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PrefaeBosoni atoms ooled down to very low temperatures in the miro or nano Kelvin regimeshow features, whih have fasinated experimental as well as theoretial physiists fordeades. Matter wave oherene properties, vorties, e�ets of superuid ow and ol-letive exitations have been observed and theoretially studied. These marosopiquantum phenomena our below a ritial temperature, where Bosons form a oherentquantum state alled Bose-Einstein ondensate (BEC).This new state of matter has been predited by Einstein in 1924 [1℄ for non-interatinggases, whose partiles obey the Bose statistis [2℄. Fourteen years later, London [3, 4℄ andTisza [5℄ applied these ideas to the qualitative desription of superuid Helium. However,a quantitative agreement between experiment and theory failed beause of the high den-sity and strong interations in Helium that prevent the formation of a real marosopiondensate. That is why in Helium only 10 perent of the atoms reside in the oherentground-state even at T = 0. This led to the searh of weakly-interating Bose gaseswith a higher ondensate fration. It took more than 70 years after their theoretialpredition until Bose-Einstein ondensates were �rst realized experimentally in 1995 indilute atomi gases for rubidium [6℄, sodium [7℄, and lithium [8, 9℄. Based on advanedlaser and evaporative ooling tehniques researh groups at MIT and JILA were able toprodue ondensates of more than 106 atoms. Their realization in the laboratory has en-abled physiists to study fundamental quantum theory on large sales and was thereforerewarded with the Nobel prie of physis in 2001.Today Bose-Einstein physis has beome a highly interdisiplinary �eld. The new areaof quantum optis uses the oherene properties of the ondensates to investigate thepossibility of building matter wave lasers and omponents for quantum omputers [10℄.Even in nulear and partile physis the long-range orrelations of ultraold bosons haveled to many appliations in interferometry and heavy-ion reations [11℄. Bose onden-sates were also found in other systems. In ondensed matter physis, superondutivityhas been explained with the help of Bose ondensed Cooper pairs [12℄ sine the �fties ofthe last entury. Bose-Einstein ondensation of exitons [13℄ and magnons [14℄ has beenpredited, however its experimental evidene is still pending.v
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Figure 1: Finite temperature phase diagram in the as-T plane. The straight line indiatesthe predition of lassial �eld theory valid loally in the viinity of T (0) . The globalstruture of the whole phase diagram has not been investigated up to now.
Reently, another quantum state of matter has been disovered in whih a boson gas istrapped near zero temperature in an optially generated lattie of standing laser beams[15℄. Due to the tunnelling between adjoint potential wells and Bloh's theorem, thebosons lie in energy bands and behave similarly to free partiles. Thus they form asuperuid phase whih is deloalized over the lattie. As the wells deepen, a quantumphase transition ours, loalizing the atoms in the wells. The latter phase is analogousto a Mott insulator in eletroni systems, and its properties were disussed theoretiallyin Refs. [16, 17℄. With these experiments one enters a new �eld of physis with ultraoldgases as one an bring a dilute gas of bosons into a strongly orrelated regime whereinteration indued orrelations are dominant.So far, most experimental work has dealt with BECs in magneti traps and manytheoretial investigations have been foused on suh systems [18{20℄. However, thereare interesting unsolved theoretial problems also in homogeneous BECs with arbitrar-ily weak two-partile interations. For instane, one important fundamental propertyof homogeneous BECs has been posing a long-time puzzle to �eld theorists: In whihdiretion and by whih amount does a repulsive interation push the ritial tempera-ture? Although this problem appears to be very simple, it has been answered in manyontraditory ways [21{43℄. Most of these works are based on the lassial limit of �eldtheory, where only the zero Matsubara modes of the �elds are inluded. With this ap-proximation one was able to alulate the leading shift in the ritial temperature whihturned out to be linear in the s-wave sattering length as. In a �nite temperature phasediagram of the as � T plane, this orresponds to a linear urve starting at the ritialtemperature T (0) of a non-interating gas where as = 0 as illustrated in Fig. 1. The nextleading orretion to this urve has been alulated reently by Arnold and o-workers



vii[31℄ by mathing the full quantum �eld theory to the lassial three dimensional theory.They obtained a seond-order result in the shift of the ritial temperature. However,their result is not satisfatory as it is valid only for small as and annot reah the regime,where the Mott insulator transition ours. Thus, up to now the full phase diagram (Fig.1) is yet unknown.The goal of this thesis is to �ll this gap and to understand the ritial properties of both,weakly interating gases as well as strongly orrelated optial boson latties above and,espeially, below the ritial point. Our results will be obtained from an appliation of�eld-theoretial methods of many-body physis. In partiular, we shall derive the fullphase diagram in the as � T plane.In more detail we shall proeed as follows:1. We shall alulate the temperature dependent diagrams for the vauum and theself-energy in arbitrary dimensions d up to the seond perturbative order. Whilefor fermions this has been done a long time ago, there exists for weakly interatingbosons in the dilute limit only a alulation of the vauum diagrams in exatlyd = 3 dimensions by Huang et al. [44{46℄. As a �rst appliation we want toinvestigate how nonzero Matsubara modes and therefore quantum e�ets inuenethe shift of the ritial temperature and ompare our results with that of the workof Arnold et al [31℄.2. Next we shall investigate the entire phase diagram (Fig. 1). To this end we ap-ply a systemati loop expansion, where the utuations of the bose �elds aroundthe ondensate are taken into aount order by order. This allows us to �nd thetransition line in the whole temperature regime of the phase diagram [47, 48℄.3. The same �eld-theoretial methods as mentioned above will then be applied toBose-Einstein ondensates trapped in optial latties [47℄. There the periodiityleads to a quasi-free behavior due to Bloh's theorem, whih enables us to treatthis system as e�etively homogeneous. At T = 0, a quantum phase transitionfrom the Mott insulator to the superuid phase is found and ompared with reentexperimental data [15℄. Furthermore, our alulations make theoretial preditionsfor the behavior of the system at �nite temperatures that an be tested experimen-tally.The work is organized as follows:Part1: In Chapter 1 we review the properties of the ideal Bose gas at �nite temperatureand show how weak interations an be inluded. Optial boson latties are introduedas an experimental realization of the Bose-Hubbard model. In Chapter 2 the basi



viii PREFACEtools of thermal �eld theory suh as Matsubara sum and e�etive ation formalism areprovided. We end this part by reviewing a new resummation tehnique alled variationalperturbation theory [49, 50℄ in Chapter 3. This powerful tool was developed in our groupto turn weak-oupling divergent series into strong-oupling onvergent ones and will beused in various ontexts throughout this thesis (Chapter 7, Setions 9.2, 10.2).Part2: Finite temperature perturbation theory up to the seond order in the s-wavesattering length is arried out for temperatures above the ritial point. Aording tothe Feynman rules of many-body theory and Wik's theorem the Hugenholtz diagramsand their weights are obtained for the vauum and self-energy in Chapter 4. In Chapters5 and 6 we alulate these diagrams in dimensional regularization using the spae-timerepresentation of the free propagator. As a �rst appliation, we investigate in Chapter7 the inuene of non-zero Matsubara modes on the shift of the ritial temperature ind = 3 dimensions.Part3: A �nite temperature loop expansion for the e�etive potential is performed inChapter 8 with the help of the bakground method. We introdue the Popov approx-imation as a variationally resummed version of the Bogoliubov approximation for thee�etive potential in Chapter 9 and alulate the number of non-ondensed atoms. Weinvestigate the e�etive potential of dilute gases in the temperature regime below theritial point and ompute the whole phase diagram with the help of variational pertur-bation theory (Chapter 10). Seond, we alulate the phase diagram of optial bosonlatties with the help of a hopping expansion. At T = 0 we ompare our results withexisting experimental values [15℄ and make theoretial preditions for the behavior at�nite temperatures (Chapter 11).



Part I:Physial and Mathematial
Foundations





Chapter 1Bose-Einstein Condensation
1.1 Ideal Bose GasIn three dimensions, nature is made up of two di�erent sorts of partiles: fermions andbosons. Fermions obey the Pauli exlusion priniple whih states that two fermionsannot oupy the same quantum state. Bose partiles in ontrast, like to oupy thesame quantum state, whih an harbour an arbitrary number of them. In this setionwe review the ideal Bose gas at �nite temperature in the grand-anonial ensemble. It isdesribed by the fundamental Bose-Einstein distribution funtion:hn(k)i = 1e�[�(k)��℄ � 1 = 1Xn=1 e��[�(k)��℄n ; (1.1)where hn(k)i denotes the mean oupation number per single partile energy level �(k),� = 1=kBT is the inverse temperature and � the hemial potential. Beause of thepositivity of the mean oupation number, the hemial potential annot exeed theground-state energy �(0) and is limited to values below �(0)).Consider now N bosons in a �nite box of volume V and impose periodi boundary on-ditions. The total partile number is obtained from (1.1) by summing over all possiblequantum states: N =Xk hn(k)i ; (1.2)where we have assumed spin zero for the bosons. In the thermodynami limit, where Nand V tend to in�nity while the partile density n = N=V is kept �xed, the sum an bereplaed by an integral over all ontinuous energy levels �(k) = �h2k2=2m:Xk ! Z 10 g(�)d� ; (1.3)3



4 CHAPTER 1. BOSE-EINSTEIN CONDENSATIONwhere g(�) = d�(�)d� = 2�V(2��h)3 (2m)3=2�1=2 (1.4)is the density of states, whih follows from the phase spae volume � in three dimensions:�(�) = ZV d3x ZS� d3p(2��h)3 = 2�V(2��h)3 (2m)3=2 Z �0 p�0 d�0 : (1.5)Consequently, the partile number (1.2) is given by the integralN = 2�Vh3 (2m)3=2 Z 10 d� p�e�(���) � 1 = V�3 �3=2(z) : (1.6)In the last step we have introdued the polylogarithmi funtion ��(z) de�ned by��(z) = 1�(�) Z 10 d� ���1e�(���) � 1 (1:1)= 1Xn=1 znn� ; (1.7)the thermal wave length � = q2��h2�=m and the fugaity z = e��. For z = 1 the poly-logarithmi funtion ��(z) reahes its maximum value and redues to Riemann's zetafuntion ��(1).The above semi-lassial onsideration neglets one important detail: Although for bigvolumes, the one-partile states are very dense, replaing the sum by an integral is notreally justi�ed. This approximation (1.3) is wrong in the limit � ! 0. For partiles ina box with periodi boundary onditions, thus exists a ground-state desribed by thewave funtion �0 = 1=pV , whih does not ontribute to the integral in (1.6) due tothe vanishing of the density of states. The state k = 0 plays an important role for thephenomenon of BEC. It must be treated separately, hanging (1.6) toN = Nex +N0 = V�3 �3=2(z) + z1� z ; (1.8)where Nex is the number of partiles in the exited states and N0 is the number ofpartiles residing in the ground state, obtained from (1.1) for the ground-state energy�(0) = 0. This number diverges as soon as the hemial potential approahes the ground-state energy: � = 0. How an this be understood physially? As we work in thethermodynami limit, we should better onsider the partile density, whih is a �nitequantity: n = nex + n0 = 1�3 �3=2(z) + N0V : (1.9)



1.2. WEAK INTERACTIONS IN DILUTE GASES 5In the limit z ! 1, the polylogarithmi funtion and thus the density of exited partilesreahes its maximum nmaxex = �(3=2)=�3, and n0 = N0=V is a �nite quantity given byn0 = n� nmaxex . If now partiles are added to the system, they would immediately resideinto the ground state, beause nex has already reahed its maximum. This marosopioupation of the ground-state level is alled Bose-Einstein ondensation (BEC) and n0is alled the ondensate density. The ondition n0 = 0 is equivalent ton�3 = �(3=2) ; (1.10)and de�nes the ritial temperature of BECT (0) = 2��h2mkB  n�(3=2)!2=3 ; (1.11)with �(3=2) � 2:6124. From the proportionality n � ��3 the relative part of the on-densed atoms is given by N0N = 1�  TT (0) !3=2 : (1.12)One of the most amazing features of BEC is that it ours even in ideal gases just beauseof statistis, although we know from the theory of ritial phenomena that long-rangeorrelations are responsible for phase transitions. That is why one often refers to BEC asbeing driven by "statistial interations". However, the above idealization is somewhatarti�ial and, of ourse, we have to inlude real interations to see how the nature ofBose-Einstein ondensation is a�eted.1.2 Weak Interations in Dilute GasesBosons interat with one another through binary ollisions that are treated in the frame-work of sattering theory. In general, the interation potential is very ompliated andan only be omputed in ab initio alulations. For an experimental realization of BECit is important to irumvent three-partile ollisions that would lead to a solidi�ationof the gas. Therefore, the density of the gas is kept so low that the thermal wave length� � n�1=3 is muh larger than the e�etive extension of the interation potential. Thus,the true ompliated interatomi potential an be replaed by an e�etive two-partileontat interation [18℄ Vint(x;x0) = g Æ(x� x0) ; (1.13)where the oupling onstant g is related to the the s-wave sattering length as viag = 4��h2asm : (1.14)



6 CHAPTER 1. BOSE-EINSTEIN CONDENSATIONThis delta potential has to be interpreted for as > 0 as a repulsive hard-ore potentialthat prevents mutual penetration of the atoms. In seond quantization the most generalmany-body ation desribing bosons of a grand-anonial ensemble with a two-partileinteration Vint(x;x0) reads in imaginary-times (see Setion 2.1):A[ (x; �);  �(x; �)℄ = Z �h�0 d� Z ddx f �(x; �)[�h�� + h(x)� �℄ (x; �) (1.15)+12 Z �h�0 d� Z ddx Z ddx0 (x; �) (x0; �)Vint(x;x0) �(x; �) �(x0; �)g ;where h(x) denotes the one-partile Hamilton operatorh(x) = � �h22m�+ Vext(x) (1.16)with an arbitrary external potential Vext(x). Inluding the interation term (1.13), weget A[ (x; �);  �(x; �)℄ =Z �h�0 d� Z ddx f �(x; �)[�h�� + h(x)� �℄ (x; �)+g2 (x; �)2 �(x; �)2g : (1.17)In a typial BEC with as of the order of �A and partile distanes of a few thousand �A,the gas parameter asn1=3 � as� is very small, whih allows to desribe the ondensate asa weakly interating gas. In this weak-oupling regime, where the ratio  = �int�kin = 8�asn1=3 (1.18)between the interation energy �int = gn and the kineti energy �kin = �h2n2=3=2m is small,we are able to treat the interation term in (1.17) in the framework of perturbation theory(see Part 2). Note that this is based on the assumption � � n�1=3, whih is in partiulartrue near T (0) . For the desription of the ondensate at lower temperatures the densityand thus the gas parameter inreases and we have to use a di�erent approah (see Part3). From (1.18) we see that there is another possibility to reah the strong-ouplingregime, namely by inreasing the sattering length as. This is indeed possible by usinga so-alled Feshbah resonane [51℄. This has been realized reently in 85Rb, where thesattering length as has been tuned over several orders of magnitude and a ollapse of theondensate has been observed. In the next setion we desribe a third, entirely di�erentapproah for reahing the strong orrelated regime.



1.3. STRONG CORRELATIONS IN OPTICAL BOSON LATTICES 7
δ

V0

Figure 1.1: Potential landsape build up from rossing laser beams1.3 Strong Correlations in Optial Boson LattiesA fasinating �eld in the physis of BEC is the possibility to store single atoms in aperiodi optial lattie potential of lattie spaing Æ:Vlat(x) = V0 dXi=1 sin(qixi)2 ; qi = �=Æ : (1.19)Suh a potential landsape is reated by using a standing wave interferene pattern oftwo ounter propagating laser beams where the lattie spaing Æ equals half of the laserwave length � = 2Æ. There, neutral atoms are stored due to interations between thelight �eld of a laser beam and the indued dipole moment of the atoms. The wave vetorq de�nes the reoil energy Er = �h2q2=2m. The Hamiltonian for interating bosonipartiles (1.13) in suh an external trapping potential readsH = Z d3x ( y(x; t) "� �h22m�+ Vlat(x)� �# (x; t) + g2  (x; t)2 y(x; t)2) ; (1.20)where  (x; t);  y(x; t) are the boson �eld operators. Charateristi for partiles in anoptial lattie is the emergene of a band struture. The wave funtion of a single par-tile in a periodi lattie potential is best desribed by so-alled Wannier funtions [52℄.They onstitute an orthogonal and normalized set of wave funtions that are maximallyloalized at individual lattie sites.1.3.1 Bose-Hubbard HamiltonianFor low temperatures it is justi�ed to assume that all partiles move only in the lowestband, so that the �eld operators  (x; t) an be expanded in the basis of Wannier funtionsw(x� xi) of the lowest band: (x; t) =Xi ai(t)w(x� xi) ; (1.21)



8 CHAPTER 1. BOSE-EINSTEIN CONDENSATIONwhere ai(t) is the partile annihilation operator ating on the ith lattie site in theHeisenberg piture. For  �(x; t) the orresponding expansion oeÆient is the reationoperator a�i (t). Both operators obey the anonial equal time ommutation relation forbosons [ai(t); a�j(t)℄ = Æij. With this expansion the Hamilton operator (1.20) redues tothe famous Bose-Hubbard Hamiltonian [16℄:H = �J X<i;j>a�i (t)aj(t)� �Xi ni(t) + U2 Xi ni(t)(ni(t)� 1) ; (1.22)where the partile operator ni(t) = a�i (t)ai(t) ounts the number of bosons on the ithsite. The �rst term desribes the kineti energy that deloalizes eah atom over thelattie through tunnelling. Here the orresponding sum inludes only tunnelling betweenneighboring lattie sites. It's strength is given by the tunnelling matrix elementJ = � Z d3xw(x� xi) ��h2r22m + Vlat(x)!w(x� xj) : (1.23)The seond term with the hemial potential � just ats as a Lagrangian multiplier to �xthe mean number of partiles in the grand-anonial potential. The last term of (1.22)desribes the interation between two atoms on a single lattie site with the interationstrength U = g Z jw(x� xi)j4 d3x : (1.24)For as > 0 the interation is repulsive and tends to loalize the atoms to their lattiesites. Thus the �rst and last term in (1.22) ompete with eah other. In the experimentboth parameters an be hanged by varying the potential depth V0 of the optial lattiepotential (1.19). If the potential depth V0 is inreased the tunnelling barrier betweenneighboring lattie sites is raised and thus J dereases. At the same time the on-siteinteration U inreases, beause of the tighter on�nement of the wave funtion on alattie site. In analogy to ondensed matter physis a state where the potential (1.19)is so high that all atoms are loalized at individual lattie sites is alled Mott insulator.In the opposite limit when the tunnelling matrix element dominates the Bose-HubbardHamiltonian (1.22) the atoms are in the superuid phase and are deloalized over thewhole lattie.1.3.2 Tight Binding ApproximationIf the individual potential wells are deep, i.e., V0 � Er, the single partile Wannierfuntions w(x�xi) in the nearly harmoni wells are given by osillator ground-state wavefuntions at the lattie sites with size a0 = q�h=M!0 and energy �h!0 � 2Er (V0=Er)1=2.



1.3. STRONG CORRELATIONS IN OPTICAL BOSON LATTICES 9Due to the low temperatures we an restrit our alulations to the lowest energy bandarising from Bloh's theorem, whih reads, up to a trivial additive onstant,�(k) = 2J 3Xi=1[1� os(kiÆ)℄ : (1.25)This standard textbook result is valid for an arbitrary shaped periodi potential andfollows from simple perturbative alulations. The tight-binding approximation showsthat the width of the band 4J depends on the tunnelling strength (1.23), whih an bealulated from the exat result for the width of the lowest band [52℄:J = 4p� Er �V0Er�3=4 exp "�2�V0Er�1=2# : (1.26)The interation strength U an be obtained from (1.24) by taking w(x) as the Gaussianground state in the nearly harmoni osillator potentials [17, 52℄:U = asa0 2�h!0p2� = 2�as� s 8� Er �V0Er�3=4 : (1.27)1.3.3 Superuid-Mott Insulator TransitionResearhers from the Max Plank institute for quantum optis in Garhing, Germanywere able to transform a dilute gas of old atoms from a superuid to a Mott insulator andbak again simply by varying the intensity of the laser beam.The experimental optiallattie of Ref. [15℄ is made of laser beams with wavelength � = 2Æ=852 nm and ontainsabout 2 � 105 atoms 87Rb with as � 4:76 nm [18℄. Its energy sale is Er � �h � 20 kHz� kB � 150 nK and V0=Er is raised from 12 to 22. In this range, J=Er drops from 0.014to 0.002, U=Er inreases from 0.36 to 0.57, �h!0=Er inreases from 0.36 to 0.57.Expanding the small-k behavior of the band energy (1.25) as �h2k2=2Me� + : : :, the bandwidth 4J de�nes an e�etive mass Me� of the partiles Me� = �h2=2JÆn2. We alreadymentioned in the last setion that in a typial BEC the gas parameter asn1=3 is verysmall. For the partiles tightly bound in an optial lattie, however, ae� n1=3 = =8�an be made quite large. In the experiment [15℄ for temperatures near zero we have = U=J = 0:0248 exp(2qV0=Er), so that the inrease of the potential depth V0=Er from12 to 22 raises ae�n1=3 from 1 to 11.7. The phase transition between the two statesoured around V0 � 13Er. To �nd out whih phase is present they released the atomsfrom the trap and looked for the interferene pattern whih is present in the superuidphase and absent in the Mott insulator regime.Above the quantum phase transition, they observed a gap in the exitation energies



10 CHAPTER 1. BOSE-EINSTEIN CONDENSATIONof the bosons, whih pins the atoms to their potential wells. Expressed di�erently, theGoldstone modes of translations have beome massive and the assoiated phase utu-ations deoherent, in aordane with the riterion found in Ref. [53℄. For inreasingtemperatures, we expet the ritial ae�n1=3 to derease until it hits zero as T reahesroughly the free BEC ritial temperature (1.11). In the above experiment where V0=Eris raised from 12 to 22, the temperature T (0) drops from 14.2 nK to 1.93 nK, implyingthat T (0) =Er drops from 0.094 to 0.013. Hene J , and kBT are muh smaller than �h!0,so that we an ignore all higher bands and the tight-binding approximation is justi�ed.



