deal with homogeneous systems. With the above
expressions the functional measure transforms like

fpwfpzp* - fmwfmw* : (8.3)
and the action (1.17) decomposes into three parts
A = A® p plavad) 4 glint) (8.4)
Here A denotes the tree-level contribution

A0 = v {-plwp + Lot (8.5)

Alavad) contains all terms, which are quadratic in the fluctuations 6, §1)* around the
background field ¥, ¥*

hB

Awedr = [ ar [ty {&b*(x, ) [10: + h(x) — -+ 20| W] e, 7) + FU60° (x,7)°
0
+%\I,*25w(X, 7_)2} , (8.6)

and A0 is the interaction term
hB
Al — / dr / d'z {g\I'(Sw*(X, 7260 (x,7) + gU5ib(x, 7)260* (x, 7)
0

+%5¢(x, )20 (x, 7)2} . (8.7)

Note that the linear terms of the fluctuations d¢ and d9* were neglected to guarantee
that only the one-particle irreducible diagrams survive in the following diagrammatic
analysis. The quadratic part of the action 4129 can be written in matrix form:

hB hi
Alamad) — % 0/ dr 0/ dr' / diz / ds' (59, 60) (x, 1)G " (x, 7%, 7') (555) G- (B8)
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Here, we call G !(x,7;x’,7') the inverse Green function:

1
G Hx,m;x,7) = ﬁM(X, 7)é(x —x)o(r — 1) (8.9)
with the 2x2-matrix
_ (hO: + h(x) — p+ 29| T g2

The partition function has now become a functional of the background fields ¥, ¥*:
ZI0, 0] = A f DoyDo e (A +A n. (8.11)

In the following we will expand the weight factor e A"™/" into a Taylor series. This leads
to a series expansion in powers of A for the effective potential, which is defined by

eV = Z[W, U], (8.12)

According to (2.73), extremizing the effective action with respect to the background field
leads to the grand-canonical potential.

Zero-loop Effective Potential The leading term in the saddle point approximation
of the functional integral (8.11) reads

ZO[F, ] = exp [—BV (—u|x1/|2 + g|\1f|4)} (8.13)
and corresponds to the A° contribution to the effective action:

VO, ¥ = — gV (—u|\11|2 n g|\11|4> . (8.14)

One-loop Effective Potential The leading order is obtained by only taking into ac-
count the zeroth term in the Taylor expansion e A"™/% ~ 1 and performing the functional
integral over the quadratic part of the action:

ZO0w, v = fDéz/;Dé@/)*exp{ — %7Bd7 7Bd7'/ddx/ddx'
X (30, 69) (%, 7)G (3, 73 %, ) (55) CRUINENE)

This functional integral can be treated analogous to the simple integral

/ daw d&b* o e {_ (59*, 09)) M (gg)} = \/deltw = 73 TREM - (8.16)
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Hence, the one-loop effective potential can be written as
(1) * 1 —1
[, "] = —§Tr logG™". (8.17)
Of course, the derivation presented here is a rather symbolic one. Instead the functional

integral must be calculated using a Matsubara decomposition of the fluctuations d¢) and
01*. How to do this calculation will be shown in Section 8.3.

Two-loop Effective Potential One gets the two-loop contribution by taking into

account the linear and quadratic terms of the Taylor expansion of the exponential function
,A(int)/n
e

2O, v — %le]{DW _ Alansd) [y 7]/ {%/% ;;If /I/ZW%I 24,

23Ty 2
+ Lo [ [ttt + A (8.18)
2h 1J2
where we used the short hand notation:
hB
/dTl /ddx1 = /1, (Sw(Xl,Tl) = wla 5¢*(X1,7'1) = 'Lbik (819)
0

Here, we neglected odd terms in §7) and evaluated up to the sixth order in powers of the
deviations v, 01)*. Defining the ensemble average

$ D § DY* f 1+, p)e AWV W)/
§ D § Dipre= AV Wyr/h

= TG Dy § Dyt (e AT (8.90)

(f (47, 9))

we can write:

20, w) = A (L0 [y %2 T [t
|2

o [ [t TR [ [rewsd) . s

In order to obtain a cumulant expansion, we rewrite the terms in the brackets into the
exponent:

1+ (z) = 0 x o) 4 O((2)?) . (8.22)
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Thus the two-loop effective potential reads:

2\1,2
o [ [t (8.23)

2\1,*2 2 i} 2
v S0 [ [wivs)+ T50 [ [witwwse)..

* g *
Vo, v =~ 2 [, +

Here the subscript ¢ denotes the fact that in the cumulant expansion (8.22) only the
connected diagrams survive. At the moment, we only want to consider two-loop diagrams
up to first order in the coupling constant:

VO, = —oF [, + 0. (8.24)

The ensemble average in (8.24) is reduced to products of two-point correlation functions
via Wick’s rule (4.9):

(V111 y) = (Prabn) (VTT) + 2(ha ) (hnthy) - (8.25)

Here, both contributions represent connected diagrams and thus survive in (8.24). In the
next section we will show that the matrix elements of the Green function itself

. B Gy (x,X57)  Gyy(x,%x';7)
Ghexin) = (G¢*¢*<x,x';r> Grol, 5 7) (8.26)

consists of the connected two-point correlation functions via

<¢1 ;> = wa*(xl,XQ,ﬁ—TQ),
<¢T¢2> = G¢*w(X1,X2,T1 - 7'2) )
<¢1¢2> = wa(xlaXQ,Tl - 7'2) )
(WT3) = Gyeye (X1, X0, 71 — T2) . (8.27)

Thus we write the final result for the two-loop effective action up to O(g) with the help
of relationship (8.27) as:

aBv

VO, I+ = 5 (Gy(0,0)Gyey-(0,0) + 2Gyy- (0,0)°] + O(g?), (8.28)

where we used the fact that the propagators (8.26) are translationally invariant in space
for homogeneous systems G/(x1,X2;7) = G(x; — X2; 7) (see next section).
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8.2 Green Functions

In the last section we have shown that the inverse Green functions are given by (8.9).
The Green functions themselves follow from the relationship

kg
/dT”/ddl‘”G_l(X,T;X”,T”)G(X”,T”;XI,TI) =0(x—x")o(r —7') ( é (1) ) . (8.29)
0

Inserting (8.9) into (8.29) yields

M(x,7)G(x,7, %, 7') = B (r — )5(x — X') ( - ) . (8.30)

Using the translational invariance of the Green functions with respect to the imaginary
times

G(x,7;x',7") =G(x,x';7— 1) (8.31)

and performing a Matsubara decomposition, we obtain

X X 7' Z Z G ’k’ ’g/}kl( ) 7wm’7. (832)

k! m'=—o00

Inserting (8.32) into (8.30), we get

3 Gunel)urele S a0 =i o V) 6

with
_(—ihwy, + é(k) g2
Mk, m) = ( G2 ihw, + é(K) (8.34)
and
ék)=¢€k) —p+ 29|\If|2. (8.35)

Multiply Eq.(8.33) with
hp )
/ddx wl’;(x)/ dre"mT (8.36)
0

and using the orthogonality relations (2.8) yields

hﬁz Z Gm’k’ 51{ k/(S mlM(k wm/) = hzbl’;(x') ( (1) (1) ) . (837)

k! m'=—o00
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Therefore, the Matsubara coefficients in (8.32) are determined by

1 i (x') -
G (X — k M (k, wy, 8.38
k(X) ﬂh2w7%l+€(k)2 —g2|\IJ|4 ( w ) ( )
with
- _ [ihwy, + é(k) —g¥?
M(k,m) := ( e it + é(K)) (8.39)
Thus, the Green functions read
o] )¢k( ) —iWm T B
G M(k,w,,) . 8.40
o) %&W 0P — gy ) S0

