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1. Introduction

1.1. Brief Review of BEC

The big increase in research in the field of Bose-Einstein condensation (BEC) began in
1995 with its first experimental realization in dilute gases, honored with the Nobel prize
in 2001. Groups at JILA [1] and MIT [2] succeeded to produce condensates of 87Rb and
23Na, respectively. This was 70 years after that A. Einstein [3], motivated by a letter from
S.N. Bose [4], had predicted a phase transition of a gas of non-interacting particles with
integer spin, called bosons and obeying the bose statistics, to a phase where the quantum
mechanical ground state is macroscopically occupied, forming a so-called Bose-Einstein
condensate.

Such a condensate contains a large number of coherent atoms. These represent a
controllable many-particle system which allows to investigate quantum phenomena on a
macroscopic level. An important example of that control is the adjustability of the inter-
action strength, which may be varied from attractive to repulsive, as shown in Fig. 1.1(a).
It could be achieved by means of Feshbach resonances [5–7]. Feshbach resonances were
originally found in the scattering cross section of neutrons on nuclei. The kinetic energy
of the incoming neutron is equal to the binding energy of a compound nucleus. A corre-
sponding effect in BEC is the formation of a long-living bound state during a collision.
The important point for the accessibility of the interaction lies in the fact that the in-
coming atoms and the bound state have different spin arrangements or hyperfine states.
Therefore, it is possible to address them separately by an applied magnetic field. For
instance, two fermionic atoms can form a bosonic pair that condenses later on. Such a
”molecule” of two fermions has a similar structure as a Cooper pair in the BCS (Bardeen-
Cooper-Schrieffer)-theory of superconductivity where two electrons with opposite spins
and wave vectors combine. It has been observed that two 6Li atoms can be combined
and that the resulting molecules cool to a BEC [8]. Via the applied magnetic field the
interaction can be tuned to change from attractive to repulsive, where the molecule splits
into two fermions. The existence of two separate states, a fermionic and a bound bosonic
one, can be seen from the emergence of characteristic superfluid vortices. Superfluidity
can be produced experimentally as the atom fluid is stirred with a laser. The transition
between the bosonic and fermionic state is called the BEC-BCS crossover. As BCS is
a solid-state phenomenon, there is a bridge between BEC from atomic physics and solid
state physics. Another solid-state phenomenon in BEC arises from the fact that ultracold
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1.1. BRIEF REVIEW OF BEC

(a) Feshbach tuning. (b) BEC in optical lattice.

Fig. 1.1: (a): Experimental data showing the interaction strength tuned by an applied
magnetic field in the vicinity of a Feshbach resonance (from Ref. [7]). (b): Mott insulator
and superfluid phase (from Ref. [9]). After release from the trap the coherent superfluid
atoms show a characteristic interference pattern. In the Mott state the phase of the
matter-wave remains uncertain and no interferences are observed.

bosonic atoms can be arranged in a lattice structure using an optical lattice, which is
simply a standing laser wave where the minima work as potential valleys [9,10]. Here, two
phases exist that are controlled by the height of the potential walls between the minima.
If the walls are low enough to allow tunneling, the atoms will form one coherent superfluid
macroscopic matter wave over the entire lattice. If the walls are raised too high, a state
with single atoms isolated on every lattice site is obtained. Because in such a state the
atoms of different valleys can not tunnel anymore, it is called a Mott insulator. Both
phases yield different interference patterns, once the optical lattice is switched off and the
atomic cloud expands, as depicted in Fig. 1.1(b).

A possible application of BEC could be a massive atom beam [11]. A photon laser
requires coherent photons of the same energy, just as we have coherent atoms of the same
quantum state and ground-state energy in a BEC. But this is a big way ahead as todays
BEC’s are still rather unstable structures.

So far, we have not yet mentioned the essential criterion for condensation to happen.
BEC occurs once the wave functions of the single atoms start to overlap. The criterion is
stated with help of the thermal wavelength

λT =

√

2πh̄2/(MkBT ) . (1.1)

The overlap happens if λT becomes comparable to the interatomic distances in the atom
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CHAPTER 1. INTRODUCTION

cloud. Therefore, either the density should become high or the temperature low. However,
in a dense system the particles could form molecules and, further on, even liquids or solids,
i.e., states much more stable than a BEC. For the formation of a molecule two atoms
approach each other and combine, but this process is only possible if a third particle
takes some momentum away. To avoid such a scenario, the gas must be sufficiently dilute
so that only two particle interactions appear in the vast majority. So, the requirements
for BEC are low temperature and low density, i.e., the gas must be ultracold and dilute.
If n is the density and a the s-wave scattering length, measuring the strength of the
interaction, the latter condition of density and interaction reads na3 � 1.

1.2. Experimental Challenges

The reason why it took so long from the prediction of BEC to its realization lies in the
experimental difficulties to cool down the atoms to temperatures in the nK regime and
catch them in a trap. Previous cooling methods were not applicable to reach such low
temperatures. New cooling techniques had to be found: laser cooling and evaporative
cooling. To cool atoms to about 100µK laser cooling is the appropriate method, which
was awarded a Nobel prize in 1997 [12]. Here, the atom is radiated by laser beams from
six different directions, ±x̂, ±ŷ, ±ẑ, with wavelengths tuned slightly below an electric
transition, i.e., detuned to red. So the atoms can only catch a photon due to the Doppler
shift, if they move in the direction towards a laser. Once they absorb the photon, they ex-
perience a boost away from it due to momentum conservation. When they spontaneously
emit the photon again, they experience another boost in an arbitrary direction so that the
average momentum transfer of the emitted photon is zero. Only the first deceleration by
the laser beam has a net effect on the atom. One might think that from a certain point
on the Doppler shift is not any longer large enough to fill the energy gap between laser
and atom. If the velocity of the atom becomes too small, it would not react to the laser.
This however, does not happen since the atoms take some energy from the magnetic field
of the trap as will be discussed later on. However, the temperatures in a BEC experiment
are about some hundred nK, i.e., after laser cooling the temperature is still about a factor
1000 away.

A second cooling step is necessary, the so-called evaporative cooling that exists only in
a trap that catches the atoms. It works by tuning the trap in a way that the energetically
higher atoms in the vapor can escape from the trap and only the less energetic ones
remain. To understand this process we need to know about the operating mode of the
trap. Usually magneto-optical traps are favoured. Strong harmonic magnetic fields couple
to the spin of the atom and thus fix it in a certain Zeeman state. Atoms with bigger kinetic
energy can reach regions with a stronger magnetic field and the energy difference of its
Zeeman state, which is proportional to the strength of the magnetic field, grows as well.
The optical part of the trap is a radio frequency, which is tuned in such a way that it
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1.3. INTERACTIONS IN BEC

flips the spin of those atoms with higher energy. Because the trap couples to the spin,
the latter atoms escape from the trap and leave an ensemble of colder atoms behind.

A third method not that widely-used in BEC is sympathetic cooling. Usually, it is used
to cool strongly interacting ions, but it has been applied to BEC too. For instance, a
BEC mixture of 87Rb of two different spin states was brought to overlap [13]. As one of
them was cooled evaporatively, the thermal contact brought nearly lossless sympathetic
cooling of the other.

But how can one gain information from such a trapped gas? Actually, it is impossible
to measure properties of a condensate directly. Instead, the method is to switch off the
trap, let the condensate fly apart and observe the expansion of the released gas. With
laser absorption measurements after a certain time of flight, one can recover an image of
the velocity distribution in the condensate. This is possible because atoms with higher
momenta will escape faster and thus are located more on the edge of the expanding
cloud. The expansion is a dynamic procedure just like the measurements of collective
excitations of the condensate. Such dynamical measurements can be done with high
precision. Furthermore, they can be compared to theoretical models and are sensitive to
the interactions. For instance, they allow to determine the strength of the interaction as
we shall see in the subsequent section.

1.3. Interactions in BEC

In the beginning of BEC experiments the condensing atoms were alkali metals. In such
dilute alkali gases the interaction is described quite well by the Lennard-Jones potential,
see Fig. 1.2(a). It consists of an attractive part proportional to r−6 coming from the
van der Waals interaction, a second-order perturbation correction to the ideal gas, and a
repulsive term of the form r−12. The zero of the potential lies at the van der Waals radius
r0 that corresponds to the size of an atom supposed to be a hard sphere.

In the theory of pseudopotentials, boundary conditions are replaced by an additional
inhomogeneous term in the wave equation, which is called the pseudopotential [14]. There-
fore, it is sufficient to model two-particle interactions in dilute alkali gases theoretically
using the short-range pseudopotential, see Fig. 1.2(b):

V
(int)
δ (r − r′) =

4πh̄2a

M
δ(r− r′) . (1.2)

The parameter a is the s-wave scattering length known from classical scattering theory.
Higher orbital waves like p-, d- or f-waves are suppressed at low energy due to the cen-
trifugal barrier in such extremely cooled systems. This makes the pseudopotential (1.2)
a good approximation for describing collisions, scattering, and van der Waals forces. The
pseudopotential is called contact- or delta-potential.
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Fig. 1.2: Illustration of the approximation of the pseudopotenial (b) from a physical
point of view. The repulsive part of the Lennard-Jones potential (a) is approximated by
a δ-functional. The dashed part in (b) betokens the possibility of tuning the strength into
a negative, attractive regime by using Feshbach resonances where the bound state of (a)
is taken into account.

In 2005, the first dipolar BEC was realized in a gas of 52Cr [15]. Chromium was
recommendable because of its electronic structure [Ar]3d5 4s1, which according to Hund’s
rule leads to a large magnetic dipole moment of six Bohr magnetons. So, apart from (1.2),
the atoms interact additionally via a magnetic dipole-dipole potential

V
(int)
dd (r) = −µ0

4π

3(m1 · r̂)(m2 · r̂) −m1 · m2

r3
(1.3)

which, in contrast to (1.2), is not isotropic but depends on the specific angle between the
dipoles and their distance vector. For a gas of identical atoms, m1 = m2, there are two
possibilities to align the dipoles. Either they are oriented parallel (→→) or perpendicular
(↑↑) with respect to their relative positions. Whereas in the first case the potential
becomes attractive, it is repulsive in the latter. This can also be seen from Fig. 1.3(b).
An attractive interaction shifts the critical temperature upwards and a repulsive one
downwards. A further significant difference between contact and dipole interaction is
their particular range. While the pseudopotential acts only on contact of two atoms,
the dipole-dipole interaction falls off with 1/r3 and thus acts over long distances. The
relative strength of dipole interaction and pseudopotential is measured with help of the
dimensionless quantity

εdd =
µ0m

2M

12πh̄2a
. (1.4)

First, it was not experimentally proven that the chromium atoms really interact via their
magnetic dipoles. The evidence was supplied by a measurement of the expansion of
the chromium condensate [16]. The dipole forces led to an anisotropic deformation of the

5



1.3. INTERACTIONS IN BEC

(a) Expansion.

∆Tc

T
(0)
c

N/106
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u

u

u

(b) Critical temperature shift.

Fig. 1.3: Data proving the effect of magnetic dipole-dipole interaction in chromium BEC.
(a): using the expansion of the condensate (taken from Ref. [16]). The dotted black line
shows the theoretical curve of a delta-interaction only. But the data agree perfectly with
both predictions of the two possibilities to align the dipoles in the magnetic field. (b):
theoretical calculation of the critical temperature shift (from Ref. [17]); the two shifts
(I) and (II) belong to a situation where the magnetic dipole moments are parallel and
perpendicular to the symmetry axis of the trap.

expanding condensate which was caused by the particular orientation of the atomic dipoles
and the data agreed well with the theoretical description, see Fig. 1.3(a). A second way
to see the effect of the magnetic dipole-dipole interaction would be a measurement of the
shift of the critical temperature caused by the dipole interaction and a comparison with
the theoretical result [17,18], see Fig. 1.3(b). We have mentioned above that the long-
range behaviour of the dipole-dipole interaction is a contrast to the contact interaction.
A more dramatic long-range interaction is supplied by an 1/r potential in the focus of this
thesis:

V
(int)
1/r (r− r′) =

C

|r − r′| . (1.5)

This could be a repulsive Coulomb interaction of charged atoms (C > 0). Theoretical
estimates have been made on a charged Bose gas at absolute zero [19,20]. Both papers deal
with the ground-state energy and the excitation spectrum. The first version is based on
the use of response and Green’s functions, while in the second version a Bogoliubov theory
is worked out. A Coulomb interaction has a large effect and prevents from condensing in
a translationally invariant system, where the atoms prefer to form a Wigner crystal [21].
A second possibility of an 1/r interaction is gravitation, which is however too weak to
become measurable in dilute atom gases (C < 0). Therefore, we basically follow an idea of
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CHAPTER 1. INTRODUCTION

Ref. [22] to artificially create an attractive 1/r interaction which is similar to gravitation
but up to 17 orders of magnitude stronger. Such tremendous gravitational forces are
only possible in nature on stellar scales. Thus, ultracold quantum gases can be used to
simulate cosmology in the laboratory. As the interaction is attractive, one could assume
self-binding situations balanced by the attractive 1/r interaction and the kinetic energy
as well as contact interaction on the other side. So far, all known types of stars are made
of fermions. A famous example are neutron stars. These are formed from the collapsed
residue of a massive star after a supernova. They are extremely dense with less than
1.4 sun masses within a radius of only 10 km. Their stability is ensured by the interplay
between the quantum pressure in the star, i.e., the resistance against squeezing due to
obeying Pauli’s exclusion principle, and gravity. At a certain size, called Chandrasekhar
mass, the Pauli exclusion principle can not hold any more against gravity and the star
collapses merging in a black hole.

The equivalent concept of a Bose star was discussed theoretically in Refs. [23,24]. The
role of the quantum pressure of fermions is replaced by the contact interaction for bosons.
Although Bose stars have not yet been observed, this does not mean that they do not
exist. There are still big missing links in cosmology, like for instance the origin of dark
matter which accounts for about 25% of the universal mass [25].

1.4. Outline of the Thesis

We start in the 2nd chapter with a detailed analysis on how the attractive long-range
interaction is actually obtained. In fact, it is a fourth-order perturbation result of neutral
atoms interacting with a radiation field. Therefore, some quantum-electrodynamical cal-
culations are executed. We also discuss the possible experimental realizations and suggest
an additional one worked out by ourselves. Finally, we give a brief review of an experiment
with cold ions.