Chapter 2Thermal Field TheoryThis hapter provides the basi �eld-theoreti methods of many-body theory that areused extensively throughout the thesis. In fat, there are two di�erent approahes to �eldtheory, the operator formalism and the funtional integral formalism. All thermodynamiproperties at �nite temperature and non-zero hemial potential follow from the grand-anonial partition funtion, whih is de�ned by a funtional integral. As a �rst examplewe alulate the grand-anonial potential and the Green funtion of a free Bose gas fortemperatures above the ritial point of BEC in Setion 2.1. Afterwards we introdue inSetion 2.2 the e�etive ation as a thermodynami potential that desribes the behaviorof many-body systems below the phase transition.2.1 Imaginary Time FormalismIn many-body theory [54℄ the problem is to evaluate the grand-anonial partition fun-tion Z = I D I D �exp��1�hA[ �;  ℄� ; (2.1)where A[ �;  ℄ is the eulidian ation (1.17) for bosons. Here the irle of the integralindiates that the integration has to be performed over all periodi �elds (x; 0) =  (x; �h�) ;  �(x; 0) =  �(x; �h�) (2.2)in the imaginary time � 2 [0; �h�℄. Note that for fermions the �elds are anti-periodi inthe imaginary time � .2.1.1 Free Partition FuntionWe now onsider the quantum statistial partition funtionZ(0) = I D I D �e� 1�hA(0)[ ; �℄ (2.3)11



12 CHAPTER 2. THERMAL FIELD THEORYfor an interation-free Bose gas, whih is desribed by the eulidian ation (1.17) forg = 0:A(0)[ �(x; �);  (x; �)℄ = Z �h�0 d� Z ddx �(x; �) [�h�� + h(x)� �℄ (x; �) : (2.4)A ommon way to ompute suh a funtional integral is to expand the bosoni �elds withrespet to one-partile wave funtions  k(x) whih are hosen to be eigenfuntions of theone-partile Hamilton operator (1.16):h(x) k(x) = �(k) k(x) : (2.5)Beause of the periodiity of the bosoni �elds with respet to the imaginary times � in(2.2) we also perform a so-alled Matsubara deomposition with respet to � : (x; �) =Xk Xm km k(x)e�i!m� ;  �(x; �) =Xk Xm �km �k(x)ei!m� : (2.6)The expansion oeÆients km and �km are omplex numbers. The periodiity of the�elds (2.2) leads to the ondition exp (�i�h�!m) = 1, whih an be full-�lled with thehoie !m = 2�m�h� ; m = �0; 1; 2; : : : : (2.7)These frequenies are alled Matsubara frequenies. Inserting (2.6) into (2.4), we takeinto aount (2.5) and use the orthogonality relationsZ �h�0 ei(!m�!m0 )� = �h� Æm;m0 ; Z ddx �k(x) k0(x) = Æk;k0 (2.8)to obtain for the eulidian ation:A(0)[ �(x; �);  (x; �)℄ =Xk Xm �kmkm [�i�h!m + �(k)� �℄ : (2.9)A summation over all periodi �elds  (x; �) and  �(x; �) orresponds to a summationover all expansion oeÆients in (2.6), thus the funtional measure beomes a produtof simple integrals over km and �km:I D (x; �)D �(x; �) �! Yk 1Ym=�1 Z d�km Z dkmNkm (2.10)with the normalization onstant Nkm = �=2� [49℄. Thus the partition funtion (2.3) isgiven by Z(0) =Yk 1Ym=�1 �2� Z d�km Z dkme���kmkm[�i�h!m+�(k)��℄ : (2.11)



2.1. IMAGINARY TIME FORMALISM 13We deompose the omplex expansion oeÆients km; �km into their real and imaginaryparts km = Re km + iIm km ; �km = Re km � iIm km ; (2.12)and apply the rules for a two-dimensional oordinate transformationZ d�km Z dkm = 2 Z dRe �km Z dIm km (2.13)to perform the omplex Gaussian integrals in (2.11), yieldingZ(0) =Yk 1Ym=�1 1�i�h!m + �(k)� � : (2.14)From this we obtain the grand-anonial potential of thermodynamis
(0) = � 1� lnZ(0) = 1�Xk 1Xm=�1 ln[�i�h!m + �(k)� �℄ : (2.15)Now we alulate the sum over the Matsubara frequenies by applying the bosoni Pois-son formula (A.15).At �rst, we rewrite the Matsubara sum in (2.15) in a more onvenient way:M = 2 1Xm=�1 ln[�i�h!m + �(k)� �℄ = 1Xm=�1 ln h�h2!2m + E(k)2i ; (2.16)where we introdued the short-hand notation E(k) = �(k) � �. Seond, we apply thePoisson formula (A.15) to obtainM = 1Xm=�1 Z 1�1 dx ln "4�2x2�2 + E(k)2# e�2�imx (2.17)and replae the logarithm via identity (B.5) to arrive atM = 1Xm=�1 � ��z!( 1�(z) Z 10 d�� z�1e�E(k)2�� Z 1�1 dx exp 4�2�x2�2 � 2�imx!)�����z=0 : (2.18)The x integral an be alulated via quadrati ompletion, yielding:M = �2p� 1Xm=�1 � ��z!( 1�(z) Z 10 d�� z� 32 exp "�E(k)2� � �2m24� #)�����z=0 :(2.19)



14 CHAPTER 2. THERMAL FIELD THEORYAt z = 0 the Laurent expansion of the Gamma funtion �(z) reads [55℄�(z) = 1z +O(z0) : (2.20)Thus we obtain the relationship � ��z! f(z)�(z) �����z=0 =  � ��z! fz [f(0) + f(0)z + : : :℄g ����z=0 = �f(0) ; (2.21)whih is valid for funtions f(z) that are analyti at z = 0. So we obtain for the sum in(2.19): M = ��2p� 1Xm=�1 Z 10 d��� 32 exp "�E(k)2� � �2m24� # : (2.22)Now we split the sum as follows: M = I0 + Im (2.23)with I0 = � �2p� Z 10 d��� 32 e�E(k)2� (2.24)and Im = �2 1Xm=1 �2p� Z 10 d��� 32 exp "�E(k)2� � �2m24� # : (2.25)The ontribution I0 gives diretlyI0 = ��2p� Z 10 d��� 32 e�E(k)2� = �E(k) : (2.26)The remaining � -integral in Im an be found in [55℄, yieldingIm = �2q2�E(k)p� 1Xm=1 1pm K� 12 (�mE(k)) = �2 1Xm=1 e��E(k)mm ; (2.27)where we used the fat that the Bessel funtionK�1=2(z) an be related to the exponentialfuntion [55℄ via K�1=2(z) = r �2z e�z : (2.28)



2.1. IMAGINARY TIME FORMALISM 15If we onsider the geometri sumf 0(x) := 1Xm=1 xm�1 = 1Xm=0 xm = 11� x ; (2.29)an integration with respet to x yields together with f(0) = 0f(x) = 1Xm=1 xmm = � ln(1� x) : (2.30)Applying this result to (2.27) gives us the ontribution Im:Im = 2 ln[1� e��E(k)℄ : (2.31)So the �nal result for the Matsubara sum reads:M = �E(k) + 2 ln[1� e��E(k)℄ : (2.32)Inserting this result in (2.15) yields for the grand-anonial potential
(0) = 12Xk [�(k)� �℄ + 1�Xk lnn1� e��[�(k℄��)o : (2.33)The �rst part of this equation, the so-alled vauum ontribution, does not depend onthe temperature and diverges as soon as we sum over all possible wave vetors. However,we an ignore that ontribution at the moment, beause for T > T this an be absorbedin the renormalization of the energy. Therefore we onsider
(0) = 1� Xk lnn1� e��[�(k)��℄o (2.34)and di�erentiate this result with respet to the hemial potential to obtain the partilenumber N = ��
(0)�� =Xk 1e�[�(k)��℄ � 1 : (2.35)The sum goes over all possible states k. Therefore we read o� the average number ofpartiles in the state k: hn(k)i = 1e�[�(k)��℄ � 1 ; (2.36)whih is nothing else but the famous Bose-Einstein distribution funtion (1.1). In Se-tion 1.1 the equation (2.36) was the starting point for a thermodynami disussion of a



16 CHAPTER 2. THERMAL FIELD THEORYhomogeneous BEC, where one replaes the sum over the wave vetors k by a ontinuousintegral (1.3). For the grand-anonial potential (2.34) this results together with (1.7) ind dimensions to 
(0) = V��d �d=2+1(z) (2.37)The orresponding result for the partile density (1.6) has already been alulated inSetion 1.1 in d = 3 dimensions.2.1.2 Free PropagatorOne of the most important quantities in nonrelativisti quantum �eld theory is the Greenfuntion de�ned as the ensemble average of the free, time-ordered produt of �eld oper-ators G(x1; �1;x2; �2) = hT h (x1; �1) y(x2; �2)ii ; (2.38)where the ensemble average of an arbitrary funtion of the �eld operators is de�ned byhf h (x1; �1) y(x2; �2)ii = Tr f h (x1; �1) y(x2; �2)i e��(H��N)Tr e��(H��N) : (2.39)Here H is the seond-quantized Hamilton operator of the free system, N is the seondquantized partile number operator and T the time-ordering operator, whih is de�nedby T h (x1; �1) y(x2; �2)i = �(�1 � �2) (x1; �1) y(x2; �2)+�(�2 � �1) y(x2; �2) (x1; �1) : (2.40)A short alulation shows that the Green funtion (2.38) ful�lls the inhomogeneousShr�odinger equation in imaginary times[�h�� + h(x)� �℄G(x1; �1;x2; �2) = �hÆ(�1 � �2)Æ(d)(x1 � x2) ; (2.41)where the �rst quantized one-partile Hamilton operator h(x) is shifted by the hemialpotential �. One ould onsider this as a starting point for alulating the Green funtion,but we hoose another approah as we want to get familiar with funtional integrals. Inthe framework of funtional integral quantization the de�nition of the Green funtion(2.38) is equivalent toG(x1; �1;x2; �2) = h (x1; �1) �(x2; �2)i (2.42)= 1Z(0) I D (x; �) I D �(x; �) (x1; �1) �(x2; �2)e� 1�hA(0)[ ; �℄ ;



2.1. IMAGINARY TIME FORMALISM 17whih is also referred to as the two-point orrelation funtion. Now we use the Matsubaradeomposition of the Bose �elds (2.6) to get for the Green funtion:G(x1; �1;x2; �2) = 1Z(0) Yk 1Ym=�1 �2�Xk0 1Xm0=�1Xk00 1Xm00=�1 k0(x1) �k00(x2) (2.43)�e�i!m0�1ei!m00 �2 Z d�km Z dkm�k00m00k0m0exp f���kmkm [�i�h!m + �(k)� �℄g :For (k0m0) 6= (k00m00) the above integrals are odd in km; �km so that only diagonalintegrals with (k0m0) = (k00m00) are nonzero:G(x1; �1;x2; �2) = 1Z(0) Xk0  k0(x1) �k0(x2) 1Xm0=�1 ei!m0 (�2��1)� �2� Z d�k0m0 Z dk0m0�k0m0k0m0exp f���k0m0k0m0 [�i�h!m0 + �(k0)� �℄g� Yk 6=k0 1Ym=�1m 6=m0 �2� Z d�km Z dkmexp f���kmkm[�i�h!m + �(k)� �℄g : (2.44)With help of the deomposition (2.12) and the transformation (2.13), we an solve theintegrals to arrive atG(x1; �1;x2; �2) = 1Z(0) Xk0  k0(x1) �k0(x2) 1Xm0=�1 e�i!m0 (�1��2)�[�i�h!m0 + �(k)� �℄2� Yk 6=k0 1Ym=�1m 6=m0 1�i�h!m + �(k)� � : (2.45)If we now insert the result (2.14) we obtainG(x1; �1;x2; �2) = 1�Xk  k(x1) �k(x2) 1Xm=�1 e�i!m(�1��2)�i�h!m + �(k)� � : (2.46)Of ourse, this expression shows nothing else than the Matsubara deomposition of theGreen funtionG(x1; �1;x2; �2) = 1�h�Xk 1Xm=�1G(k; m) k(x1) �k(x2)e�i!m(�1��2) (2.47)with the expansion oeÆient:G(k; m) = �h�i�h!m + �(k)� � : (2.48)



18 CHAPTER 2. THERMAL FIELD THEORYIt remains to alulate the Matsubara sumSk (�1 � �2) = 1� 1Xm=�1 e�i!m(�1��2)�i�h!m + E(k) : (2.49)This must be done by applying Poisson's formula (A.15), leading toSk (�1 � �2) = i2� 1Xn=�1 Z 1�1 dxe�2�i(�1��2+�h�n)=�h�x + i�E(k)=2� e�2�inx : (2.50)The fundamental integral on the right hand sideIa;b = i2� Z 1�1 dx e�iaxx + ib ; b > 0 (2.51)is trivially evaluated. The denominator of the integrand has a singularity at x = �ib.For a > 0, the integration ontour on the real axis of the omplex plane an be losed bya semiirle in the lower half plane and the residue theorem yieldsIa;b = Resx = �ib e�iaxx + ib = e�ab : (2.52)For a < 0 the ontour has to be losed in the upper half of the omplex plane. As theintegrand has no singularity there, the integral Iab vanishes. Thus we �nd for all valuesof a and b > 0: Ia;b = �(a)e�ab : (2.53)Inserting this result in (2.49), the sum readsSk(�1 � �2) = 1Xn=�1�(�1 � �2 + �h�n)e� 1�hE(k)(�1��2+�h�n) : (2.54)For (�1 � �2) 2 (0; �h�), the Heaviside funtion fores the sum to run only over positiven, so that we deal with a geometri seriesSk(�1 � �2)+ = e� 1�hE(k)(�1��2) 1Xn=0 e��E(k)n = e� 1�hE(k)(�1��2��h�=2)2 sinh�E(k)=2 : (2.55)For �1 � �2 2 (0;��h�) a similar alulation leads to:Sk(�1 � �2)� = e� 1�hE(k)(�1��2) 1Xn=�1 e��E(k)n = e� 1�hE(k)(�1��2+�h�=2)2 sinh�E(k)=2 (2.56)



2.1. IMAGINARY TIME FORMALISM 19So for (�1 � �2) 2 (��h�;+�h�) we get the �nal resultSk(�1 � �2) = � (�1 � �2)Sk (�1 � �2)+ +�(�2 � �1)Sk (�1 � �2)�= �(�1 � �2) e� 1�hE(k)(�1��2��h�=2) +�(�2 � �1)e� 1�hE(k)(�1��2+�h�=2)2 sinh�E(k)=2 ;(2.57)whih leads to the Green funtionG(x1; �1;x2; �2) = Xk  k(x1) �k(x2)��(�1 � �2) e� 1�hE(k)(�1��2��h�=2) +�(�2 � �1)e� 1�hE(k)(�1��2+�h�=2)2 sinh�E(k)=2 :(2.58)It is worth noting that the Green funtion is homogeneous with respet to the imaginarytime.So far we onsidered systems with an arbitrary one-partile Hamilton operator (1.16),whereVext(x) is an arbitrary external potential. Now we restrit ourself to the free aseVext(x) = 0, where the Green funtion (2.58) beomes also homogeneous in spae, beausethe one-partile wave funtions  k(x);  �k(x) solving (2.5) represent plane waves k(x) = 1pV eikx ;  �k(x) = 1pV e�ikx (2.59)and the one-partile spetrum beomes �(k) = �h2k2=2m. In this limit, we an replaethe sum in (2.58) by an integral analogous to (1.3):G(x1 � x2; �1 � �2) = Z ddk(2�)d eik(x1�x2)��(�1 � �2) e� 1�hE(k)(�1��2��h�=2) +�(�2 � �1)e� 1�hE(k)(�1��2+�h�=2)2 sinh�E(k)=2 : (2.60)We end this setion by speializing (2.60) to two important ases.Speial Case 1: Equal Arguments For equal arguments (2.60) simpli�es toG(0; 0) = Z ddk(2�)d e�E(k)=22 sinh�E(k)=2 = Z ddk(2�)d 1e�E(k) � 1 ; (2.61)whih is nothing else but the partile number (1.2), yielding with (1.6) in d = 3 dimen-sions: G(0; 0) = V�3 �3=2(z) ; (2.62)where z = e�� denotes the fugaity.



20 CHAPTER 2. THERMAL FIELD THEORYSpeial Case 2: High Temperature Limit Consider the Matsubara sum in (2.46).For high temperatures T ! 1, i.e. � ! 0, all Matsubara frequenies (2.7), exept thezero mode m = 0, beome in�nite and thus give no ontribution. As only the zero modesurvives, we get from (2.46):G(x1 � x2; 0) = 2m� Z ddk(2�)d eik(x1�x2)(�hk)2 � 2m� ; � ! 0 : (2.63)2.2 E�etive Ation FormalismIn Setion 2.1 we have alulated the grand-anonial potential of a free Bose gas abovethe ritial temperature of BEC. Now we develop a formalism that allows to alulatethermodynami quantities below T. In that ase the ondensation of bosons into theirground state means that the grand-anonial ensemble averages of the �elds  (x; �);  �(x; �)do not vanish. To desribe suh a nonzero ensemble average we have to ouple the �eldslinearly to arti�ial urrent �elds j(x; �); j�(x; �). Thus we onsider the ationA[ ;  �; j; j�℄ = A[ ;  �℄� Z �h�0 Z ddx [j�(x; �) (x; �) +  �(x; �)j(x; �)℄ (2.64)and the resulting partition funtionZ[j�; j℄ = I D I D �e� 1�hA[ ; �;j;j�℄ : (2.65)The logarithm of this partition funtion yields the negative grand-anonial potentialW [j; j�℄ = lnZ[j�; j℄ : (2.66)From that we an alulate the ensemble averages of the �elds	j(x1; �1) � 	(x1; �1)[j; j�℄ = 1Z[j�; j℄ I D I D � (x1; �1)e� 1�hA[ ; �;j;j�℄ (2.67)and 	�j(x1; �1) � 	�(x1; �1)[j; j�℄ = 1Z[j�; j℄ I D I D � �(x1; �1)e� 1�hA[ ; �;j;j�℄ (2.68)as funtional derivatives of W [j; j�℄ with respet to the urrents �elds	j(x1; �1) = �h ÆW [j; j�℄Æj�(x1; �1) ; 	�j(x1; �1) = �h ÆW [j; j�℄Æj(x1; �1) : (2.69)The index j of the �elds indiates that these averages are of ourse funtionals of theurrent �elds and by inversion one ould, in priniple, get the urrents bak as funtionals



2.2. EFFECTIVE ACTION FORMALISM 21of the �elds. We use (2.69) as a motivation to de�ne the e�etive ation �[	j;	�j ℄ as afuntional Legendre transformed of (2.66) with respet to the urrents:�[	j;	�j ℄ = W [j; j�℄� 1�h Z �h�0 Z ddx hj�(x; �)	j(x; �) + 	�j(x; �)j(x; �)i : (2.70)The funtional derivative of the e�etive ation with respet to the �elds yields thefollowing Legendre identity:Æ�[	j;	�j ℄Æ	�j(x1; �1) = Z �h�0 Z ddx "ÆW [j; j�℄Æj�(x; �) Æj�(x; �)Æ �j (x1; �1) + ÆW [j; j�℄Æj(x; �) Æj(x; �)Æ �j (x1; �1)# (2.71)�1�h Z �h�0 Z ddx " Æj�(x; �)Æ	�j(x1; �1)	j(x; �) + Æj(x; �)Æ	�j(x1; �1)	�j(x; �)#� 1�hj(x1; �1) :Inserting the relationship (2.69) and doing the same alulation of (2.71) for the omplexonjugated �eld shows that the urrents an be obtained by funtional derivatives of thee�etive ation:Æ�[	j;	�j ℄Æ	�j(x1; �1) = �1�hj(x1; �1) ; Æ�[	j;	�j ℄Æ	j(x1; �1) = �1�hj�(x1; �1) : (2.72)Let us onsider the physial limit in whih the arti�ially introdued urrent �elds vanish,i.e. j(x1; �1) ! 0 and j�(x1; �1) ! 0. In this limit the e�etive ation (2.70) oinideswith the negative grand-anonial potential (2.66):�[	0;	�0℄ =W [0; 0℄ = lnZ : (2.73)At the same time the ensemble averages (2.69) tend towards those physial �elds 	0 and	�0 that extremize the e�etive ationÆ�[	j;	�j ℄Æ	�j(x1; �1) ����	0;	�0 = Æ�[	j;	�j ℄Æ	j(x1; �1) ����	0;	�0 = 0 : (2.74)This important observation enables us to formulate a general sheme for the desriptionof our system below T:� Compute the negative grand-anonial potential (2.66) from the partition funtionZ[j�; j℄� Perform a funtional Legendre transform with respet to the urrents to obtain thee�etive ation (2.70) as a funtional of the �eld averages.� Extremize the e�etive ation aording to (2.74) to yield the grand-anonial po-tential 
(T; �; V ) = ��[	0;	�0℄=�, whih is now valid above and below T. Fromthat follow all thermodynami quantities above and below the ritial point.It is important to note that there exists a more eÆient way to obtain the e�etive ation,the so-alled bakground method. This method will be elaborated in Part 3 of this thesisin the ontext of the �nite temperature loop expansion.
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Chapter 3Variational Perturbation Theory
3.1 MotivationUseful approximate information of real physial systems is gained, for instane, via per-turbation expansions. They are based on the fat that quite often a physial quantityf an be exatly alulated for a speial value g0 of a oupling onstant g. The wholefuntion f(g) is then determined perturbatively in the deviation g� g0 from this speialvalue g0. For the following disussion we assume without loss of generality that g0 = 0and that the respetive weak-oupling oeÆients an are known up to some order N :fN (g) = NXn=0 angn : (3.1)A prominent example for suh a weak-oupling series is the anomalous magneti momentof the eletron ge whih is expanded in powers of the Sommerfeld feinstruture onstant�. Theoretial alulations have been performed up to the order N = 3 [56℄ and yield anumerial value whih oinides with the experimental value ge = 2:0023193043(74) [57℄up to 9 digits. It is this impressive agreement whih has established quantum eletrody-namis as the prototype for relativisti quantum �eld theories.However, already in 1952, Freeman Dyson pointed out that the quality of this agree-ment depends ruially on the smallness of the Sommerfeld feinstruture onstant � �0:0073 [58℄. He disovered that physial quantities in quantum eletrodynamis have avanishing onvergene radius with respet to the Sommerfeld feinstruture onstant �.Thus an expansion in powers of � an never onverge for any positive value of � howeversmall it may be. In fat it turns out that the expansion of the anomalous magnetimoment of the eletron ge in powers of the Sommerfeld feinstruture onstant � is notan example for a onvergent but for an asymptoti series (see Fig. 3.1). Whereas aonvergent series is expanded around a regular point g0 = 0 in the omplex g-plane and23



24 CHAPTER 3. VARIATIONAL PERTURBATION THEORYhas a �nite onvergene radius, an asymptoti series is expanded around a singular pointg0 = 0. In the latter ase, typially the negative Re g-axis does not belong to the onver-gene region. Convergene ours only in the setor of a irle, so the onvergene radiusvanishes per de�nition. For pratial purposes, both onvergent and asymptoti serieshave in ommon that they lead to good approximations as long as they are evaluatedfor small oupling onstants g. The di�erene between a onvergent and an asymptotiseries reveals itself, if one investigates their properties for an inrease of the order N . Fora �xed value of the oupling onstant g, an inrease in N leads to an improved approxi-mation for a onvergent series as its weak-oupling oeÆients an tend to zero in the limitn!1. For an asymptoti series one observes the phenomenon that the approximationis improved as long as N is smaller than a ritial value N. If N exeeds N it turns outthat the approximation diverges. The reason for this is the large-order behavior of theweak-oupling oeÆients an. They turn out not to derease but to inrease fatoriallywith n.Thus asymptoti series have to be resummed in order to extrat from them reasonablephysial results. The rudest method to approximate a funtion f(g) with an asymp-toti series employ Pad�e approximants [59℄. These are rational funtions with the samepower series expansions as f(g). A better approximation an be found by using in ad-dition the large-order behavior of the weak-oupling oeÆients an. By means of Boreltransformations the fatorial growth of an an be eliminated [60℄, and a suessive Pad�eapproximation is applied. The resulting Pad�e-Borel method approximates the left-handut of the funtion f(g) in the omplex g-plane by a string of poles. This proedure anbe improved further by a onformal mapping tehnique in whih the omplex g-plane ismapped into a unit irle whih ontains the original left-hand ut on its irumferene[61℄.Another powerful tool for extrating physial results from asymptoti series is pro-vided by variational methods whih were initially invented by many researh groups inquantum mehanis and then applied to quantum �eld theory. For instane, the so-alled Æ-expansion amounts to a resummation of perturbation series (see, for instane,Refs. [62{70℄) whih is performed by introduing arti�ially an e�etive harmoni osilla-tor and by optimizing the trial frequeny aording to the priniple of minimal sensitivity[71℄. It turns out that the Æ-expansion proedure orresponds to a systemati extensionof a variational approah in quantum statistis [72{75℄ to arbitrary orders [49, 76, 77℄and is now alled variational perturbation theory. It allows to evaluate the asymptotiseries (3.1) for all values of the oupling onstant g. As a speial ase it also onverts theweak-oupling series (3.1) into its strong-oupling limit whih typially readsf(g) = gp=q 1Xm=0 b(m)g�2m=q : (3.2)



3.1. MOTIVATION 25
a) b)

Re g

 Im g Im g

Re g

Figure 3.1: Comparing shematially analyti properties of onvergent a) and asymptotib) series.
Here p and q denote real numbers whih determine the strong-oupling behavior and b(m)represent the strong-oupling oeÆients. For the ground-state energy of the anharmoniosillator with p = 1 and q = 3, the onvergene was shown to be exponentially fast evenfor in�nite oupling strength [78{80℄.In reent years, variational perturbation theory has been extended in a way, whihalso allows for the resummation of divergent perturbation expansions whih arise fromrenormalizing the �4-theory of ritial phenomena [77, 81{83℄. The orresponding per-turbation oeÆients are available up to six and partly to seven loops in d = 3 [84, 85℄and up to �ve loops in d = 4 � � dimensions [86℄. The most important new feature ofthis �eld-theoreti variational perturbation theory is that it aounts for the anomalouspower approah to the strong-oupling limit whih the Æ-expansion annot do. Aord-ing to (3.2) this approah is governed by an irrational ritial exponent ! = 2=q aswas �rst shown by Wegner [87℄ in the ontext of ritial phenomena. In ontrast to theÆ-expansion, the �eld-theoreti variational perturbation expansions annot be derivedfrom adding and subtrating a harmoni term. Instead, a self-onsistent proedure is setup to determine this irrational ritial Wegner exponent. The theoretial results of the�eld-theoreti variational perturbation theory are in exellent agreement with the onlyexperimental value measured so far with a hallenging auray, the ritial exponent �governing the behavior of the spei� heat near the superuid phase transition of 4He.The high auray was reahed by performing a mirogravity experiment in a satelliteorbiting around the earth [88, 89℄.