From Eq.(8.40) we define the Green functions Gyy«, Gyy, Gyepr, Gy via (8.26). In
the next section we show explicitly that these four functions represent the fundamental
two-point correlation functions, respectively. With help of the short-hand notation

EK)? = &(k)? — ¢*| 0| (8.41)

we calculate at first the off-diagonal propagator

GusleXim) = —gW L CUOG) S i
B 2 wk( I)wk(x) 00 e—ime e—iwmr
= L TRk 2 | S s B o T B
=~ ¥ B (s o) 4 ). (8.42)
Gyep (x,X57) = —g)*? ? %(wkl;(x) [Sk(T) + Sk(—7)] - (8.43)

Here Sk(7) denotes the Matsubara sum

—IWm T

i e
(1) = 3 m:zoo Zihwm + B(k)

(8.44)

It is the same function (2.57) as in Section 2.1 except the different dispersion relation
(8.41). Therefore, we only restate the result:

@(T)e—%E(k)(Tfhﬂ/Z) + @(_T)ef%E(k)(Hhﬂ/?)
— ) 4
Si(7) 2 sinh GE(K) /2 (8.45)
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The calculation of the remaining diagonal Green functions can be obtained from the
above formula by differentiating with respect to the imaginary time 7:

Guuretir) = SUENG0 S s [+ k)

= % h— — 6 ] G¢,¢, X, X T

= ij {l ] [Sk(T )+Sk(—7)]}, (8.46)
Goon(x,xs7) = %Z e () _z; - 2_2:21(1{) —ihw + é(K)]

- zkf” ¢§( ){lg(k)w%] [Sk(r)+Sk(—T)]}- (8.47)

With the property

637 [Sk(T) + Sk(—7)] = —@ [Sk(T) = Si(—=7)] (8.48)

we write our final results for the propagators as follows

i (x ) thie (%)

o (xxir) = 3 P 5, 0) 000 + B0 + =) 1) = B}
Gosletsr) = —gu* T M 5,(0) + 5]

Goslxir) = % %fk)” (S [200) + BW)] + Si(r) [ek) — B}

Gyope (3,53 7) = —guip*? 3 %fk‘;() (Si(7) + S(—7)] . (8.49)

As expected, one obtains the correct Green function (2.58) above T, , if one sets the
background field ¥, U* to zero

G(x,x';7)T7 T = 2 X )(x) < Sk(ET) Sk(O_T) ) ' (8:50)

This also justifies to identify the background field ¥, U* with the order parameter, which
is the condensate density. We end this section by specializing (8.49) to three important
cases.
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Special case 1: Equal arguments In case of a homogeneous Bose gas the functions
(%), Yk (x) represent plane waves. From this follows that the Green functions possess
a translation invariance in space and time:

Gx,7;x,7")=Gx—-x",7—1). (8.51)
Therefore, the diagonal Green functions reduce for equal time and space arguments to

BE)/2 1

Special case 2: Low temperature limit In the low temperature limit T — 0 or
B — oo neighboured Matsubara frequencies stick together and the frequency spectrum
becomes very dense:

27 70
AWy = Wt — W = — = 0. 8.53
w Wmt1 — W nB ( )

This means that the Matsubara sum in (8.44) can be replaced by an integral

1 X e—ime T—0 1 /oo e WwWmT _E
_1 EUL _ (Wr/n
ﬂm; Titom+ B 2100 "™ i, + E(K) (T)e

In this low temperature limit we get for the propagators (8.49)

Gy (x.%7) = Y %fk)(x) {(B(r)e P07 210) + B ()] + 6(~)eP O M e(k) — B}

k

Gy (x,X'57) = —g1p* Z %XS() [9(7)@_E(k)7/h + 9(—7’)6E(k)7/h] ,

Gyl Xi7) = 5 %fk)“ {B(=r)e=7 " (2 (k) + B(0)] + 0(r)e 7 (2 (k) ~ B(k)]}

Gy (%, X 7) = —gur™ > 5 zk; %fk‘;(x) [0(7)e 0 /m 4 g(—r)e 0T/ (8.55)

Special case 3: High temperature limit Consider the Matsubara sum (8.44). For

high temperatures 7" — oo or # — 0 all Matsubara frequencies, except the zero mode,
become infinite and thus give no contribution. As only the zero mode survives, we get:

Sk(r) "=

TR (8.56)



82 CHAPTER 8. BACKGROUND METHOD

Thus the propagator (8.49) read in this high temperature limit:

Gy (%, X5 7) = Gy (x, %5 7) % 2 M é(k),
k

E(k)
G¢¢(X,X’;T) = —ngEZM,

s EBk)?
Gyepe(x,X57) = —gzb*Q%%%. (8.57)

The above limit process is also referred to as the classical limit, because § — 0 is
equivalent to h — 0 as follows from equation (8.53).

8.3 Generating Functional

We consider now the quadratic action
1
Aty = 5[ L@ omne e (1) o
) (1) 6 = ) (1) ). 859

where G~'(x,7;x',7') is the inverse Greens function given by (8.9) and j(x,7), j(x,7)*
is a current which couples linearly to the Bose fields dt¢)(x, ), d1(x, 7) and shall also be
periodic in imaginary time. This action defines the generating functional

Z[], ]*] — %IDerw*e*A(quad)[w7w*;jaj*]/ﬁ‘ . (859)

from which all n-point correlation functions are obtained by successive differentiations
with respect to the currents. For example, the two-point correlation function
((x1, 1) (x2,72)) is given by a functional derivation with respect to j*(xi,7) and
j(X27 7—2):

n 62 Z[j, j*]

(0 (x1, T1)0Y" (%2, T2)) = 67 (X2, 72)07*(x1,71)

(8.60)

J,4*=0

We calculate the generating functional (8.59) via a Matsubara decomposition of the Bose
fields

o¢] o.¢]

w(xaT) = Z Z Ckmwk(x)e_imea ’Lb*(X,T) = Z Z Cltmwli(x)eime (861)

k m=—o0 k m=—o0
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and the currents
=3 > Gkmti(x)e T, FET) = > jemtr(x)e T, (8.62)
k m=—o k m=—o

We have already performed such a transformation in the previous section and thus only
state the results for the functional measure

}Ksz <, 1100 (x,7) = I 11 /dckm/dckm2 (8.63)

k m=-—00

and the action

A(quad) [Ckma Cim’ jkma .]ltm] = Z Z {hﬁ [_Zhwm + g(k)] Ckmckm + ghﬁq]2ck mckm
k m=—o0
1 * * - -
+§ghﬂ‘ll 2Ck,kam — CxmJkm — Ckm]km} : (864)

This can be written in the more compact way

Alawde, 59 hZZ[ckm (K, m)Cum — Clndicm — HomCiem| (865

with the four component vector

ch = (Cltm’ Ckm, Cyl::—ma Ckfm) ) JLm = (jltmajkmajlt—majk—m) (8-66)

and the matrix

3 [—ihiwm + (k)] 0 0 g2
1 0 B—ihwp, + é(k)] 9B+ 0
Mk, m)=7 0 9B Bl—ihwn, + &(K)] 0 (8.67)
g2 0 0 B [—ihwn, + é(k

Thus the generating functional becomes:

] ] ] HH/dem/dckm exp {_ ZZ {ckm k m ckm CLmjkm _ijckm]} .
k m

(8.68)
To calculate this generating functional, we perform the following transformation:
Cxm — T'Cyxm + @, el —cl TH+al, (8.69)

where the translation vectors a,a’ and the matrices 7, 7" are still not known. The
corresponding transformation of the functional measure

fzw f D" — 74 Dif 74 Dy* det TT' (8.70)
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implies the following result for the generating functional