To describe the system properly, we will use the functional integral formalism. We will
explain this method and give a review on some properties of the non-interacting Bose gas
in the grand-canonical ensemble in the 3rd chapter. Afterwards, in chapter 4, we develop
a Hartree-Fock mean-field theory that takes into account the long-range 1/r interaction
as well as the contact interaction. The theory will be valid for all temperatures, i.e., for
both the condensed and gas phase.

An application of this theory will be made for two special cases that can be treated
analytically. First, in chapter 5, we investigate the zero-temperature limit. We show,
how the Gross-Pitaevskii equation is solved exactly in Thomas-Fermi approximation and,
furthermore, use a variational approach to include the kinetic energy. The obtained
Thomas-Fermi solution is equivalent to the physical situation of a Bose star.

Later, in chapter 6, we analyze the dynamical properties, which describe small excita-
tions from the static behaviour at absolute zero. Here, two methods are used. On the

7



1.4. OUTLINE OF THE THESIS

one hand, we adopt a hydrodynamical approach to treat the condensate as a quantum
liquid and later on make a time-dependent Gaussian variational ansatz, both in order
to calculate excitation frequencies. These are of big interest, because they are precisely
measurable.

The critical region, where the phase transition occurs, will be the main topic of chapter
7. An important item is the critical temperature. We will calculate the shift regarding the
ideal gas in a harmonic trap caused by the interaction, once starting from the Hartree-
Fock mean-field theory and in a second way using Feynman graphs of perturbation theory
and show that both ways match.

The results, problems, and an outlook on perspectives will be discussed in the conclud-
ing chapter 8.
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2. Experimental Situation

In this chapter we describe the experimental situation of our system. At first, we reproduce
the experimental proposal on the artificial creation of a strong attractive 1/r interaction
[22]. We derive the theoretical background basing on quantum-electrodynamical calcula-
tions of Refs. [26–28]. In fact, it is a fourth order perturbation result of the interaction
between two neutral atoms and an external radiation field. We will show, how one gets
the total correction to the interatomar interaction and how it reduces for a rotational
average in the near zone to an attractive 1/r interaction. Thereafter, we will show some
experimental possibilities to realize it. At the end of the chapter, we will briefly explain an
experiment to catch and cool ions. This shall motivate extending some of the calculations
to a Coulomb regime.

2.1. Theoretical Basis of Experiment

The theoretical basis of the experiment is the interaction between atoms and a radiation
field, which stems, for instance, from a laser. The total Hamiltonian of the system looks
as follows

H = HA +HB +Hrad +Hint . (2.1)

Here, HA, HB, and Hrad are the undisturbed Hamiltonians of the atoms A, B and the
radiation field, respectively. Their eigenvalue problems are solved and the eigenvectors
orthonormalized:

HA,B |EA,B
m 〉 = EA,B

m |EA,B
m 〉 , Hrad |n(q, λ)〉 = En |n(q, λ)〉. (2.2)

EA,B
m label the energy eigenstates of the atoms, while n gives the number of photons in

a certain state number state determined by their wave vector q and corresponding wave-
lengths λ. The interaction between atoms and radiation field is dominated by the coupling
between the electric dipole moments of the atoms and the radiation field. Furthermore,
the interaction Hamiltonian Hint is supposed to be that small that we can treat it within
the framework of perturbation theory. In electric dipole approximation the interaction
reads in SI units

Hint = − 1

ε0

µ(A) · d⊥(rA) − 1

ε0

µ(B) · d⊥(rB) , (2.3)

9
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r

s

s

r

s

s

Fig. 2.1: Time-ordered graphs of the second-order dynamic Stark-shift with time going
from bottom to top. s and r label the particular energy of the atom state. An atom
catches a photon, gets excited, and reemits the photon again.

where µ(A,B) are the dipole moments of the atoms and we use the mode expansion of
the radiation field

d⊥(r) = ı
∑

k,ε

(

h̄ck

2ε0V

)1/2
[

ê(ε)(k) a(ε)(k) eık·r − ê(ε)∗(k) a(ε)†(k) e−ık·r
]

. (2.4)

In (2.4), ê(ε) are the polarization vectors of the two transversal polarizations ε = ±, k

the wave vectors of the photons, c the speed of light, V the volume, and a(ε)(k) , a(ε)†(k)
represent the corresponding photon creation and annihilation operators

a(ε)(k)|n(p, λ)〉 =
√
n |(n− 1)(k, ε)〉 δελ δpk , (2.5)

a(ε)†(k)|n(p, λ)〉 =
√

(n+ 1) |(n+ 1)(k, ε)〉 δελ δpk . (2.6)

The expectation value of the electric dipole operator µ(r) is an electric transition dipole
moment abbreviated by

〈EA
m|µ(rA)|EA

n 〉 = µ
mn(rA) . (2.7)

For m = n no transition happens and the expectation in (2.7) vanishes.
It can easily be seen that only even orders of the perturbative calculation can contribute

because the odd orders vanish due to the symmetry of the interaction (2.3). Hence, the
first non-vanishing contribution stems from the second-order perturbation correction

∆E(2) =
∑

I

〈f |Hint|I〉〈I|Hint|i〉
Ei −EI

. (2.8)

|i〉 and 〈f | are arbitrary initial and final states of the system, respectively. This order
describes the coupling of the radiation field to the induced electric dipole moments. Here,
the summation labelled by I actually contains a summation over all possible intermediate
states. The result of the second order is the dynamic Stark-shift calculated from the
diagrams in Fig. 2.1. Those are similar to the diagrams of elastic scattering of a photon
at an atom, like in Rayleigh scattering.

The result of the second order reads with the common convention that equal indices
have to be summed

∆E(2) =

(

nh̄ck

2ε0V

)

êi ê
∗
jαij(k), (2.9)

10



CHAPTER 2. EXPERIMENTAL SITUATION

where the dynamic polarizability is defined, using the abbreviation EX
i −EX

0 = EX
i0 , as

αij(k) =
∑

r

(

µi
srµj

rs

Ers − h̄ck
+

µj
srµi

rs

Ers + h̄ck

)

. (2.10)

In the case of a freely rotating atom, like in a gas, (2.10) simplifies to:

α(k) =
2

3

∑

r

Er
Ers |µrs|2

E2
rs − (h̄ck)2

. (2.11)

Thus, we see from Eq. (2.9), that the second order only displaces the energy levels of the
single atoms but does not affect their mutual interaction. A comparison of (2.9) with
Eq. (2.4) shows that the energy shift (2.9) depends quadratically on the strength of the
applied electric field,

√

nh̄ck/2ε0V , just as expected for the Stark-shift.
The next even order perturbation theory is the fourth one:

∆E(4) = −
∑

I,II,III

〈0|Hint|III〉〈III|Hint|II〉〈II|Hint|I〉〈I|Hint|0〉
(EI −E0)(EII −E0)(EIII −E0)

. (2.12)

This order represents the energy changing caused by the coupling between the atoms by
exchange of virtual photons only, while the atoms remain unexcited. To get the correction
to the ground-state energy, we suppose the initial and final states as the ground state.
It is the leading contribution to the intermolecular energy, i.e., the interaction potential.
It is calculated best using time-ordered graph techniques, with the intermediate states
|I〉, |II〉, |III〉. The formation of the sets in Fig. 2.2 has been made for the following
reasons. The virtual (exchange) and real photons can run either from A to B or vice
versa in time. Therefore we have Fig. 2.2(a) with both photons going from A to B,
Fig. 2.2(d) with both from B to A, Fig. 2.2(b) with the real from B to A and the virtual
from A to B, and last Fig. 2.2(c) the real from A to B and the virtual from B to A.

As an example, we calculate graph a of 2.2(a) with the ground state

|0〉 = |EA
0 ;EB

0 ;n(k, λ)〉 . (2.13)

The intermediate states can be read off from Fig. 2.3. To calculate the expectations of
(2.12), we use the Eqs. (2.3) to (2.7). Herewith, we get the following contributions

〈0|Hint|III〉 = ı

(

h̄cp

2ε0V

)1/2

µ0s
i (rB)ê

(ε)
i (p)eıprB , (2.14)

〈III|Hint|II〉 = −ı
(

h̄ck

2ε0V

)1/2

µs0j (rB)ê
(λ)∗
j (k)

√
ne−ıkrB , (2.15)

〈II|Hint|I〉 = ı

(

h̄ck

2ε0V

)1/2

µ0r
l (rA)ê

(λ)
l (k)

√
neıkrA , (2.16)

〈I|Hint|0〉 = −ı
(

h̄cp

2ε0V

)1/2

µr0m(rA)ê(ε)∗m (p)e−ıprA . (2.17)
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2.1. THEORETICAL BASIS OF EXPERIMENT

a b c

(k, λ)

A B

(p, ε)r

s
|III〉

|II〉

|I〉

d e f
(a) Set I. ↑↑

(b) Set II. ↓↑

(c) Set III. ↑↓

(d) Set IV. ↓↓

Fig. 2.2: Four sets of the fourth order perturbation graphs. Here time runs from bottom
to top. The sets are grouped by the fact that the real and virtual photon can either
go from A to B or vice versa (arrows in sublabels). Set I c is labelled exemplary. One
atom catches a real photon (k, λ) of the radiation field, gets excited, exchanges a virtual
photon (p, ε) with the other atom which emits a real photon later on. Both atoms remain
unexcited in total.

12



CHAPTER 2. EXPERIMENTAL SITUATION

Set I Set II Set III Set IV

a

I |r, 0; n, 1〉 |r, 0; n, 1〉 |r, 0; n− 1, 0〉 |0, s; n− 1, 0〉
II |0, 0; n− 1, 1〉 |r, s; n, 0〉 |r, s; n− 1, 1〉 |0, 0; n− 1, 1〉
III |0, s; n, 1〉 |r, 0; n− 1, 0〉 |0, s; n− 1, 0〉 |r, 0; n− 1, 0〉

b

I |r, 0; n, 1〉 |r, 0; n, 1〉 |0, s; n, 1〉 |0, s; n, 1〉
II |0, 0; n− 1, 1〉 |r, s; n− 1, 1〉 |r, s; n, 0〉 |0, 0; n− 1, 1〉
III |0, s; n− 1, 0〉 |r, 0; n− 1, 0〉 |0, s; n− 1, 0〉 |r, 0; n− 1, 0〉

c

I |r, 0; n, 1〉 |0, s; n− 1, 0〉 |r, 0; n− 1, 0〉 |0, s; n, 1〉
II |r, s; n, 0〉 |r, s; n− 1, 1〉 |r, s; n, 0〉 |r, s; n, 0〉
III |0, s; n− 1, 0〉 |0, s; n, 1〉 |r, 0; n, 1〉 |r, 0; n− 1, 0〉

d

I |r, 0; n− 1, 0〉 |0, s; n− 1, 0〉 |r, 0; n− 1, 0〉 |0, s; n− 1, 0〉
II |0, 0; n− 1, 1〉 |r, s; n− 1, 1〉 |r, s; n− 1, 1〉 |r, s; n, 0〉
III |0, s; n, 1〉 |r, 0; n− 1, 0〉 |r, 0; n, 1〉 |r, 0; n, 1〉

e

I |r, 0; n− 1, 0〉 |r, 0; n, 1〉 |0, s; n, 1〉 |0, s; n− 1, 0〉
II |0, 0; n− 1, 1〉 |r, s; n− 1, 1〉 |r, s; n− 1, 1〉 |0, 0; n− 1, 1〉
III |0, s; n− 1, 0〉 |0, s; n, 1〉 |r, 0; n, 1〉 |r, 0; n, 1〉

f

I |r, 0; n− 1, 0〉 |0, s; n− 1, 0〉 |0, s; n, 1〉 |0, s; n, 1〉
II |r, s; n, 0〉 |r, s; n, 0〉 |r, s; n− 1, 1〉 |0, 0; n− 1, 1〉
III |0, s; n, 1〉 |0, s; n, 1〉 |0, s; n− 1, 0〉 |r, 0; n, 1〉

Fig. 2.3: Modes corresponding to the graphs in Fig. 2.2. The first two entries give the
state of atoms A, B which is either an excited state “r, s” or the ground state ”0”. The
third entry shows the state of real photons from the radiation field while the last gives
the state of a virtual photon.

The denominator of (2.12) becomes, with E0 = EA
0 + EB

0 + nh̄ck,

(EI − E0)(EII − E0)(EIII − E0) = (EA
r0 + h̄cp)(h̄cp− h̄ck)(EB

s0 + h̄cp) . (2.18)

The energy Eq. (2.12) contains summations over intermediate states I, II, III which are
characterized by p, ε, s, r. Hence, we get the composed contribution for Fig. 2.2(a)a,
with r = rB − rA:

∑

p,ε,s,r

(

h̄cp
2ε0V

)(

nh̄ck
2ε0V

)

µ0s
i (rB)µs0j (rB)µ0r

l (rA)µr0m(rA)ê
(ε)
i (p)ê

(λ)∗
j (k)ê

(λ)
l (k)ê

(ε)∗
m (p)eıpre−ıkr

(EA
r0 + h̄cp)(h̄cp− h̄ck)(EB

s0 + h̄cp)

(2.19)
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2.1. THEORETICAL BASIS OF EXPERIMENT

The summation over the polarization vectors for right (−) or left (+) circular polarized
atoms is done using the identity

∑

±
êi

∗(±)(p) êj
(±)(p) =

1

2
[(δij − p̂ip̂j) ± ıεijlp̂l] . (2.20)

This relation is applied to the summation of the ε-polarization vectors of the virtual
photons. The summation over all quantum numbers p can be replaced by an integral if
the spectrum is very narrow. This is the case if the volume is big enough. Therefore, we
use the approximation

1

V

∑

p

→
∫

d3p

(2π)3
. (2.21)

Now, we use these two relations and furthermore, replace the dipole transition moments
and the summation over the energies r, s with help of the polarizabilities α(k) (2.11).
The summation of all 24 graphs of Fig. 2.2 and integration over p leads to [26]

∆E(4) =

(

nh̄ck

ε0V

)

ê
(λ)∗
i (k) ê

(λ)
j (k)αA(k)αB(k)Vij(r, k) cos(k · r) . (2.22)

Here, we introduced the retarded dipole-dipole interaction tensor

Vij(r, k) =
1

4πε0r3

[

(δij − 3 r̂ir̂j) (cos kr + kr sin kr) − (δij − r̂ir̂j) k
2r2 cos kr

]

, (2.23)

which consists of two parts. The traceless dyadic (δij − 3 r̂ir̂j) bears the full dipolar
coupling, while the other part (δij − r̂ir̂j) describes the transversal coupling.