26 CHAPTER 3. VARIATIONAL PERTURBATION THEORY3.2 General ProedureIn this setion we follow Refs. [49, 83℄ and outline the general proedure for resummingan asymptoti perturbation series with the help of variational perturbation theory. Inorder to estimate the quality of the resummation we emphasize, in partiular, how toonvert given weak-oupling expansions into their strong-oupling limit.3.2.1 Arbitrary Coupling ConstantConsider the weak-oupling series (3.1) of a physial quantity f as a funtion of a ouplingonstant g whih is trunated at order N . Rewrite this weak-oupling expansion byintroduing an auxiliary parameter � whih resales the quantity f and the ouplingonstant g by a fator �p and �q, respetively, and set afterwards � = 1:fN(g) = �p NXn=0 an � g�q�n ����=1 : (3.3)Here p and q denote parameters whih will determine the strong-oupling behavior as wewill see below. Now we introdue the variational parameter K aording to Kleinert'ssquare-root trik � = Kq1 + gr ; (3.4)and de�ne the abbreviation r = 1g  �2K2 � 1! : (3.5)Substituting (3.4) into the trunated weak-oupling series (3.3), we obtainfN (g) = NXn=0 anKp�nq(1 + gr)(p�nq)=2gn : (3.6)Then the fator (1 + gr)� with � � (p � nq)=2 is expanded by means of generalizedbinomials, i.e. (1 + gr)� = N�nXk=0  �k!� 1K2 � 1�k gn +O �gN�n� ; (3.7)with the binomial being de�ned as �k! � �(� + 1)�(k + 1)�(�� k + 1) : (3.8)



3.2. GENERAL PROCEDURE 27Furthermore, in deriving (3.7) we have used (3.5) and have set � � 1. Thus the funtionfN(g) beomes K-dependent and redues tofN(g;K) = NXn=0 "N�nXk=0  (p� nq)=2k !� 1K2 � 1�kKp�nq# angn : (3.9)Aording to the priniple of minimal sensitivity [71℄, we minimize the inuene of K onfN(g;K) by searhing for loal extrema, i.e., from the ondition�fN (g;K)�K �����K=KN (g) = 0 : (3.10)It may happen that this ondition is not solvable. In this ase, in aordane with thepriniple of minimal sensitivity [71℄, we look for turning points instead, i.e., we determinethe variational parameter KN(g) by solving�2fN(g;K)�K2 �����K=KN(g) = 0 : (3.11)The solutions of Eqs. (3.10) or (3.11) then yield the variational result fN (g;KN(g))whih turns out to be a good approximation for the funtion f(g) for all values of theoupling onstant g. The quality of this approximation an be estimated by investigatingthe strong-oupling limit as a speial ase.3.2.2 Strong-Coupling LimitA areful analysis of the onditions (3.10) and (3.11) for the funtion (3.9) shows thatthe variational parameter KN(g) turns out to have the strong-oupling behaviorKN(g) = g1=q �K(0)N +K(1)N g�2=q + :::� : (3.12)Thus the approximation fN (g;KN(g)) of f(g) behaves in the strong-oupling limit asfN (g;KN(g)) = gp=q hb(0)N (K(0)N ) + b(1)N (K(0)N ; K(1)N )g�2=q + :::i : (3.13)We see that the fration p=q tells us the leading power behavior in g and 2=q indiatesthe approah to saling. The leading strong-oupling oeÆient b(0)N (K(0)N ) turns out tobe given by b(0)N (K(0)N ) = NXn=0N�nXk=0  (p� nq)=2k !(�1)kan(K(0)N )p�nq ; (3.14)



28 CHAPTER 3. VARIATIONAL PERTURBATION THEORYwhere the inner sum an be further simpli�ed, using [55, Eq. (0.151)℄mXk=0(�1)k �k! = (�1)m �� 1m ! : (3.15)Thus the strong-oupling oeÆient (3.14) redues tob(0)N (K(0)N ) = NXn=0(�1)N�n (p� nq)=2� 1N � n !an(K(0)N )p�nq : (3.16)In order to optimize the variational parameter K(0)N , we look again for an extremum�b(0)N (K(0)N )�K(0)N = 0 (3.17)or for a saddle point �2b(0)N (K(0)N )�K(0)N 2 = 0 : (3.18)Inserting the optimized K(0)N in (3.16) then leads to the approximation b(0)N (K(0)N ) of thestrong-oupling oeÆient.
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Chapter 4Seond-Order Perturbation Theory
4.1 Grand-Canonial PotentialIn this setion we treat the weak two-partile interation (1.13) in the framework of�nite temperature perturbation theory. The starting point of our onsiderations is thefuntional integral for the partition funtionZ = I D I D �e�fA(0)[ ; �℄+A(int)[ ; �℄g=�h ; (4.1)where A(0) denotes the free part (2.4) of the eulidian ation in (4.1)A(0)[ (x; �);  �(x; �)℄ = Z �h�0 d� Z ddx �(x; �)[�h�� + h(x)� �℄ (x; �) (4.2)and A(int) inludes the two-partile delta interation (1.13) whih is valid for dilute Bosegases: A(int)[ (x; �);  �(x; �)℄ = g2 �h�Z0 d� Z ddx (x; �)2 �(x; �)2 : (4.3)Here the oupling onstant g is assumed to be a small quantity. Thus we are allowedto evaluate the exponential funtion exp(�A(int)=�h) into a Taylor series up to the orderO(g3): e�A(int)[ ; �℄=�h = 1� g2�h Z1  �12 21 + g28�h2 Z1 Z2  �12 �22 21 22 +O(g3) : (4.4)Here we have introdued a short-hand notation for the spae and imaginary time integrals�h�Z0 d�i Z ddxi � Zi ; (4.5)31



32 CHAPTER 4. SECOND-ORDER PERTURBATION THEORYand the Bose �elds:  (xi; �i) �  i ;  �(xi; �i) �  �i : (4.6)Inserting the expansion (4.4) into (4.1) and de�ning the ensemble average for an arbitraryfuntion F of the Bose �elds  ;  � ashF ( (x; �);  �(x; �))i = 1Z(0) I D I D �F ( (x; �);  �(x; �)) e� 1�hA(0)[ ; �℄ ; (4.7)yields the partition funtion evaluated up to the seond order in the oupling onstantg: Z = Z(0) (1� g2�h Z1h �12 21i+ g28�h2 Z1 Z2h �12 �22 21 22i) ; (4.8)where Z(0) was de�ned by (2.3).One of the most important statements of quantum �eld theory is enountered throughWik's theorem. It states that an unperturbed average of a n fold produt of �elds anbe redued by a ontration to a (n� 2) fold produt:h 1 2 : : :  ni = h 1 2i h 3 4 : : :  ni+ h 1 3i h 2 4 : : :  ni+ h 1 ni h 2 3 : : :  n�1i(4.9)Through its iteration, a n fold produt an be therefore represented through summationover all possible ontrations. Consequently, the averages in (4.8) an be representedthrough two-point orrelation funtions aording toh �12 21i = 2h �1 1i (4.10)and h �12 �22 21 22i = 4h �1 1i2 h �2 2i2 + 16h �1 1i h �1 2i h �2 1ih �2 2i+4h �1 2i2 h �2 1i2 : (4.11)Note that the remaining two-point orrelation or Green funtionh �i  ji = G(xi; �i;xj; �j) � Gij : (4.12)has already been alulated (2.58). Thus the partition funtion (4.8) is given byZ = Z(0) (1� g�h Z1G11 + g22�h2 Z1 Z2 hG11G22 + 4G11G22G12G21 +G212G221i) :(4.13)



4.2. SELF-ENERGY 33The onnetion to thermodynamis is established by the grand-anonial potential:
 = � 1� lnZ : (4.14)After a Taylor expansion of the logarithm we obtain the grand-anonial potential up toseond order in perturbation theory:
 = � 1� lnZ(0) + g�h� Z1G211 � g22��h2 Z1 Z2 h4G11G22G12G21 +G212G221i +O(g3) : (4.15)This perturbative result an be represented through diagrams aording to the followingFeynman rules of our theory. A straight line with an arrow stands for the interation-freeGreen funtion (2.60)1 2 � G12 = Z ddp(2��h)d e i�hp(x1�x2)2 sinh �2 � p22M � ��� "�(�1 � �2) e� 1�h� p22M���(�1��2� �h�2 ) + �(�2 � �1) e� 1�h� p22M���(�1��2+ �h�2 )# ;(4.16)and a vertex represents the  4 interation= �4��hasM Z d3x �h�Z0 d� : (4.17)Thus the diagrammati representation of (4.15) reads
(V; T; �) = � 1� lnZ = + + 2 + 12 :Note that it is possible to set up a graphial reursive onstrution method for theHugenholtz diagrams [90℄ ontributing to the grand-anonial potential [91℄.4.2 Self-EnergyWe introdue the Green funtion for the interating system asG(x1; �1;x2; �2) � G12 = 1Z I D I D � 1 �2 e� 1�h(A(0)[ ; �℄+Aint[ ; �℄) ; (4.18)



34 CHAPTER 4. SECOND-ORDER PERTURBATION THEORYand denote the orretions to the free Green funtion G12 due to interations as self-energy �12: �(x1; �1;x2; �2) � �12 = G�112 �G�112 : (4.19)Multiplying Eq. (4.19) with the free and the interating Green funtion and integratingover spae and imaginary time yields the Dyson equationG12 = G12 + Z3 Z4G13�34G42 : (4.20)In analogy to the previous setion we perform a Taylor expansion of the interation part(4.4) in (4.18) and obtain with help of the de�nitions (4.5)-(4.7) a seond order result forthe Green funtion of the weakly interating Bose gas:G12 = G12 � 2g�h Z3G13G33G32 + 2g2�h2 Z3 Z4 [2G13G34G43G44G32+2G13G34G44G33G42 +G13G234G243℄ +O(g3) : (4.21)Inserting this result into the Dyson equation (4.20) we read o� the orresponding expan-sion for the self energy:�12 = �2g�h Æ12G11 + 4g2�h2 G12G21G22 + 2g2�h2 G212G21 +O(g3) : (4.22)In analogy to (4.18) the self energy (4.22) an be represented diagramatially�12 = 2 1 2 + 4 1 2 + 2 1 2 :Let us briey disuss some harateristi properties of the self-energy. In ase of homo-geneous BEC's, where the external potential is zero, the free Green funtion possessestranslational invariane in spae and imaginary time (2.60), whih transfers itself beauseof Wik's theorem to the interating Green funtion (4.18)G(x1; �1;x2; �2) = G(x1 � x2; �1 � �2) (4.23)and also to the self energy (4.19)�(x1; �1;x2; �2) = �(x1 � x2; �1 � �2) (4.24)evaluated up to arbitrary orders in the oupling onstant g. Beause of this symmetry,(4.22) simpli�es to�(x; �) = �2g�h Æ(x)Æ(�)G(0; 0) + 4g2�h2 G(0; 0)G(x; �)G(�x;��)+2g2�h2 G(x; �)2G(�x;��) : (4.25)



4.3. RENORMALIZATION 35Furthermore, we perform a Matsubara deomposition of the self-energy�(x; �) = 1�h� 1Xm=�1 e�i!m� Z ddp(2��h2)d eipx=�h�(p; !m) ; (4.26)where the expansion oeÆients are given by�(p; !m) = Z �h�0 d� ei!m� Z ddx e�ipx=�h�(x; �) : (4.27)The mathematial struture of the oeÆient (4.27) an be restrited through a furthersymmetry onsideration. As the Green funtion (4.18) is rotational invariant, the self-energy possesses the same property:�(Rx1; �1;Rx2; �2) = �(x1; �1;x2; �2) ; (4.28)whih is valid for every unitary matrix with RRT = 1. Beause of�(Rp; !m) (4:27)= Z �h�0 d� ei!m� Z ddx e�ip(RT x)=�h�(x; �)x0=RT x= Z �h�0 d� ei!m� Z ddx0 e�ipx0=�h�(Rx0; �)(4:28)= Z �h�0 d� ei!m� Z ddx e�ipx0=�h�(x; �)(4:27)= �(p; !m) (4.29)the rotational invariane of the self energy implies the same property for its Fourier-and Matsubara oeÆient �(p; !m). Therefore �(p; !m) has the following expansion forsmall momenta: �(p; !m) = �0(0; !m) + �2(0; !m)p2 +O(p4) : (4.30)4.3 RenormalizationIn the last setion we observed that also the Green funtion (4.18) possesses translationalinvariane. Thus it an be deomposed in analogy to (4.26). Of ourse the relationship(4.19) holds also for the expansion oeÆients of suh a deomposition:G�1(p; !m) = G�1(p; !m)� �(p; !m) : (4.31)With the result (2.48) we get for the Fourier- and Matsubara oeÆient of the Greenfuntion G(p; !m) = 1G�1(p; !m) = �h�i�h!m + p2=2m� �� �h�(p; !m) : (4.32)



36 CHAPTER 4. SECOND-ORDER PERTURBATION THEORYBy means of this equation we want to disuss the physial meaning of the self energy.For the free Bose gas, where � = 0 and G = G, the hemial potential � as well as thephysial mass m an be obtained from the inverse of the Fourier-Matsubara oeÆient(2.48): � = ��hG�1(0; 0) (4.33)and 1m = 2�h �G�1(p; 0)�p2 ����p=0 : (4.34)Eq. (4.33) shows an important physial fat: For the free Bose gas the phase transitionan be de�ned by the vanishing of the bare hemial potential �. This implies thatthe two-point orrelation funtion and therefore the orresponding orrelation length di-verges at the ritial point, whih indiates that the phase transition is diretly relatedto long-range orrelations.Now we onsider the ase where the interation is inluded and thus the self energydoes not vanish. Inserting (4.30) into (4.32) yieldsG�1(p; !m) = �i!m � 1�h [�� �h�0(0; !m)℄ + 12�h � 1m � 2�h�2(0; !m)�p2 +O(p4) :(4.35)We see that in the interating ase the role of the bare hemial potential and the barephysial mass is played by its renormalized quantities de�ned by�r = ��hG�1(0; 0) = �+ �h�(0; 0) (4.36)and 1mr = 1m � 2�h��(p; 0)�p2 ����p=0 : (4.37)We de�ne now the phases transition through the requirement that (4.32) diverges at theritial point and thus shows long-range orrelations. Consequently, the ritial point isreahed as soon as the renormalized hemial pontential �r is zero:�r T=T= 0 : (4.38)Finally, we state the perturbation expansion for the renormalized hemial potential,whih an be obtained from (4.25), (4.27) and (4.36):�r = �+ Z �h�0 d� Z ddx�(x; �) = �� 2g�h G(0; 0)+4g2�h2 G(0; 0) Z �h�0 d� Z ddxG(x; �)G(�x;��)+2g2�h2 Z �h�0 d� Z ddxG(x; �)2G(�x;��) : (4.39)



Chapter 5Calulation of Vauum DiagramsThe goal of this hapter is to alulate the seond-order ontributions to the grand-anonial potential (4.15) of a dilute weakly interating Bose gas, whih an be deom-posed as follows 
 = 
(0) + 
(1) + 
(2) : (5.1)The zeroth order term 
(0) has already been alulated in (2.37):
(0) = � 1� lnZ(0) = V��d �d=2+1(z) : (5.2)The �rst order ontribution 
(1) follows from the translational invariane of the freeGreen funtion and the result (2.62):
(1) = g�h� Z1G211 = gV G(0; 0)2 = 2V��d �as� � �d=2(z)2 : (5.3)The seond order ontribution 
(2) onsists of two diagrams
(2) = � 2�T � 12�B = � 2� g2�h2 Z1 Z2G11G22G12G21 � 12� g2�h2 Z1 Z2G212G221 ; (5.4)where T denotes the so-alled triple hain and B the basketball diagram. Both diagramsare more involved and are therefore alulated in the next two setions.5.1 Triple ChainThe triple hain diagram is given by (5.4):T = ��g�h�2G(0; 0)2 Z �h�0 d�1 Z �h�0 d�2 Z ddx1 Z ddx2G(x1; �1;x2; �2)G(x2; �2;x1; �1) ;(5.5)37



38 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSwhere G(x1; �1;x2; �2) is the many-body Green funtion for bosons (2.58):T = 1�2d ��g�h�2 �d=2(z)2 Z �h�0 d�1 Z �h�0 d�2 Z ddx1 Z ddx2 Z ddp(2��h)d Z ddq(2��h)d�12e i�hp(x1�x2) � (�1 � �2) e� 1�h� p22m���(�1��2� �h�2 ) + (1() 2)sinh �2 � p22m � ���12e i�hq(x1�x2) � (�1 � �2) e� 1�h� q22m���(�1��2� �h�2 ) + (1() 2)sinh �2 � q22m � �� : (5.6)At �rst, we alulate the spatial integralsZ ddx1 Z ddx2 e i�h (x1�x2)(p�q) = V (2��h)d Æ(d) (p� q) : (5.7)If we insert this delta funtion, one of the momentum integrals in (5.6) breaks down.At the same time we an simplify the frations by using the de�nition of the Heavisidefuntion � to arrive at:T = V4 ��g�h�2 �d=2(z)2�2d Z �h�0 d�1 Z �h�0 d�2 Z ddp(2��h)d � (�1 � �2) + � (�2 � �1)sinh �2 � p22m � ��2 : (5.8)The remaining integrals with respet to the imaginary time just give a dimensionlessonstant Z �h�0 d�1 Z �h�0 d�2 [� (�1 � �2) + � (�2 � �1)℄ = �h� : (5.9)Finally, we are left with one momentum integral:T = �h�V4 ��g�h�2 �d=2(z)2�2d Z ddp(2��h)d 1sinh �2 � p22m � ��2 : (5.10)Partial integration yields together with (1.7):T = �h�V�2d ��g�h�2 �d=2(z)2�d=2�1(z) : (5.11)Finally replaing the oupling onstant g in favor of the s-wave sattering length via(1.14) results in T = 4V�d �as� �2 �d=2(z)2�d=2�1(z) : (5.12)



5.2. BASKETBALL 395.2 BasketballThe de�nition of the basketball diagram (5.4) reads:B = ��g�h�2 Z �h�0 d�1 Z �h�0 d�2 Z ddx1 Z ddx2G(x1; �1;x2; �2)2G(x2; �2;x1; �1)2 : (5.13)We insert (2.58)B = ��g�h�2 Z �h�0 d�1 Z �h�0 d�2 Z ddx1 Z ddx2 Z ddp(2��h)d Z ddq(2��h)d Z ddk(2��h)d Z ddl(2��h)d�12e i�hp(x1�x2) � (�1 � �2) e� 1�h� p22m���(�1��2� �h�2 ) + (1() 2)sinh �2 � p22m � ���12e i�hq(x1�x2) � (�1 � �2) e� 1�h� q22m���(�1��2� �h�2 ) + (1() 2)sinh �2 � q22m � ���12e i�hk(x2�x1) � (�2 � �1) e� 1�h� k22m���(�2��1� �h�2 ) + (1() 2)sinh �2 � k22m � ���12e i�h l(x2�x1) � (�2 � �1) e� 1�h� l22m���(�2��1� �h�2 ) + (1() 2)sinh �2 � l22m � �� ; (5.14)and follow the same steps as in the previous setion. At �rst we alulate the spatialintegrals Z ddx1 Z ddx2 e i�h (x1�x2)(p+q�k�l) = V (2��h)d Æ(d) (p+ q� k� l) : (5.15)Then we simplify the frations by using the de�nition of the Heaviside funtion � toarrive atB = 116 ��g�h�2 V Zp Zq Zk Zl (2��h)d Æ(d) (p + q� k� l) Z �h�0 d�1 Z �h�0 d�2� � (�1 � �2) e(�1��2� �h�2 ) + (1() 2)sinh ��2Ep� sinh ��2Eq� sinh ��2Ek� sinh ��2El� ; (5.16)where we have introdued the short-hand notationEp = p2=2m� � (5.17)



40 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSand  = � (Ep + Eq � Ek � El) =�h : (5.18)Now we ompute the integrals with respet to the imaginary times:Z �h�0 d�1 Z �h�0 d�2 �� (�1 � �2) e(�1��2� �h�2 ) + � (�1 � �2) e(�1��2+ �h�2 )� = 2�h� sinh �h�2 :(5.19)Inserting this result in (5.16) yieldsB = g2�V8 Zp Zq Zk Zl (2��h)d Æ(d) (p + q� k� l)Ep + Eq � Ek � El sinh �2 (Ep + Eq � Ek � El)sinh �Ep2 sinh �Eq2 sinh �Ek2 sinh �El2 :(5.20)We make ontat with the Bose distribution, whih an be expressed through the hyper-boli sine funtion: n(E) = 1e�E � 1 = e��E2e�E2 � e��E2 = e��E22 sinh �E2 : (5.21)So the basketball (5.20) beomes:B = g2�V Zp Zq Zk (2��h)d Æ(d) (p+ q� k � l) n(Ep)n(Eq)n(Ek)n(El)Ep + Eq � Ek � El� he�(Ek+El) � e�(Ep+Eq)i : (5.22)The Bose distribution (5.21) has the interesting propertyn(E)e�E = n(E) + 1 ; (5.23)whih, at �rst, ompliates (5.22):B = g2�V Zp Zq Zk Zl (2��h)d Æ(d) (p+ q� k� l)� "n(Ep)n(Eq)n(Ek) + n(Ep)n(Eq)n(El) + n(Ep)n(Eq)Ep + Eq � Ek � El�n(Ep)n(Ek)n(El) + n(Eq)n(Ek)n(El) + n(Ek)n(El)Ep + Eq � Ek � El # : (5.24)But by permuting the integration variables, one an shown(Ep)n(Eq)n(Ek)=̂n(Ep)n(Eq)n(El)=̂� n(Ep)n(Ek)n(El)=̂� n(Eq)n(Ek)n(El)(5.25)



5.2. BASKETBALL 41and n(Ep)n(Eq) =̂ �n(Ek)n(El) ; (5.26)whih �nally simpli�es the basketball (5.24):B = 2g2�V Zp Zq Zk Zl (2��h)d Æ(d) (p + q� k� l) 2n(Ep)n(Eq)n(Ek) + n(Ep)n(Eq)Ep + Eq � Ek � El :(5.27)Let us �rst onsider the term in (5.27) ontaining three Bose distributions:I1 = Zp Zq Zk Zl (2��h)d Æ(d) (p+ q� k� l) n(Ep)n(Eq)n(Ek)Ep + Eq � Ek � El : (5.28)With the help of� the Fourier representation of the delta funtion:(2��h)d Æ(d)(p+ q� k� l) = Z ddx ei(p+q�k�l)=�h ; (5.29)� the modi�ed Shwinger trik (B.3)1Ep + Eq � Ek � El = Re lim�#0 Z i10 d�e�(Ep+Eq�Ek�El�i�)� ; (5.30)� and the series representation of the Bose distribution funtion (1.1)n(Ep)n(Eq)n(Ek) = 1Xa=1 1Xb=1 1X=1 e��(Epa+Eqb+Ek) ; (5.31)we rewrite the momentum integrals in (5.28):I1 = 1Xa=1 1Xb=1 1X=1 za+b+ Re lim�#0 Z i10 d�e�i�� Z ddx Zp e� p22m (�a+�)+ i�hxp� Zq e� q22m (�b+�)+ i�hxq Zk e� k22m (���)� i�hxk Zl e� l22m�� i�hxl ; (5.32)whih are simple Fresnel integrals [55℄, yielding :Zl e� l22m�+ i�hxl = Zq e� l22m�+ i�hxl = �m2��d=2 e�mx22�h2��hd�d=2 (5.33)Zp e� p22m (�a��)� i�hxp = �m2��d=2 e� mx22�h2(�a��)�hd (�a� �)d=2 : (5.34)