25,571 = 11 H /dem/dem det TTTexp{ — ZZ{CLmTTM(k,m)_chkm
k m

k m=-—o0
. _ . T
+ckaT [M(k7 m)ila + ka] + [M(ka m) la + ka] Tckm
+af M(k,m)'a+jl,a+ aTjkm}. (8.71)

Now we will choose our transformation parameter such that the following equations are
fulfilled:

M(k,m)™'a+jim =0, (8.72)
and

T"M(k,m)™'T = M(k,m)g.

diag * (873)

The latter means that the matrix 7" is unitary and thus the generating functional sim-
plifies to

Z[j,5° = Z[0,0] ZC]j, j*] (8.74)

where
210,0] = TTT1 [ deen [ e, ﬁexp{ > el 1k m)dlagckm} (8.75)
 m 2m

and

29}, ] = exp {z St M K, m)jkm} . (8.76)

8.3.1 Correlation Functions

For Z°™[j, 7*] we can state the result of the Matsubara back transformation
3 1 hﬂd dd . * W T
Jkm = %/0 7'/ zj(x, 7)p(x)e
. 1 s g .
Jem = —/ dT/d i (x, T) g (x)e“m . (8.77)
’ hi Jo

Correspondingly, we get

1 e hg
25,57 = eXP{—thfo dT/O dT'/ddx/ddx'j*(x,T)G(x, x',T)j(x',T')} :
(8.78)
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where G(x,x’,7) is the Green function (8.39), (8.40). From (8.58) we read off that the
two-point correlation functions are given by differentiations of the generating functional
with respect to the currents. In Eq. (8.74) we see that the currents occur only in
2[4, j*]. Thus the correlation functions are connected with the fundamental propaga-
tors

522c0rr[j,j*]

67 (x2, 72)d7* (x1,71)
52zcorr[j,j*]
05* (X2, T2)0j (X1, 71)
62zcorr[j,j*]

05 (X2, T2)05* (X1, 71)
822(}01"1"[]',]'*]

05 (xz, 72)0j (x1,71)

((x1, 1) V* (X2, 7)) = B = Gyy- (X1, T15;X27T2)

3:3*=0

= Gyeyp(X1, T1;XoTo)
J,J*=0

(W (x1, 1) (x2,T2)) = h?

(Y(x1, 1)Y(x2,72)) = h?

= G'x/m/;(xla T1; X27'2) )
7,5*=0

= G¢,*¢,* (Xl, T1, X27—2) (879)

3:3*=0

(W (x1, 1)Y* (x2,72)) = R

8.3.2 TraceLog

By setting jim = ji,, = 0 in (8.74) the generating functional reduces to the one-loop
contribution (8.15). Because of the terms containing cx_,, and cf_,, in the action, we
split the Matsubara sum in the m = 0 term and the remaining m # 0 terms. In the
sum running over negative Matsubara frequencies we perform a global transformation
—m — m yielding

H H / dckm/ dckm/ dey_ m/ dcj. my exp[ ckmM(k m)ckm]

k m=1
></ dcko/ der exp —c, M (K, O)Ckg] : (8.80)

Using the standard integral
2

/oo dxy /OO dxy /OO dxo /oo dxs exp {—XTMX} = \/dﬂti]\/[ (8.81)
—00 —00 —00 —00 e

for the four-component vector x' = (1‘1, Ty, o, x’é) we obtain

Z[0,0] = (8.82)
k 2\/deth0 m= 14\/dethm
where the respective determinants follow from (8.67)
_ (P ! 2 2 212
det M(k,m) = |5 [?wl, + Ek)?]" (8.83)

det M(k,0) = <§>2 Ek)?, (8.84)
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where E(k) is defined by (8.41). Because they do not longer depend on the sign of m,
we rewrite the one-loop contribution as:

200,00 =] ﬁ ! —%Z i 1n[h2w3;+E(k)2]}. (8.85)

- 2 2 2 - exp{ =
k m=—c0 1/ h wy, + E(k) k m=—o0

The calculation of the above Matsubara sum has already been done in Section 2.1 of this
thesis. There we got the final result (2.33), so we have here

Z[0,0] = exp {—g zk: E(k) — zk: In[1— = ?P09)] } : (8.86)



Chapter 9

Density of Non-Condensed Atoms

With the results of the previous chapter, we are now able to calculate the effective
potential. From (8.12), (8.28), (8.17), and (8.86) we get

VU, U = V(—p|¥)? + g|\11|4) 4 g Y Ek) + % S In [1 B 6—6E(k)]
k k
g IR
Yy lzk: m] +0(g%, 7). (9.1)

Here we introduced the parameter n = 1, which counts the loop order. Note that the
last term of (9.1) is the first-order g-contribution of the two-loop approximation. We
will need this term only in Section 10.3, where a perturbation expansion in the coupling
constant is carried out to calculate the leading shift in the critical temperature of BEC
due to weak interactions.

9.1 Bogoliubov Approximation

In the Bogoliubov approximation the starting point of a thermodynamic discussion of
the condensate is the effective potential up to one loop:

V[, ¥

g U U _
= —p| U+ 20+ =N Bk) + o Y In {1 — e PE® 2
T u||+2||+2vk (k) + n[ e ] (9.2)

BV %

where the dispersion relation E(k) follows from (8.35) and (8.41)

B(k) = /[e(k) — 11+ 29| 0 [22 — g2[ W[4 (9.3)

Here, the effective potential is still a function of the absolute value of the background
field |¥|. In fact, this function is not a thermodynamic potential for all background fields,

87
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but only at its extremum. The extremalization of (9.2)

OV[T, U]
St e ) 0.4
o2 (94)

leads to
N 29le(k) — p+ 29| 9] — ¢?|9?
0 = — U2+ —
o gy 2 Elg
N 2gle(k) — p+ 29|97 - 2|9 1

a3 E(k) PR 1 5:5)

The resulting extremal value for the background field is our order parameter, the con-
densate density ng:

2e(k) + 1 1 1
n:\IIQZH—EE <—+ >+O 2. (9.6
0 | | g V - \/e(k)2 + 2#6(1{) 2 @6 /e(k)2+2#€(k) . 1 (77 ) ( )

This result is obtained from (9.4) by performing a systematic expansion in the loop
order parameter 7, where the zero-loop approximation for the condensate density ng =
/g + O(n) is called the tree-level. With this tree-level the dispersion relation (9.3)
reduces to

E(k) = \/e(k)? + 2pe(k), (9.7)

which was first derived by Bogoliubov [93]. Inserting (9.6) and (9.7) into (9.2) yields
the extremal value of the effective potential, which coincides with the grand-canonical
potential © according to (2.73):

Qu,T)  p* 1 > n /()2 2pe (k) 2
=5t Zk:\/e(k) + 2pe(k) + 3V ijlna e )+ O0(n°)(9.8)

From that, we obtain the particle density by differentiating with respect to the chemical
potential

LV T) _p 1 e(k) <1 1 > 2
- - =2_ 1 — 4+ +0 9.9
V. 0w g V< \/e(k)2 + 2pe(k) 2 BV ek)2ue(k) _ (7°)(9-9)

This dependency on the chemical potential 4 is not helpful, as it is rather the condensate
density, which is observed in the experiment. Therefore we eliminate y in favor of ny via
relationship (9.6):

n e(k) + gno (1 1 > )
n—ng= - -+ ‘ +0(n%). (9.10)
v ; \/6(1()2 + 2gnge(k) 2 o BVe(k)2+2gnoc(k) _ 4

The right hand-side of Eq.(9.10) denotes the number of non-condensed particles in the
Bogoliubov approximation.
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9.2 Popov Approximation via VPT

The result (9.10) is valid only for n = ng, i.e. for small . However, the quantum phase
transition takes place for n > ng, i.e. at strong 7, which can be reached by applying
variational perturbation theory according to the rules developed in Chapter 3 of this
thesis. Here we introduce a dummy variational parameter M by replacing

w— M +nA (9.11)
with the abbreviation

w—M
P

A —

(9.12)