For identical atoms A and B the polarizabilities are the same: αA(k) = αA(k) = α(k).
Further, we can collect some constants to the laser intensity I = nh̄c2k/V and rewrite
the energy shift (2.22) which depends on the interatomar distance as the potential

U(r) = Iα2(k)
ε0c

êi
∗(k) êj(k)Vij(r, k) cos(k · r) . (2.24)

It was shown in Ref. [26] that a pair orientation or tumbling average leaves a purely
1/r dependence in the near zone limit. Such an average is well fulfilled for gases or liquids
where the atoms are randomly oriented. Without loss of generality, we can assume the
radiation field to be oriented along the ẑ-axis. Therefore, using (2.20), the polarization
vectors without further specializing them yield (δ11 + δ22) /2. The rotational average of
all angular orientations reads

〈U(r)〉 =
Iα2(k)

4πε2
0cr

3

1

4π

2π
∫

0

dϕ

1
∫

−1

d cosϑ cos (kr cosϑ)
1

2

[

(2 − 3 sin2 ϑ) (cos kr + kr sin kr)

−(2 − sin2 ϑ)k2r2 cos kr
]

, (2.25)
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CHAPTER 2. EXPERIMENTAL SITUATION

from where we easily get the result

〈U(r)〉 =
Iα2(k)

8πε2
0cr

3

[

6 cos(2kr)

k2r2
− 2 cos(2kr) − kr sin(2kr) +

5 sin(2kr)

kr
− 3 sin(2kr)

k3r3

]

.

(2.26)
This reduces in the near zone kr � 1 to

〈U(r)〉 = −11Ik2α2(k)

60πε2
0c

1

r
. (2.27)

It is interesting to notice that the near zone potential with the characteristic attractive
1/r dependence is caused by the transversal part of (2.23). As we have seen that the
derived potential has the 1/r dependence in the near zone, the question arises how one
can realize such a tumbling average experimentally. This shall be the goal of the following
sections.

2.2. Experimental Setup with Static Lasers

The experimental proposal of how such an orientation average could be realized for cold
gases has been made in Ref. [22]. The simplest model that suppresses the 1/r3 parts
consists of three orthogonal, circularly polarized laser beams, as shown in Fig. 2.4(a):

k1 = kêx, k2 = kêy, k3 = kêz . (2.28)

For the near zone we can use identity (2.20) and simply superpose the three terms to get
the resulting near zone potential

U3(r) = −3Ik2α2

16πcε2
0

1

r

[

7

3
+ (sinϑ cosϕ)4 + (sinϑ sinϕ)4 + (cosϑ)4

]

. (2.29)

The angles ϕ and ϑ describe the orientation of the atoms with respect to the incident
beam. The result is attractive for all angles ϑ and ϕ as long as the polarizability α is
real. The derivation of (2.29) from a sphere is shown in Fig. 2.4(a). For a purely isotropic
1/r potential a second scheme was suggested in Ref. [22] which consists of six times three
lasers, called a triad of lasers, described above. But now each triad of three lasers is
turned by the following Euler angles

Triad 1 2 3 4 5 6

ẑ axis 0 0 0 0 0 0

new ŷ axis π/4 π/4 π/4 π/4 0 0

final ẑ axis π/8 −π/8 3π/8 −3π/8 π/8 −π/8
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2.3. INTERACTION STRENGTH

(a) Static Setup U3(r). (b) Rotating Setup U1×rot(r).

Fig. 2.4: Illustration of the two proposed setups (laser = blue, atoms = red). Small
upper right pictures: Spherical behaviour of the particular potentials, Eqs. (2.29) and
(2.40).

The superposition of the 6 triads gives the purely 1/r potential

U18(r) = −u
r
, u =

11

4π

Ik2α2

cε0
2
. (2.30)

Experimentally, however, a problem not brought up yet is the interference between the
laser beams. Since the lasers are arranged such that they interfere inevitably, this must
be avoided somehow. In Ref. [22] the authors suggest to detune the lasers against each
other. The difference between the resulting oscillations of two lasers should be much larger
than the relevant frequencies of the condensate like the excitation frequencies of collective
motions for example. If these are not disturbed, the total influence of the interference to
the interaction potential averages out.

2.3. Interaction Strength

The strength of the interaction in (2.30) is determined by the setting of the laser arrange-
ment. But it can be reexpressed by using a classical picture. If a particle is attracted by
a central force, it depends on its angular momentum, whether it takes a stable position or
not. The effective potential consists of the angular momentum barrier and the attractive
1/r-potential:

Veff(r) = −u
r

+
L2

2Mr2
. (2.31)
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r

Veff

L2

2Mr2

−u
r

aG

static polarizability α
23Na: 24.1 · 10−24 cm3

87Rb: 46.3 · 10−24 cm3

wavelength of
λ = 10.6µm

a CO2-laser

laser intensity I = 108 W/cm2

s-wave scattering
3 nm

length a

gravitation-like 23Na: 0.1 m

length aG
87Rb: 0.027 m

Fig. 2.5: Left: Clarification of the definition of the characteristic length of the interaction.
Right: Typical values of the appearing parameters. The characteristic length aG will be
used to determine the strength of the interaction in the further discussion.

The potential is stable around its minimum, see Fig. 2.5, which follows from

dVeff(r)

dr
=

u

r2
− L2

Mr3
= 0. (2.32)

If we assume that the angular momentum is of the size |L| = 2πh̄ as in the Bohr model,
the equilibrium position depends on

aG =
4π2h̄2

M u
. (2.33)

Thus, Eq. (2.33) defines in analogy to the Bohr model a new characteristic length scale.
So, from now on we will use the interaction (2.30) with

u =
4π2h̄2

MaG

, (2.34)

where the information about the specific laser setup is contained in aG. Typical values
following from (2.30) and (2.33) are given in the table in Fig. 2.5.

2.4. Alternative Setup with Rotating Lasers

Although the perturbative derivation of the interaction is only valid for static perturba-
tions we will present here a setup of rotating lasers. For a dynamic setup valid for every
rotation speed, the calculations of Section 2.1 must be repeated within time-dependent
perturbation theory of QED. But in a quasi-static frame, where the rotation frequency

17



2.4. ALTERNATIVE SETUP WITH ROTATING LASERS

ω is much smaller than the frequency of the laser ωL, the theoretical derivation should
remain valid. On the other hand, the excitation frequencies of the BEC ωexc must “see”
the desired potential. Therefore, we arrive at the following condition:

ωexc � ω � ωL . (2.35)

Instead of a static wave vector k we use the time-dependent one

k(t) = k (sin γ cosωt, sin γ sinωt, cos γ) (2.36)

with a free parameter γ that we will adjust shortly. As the approach is time-dependent
one has to average the potential (2.24) over one period:

U(r) =
ω

2π

2π/ω
∫

0

U(r, t) dt . (2.37)

The resulting potential contains one part proportional to 1/r3 and one proportional to
1/r. The free angle γ will be chosen in such a way that only the latter term survives.
After the integration over one period, the potential has the following form:

U1×rot(r) =
Iα2k2

4πcε2
0r

3

{

(cos2 γ − 1/3) (96 + 288 cos 2ϑ)

31
+
q2r2

256

[

4 cos 2ϑ− 9 cos 4ϑ− 187

− 3 cos4 γ (20 cos 2ϑ+ 35 cos 4ϑ+ 9) + cos2 γ (24 cos 2ϑ+ 90 cos 4ϑ+ 14)
]

}

.

(2.38)

Obviously, the first term vanishes for the angle

cos2 γ =
1

3
=⇒ γ ≈ 54.74◦ , (2.39)

which appears in another context as well. It is called ”magic angle” in NMR-spectroscopy
of solids. Here, the dipole-dipole interaction of the spins becomes important but with the
magic angle between applied magnetic field and spins it can be tuned to zero [29]. That
idea has been used in the dipolar BEC as well. Like in Feshbach resonance, the dipole-
dipole interaction could be changed from an attractive to a repulsive regime, tuning the
applied magnetic field, and even vanishes at the magic angle [30].

With that magic angle (2.39) the further terms of (2.38) reduce to the near-zone po-
tential

U1×rot(r) = − Iα2k2

96πcε2
0

1

r
(17 + 6 cos2 ϑ− 7 cos4 ϑ). (2.40)
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This potential U1×rot is always attractive and its angular dependence is shown in Fig. 2.4(b).
Obviously, it does not depend on the azimuthal angle and has a more spherical shape than
(2.29). The angular dependent part is an aberration from spherical symmetry of the order
smaller than 6 %.

A totally spherical symmetric potential can be achieved by combining three rotating
lasers with the following orientations

k1 =







cosωt sin γ

sinωt sin γ

cos γ






, k2 =







cos γ

cosωt sin γ

sinωt sin γ






, k3 =







cosωt sin γ

cos γ

sinωt sin γ






.

(2.41)
If we proceed in a similar manner like for one rotating laser, namely we superpose the
three terms, take the average of one period, and choose the free angle γ to get rid of the
1/r3 terms, so we get for the variable angle

cos2 γ =
1

2
+

1

70

(

−5 + 4
√

30
)

=⇒ γ ≈ 30.56◦ . (2.42)

The resulting potential is now spherically symmetric

U3×rot(r) = − 11Iα2k2

20πcε2
0

1

r
. (2.43)

In comparison with the static setup, in our rotating proposal less lasers are required
and therefrom the experimental realization is easier and cheaper. On the other side,
interference effects become crucial in the rotating framework but can still be overcome by
frequency shifts as in a static frame.

2.5. Experiment with Ions

In the last section of the chapter we briefly present a recent experiment on the trapping and
cooling of ions [31]. This shall motivate enlarging some results to a Coulomb interaction.

To store the ions, a linear quadrupole trap is used. The trap is built of four equivalent
cylindrical electrodes, each of them split into three parts. The electrodes are driven by a
radio frequency voltage Vrf and a DC voltage VDC plus an additional DC voltage VEC at
each of the end caps that provides confinement in the axial direction of Fig. 2.6. While
the rf voltage is fixed, the latter can be tuned to transform the shape of the trapped ion
cloud.

Theoretically, the motion of a particle in the quadrupole potential

Φ(x, y, z, t) = Φ(t)(x2 + y2 + z2) (2.44)
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2.5. EXPERIMENT WITH IONS

Fig. 2.6: Schematic picture of the quadrupole trap of Ref. [31] and the connection of the
voltages.

leads with proper boundary conditions to the set of equations [32]

Mẍ = Q

(

VDC + Vrf cos Ωt

r2
0

− κVEC

)

x , (2.45)

Mÿ = Q

(

−VDC + Vrf cos Ωt

r2
0

− κVEC

)

y , (2.46)

Mz̈ = 2QκVECz . (2.47)

Here, r0 is the distance from the center to the electrodes and κ is a parameter describ-
ing the trap geometry. The Eqs. (2.45)–(2.47) are special cases of the general Mathieu
differential equation

d2u(s)

ds2
+ (a− 2q cos 2s)u(s) = 0 . (2.48)

where a and q are the stability parameters. The equations (2.45)–(2.47) describe the
motion in a fast oscillating field. This can be approximated by the motion of particles in
an effective cylinder-symmetric potential [33] :

Ueff(r, z) =
M

2

(

ω2
r r

2 + ω2
zz

2
)

. (2.49)

The frequencies are connected by the trap parameters via

ω2
r =

Q2V 2
rf

2M2r4
0Ω

2
+
QVDC

Mr2
0

− QκVEC

M
, ω2

z =
2κQVEC

M
. (2.50)

Numerical values of Ref. [31] are Vrf = 380 V, Ω = 2π · 14.2 MHz, r0 = 4.3 mm , κ =
3 · 10−3 mm−2, and VDC = 0 − 4 V.

In the experiment, once the atoms are caught in the quadrupole trap experiment, they
get ionized by an electron beam, and cooled down by the mutual interaction of 4He+ with
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9Be+ which have previously been cooled by laser cooling. The possibility of cooling by the
mutual interaction is limited by the mass ratio Msc/Mlc > 0.3. Here, Msc is the mass of
the sympathetically cooled atoms and Mlc the one of the laser cooled ones. In Ref. [31] the
ratio is Msc/Mlc = 0.44. At a critical temperature, the atoms perform a phase transition
from a plasma to a Wigner crystal [21]. Finally, the number of ions trapped, cooled, and
crystallized that way are estimated to be about 6.2 · 103 of Beryllium and about 150 of
Helium. The temperature of the crystallized ions is estimated less than 20 mK.

Although in this experiment the ions are fermions, there is no restriction to extend it
to bosons as well. The only limit is given by the mass ratio.
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3. Quantum Statistics of
Non-Interacting Bose Gas

To give an introduction to many-body quantum statistics and to the functional integral
method we use, we will first discuss the properties of the non-interacting Bose gas. As we
already mentioned in the introduction, even without any interaction, a Bose gas undergoes
a phase transition between the gas and the condensed state.

At first, we recall some properties of the grand-canonical ensemble and present its ma-
jor thermodynamic quantities. Afterwards, we introduce the functional integral method
which is a many-body generalization of the path integral formalism. To become familiar
with this method, we calculate the critical temperature of the phase transition from a Bose
gas to BEC within the semiclassical approximation in the last section of this chapter.

3.1. Grand-Canonical Ensemble

The quantum statistical properties of a dilute ideal Bose gas in equilibrium are conve-
niently described using the grand-canonical ensemble [34]. It is valid for a set of identical
particles connected to a heat bath at equilibrium temperature and a particle basin. The
most important quantity is the grand-canonical partition function

Z(β, µ) = Tr e−β(H−µN) (3.1)

with the Hamiltonian H and the particle number operator N . µ is the chemical potential
that governs the particle exchange and β = 1/kBT the reciprocal temperature. The trace
can be carried out with respect to any suitable set of eigenfunctions. The expectation
values for some operator O is calculated via

〈O〉 =
Tr
[

O e−β(H−µN)
]

Z . (3.2)

The grand-canonical free energy is obtained by

F = − 1

β
lnZ . (3.3)

As a function of other thermodynamic quantities it is a double Legendre-transform of the
internal energy U

F = U − TS − µN . (3.4)

23



3.2. PATH INTEGRAL FORMALISM

Therefore, it allows to calculate entropy and particle number according to

S = − ∂F
∂T

∣

∣

∣

∣

V,µ

, (3.5)

N = − ∂F
∂µ

∣

∣

∣

∣

V,T

. (3.6)

This was just a short repetition of thermodynamics but now we will say how we execute
calculations in detail.