42 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSHene, the integral (5.32) beomesI1 = �m2��2d 1�h4d 1Xa=1 1Xb=1 1X=1 za+b+Re lim�#0 Z i10 d� e�i��[� (�a� �) (�b� �) (�+ �)℄d=2� Z ddx exp(�mx22�h2  1� + 1�a� � + 1�b� � + 1�+ �!) : (5.35)Evaluating the spatial integral, we obtainI1 =  m2��h2�!3d=2 � 1Xa=1 1Xb=1 1X=1 za+b+Re Z i10 d� 1[ab + 2ab�� (a+ b + )�2℄d=2 :(5.36)In the same way one gets for the seond integral in (5.27):I2 = Zp Zq Zk Zl (2��h)d Æ(d) (p+ q� k� l) n(Ep)n(Eq)Ep + Eq � Ek � El (5.37)=  m2��h2�!3d=2 � 1Xa=1 1Xb=1 za+bRe Z i10 d� 1[2ab� (a+ b)�℄d=2 �d=2 : (5.38)Thus the preliminary result for the basketball diagam (5.13) reads:B = 2g2�2V  m2��h2�!3d=2 (2B1 +B2) = 8 a2V�3d�4 (2B1 +B2) ; (5.39)where: B1 = 1Xa=1 1Xb=1 1X=1 za+b+Re Z i10 d� 1[ab� 2ab�� (a + b+ )�2℄d=2 ; (5.40)B2 = 1Xa=1 1Xb=1 za+bRe Z i10 d� 1[�2ab� (a+ b)�℄d=2 �d=2 : (5.41)Calulation of B2 At �rst we onsider (5.41) as it easier to alulate than (5.40). Thedenominator in (5.41) is treated with the Shwinger trik (B.1) yielding:B2 = 1�(d=2) 1Xa=1 1Xb=1 za+b Re i Z 10 dx xd=2�1e2iabx Z 10 d� ��d=2e�(a+b)x� (5.42)The remaining integrals are simple Gamma funtions [55℄ and thus we obtain:B2 = � 21�d�(d=2) �(1� d=2)�(d� 1) os(�d=2) 1Xa=1 1Xb=1 za+b(ab)d�1 (a + b)1�d=2 : (5.43)



5.2. BASKETBALL 43We replae the term 1=(a + b)1�d=2 in (5.43) aording to the Shwinger trik (B.1) tomake ontat with polylogarithmi funtions (A.1):B2 = �21�d �(d� 1) os �d2�(d=2) Z 10 dx x�d=2�d�1 �e���x�2 : (5.44)If we now apply Robinson's formula (A.4) we have to alulate integrals of the generalform Z 10 dxx�d=2 (���+ x)� = �(d=2� �� 1)�(1� d=2)�(��) : (5.45)Note that the argument of the Gamma funtion in the denominator would be alwaysa negative integer so that it diverges and the whole expression tends to zero. Howeverthere are two terms of the Robinson expansion that survive for d = 3:B2 = �21�d �(d� 1) os �d2�(d=2) Z 10 dx x�d=2��(2� d)2 (���+ x)2d�4�2�(d� 2)�(2� d) (���+ x)d�1 � : (5.46)The integration produes ompensating divergent Gamma funtions, yieldingB2 = �21�d �(d� 1)�(1� d=2) os �d2�(d=2) " (���)3d=2�3 �(2� d)2�(3� 3d=2)�(4� 2d)�2 (���)d=2 �(d� 2)�(2� d)�(�d=2)�(1� d) # : (5.47)Aording to the rules of dimensional regularization (see Appendix B) we evaluate (5.47)in d = 3 � 2� dimension into a power series with respet to the deviation � and realizethat B2 is zero in the physial limit �! 0:B2 3�2�= O (�) : (5.48)Thus we onlude that B2 does not ontribute to the basketball diagram in three dimen-sions.Calulation of B1 As before we �rst apply (B.1) to (5.40)B1 = 1�(d=2) 1Xa=1 1Xb=1 1X=1 za+b+Re i Z 10 dx xd=2�1e�abx� Z 10 d� exp n2iabx�� (a+ b + ) x�2o : (5.49)



44 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSWith the help of the standard integrals [55℄Z 10 d� ���1e���2�� = (2�)��=2 �(�)e2=��D��  p2�! (5.50)Z 10 dt e�tzt�1+�=2D�� �2pkt� = p� � (�) (z + k)��=22�+�=2�1� ((� + � + 1)=2) 2F1  �2 ; �2 ; � + � + 12 ; z � kz + k! ;(5.51)where D�(z) are paraboli ylinder funtions, we get:B1 = 21�dp� �(d� 1)�(d=2)�(d+12 ) 1Xa=1 1Xb=1 1X=1 za+b+(ab) d�12 pa + b+  (5.52)�Re i 2F1  12 ; d� 12 ; d+ 12 ; 1 + ab (a+ b + )! :The above hypergeometri funtion is still a omplex one as one an see with help of itsintegral representation [55℄2F1 (�; �; ; z) = �()�(�)�( � �) Z 10 dt t��1 (1� t)���1 (1� tz)�� (5.53)But by transforming the argument [55℄ aording to2F1 (�; �; ; z) = �()�( � �� �)�( � �)�( � �) 2F1 (�; �; �+ � �  + 1; 1� z)+ (1� z)���� �()�(� + � � )�(�)�(�) 2F1 ( � �;  � �;  � �� � + 1; 1� z) ;(5.54)we an separate out its imaginary part:Im 2F1  12 ; d� 12 ; d+ 12 ; 1 + ab (a + b+ )!= �2�(d+12 )�(d�12 )  ab (a+ b + )!12 2F1  d=2; 1; 32 ;� ab (a + b+ )! : (5.55)to arrive atB1 = 22�dp� �(d� 1)�(d=2)�(d�12 ) 1Xa=1 1Xb=1 1X=1 za+b+(ab)d=2�1 d=2 (a+ b + ) 2F1  d=2; 1; 32 ;� ab (a+ b + )!(5.56)



5.2. BASKETBALL 45After simplifying the Gamma funtions [55℄, we state the preliminary result for B1:B1 = 1Xa=1 1Xb=1 1X=1 za+b+(ab)d=2�1 d=2 (a + b+ ) 2F1  d=2; 1; 32 ;� ab (a+ b + )! : (5.57)It is useful to transform the argument of the hypergeometri funtion yieldingB1 = 1Xa=1 1Xb=1 1X=1 za+b+(ab)d=2�1 (a+ )(b + ) 2F1  1; 3� d2 ; 32 ; ab(a + )(b+ )! :(5.58)If we would now set d = 3, we were left with the famous sum of Huang et al. [44{46℄:B1 d=3= 1Xa=1 1Xb=1 1X=1 za+b+pab(a+ )(b + ) : (5.59)However, we are interested in the phase transition (4.38) and thus in an expansion inpowers of the hemial potential �. This is onneted with the appearane of UV diver-genies haraterized by � poles for d = 3� 2�. To separate out these poles we need theabove generalization (5.58) of the Huang result for arbitrary dimension d.As we are not really interested in the basketball itself, but in its ontribution to thepartile number we di�erentiate (5.58) with respet to the hemial potential �:1� �B1�� = 1Xa=1 1Xb=1 1X=1 (a+ b + )za+b+(ab)d=2�1 (a+ )(b + ) 2F1  1; 3� d2 ; 32 ; ab(a+ )(b + )! :(5.60)Beause of the symmetry of the sums, (5.60) is equivalent to1� �B1�� = 1Xa=1 1Xb=1 1X=1 (2a+ )z2a+(ab)d=2�1 (a+ )(b + ) 2F1  1; 3� d2 ; 32 ; ab(a+ )(b + )! :(5.61)To get the desired expansion for small hemial potential �, we take the series represen-tation of the hypergeometri funtion [55℄2F1 (�; �; ; z) = �()�(�)�(�) 1Xq=0 �(q + �)�(q + �)q!�(q + ) (5.62)yielding1� �B1�� = p�2�(3�d2 ) 1Xq=0 �(3�d2 + q)�(32 + q) 1Xa=1 1Xb=1 1X=1 (2a+ )za+b+(ab)d=2�1�q d=2�1(a + )q+1(b+ )q+1 :(5.63)



46 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSFor the denominator in 1= (a+ b)q+1 we apply (B.1) to make ontat with polylogarithmifuntions (A.1):1� �B1�� = p�2�(3�d2 ) 1Xq=0 �(3�d2 + q)�(q + 1)2�(32 + q) Z 10 dx xq Z 10 dy yq��2�d=2�2�q(ze�x)�d=2�1�q(ze�y)�d=2�1(ze�x�y)+�d=2�1�q(ze�x)�d=2�1�q(ze�y)�d=2�2(ze�x�y)� : (5.64)Now we have expressed the basketball ontribution to the partile density through poly-logarithmi funtions in arbitrary dimensions. This is a very nie result, beause we annow use the Robinson expansion (A.4) to alulate all ontributions for a small hemialpotential �.Singular piees At �rst we alulate only the singular terms of the Robinson expan-sion. To do so, it is more onvenient to start at (5.60) and to write with (B.1):a+ b +  = 1(a+ b + )�1 = 1�(�1) Z 10 dz z�2e�(a+b+)z ; (5.65)yielding 1� �B1�� = p�2�(3�d2 ) 1Xq=0 �(3�d2 + q)�(q + 1)2�(32 + q) I(q) ; (5.66)where I(q) = 1�(�1) Z 10 dzz2 Z 10 dx xq Z 10 dy yq��d=2�1�q(ze�x�z)�d=2�1�q(ze�y�z)�d=2�1(ze�x�y�z) : (5.67)The singular terms of the Robinson formula (A.4) are�sing� (ex) = �(1� �)(�x)��1 : (5.68)Thus we obtain from (5.67) the singular termIsing(q) = (���)3d=2�5�(2 + q � d=2)�(2� d=2)�(�1) Z 10 dz z�2(1 + z)3d=2�4 (5.69)� Z 10 dx xq(1 + x)d=2�2�q Z 10 dy yq(1 + y)d=2�2�q(1 + x + y)d=2�2 :



5.2. BASKETBALL 47The �rst integral an be done immediately. The last integral is one of the integralrepresentations of the hypergeometri funtion [55℄. So we are left with a standardintegral over Gauss hypergeometri funtionIsing(q) = (���)3d=2�5�(2 + q � d=2)2�(2� d=2)�(3� d)�(1 + q)�(5� 3d=2)�(4� d+ q)�(4� 3d=2)� Z 10 dx xq(1 + x)d=2�2�q 2F1 (2� d=2; 3� d; 4� d+ q;�x) ; (5.70)whih gives one more a hypergeometri one [55℄:Z 10 dx xq(1 + x)d=2�2�q 2F1 (2� d=2; 3� d; 4� d+ q;�x) =�(1 + q)�(1� d=2)�(2 + q � d=2) 3F2 (2� d=2; 3� d; q + 1; 4� d+ q; d=2)+�(4� d+ q)�(4� 3d=2)�(d=2� 1)�(2� d=2)�(5 + q � 3d=2)� 3F2 (3� d; 4� 3d=2; 2 + q � d=2; 5 + q � 3d=2; 2� d=2; 1) : (5.71)Beause of the argument 3 � d = 2� in both hypergeometri funtions, we an nowevaluate them up to O(�):3F2 (2� d=2; 3� d; q + 1; 4� d+ q; d=2; 1) = 1 + (4� 4 ln 2) �+O(�2) ; (5.72)and3F2 (3� d; 4� 3d=2; 2 + q � d=2; 5 + q � 3d=2; 2� d=2; 1) = 1� 4 ln 2 �+O(�2) :(5.73)The remaining sums an be simply alulated:1Xq=0 �(3�d2 + q)�(2 + q � d=2)2q!�(32 + q)�(5 + q � 3d=2) = 2�(3�d2 )�(2� d=2)2p��(5� 3d=2) [1 + (2� ln 4)�℄ = 2� + 4 +O(�) ;1Xq=0 �(3�d2 + q)�(2 + q � d=2)�(32 + q)�(4� d+ q) = 4 1� 2d�2(d� 2)(d� 3) = 2� � 8 ln 2 + 4 +O(�) : (5.74)Putting all together and evaluating all terms up to the order O(�) gives us the singularontribution of B1 to the partile number:1� �Bsing1�� d=3�2�= �3=2p��� �1� + 2� 10 ln 2� 3 � 3 ln(���)�+O(�) : (5.75)So the overall ontribution of the basketball diagram to the partile number, whih omesonly from the zero matsubara modes, reads:1� �Bsing�� d=3�2�= 16a2V�5 �3=2p��� �1� + 2� 10 ln 2� 3 � 3 ln(���) + 6 ln�� :(5.76)



48 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSComparison with High Temperature Limit Integrating the result above we arriveat Bsing = �32a2V � 32�5 q����1� + 8� 3 � 10 ln 2� 3 lnx+ 6 ln�� : (5.77)This is the most singular ontribution to the fully temperature dependent basketball. Itwas alulated by only onsidering the singular Robinson terms whih orresponds tozero Matsubara modes. To ompare this result with the lassial limit of �4 theory wemultiply Bsing with the ommonly used MS sale � es24� �3�:BsingMS = �32a2V �3=2�5 q��� �1� + 8� 4 ln 2 + 6 ln� s2M �� ; (5.78)whereM = p�2m�. Indeed, this expression oinides exatly with the high temperatureor lassial limit of the basketball diagram in �4 �eld theory [92℄.Regular piees In the viinity of the phase transition the renormalized hemial po-tential vanishes. Therefore, we only need to expand physial quantities, for instane,the partile number up to O(�0), if we want to alulate its ritial properties. To getthese onstant ontributions whih stem from regular Robinson terms we start at (5.64).There we an neglet all q > 0 terms, whih are either of order O(�) or of order O(�).1� �Bq=01�� = Z 10 dx Z 10 dy h2�d=2�2(ze�x)�d=2�1(ze�y)�d=2�1(ze�x�y)+ �d=2�1(ze�x)�d=2�1(ze�y)�d=2�2(ze�x�y)i : (5.79)Using ddx��(ze�x) = ����1(ze�x) ; (5.80)integration by parts yieldsZ 10 dx��1=2(ze�x)�1=2(ze�x�y) = �1=2(z)�1=2(ze�y)� Z 10 dx�1=2(ze�x)��1=2(ze�x�y) :(5.81)Inserting (5.81) into (5.79) yields1� �Bq=01�� = I1 � I2 ; (5.82)



5.2. BASKETBALL 49where I1 = 2�1=2(z) Z 10 dx�1=2(ze�x)2 (5.83)and I2 = Z 10 dx Z 10 dy�1=2(ze�x)�1=2(ze�y)��1=2(ze�x�y) : (5.84)This is the starting point for an expansion with respet to small hemial potential �.We substrat in (5.83) the singular piees of the Robinson formula (A.4) and set d = 3and � = 0 in the restI1 = 2�d=2�1(z)�(2� d=2) Z 10 "�(2� d=2) (���+ x)d�4+2�(d=2� 1) (���+ x)d=2�2 #+ 4�C1 ; (5.85)where C1 is a onstant, whih is given by:C1 = lim�!0 14� Z 10 dx "�1=2(e���x)2 � ����+ x# : (5.86)A numerial evaluation leads to C1 � �0:57 : (5.87)We alulate the integrals and evaluate the remaining polylogarithmi funtion in (5.85)to obtainI1 = Ising1 � 2�(d=2� 1)�(2� d=2)2(���)d�3d� 3 � 8�(2� d=2)2�(d=2� 1)(���)d�3d� 2+8�C1�(d=2� 1) +O[(���)d=2�1℄ : (5.88)Here Ising1 is the ontribution in (5.83) orresponding only to singular Robinson terms,whih has been already alulated and is inluded in Bsing (5.77):Ising1 = �2�(2� d=2)3(���)3d=2�5d� 3 + 8�C1�(2� d=2)(���)d=2�2 (5.89)d=3�2�= �3=2p��� �1� � 3 ln(���)� 3 � 6 ln 2 + 8C1� : (5.90)The whole integral gives in d = 3� 2�:I1 = �3=2p��� �1� � 3 ln(���)� 3 � 6 ln 2 + 8C1� (5.91)+��(12) �1� � 2 ln(���)� 52 � 112 ln 2� 12 ln� � �4 + 8C1 � 8�+O(q���) :



50 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMSThe seond integral is a little bit more elaborate:I2 = �(3� d=2) (���)3d=2�5 �(2� d=2)2 Z 10 dx Z 10 dy� h(1 + x)d=2�2 (1 + y)d=2�2 (1 + x + y)d=2�3i+2�(2� d=2)�(3� d=2�(d=2� 1) (���)d�3 Z 10 dx Z 10 dy� h(1 + x)d=2�2 (1 + x+ y)d=2�3i+4�C2 +O �q���� (5.92)The onstant C2 is given by substrating the above singular piees from the polyloga-rithmi funtions and setting d = 3 in the rest:C2 = lim�!0 Z 10 dx Z 10 dy h�1=2(ze�x)�1=2(ze�y)�d=2�2(ze�x�y) (5.93)� �3=22(���+ x)1=2(���+ y)1=2(���+ x + y)3=2 � ��(1=2)(���+ x)1=2(���+ x + y)3=2# :A numerial evaluation leads to C2 � 0:26 : (5.94)The �rst integral inludes one more the singular piees, whih are already inluded inBsing. We an alulate them with the same method used there, yielding:Ising2 = �(3� d=2) (���)3d=2�5 �(2� d=2)2 Z 10 dx Z 10 dy� (1 + x)d=2�2 (1 + y)d=2�2 (1 + x + y)d=2�3d=3�2�= 2�3=2 ln 2p��� : (5.95)The seond integral is standard [55℄, yielding:Z 10 dx Z 10 dy (1 + x)d=2�2 (1 + x+ y)d=2�3= Z 10 dx (1 + x)d�4 Z 10 dy (1 + y)d=2�3 = 2(d� 3)(d� 4) : (5.96)So the result for the seond integral reads:I2 = Ising2 + 4�(2� d=2)�(3� d=2)�(d=2� 1) (���)d�3(d� 3)(d� 4) + 4�C2 +O(q���)d=3�2�= 2�3=2 ln 2p��� + ��(1=2) �1� � 2 ln(���)� 52 � 112 ln 2� 12 ln� � �4 �+4�C2 +O(q���) : (5.97)



5.2. BASKETBALL 51So the result for the q = 0 ontribution to the partile number, whih inludes allregular terms up to O(p�) is:1� �Bq=01�� = �3=2p��� �1� � 3 ln(���)� 3 � 8 ln 2 + 8C1��8��(1=2) + 8��(12)C1 � 4�C2O(p�) : (5.98)Final Result The ontribution of the whole basketball diagram to the partile number,expanded up to O(p���), reads:1� �B�� = 16a2V�5 ( �3=2p��� �1� � 3 ln(���) + 6 ln�� 3 � 10 ln 2 + 2 + 8C1��8��(1=2) + 8��(1=2)C1 � 4�C2)+O(p�) ; (5.99)where the onstants 1 and 2 are given by (5.87) and (5.94) respetively. We have alreadymentioned that the terms of the �rst line in (5.99) orrespond to the results of lassial�eld theory [92℄. On the other hand, the �nite temperature ontributionKB = �8��(1=2) + 8��(1=2)C1 � 4�C2 � 54:4 (5.100)agrees well with the result of Arnold et al. in [31, (5.30)℄ obtained from a mathingalulation.



52 CHAPTER 5. CALCULATION OF VACUUM DIAGRAMS



Chapter 6Calulation of Self-Energy DiagramsWe onsider all ontributions of the self-energy (4.19) whih are neessary to determinethe renormalized hemial potential �r. Aording to (4.39) they are ontained in�(0; !m = 0) = �(1)(0; 0) + �(2)(0; 0) ; (6.1)where the �rst order term yields (2.62)�(1)(0;= 0) = �2g�h G(0; 0) = � 4as�h���d=2(e��) (6.2)and the seond order ontribution�(2)(0; 0) = 4D + 2S = 4g2�h2 G(0; 0) Z �h�0 d� Z ddxG(x; �)G(�x;��)+2g2�h2 Z �h�0 d� Z ddxG(x; �)2G(�x;��) (6.3)will be alulated in the next two setions. Here D denotes the double hain and S thesunset diagram in (6.3).6.1 Double ChainThe integrals in the double hain diagramD = g2�h2G(0; 0) Z �h�0 d� Z ddxG(x; �)G(�x;��) (6.4)have already been omputed in Setion 5.1, yieldingD = 4V �a��2 �d=2(z)�d=2�1(z) : (6.5)53



54 CHAPTER 6. CALCULATION OF SELF-ENERGY DIAGRAMS6.2 SunsetThe sunset diagram is de�ned byS = g2�h2 Z �h�0 d� Z ddxG(x; �)2G(�x;��) : (6.6)Inserting (2.60) yieldsS = ��g�h�2 Z �h�0 d� Z ddx Z ddp(2��h)d Z ddq(2��h)d Z ddk(2��h)d�12e i�hpx � (�) e� 1�h� p22m���(�� �h�2 ) + (� () ��)sinh �2 � p22m � ���12e i�hqx � (�) e� 1�h� q22m���(�� �h�2 ) + (� () ��)sinh �2 � q22m � ���12e� i�hkx � (�) e� 1�h� k22m���(��� �h�2 ) + (� () ��)sinh �2 � k22m � �� : (6.7)Now we repeat the same steps, that were neessary to alulate the basketball diagram:� performing the spae integrations,� simplifying the frations by using the de�nition of the Heaviside funtion ,� and working out the � -integrals .This yields the intermediate result:S = g2�V4 Zp Zq Zk (2��h)d Æ(d) (p+ q� k)Ep + Eq � Ek sinh �2 (Ep + Eq � Ek)sinh �Ep2 sinh �Eq2 sinh �Ek2 : (6.8)Furthermore we� make ontat with the Bose distribution funtionsinh �E2 = 2n(E)e�E2 ; (6.9)� use its property n(E)e�E = n(E) + 1 ; (6.10)



6.2. SUNSET 55� and permutate the indies usingn(Ep)n(Ek)=̂n(Eq)n(Ek) (6.11)to arrive atS = g2�V Zp Zq Zk (2��h)d Æ(d) (p + q� k) 2n(Ep)n(Ek)� n(Ep)n(Eq) + n(Ek)Ep + Eq � Ek :(6.12)Now we onsider the easiest piee, whih ontains only one Bose distribution:I3 = Zp Zq Zk (2��h)d Æ(d) (p+ q� k) n(Ek)Ep + Eq � Ek ; (6.13)and alulate it by using the well known triks (5.29)-(5.31) to obtainI3 = 1Xa=1Re lim�#0 Z i10 d�e(��i�)� Z ddx Zp e� p22m�+ i�hxp Zq e� p22m�+ i�hxq Zk e� p22m (�a��)� i�hxk :(6.14)The momentum integrals ontained in I3 are standard Fresnel integrals (5.33) and (5.34),yielding I3 = �m2��3d=2 1�h3d 1Xa=1 e��aRe lim�#0 Z i10 d� e(��i�)��d (�a� �)d=2� Z ddx exp(�mx22�h2  2� + 1�a� �!) : (6.15)The remaining spae integral in I3 is Gaussian and is alulated immediately. Finally,we are left with a one dimensional integralI3 = � m2��h�d �1�d 1Xa=1 e��aRe Z i10 d� e���(2a�� �2)d=2 : (6.16)The other integrals an be alulated in exatly the same manner, yielding:I1 = 2 Zp Zq Zk (2��h)d Æ(d) (p + q� k) n(Ep)n(Ek)Ep + Eq � Ek= 2� m2��h�d �1�d 1Xa=1 1Xb=1 e��(a+b)Re Z i10 d� e���(2b�+ ab� �2)d=2 (6.17)