By inserting (9.11) into the grand-canonical potential (9.8), we have to consider A as
being independent of the expansion parameter 1. By doing so we re-expand (9.8) consis-
tently up to the first power in 7:

Qtrial(M U T) M?2 M
R Sk Kk Rl 2Me(k
% 2~y A gy el + 20elk)
+-L S In (1 — eﬂvf(kV”Mf(k)) (9.13)
BV &
and replace A afterwards by its definition (9.12)
Qtrial(M L T) M?2 M/L
- Pl - 0 2Me(k
V 2g g Z \/ F+ 2Melk)

+iv S In (1 — eﬂvf(kV”Mf(k)) : (9.14)
k

Subsequently, we extremize this trial expression for the grand-canonical potential with
respect to the variational parameter M

i 8Qtrial(]\/[, i, T)

=0 9.15
% oM ’ ( )
which leads to
g VAT Je(k)? + 2000t e(k)

1 1
x =+ . (9.16)
2 66\/<—:(k)2+2MOPt<~:(k) -1
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Thus we obtain the optimal variational parameter as a solution of the equation

k 1 1
v - \/e(k)2 + 2Mopte(k) 2 B/ el +2M0Pie(k) _
Inserting (9.17) into (9.14) yields the optimized grand-canonical potential
Qpi, T) = QM 1 T). (9.18)

However, we are more interested in a resummation of equation (9.10). At first we compute
the particle density

1 0Qu,T) 1 oQtal(pfoPt py, T)‘
n = __- 22\ LA) =

Voo |p V op Mopt.T
1 aQtrlal 1 aQtrial aMopt

_ S _ (9.19)
v Ol |ypopr V. OMOPE oL

Because of equation (9.15) this reduces to
1 aQtrial Mopt
n=—— = : (9.20)

V. ou g

Second, we insert the substitution (9.11) in the condensate density (9.6) and perform a
similar variational resummation for the condensate density

M n Z )+ M (1 N 1 ) (9.21)
ng = 77— — — . (9.
9 Ve k) FoMe(k) \2 Ve r2Me) _
Taking into account the abbreviation (9.12), we obtain
M 2¢(k) + M 1 1
ny = MM _n clk) & <—+ ) (9.22)
g V4 \/E(k)Q +2Me(k) \2 BV +2Me(k) _
Evaluating this expression for the optimal value of the variational parameter
Mort 2¢(k) + MOP
i k) + 9.23)

1 1
g VA Jell)? +2Movte(k) \2 e AVelPr2mieio _ g

and inserting the relationship (9.17) yields:
Mopt

ny = - clle) + M <1+ . ) (9.24)
9 VA Je(k)?2 +2Morie(k) \2 o8Vl 21 elk) _ g
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Finally we replace M°P* by gn according to (9.20) and get the final result

n e(k) + gn (1 1 )
n—nyg=— -+ . 9.25
T ; \/e(k)2 + 2gne(k) 2 Bk F2gne(k) _ q ( )

This result is known as the Popov approximation [18] and turns out to have the same
form as in (9.10), except that the condensate density ny on the right-hand side is replaced
by the total particle density n.
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Chapter 10

Application to Weakly Interacting
Gases

We first discuss the formation of a condensate for the free-particle spectrum

e(k) = BQ:; . (10.1)

Here, the quantum numbers k denote the eigenvalues of the non-interacting gas, which
represent continuous wave vectors in d dimensions. Therefore the sum in (9.25) can be
converted for big volumes V' into an integral over all wave vectors k:

ij = V/R (;lw];d : (10.2)

At first, we want to show in Section 10.1 how the early results of Lee and Yang [94]
for the special case of zero temperature can be obtained within our formalism. Second,
we extend these calculations in Section 10.2 for finite temperatures and show how to
calculate the whole phase diagram with the help of VPT, thereby predicting a surprising
reentrant phenomenon. Furthermore, we perform in Section 10.3 a high temperature
expansion of the effective potential (9.1) and show that the leading shift of the critical
temperature vanishes.

10.1 Zero Temperature Limit

With the above specialization the temperature independent part of the grand-canonical
potential (9.2) and the particle density (9.25) become

V(,T) _u_2+Q/
2g 2Jr

: d;’;d Jel0? 1 27e(k) (10.3)

(2
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d
n = 0+77/ dk Hg" (10.4)
+2gne(k)

The free particle spectrum (10.1) depends only on the absolute value of the wave vector
k, so that we can transform both zero-temperature integrals (10.3) and (10.4) into one-
dimensional ones

% ,T 2 m d/2 roo B
(ﬁxbf b s (Z/z) (sogz) ) dwe® a2 2

29
woon
= ——+ -1 —1/2,2 10.5
10 -1/2.20). (10.5)
n m d/2/°° dj2—1__ T+ gn
= d N A
noT et 2F(d/2) (27rh2> T T 2gne
= noty [Td(l 1/2,2gn) + gnly(0,1/2,2¢gn)] . (10.6)
All of these integrals are of the general form:
1 m \42 o x®
I : = ——|— / dex?/? ' —— 10.7
alosB,0) = T (27th> o T @+ an)? (10-7)

Therefore, we first calculate this integral and apply the result afterwards to physics. By
using the Schwinger trick (B.1), we obtain

1 m \4/2 o rd/2+a—p-1
lale, Bya) = Fm; (W) /0 Ty (10.8)
Interchanging both integrals and taking into account again (B.1) yields
d/2
In the following we make use of some special cases of this master integral:
8 m3/2(gn)3/2

I(1,1/2,2gn) = 5 55— (10.10)
2 m?2(gn)\/2

13(0,1/2,2gn) = PR R (10.11)
16 m3/2M5/2

Thus we get for the grand-canonical potential (10.5) and the particle density (10.6) in

d = 3 dimensions
T 2 8 3/2,,5/2
YiwD) _ w8 mipl (10.13)
\% 2g 1572  h
1 m3/2(gn)3/2
32 R '

n o= ny+n (10.14)
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Depletion The depletion is defined by the ratio of the number of excited particles to
the number of particles. From (10.14) we read off the depletion

n—ny _ Lm3/2g3/2n1/2 (10.15)
n 372 h? ' '
Inserting the relationship between the coupling constant and the s-wave scattering length
(1.14) leads to the well-known result for the depletion [93]:

n—ng 8 |a3n
= —¢/—=—|. 10.16
n 3V ( )

Ground-state energy The relationship between the internal energy
dU = TdS — pdV + pdN (10.17)
and the grand-canonical potential
dQ) = —SdT —pdV — Ndu (10.18)
is given by the Legendre transformation
U = Q+TS+ uN. (10.19)

The ground-state energy is the internal energy per volume in the zero temperature limit.
Using (10.13) we get

U
E(): V

Y N /JJZ 8 m3/2,u5/2
T=0 Vv V 2g 157T2 h

+ pn . (10.20)

The chemical potential in zero-loop order is given by (9.9): p = gn + O(n). With a
consistent expansion of (10.20) up to O(n?) we obtain

1 16 m3/293/2n1/2
Ey, = —gn*|(1 : 10.21
o= " ( T (1021)
Inserting (1.14) we get
2mh? 128 [a3n
E, = JRTRN  E—— , 10.22
0 m st ( + 15 T ) ( )
which is related to the depletion (10.16) according to:
21h? 16n —
By = 2 g.n? (1 + 20 ”““) . (10.23)
m 5 n
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Sound velocity The expression for the sound velocity can be obtained from the p — 0
behavior of the Bogoliubov spectrum (9.7) with k = p/fi. For the free one-particle
spectrum (10.1) the dispersion relation (9.7) has the important property to be linear for
small momenta p:

2
Ep) = (Z) +2u 2= [ Ep = [Zp| = clp|. (10.24)
2m 2m m m

Equation (10.24) shows a typical quasi-particle behavior indicating the condensed state,
where all particles are energetically in the same state. With (1.14), the result for the
sound velocity reads

Amh*nag
c= ”T:“a (10.25)

Thus the sound velocity depends only on the density n. Recently, this Bogoliubov sound
velocity could be measured [95] in the research group of Ketterle at MIT . Their mea-
surements coincided very well with the theoretical prediction (10.25). Note that for large
values of k the Bogoliubov spectrum (9.7) becomes classical F (k) ~ e(k).