3.2. Path Integral Formalism

Feynman’s path-integral formalism [35] is an alternative way to the Schrödinger theory to
describe one-particle quantum mechanics with an infinite number of ordinary integrals in-
stead of operators. Here, we give only a brief review on the main aspects, as it is discussed
in text books rather well [36]. Its idea was motivated by the double-slit experiment where
a particle simultaneously passes both slits. So, if the entire space is thought of as a lattice
with numerous slits, a particle could pass all slits at the same time and the effective path
is a superposition of all possible paths. Therefore, the probability of propagation from
space-time point (xa, ta) to (xb, tb) is given by a sum over all possible paths which reads
in a shorthand notation

(xb tb|xa ta) =

x(tb)=xb
∫

x(ta)=xa

D′x

∫ Dp
2πh̄

eıA[p,x]/h̄ (3.7)

with the action A that is a time integral of the Lagrange function:

A[p, x] =

tb
∫

ta

dt [p(t)q̇(t) −H (p(t), x(t))] . (3.8)

As the path integral is the probability of propagation, it is also possible to derive a
quantum-mechanical partition function for one particle in this formalism by

Z =

∞
∫

−∞

dx (x tb|x ta) =

∮

Dx
∫ Dp

2πh̄
eıA[p,x]/h̄ , (3.9)

where
∮

implies an averaging over all configurations with x(ta) = x(tb). To connect it to
statistical mechanics, the ”Wick-rotation” is introduced with a summation over all paths
x(t) which are periodic in imaginary time and the time distance

τ = ıt , tb − ta = −ıh̄β . (3.10)
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GAS

Herewith, the partition function becomes

Z =

∮

Dx
∫ Dp

2πh̄
e−Ae[p,x]/h̄ , (3.11)

where the paths run along the imaginary time axis and the euclidean action Ae reads

Ae[p, x] =

h̄β
∫

0

dτ [−ıp(τ)ẋ(τ) +H(p(τ), x(τ))] . (3.12)

3.3. Functional Integral Formalism

The introduced path integral can be generalized to a functional integral [37,38] that de-
scribes many-body systems. It amounts to replacing the space variables by corresponding
fields. This is equivalent to second quantization where the former operators like x̂, p̂, . . .
are replaced by field operators creating and annihilating particles. So, here we have the
replacement x → ψ(x) and p → ψ∗(x). In the Wick rotated frame, we get the grand-
canonical partition function

Z(0) =

∮

Dψ∗Dψ e−A(0)[ψ∗,ψ]/h̄ , (3.13)

where the functional integral sums over all possible bosonical field configurations ψ(x, τ),
ψ∗(x, τ) which are periodic in imaginary time, i.e., ψ(x, 0) = ψ(x, h̄β), ψ∗(x, 0) =
ψ∗(x, h̄β). Therefore, we can treat the time-behaviour using a Matsubara decomposi-
tion of the fields

ψ(x, τ) =
∑

k

∞
∑

m=−∞
ckmψk(x) e−ıωmτ , ψ∗(x, τ) =

∑

k

∞
∑

m=−∞
c∗kmψ

∗
k(x) eıωmτ . (3.14)

with the Matsubara frequencies
ωm = 2πm/h̄β (3.15)

and coefficients ckm, c
∗
km. However, the spatial fields ψk(x) and ψ∗

k(x) are the eigenfunc-
tions of the particular one-particle Schrödinger equations

[

− h̄2

2M
∆ + V (ext)(x)

]

ψk(x) = Ekψk(x) , (3.16)

[

− h̄2

2M
∆ + V (ext)(x)

]

ψ∗
k(x) = Ekψ

∗
k(x) , (3.17)

where k labels the different quantum states. For common potentials, like a harmonic
oscillator one, the eigenfunctions and energies are well-known.
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Furthermore, the undisturbed euclidean action in (3.13) is defined by

A(0)[ψ∗, ψ] = h̄

h̄β
∫

0

dτ

h̄β
∫

0

dτ ′
∫

d3x

∫

d3x′ ψ∗(x, τ)G(0)−1(x, τ ;x′, τ ′)ψ(x′, τ ′) , (3.18)

with an integral kernel whose relevancy will become clear within this section

G(0)−1(x, τ ;x′, τ ′) =
1

h̄
δ(x − x′)δ(τ − τ ′)

{

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

}

. (3.19)

Here, M denotes the particle mass, V (ext)(x) the external trap potential, and µ the chem-
ical potential.

To calculate the non-interacting partition function (3.13) we assume to know the energy
spectrum of (3.16), (3.17). The functional integration over all possible bosonical fields in
Eq. (3.13) corresponds to an integration over all possible coefficients ckm , c

∗
km

∮

Dψ∗Dψ =
∏

k

∞
∏

m=−∞

1

2π

∫

dc∗kmdckm. (3.20)

Thus the new partition function reads

Z(0) =
∏

k

∞
∏

m=−∞

1

2π

∫

dc∗kmdckm exp
[

−β (−ıh̄ωm + Ek − µ) |ckm|2
]

. (3.21)

To carry out the integration we decompose the ckm , c
∗
km into real and imaginary parts:

ckm = akm + ıbkm , (3.22)

c∗km = akm − ıbkm. (3.23)

With a factor 2 from the Jacobian of the transformation (3.22), (3.23), we get

Z(0) =
∏

k

∞
∏

m=−∞

1

π

∫

dakmdbkm exp
[

−β (−ıh̄ωm + Ek − µ)
(

a2
km + b2km

)]

(3.24)

which is the product of two Gaussian integrals and leads to the final result of the partition
function

Z(0) =
∏

k

∞
∏

m=−∞
[β (−ıh̄ωm + Ek − µ)]−1 . (3.25)

The expectation (3.2) in the functional integral formalism for non-interacting particles
reads

〈✰ 〉 =
1

Z(0)

∮

Dψ∗Dψ ✰ e−A(0)[ψ∗,ψ]/h̄ . (3.26)
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An important expectation value is the correlation of two fields, denoted by the correlation
function or propagator G(0)(x, τ ;x′, τ ′):

G(0)(x, τ ;x′, τ ′) =
1

Z(0)

∮

Dψ∗Dψ ψ(x, τ)ψ∗(x′, τ ′) e−A(0)[ψ∗,ψ]/h̄ . (3.27)

It obeys the integral equation

h̄β
∫

0

dτ ′′
∫

dDx′′G(0)−1(x, τ ;x′′, τ ′′)G(0)(x′′, τ ′′;x′, τ ′) = δ(τ − τ ′)δ(x − x′) , (3.28)

while the inverse of the correlation function turns out to be just the integral kernel (3.19).
Because the calculation of the propagator is rather technical, it is relegated to Appendix
A.2.

The grand-canonical free energy follows from (3.25) according to (3.3) and is calculated
in Appendix A.1, but we basically use the semiclassical expressions of these quantities
explained in the next section.

3.4. Semiclassical Approximation

The semiclassical approximation is based on the (classical) assumption that h̄ is small so
that all states are that narrowly distributed that they can be described as a continuum
[36]. So, instead of a sum of all discrete quantum states that is somehow difficult to work
with in the particular case, we simply extract the quantum-mechanical ground state and
describe all excited states by a classical Hamilton function. Now, instead of the sum
we obtain a classical phase space integration. For simplicity the ground-state energy is
grasped by the chemical potential:

En → H(p,x),
∑

n

→
∫

dDp

(2πh̄)D
, µ→ µ−E0 . (3.29)

The semiclassical approximation is physically related to the thermodynamical limit. As
we will see at the end of this chapter, the critical temperature is related to the particle
number via T ∝ N1/3. The approximation is valid as long as the quantum energy h̄ω is
much smaller than the thermal energy 1/β: h̄ωβ � 1.

3.4.1. Non-Interacting Propagator

The result of the quantum-mechanical propagator (A.22) can be approximated within the
semiclassical regime. To this end, we treat the one-particle wave functions ψk(x) and
ψ∗

k(x) as plane waves with wave vector k = p/h̄ and replace the trap potential V (ext)(x)
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in the Hamilton function by its value at the mean distance between start and end points
[36,37]:

G(0)(x, τ ;x′, τ ′) =

∫

d3p

(2πh̄)3
eıp(x−x′)/h̄

{

Θ(τ − τ ′)

∞
∑

n=0

e
− 1

h̄

»

p2

2M
+V (ext)

“

x+x′

2

”

−µ
–

(τ−τ ′+nh̄β)

+Θ(τ ′ − τ)
∞
∑

n=1

e
− 1

h̄

»

p2

2M
+V (ext)

“

x+x′

2

”

−µ
–

(τ−τ ′+nh̄β)
}

. (3.30)

For equal imaginary times, the propagator is defined as the limit of τ ′ ↓ τ according to
(A.22):

G(0)(x, τ ;x′, τ) =

∫

d3p

(2πh̄)3
eıp(x−x′)/h̄

∞
∑

n=1

e
− 1

h̄

»

p2

2M
+V (ext)

“

x+x′

2

”

−µ
–

(τ−τ ′+nh̄β)
. (3.31)

3.4.2. Grand-Canonical Free Energy

Starting from Eq. (A.10), we can derive a semiclassical expression for the free energy as
well. As the free energy is related to the trace of the propagator according to (A.12), we
also have to integrate over the real space in addition to the semiclassical rules. With the
expansion of the logarithm, we get from (A.10)

F (0) = − 1

β

∞
∑

n=1

1

n

∫

d3x

∫

d3p

(2πh̄)3 exp

{

−nβ
[

p2

2m
+ V (ext)(x) − µ

]}

. (3.32)

At this place, we specialize to a gas confined in a harmonic trapping potential

V (ext)(x) =
M

2

∑

i

ω2
i x

2
i . (3.33)

Because all integrals become Gaussian, we can state the result

F (0) = − 1

β (h̄βω̃)3 ζ4
(

eβµ
)

. (3.34)

Here, we used the geometric mean of the trap frequencies

ω̃ = (ω1ω2ω3)
1/3 (3.35)

and the summation was abbreviated by

ζa(z) =

∞
∑

n=1

zn

na
(3.36)

which is called polylogarithmic function.
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3.5. Tc-Shift in Non-Interacting Gas

Because of two reasons we calculate the shift of the critical temperature of the non-
interacting gas in a harmonic trap. First of all, it is a good application of the derived
theory and the semiclassical approximation. And secondly, because we will need the result
in the later discussion.

Since we would like to calculate a quantity in the critical region, we first need to know
what is the criterion for the critical phenomenon. A phase transition comes along with
enormous fluctuations. Thus, the correlation (3.27) between particles diverges. This di-
vergence in G(0) coincides with the vanishing of G(0)−1. For this purpose, we use the
semiclassical result for the propagator (3.30) and calculate its Fourier-Matsubara trans-
form which is easier to handle:

G(0)(p, ωm;x) =

h̄β
∫

0

dτ eıωmτ

∫

dDx′ e−ıpx′/h̄G(0)

(

x +
x′

2
, τ ;x − x′

2
, 0

)

. (3.37)

The τ -integration permits only the first Heavyside-function to be non-zero. The integra-
tions are performed in a standard way to give

G(0)(p, ωm;x) = −h̄
∞
∑

n=0

e
−nβ

»

V (ext)(x)−µ+ p2

2M

–

e
−β

»

−ıh̄ωm+V (ext)(x)−µ+ p2

2M

–

− 1

−ıh̄ωm + V (ext)(x) − µ+ p2

2M

. (3.38)

The summation over n is simply a geometric series, that cancels the last factor except for
the term eıβh̄ωm , which is exactly 1 by definition of the Matsubara frequencies (3.15). So,
we get the simple result

G(0)(p, ωm;x) =
h̄

−ıh̄ωm + p2

2M
+ V (ext)(x) − µ

. (3.39)

Obviously, (3.39) represents the functional inverse of the semiclassical analogon of the
integral kernel (3.19). Of course this integral kernel vanishes at the critical point, where
the correlation function (3.39) diverges due to the integral relation (3.28). That means in
the semiclassical approximation for the Fourier-Matsubara transform of (3.19)

h̄G(0)−1(p, ωm;x) = −ıh̄ωm +
p2

2M
+ V (ext)(x) − µ = 0 . (3.40)

But this equation can only be fulfilled for vanishing momentum p = 0 as well as Matsubara
frequency ωm = 0 at the critical chemical potential

µ(0)
c = min

x
V (ext)(x) . (3.41)
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In the case of a harmonic trap (3.33), Eq. (3.41) reduces to

µ(0)
c = 0 . (3.42)

In order to get an equation for the critical temperature, we keep the particle number
fixed, use relation (3.6) and apply it on the semiclassical result of the free energy (3.34):

N =
1

(h̄βω̃)3
ζ3
(

eβµ
)

. (3.43)

But N is the total number of particles and on the right-hand side of (3.43) we have
only the semiclassical result of the free energy. Therefore, this theory is only valid if
it approaches the critical point from above. The transition temperature is obtained by
plugging the critical chemical potential (3.42) into (3.43):

T (0)
c =

h̄ω̃

kB

[

N

ζ(3)

]1/3

. (3.44)

The value of the appearing Riemann zeta-function

ζ(a) =

∞
∑

n=1

1

na
(3.45)

is ζ(3) = 1.20206. We see that we get the proportionality between temperature T and
the cubic root of the particle number N1/3 which was mentioned in Section 3.4.