56 CHAPTER 6. CALCULATION OF SELF-ENERGY DIAGRAMSand I2 = � Zp Zq Zk (2��h)d Æ(d) (p + q� k) n(Ep)n(Eq)Ep + Eq � Ek= �� m2��h�d �1�d 1Xa=1 1Xb=1 e��(a+b)Re Z i10 d� e���(ab� �2)d=2 : (6.18)Inserting (6.16)-(6.18) in (6.12) yields:S = 4a2V�2d�4 (2S3 � S2 + S1) ; (6.19)where S1 = 1Xa=1 e ��a Re i Z 10 dx ei��x(2iax + x2)d=2 ; (6.20)S2 = 1Xa=1 1Xb=1 e��(a+b) Re i Z 10 dx ei��x(ab + x2)d=2 ; (6.21)S3 = 1Xa=1 1Xb=1 e��(a+b) Re i Z 10 dx ei��x(2ixb + ab + x2)d=2 : (6.22)Our aim is now an expansion of the above sunset sums up to O(p���).Calulation of S1 Substituting the sums in S1 by integrals like in Setion A.2.2 yieldsthe most singular ontribution orresponding to the singular Robinson terms:Ssing1 = Z 10 da e��a Re i Z 10 dx ei��x(2iax + x2)d=2 : (6.23)We an separate out the dependene of this integral from the hemial potential:Ssing1 = (���)d�2 Z 10 da e�aRe i Z 10 dx e�ix(2iax + x2)d=2 : (6.24)This means that I1 is of order O(���) in three dimension.The same result an be obtained from a Taylor expansion of the exponential funtion in(6.20): S1 = 1Xk=0 (��)kk! Re ik+1 1Xa=1 e ��a Z 10 dx xk(2iax + x2)d=2| {z }:=I1 : (6.25)



6.2. SUNSET 57The integral I1 an be alulated with the Shwinger trik (B.1):I1 = 1�(d=2) Z 10 dx xk�d=2 Z 10 dy yd=2�1e�(2ia+x)y (6.26)yielding I1 = (2ia)1�d+k �(1 + k � d=2)�(d� 1� k)�(d=2) : (6.27)Inserting (6.27) in (6.25) yields:S1 = os �2 (2� d)2d�1�(d=2) 1Xk=0 2k (���)k �(1 + k � d=2)�(d� 1� k)k! 1Xa=1 e��aad�k�1 : (6.28)The sum running over index a an be identi�ed as a polylogarithmi funtion (A.1):S1 = os �2 (2� d)2d�1�(d=2) 1Xk=0 2k (���)k �(1 + k � d=2)�(d� 1� k)k! �d�k�1 �e��� :(6.29)This expression is the starting point for an analysis of the sunset part S1 for small ��.For this purpose we expand the polylogarithmi funtion aording to Robinson formula(A.4). �d�k�1 �e��� = �(2 + k � d) (���)d�k�2 + �(d� k � 1) +O(��) : (6.30)We see immediately that the singular Robinson term gives a ontribution of O(��) andthus has not to be onsidered in our analysis. The seond term also vanishes beause theosine in the above sum gives zero and we have no ompensating singularity for k = 0.Thus we obtain S1 = O(���) : (6.31)Calulation of S2 From (6.21) we get for the singular piee of S2:Ssing2 = (���)d�3 Z 10 da Z 10 db e�(a+b) Re i Z 10 dx e�ix(ab + x2)d=2 : (6.32)The remaining integral an be alulated numerially, if we set d = 3:Ssing2 d=3= Z 10 da Z 10 db e�(a+b) Z 10 dx sin x(ab + x2)3=2 = 2:5476 : (6.33)



58 CHAPTER 6. CALCULATION OF SELF-ENERGY DIAGRAMSHowever, we are able to alulate Ssing2 exatly. To this end we introdue polar oordinatesa = r os� and b = r sin�:Ssing2 = Z 10 dr r Z �=20 d� e�r(os �+sin�) Z 10 dx sinx(r2 sin� os�+ x2)3=2 : (6.34)Transforming the angle u(�) = 11 + tan� (6.35)and the radial variable R(r) = r 1 + tan�q1 + tan2 � (6.36)results in Ssing2 = Z 10 dRR e�R Z 10 du Z 10 dx sin x(R2u� R2u2 + x2)3=2 : (6.37)Computing the u-integral yieldsSsing2 = 4 Z 10 dRR e�R Z 10 dx sin xx(R2 + 4x2) : (6.38)We deompose the denominatorSsing2 = 4 Z 10 dR e�RR Z 10 dx sinx�1x � 4xR2 + 4x2� (6.39)and alulate both x-integrals with the help of basi residue theory yielding:Z 10 dx sin xx = �2 (6.40)and Z 10 dx x sinxR2=4 + x2 = ��2 e�R=2 : (6.41)The remaining integral over the radial omponent is straightforwardSsing2 = 2�  Z 10 dRR e�R � Z 10 dRR e�3R=2! = 2� ln 32 : (6.42)



6.2. SUNSET 59This oinides exatly with the numerial value (6.33)To get the regular ontribution of order O(p���), we make a Taylor expansionS2 = 1Xk=0 (��)kk! Re ik+1 1Xa=1 1Xb=1 e��(a+b) Z 10 dx xk(ab + x2)d=2| {z }:=I2 : (6.43)The following analysis is similar to the alulation of I1. Therefore we only state theresults: I2 = (ab) 1�d+k2 �(k+12 )�(d�k�12 )2�(d=2) : (6.44)Inserting (6.44) into (6.43) yieldsS2 = 1Xk=0 (��)k os �2 (k + 1)�(k+12 )�(d�k�12 )2�(k + 1)�(d=2) � d�k�12 �e���2 : (6.45)Beause of the osine, every seond term of the sum is zero. Inserting the Robinsonexpansion for the polylogarithmi funtion�d=2�k �e��� = �(1 + k � d=2) (���)d=2�k�1 + � (d=2� k) +O(��) ; (6.46)gives a square root ontribution for k = 1 and d = 3 oming from mixing the singularterm and the zeta funtion by the square of the polylogarithmi funtion:Sreg2 = �(d�22 )�(4�d2 )�(d=2) �  d� 22 ! (���) d�22 +O(��) d=3= 2p� �(1=2)q���+O(��) :(6.47)So the �nal result for S2 reads:S2 = 2� ln 32 + 2p��(1=2)q���+O(��) (6.48)Calulation of S3 The part S3 is the most ompliate one. We are not able to alulateits singular terms as straightforward as for S2. Thus, we expand the exponential funtionin a Taylor seriesS3 = 1Xk=0 (��)kk! Re ik+1 1Xa=1 1Xb=1 e��(a+b) Z 10 dx xk(2ixb + ab+ x2)d=2 : (6.49)



60 CHAPTER 6. CALCULATION OF SELF-ENERGY DIAGRAMSIn analogy to (5.50) we treat the denominator with the Shwinger trik (B.1) and makeuse of (5.51) to obtainS3 = 21�dp�� (d=2) � �d+12 � 1Xk=0 (��)k � (d� k � 1)Re ik+1� 1Xa=1 1Xb=1 e��(a+b)(ab) d�k�12 2F1  k + 12 ; d� k � 12 ; d+ 12 ; 1 + ba! : (6.50)The above hypergeometri funtion is still a omplex one, as one an see with its integralrepresentation (5.53). It an be transformed to real hypergeometri funtions with theidentity (5.54). Consequently, S3 onsists of two major partsS3 = S31 + S32 (6.51)with S31 = �22�d�� (d=2) 1Xk=0 (��)k � (d� k � 1) os ��2 (k + 2)�� �k+12 �� �d�k�12 �� 1Xa=1 1Xb=1 e��(a+b)a d�k2 b d�k2 �1 2F1  d� k2 ; 1 + k2 ; 32 ;� ba! (6.52)and S32 = 21�d�� (d=2) 1Xk=0 (��)k � (d� k � 1) os ��2 (k + 1)�� �1 + k2�� �d�k2 �� 1Xa=1 1Xb=1 e��(a+b)(ab) d�k�12 2F1  k + 12 ; d� k � 12 ; 12 ;� ba! : (6.53)As we will see later on, it is easier to transform the argument of the hypergeometrifuntion in (6.52) from �b=a to b=(b + a):S31 = �22�d�� (d=2) 1Xk=0 (��)k � (d� k � 1) os ��2 (k + 2)�� �k+12 �� �d�k�12 �� 1Xa=1 1Xb=1 e��(a+b)ad=2�k�1b d�k2 �1 (a+ b)1+ k2 2F1  1 + k2 ; 3� d+ k2 ; 32 ; bb + a!(6.54)and S32 = 21�d�� (d=2) 1Xk=0 (��)k � (d� k � 1) os ��2 (k + 1)�� �1 + k2�� �d�k2 �� 1Xa=1 1Xb=1 e��(a+b)ad=2�k�1b d�k�12 (a+ b) k+12 2F1  k + 12 ; 1 + k � d2 ; 12 ; bb+ a!(6.55)



6.2. SUNSET 61We use the series representation of hypergeometri funtions (5.62) and the Shwingertrik (B.1) to make ontat with polylogarithmi funtions:S31 = �21�d� 32� (d=2) 1Xk=0 (��)k � (d� k � 1) os ��2 (k + 2)�� �k+12 ��(d�k�12 )�(1 + k2 )�(3�d+k2 )� 1Xq=0 �(3�d+k2 + q)q!�(32 + q) Z 10 dx x k2+q�d=2�k�1(ze�x)� d�k2 �1�q(ze�x) (6.56)and S32 = 21�d� 32� (d=2) 1Xk=0 (��)k � (d� k � 1) os ��2 (k + 1)�� �1 + k2�� �d�k2 ��(k+12 )�(1 + k�d2 )� 1Xq=0 �(1 + q + k�d2 )q!�(12 + q) Z 10 dx x k�12 +q�d=2�k�1(ze�x)� d�k�12 �q(ze�x) : (6.57)Here, z denotes the fugaity z = e��.Singular Terms The UV divergenies only arise from the k = 0 ontribution of S31Sk=031 = p�2 1Xq=0 �(3�d2 + q)q!�(32 + q) Z 10 dx xq�d=2�1(ze�x)�d=2�1�q(ze�x) : (6.58)If we insert only the singular terms of the polylogarithmi funtions (A.4), we obtainSk=0;sing31 = p�2 (���)d�3 1Xq=0 �(3�d2 + q)q!�(32 + q) Z 10 dx xq(1 + x)d�q�4 : (6.59)The x-integral represents Gamma funtions yieldingSk=0;sing31 = p�2 (���)d�3�(d� 3)�(2� d=2) 1Xq=0 �(3�d2 + q)�(2 + q � d=2)�(32 + q)�(4 + q � d) :(6.60)The remaining sum an be redued to a geometri one by simplifying the Gamma fun-tions with the identities in [55℄Sk=0;sing31 = p�2 (���)d�3�(d� 3)�(2� d=2) 4� 2d(d� 2)(d� 3) : (6.61)This yields in d = 3� 2� dimensionsSk=0;sing31 = � � 12� � 3 ln 2�  � lnx+ 1� : (6.62)



62 CHAPTER 6. CALCULATION OF SELF-ENERGY DIAGRAMSTo alulate terms with k > 0 it is more onvenient to start at (6.52). As there are no UVdivergenies for k > 0, we an set d = 3 from the beginning. The osine funtion in thenumerator enables us to transform the index from k to 2k, beause all odd ontributionsvanish. Furthermore, we use the series representation of the hypergeometri funtion toobtain Sk>031 = �2 1Xk=1 (�1)k(��)2k�(2� 2k)�(k + 12)�(1� k)�(32 � k)�(1 + k)� 1Xq=0 (�1)q�(32 � k + q)�(1 + k + q)q!�(32 + q) � 32�k+q(z)� 12�k�q(z) : (6.63)Considering the singular parts of the polylogarithmi funtions and solving the q sum bysimplifying the Gamma funtions as before, we get gives:Sk>0;sing31 = �p�4 1Xk=1��14�k �(2� 2k)�(k � 12)�(1� k)k ; (6.64)whih is evaluated to beSk>0;sing31 = �2 1Xk=1� 116�k 1k = ��2 ln 1516 : (6.65)A similar alulation for Ssing32 , where all even terms vanish, yields:Ssing32 = �2 ln 53 : (6.66)Thus we onlude Ssing3 = � � 12� � 3 ln 2�  � lnx+ 1 + ln 43� : (6.67)
Regular terms A dimensional analysis shows that all regular terms with k; q > 0 inS32 are of Order O(���). So we only need to evaluate:Sk=q=031 = 22�dp��(d� 1)� (d=2) �(d�12 ) Z 10 dx�d=2�1(ze�x)2 = Z 10 dx�d=2�1(ze�x)2 (6.68)We already alulated this integral, when we onsidered the basketball diagram (5.83).The result was:Sk=q=031 = Sk=q=0;sing31 � 4p�q����(1=2) + 4�C1 +O(���) ; (6.69)



6.2. SUNSET 63where Sk=q=0;sing31 omes from the singular Robinson terms, that are inluded in Ssing31 .A similar analysis for S32 shows, that we only need to onsider k = 1 and q = 0:Sk=1;q=032 = (���)d� 2 Z 10 dx�d=2�2(ze�x)�d=2�1(ze�x) : (6.70)The Robinson expansion (A.4) and separating the singular terms yieldsSk=1;q=032 = Sk=1;q=0;sing32 � 2 �(d=2� 1)(d� 2)(d� 4)(���)d=2�2 +O[(���) d�12 ℄ : (6.71)This is evaluated in d = 3 dimensionsSk=1;q=032 = Sk=1;q=0;sing32 + 2p�q����(12) +O[(���)℄ : (6.72)Finally, we add all ontributions (6.67), (6.69) and (6.72) for S3 to obtainS3 = � � 12� � 3 ln 2�  � lnx+ 1 + ln 43 � 2p�q����(12)� (6.73)
Final result Now we have alulated all piees S1; S2 and S3 that belong to the sunsetdiagram: S = 4a2V�2 "�� + 2� � 2� � 2� lnx + 4� ln�� 4� ln 3+8�C1 � 6p�q��� �(12) +O(���)# : (6.74)For omparison with the high temperature limit we multiply the part of the sunsetorresponding to singular Robinson termsSsing = Ssing2 + Ssing3 = 4a2V�2 ��� + 2� � 2� � 2� lnx+ 4� ln�� 4� ln 3�(6.75)with the MS sale � es24� �2� and reall that � = (2��h2�=m)1=2 is the thermal wavelengthto get SsingMS = 4a2V ��2 �1� + 4 ln� s2M �+ 2 + 4 ln 23� ; (6.76)whereM = p�2m�. This agrees with the sunset diagram of lassial �4-�eld theory [92℄.Contrary to the alulation of the basketball diagram (5.99), the mathing alulationof Arnold et al. [31℄ allows no omparison with the �nite temperature ontributions in(6.74) KS = 8�C1 � 6p�q��� �(12) : (6.77)



64 CHAPTER 6. CALCULATION OF SELF-ENERGY DIAGRAMS



Chapter 7Shift of Critial TemperatureAs a �rst appliation of our results in Chapters 5 and 6 we answer the question howthe ritial temperature has hanged due to weak interations. In analogy to (1.9) thestarting point for alulating the ritial temperature is the partile densityn = � 1V �
�� = � 1V ��� �
(0) + 
(1) + 
(2)� ; (7.1)whih turns out to be with (5.1)-(5.4), (5.12), and (5.99):n�d = �d=2(z)� 4as� �d=2(z)�d=2�1(z) + 16a2s�2 �d=2(z)�d=2�1(z)2 + 8a2s�2 �d=2(z)2�d=2�2(z)+8a2s�2 �3=2px �1� + 2� 4 ln 2 + 6 ln� s2M � + 8C1�+8a2s�2 [8�C1�(1=2)� 8��(1=2)� 4�C2℄ +O(a3s) ; (7.2)where z = exp (�x) = exp ( ��) is the fugaity and the seond-order ontribution hasalready been evaluated in d = 3 � 2� dimensions. From (4.38) we know that the phasetransition is determined from the vanishing of the renormalized hemial potential, whihan be obtained from the self-energy alulated in (6.1)-(6.3), (6.5), and (6.74):xr = x� �h��(p = 0; !m = 0) = x+ 4as� �d=2(z)� 16a2s�2 �d=2(z)�d=2�1(z)�8a2s��2 "1� + 4 ln� s2M �+ 2 + 4 ln 23 + 8C1 � 6pxp� �(1=2)#+O(a3s) ; (7.3)where zr = exp (�xr) = exp (��r). Now we replae the bare hemial potential � in (7.2)in favor of the renormalized hemial potential �r. To this end we invert relationship65



66 CHAPTER 7. SHIFT OF CRITICAL TEMPERATURE(7.3) to obtain x = xr � 4as� �d=2(zr) + 8a2s��2 "1� + 4 ln� s2M �+ 2+4 ln 23 + 8C1 � 8pxrp� �(1=2)# : (7.4)Inserting (7.4) into (7.2) yields three di�erent ontributions to the renormalized partiledensity oming from the zeroth, �rst and seond order term.Contributions from O(a0s): We start with the free energy for the free gasn�d (0)= �d=2(z(zr)) : (7.5)Inserting (7.4) and evaluating up to the order O(a3s) yields:n�d (0)= �d=2(zr) + 4as� �d=2(zr)�d=2�1(zr) + 8a2s�2 �d=2(zr)2�d=2�2(zr)�8a2s��2 �d=2�1(zr) "1� + 4 ln� s2M �+ 2 + 4 ln 23 + 8C1 � 8pxrp� �(1=2)# : (7.6)To evaluate this expression to order O(�0) for d = 3 � 2�, we remember that the right-hand side of (7.5) has to be multiplied with the sale (es2=4�)� as soon as we work inthe MS sheme, see for instane (5.99). With that modi�ation we getn�3 (0)= �3=2(zr) + 4as� �3=2(zr)�1=2(zr) + 8a2s�2 �3=2(zr)2��1=2(zr)�8a2s�3=2�2 1px "1� + 6 ln� s2M �+ 2 + 4 ln 23 + 8C1 � 8pxp� �(1=2)#�8a2s�3=2�2 � �12� �1� + 4 ln� s2M �+ 2 + 4 ln 23 + 8C1+ 14 (2 � 14 ln 2� 6 ln� � �) + 2 ln�s� : (7.7)Contributions from O(a1s): The vauum ontribution of order O(a1s) reads:n�d (1)= �4as� �d=2(e�x(xr))�d=2�1(e�x(xr)) : (7.8)The renormalization yields in d = 3� 2� dimensions:n�3 = �4as� �1=2(zr)�3=2(zr)� 16a2s�2 �1=2(zr)2�3=2(zr)�16a2s�2 ��1=2(zr)�3=2(zr)2 (7.9)



67Contributions from O(a2s): In the seond order ontribution to the partile density(7.2), we only need to replae x by xr and set d = 3:n�3 (2)= 16a2s�2 �3=2(zr)�1=2(zr)2 + 8a2s�2 �3=2(zr)2��1=2(zr)+8a2s�2 �3=2pxr �1� + 2� 4 ln 2 + 6 ln� s2M � + 8C1�+8a2s��2 [8C1�(1=2)� 8�(1=2)� 4C2℄ : (7.10)Final result We ollet the results (7.7), (7.9), (7.10) and expand for small xr to obtainn�3 = �(3=2)� 2p�pxr � 32�3=2 ln 43 a2s�2 1pxr � 8��(1=2)a2s�2"1� + 4 ln� s2M �+2 + 4 ln 23 + 14(2 � 14 ln 2� 6 ln� � �) + 2 ln�s+ 4C2=�(1=2)# : (7.11)On the basis of equation (7.11) we deal now with some questions, whih we set up in theintrodution of this work.Classial Field Limit Let us �rst onsider only the terms in (7.11) stemming from thelassial limit of �eld theory, e.g. zeroth- and seond-order terms that are proportionalto 1=pxr. The leading shift of the ritial temperature an be obtained from (7.11) assoon as we onsider the ritial limit xr = 0 and make the ansatzT = T (0) +�T : (7.12)Inserting (7.12) into (7.11) yields�TT (0) = a0qx(0)r + a2qx(0)r (asn1=3)2 ; (7.13)where x(0)r = � �rkBT (0) ; a0 = 4p�3�(3=2) ; a2 = 64�3=2 ln(4=3)3�(3=2)5=3 : (7.14)Thus perturbation theory shows no �rst order shift of the ritial temperature (7.13)due to weak two-partile delta interations. Now the question may arise: How does thisresult �t with the fat that in many publiations suh a linear ontribution�TT (0) = 1 asn1=3 (7.15)



68 CHAPTER 7. SHIFT OF CRITICAL TEMPERATUREwas omputed? The reason is, that those are non-perturbative results stemming fromthe term in (7.13) that is proportional to 1=qx(0)r . If we ompare (7.15) with (7.13) wean read o� the oeÆient 1 = 1g f2(g) ; (7.16)where f2(g) = a0 + a2g2 ; g = asn1=3qx(0)r : (7.17)Inserting (7.17) into (7.16) shows that 1 is infrared (IF) divergent at the ritial point,where x(0)r = 0, e.g. g = 1. But as the partile density and the shift of the ritialtemperature is a �nite quantity even in the thermodynami limit, their resummationshould also be �nite. Thus the alulation of (7.16) is a typial strong-oupling problem.We master this problem with the help of variational perturbation theory. To this end wefollow the proedure in Chapter 3 and identify (7.17) with (3.1) for N = 2 and a1 = 0.As the renormalized hemial potential �r de�nes the natural sale of our theory, itorresponds to the arti�ial sale � in (3.3). Thus it follows from dimensional reasonsthat we have to hoose p = 1=2 and q = 1=2 in (3.3). Next we introdue a variationalparameter K aording to (3.4) and reexpand f2(g;K) similar to (3.9):f2(g;K) = 38pKa0 + 1pKa0 � 38 1K7=2a0 + g2pKa2 : (7.18)Using the priniple of minimal sensitivity (3.10), the strong-oupling limit of the varia-tional parameter (3.12) turns out to beK2(g) = 8a23a0g2 +O(g�2) : (7.19)Inserting (7.19) into (7.18) yieldsf2(g) = 2gs3a0a28 +O(g�3) : (7.20)Thus the leading oeÆient (7.16) beomes1 = 2s3a0a28 � 3:059 : (7.21)Of ourse this has to be understood as a very rough approximation for 1 as the aboveresummation was based on only two weak-oupling oeÆients a0 and a2. However, we



69have observed that the leading shift of ritial temperature is solely determined by thelassial �eld limit. Thus the physis at T (0) an be desribed in terms of an e�etivethree-dimensional �eld theory for the Matsubara mode m = 0. As the high temperatureor lassial limit of the Green funtion (2.63) is muh simpler than the full tempera-ture dependent one (2.60), one was able to alulate diagrams of higher orders in theoupling onstant g [92℄ whih were also onneted with IF divergenies at the ritialpoint. Reently, a resummation of these IF divergent terms was aomplished in ourgroup with the help of VPT up to �ve loops resulting in a linear shift of the ritialtemperature with the proportionality onstant 1 = 1:3 [35℄. In the meantime this �veloop alulation has been extended to six loops [43℄ with 1 = 1:25, whih is the mostaurate analytial alulation so far. This result has to be ompared with reent MonteCarlo data whih estimate 1 � 1:30 [40℄. Other analyti estimates are 1 � 2:90 [25℄,2:33 from a 1=N -expansion [26℄, 1:71 from an improved 1=N -expansion [30℄, and 3:06from an inappliable Æ-expansion [32℄ to three loops, and 1:48 from the same Æ-expansionto �ve loops, with a questionable evaluation at a omplex extremum [33℄. Note that allthese results have in ommon that the shift in the ritial temperature is positive. whihan be explained within a reasonable physial argument: In a gas with the expansionparameter asn1=3 the shift of the ritial temperature is determined by two ompetinge�ets: For positive s-wave sattering lengths one expets the shift to beome negativeas the repulsive interation suppresses ondensation. On the other hand, the density ofthe system and thus the long-range orrelations beomes larger, whih stimulates on-densation. As the seond e�et dominates for small interations, the leading shift in theritial temperature is positive.Quantum Flutuations We now onsider the terms in (7.11) oming from nonzeroMatsubara modes. They still ontain an ultraviolet (UV) divergeny onneted with the� pole, whih at �rst forbids the further evaluation of this expression. We assume thatthis UV divergene is waived by the renormalization of the physial mass m and thereforethe omputation of the seond term in the expansion (4.30) beomes neessary. At thetime of the delivery of this diploma thesis the renormalization of the physial mass wasnot yet �nal. However dimensional arguments indiate that it has the general formm = mr "1 + 8� a2s�2 �1� + �# ; (7.22)where  is an unknown seond-order oeÆient that depends on the mass sale s. With(7.22) a mass renormalization of the seond term in (7.11), whih is proportional to thesquare root of the physial mass as T (0) � m (see (1.11)), anels the UV divergene.Thus, using (7.12), the shift of the ritial temperature turns out to have the generalform �TT (0) = 1asn1=3 + asn1=3(02 ln asn1=3 + 2) ; (7.23)



70 CHAPTER 7. SHIFT OF CRITICAL TEMPERATUREwhere 1 is solely determined by the lassial �eld limit. The result (7.23) has also beenfound by Arnold et al [31℄ with the oeÆients 02 = �64��(1=2)=3�(3=2)5=3 � 19:75and 2 � 75:7. If one enters these results into the �nite temperature phase diagram ofFig. 10.1, a very unsatisfatory result shows up. Even at in�nitely high temperaturesthe existene of a BEC is foreast. Unfortunately, we annot indiate own values forthe oeÆients 02 and 2 as we did not alulate the oeÆient  in (7.22) up to now.However, in Part 3 of this work a physially meaningful result for the phase diagram hasbeen omputed without expliitly alulating the renormalization of the physial mass.