10.2 Nonzero Temperatures

We will now take into consideration the full temperature dependent one-loop result for
the particle density (9.25), where €(k) is the free one-particle energy spectrum (10.1) and
the zero temperature integral has already been calculated in (10.15). After substituting
the integration variable in d = 3 dimensions this leads to:

_ 2/3 ;g\ 1/3 3 —2/3
a;n'/3 = (" n"“) (6—Z> {1+1—Z[(a)} : (10.26)

where I(«) abbreviates the integral

To + 8

I(a)z/o da:2 o (@\/m—l)- (10.27)
Taking into account (1.14) the dimensionless parameter « is given by
; 2
a= (asn1/3C(3/2)2/3> , (10.28)

where t = T/T®) denotes the reduced temperature.
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10.2.1 Phase Diagram

The phase transition is defined by the vanishing of the order parameter, i.e. ny = 0.
Thus the transition line in our phase diagram follows from (10.26) to be:

1/3 <97T>1/3
Qge T =\ =
64

3a
1+ 2% 1(a,)

16

}_2/3 (10.29)

Near T' = 0 we perform a Taylor expansion in the parameter o, and obtain for the first
four coefficients of this expansion:

ascn% = ag + ay0, + asa’ + azad + O(al). (10.30)

with

or 1/3
ag = (@) ~ 0.762, a; =~ —0.313, ay ~ 0.200, a3 ~ —0.207. (10.31)
We observe that this Taylor expansion is not valid for small coupling constants as the
expansion parameter «, diverges in the weak-coupling limit a,. — 0. However, the whole
expression in (10.29) has a well defined weak-coupling limit. Evaluating the integral
(10.27) numerically leads to the dotted curve in Fig. 10.1. There we plotted the whole
phase diagram parametrically, which means that we computed a,.n'/?(a.) and t(a.) as
functions of the parameter o, separately.

10.2.2 Critical Temperature Shift

The behavior near TC(O) can even be calculated analytically. Therefore we rescale and
expand the integrand in (10.27) in the limit @ — oo, yielding:

Ja 1 !
I(a) = 7/0 dz\/gexp(\/&z/4+2/\/&)—1+o<a>' (10.32)

Using the series representation of the Bose distribution function, we obtain

o0 00 1
I(a) = Ve Y eV / dzz'2e Vet L O (—) , (10.33)
2 = 0 o
where the integral gives a Gamma function:
| AT(3/2) & e2miva 1
I(a) = .Yz mzzjl —5 T O (5> : (10.34)
The remaining sum is a polylogarithmic function (A.1):
41°(3/2 o)/m 1
re) = L2 erm o, (10.35)
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Figure 10.1: Phase diagram of Bose-Einstein condensation in variationally improved
one-loop approximation without (dashed) and with properly imposed higher-loop slope
properties at T(*). The short curves starting at 7 = T”) is due to Arnold et al.[31]. The
dashed straight hne indicates the slope of our curve. The diamonds correspond to the
Monte-Carlo data of Ref. [28] which are scaled to their value a.q(T = 0) ~ 0.63, whereas
the dots show simulation results obtained for helium [96].

With the help of the Robinson expansion (A.4) we now expand this result for large «
and obtain

2 3/2 4
I(a) = ‘/7554/ ) \\/fa” +0 (a3/4> . (10.36)
Inserting (10.36) into (10.29) yields:

2\/2ma,nt/3t,
1=~ %) (10.37)

C(3/2)°*

To get the leading shift in the critical temperature, we expand

AT
79

c

(10.38)

and thus obtain from (10.37)
4/ 27
t.o=1+ 6/ 2/3\/ascn1 /3 4+ O(azen'’?) (10.39)

Although a similar square-root contribution was also found in the Refs [21, 22], recent
Monte-Carlo simulations [39, 40, 42] and precise high-temperature calculations [35, 43]
indicate that the leading critical temperature shift is linear in the s-wave scattering length

te = 14 cragen'’® + O(a2 n*?) (10.40)
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with the numerical value ¢; &~ 1.3. Thus it becomes necessary to improve our resummed
one-loop approximation (10.29) for the transition line via variational perturbation theory
(see Chapter 3) in such a way that the a,. — oo behavior of the expansion (10.30) is given
by (10.40) and not by (10.39).

10.2.3 Resummation Improved Results

A more reliable curve is obtained by extrapolating the weak-coupling expansions (10.30)

azen'’® = % aral (10.41)
k=0
to a strong-coupling one
N
asen'® = a’c’/q Z bka;%/q (10.42)
k=0

with the help of variational perturbation theory. Note that the series (10.30) has Borel
character, which means that the sign of the coefficients (10.31) changes from term to
term. At last this circumstance enables us to do a resummation via VPT.

Determination of p and ¢ For the resummation we have first to determine the ex-
ponents p and ¢, which characterize the strong-coupling behavior. Our starting point is
the strong-coupling expansion (10.42) for N = 1:

asen'’® = a2/ (b + bra,?'7) . (10.43)

Imposing the definition of the parameter v in (10.28) and the critical temperature (10.38),
we obtain

142 2p AT,
bO - (ascnl/g) el C(3/2)4p/3q + bO pw + b1<(3/2)8/3q (ascn1/3)

2p ilg
q T,

0. (10.44)

Thus we get from (10.44) the correct asymptotic behavior (10.40) when p and ¢ are fixed
according to

2 4
1+2=0, Z=1. (10.45)
q q
Therefore we have to choose our strong-coupling exponents p and ¢ to be
p=-2, g=+4. (10.46)
With that choice a comparison between (10.40) and (10.44) leads to
1 b
bg b1 1% = “ (1047)

SEIDRER T LB (B2
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VPT Resummation We now want to improve our resummed one-loop approximation
(10.29) for the transition line. The philosophy will be to trust only the first W + 1
weak-coupling coefficients ay, . .., aw in (10.41) and impose the first two strong-coupling
coefficients by and b; in (10.42) near T(?). Using VPT we calculate with this information
two successive weak-coupling coefficients ayq and apy yo:

w
1/3 k ~ W+1 ~ W42
a.n'l® = E agoy, + aw10, T+ Qo . (10.48)
k=0

Afterwards we determine the whole phase diagram by resumming the new weak-coupling
series (10.48) to be valid for all values of «..