To give an impression of the size of the transition temperature we use numerical values
from a recent experiment [39] where the critical temperature of a weakly interacting gas
is measured. About 106 87Rb atoms are caught in a cylindrically-symmetric harmonic
trap driven by ωr = 2π · 413 Hz and ωz = 2π · 8.69 Hz. The resulting temperature is
T

(0)
c = 514 nK. The derivation of the critical temperature was done using the semiclassical

approximation. To improve the result, quantum corrections have to be taken into account.
The first contribution is the finite-size correction from Refs. [40–43]:

(

∆Tc

T (0)
c

)

FS

= − ζ(2)ω̄

2ζ(3)2/3ω̃N1/3
. (3.46)

Here, ω̄ = (ω1 + ω2 + ω3)/3 is the arithmetic mean of the trap frequencies. The name
“finite-size” bases on the fact that it is proportional to N−1/3. We also point out that it is
independent of the trapping frequencies in the case of an isotropic trap. For our example
the temperature is shifted 9 nK downwards, i.e., about 1.8%. Further corrections appear
due to the interactions which will be the topic of Chapter 7.
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After the presentation of the main properties of the non-interacting Bose gas we will now
include interactions. As we said before in the introduction, Bose gases are that dilute that
only two-particle interactions have to be taken into account. We will treat the interaction
using the background method to derive a self-consistent Hartree-Fock mean field theory,
[44–46].

In the previous chapter we showed how to treat the interaction-free gas exactly within
the functional integral formalism. The problem with the interaction is a term quartic in
the fields of the action. Actually, we are only able to solve Gaussian-like integrals. There-
fore, we have to approximate the quartic part in a way to reduce it to a quadratic form.
One way could be a Hubbard-Stratonovich transformation [47,48], where the bilocality of
the interaction is switched to a local form with help of an auxiliary field. We attempted
to treat the system this way but the method has some ambiguity that does not reproduce
the three different interaction channels of Hartree, Fock, and Bogoliubov properly. In
fact, e.g., instead of the Hartree and Fock channel one gets only one single channel. In
the case of a contact interaction this is expressed by a missing factor “2” [49] but it has
even more crucial impacts for other interactions.

Therefore, we use the background method that will be explained in the subsequent
section to differ terms describing either the condensate or the thermal fluctuations. To
simplify the quartic interaction term, we apply a Gaussian approximation that reduces the
quartic interaction term to a quadratic form which can be treated within the functional
integral formalism. Therefrom, we derive a system of two coupled equations determining
the background fields and the fluctuations. In the posterior part of this chapter, we solve
the system in first-order perturbation theory.

4.1. Background Method and Order Parameter

An excellent way to distinguish theoretically between different phases and to describe
transitions between them is the introduction of an order parameter. A rather simple ex-
ample is to differ the gas, liquid, and solid phase of water. Here, it is obvious that the
phases are characterized by their particular density which is therefore a convenient order
parameter. Another more sophisticated example is the transition from a ferromagnet to a
paramagnet in the famous Ising-model. So called ”spins” on every lattice site can adopt
the values +1 (up) or −1 (down). Now, the order parameter is the average alignment of
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all spins 〈m〉. A value of the order of 1 describes the ferromagnetic phase, that means a
majority is aligned into the same direction, whereas 〈m〉 = 0 characterizes the paramag-
net. The order parameter is usually temperature-dependent and the temperature at the
point of the transition is called critical temperature. A further feature of phase transi-
tions is the breaking of symmetry. In the present example, the spins are symmetrically
distributed in up and down in the paramagnetic state but at the transition this symmetry
is broken and the distribution becomes inequitable.

So what is the order parameter in BEC? The transition occurs between the gas phase
and the condensate phase and the characteristic of the BEC state is a macroscopic oc-
cupation of the ground state. The order parameter is properly introduced using the
background method [36,50,51]. In detail, the periodic fields (3.14) are decomposed into
the background field Ψ and a fluctuating contribution δψ

ψ(x, τ) = Ψ(x, τ) + δψ(x, τ) , ψ∗(x, τ) = Ψ∗(x, τ) + δψ∗(x, τ) . (4.1)

The background fields are constant with respect to the functional integration but can
depend on space and time arguments. The fluctuating fields carry the thermal behaviour
and the integral measure transforms

∮

Dψ →
∮

Dδψ ,
∮

Dψ∗ →
∮

Dδψ∗ . (4.2)

In the former treatment, the expectation of 〈ψ〉 would have simply vanished due to sym-
metry reasons. But now, the U(1) symmetry of the phase is broken and the expectation
yields according to (3.26)

〈ψ〉 =
1

Z(0)

∮

Dδψ∗Dδψ (Ψ + δψ) e−A(0)[δψ∗,δψ,Ψ∗,Ψ]/h̄ = Ψ . (4.3)

Although we used the non-interacting expectation in (4.3), we will see in the subsequent
section that this expectation (4.3) remains valid in the interacting case. Hence, the
background fields of (4.1) will become the order parameter of BEC defined by

〈ψ(x, τ)〉 =







0 gas phase

Ψ(x, τ) condensed phase .
(4.4)

Here, the order parameter is normalized to the number of condensed particles
∫

dDx |Ψ(x, τ)|2 = N0 . (4.5)

This also implies that N0 becomes of the order of the total number of particles N in
the BEC state and hence, it signals a macroscopic occupation. The formulation using the
background method is equivalent to the Bogoliubov approximation in second quantization.
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4.2. Derivation of Mean-Field Theory

In this chapter, we derive a Hartree-Fock mean-field theory using the background method.
We start with the grand-canonical partition function for interacting bosons

Z =

∮

Dψ∗
∮

Dψ exp

{

−1

h̄
A[ψ, ψ∗]

}

, (4.6)

where the action consists of the free action (3.18), (3.19) and a new contribution due to
the interaction

A[ψ, ψ∗] = A(0) [ψ, ψ∗] + A(int) [ψ, ψ∗] . (4.7)

The interaction contribution reads

A(int) [ψ, ψ∗] =
1

2

h̄β
∫

0

dτ

∫

dDx

∫

dDx′ V (int)(x,x′)ψ∗(x, τ)ψ∗(x′, τ)ψ(x, τ)ψ(x′, τ) . (4.8)

The latter one is quartic in the fields and therefore, the functional integral is not a
Gaussian integral any more. Now, we apply the background method (4.1) to separate the
action into background fields that describe the condensate and the fluctuating fields. For
the non-interacting action, we get

A(0) =

h̄β
∫

0

dτ

∫

dDx

{

Ψ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

Ψ(x, τ) (4.9)

+

h̄β
∫

0

dτ

∫

dDx

{

Ψ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

δψ(x, τ)

+

h̄β
∫

0

dτ

∫

dDx

{

δψ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

Ψ(x, τ)

+

h̄β
∫

0

dτ

∫

dDx

{

δψ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

δψ(x, τ) .
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For the interacting action, we collect all terms of the same power in the fluctuating fields.
Herewith, we get the result

A(int) =
1

2

h̄β
∫

0

dτ

∫

dDx

∫

dDx′ V (int)(x,x′) (4.10)

×
[

Ψ(x, τ)Ψ (x′, τ) δψ∗ (x′, τ) Ψ∗(x, τ) + Ψ(x, τ)Ψ (x′, τ) δψ∗(x, τ)Ψ∗ (x′, τ)

+ δψ (x′, τ) Ψ(x, τ)Ψ∗ (x′, τ) Ψ∗(x, τ) + δψ(x, τ)Ψ (x′, τ) Ψ∗ (x′, τ) Ψ∗(x, τ)

+ Ψ(x, τ)Ψ (x′, τ) δψ∗(x, τ)δψ∗ (x′, τ) + δψ (x′, τ) Ψ(x, τ)Ψ∗(x, τ)δψ∗ (x′, τ)

+ δψ(x, τ)Ψ (x′, τ) Ψ∗(x, τ)δψ∗ (x′, τ) + δψ (x′, τ) Ψ(x, τ)δψ∗(x, τ)Ψ∗ (x′, τ)

+ δψ(x, τ)Ψ (x′, τ) δψ∗(x, τ)Ψ∗ (x′, τ) + δψ(x, τ)δψ (x′, τ) Ψ∗(x, τ)Ψ∗ (x′, τ)

+ δψ (x′, τ) Ψ(x, τ)δψ∗(x, τ)δψ∗ (x′, τ) + δψ(x, τ)Ψ (x′, τ) δψ∗(x, τ)δψ∗ (x′, τ)

+ δψ(x, τ)δψ (x′, τ) Ψ∗(x, τ)δψ∗ (x′, τ) + δψ(x, τ)δψ (x′, τ) δψ∗(x, τ)Ψ∗ (x′, τ)

+ δψ(x, τ)δψ (x′, τ) δψ∗(x, τ)δψ∗ (x′, τ) + Ψ(x, τ)Ψ (x′, τ) Ψ∗(x, τ)Ψ∗ (x′, τ)
]

.

If we combine the two actions (4.9) and (4.10), we get terms from zeroth to fourth order in
the fluctuating fields. The main aim is to reduce the cubic and quartic terms to a quadratic
form in the fields. Therefore, we use as an approximation a Gaussian factorization [44]
that can also be understood from a variational approach [52]. In contrast to the usual
Wick rule for the expectation value of creation and annihilation operators, here, terms
have to be subtracted from the Lagrangian, too. The reason is to keep the left- and
right-hand side expectations equal. The expectation is defined analogous to (3.26) as

〈✰ 〉 = Z−1

∮

Dδψ∗
∮

Dδψ ✰ e−A[δψ∗,δψ,Ψ,Ψ∗]/h̄ . (4.11)

Applying the Gaussian factorization, the product of three fluctuating fields becomes

δψ∗(x, τ)δψ(x, τ)δψ(x′, τ) ≈ 〈δψ∗(x, τ)δψ(x, τ)〉δψ(x′, τ) + 〈δψ∗(x, τ)δψ(x′, τ)〉δψ(x, τ)

+〈δψ(x, τ)δψ(x′, τ)〉δψ∗(x, τ) (4.12)

and the quartic part reads

δψ∗(x, τ)δψ∗(x′, τ)δψ(x, τ)δψ(x′, τ)

≈ 〈δψ∗(x, τ)δψ(x, τ)〉δψ∗(x′, τ)δψ(x′, τ) + 〈δψ∗(x, τ)δψ(x′, τ)〉δψ∗(x′, τ)δψ(x, τ)

+ 〈δψ∗(x′, τ)δψ(x, τ)〉δψ∗(x, τ)δψ(x′, τ) + 〈δψ∗(x′, τ)δψ(x′, τ)〉δψ∗(x, τ)δψ(x, τ)

+ 〈δψ∗(x, τ)δψ∗(x, τ)〉δψ(x′, τ)δψ(x′, τ) + 〈δψ(x, τ)δψ(x′, τ)〉δψ∗(x, τ)δψ∗(x′, τ)

− 〈δψ∗(x′, τ)δψ(x, τ)〉〈δψ∗(x, τ)δψ(x′, τ)〉 − 〈δψ∗(x′, τ)δψ(x′, τ)〉〈δψ∗(x, τ)δψ(x, τ)〉
− 〈δψ(x, τ)δψ(x′, τ)〉〈δψ∗(x, τ)δψ∗(x′, τ)〉 .

(4.13)
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As the expectation of two fields in the action is not affected by the functional integration
in the partition function, we see that the Gaussian approximation decomposes the action
into one part independent of the fluctuating fields and parts depending on one or the
product of two fluctuating fields. So, the action (4.7) becomes

A[δψ, δψ∗,Ψ,Ψ∗] = ABG [Ψ,Ψ∗] + A(1) [δψ, δψ∗,Ψ,Ψ∗] + A(2) [δψ, δψ∗,Ψ,Ψ∗] . (4.14)

We do not write down the different contributions of (4.14) but first simplify it. The
background method is related to the saddle-point approximation with the background
field Ψ located at the saddle point. Therefore, terms carrying only one fluctuating field
δψ vanish, so we can neglect the term A(1) [δψ, δψ∗]. Furthermore, we restrict ourselves
to a Hartree-Fock theory. This takes into account Hartree or direct terms that consist
of two fields with equal spatio-temporal arguments δψ∗(x, τ)δψ(x, τ). And further, we
include Fock or exchange terms with different arguments δψ∗(x′, τ)δψ(x, τ). But we
neglect anomalous fluctuations, which are of the form δψδψ, δψ∗δψ∗. Those would be
only essential, if we would work out a Hartree-Fock-Bogoliubov theory. Combining the
contributions to the action (4.14), we obtain

A[δψ, δψ∗,Ψ,Ψ∗] = ABG [Ψ,Ψ∗] + A(2) [δψ, δψ∗,Ψ,Ψ∗] . (4.15)

Now, we introduce for the expectation of two fields the correlation function or propagator

g (x, τ ;x′, τ ′) = 〈δψ(x, τ)δψ∗(x′, τ ′)〉 . (4.16)

Herewith, the first term of (4.15) is the background action independent of the fluctuating
fields

ABG =

h̄β
∫

0

dτ

∫

dDxΨ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

Ψ(x, τ)

+
1

2

h̄β
∫

0

dτ

∫

dDx

∫

dDx′ V (int)(x,x′)
[

Ψ∗(x, τ)Ψ∗(x′, τ)Ψ(x, τ)Ψ(x′, τ)

− g (x′, τ ;x′, τ) g (x, τ ;x, τ) − g (x′, τ ;x, τ) g (x, τ ;x′, τ)
]

, (4.17)

and the second one describes the thermal fluctuations and is quadratic in the respective
fields

A(2) =

h̄β
∫

0

dτ

∫

dDx δψ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

δψ(x, τ) (4.18)

+

h̄β
∫

0

dτ

∫

dDx

∫

dDx′ V (int)(x,x′)
{

δψ∗(x′, τ)δψ(x′, τ)
[

Ψ∗(x, τ)Ψ(x, τ)

+ g (x, τ ;x, τ)
]

+ δψ∗(x′, τ)δψ(x, τ)
[

Ψ∗(x, τ)Ψ(x′, τ) + g (x, τ ;x′, τ)
]

}

.
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For the calculation of expectation values (4.11), we can use the fact that ABG does not
depend on the fluctuating fields and simply drops out. Therefore, instead using the full
action, we can write the expectation with respect to the action A(2) as

〈✰ 〉 = Z̃−1

∮

Dδψ∗
∮

Dδψ ✰ e−A(2)[δψ∗,δψ,Ψ,Ψ∗]/h̄ , (4.19)

where the partition function is defined as

Z̃ =

∮

Dδψ∗
∮

Dδψ e−A(2)[δψ∗,δψ,Ψ,Ψ∗]/h̄ . (4.20)

The full partition function and (4.20) are connected by

Z = e−ABG[Ψ,Ψ∗]/h̄ Z̃ . (4.21)

Comparing the correlation functions of the non-interacting system (3.27) and the one
of the interacting system (4.16), we notice that the latter one is self-consistent as the
expectation (4.16) depends on itself via the action (4.18). This is typical for a Hartree-
Fock theory.