Part III:Finite-Temperature
Loop Expansion





Chapter 8Bakground MethodIn many ases a perturbation expansion in terms of free �elds, as elaborated in Part 2of this thesis, annot produe a useful insight into the physis of a many-body system.In partiular, if the average of the �eld  (x; �) is not zero, even small utuations showhuge e�ets and an drive the system to a nonzero �eld on�guration. If this equilibriumvalue is not small, perturbation theory is not appliable.In Setion 2.3 we introdued the e�etive ation by a funtional Legendre transformationas an ideal tool to desribe a many-body system for non-vanishing �eld on�gurations.In pratie, this proedure is quite umbersome. Therefore, we present now an alterna-tive way to obtain the e�etive ation by using the so-alled bakground method. Thismethod is based on the idea to deompose the Bose �eld  (x; �) in a non-vanishing bak-ground �eld 	(x; �), whih an be identi�ed as the order parameter of our theory, andutuations Æ (x; �) around it. As we will apply this method to e�etively homogeneoussystems, the bakground �eld an be assumed to be onstant: 	(x; �) = 	. Thus thee�etive ation redues to an e�etive potential V(	;	�) whose optimal value with re-spet to 	;	� is the grand-anonial potential valid for T < T.In the following we evaluate this e�etive potential V(	;	�) in the framework of a loopexpansion where the utuations around the onstant bakground �elds 	;	� are treatedas small. By doing so, we investigate the global struture of the �nite temperature phasediagram for weakly interating gases as well as strong orrelated bosons in optial lattiepotentials.8.1 E�etive PotentialLike in perturbation theory the starting point of our onsiderations is the funtionalintegral for the partition funtionZ = I D I D �e�A[ (x;�); �(x;�)℄=�h : (8.1)73



74 CHAPTER 8. BACKGROUND METHODThe ation of a dilute, weakly interating Bose gas was already mentioned in (1.17). Wenow expand the Bose �elds around the so-alled bakground �eld 	: (x; �) := 	 + Æ (x; �) ;  �(x; �) := 	� + Æ �(x; �) : (8.2)Here we identify j	j2 with the order parameter, e.g. the ondensate density, whihis onstant in spae as long as we deal with homogeneous systems. With the aboveexpressions the funtional measure transforms likeI D I D � ! I DÆ I DÆ � ; (8.3)and the ation (1.17) deomposes into three partsA = A(0) +A(quad) +A(int) : (8.4)Here A(0) denotes the tree-level ontributionA(0) = �h�V ���j	j2 + g2 j	j4� ; (8.5)A(quad) ontains all terms, whih are quadrati in the utuations Æ ; Æ � around thebakground �eld 	;	�A(quad) = �h�Z0 d� Z ddx�Æ �(x; �) h�h�� + h(x)� �+ 2gj	j2i Æ (x; �) + g2	2Æ �(x; �)2+g2	�2Æ (x; �)2� ; (8.6)and A(int) is the interation termA(int) = �h�Z0 d� Z ddx�g	Æ �(x; �)2Æ (x; �) + g	�Æ (x; �)2Æ �(x; �)+g2Æ (x; �)2Æ �(x; �)2� : (8.7)Note that the linear terms of the utuations Æ and Æ � were negleted to guaranteethat only the one-partile irreduible diagrams survive in the following diagrammatianalysis. The quadrati part of the ation A(quad) an be written in matrix form:A(quad) = 12 �h�Z0 d� �h�Z0 d� 0 Z ddx Z ddx0(Æ �; Æ )(x; �)G�1(x; � ;x0; � 0) Æ Æ �! (x0; � 0) : (8.8)



8.1. EFFECTIVE POTENTIAL 75Here, we all G�1(x; � ;x0; � 0) the inverse Green funtion:G�1(x; � ;x0; � 0) = 1�hM(x; �)Æ(x� x0)Æ(� � � 0) (8.9)with the 2�2-matrixM(x; �) =  �h�� + h(x)� �+ 2gj	j2 g	2g	�2 ��h�� + h(x)� �+ 2gj	j2! : (8.10)The partition funtion has now beome a funtional of the bakground �elds 	;	�:Z[	;	�℄ = e�A(0)=�h I DÆ DÆ � e�fA(quad)+A(int)g=�h : (8.11)In the following we will expand the weight fator e�A(int)=�h into a Taylor series. This leadsto a series expansion in powers of �h for the e�etive potential, whih is de�ned byeV(	;	�) = Z[	;	�℄ : (8.12)Aording to (2.73), extremizing the e�etive ation with respet to the bakground �eldleads to the grand-anonial potential.Zero-loop E�etive Potential The leading term in the saddle point approximationof the funtional integral (8.11) readsZ(0)[	;	�℄ = exp ���V ���j	j2 + g2 j	j4�� (8.13)and orresponds to the �h0 ontribution to the e�etive ation:V(0)[	;	�℄ = ��V ���j	j2 + g2 j	j4� : (8.14)One-loop E�etive Potential The leading order is obtained by only taking into a-ount the zeroth term in the Taylor expansion e�A(int)=�h � 1 and performing the funtionalintegral over the quadrati part of the ation:Z(1)[	;	�℄ = I DÆ DÆ �exp�� 12�h �h�Z0 d� �h�Z0 d� 0 Z ddx Z ddx0�(Æ �; Æ )(x; �)G�1(x; � ;x0; � 0) Æ Æ �! (x0; � 0)� : (8.15)This funtional integral an be treated analogous to the simple integralZ 1�1 dÆ p� Z 1�1 dÆ �p� exp(� (Æ �; Æ )M  Æ Æ �!) = 1pdetM = e� 12Tr logM : (8.16)



76 CHAPTER 8. BACKGROUND METHODHene, the one-loop e�etive potential an be written asV(1)[ ;  �℄ = �12Tr logG�1 : (8.17)Of ourse, the derivation presented here is a rather symboli one. Instead the funtionalintegral must be alulated using a Matsubara deomposition of the utuations Æ andÆ �. How to do this alulation will be shown in Setion 8.3.Two-loop E�etive Potential One gets the two-loop ontribution by taking intoaount the linear and quadrati terms of the Taylor expansion of the exponential funtione�A(int)=�hZ(2)[	;	�℄ = I D I D �e�A(quad)[ ; �℄=�h ( g2�h Z1  21 �21 + g2	22�h2 Z1 Z2  �21  1 �22  2+ g2	�22�h2 Z1 Z2  �1 21 �2 22 + g2j	j2�h2 Z1 Z2  �21  1 �2 22) ; (8.18)where we used the short hand notation:�h�Z0 d�1 Z ddx1 = Z1 ; Æ (x1; �1) =  1 ; Æ �(x1; �1) =  �1 : (8.19)Here, we negleted odd terms in Æ and evaluated up to the sixth order in powers of thedeviations Æ ; Æ �. De�ning the ensemble averagehf( �;  )i := H D H D �f( �;  )e�A(quad)[ ; �℄=�hH D H D �e�A(quad)[ ; �℄=�h= e 12Tr logG�1 I D I D �f( �;  )e�A(quad)[ ; �℄=�h ; (8.20)we an write:Z(2)[	;	�℄ = e 12Tr logG�1 �� g2�h Z1h 21 �21 i + g2	22�h2 Z1 Z2h �21  1 �22  2i+g2	�22�h2 Z1 Z2h �1 21 �2 22i+ g2j	j2�h2 Z1 Z2h �21  1 �2 22i! : (8.21)In order to obtain a umulant expansion, we rewrite the terms in the brakets into theexponent: 1 + hxi = eln(1+hxi) � ehxi +O(hxi2) : (8.22)



8.1. EFFECTIVE POTENTIAL 77Thus the two-loop e�etive potential reads:V(2)[	;	�℄ = � g2�h Z1h 21 �21 i + g2	22�h2 Z1 Z2h �21  1 �22  2i (8.23)+ g2	�22�h2 Z1 Z2h �1 21 �2 22i + g2j	j2�h2 Z1 Z2h �21  1 �2 22i :Here the subsript  denotes the fat that in the umulant expansion (8.22) only theonneted diagrams survive. At the moment, we only want to onsider two-loop diagramsup to �rst order in the oupling onstant:V(2)[	;	�℄ = � g2�h Z1h 21 �21 i +O(g2) : (8.24)The ensemble average in (8.24) is redued to produts of two-point orrelation funtionsvia Wik's rule (4.9):h 1 1 �1 �1i = h 1 1ih �1 �1i+ 2h 1 �1ih 1 �1i : (8.25)Here, both ontributions represent onneted diagrams and thus survive in (8.24). In thenext setion we will show that the matrix elements of the Green funtion itselfG(x;x0; �) =  G  �(x;x0; �) G  (x;x0; �)G � �(x;x0; �) G � (x;x0; �) ! (8.26)onsists of the onneted two-point orrelation funtions viah 1 �2i = G  �(x1;x2; �1 � �2) ;h �1 2i = G � (x1;x2; �1 � �2) ;h 1 2i = G  (x1;x2; �1 � �2) ;h �1 �2i = G � �(x1;x2; �1 � �2) : (8.27)Thus we write the �nal result for the two-loop e�etive ation up to O(g) with the helpof relationship (8.27) as:V(2)[	;	�℄ = �g�V2 hG  (0; 0)G � �(0; 0) + 2G  �(0; 0)2i+O(g2) ; (8.28)where we used the fat that the propagators (8.26) are translationally invariant in spaefor homogeneous systems G(x1;x2; �) = G(x1 � x2; �) (see next setion).



78 CHAPTER 8. BACKGROUND METHOD8.2 Green FuntionsIn the last setion we have shown that the inverse Green funtions are given by (8.9).The Green funtions themselves follow from the relationship�h�Z0 d� 00 Z ddx00G�1(x; � ;x00; � 00)G(x00; � 00;x0; � 0) = Æ(x� x0)Æ(� � � 0) 1 00 1 ! : (8.29)Inserting (8.9) into (8.29) yieldsM(x; �)G(x; �;x0; � 0) = �hÆ(� � � 0)Æ(x� x0) 1 00 1 ! : (8.30)Using the translational invariane of the Green funtions with respet to the imaginarytimes G(x; � ;x0; � 0) = G(x;x0; � � � 0) (8.31)and performing a Matsubara deomposition, we obtainG(x;x0; �) =Xk0 1Xm0=�1Gm0k0(x0) k0(x)e�i!m0� : (8.32)Inserting (8.32) into (8.30), we getXk0 1Xm0=�1Gm0k0(x0) k0(x)e�i!m0�M(k0; m0) = �hÆ(�)Æ(x� x0) 1 00 1 ! (8.33)with M(k; m) =  �i�h!m + ~�(k) g	2g	�2 i�h!m + ~�(k)! (8.34)and ~�(k) = �(k)� �+ 2gj	j2 : (8.35)Multiply Eq.(8.33) with Z ddx �k(x) Z �h�0 d�ei!m� (8.36)and using the orthogonality relations (2.8) yields�h�Xk0 1Xm0=�1Gm0k0(x0)Æk;k0Æm;m0M(k0; !m0) = �h �k(x0) 1 00 1 ! : (8.37)



8.2. GREEN FUNCTIONS 79Therefore, the Matsubara oeÆients in (8.32) are determined byGmk(x0) = 1�  �k(x0)�h2!2m + ~�(k)2 � g2j	j4 �M(k; !m) (8.38)with �M(k; m) :=  i�h!m + ~�(k) �g	2�g	�2 �i�h!m + ~�(k)! : (8.39)Thus, the Green funtions readG(x;x0; �) = 1�Xk 1Xm=�1  �k(x0) k(x)e�i!m��h2!2m + ~�(k)2 � g2j	j4 �M(k; !m) : (8.40)From Eq.(8.40) we de�ne the Green funtions G  � ; G  ; G � �; G � via (8.26). Inthe next setion we show expliitly that these four funtions represent the fundamentaltwo-point orrelation funtions, respetively. With help of the short-hand notationE(k)2 := ~�(k)2 � g2j	j4 (8.41)we alulate at �rst the o�-diagonal propagatorG  (x;x0; �) = �g 2 1�Xk  �k(x 0) k(x) 1Xm=�1 e�i!m��h2!2m + E(k)2= �g 2 1�Xk  �k(x 0) k(x)2E(k) 1Xm=�1 " e�i!m��i�h!m + E(k) + e�i!m�i�h!m + E(k)#= �g 2Xk  �k(x 0) k(x)2E(k) [Sk(�) + Sk(��)℄ ; (8.42)G � �(x;x0; �) = �g �2Xk  �k(x 0) k(x)2E(k) [Sk(�) + Sk(��)℄ : (8.43)Here Sk(�) denotes the Matsubara sumSk(�) = 1� 1Xm=�1 e�i!m��i�h!m + E(k) : (8.44)It is the same funtion (2.57) as in Setion 2.1 exept the di�erent dispersion relation(8.41). Therefore, we only restate the result:Sk(�) = �(�)e� 1�hE(k)(���h�=2) +�(��)e� 1�hE(k)(�+�h�=2)2 sinh�E(k)=2 : (8.45)



80 CHAPTER 8. BACKGROUND METHODThe alulation of the remaining diagonal Green funtions an be obtained from theabove formula by di�erentiating with respet to the imaginary time � :G  �(x;x0; �) = 1�Xk  �k(x 0) k(x) 1Xm=�1 e�i!m��h2!2m + E(k)2 [i�h! + ~�(k)℄= 1g 2 "�h ��� � ~�(k)#G  (x;x0; �)= Xk  �k(x 0) k(x)2E(k) ("~�(k)� �h ��� # [Sk(�) + Sk(��)℄) ; (8.46)G � (x;x0; �) = 1�Xk  �k(x 0) k(x) 1Xm=�1 e�i!m��h2!2m + E(k)2 [�i�h! + ~�(k)℄= Xk  �k(x 0) k(x)2E(k) ("~�(k) + �h ��� # [Sk(�) + Sk(��)℄) : (8.47)With the property ��� [Sk(�) + Sk(��)℄ = �E(k)�h [Sk(�)� Sk(��)℄ (8.48)we write our �nal results for the propagators as followsG  �(x;x0; �) = Xk  �k(x 0) k(x)2E(k) fSk(�) [~�(k) + E(k)℄ + Sk(��) [~�(k)� E(k)℄g ;G  (x;x0; �) = �g 2Xk  �k(x 0) k(x)2E(k) [Sk(�) + Sk(��)℄ ;G � (x;x0; �) = Xk  �k(x 0) k(x)2E(k) fSk(��) [~�(k) + E(k)℄ + Sk(�) [~�(k)� E(k)℄g ;G � �(x;x0; �) = �g �2Xk  �k(x 0) k(x)2E(k) [Sk(�) + Sk(��)℄ : (8.49)As expeted, one obtains the orret Green funtion (2.58) above T , if one sets thebakground �eld 	;	� to zeroG(x;x0; �)T>T =Xk  �k(x 0) k(x) Sk(�) 00 Sk(��) ! : (8.50)This also justi�es to identify the bakground �eld 	;	� with the order parameter, whihis the ondensate density. We end this setion by speializing (8.49) to three importantases.



8.2. GREEN FUNCTIONS 81Speial ase 1: Equal arguments In ase of a homogeneous Bose gas the funtions �k(x) ;  k(x) represent plane waves. From this follows that the Green funtions possessa translation invariane in spae and time:G(x; � ;x0; � 0) = G(x� x0; � � � 0) : (8.51)Therefore, the diagonal Green funtions redue for equal time and spae arguments toG  �(0; 0) = G � (0; 0) =Xk Sk(0)+ =Xk e�E(k)=22 sinh�E(k)=2 =Xk 1e�E(k) � 1 :(8.52)Speial ase 2: Low temperature limit In the low temperature limit T ! 0 or� ! 1 neighboured Matsubara frequenies stik together and the frequeny spetrumbeomes very dense: �!m = !m+1 � !m = 2��h� T!0= 0 : (8.53)This means that the Matsubara sum in (8.44) an be replaed by an integralSk(�) = 1� 1Xm=�1 e�i!m��i�h!m + E(k) T!0= �h2� Z 1�1 d!m e�i!m��i�h!m + E(k) = �(�)e�E(k)�=�h :(8.54)In this low temperature limit we get for the propagators (8.49)G  �(x;x0; �) =Xk  �k(x 0) k(x)2E(k) n�(�)e�E(k)�=�h[~�(k) + E(k)℄ + �(��)eE(k)�=�h[~�(k)� E(k)℄o ;G  (x;x0; �) = �g 2 1� Xk  �k(x 0) k(x)2E(k) h�(�)e�E(k)�=�h + �(��)eE(k)�=�hi ;G � (x;x0; �) =Xk  �k(x 0) k(x)2E(k) n�(��)eE(k)�=�h[~�(k) + E(k)℄ + �(�)e�E(k)�=�h[~�(k)� E(k)℄o ;G � �(x;x0; �) = �g �2 1�Xk  �k(x 0) k(x)2E(k) h�(�)e�E(k)�=�h + �(��)eE(k)�=�hi : (8.55)Speial ase 3: High temperature limit Consider the Matsubara sum (8.44). Forhigh temperatures T ! 1 or � ! 0 all Matsubara frequenies, exept the zero mode,beome in�nite and thus give no ontribution. As only the zero mode survives, we get:Sk(�) T!1= 1�E(k) : (8.56)



82 CHAPTER 8. BACKGROUND METHODThus the propagator (8.49) read in this high temperature limit:G  �(x;x0; �) = G � (x;x0; �) = 1�Xk  �k(x 0) k(x)E(k)2 ~�(k) ;G  (x;x0; �) = �g 2 1�Xk  �k(x 0) k(x)E(k)2 ;G � �(x;x0; �) = �g �2 1�Xk  �k(x 0) k(x)E(k)2 : (8.57)The above limit proess is also referred to as the lassial limit, beause � ! 0 isequivalent to �h! 0 as follows from equation (8.53).8.3 Generating FuntionalWe onsider now the quadrati ationA(quad)[ ;  �; j; j�℄ = 12 Z� Z� 0 Zx Zx0( �;  )(x; �)G�1(x; � ;x0; � 0)   �! (x0; � 0)�(j�; j)(x; �)   �! (x; �)� ( �;  )(x; �) jj�! (x; �) ; (8.58)where G�1(x; � ;x0; � 0) is the inverse Greens funtion given by (8.9) and j(x; �); j(x; �)�is a urrent whih ouples linearly to the Bose �elds Æ (x; �); Æ (x; �) and shall also beperiodi in imaginary time. This ation de�nes the generating funtionalZ[j; j�℄ = I D D �e�A(quad)[ ; �;j;j�℄=�h : (8.59)from whih all n-point orrelation funtions are obtained by suessive di�erentiationswith respet to the urrents. For example, the two-point orrelation funtionh (x1; �1) �(x2; �2)i is given by a funtional derivation with respet to j�(x1; �1) andj(x2; �2): hÆ (x1; �1)Æ �(x2; �2)i = �h2 Æ2Z[j; j�℄Æj(x2; �2)Æj�(x1; �1) ����j;j�=0 : (8.60)We alulate the generating funtional (8.59) via a Matsubara deomposition of the Bose�elds (x; �) =Xk 1Xm=�1 km k(x)e�i!m� ;  �(x; �) =Xk 1Xm=�1 �km �k(x)ei!m� (8.61)



8.3. GENERATING FUNCTIONAL 83and the urrentsj(x; �) =Xk 1Xm=�1 jkm k(x)e�i!m� ; j�(x; �) =Xk 1Xm=�1 j�km �k(x)ei!m� : (8.62)We have already performed suh a transformation in the previous setion and thus onlystate the results for the funtional measureI D (x; �)D �(x; �)!Yk 1Ym=�1 Z dkm Z d�km �2� (8.63)and the ationA(quad)[km; �km; jkm; j�km℄ = Xk 1Xm=�1 f�h� [�i�h!m + ~�(k)℄ �kmkm + 12g�h�	2�k�m�km+12g�h�	�2k�mkm � �kmjkm � kmj�kmg : (8.64)This an be written in the more ompat wayA(quad)[km; jkm℄ = �hXk Xm hykmM(k; m)km � ykmjkm � jykmkmi (8.65)with the four omponent vetorykm = ��km; km; �k�m; k�m� ; jykm = �j�km; jkm; j�k�m; jk�m� (8.66)and the matrixM(k; m)=14 0BBB�� [�i�h!m + ~�(k)℄ 0 0 g�	20 � [�i�h!m + ~�(k)℄ g�	�2 00 g�	�2 � [�i�h!m + ~�(k)℄ 0g�	2 0 0 � [�i�h!m + ~�(k)℄1CCCA :(8.67)Thus the generating funtional beomes:Z[j; j�℄ = Yk Ym Z dkm Z d�km �2� exp(�Xk Xm hykmM(k; m)km � ykmjkm � jykmkmi) :(8.68)To alulate this generating funtional, we perform the following transformation:km ! Tkm + a ; ykm ! ykmT y + ay ; (8.69)where the translation vetors a ; ay and the matries T; T y are still not known. Theorresponding transformation of the funtional measureI D I D � ! I D I D � detTT y (8.70)



84 CHAPTER 8. BACKGROUND METHODimplies the following result for the generating funtionalZ[j; j�℄ = Yk 1Ym=�1 Z dkm Z d�km �2� detTT yexp��Xk Xm �ykmT yM(k; m)�1Tkm+ykmT y hM(k; m)�1a+ jkmi+ hM(k; m)�1a+ jkmiy Tkm+ayM(k; m)�1a + jykma+ ayjkm� : (8.71)Now we will hoose our transformation parameter suh that the following equations areful�lled: M(k; m)�1a+ jkm = 0 ; (8.72)and T yM(k; m)�1T =M(k; m)�1diag : (8.73)The latter means that the matrix T is unitary and thus the generating funtional sim-pli�es to Z[j; j�℄ = Z[0; 0℄Z(orr)[j; j�℄ (8.74)where Z[0; 0℄ =Yk Ym Z dkm Z d�km �2� exp(�Xk Xm  ykmM�1(k; m)diagkm) (8.75)and Zorr[j; j�℄ = exp(Xk Xm jykmM�1(k; m)jkm) : (8.76)8.3.1 Correlation FuntionsFor Zorr[j; j�℄ we an state the result of the Matsubara bak transformationjk;m = 1�h� Z �h�0 d� Z ddxj(x; �) �k(x)ei!m�j�k;m = 1�h� Z �h�0 d� Z ddxj�(x; �) k(x)e�i!m� : (8.77)Correspondingly, we getZorr[j; j�℄ = exp( 12�h2 Z �h�0 d� Z �h�0 d� 0 Z ddx Z ddx0 j�(x; �)G(x;x0; �)j(x0; � 0)) ;(8.78)