Leading VPT Order Let us illustrate this procedure for W = 0 and determine the
subsequent weak-coupling coefficients @, a, from the strong-coupling coefficients by, b;.
To this end we identify o, = g and follow the VPT procedure of Chapter 3 by specifying
(3.9) for N=2,p= -2 and ¢ = 4:

_3ag 3ag |, ap+4gay  3gay | G2g°

folg, K) = 2 T T o s TR (10.49)

where the last two coefficients in (3.9) were replaced by @1, as. According to the principle
of minimal sensitivity we have to optimize this equation with respect to K and solve
(3.10) with the ansatz (3.12) containing the two leading coefficients K and K{:

Ka(g) = K§"g"" + KV g™/* + O(g7") . (10.50)
Inserting this ansatz for K»(g) into (3.10)

6 12 4ga 24qa 10a502
Qo Qo _6ao+ 901_'_ gar  1Uazg (10.51)

"= T K7 K9 K4

1/2

and comparing the coefficients of the two leading powers g~ /2, ¢~ '/* in the coupling

constant g, yields the following two equations:

8 4
0 = 3K g+ 12K5" ) + 5o , (10.52)

7 8 3 4
0 = 6K a4+ 9K KV ap + 12K 6, + 84K KM a, + 55K a, . (10.53)
As we have four unknown variables a;, do, Kéo), and Kél), we need two more equations

for their unique determination. They can be obtained from the known strong-coupling
coefficients by and b; in (10.49). Inserting (10.50) into (10.49) and comparing with (3.13)
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yields:
1 (0)8 (ORI
Ky
1 (0)7 (0)® (1) (0)3~ ()4 (1) - (1)~
2
(10.55)
From (10.52) and (10.54), we get a; and ay as functions of K,
. 3 4 5 2
ap = ) Kéo) <a0 - EboKéo) > ) (10.56)
8 1 2
iy = 3K <a0 — 5 bk ) . (10.57)
Furthermore, Eq.(10.53) can be solved for K
8 4
b KL + 3a0KS + 3a
KD = g Otz F ok ¥ om (10.58)

8 1 :
6K ag + 24K a; + 10a,

This expression has the interesting property, that the denominator is zero, if we insert
(10.56) and (10.57). As K$" should be a finite quantity, we have to demand that the

numerator also vanishes. This leads to an explicit algebraic expression for Kéo), which is
solved by

1/4
3a 9a3  3a
K=+ (-2 4 |00 22 10.59
; ( % N2 b (10.59)
Note that with that choice (10.55) is satisfied although (10.55) was not needed for deriving
(10.59). We now insert the weak-coupling coefficient aq ~ 0.76 from (10.31) and the

correct strong-coupling coefficients (10.47) with ¢; & 1.3 to yield Kéo) ~ +0.93461. This
result leads via (10.56) and (10.57) to the new coefficients:

iy ~ —0.654, iy ~ 0.935 . (10.60)
Finally, the trial function (10.49) follows to be
1 1 1
1 , 1
and leads together with (3.10) to our first resummation improved transition line that is

valid for arbitrary values of the coupling constant. The result, shown in Fig. 10.1 as

the first VPT order, has now the correct asymptotic behavior near TC(O) as well as near
T =0.

(10.61)
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Higher VPT Orders Finally, we state the new computed weak-coupling coefficients
of the improved resummed one-loop approximation for the orders W = 0,1, 2:

W = 0: da=-0664 a=0.935 (10.62)
W = 1:  dy=-1864 ag=16.66 (10.63)
W = 2:  d3=-2953  a3=0622.0 (10.64)

A resummation of the corresponding weak-coupling series (10.48) shows the fast con-
verging phase curves with the second and third VPT order in Fig. 10.1. It is interesting
that the new computed coefficients in (10.63) and (10.64) deviate significantly from the
original ones in (10.31). The reason is that the influence of higher orders becomes smaller
in a weak-coupling expansion and it needs higher deviations to obtain the correct strong-
coupling behavior.

The phase diagram in Fig. 10.1 has the interesting property that there exists a charac-
teristic reentrant transition [47, 48] above T*), a nose in the transition curve, where a
condensate can be produced by increasing ay, which disappears upon a further increase
of as. Such a reentrant behavior was also found in a previous Monte-Carlo simulation
[28] as shown in Fig. 10.1. However the validity of their calculations can be doubted as
their value of the constant ¢; &~ 0.3 in (10.40) deviates significantly from recent Monte-
Carlo [39, 40, 42] and analytic calculations [35, 43] with ¢; ~ 1.3. Experimentally, one
could probe this behavior in two different ways, i.e. by thermal and by quantum heating.
Quantum heating means that one works at a certain temperature, which is slightly higher
than T(® and then, coming from higher a, one decreases the s-wave scattering length
by Feshbach resonances [51]. Contrary to that, thermal heating means to decrease the
temperature for a given scattering length a,. This procedure has to be done at least for
three different gases with different scattering length as to be able to observe the phase
diagram in Fig. 10.1. Independent from the heating process the phases can be observed
by probing the coherence properties with time-flight measurements [97].

10.3 High-Temperature Expansion

In this section we will show that a high temperature expansion of the effective potential
(9.1) is consistent with perturbation theory at weak couplings above T,. At a first glance,
this is astonishing as BEC takes place at very low temperature near 7" ~ 0 compared
to room temperatures at 7" &~ 300K . But this is not really a contradiction, as in this
context "high” means that T?) is much larger than the characteristic temperature where
the Bogoliubov spectrum becomes classical (10.24). With the result in (10.25) this takes
place at the momentum [p| = 2mc = 2,/pm and at the energy E = 2y corresponding

to the temperature T = 2u/kp. Thus, we effectively perform a perturbation expansion
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in the dimensionless parameter T/ T, which is indeed a small parameter at temperatures
T ~T®. To do so, we consider the effective potential (9.1) with the free spectrum (10.1)
and replace the sum by an integral (10.2), yielding

VI, 0]
\%

= —pu|UP+ g|\If|4 + ! < = )D/2 /OO dzzP/* " In(1 — e PP@)
2 BT(D/2) \27h? 0

2
gV ( m >D/2 /OO :L,D/Q—l
— ] . 10.
I'(D/2) \2rh? o W AR (10.65)

Here the O(g)-contribution of the two-loop effective potential (8.28) is included, as we
carry out a consistent calculation in the coupling constant g, and E(x) is the dispersion
relation

E(x) = /(x —pu+ 29[22 — 2|0 (10.66)

stemming from (9.3). At first we substitute Sz by z and expand the argument of the
exponential function in (10.65) in powers of §:

BE(x) — /v — Bu+26g|0 P2 — 52g2| 0!
= 2B (p—298T]) + O(5). (10.67)

One-Loop contribution In this approximation the one-loop contribution to the ef-
fective potential becomes

TD/241 ; py \D/2 oo
(1) ¥ _ D/2-1 _ _ _ 2
VU, U] = VF(D/Q) <27rh2> /0 drx In {1 exp( T+ fp—296|Y| )] :
(10.68)
Thus the series representation of the logarithm
00 o—yn
In(l—e?)=>" (10.69)
n=1 n
yields:
TD/2+1 ;0 \D/2 2 0
O, 9] = vV < ) Z — 98q|W|? / depP/21p—n
Vo, o] r(D0/2) \anh? ;nexp{(ﬁu Bg|w[)n} | doz e
(10.70)

Evaluating the integral gives n~%?T'(d/2) and the remaining sum represents a polyloga-
rithmic function:

VO, o = —v

TD/2+1 < m

'(D/2) 27%2)17/2 I'(D/2)Cpjas1 {exp (5M _ 25g|\1,|2)k10‘71)
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A perturbative evaluation of the zeta function up to first order in the coupling constant,
i.e.