4.3. Effective Action

For the further treatment, we introduce the effective action which is a functional of the
background fields and the correlation function defined in analogy to the free energy as

Γ [Ψ∗ ,Ψ , g] = − 1

β
lnZ . (4.22)

The grand-canonical free energy is obtained as the effective action evaluated at the min-
imum

F = Γ [Ψ∗
min ,Ψmin , gmin] . (4.23)

According to its definition (4.22), the effective action reads

Γ [Ψ∗ ,Ψ , g] =
1

h̄β
ABG [Ψ,Ψ∗, g] − 1

β
ln

{
∮

Dδψ∗
∮

Dδψ e−A(2)[δψ,δψ∗ ,Ψ,Ψ∗,g]/h̄

}

. (4.24)

To obtain the free energy, we calculate the minima of (4.24):

δΓ [Ψ∗ ,Ψ , g]

δΨ(x, τ)
= 0 , (4.25)

δΓ [Ψ∗ ,Ψ , g]

δΨ∗(x, τ)
= 0 , (4.26)

δΓ [Ψ∗ ,Ψ , g]

δg(x, τ ;x′, τ ′)
= 0 . (4.27)
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As we have to calculate the functional derivatives of the effective action with respect to
Ψ(x, τ), Ψ∗(x, τ), and g(x, τ ;x′, τ ′), we first need to define the functional derivative and
its bilocal generalization [53,54]:

δΨ(x′, τ ′)

δΨ(x, τ)
= δ(x′ − x)δ(τ ′ − τ) , (4.28)

δg(x′′, τ ′′;x′′′, τ ′′′)

δg(x, τ ;x′, τ ′)
= δ(x′′ − x)δ(τ ′′ − τ)δ(x′ − x′′′)δ(τ ′ − τ ′′′) . (4.29)

For the case of the derivative of (4.24) with respect to the conjugate field Ψ∗(x, τ), we get

0 =

{

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ+

∫

dDx′ |Ψ(x′, τ)|2 V (int)(x,x′)

}

Ψ(x, τ)

+

∫

dDx′ V (int)(x,x′)
[

Ψ(x, τ) g (x′, τ ;x′, τ) + Ψ(x′, τ) g (x, τ ;x′, τ)
]

(4.30)

and an analogous equation for the other field Ψ(x, τ). The functional differentiation with
respect to the correlation function yields the following result:

0 = −
∫

dDx′′V (int)(x,x′′)g (x′′, τ ;x′′, τ) δ(x − x′) − V (int)(x,x′)g (x, τ ;x′, τ) (4.31)

+

∫

dDx′′V (int)(x,x′′)〈δψ∗(x′′, τ)δψ(x′′, τ)〉δ(x − x′) + V (int)(x,x′)〈δψ∗(x′, τ)δψ(x, τ)〉

which is fulfilled by relation (4.16). Such theories are called “conserving” [55]. Thus, we
have a system of two coupled equations, namely the integro-differential equation (4.30) for
the background field describing the ground state and the relation (4.16) for the correlation
function carrying the thermal features.

4.4. T → 0 Limit

In the limit of zero temperature we neglect all terms carrying thermal properties. As we
already said, these are the fluctuating fields δψ, δψ∗ and their correlations g(x, τ ;x′, τ ′).
In that limit, the effective action becomes

h̄βΓ(0) [Ψ∗ ,Ψ] =

h̄β
∫

0

dτ

∫

dDxΨ∗(x, τ)

[

h̄
∂

∂τ
− h̄2

2M
∆ + V (ext)(x) − µ

]

Ψ(x, τ) (4.32)

+
1

2

h̄β
∫

0

dτ

∫

dDx

∫

dDx′ V (int)(x,x′) Ψ∗(x, τ)Ψ∗(x′, τ)Ψ(x, τ)Ψ(x′, τ) .
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If we apply the variation with respect to the background field we obtain the Gross-
Pitaevskii equation. It was derived by Gross and Pitaevskii [56–58] first and is described
in detail in recent textbooks as well [49,59]. It is convenient for a discussion of the equation
to use the Wick rotation (3.10) to switch back to real time. Performing the variation with
respect to the conjugate field Ψ∗ leads to the time-dependent Gross-Pitaevskii equation
[

−ıh̄ ∂
∂t

− µ− h̄2

2M
∇2 + V (ext)(x) +

1

2

∫

dDx′ V (int)(x,x′)Ψ∗(x′, t)Ψ(x′, t)

]

Ψ(x, t) = 0 .

(4.33)
For the second variational case we get the complex conjugate of (4.33)
[

ıh̄
∂

∂t
− µ− h̄2

2M
∇2 + V (ext)(x) +

1

2

∫

dDx′ V (int)(x,x′)Ψ∗(x′, t)Ψ∗(x′, t)

]

Ψ∗(x, t) = 0 .

(4.34)
As long as the potential and interaction do not explicitly depend on time, one can factorize
the solution according to

Ψ(x, t) = Ψ(x) e−ı(µ−E0)t/h̄ , (4.35)

where E0 appears as separation constant and is identified with the ground-state energy.
With the substitution µ̄→ µ− E0, we obtain

[

−µ̄− h̄2

2M
∇2 + V (ext)(x) +

1

2

∫

dDx′ V (int)(x,x′)Ψ∗(x′)Ψ(x′)

]

Ψ(x) = 0 . (4.36)

After the derivation we will now discuss the form of the time-independent equation and
its area of validity. As one can read off from (4.36), it is a nonlinear, second order
integro-differential equation. Except for the quadratic self-consistent interaction term,
the equation corresponds to the Schrödinger equation with the energy replaced by the
chemical potential.

Originally, in the works of Gross and Pitaevskii [56–58] the interaction has been a con-
tact interaction but (4.36) is also valid for any two-body interaction. One can also see
from Eq. (4.36), that the interaction term is an effective mean-field one, that requests a
self-consistent solution for the order parameter Ψ. The physical conditions are a suffi-
ciently low temperature and high particle number as well as the diluteness of the sample.
The low temperature is necessary so that the thermal depletion is negligible and the to-
tal number of particles remains in the ground state. The ground state-wave function is
normalized to the number of condensed particles which is for T = 0 identical to the total
number of particles, a condition that fixes the chemical potential. This can be seen using
the relation N = −∂F/∂µ with F from (4.23) that leads to

∫

dDx Ψ∗(x)Ψ(x) = N . (4.37)

The Gross-Pitaevskii equation (4.36) and its solution will be discussed in detail in Chapter
5.
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4.5. Chemical Potential

After this excursus to zero temperature, we will now continue with the treatment of the
system of the two coupled equations derived in Section 4.3. In particular, we calculate in
first-order perturbation theory how the chemical potential is affected by the two-particle
interaction. In order to keep track of the perturbation corrections we introduce an artificial
smallness parameter λ which will be set to 1 in the end. Therefore, we decompose the
order parameter field and the chemical potential according to

Ψ(x) = ψ0(x) + λψ1(x) + . . . , µ = µ0 + λµ1 + . . . . (4.38)

The field ψ0(x) is supposed to solve the unperturbed system following from (4.30) as

[

− h̄2

2M
∆ + V (ext)(x) − µ0

]

ψ0(x) = 0 . (4.39)

We said in the previous section that in the Gross-Pitaevskii theory at T = 0 all particles
are in the condensed state. It does not matter whether an interaction is added or not.
Therefore, we obtain for the background field Ψ and the zero-order field ψ0(x) the same
normalization condition (4.37):

∫

dDxΨ∗(x)Ψ(x) = N0 ,

∫

dDxψ∗
0(x)ψ0(x) = N0 . (4.40)

Because we also include the thermal excitations in this chapter, we have to differ between
the number of condensed particles N0 and the number of total particles N that coincides
with N0 for T = 0. Without loss of generality, we assume ψ0 and ψ1 to be real, so it
follows immediately from (4.40) that ψ0 and ψ1 are orthogonal

∫

dDxψ0(x)ψ1(x) = 0 . (4.41)

Now we substitute the expansions (4.38) into (4.30) and expand up to first order in the
smallness parameter λ. We treat the interaction in first order which, therefore, gets also
a factor λ. Herewith, we obtain

0 =

[

− h̄2

2M
∆ + V (ext)(x) − µ0 − λµ1

]

ψ0(x) +

[

− h̄2

2M
∆ + V (ext)(x) − µ0

]

λψ1(x)

+λ

∫

dDx′ |ψ0(x
′)|2 V (int)(x,x′)ψ0(x)

+λ

∫

dDx′ V (int)(x,x′)
[

ψ0(x) g (x′, τ ;x′, τ) + ψ0(x
′) g (x′, τ ;x, τ)

]

. (4.42)
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Here, we multiply with ψ∗
0(x) from the left and integrate over dDx. Let us have a closer

look on what happens to the first two terms

∫

dDxψ∗
0(x)

[

− h̄2

2M
∆ + V (ext)(x) − µ0

]

ψ0(x) − λ

∫

dDxµ1 |ψ0(x)|2

+λ

∫

dDxψ∗
0(x)

[

− h̄2

2M
∆ + V (ext)(x) − µ0

]

ψ1(x) . (4.43)

The first term in (4.43) vanishes because of (4.39), the second term gives N0µ1with the
normalization condition (4.40), and the third term vanishes because of the hermiticity of
the one-particle Hamiltonian in (4.39) and the orthogonality condition (4.41). Thus, we
get an equation for the correction to the chemical potential µ1 that does not dependent
on the correction ψ1 to the wave function:

N0µ1 =

∫

dDxψ∗
0(x)

∫

dDx′ |ψ0(x
′)|2 V (int)(x,x′)ψ0(x) (4.44)

+

∫

dDxψ∗
0(x)

∫

dDx′ V (int)(x,x′)
[

ψ0(x) g(0) (x′, τ ;x′, τ) + ψ0(x
′) g(0) (x′, τ ;x, τ)

]

.

The first contribution is from now on called ”J”, while the other two, that arrived due to
the Hartree-Fock-theory, will be labelled by ”H” and ”F”.

For a harmonic potential (3.33), we use the known ground-state wave function of a
harmonic oscillator

ψ0(x) =
√

N0

(

Mω̃

h̄π

)3/4

exp

(

−M
2h̄

3
∑

i=1

ωix
2
i

)

(4.45)

with ω̃ given in (3.35). The propagator (4.16) in lowest order is equal to the non-
interacting propagator G(0)(x, τ ;x′, τ ′) from (3.27). Thus, for equal times in semiclassical
approximation, it follows from (3.31) for a harmonic trap

g(0)(x, τ ;x′, τ)=

∫

d3p

(2πh̄)3
eıp(x−x′)/h̄

∞
∑

n=1

exp

{

−nβ
[

p2

2M
+
M

2

∑

i

ω2
i

(

xi + x′i
2

)2

− µ

]}

,

(4.46)
where the p-integration can be done immediately to give

g(0)(x, τ ;x′, τ) =

∞
∑

n=1

1

λ3
Tn

3/2
exp

[

−nβM
2

∑

i

ω2
i

(

xi + x′i
2

)2

− M

2nh̄2β
(x − x′)

2
+ nβµ

]

,

(4.47)
with the thermal De Broglie wavelength λT (1.1).

40



CHAPTER 4. HARTREE-FOCK MEAN-FIELD THEORY

Contact Interaction

In the case of a contact interaction (1.2) the terms H and F in (4.44) coincide. In general,
all integrals of (4.44) reduce to Gaussian ones. Hence, we simply get with the definitions
of J, H, F from (4.44)

J = N2
0 g

(

Mω̃

2πh̄

)3/2

, (4.48)

H = N0
g

λ3
T

∞
∑

n=1

enβµ0

n3/2

[

3
∏

i=1

(

1 +
nβh̄ωi

2

)

]−1/2

, (4.49)

F = H . (4.50)

Therefore, the contribution of the contact interaction to the chemical potential reads

µ
(δ)
1 = N0g

(

Mω̃

2πh̄

)3/2

+
2g

λ3
T

∞
∑

n=1

enβµ0

n3/2

[

3
∏

i=1

(

1 +
nβh̄ωi

2

)

]−1/2

. (4.51)

Long-Range Interaction

Now, we calculate the contributions in (4.44) for the long-range interaction (1.5). There-
fore, we use the Schwinger representation to calculate the appearing integrals [50]. The
Schwinger formula is given by

1

az
=

1

Γ(z)

∞
∫

0

dy yz−1e−ay (4.52)

and is valid for a > 0. The gamma function is defined as

Γ(z) =

∞
∫

0

dt tz−1e−t . (4.53)

In our case we need to rewrite the long-range interaction. This is done with the upper
rule:

1
√

(x − x′)2
=

1

Γ(1/2)

∞
∫

0

dy y−1/2e−y(x−x′)2 (4.54)

where we add that Γ(1/2) =
√
π which follows from (4.53) with the substitution t = x2.

With that representation, all spatial integrals are of the Gaussian type and can imme-
diately be evaluated. However, the remaining Schwinger integrals with respect to y are
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(a) (b)

ẑ

(c)

Fig. 4.1: Qualitative shape of a cylindrically-symmetric trap potential; (a): ωz > ωr, (b):
ωz = ωr, (c): ωz < ωr. The sketched ẑ axis lies along the symmetry axis of the trap.

more difficult. They read for all three terms

J =
N2

0C√
π

(

Mω̃

h̄

)3
∞
∫

0

dy√
y

{

3
∏

i=1

[

2Mωi
h̄

y +

(

Mωi
h̄

)2
]}−1/2

, (4.55)

H =
∞
∑

n=1

N0C (Mω̃)3/2 πenβµ0

λ3
Tn

3/2h̄3/2

∞
∫

0

dy√
y

{

3
∏

i=1

[(

Mωi
h̄

+
nβMω2

i

2

)

y +
nβM2ω3

i

2

]

}−1/2

,

(4.56)

F =
∞
∑

n=1

N0C (Mω̃)3/2 πenβµ0

λ3
Tn

3/2h̄3/2
(4.57)

×
∞
∫

0

dy√
y

{

3
∏

i=1

[(

Mωi
2h̄

+
nβMω2

i

2

)

y +
M2ωi

4nβh̄3 +
M2ω2

i

2h̄2 +
nβM2ω3

i

4h̄

]

}−1/2

.