8.3. GENERATING FUNCTIONAL 85where G(x;x0; �) is the Green funtion (8.39), (8.40). From (8.58) we read o� that thetwo-point orrelation funtions are given by di�erentiations of the generating funtionalwith respet to the urrents. In Eq. (8.74) we see that the urrents our only inZorr[j; j�℄. Thus the orrelation funtions are onneted with the fundamental propaga-tors h (x1; �1) �(x2; �2)i = �h2 Æ2Zorr[j; j�℄Æj(x2; �2)Æj�(x1; �1) �����j;j�=0 = G  �(x1; �1;x2�2) ;h �(x1; �1) (x2; �2)i = �h2 Æ2Zorr[j; j�℄Æj�(x2; �2)Æj(x1; �1) �����j;j�=0 = G � (x1; �1;x2�2) ;h (x1; �1) (x2; �2)i = �h2 Æ2Zorr[j; j�℄Æj�(x2; �2)Æj�(x1; �1) �����j;j�=0 = G  (x1; �1;x2�2) ;h �(x1; �1) �(x2; �2)i = �h2 �2Zorr[j; j�℄�j(x2; �2)�j(x1; �1) �����j;j�=0 = G � �(x1; �1;x2�2) :(8.79)8.3.2 TraeLogBy setting jkm = jykm = 0 in (8.74) the generating funtional redues to the one-loopontribution (8.15). Beause of the terms ontaining k�m and �k�m in the ation, wesplit the Matsubara sum in the m = 0 term and the remaining m 6= 0 terms. In thesum running over negative Matsubara frequenies we perform a global transformation�m! m yieldingZ[0; 0℄ = Yk 1Ym=1 Z 1�1dkm Z 1�1d�km Z 1�1dk�m Z 1�1d�k�m �2� exp h� ykmM(k; m)kmi� Z 1�1 dk0 Z 1�1 d�k0 exp h� yk0M(k; 0)k0i : (8.80)Using the standard integralZ 1�1 dx1 Z 1�1 dx�1 Z 1�1 dx2 Z 1�1 dx�2 exp n�xyMxo = �2pdetM (8.81)for the four-omponent vetor xy = (x1; x�1; x2; x�2), we obtainZ[0; 0℄ =Yk �2qdetM(k; 0) 1Ym=1 �24qdetM(k; m) ; (8.82)where the respetive determinants follow from (8.67)detM(k; m) =  �2!4 h�h2!2m + E(k)2i2 ; (8.83)detM(k; 0) =  �2!2E(k)2 ; (8.84)



86 CHAPTER 8. BACKGROUND METHODwhere E(k) is de�ned by (8.41). Beause they do not longer depend on the sign of m,we rewrite the one-loop ontribution as:Z[0; 0℄ =Yk 1Ym=�1 1q�h2!2m + E(k)2 = exp(�12Xk 1Xm=�1 ln[�h2!2m + E(k)2℄) : (8.85)The alulation of the above Matsubara sum has already been done in Setion 2.1 of thisthesis. There we got the �nal result (2.33), so we have hereZ[0; 0℄ = exp(��2 Xk E(k)�Xk ln h1� e��E(k)i) : (8.86)



Chapter 9Density of Non-Condensed AtomsWith the results of the previous hapter, we are now able to alulate the e�etivepotential. From (8.12), (8.28), (8.17), and (8.86) we getV[	;	�℄ = V (��j	j2 + g2 j	j4) + �2Xk E(k) + �� Xk ln h1� e��E(k)i��2 gV "Xk 1e�E(k) � 1#2 +O(g2; �2) : (9.1)Here we introdued the parameter � = 1, whih ounts the loop order. Note that thelast term of (9.1) is the �rst-order g-ontribution of the two-loop approximation. Wewill need this term only in Setion 10.3, where a perturbation expansion in the ouplingonstant is arried out to alulate the leading shift in the ritial temperature of BECdue to weak interations.9.1 Bogoliubov ApproximationIn the Bogoliubov approximation the starting point of a thermodynami disussion ofthe ondensate is the e�etive potential up to one loop:V[	;	�℄V = ��j	j2 + g2 j	j4 + �2V Xk E(k) + ��V Xk ln h1� e��E(k)i ; (9.2)where the dispersion relation E(k) follows from (8.35) and (8.41)E(k) = q[�(k)� �+ 2gj	j2℄2 � g2j	j4 : (9.3)Here, the e�etive potential is still a funtion of the absolute value of the bakground�eld j	j. In fat, this funtion is not a thermodynami potential for all bakground �elds,87



88 CHAPTER 9. DENSITY OF NON-CONDENSED ATOMSbut only at its extremum. The extremalization of (9.2)�V[	;	�℄�j	j2 = 0 (9.4)leads to 0 = �� + gj	j2 + �2V Xk 2g[�(k)� �+ 2gj	j2℄� g2j	j2E(k)+ �V Xk 2g[�(k)� �+ 2gj	j2℄� g2j	j2E(k) 1e�E(k) � 1 : (9.5)The resulting extremal value for the bakground �eld is our order parameter, the on-densate density n0:n0 = j	j2 = �g � �V Xk 2�(k) + �q�(k)2 + 2��(k)  12 + 1e�p�(k)2+2��(k) � 1!+O(�2) : (9.6)This result is obtained from (9.4) by performing a systemati expansion in the looporder parameter �, where the zero-loop approximation for the ondensate density n0 =�=g + O(�) is alled the tree-level. With this tree-level the dispersion relation (9.3)redues to E(k) = q�(k)2 + 2��(k) ; (9.7)whih was �rst derived by Bogoliubov [93℄. Inserting (9.6) and (9.7) into (9.2) yieldsthe extremal value of the e�etive potential, whih oinides with the grand-anonialpotential 
 aording to (2.73):
(�; T )V = ��22g + �2V Xk q�(k)2 + 2��(k) + ��V Xk ln(1� e��p�(k)2+2��(k)) +O(�2) :(9.8)From that, we obtain the partile density by di�erentiating with respet to the hemialpotential �:n = � 1V �V(�; T )�� = �g � �V Xk �(k)q�(k)2 + 2��(k)  12 + 1e�p�(k)2+2��(k) � 1!+O(�2) :(9.9)This dependeny on the hemial potential � is not helpful, as it is rather the ondensatedensity, whih is observed in the experiment. Therefore we eliminate � in favor of n0 viarelationship (9.6):n� n0 = �V Xk �(k) + gn0q�(k)2 + 2gn0�(k)  12 + 1e�p�(k)2+2gn0�(k) � 1!+O(�2) : (9.10)The right hand-side of Eq.(9.10) denotes the number of non-ondensed partiles in theBogoliubov approximation.



9.2. POPOV APPROXIMATION VIA VPT 899.2 Popov Approximation via VPTThe result (9.10) is valid only for n � n0, i.e. for small �. However, the quantum phasetransition takes plae for n � n0, i.e. at strong �, whih an be reahed by applyingvariational perturbation theory aording to the rules developed in Chapter 3 of thisthesis. Here we introdue a dummy variational parameter M by replaing�!M + �� (9.11)with the abbreviation � = ��M� : (9.12)By inserting (9.11) into the grand-anonial potential (9.8), we have to onsider � asbeing independent of the expansion parameter �. By doing so we re-expand (9.8) onsis-tently up to the �rst power in �:
trial(M;�; T )V = �M22g � �Mg �+ �2V Xk q�(k)2 + 2M�(k)+ ��V Xk ln�1� e��p�(k)2+2M�(k)� (9.13)and replae � afterwards by its de�nition (9.12)
trial(M;�; T )V = M22g � M�g + �2V Xk q�(k)2 + 2M�(k)+ ��V Xk ln�1� e��p�(k)2+2M�(k)� : (9.14)Subsequently, we extremize this trial expression for the grand-anonial potential withrespet to the variational parameter M1V �
trial(M;�; T )�M = 0 ; (9.15)whih leads to 0 = Mopt � �g + �V Xk �(k)q�(k)2 + 2Mopt�(k)� 12 + 1e �p�(k)2+2Mopt�(k) � 1! : (9.16)



90 CHAPTER 9. DENSITY OF NON-CONDENSED ATOMSThus we obtain the optimal variational parameter as a solution of the equationMopt = �� �gV Xk �(k)q�(k)2 + 2Mopt�(k)  12 + 1e�p�(k)2+2Mopt�(k) � 1! : (9.17)Inserting (9.17) into (9.14) yields the optimized grand-anonial potential
(�; T ) = 
trial(Mopt; �; T ) : (9.18)However, we are more interested in a resummation of equation (9.10). At �rst we omputethe partile densityn = � 1V �
(�; T )�� �����T = � 1V �
trial(Mopt; �; T )�� �����Mopt;T= � 1V �
trial�� �����Mopt;T � 1V �
trial�Mopt ������;T �Mopt�� : (9.19)Beause of equation (9.15) this redues ton = � 1V �
trial�� = Moptg : (9.20)Seond, we insert the substitution (9.11) in the ondensate density (9.6) and perform asimilar variational resummation for the ondensate densityn0 = Mg + ��g � �V Xk 2�(k) +Mq�(k)2 + 2M�(k)  12 + 1e�p�(k)2+2M�(k) � 1! : (9.21)Taking into aount the abbreviation (9.12), we obtainn0 = �(M)g � �V Xk 2�(k) +Mq�(k)2 + 2M�(k)  12 + 1e �p�(k)2+2M�(k) � 1! : (9.22)Evaluating this expression for the optimal value of the variational parametern0 = �(Mopt)g � �V Xk 2�(k) +Moptq�(k)2 + 2Mopt�(k)  12 + 1e �p�(k)2+2Mopt�(k) � 1! (9.23)and inserting the relationship (9.17) yields:n0 = Moptg � �V Xk �(k) +Moptq�(k)2 + 2Mopt�(k)  12 + 1e�p�(k)2+2Mopt�(k) � 1! : (9.24)



9.2. POPOV APPROXIMATION VIA VPT 91Finally we replae Mopt by gn aording to (9.20) and get the �nal resultn� n0 = �V Xk �(k) + gnq�(k)2 + 2gn�(k)  12 + 1e�p�(k)2+2gn�(k) � 1! : (9.25)This result is known as the Popov approximation [18℄ and turns out to have the sameform as in (9.10), exept that the ondensate density n0 on the right-hand side is replaedby the total partile density n.



92 CHAPTER 9. DENSITY OF NON-CONDENSED ATOMS



Chapter 10Appliation to Weakly InteratingGasesWe �rst disuss the formation of a ondensate for the free-partile spetrum�(k) = �h2k22m : (10.1)Here, the quantum numbers k denote the eigenvalues of the non-interating gas, whihrepresent ontinuous wave vetors in d dimensions. Therefore the sum in (9.25) an beonverted for big volumes V into an integral over all wave vetors k:Xk = V ZR ddk(2�)d : (10.2)At �rst, we want to show in Setion 10.1 how the early results of Lee and Yang [94℄for the speial ase of zero temperature an be obtained within our formalism. Seond,we extend these alulations in Setion 10.2 for �nite temperatures and show how toalulate the whole phase diagram with the help of VPT, thereby prediting a surprisingreentrant phenomenon. Furthermore, we perform in Setion 10.3 a high temperatureexpansion of the e�etive potential (9.1) and show that the leading shift of the ritialtemperature vanishes.10.1 Zero Temperature LimitWith the above speialization the temperature independent part of the grand-anonialpotential (9.2) and the partile density (9.25) beomeV(�; T )V = ��22g + �2 ZR ddk(2�)dq�(k)2 + 2��(k) ; (10.3)93



94 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASESn = n0 + �2 ZR ddk(2�)d �(k) + gnq�(k)2 + 2gn�(k) : (10.4)The free partile spetrum (10.1) depends only on the absolute value of the wave vetork, so that we an transform both zero-temperature integrals (10.3) and (10.4) into one-dimensional onesV(�; T )V = ��22g + �2�(d=2) � m2��h2�d=2 Z 10 dxxd=2�1qx2 + 2�x= ��22g + �2Id(0;�1=2; 2�) ; (10.5)n = n0 + �2�(d=2) � m2��h2�d=2 Z 10 dxxd=2�1 x + gnpx2 + 2gnx= n0 + �2 [Id(1; 1=2; 2gn) + gnId(0; 1=2; 2gn)℄ : (10.6)All of these integrals are of the general form:Id(�; �; a) = 1�(d=2) � m2��h2�d=2 Z 10 dxxd=2�1 x�(x2 + ax)� : (10.7)Therefore, we �rst alulate this integral and apply the result afterwards to physis. Byusing the Shwinger trik (B.1), we obtainId(�; �; a) = 1�(d=2) � m2��h2�d=2 Z 10 dx xd=2+����1(x + a)� : (10.8)Interhanging both integrals and taking into aount again (B.1) yieldsId(�; �; a) = �(d=2 + �� �)�(�d=2� � + 2�)�(d=2)�(�) � m2��h2�d=2 ad=2+��2� : (10.9)In the following we make use of some speial ases of this master integral:I3(1; 1=2; 2gn) = 83�2 m3=2(gn)3=2�h3 ; (10.10)I3(0; 1=2; 2gn) = � 2�2 m3=2(gn)1=2�h3 ; (10.11)I3(0;�1=2; 2�) = 1615�2m3=2�5=2�h3 : (10.12)Thus we get for the grand-anonial potential (10.5) and the partile density (10.6) ind = 3 dimensions V(�; T )V = ��22g + � 815�2m3=2�5=2�h3 ; (10.13)n = n0 + � 13�2m3=2(gn)3=2�h3 : (10.14)



10.1. ZERO TEMPERATURE LIMIT 95Depletion The depletion is de�ned by the ratio of the number of exited partiles tothe number of partiles. From (10.14) we read o� the depletionn� n0n = �3�2m3=2g3=2n1=2�h3 : (10.15)Inserting the relationship between the oupling onstant and the s-wave sattering length(1.14) leads to the well-known result for the depletion [93℄:n� n0n = 83sa3sn� : (10.16)Ground-state energy The relationship between the internal energydU = TdS � pdV + �dN ; (10.17)and the grand-anonial potentiald
 = �SdT � pdV �Nd� (10.18)is given by the Legendre transformationU = 
 + TS + �N : (10.19)The ground-state energy is the internal energy per volume in the zero temperature limit.Using (10.13) we getE0 = UV ����T=0 = VV + �NV = ��22g + � 815�2m3=2�5=2�h3 + �n : (10.20)The hemial potential in zero-loop order is given by (9.9): � = gn + O(�). With aonsistent expansion of (10.20) up to O(�2) we obtainE0 = 12gn2  1 + � 1615�2m3=2g3=2n1=2�h3 ! : (10.21)Inserting (1.14) we get E0 = 2��h2m asn20�1 + 12815 sa3sn� 1A ; (10.22)whih is related to the depletion (10.16) aording to:E0 = 2��h2m asn2 �1 + 165 n� n0n � : (10.23)



96 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASESSound veloity The expression for the sound veloity an be obtained from the p! 0behavior of the Bogoliubov spetrum (9.7) with k = p=�h. For the free one-partilespetrum (10.1) the dispersion relation (9.7) has the important property to be linear forsmall momenta p:E(p) = vuut p22m!2 + 2� p22m p!0= r �m jpj = rgnm jpj = jpj : (10.24)Equation (10.24) shows a typial quasi-partile behavior indiating the ondensed state,where all partiles are energetially in the same state. With (1.14), the result for thesound veloity reads  = s4��h2nasm2 : (10.25)Thus the sound veloity depends only on the density n. Reently, this Bogoliubov soundveloity ould be measured [95℄ in the researh group of Ketterle at MIT . Their mea-surements oinided very well with the theoretial predition (10.25). Note that for largevalues of k the Bogoliubov spetrum (9.7) beomes lassial E(k) � �(k).10.2 Nonzero TemperaturesWe will now take into onsideration the full temperature dependent one-loop result forthe partile density (9.25), where �(k) is the free one-partile energy spetrum (10.1) andthe zero temperature integral has already been alulated in (10.15). After substitutingthe integration variable in d = 3 dimensions this leads to:as n1=3 = �n� n0n �2=3 �9�64�1=3 �1 + 3�16 I(�)��2=3 ; (10.26)where I(�) abbreviates the integralI(�) = Z 10 dx x� + 82px� + 16 (epx2�=16+x � 1) : (10.27)Taking into aount (1.14) the dimensionless parameter � is given by� =  tasn1=3�(3=2)2=3!2 ; (10.28)where t = T=T (0) denotes the redued temperature.



10.2. NONZERO TEMPERATURES 9710.2.1 Phase DiagramThe phase transition is de�ned by the vanishing of the order parameter, i.e. n0 = 0.Thus the transition line in our phase diagram follows from (10.26) to be:as n1=3 = �9�64�1=3 �1 + 3�16 I(�)��2=3 : (10.29)Near T = 0 we perform a Taylor expansion in the parameter � and obtain for the �rstfour oeÆients of this expansion:asn 13 = a0 + a1� + a2�2 + a3�3 +O(�4) : (10.30)with a0 = �9�64�1=3 � 0:762 ; a1 � �0:313 ; a2 � 0:200 ; a3 � �0:207 : (10.31)We observe that this Taylor expansion is not valid for small oupling onstants as theexpansion parameter � diverges in the weak-oupling limit as ! 0. However, the wholeexpression in (10.29) has a well de�ned weak-oupling limit. Evaluating the integral(10.27) numerially leads to the dotted urve in Fig. 10.1. There we plotted the wholephase diagram parametrially, whih means that we omputed asn1=3(�) and t(�) asfuntions of the parameter � separately.10.2.2 Critial Temperature ShiftThe behavior near T (0) an even be alulated analytially. Therefore we resale andexpand the integrand in (10.27) in the limit �!1, yielding:I(�) = p�2 Z 10 dzpz 1exp (p�z=4 + 2=p�)� 1 +O � 1�� : (10.32)Using the series representation of the Bose distribution funtion, we obtainI(�) = p�2 1Xm=1 e�2m=p� Z 10 dzz1=2e�mp�z=4 +O � 1�� ; (10.33)where the integral gives a Gamma funtion:I(�) = 4�(3=2)�1=4 1Xm=1 e�2m=p�m3=2 +O � 1�� : (10.34)The remaining sum is a polylogarithmi funtion (A.1):I(�) = 4�(3=2)�1=4 �3=2(e�2=p�) +O( 1�): (10.35)
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Figure 10.1: Phase diagram of Bose-Einstein ondensation in variationally improvedone-loop approximation without (dashed) and with properly imposed higher-loop slopeproperties at T (0) . The short urves starting at T = T (0) is due to Arnold et al.[31℄. Thedashed straight line indiates the slope of our urve. The diamonds orrespond to theMonte-Carlo data of Ref. [28℄ whih are saled to their value ae�(T = 0) � 0:63, whereasthe dots show simulation results obtained for helium [96℄.With the help of the Robinson expansion (A.4) we now expand this result for large �and obtain I(�) = 2p��(3=2)�1=4 � 4p2�p� +O � 1�3=4� : (10.36)Inserting (10.36) into (10.29) yields:1 = t3=2 � 2q2�asn1=3t�(3=2)2=3 : (10.37)To get the leading shift in the ritial temperature, we expandt = 1 + �TT 0 ; (10.38)and thus obtain from (10.37)t = 1 + 4p2�3�(3=2)2=3qasn1=3 +O(asn1=3) : (10.39)Although a similar square-root ontribution was also found in the Refs [21, 22℄, reentMonte-Carlo simulations [39, 40, 42℄ and preise high-temperature alulations [35, 43℄indiate that the leading ritial temperature shift is linear in the s-wave sattering lengtht = 1 + 1asn1=3 +O(a2sn2=3) (10.40)



10.2. NONZERO TEMPERATURES 99with the numerial value 1 � 1:3. Thus it beomes neessary to improve our resummedone-loop approximation (10.29) for the transition line via variational perturbation theory(see Chapter 3) in suh a way that the � !1 behavior of the expansion (10.30) is givenby (10.40) and not by (10.39).10.2.3 Resummation Improved ResultsA more reliable urve is obtained by extrapolating the weak-oupling expansions (10.30)asn1=3 = NXk=0 ak�k (10.41)to a strong-oupling one asn1=3 = �p=q NXk=0 bk��2k=q (10.42)with the help of variational perturbation theory. Note that the series (10.30) has Borelharater, whih means that the sign of the oeÆients (10.31) hanges from term toterm. At last this irumstane enables us to do a resummation via VPT.Determination of p and q For the resummation we have �rst to determine the ex-ponents p and q, whih haraterize the strong-oupling behavior. Our starting point isthe strong-oupling expansion (10.42) for N = 1:asn1=3 = �p=q �b0 + b1��2=q � : (10.43)Imposing the de�nition of the parameter � in (10.28) and the ritial temperature (10.38),we obtainb0 � �asn1=3�1+2p=q �(3=2)4p=3q + b0 2pq �TT (0) + b1�(3=2)8=3q �asn1=3�4=q = 0 : (10.44)Thus we get from (10.44) the orret asymptoti behavior (10.40) when p and q are �xedaording to 1 + 2pq = 0 ; 4q = 1 : (10.45)Therefore we have to hoose our strong-oupling exponents p and q to bep = �2 ; q = 4 : (10.46)With that hoie a omparison between (10.40) and (10.44) leads tob0 = 1�(3=2)2=3 ; b1 = 1b0�(3=2)2=3 = 1�(3=2)4=3 : (10.47)



100 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASESVPT Resummation We now want to improve our resummed one-loop approximation(10.29) for the transition line. The philosophy will be to trust only the �rst W + 1weak-oupling oeÆients a0; : : : ; aW in (10:41) and impose the �rst two strong-ouplingoeÆients b0 and b1 in (10.42) near T (0) . Using VPT we alulate with this informationtwo suessive weak-oupling oeÆients ~aW+1 and ~aW+2:asn1=3 = WXk=0 ak�k + ~aW+1�W+1 + ~aW+2�W+2 : (10.48)Afterwards we determine the whole phase diagram by resumming the new weak-ouplingseries (10.48) to be valid for all values of �.Leading VPT Order Let us illustrate this proedure for W = 0 and determine thesubsequent weak-oupling oeÆients ~a1; ~a2 from the strong-oupling oeÆients b0; b1.To this end we identify � � g and follow the VPT proedure of Chapter 3 by speifying(3.9) for N = 2, p = �2 and q = 4:f2(g;K) = 3a0K2 � 3a0K4 + a0 + 4g~a1K6 � 3g~a1K8 + ~a2g2K10 ; (10.49)where the last two oeÆients in (3.9) were replaed by ~a1; ~a2. Aording to the prinipleof minimal sensitivity we have to optimize this equation with respet to K and solve(3.10) with the ansatz (3.12) ontaining the two leading oeÆients K(0)2 and K(1)2 :K2(g) = K(0)2 g1=4 +K(1)2 g�1=4 +O(g�3=4) : (10.50)Inserting this ansatz for K2(g) into (3.10)0 = �6a0K3 + 12a0K5 � 6a0 + 4g~a1K7 + 24g~a1K9 � 10~a2g2K11 (10.51)and omparing the oeÆients of the two leading powers g�1=2 ; g�1=4 in the ouplingonstant g, yields the following two equations:0 = 3K(0)2 8a0 + 12K(1)2 4~a1 + 5~a2 ; (10.52)0 = 6K(0)2 7a0 + 9K(0)2 8K(1)2 a0 + 12K(0)2 3~a1 + 84K(0)2 4K(1)2 ~a1 + 55K(1)2 ~a2 : (10.53)As we have four unknown variables ~a1; ~a2; K(0)2 , and K(1)2 , we need two more equationsfor their unique determination. They an be obtained from the known strong-ouplingoeÆients b0 and b1 in (10.49). Inserting (10.50) into (10.49) and omparing with (3.13)



10.2. NONZERO TEMPERATURES 101yields:b0 = 1K(0)2 10 �3K(0)2 8a0 + 4K(0)2 4~a1 + ~a2� ; (10.54)b1 = 1K(0)2 11�� 3K(0)2 7a0 + 6K(0)2 8K(1)2 a0 + 3K(0)2 3~a1 + 24K(0)2 4K(1)2 ~a1 + 10K(1)2 ~a2� :(10.55)From (10.52) and (10.54), we get ~a1 and ~a2 as funtions of K(0)2 :~a1 = �32 K(0)2 4 �a0 � 512 b0K(0)2 2� ; (10.56)~a2 = 3K(0)2 8 �a0 � 12 b0K(0)2 2� : (10.57)Furthermore, Eq.(10.53) an be solved for K(1)2 :K(1)2 = �K(0)2 3 b1K(0)2 8 + 3a0K(0)2 4 + 3~a16K(0)2 8a0 + 24K(0)2 4~a1 + 10~a2 : (10.58)This expression has the interesting property, that the denominator is zero, if we insert(10.56) and (10.57). As K(1)2 should be a �nite quantity, we have to demand that thenumerator also vanishes. This leads to an expliit algebrai expression for K(0)2 , whih issolved by K(0)2 = �0��3a02b1 +vuut9a204b21 � 3a1b1 1A1=4 : (10.59)Note that with that hoie (10.55) is satis�ed although (10.55) was not needed for deriving(10.59). We now insert the weak-oupling oeÆient a0 � 0:76 from (10.31) and theorret strong-oupling oeÆients (10.47) with 1 � 1:3 to yield K(0)2 � �0:93461. Thisresult leads via (10.56) and (10.57) to the new oeÆients:~a1 � �0:654 ; ~a2 � 0:935 : (10.60)Finally, the trial funtion (10.49) follows to bef2(g;K) � 2:284 1K2 � 2:284 1K4 + (0:761� 2:616g) 1K6+1:962g 1K8 + 0:935g2 1K10 (10.61)and leads together with (3.10) to our �rst resummation improved transition line that isvalid for arbitrary values of the oupling onstant. The result, shown in Fig. 10.1 asthe �rst VPT order, has now the orret asymptoti behavior near T (0) as well as nearT = 0.