Co(eP=209) = ¢, (eP) — 28g| T PGy (7)), (10.72)

setting d = 3 and using the thermal wavelength A\ = /27h*3/m results in
T 2
VO, = —5Gn(e™) + 56 W2+ 0 VT) . (10.73)

Two-Loop contribution The two-loop contribution reads

D/2 [ roo D/2—-1 72
VO, ¥] = VQr(zg/Q) (2:;2> [/0 dz ;Bﬁ] . (10.74)
This time we use the series representation of the Bose distribution function
[ =
T 7;1 e (10.75)
to obtain
VO, v = VQr(i()]/Q) (2:;2>D/2 {ieﬂw /0°° du x| (10.76)

As before the integral is proportional to a Gamma function and the remaining sum gives
a polylogarithmic function

VO W) = Vi) ()" pe vl o)

Finally we set d = 3 and use again the thermal wavelength A\ = /27h*3/m:

VO, ¥*] = %C3/2(6B“)2+O(92). (10.78)

Landau expansion Collecting the results above and reordering the effective potential
in powers of the order parameter yields:
Vi, v
V

By doing so, we identify the coefficient of the |¥|?-contribution to the effective potential
with the renormalized chemical potential

T g g
= —ﬁék/z(eﬁ“) + FC?)/Q(‘?BM)Q — [P+ §|‘I’|4 +0(¢*)  (10.79)

2
e = 1= 35 Gopa(e™) + O(g?) (10.80)



10.3. HIGH-TEMPERATURE EXPANSION 105

which shows how the bare chemical potential —u changes due to weak interactions.
It is important to note that this renormalized chemical potential is positive so that
the coefficient of the quadratic term in (10.79) is negative, leading to a potential of
a form resembling a mexican hat. The typical mexican hat shape shows two possible
equilibrium values at nonzero order parameters, where the effective potential reduces to
the grand-canonical potential. In reality, the system is of course disturbed by different
environmental influences so that the system will prefer only one equilibrium value. With
this choice the symmetry of the system is broken and that is why this phenomena is
called spontaneous symmetry breaking.

One may ask: How can one see that p, is really positive? The answer can be obtained by
optimizing the effective potential leading to the determination of the condensate density
|¥|? which turns out to be u, = ¢g|¥|? in lowest order.

Critical temperature An interesting application for the above Landau form of the
grand-canonical potential deals with the question, whether the critical temperature has
changed due to weak interactions. From the above discussion of the Landau form, we
know that the critical point is determined by the vanishing of the renormalized chemical
potential (10.80). Indeed, this condition coincides with determining the critical point
within the framework of finite temperature perturbation theory (4.38). From Eq. (10.80)
we would get T, as a function of the bare chemical potential p

2mh? 1 2/
kT, =~ (2%(3/2)) . (10.81)

Since this temperature is large for small ¢ compared with T, the high-temperature ex-
pansion is consistent with the weak-coupling assumption of perturbation theory. This
proves that classical thermal fluctuations dominate at 7®) over quantum fluctuations.
This also justifies the zero Matsubara approximation for the leading shift in the critical
temperature in (7.13).

An experimentally more accessible quantity is the particle density n, which is obtained
by differentiating the grand-canonical potential (10.79) with respect to p:

290,
A8

1LV(T, V)

1
— — Be
e A T

Caja(€%)Capa (™) (10.82)

Here, we have already set |U|?> = 0 which is true at the critical point. If one now insert
the critical condition u, = 0 for the chemical potential (10.81) and expand up to O(g),
this reduces to the free Bose gas expression:

M) = 55Gp() + O "= 23+ O (10.83)



106 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASES

Thus the effective potential evaluated up to the first perturbative order does not lead to
a shift in the condensation temperature which agrees with the result of Ref. [98].



Chapter 11

Application to Optical Boson
Lattices

In this chapter we return to the problem of an effectively homogeneous Bose gas confined
in an optical lattice. For the lowest band the one-particle dispersion relation is given by
(1.25):

d
e(k) =27 (1 — coskid). (11.1)
i=1
Here the wave vectors k are also continous but they are restricted to the first Brillouin
zone k; € (—m /6, m/0). Thus the sum in (9.25) reduces to the integral

YVt

These integrals are evaluated using the hopping expansion [99], in which one expands the
integrand in powers of the cosines of (9.25). This is formally implemented by inserting
in (11.1) an artificial parameter x according to

(11.2)

d
e(k) =2J ) (1 — kcosk;d) (11.3)
i=1
and by expanding the resulting expressions in powers of k, where we set kK = 1 at the
end. By doing so, we introduce the on-site interaction U = gn and the particle density by
n = §~7 for an integer filling factor in the periodic potential. So the resulting transition
line (ng = 0) turns out to be defined by the implicit equation

kT, U
Fgl —,—=]=0. 11.4
(M 5) (1.4
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11.1 Zeroth Hopping Order

In zeroth hopping order, where x = 0, the function F} is given by:

2\/d? + dy
1n4‘/d2+dy+y+2d '
A/ d? + dy —y — 2d

In this lowest approximation one obtains analytic expressions for the value of the inter-
action parameter U/J at T =0

F{(2,y) = — (11.5)

U
—| =23+2V3)d~12.93d, (11.6)
J T=0

the critical temperature of the interaction free model (U = 0)

= — 11.7
¢ kbln3’ ( )

and the shift in the critical temperature AT, = T, — T due to small interactions, which
turns out to be linear
AT, 1U

The resulting transition curve for d = 3 and the next three approximations coming from
successive hopping orders (see next section) are shown in Fig. 11.1. Qualitatively we
observe a similar reentrant behavior [47] like in the homogeneous case of BEC, which
is not really surprising as we deal with an effectively homogenous system in the lowest
band. However, the nose is more pronounced than in the case of the free one-particle
dispersion (10.1) and therefore it may be easier to experimentally observe this reentrant
transition in the experiment of optical Boson lattices. Furthermore, the measurement
process is much easier here, because quantum heating can be carried out by just varying
the intensity of the laser beam at a certain temperature.

11.2 Higher Hopping Orders

The convergence of the transition line in Fig. 11.1 can be observed with the approxima-
tion sequence of transition points U/J at T = 0 shown in Fig. 11.2, converging towards
the value 30.8. From that one can compute the corrections due to higher hopping orders:

U
| =388- 4.75% — 135" — 0.6x° — 0.4x% — 0.35"0 — 0.26" + O(k'), (11.9)
T=0
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Figure 11.1: Phase diagram of superfluid-Mott insulator transition in optical lattices for
increasing hopping order.
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Figure 11.2: Convergence of hopping expansion for the critical value of U/.J at the zero-
temperature quantum phase transition.

where the expansion parameter x = 1 has been introduced whose power serves to count
the hopping order. Thus our value is smaller than the mean-field result U/.J|r—y ~ 34.8
[16, 100-102] derived from the Bose-Hubbard model (1.22) and the experimental number
In the same way the sequence of transition temperatures at U = 0 converges to T, ~
3.6 J/kp with the corresponding expansion:

kBTc
J

= 5.46 — 0.85k% — 0.29x* — 0.16K° — 0.09x° — 0.07x" + O(x'?).  (11.10)

The higher-loop slope for the lattice spectrum (11.1) is unknown, so that we cannot im-
prove the result near 7, in the same way as for the free-particle spectrum. By analogy, we
may, however, assume that the characteristic reentrant transition will also here survive
higher-loop corrections.
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For the experimentalist it is important to know whether this phenomenon persists if
the optical lattice is stabilized by an overall weak magnetic trap of a typical frequency
Wirap A 21 x 24 Hz which is necessary to prevent the particles from escaping the optical
lattice. According to the result of Ref. [41], the nose in the transition curve could disap-
pear since for the free-particle spectrum an external trap causes a reversal of the slope
of the transition curve at 7% [49, 103, 104], the shift becoming

tem 1 —3.427 /11 X 19 X agen'/® =1 —0.136 /11 x 15 x U/J, (11.11)

where r; = kBTc(O)/Qﬂhwtmp and ry = 1/)\wtrapn1/3 is the ratio between the length scale
§/f'/3 and the width of the trap A,,,, = \/fi/Mwiwap. These numbers have the ranges

r1 € (0.27,2.0) and ry € (0.52,1.4) so that 0.136 x /ry x 7 lies between 0.037 and 0.27,
experimentally.

We end by mentioning that after our paper [47] appeared on the Los Alamos server,
P.J.H. Denteneer drew our attention to a preprint of his written with D.B.M. Dicker-
scheid, D. van Oosten, and H.T.C. Stoof (eprint: cond-mat/0306573) in which they also
found a nose in the phase diagram (see their Figure 6). According to his private commu-
nication they did not, however, interpret their nose as a signal for a reentrant transition
but considered it as an artefact of their slave boson approach.