In the following, motivated by the experiment discussed in Section 2.5, we restrict our-
selves to a cylindrically symmetric trap with ω1 = ω2 = ωr , ω3 = ωz, illustrated in
Fig. 4.1. So, the integrals reduce to the common form

I(a1, a3; b1, b3) =

∞
∫

0

dy
[

(a1y + b1)
√

a3 y2 + b3y
]−1

, (4.58)
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with the solution [60, 2.266]

I(a1, a3; b1, b3) =
2 arccos

(√

a3b1
b3a1

)

√
a1b1b3

√

1 − a3b1
b3a1

. (4.59)

The combinations of the constants read for the different integrals:

a3b1
b3a1

: a1b1b3 :

J :
ωr

ωz
2ω3

rω
2
zM

5/h̄5 (4.60)

H :
ω2

r (nβωzh̄/2 + 1)

ω2
z (nβωrh̄/2 + 1)

M5n2β2ω4
rω

3
z (nβωrh̄/2 + 1)

4h̄3 (4.61)

F :
nβωrh̄/2 + 1

nβωzh̄/2 + 1

M5ω2
rωz(nβωrh̄/2 + 1)3(nβωzh̄/2 + 1)2

4n2β2h̄7 . (4.62)

If we combine the results of both interactions and sum the constants properly, we yield,
with the definition of the trap anisotropy parameter κ = ωr/ωz, the total contribution to
the chemical potential (4.44)

µ1 = N0g

(

Mω̃

2πh̄

)3/2

+ 2
g

λ3
T

∞
∑

n=1

enβµ0

n3/2

[

3
∏

i=1

(

1 +
nβh̄ωi

2

)

]−1/2

+ 2N0C

√

Mω̃

2πh̄
f
(√

κ
)

+
C4πh̄2β

λ3
TM (h̄βω̃)2

∞
∑

n=1

enβµ0

n5/2

(

nβωrh̄+ 2

nβωzh̄ + 2

)1/6

f

(

κ

√

nβωzh̄ + 2

nβωrh̄ + 2

)

(4.63)

+
C4πh̄2β

λ3
TM

∞
∑

n=1

enβµ0

n1/2

(

nβωzh̄+2
nβωzh̄+2

)1/6

(nβωrh̄/2 + 1)3/2(nβωzh̄/2 + 1)
f

(
√

nβωrh̄+ 2

nβωzh̄+ 2

)

.

Here, we introduced the function f(κ) which measures the anisotropy of the trap. In
general the function is of the following type

f(κ) = κ1/3 arccosκ√
1 − κ2

. (4.64)

The function f(κ) is well defined for κ < 1. In the limit κ → 1, we find by using the
L’Hospital rule f(1) = 1. For values of κ > 1 the function is also applicable as its analytic
continuation. Both terms arccos κ and

√
1 − κ2 become purely imaginary so that the

imaginary unit cancels. The asymptotic behaviour of f(κ), see Fig. 4.2, shows a slow
convergence to zero for κ to infinity and a rather fast one for κ → 0. The maximum is
obtained for an isotropic trap , i.e., at κ = 1.
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Fig. 4.2: Function f (κ) that describes the anisotropy of a cylindrically-symmetric trap.
The maximum lies at κ = 1 that refers to an isotropic trap.

4.6. Free Energy

In the last section of this chapter we calculate the grand-canonical free energy. We need
its expression to calculate the particle number according to (3.6). In our case the grand-
canonical free energy F is gained as the minimum of the effective action (4.24) with
respect to the order parameter. The constraining equation for the minimum is simply
the Gross-Pitaevskii equation (4.30). As we argued before we can not solve it exactly
but will instead approximate the wave functions again in first-order perturbation theory,
(4.38). To keep track of the different terms we will evaluate them separately. We recall
the orthogonality condition (4.41) and remind of the fact that the interaction is already
of first order. For the background term of (4.24), we obtain

ABG = h̄βN0µ1 +
h̄β

2

∫

dDx

∫

dDx′ V (int)(x,x′)
[

ψ0(x)2ψ0(x
′)2 (4.65)

−g(0) (x′, τ ;x′, τ) g(0) (x, τ ;x, τ) − g(0) (x′, τ ;x, τ) g(0) (x, τ ;x′, τ)
]

.

The second term in (4.24) will be expanded in the interaction up to first order:
∮

Dδψ∗
∮

Dδψ e−A(2)[δψ,δψ∗ ]/h̄ =

∮

Dδψ∗
∮

Dδψ e−A(2)
0 [δψ,δψ∗ ]/h̄ (4.66)

×
[

1 − 1

h̄

h̄β
∫

0

dτ

∫

dDx

∫

dDx′ V (int)(x,x′)

{

δψ∗(x′, τ)δψ(x′, τ)
[

ψ∗
0(x, τ)ψ0(x, τ)

+ g(0) (x, τ ;x, τ)
]

+ δψ∗(x′, τ)δψ(x, τ)
[

ψ∗
0(x, τ)ψ0(x

′, τ) + g(0) (x, τ ;x′, τ)
]

}

+ . . .

]

,

where A(2)
0 is just the interaction-less part of (4.18). The functional integration can be

easily performed using the expectation value (4.11) and the definition of the correlation
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function (4.16). The τ integration can be performed for the following reasons. The wave
functions do not depend on τ at all and the propagator does only depend on the time
difference, so for equal times this is zero. Hence, we can evaluate the integral and obtain
∮

Dδψ∗
∮

Dδψ e−A(2)[δψ,δψ∗ ]/h̄ = Z̃0

[

1 − β

∫

dDx

∫

dDx′ V (int)(x,x′) (4.67)

×
{

g(0) (x′, 0;x′, 0)
[

ψ∗
0(x)ψ0(x) + g(0) (x, 0;x, 0)

]

+g(0) (x′, 0;x, 0)
[

ψ∗
0(x)ψ0(x

′) + g(0) (x, 0;x′, 0)
]

}]

.

The expression of the interaction-free partition function (3.25) and the connected non-
interaction grand-canonical free energy (3.34) have already been calculated within the
semiclassical approximation. If we expand the logarithm in Γ [Ψ∗

min ,Ψmin , gmin], we get
the following result for the free energy

F = N0(µ0 − µ) + F (0) +
1

2

∫

dDx

∫

dDx′ V (int)(x,x′)

×
{

ψ0(x)2ψ0(x
′)2 + g(0) (x′, 0;x′, 0) g(0) (x, 0;x, 0) + g(0) (x′, 0;x, 0) g(0) (x, 0;x′, 0)

+2g(0) (x′, 0;x′, 0)ψ∗
0(x, 0)ψ0(x, 0) + 2g(0) (x′, 0;x, 0)ψ∗

0(x, 0)ψ0(x
′, 0)
}

. (4.68)

Here the wave functions and propagators are given by (4.45) and (4.46), respectively. The
calculation of the terms happens pretty similar to the one of the chemical potential. We
also use the Schwinger representation (4.54) for the long-range interaction. The spatial
integrals are again Gaussians and the Schwinger integrals are of the type of the master
integral (4.58) and we obtain

F = N0(µ0 − µ) − 1

β (h̄βω̃)3 ζ4
(

eβµ
)

+
N2

0

λ3
T

(h̄βω̃)3/2

[

g +
4πh̄2Cβ

M (h̄βω̃)
f
(√

κ
)

]

(4.69)

+2
g

λ3
T







1

2

ζ 3
2
, 3
2
, 3
2

(

eβµ
)

(h̄βω̃)3 +N0

∞
∑

n=1

enβµ

n3/2

[

3
∏

i=1

(

1 +
nβh̄ωi

2

)

]−1/2






+
1

2

4πh̄2Cβ

λ3
T (h̄βω̃)5M

ζ 5
2
, 5
2
, 1
2

(

eβµ
)

f (κ ) +
1

2

4πh̄2Cβ

λ3
T (h̄βω̃)3M

ζ 1
2
, 1
2
, 5
2

(

eβµ
)

+
4πh̄2CβN0

λ3
T (h̄βω̃)2M

∞
∑

n=1

enβµ

n5/2
√

1 + nβh̄ωr/2

(

nβωrh̄+ 2

nβωzh̄+ 2

)1/6

f

(

κ

√

nβωzh̄+ 2

nβωrh̄+ 2

)

+
4πh̄2CβN0

λ3
TM

∞
∑

n=1

enβµ
(

nβωzh̄+2
nβωzh̄+2

)1/6

n1/2 (1 + nβh̄ωr/2)3/2 (1 + nβh̄ωz/2)
f

(
√

nβωrh̄+ 2

nβωzh̄+ 2

)

.
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The expression for µ as µ = µ0+µ1 was calculated to first-order in the previous section but
not inserted here for brevity. We notice again that the complete calculation was possible
without knowledge of the first-order wave function ψ1 but only with the orthogonality of
the wave functions. In (4.69) we used the generalization of the polylogarithmic function
(3.36)

ζa,b,c(x) =

∞
∑

n′,n=1

x(n+n′)

nan′b(n+ n′)c
. (4.70)

Eq. (4.69) is a first-order expression for the free energy that is valid for all temperatures.
In fact, it can be used to describe both, the condensed and gas phase. In the BEC
phase the number of condensed particle N0 becomes large and quantum phenomena are
important: h̄ωβ � 1. On the other hand, the gas phase is obtained in the thermodynamic
limit h̄ωβ � 1 where the thermal energy is larger than the quantum energy.

We will use the results of the chemical potential and the grand-canonical free energy,
that have been derived in this chapter, to calculate the shift of the critical temperature
effected by the two interactions with respect to the non-interacting result (3.44). This
will be done in Chapter 7.
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5. Gross-Pitaevskii Theory

This chapter attends the behaviour of the condensate at temperatures close to absolute
zero. In that domain the most appropriate theory is the Gross-Pitaevskii theory. We
derived the Gross-Pitaevskii equation within our mean-field theory in Section 4.4.

At first, we will solve the time-independent Gross-Pitaevskii equation in Thomas-Fermi
approximation and later on include the kinetic term within a variational approach. Fi-
nally, we compare the two results to check the validity of the Thomas-Fermi approximation
in our special case.

Generally, we will focus on the attractive long-range interaction but we will state some
results also for a repulsive one during the calculations.

5.1. Thomas-Fermi Approximation

The time-independent Gross-Pitaevskii equation (4.36) for a Bose gas in an isotropic har-
monic trap interacting via both a contact interaction and a gravitation-like 1/r-interaction
is given by

µ̄Ψ(x) =

[

− h̄2

2M
∇2 + g|Ψ(x)|2 +

Mω2r2

2
− u

∫ |Ψ(x′)|2
|x − x ′| d

3x′
]

Ψ(x). (5.1)

Here g and u are constants that describe the strength of either interaction. They are
expressed through the s-wave scattering length a for the contact interaction according to
Eq. (1.2) and the characteristic length aG for the 1/r interaction introduced in (2.33).

To simplify the equation we use the Thomas-Fermi-approximation and neglect the ki-
netic term in (5.1). That approximation is valid as long as the condensate wave function
varies only sparsely. So, it is a good approximation within a certain volume of the con-
densate but breaks down at the borders. We will specify these conditions during the
calculation. Hence, we get the integral equation

µ̄ = g|Ψ(x)|2 +
Mω2r2

2
− u

∫ |Ψ(x ′)|2
|x − x ′| d

3x′. (5.2)

To solve this equation, we introduce spherical coordinates and first assume the wave-
function to be radial symmetric, i.e., Ψ(x) = Ψ(r), which is fulfilled for the ground state,
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5.1. THOMAS-FERMI APPROXIMATION

and carry out the angular integrals. Due to rotational symmetry the ϕ-integration gives
just a factor 2π. The remaining ϑ-integration reads

+1
∫

−1

d cosϑ
1√

r2 + r′2 − 2rr′ cosϑ
=

1

rr′
(|r + r ′| − |r − r ′|) . (5.3)

For the following r′-integration we subdivide it into two parts from 0 to r and from r
to R0 that denotes the yet unknown Thomas-Fermi-radius. This quantity is introduced
as a measure of the domain of the Thomas-Fermi approximation. It is obtained from
Ψ(R0) = 0 and we will later on introduce a Heavyside-function which secures that the
wave function is restricted to the defined volume. For brevity we skip to note it here but
keep it in mind. Herewith, Eq. (5.2) becomes

µ̄ = g|Ψ(r)|2 +
Mω2r2

2
− 4πu





r
∫

0

|Ψ(r′)|2
r

r′2dr′ +

R0
∫

r

|Ψ(r′)|2
r′

r′2dr′



 . (5.4)

The next step is to multiply by r and differentiate the equation twice to get rid of both
integrals:

0 = g
d2

dr2

[

r|Ψ(r)|2
]

+ 3Mω2r − 4πu
d2

dr2





r
∫

0

|Ψ(r′)|2r′2dr′ + r

R0
∫

r

|Ψ(r′)|2r′dr′


 . (5.5)

The differentiation of the integrals works using

d

dx

x
∫

a

f(x, y) dy =

x
∫

a

df(x, y)

dx
dy + f(x, x) . (5.6)

After the differentiation, Eq. (5.5) reads

0 = g
d2

dr2

[

r|Ψ(r)|2
]

+ 3Mω2r + 4πur|Ψ(r)|2. (5.7)

Performing the substitution |Ψ(r)|2 = ϕ(r)/r simplifies the equation further. Herewith
we end up with the differential equation

0 =
d2

dr2
ϕ(r) +

4πu

g
ϕ(r) +

3Mω2

g
r. (5.8)

Fortunately, Eq. (5.8) is the well known equation for a harmonic oscillator with the
inhomogeneous part 3Mω2r/g, whose solution can be easily found. At this point we add
the already mentioned Heavyside function and get the result

|Ψ(r)|2 =

[

1

r
(A sin kr +B cos kr) − 3Mω2

4πu

]

Θ(R0 − r) (5.9)
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with the abbreviation

k =

√

4πu

g
. (5.10)

To determine the integration constants A, B, the chemical potential µ̄, and the size of
the Thomas-Fermi radius, we proceed just as follows:

i. The function (5.9) shall remain finite. Here, the troubling point is the origin. This
fixes B = 0.

ii. We reinsert our solution into (5.4) and obtain A = A(µ̄, R0) because we lost the
chemical potential due to the double differentiation.

iii. The normalization condition (4.37) gives µ̄ = µ̄(N) and therefore we yield A(µ̄, R0) →
A(N,R0).

iv. We use the definition of the Thomas-Fermi-radius Ψ(R0) = 0 in order to calculate
R0.