102 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASESHigher VPT Orders Finally, we state the new omputed weak-oupling oeÆientsof the improved resummed one-loop approximation for the orders W = 0; 1; 2:W = 0 : ~a1 = �0:654 ~a2 = 0:935 (10.62)W = 1 : ~a2 = �1:864 ~a3 = 16:66 (10.63)W = 2 : ~a3 = �29:53 ~a3 = 622:0 (10.64)A resummation of the orresponding weak-oupling series (10.48) shows the fast on-verging phase urves with the seond and third VPT order in Fig. 10.1. It is interestingthat the new omputed oeÆients in (10.63) and (10.64) deviate signi�antly from theoriginal ones in (10.31). The reason is that the inuene of higher orders beomes smallerin a weak-oupling expansion and it needs higher deviations to obtain the orret strong-oupling behavior.The phase diagram in Fig. 10.1 has the interesting property that there exists a hara-teristi reentrant transition [47, 48℄ above T (0) , a nose in the transition urve, where aondensate an be produed by inreasing as, whih disappears upon a further inreaseof as. Suh a reentrant behavior was also found in a previous Monte-Carlo simulation[28℄ as shown in Fig. 10.1. However the validity of their alulations an be doubted astheir value of the onstant 1 � 0:3 in (10.40) deviates signi�antly from reent Monte-Carlo [39, 40, 42℄ and analyti alulations [35, 43℄ with 1 � 1:3. Experimentally, oneould probe this behavior in two di�erent ways, i.e. by thermal and by quantum heating.Quantum heating means that one works at a ertain temperature, whih is slightly higherthan T (0) and then, oming from higher as, one dereases the s-wave sattering lengthby Feshbah resonanes [51℄. Contrary to that, thermal heating means to derease thetemperature for a given sattering length as. This proedure has to be done at least forthree di�erent gases with di�erent sattering length as to be able to observe the phasediagram in Fig. 10.1. Independent from the heating proess the phases an be observedby probing the oherene properties with time-ight measurements [97℄.10.3 High-Temperature ExpansionIn this setion we will show that a high temperature expansion of the e�etive potential(9.1) is onsistent with perturbation theory at weak ouplings above T. At a �rst glane,this is astonishing as BEC takes plae at very low temperature near T � 0 omparedto room temperatures at T � 300K. But this is not really a ontradition, as in thisontext "high" means that T (0) is muh larger than the harateristi temperature wherethe Bogoliubov spetrum beomes lassial (10.24). With the result in (10.25) this takesplae at the momentum j~pj = 2m = 2p�m and at the energy ~E = 2� orrespondingto the temperature ~T = 2�=kB. Thus, we e�etively perform a perturbation expansion



10.3. HIGH-TEMPERATURE EXPANSION 103in the dimensionless parameter ~T=T , whih is indeed a small parameter at temperaturesT � T (0) . To do so, we onsider the e�etive potential (9.1) with the free spetrum (10.1)and replae the sum by an integral (10.2), yieldingV[	;	�℄V = ��j	j2 + g2 j	j4 + 1��(D=2) � m2��h2�D=2 Z 10 dxxD=2�1 ln(1� e��E(x))� gV�(D=2) � m2��h2�D=2  Z 10 dx xD=2�1e�E(x) � 1!2 : (10.65)Here the O(g)-ontribution of the two-loop e�etive potential (8.28) is inluded, as wearry out a onsistent alulation in the oupling onstant g, and E(x) is the dispersionrelation E(x) = q(x� �+ 2gj	j2)2 � g2j	j4 (10.66)stemming from (9.3). At �rst we substitute �x by x and expand the argument of theexponential funtion in (10.65) in powers of �:�E(x) ! q[x� ��+ 2�gj	j2℄2 � �2g2j	j4= x� � ��� 2g�j	j2�+O(�2) : (10.67)One-Loop ontribution In this approximation the one-loop ontribution to the ef-fetive potential beomesV(1)[	;	�℄ = V TD=2+1�(D=2) � m2��h2�D=2 Z 10 dxxD=2�1 ln h1� exp ��x + ��� 2g�j	j2�i :(10.68)Thus the series representation of the logarithmln(1� e�y) = 1Xn=1 e�ynn (10.69)yields:V(1)[	;	�℄ = V TD=2+1�(D=2) � m2��h2�D=2 1Xn=1 1n exp n(��� 2�gj	j2)no Z 10 dxxD=2�1e�xn(10.70)Evaluating the integral gives n�d=2�(d=2) and the remaining sum represents a polyloga-rithmi funtion:V(1)[	;	�℄ = �V TD=2+1�(D=2) � m2��h2�D=2 �(D=2)�D=2+1 hexp ���� 2�gj	j2�i(10.71)



104 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASESA perturbative evaluation of the zeta funtion up to �rst order in the oupling onstant,i.e. ��(e���2�gj	j2) = ��(e��)� 2�gj	j2���1(e��) ; (10.72)setting d = 3 and using the thermal wavelength � = q2��h2�=m results inV(1)[	;	�℄ = � T�3 �5=2(e��) + 2g�3 �3=2(e��)j	j2 +O(g2;pT ) : (10.73)Two-Loop ontribution The two-loop ontribution readsV(2)[	;	�℄ = V 2 g�(D=2) � m2��h2�D=2 "Z 10 dx xD=2�1ex��� � 1#2 : (10.74)This time we use the series representation of the Bose distribution funtion1ey � 1 = 1Xn=1 e�yn (10.75)to obtainV(2)[	;	�℄ = V 2 g�(D=2) � m2��h2�D=2 � 1Xn=1 e��n Z 10 dx xD=2�1 e�xn�2 : (10.76)As before the integral is proportional to a Gamma funtion and the remaining sum givesa polylogarithmi funtionV(2)[	;	�℄ = gV �(D=2)� m2��h2�D=2 �D=2(e��)2 +O(g2) : (10.77)Finally we set d = 3 and use again the thermal wavelength � = q2��h2�=m:V(2)[	;	�℄ = g�6 �3=2(e��)2 +O(g2) : (10.78)Landau expansion Colleting the results above and reordering the e�etive potentialin powers of the order parameter yields:V[	;	�℄V = � T�3 �5=2(e��) + g�6 �3=2(e��)2 � �rj	j2 + g2 j	j4 +O(g2) (10.79)By doing so, we identify the oeÆient of the j	j2-ontribution to the e�etive potentialwith the renormalized hemial potential�r = �� 2g�3 �3=2(e��) +O(g2) (10.80)



10.3. HIGH-TEMPERATURE EXPANSION 105whih shows how the bare hemial potential �� hanges due to weak interations.It is important to note that this renormalized hemial potential is positive so thatthe oeÆient of the quadrati term in (10.79) is negative, leading to a potential ofa form resembling a mexian hat. The typial mexian hat shape shows two possibleequilibrium values at nonzero order parameters, where the e�etive potential redues tothe grand-anonial potential. In reality, the system is of ourse disturbed by di�erentenvironmental inuenes so that the system will prefer only one equilibrium value. Withthis hoie the symmetry of the system is broken and that is why this phenomena isalled spontaneous symmetry breaking.One may ask: How an one see that �r is really positive? The answer an be obtained byoptimizing the e�etive potential leading to the determination of the ondensate densityj	j2 whih turns out to be �r = gj	j2 in lowest order.Critial temperature An interesting appliation for the above Landau form of thegrand-anonial potential deals with the question, whether the ritial temperature hashanged due to weak interations. From the above disussion of the Landau form, weknow that the ritial point is determined by the vanishing of the renormalized hemialpotential (10.80). Indeed, this ondition oinides with determining the ritial pointwithin the framework of �nite temperature perturbation theory (4.38). From Eq. (10.80)we would get T as a funtion of the bare hemial potential �kBT = 2��h2m  �2g�(3=2)!2=3 : (10.81)Sine this temperature is large for small g ompared with ~T , the high-temperature ex-pansion is onsistent with the weak-oupling assumption of perturbation theory. Thisproves that lassial thermal utuations dominate at T (0) over quantum utuations.This also justi�es the zero Matsubara approximation for the leading shift in the ritialtemperature in (7.13).An experimentally more aessible quantity is the partile density n, whih is obtainedby di�erentiating the grand-anonial potential (10.79) with respet to �:n(T; �) = � 1V �V(T; �; V )�� = 1�3 �3=2(e��)� 2g��6 �3=2(e��)�1=2(e��) (10.82)Here, we have already set j	j2 = 0 whih is true at the ritial point. If one now insertthe ritial ondition �r = 0 for the hemial potential (10.81) and expand up to O(g),this redues to the free Bose gas expression:n(T; �) = 1�3 �3=2(e��r) +O(g2) �r=0= 1�3 �(3=2) +O(g2) : (10.83)



106 CHAPTER 10. APPLICATION TO WEAKLY INTERACTING GASESThus the e�etive potential evaluated up to the �rst perturbative order does not lead toa shift in the ondensation temperature whih agrees with the result of Ref. [98℄.



Chapter 11Appliation to Optial BosonLattiesIn this hapter we return to the problem of an e�etively homogeneous Bose gas on�nedin an optial lattie. For the lowest band the one-partile dispersion relation is given by(1.25): �(k) = 2J dXi=1(1� os kiÆ) : (11.1)Here the wave vetors k are also ontinous but they are restrited to the �rst Brillouinzone ki 2 (��=Æ; �=Æ). Thus the sum in (9.25) redues to the integralXk = V ZBZ ddk(2�)d = V dYi=1 Z �=Æ��=Æ dki2� : (11.2)These integrals are evaluated using the hopping expansion [99℄, in whih one expands theintegrand in powers of the osines of (9.25). This is formally implemented by insertingin (11.1) an arti�ial parameter � aording to�(k) = 2J dXi=1(1� � os kiÆ) (11.3)and by expanding the resulting expressions in powers of �, where we set � = 1 at theend. By doing so, we introdue the on-site interation U = gn and the partile density byn = Æ�d for an integer �lling fator in the periodi potential. So the resulting transitionline (n0 = 0) turns out to be de�ned by the impliit equationFd  kBTJ ; UJ ! = 0 : (11.4)107



108 CHAPTER 11. APPLICATION TO OPTICAL BOSON LATTICES11.1 Zeroth Hopping OrderIn zeroth hopping order, where � = 0, the funtion Fd is given by:F (0)d (x; y) = x� 2pd2 + dyln 4pd2 + dy + y + 2d4pd2 + dy � y � 2d : (11.5)In this lowest approximation one obtains analyti expressions for the value of the inter-ation parameter U=J at T = 0UJ ����T=0 = 2(3 + 2p3)d � 12:93d ; (11.6)the ritial temperature of the interation free model (U = 0)T (0) = 2dJkb ln 3 ; (11.7)and the shift in the ritial temperature �T = T � T 0 due to small interations, whihturns out to be linear �TT (0) = 12d UJ : (11.8)The resulting transition urve for d = 3 and the next three approximations oming fromsuessive hopping orders (see next setion) are shown in Fig. 11.1. Qualitatively weobserve a similar reentrant behavior [47℄ like in the homogeneous ase of BEC, whihis not really surprising as we deal with an e�etively homogenous system in the lowestband. However, the nose is more pronouned than in the ase of the free one-partiledispersion (10.1) and therefore it may be easier to experimentally observe this reentranttransition in the experiment of optial Boson latties. Furthermore, the measurementproess is muh easier here, beause quantum heating an be arried out by just varyingthe intensity of the laser beam at a ertain temperature.11.2 Higher Hopping OrdersThe onvergene of the transition line in Fig. 11.1 an be observed with the approxima-tion sequene of transition points U=J at T = 0 shown in Fig. 11.2, onverging towardsthe value 30:8. From that one an ompute the orretions due to higher hopping orders:UJ ����T=0 = 38:8� 4:7�2 � 1:3�4 � 0:6�6 � 0:4�8 � 0:3�10 � 0:2�12 +O(�14) ; (11.9)
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110 CHAPTER 11. APPLICATION TO OPTICAL BOSON LATTICESFor the experimentalist it is important to know whether this phenomenon persists ifthe optial lattie is stabilized by an overall weak magneti trap of a typial frequeny!trap � 2� � 24 Hz whih is neessary to prevent the partiles from esaping the optiallattie. Aording to the result of Ref. [41℄, the nose in the transition urve ould disap-pear sine for the free-partile spetrum an external trap auses a reversal of the slopeof the transition urve at T (0) [49, 103, 104℄, the shift beomingt � 1� 3:427pr1 � r2 � asn1=3 = 1� 0:136pr1 � r2 � U=J; (11.11)where r1 � kBT (0) =2��h!trap and r2 � 1=�!trapn1=3 is the ratio between the length saleÆ=f 1=3 and the width of the trap �!trap � q�h=M!trap. These numbers have the rangesr1 2 (0:27; 2:0) and r2 2 (0:52; 1:4) so that 0:136�pr1 � r2 lies between 0:037 and 0:27,experimentally.We end by mentioning that after our paper [47℄ appeared on the Los Alamos server,P.J.H. Denteneer drew our attention to a preprint of his written with D.B.M. Diker-sheid, D. van Oosten, and H.T.C. Stoof (eprint: ond-mat/0306573) in whih they alsofound a nose in the phase diagram (see their Figure 6). Aording to his private ommu-niation they did not, however, interpret their nose as a signal for a reentrant transitionbut onsidered it as an artefat of their slave boson approah.



Appendix ARobinson FormulaHere we derive a series representation of the polylogarithmi funtion��(z) = 1Xn=1 znn� ; (A.1)where z = e�� is the fugaity, whih is valid for small negative hemial potential �.Naively, one would expet that this is arried out by a simple Taylor expansion of theexponential funtion:��(e��) = 1Xn=1 1n� 1Xk=0 (��n)kk! = 1Xk=0 (��)kk! 1Xn=1 1n��k : (A.2)Applying the sum representation of the zeta funtion �(�) = ��(1) this yields:��(e��) = 1Xk=0 (��)kk! �(� � k) : (A.3)However, this result is wrong for negative hemial potential �, as the sums annot beinterhanged. Instead, the orret series representation turns out to be:��(e��) = �(1� �)(���)��1 + 1Xk=0 (��)kk! �(� � k); � < 0 : (A.4)This was �rst proven by Robinson [105℄ using the Mellin transformation as elaborated inSetion A.1. In Setion A.2 we show that it an also be shown by invoking the Poissonformula [49, Chap. 2℄.A.1 Proof via Mellin TransformationThe Mellin transformation of a funtion f(x) is de�ned byF (s) = Z 10 f(x) xs�1 dx : (A.5)111



112 APPENDIX A. ROBINSON FORMULAThe inverse Mellin transformation is then given byf(x) = 12�i I +i1�i1 F (s) x�s ds ; (A.6)where the integral has to be performed over the so-alled Bromwih path [106℄. Now,we apply these formulas to the polylogarithmi funtion (A.1). Its Mellin transformedfollows from (A.5) to beF (s) = Z 10 1Xn=1 e�xnn� xs�1 dx = 1Xn=1 1n� Z 10 e�xnxs�1 dx = �(s)�(� + s) : (A.7)Of ourse, the inverse Mellin transformation (A.6) should give bak the polylogarithmifuntion itself f(x) = ��(e�x) = 12�i I +i1�i1 x�s�(s)�(� + s) ds : (A.8)From that we derive a series representation of the polylogarithmi funtion by alulatingthe omplex integral with the help of the residue theorem, whih states that a omplexintegral is given by a sum over all residues of the integrand f(x) at its singularities ak:IC f(z)dz = 2�i nXk=1Res(f; ak) : (A.9)The funtion �(s+ �) has a simple pole at s = 1� � with the residue 1, whih will givethe �rst part of the Robinson formula (A.4). The seond part omes from the simplepoles of the gamma funtion �(s) at s = �n with residues (�1)n=n! .A.2 Proof via Poisson FormulaA.2.1 Derivation of Poisson FormulaWe onsider a periodi delta funtionÆ(p)(x) := 1Xm=�1 Æ(x�m) (A.10)and its Fourier representationÆ(p)(x) = 1Xn=�1 Æ(p)n e�2�inx ; (A.11)



A.2. PROOF VIA POISSON FORMULA 113where the oeÆients Æ(p)n are given byÆ(p)n = Z 10 Æ(p)(x)e�2�inx dx : (A.12)The last integral an be done, by inserting the de�nition (A.10):Æ(p)n = 1Xm=�1 Z 10 Æ(x�m)e�2�inx dx = Z 10 [Æ(x� 1) + Æ(x)℄ e�2�inx dx = 1 :(A.13)Inserting (A.13) in (A.11) yields together with (A.10) the fundamental identity1Xm=�1 Æ(x�m) = 1Xn=�1 e�2�inx : (A.14)We apply this distribution identity to a test funtion f(x) and multiply the resultingequation with an integral over the whole real axis to obtain the bosoni Poisson formula:1Xm=�1 f(m) = 1Xn=�1 Z 1�1 f(x)e�2�inx dx : (A.15)Applying the Poisson formula in many-body theory has the e�et of onverting a high-temperature in a low-temperature expansion, as an be seen in Setion 2.1 . Integratingover only one half of the real axis, we getlim�#0 1Xm=�1 Z 1� f(x)Æ(x�m) dx = lim�#0 1Xn=�1 Z 1� f(x)e�2�inx dx ; (A.16)so that extrating the n = 0 ontribution yields the modi�ed bosoni Poisson formula:1Xm=1 f(m) = Z 10 f(x) dx+ 2 1Xn=1 Z 10 f(x) os(2�nx) dx : (A.17)A.2.2 Derivation of Robinson's FormulaNow we apply the modi�ed bosoni Poisson formula (A.17) to the funtion f(x) =x��e��x:��(e��) = 1Xn=1 e��nn� = Z 10 x��e��x dx+ 2 1Xn=1 Z 10 x��e��x os(2�nx) dx : (A.18)The �rst part of the above equation an be alulated immediately. It gives the additionalontribution to the Taylor expansion in (A.4):Z 10 x��e��x dx = (���)��1 Z 10 x��e�x dx = �(1� �)(���)��1 : (A.19)



114 APPENDIX A. ROBINSON FORMULAThe alulation of the seond partI2 := 2 1Xn=1 Z 10 x��e��x os(2�nx) dx = 2Re 1Xn=1 Z 10 x��e�(����2�in)x dx (A.20)is a little bit more involved. There, it is allowed to expand the exponential funtion intoa Taylor series I2 = 2�(1� �)Re 1Xn=1(�2�in)��1  1 + ��2�in!��1 : (A.21)As ��=(2�in)��1 is a small parameter, we evaluate the last braket in a power seriesI2 = 2�(1� �)Re 1Xn=1(�2�in)��1 1Xk=0 � � 1k ! ��2�in!k ; (A.22)so that the sum over index n beomes a zeta funtion:I2 = 2�(1� �) 1Xk=0 � � 1k !(��)k os(�=2(� � 1 + k))(2�)1+k�� �(1� � + k) : (A.23)With the analyti ontinuation of the zeta funtion [55℄�(1� z) = 21�z �(z) os(�z=2)�z �(z) (A.24)we obtain, after some trivial simpli�ations, the desired result:I2 = 1Xk=0 (��)kk! �(� � k) : (A.25)



Appendix BDimensional Regularization
B.1 MotivationIn perturbation theory the integrals of the seond-order Feynman diagrams diverge ind = 3 dimensions. With the help of so-alled regularization proedures they an be made�nite. One of the most popular proedures is dimensional regularization, whih wasinvented by 't Hooft and Veltman [107℄. There, the measure of integration is hanged byallowing the dimension d in the integrals to be an arbitrary omplex number for whihonvergene is assured. The d-dimensional results an be expanded in powers of thedeviation � from three dimensions by setting d = 3�2�. The divergenies in the physialquantities then arise as � poles, whih vanish in most physial theories by renormalization.Those theories are alled renormalizable. Here, we will derive some important formulaswhih are needed for alulating Feynman diagrams with dimensional regularization inPart 2 and 3 of this work.B.2 Shwinger TrikShwinger observed that a fration of the form 1=�x with an arbitrary expression � andpower x an be rewritten as an integral:1�x = 1�(x) Z 10 d��x�1e��� : (B.1)This an be proven with the integral representation of the Gamma funtion�(x) = Z 10 dt tx�1e�t : (B.2)115



116 APPENDIX B. DIMENSIONAL REGULARIZATIONIf we substitute t by �t, we get immediately the relationship (B.1). If � is an expression,whih an beome zero, one has to use the modi�ed Shwinger trik:1� = Re lim�#0 Z i10 d�e�(��i�)� : (B.3)We proof Eq. (B.3) as follows:lim�#0 Z i10 d�e�(��i�)� = lim�#0 i 1� + i� = i lim�#0 ��2 + �2 + lim�#0 ��2 + �2 = i�Æ(x) + 1� :(B.4)Thus taking the real part of the right-hand side of (B.4) yields the desired result (B.3).A useful appliation of the Shwinger trik is the following representation of a logarithm:ln� = � ��x ��x���x=0 = � ��x ( 1�(x) Z 10 d��x�1e���)�����x=0 : (B.5)We proof this relationship by onsidering the funtionf(x) = ��x = e�x ln� : (B.6)Beause of it's derivative f 0(x) = � ln�f(x) and f(0) = 1, we writeln� = �f 0(0) = � ��x ��x���x=0 : (B.7)Finally we apply (B.1) to (B.7) from whih one obtains (B.5).B.3 Feynman ParameterFor produts of di�erent denominators we use Feynman's parametri integral formula1AaBb = �(a+ b)�(a)�(b) Z 10 d� �a�1(1� �)b�1[A� +B(1� �)℄a+b ; (B.8)whih is a straight-forward generalization of the obvious identity1AB = 1B � A � 1A � 1B� = 1B � A Z BA dx 1� 2 = Z 10 d� 1[A� +B(1� �)℄2 : (B.9)
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