Appendix A

Robinson Formula

Here we derive a series representation of the polylogarithmic function

ooZn

W)=Y =, (A1)
n=1

where z = e is the fugacity, which is valid for small negative chemical potential s.

Naively, one would expect that this is carried out by a simple Taylor expansion of the

exponential function:

© 1 @ k 00 k oo 1
G =3 > Ukl OnE s (42)
n=1 k=0 : k=0 : n=1

Applying the sum representation of the zeta function {(v) = (,(1) this yields:

ey =3 O, gy, (A.3)

i k!

However, this result is wrong for negative chemical potential 4, as the sums cannot be
interchanged. Instead, the correct series representation turns out to be:

ey = -+ 3 O, <o (A1)

This was first proven by Robinson [105] using the Mellin transformation as elaborated in
Section A.1. In Section A.2 we show that it can also be shown by invoking the Poisson
formula [49, Chap. 2].

A.1 Proof via Mellin Transformation

The Mellin transformation of a function f(z) is defined by
F(s) = / Y fa) e dr (A.5)
0
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The inverse Mellin transformation is then given by

1 c+ioo

flz) = —%c F(s)xz*ds, (A.6)

271 Je—ico

where the integral has to be performed over the so-called Bromwich path [106]. Now,
we apply these formulas to the polylogarithmic function (A.1). Its Mellin transformed
follows from (A.5) to be

/ Sldm—z

v
nln nln

/ —ongs=l gy = D(s)C(v+5). (A7)

Of course, the inverse Mellin transformation (A.6) should give back the polylogarithmic
function itself

F@) =Gl = 5§ () + ) ds. (A8

27rz —ic0

From that we derive a series representation of the polylogarithmic function by calculating
the complex integral with the help of the residue theorem, which states that a complex
integral is given by a sum over all residues of the integrand f(z) at its singularities ay:

fc F(2)dz = 2m§j Res(f, az) . (A.9)

The function ((s 4 v) has a simple pole at s = 1 — v with the residue 1, which will give
the first part of the Robinson formula (A.4). The second part comes from the simple
poles of the gamma function I'(s) at s = —n with residues (—1)"/n! .

A.2 Proof via Poisson Formula

A.2.1 Derivation of Poisson Formula
We consider a periodic delta function
> 6(x—m) (A.10)

and its Fourier representation

o0

= 3 o) grmine (A.11)

n=-—oo
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where the coefficients 6(P) are given by

1 .
- / 50 ()27 gy (A.12)
0
The last integral can be done, by inserting the definition (A.10):
. 1 .
5 = Z / (2 —m)e ™" dy = / [6(z — 1)+ 6(z)] e ™ dx = 1.(A.13)
m=—00 0

Inserting (A.13) in (A.11) yields together with (A.10) the fundamental identity
Yo dw—m)= ) e, (A.14)

We apply this distribution identity to a test function f(z) and multiply the resulting
equation with an integral over the whole real axis to obtain the bosonic Poisson formula:

i f(m) Z / Je T | (A.15)

m=—0oQ n=—oo

Applying the Poisson formula in many-body theory has the effect of converting a high-
temperature in a low-temperature expansion, as can be seen in Section 2.1 . Integrating
over only one half of the real axis, we get

hm Z / Sz —m d:c—hrn Z / e 2T gy (A.16)

m=—0o0 n=—oo

so that extracting the n = 0 contribution yields the modified bosonic Poisson formula:

o0

Z:1f(m) = / r)dr +2 Z/ ) cos(2mnx) dz |. (A.17)

A.2.2 Derivation of Robinson’s Formula

Now we apply the modified bosonic Poisson formula (A.17) to the function f(z) =
xVebnr.

Bun o] 00
G (ePH) = e = / et dr 423 / x Ve cos(2mna) dr.  (A.18)
n=1"0

14
nln

The first part of the above equation can be calculated immediately. It gives the additional
contribution to the Taylor expansion in (A.4):

/OO r7V el dy = (—Bp)r ! /Ooo vV dr =T(1—v)(—Bu)"". (A.19)

0
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The calculation of the second part
L:=2)" / x7V e cos(2mnz) du = 2Re Y / gV e (Au=2minz gy (A.20)
n=1"0 n=1"0

is a little bit more involved. There, it is allowed to expand the exponential function into
a Taylor series

I, = 2I(1 —v)Re ioj(—zm'n)”*1 (1 + @ >V1 : (A.21)

n=1

As Bp/(2min)’~! is a small parameter, we evaluate the last bracket in a power series

2min

k
00 00 -1
I, = 2I(1 = »)Re ¥ (=2win)" 3 (” ) ) ( Ou > , (A.22)
n=1 k=0
so that the sum over index n becomes a zeta function:

L = 21— (” - 1> (Bp)* cos(m/2(v — 1+ k)) C1—v+k). (A23)

pr k (27r)1+k—u

With the analytic continuation of the zeta function [55]

2172 1(2) cos(mz/2)

1—2)= < ((2) (A.24)
we obtain, after some trivial simplifications, the desired result:
= (Bp)"
L=> o C(v—Fk). (A.25)

k=0



Appendix B

Dimensional Regularization

B.1 Motivation

In perturbation theory the integrals of the second-order Feynman diagrams diverge in
d = 3 dimensions. With the help of so-called regularization procedures they can be made
finite. One of the most popular procedures is dimensional regularization, which was
invented by 't Hooft and Veltman [107]. There, the measure of integration is changed by
allowing the dimension d in the integrals to be an arbitrary complex number for which
convergence is assured. The d-dimensional results can be expanded in powers of the
deviation € from three dimensions by setting d = 3 — 2¢. The divergencies in the physical
quantities then arise as € poles, which vanish in most physical theories by renormalization.
Those theories are called renormalizable. Here, we will derive some important formulas
which are needed for calculating Feynman diagrams with dimensional regularization in
Part 2 and 3 of this work.

B.2 Schwinger Trick

Schwinger observed that a fraction of the form 1/a” with an arbitrary expression « and
power x can be rewritten as an integral:

1 1 o0
— = drr* te o7 |, B.1
ar  T(z) /0 o (B.1)

This can be proven with the integral representation of the Gamma function
o0
I(z) = / dt 171t | (B.2)
0
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If we substitute ¢ by at, we get immediately the relationship (B.1). If « is an expression,
which can become zero, one has to use the modified Schwinger trick:

1 100 .
— = Re lim dre (@107 |, (B.3)
(6] €l0 Jo

We proof Eq. (B.3) as follows:

lim dre= (=197 = limji—— = ilim ——— + lim ——— = iro(z) + — (B.4)
elo Jo el0 €+ o 0 €2+ a2 €0 €2+ a? «

Thus taking the real part of the right-hand side of (B.4) yields the desired result (B.3).
A useful application of the Schwinger trick is the following representation of a logarithm:

Ina = —% a”® 0= —% { ﬁ/g dTTx_1€_aT} . (B.5)
We proof this relationship by considering the function
flz)=a =", (B.6)
Because of it’s derivative f'(x) = —Inaf(x) and f(0) =1, we write
Ina=—f'(0) = _9 a™® : (B.7)
ox x=0

Finally we apply (B.1) to (B.7) from which one obtains (B.5).

B.3 Feynman Parameter

For products of different denominators we use Feynman’s parametric integral formula

1 T 1 a—1 1 — b—1
= (a+ ) / grT (1—17) .| (B.8)
A“BP T T(a)T(b) Jo * [Ar + B(1 - 7)]
which is a straight-forward generalization of the obvious identity
1 1 1 1
Lol wh=['ir BT
AB B—A(A B) B— A/ x AT+B1—T)]2 (B9)
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