If one adheres to the instructions i to iv one easily yields

A(µ̄, R0) =
2µ̄k2 − 3Mω2(k2R0

2 − 2)

2gk3 cos(kR0)
, (5.11)

µ̄(N,R0) =
1

4

{

6Mω2(k2R0
2 − 2)

k2
+
gk3N + 4πkR0

3Mω2

π [tan(kR0) − kR0]

}

, (5.12)

A(N,R0) = − gk2N + 4πR0
3Mω2

4πg[kR0 cos(kR0) − sin(kR0)]
, (5.13)

(kR0)
2 cot(kR0) = − Ngk5

12πMω2
− (kR0)

3

3
+ kR0. (5.14)

Here, the expression for A has already been plugged into the definition of R0. In the
general case we can not determine the Thomas-Fermi radius from (5.14) analytically but
anyhow graphically. Thus, we can simply read off the value for kR0 as the intersection
of the left- and right-hand side functions of (5.14) which are sketched for some typical
numerical values in Fig. 5.1. Although we have plotted the curve for different values of
the particle number, these do actually not affect the general form but merely shift the
right-hand side curve of (5.14). The general dependence of the condensate size R0 on
the different parameters, i.e., particle number N , trap frequency ω, and the interaction
strengths a and aG is shown separately in Fig. 5.2. The plots show the expected qualitative
behaviour. The condensate size increases with a higher particle number and a stronger
repulsion by the contact interaction, see Fig. 5.2(a) and Fig. 5.2(b). On the other hand
it decreases with a higher trap frequency in Fig. 5.2(c).

The last plot, Fig. 5.2(d), concerns the long-range interaction. It has been drawn for
positive and negative values of the interaction parameter aG. As the interaction depends
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2

1

0

−1

−2

−3

π/2π/4 3π/40

kR0

Fig. 5.1: Graphical solution for R0. Intersection of (kR0)
2 cot kR0 (black line) and

−Ngk5/12πMω2− (kR0)
3/3+kR0 from Eq. (5.14) for different numbers of sodium atoms

(5000, 10000, 20000, green, red, blue) and ω = 2π · 100 Hz. The other values have been
taken from Tab. 2.5 on page 17.

on the reciprocal of aG (compare to (2.33)) we read off an increasing and even diverging
Thomas-Fermi-radius for negative (repulsive) values of aG. On the other hand, for a
strong attractive interaction the condensate will finally collapse, if the contact interaction
can not balance the attraction any more.

After the general discussion we focus on some special cases that are analytically treat-
able. First we investigate the situation without a trap, where the condensate is still stable
because the contact repulsion balances the 1/r-attraction. Afterwards, we will modify the
results to a repulsive long-range interaction and finally recover the known result without
the 1/r interaction to confirm our calculation.

5.1.1. Self-Binding Case without Trap

An important case is the self-binding regime without an external trap, i.e., ω = 0, that
reduces the solution (5.9) to: |Ψ(r)|2 = A sin(kr)/rΘ(R0 − r). If we follow again the
above mentioned steps i to iv, we get the analytical results

A =
N

4R0
2
, (5.15)

R0 =
π

k
=

√
πg

2
√
u

=

√
aaG

2
, (5.16)

µ̄SB = −Nu
R0

= −N
2

√

u3

πg
= − 8Nπ2h̄2

M
√

aa3
G

. (5.17)
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Fig. 5.2: Dependence of the Thomas-Fermi radius on several parameters. While one of
them is varied, the other are fixed: N = 105, ω = 2π · 100 Hz, a = 3 nm, aG = 0.1 m.
We emphasize that the long-range interaction strength u is defined by the inverse of the
characteristic length aG in subfigure (d).
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It is interesting to notice that the size of the condensate R0 does not depend on the
number of particles. Instead it only depends on the ratio of the interaction strengths.
The final Thomas-Fermi solution of the Gross-Pitaevskii equation reads [22]

ΨSB(r) =
√

N
2R0

√

sin(πr/R0)
r Θ(R0 − r). (5.18)

Another interesting quantity in that region is the total energy per particle. It can be
calculated by integrating Eq. (5.17) because of the thermodynamic relation µ̄ = ∂E/∂N :

ESB

N
=

1

2
µ̄SB. (5.19)

This result has to be considered critically. Inserting (5.17) into Eq. (5.19), the energy
per particle rises with the number of particles, if the volume given by the Thomas-Fermi
radius (5.16) is fixed. But the latter depends only on the two interacting strengths which
are actually constants. Thus, in the thermodynamical limit, N → ∞, we also have to
enlarge the volume given by the Thomas-Fermi radius (5.16) to keep the density finite.
This means, one has to adjust the long-range interaction strength by tuning the laser
intensity according to (2.30).

5.1.2. Thomas-Fermi Result for Repulsive 1/r Interaction

In the second case we survey in detail a repulsive 1/r interaction. Then a confining trap
is essential to guarantee the stability of the condensate. The only change in the upper
calculations will be the substitution

u→ −u , k → ık . (5.20)

With that simple alteration Eqs. (5.9), (5.13), and (5.14) become

|Ψ(r)|2 =

[

ıA
r

sinh kr +
3Mω2

4πu

]

Θ(R0 − r) , (5.21)

ıA(N,R0) = − −gk2N + 4πR0
3Mω2

4πg[kR0 cosh(kR0) − sinh(kR0)]
, (5.22)

(kR0)
2 coth(kR0) = − Ngk5

12πMω2
+

(kR0)
3

3
+ kR0. (5.23)

The behaviour of the Thomas-Fermi radius for a repulsive 1/r interaction can be seen
in Fig. 5.2(d). For a strong repulsive interaction the condensate is dispersed and its size
diverges.
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5.1.3. Vanishing Long-Range Interaction

At the end of this section we consider the calculation of the previous sections for the case
of a vanishing 1/r interaction, i.e., for u→ 0 that means k → 0 just as well. In that limit
(5.2) simply gives

|Ψ(r)|2 =
µ̄−Mω2r2/2

g
. (5.24)

Now we try to gain the same result by expanding our solution (5.9) with B = 0 and A
given by (5.11) for small k:

sin(kr) ≈ kr − k3r3

6
, A(µ̄, R0) ≈

3Mw2

gk3
+

µ̄

gk
. (5.25)

If we insert (5.25) into (5.9), we obtain

|Ψ(r)|2 =

(

3Mw2

gk3
+

µ̄

gk

)

(k − k3r2/6) − 3Mω2

gk2

k→0
=

µ̄−Mω2r2/2

g
, (5.26)

which is the expected result of a flipped parabola. Applying the normalization condition
(4.37), we get for the chemical potential

µ̄ =

(

225g2M3N2ω6

512π

)1/5

. (5.27)

And therefore, the Thomas-Fermi radius becomes according to its definition

R0 =

√

2µ̄

Mω2
(5.28)

with the chemical potential (5.27). For the values used in Fig. 5.2(d) we get R0 = 9.727µm
which reproduces the asymptotic behaviour of the curves.

5.2. Variational Approach

Now we treat the entire Gross-Pitaevskii-equation (5.1) not just in Thomas-Fermi ap-
proximation. As we are not able to solve this nonlinear integro-differential equation
analytically, we aim at an approximative solution by using a variational method.

In Section 4.4 we have shown that we determined the Gross-Pitaevskii equation fol-
lowing from extremizing some effective potential. Now we will use a similar approach
and plug a test function into the Lagrange density of the action (4.32), specialized to an
isotropic harmonic trap and the two interactions,

L = ıh̄Ψ∗(x, t)
∂Ψ(x, t)

∂t
− h̄2

2M
∇Ψ∗(x, t)∇Ψ(x, t) − Mω2r2

2
|Ψ(x, t)|2 − g

2
|Ψ(x, t)|4

+
u

2
|Ψ(x, t)|2

∫ |Ψ(x′, t)|2
|x − x ′| d

3x′ . (5.29)
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minima TF-Grav TF-Hard Ideal Grav

parameter κ = 0, w = 0 κ = 0, ũ = 0 g̃ = 0, ũ = 0 g̃ = 0, w = 0

λ0

√

g̃/ũ g̃1/5 1 1/ũ

borders TF-Hard↔TF-Grav TF-Grav↔Grav Grav ↔Ideal

g̃(ũ) g̃ = ũ5/3 g̃ = ũ−1 ũ = 1

N
9
√

3/2 a3/2aG
5/2M2ω2

32π9/2h̄2

√

3aG
8πa

3aG
(2π)3/2

√

Mω
h̄

Fig. 5.3: Summary of results of (5.39). Upper part shows the minima conditions of
Eq. (5.40). Lower part borders of different regions of the diagram in Fig. 5.4. The
parameters κ, w, ũ, g̃ stand for kinetic energy, trap, long-range and contact interaction,
respectively.

Just like in classical mechanics we differentiate the Lagrange function that is obtained as
the integral of the Lagrange density

L =

∫

d3xL (5.30)

with respect to the variational parameter λ and calculate the respective Euler-Lagrange
equations

0 =
∂L

∂λ
− d

dt

∂L

∂λ̇
. (5.31)

Here, we assume the spatial integrals to converge that fast that we can integrate until
infinity, while we restricted the condensate within the Thomas-Fermi radius before. The
test function that we will use, is a Gaussian wave package with the variational parameter
λ. This parameter describes the width of the Gaussian. The test function normalized to
the number of particles reads

Ψ(r) =

√
N

π3/4λ3/2l3/2
exp

(

− r2

2λ2l2

)

. (5.32)

Here, l =
√

h̄/Mω denotes the oscillator length. The results of the respective spatial
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Fig. 5.4: (a): Diagram in a double logarithmic scale showing the different physical
regimes listed and defined in Fig. 5.3 according to [22]. (b): Diagram of the new regimes
including the long-range interaction, where particle number is plotted versus the char-
acteristic lengths. The “Trapless” regime is valid for the entire area but especially in
the regime of negative aG/a where the other two collapse. The red hatched region is not
accessible.

integrations read

∫

d3x
h̄2

2M
∇Ψ∗(r)∇Ψ(r) =

3Nh̄ω

4
λ−2 , (5.33)

∫

d3xΨ∗(r)
Mω2r2

2
Ψ(r) =

3Nh̄ω

4
λ2 , (5.34)

∫

d3x
g

2
|Ψ(r)|4 =

3Nh̄ω

4

16aN

3
√
π8l

λ−3 , (5.35)

∫

d3xΨ∗(r)
u

2

∫

d3x′
|Ψ(r′)|2
|x − x′|Ψ(r) =

3Nh̄ω

4

4Nl
√

32π

3aG

λ−1 . (5.36)

For the following discussion it is useful to introduce the dimensionless parameters

ũ =
πNl

√
32π

3aG

, g̃ =

√

2/πNa

l
, (5.37)

which are connected with the previously used interaction strengths via

ũ =

√

2

π

NlM

3h̄2 u , g̃ =

√

1

8π3

NM

lh̄2 g . (5.38)

Instead of the Lagrangian, we will now use the Hamilton function which reads H(λ) =
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−L(λ) for time-independent variational functions. It is more convenient to use the Hamil-
ton function because it coincides with the variational energy. We also introduce the ar-
tificial parameters w and κ to keep in mind that the terms came either from the trap or
kinetic part:

H(λ)

Nh̄ω
=

3

4

(

κλ−2 + wλ2 +
2g̃

3
λ−3 − 2 ũλ−1

)

. (5.39)

The differentiation with respect to the variational parameter λ leads to the fifth-order
algebraic equation

0 = −κλ + wλ5 − g̃ + ũλ2 . (5.40)

According to Figs. 5.3 and 5.4 we can asymptotically distinguish different physical regions
in our parameter space. The borders do not sharply bound the regions. The “TF-
Hard” regime is characterized by the interplay of contact interaction and the trap and
it corresponds to the solution (5.24). In the “Ideal” case both interactions are negligible
and the stability is assured by the balance of kinetic energy and the trap. The more
interesting regions are the remaining two as their stability does not require an external
trap. After the atoms are collected, the trap can be turned off adiabatically and the
system will survive nevertheless. The “TF-Grav” regimes corresponds to the solution
of the Gross-Pitaevskii equation from Section 5.1.1. In the “Grav”-case the balance is
ensured by the interplay of kinetic energy and attractive interaction.

Although it can not be analytically included into the diagram of Fig. 5.4(a), there is
another interesting regime with the kinetic term but without an external trap, called
“Trapless”. With w = 0, the condition for an extremum reduces to a quadratic equation
solved by

λ01,2 =
1 ±√

1 + 4 g̃ ũ

2 ũ
, (5.41)

where the ”+” sign belongs to the bound state. This can be seen checking the sign of the
second derivative of the Hamiltonian at the extremal λ:

H ′′(λ0) = 0 ↔
√

1 + 4g̃ũ = 0 . (5.42)

Hence, there exist bound states for all ũg̃ > −1/4. So, as long as the contact interaction
is not tuned to attractiveness using Feshbach resonances, we always get stable solutions.
But let us look on the product ũg̃. Using the definitions (5.37) we get

ũg̃ =
8π

3
N2 a

aG

. (5.43)

Therefore the only important quantities are the particle number and the two characteristic
lengths. A graphical interpretation of the regimes “Grav”, “TF-Grav”, and “Trapless”
as a function of particle number depending on the ratio of the interacting strengths is
depicted in Fig. 5.4(b).
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Fig. 5.5: Comparison between the densities of the exact result of the Gross-Pitaevskii-
equation and the Gaussian variational approach in the TF-Grav regime. The black line
belongs to the exact solution of the self-binding regime from Section 5.1.1; the blue line
depicts the corresponding Gaussian result.

5.3. Comparing Exact and Variational Results

At the end of this chapter, we compare the results of the Thomas-Fermi treatment from
Section 5.1 and the Gaussian variational approach from Section 5.2.

Until now, we have not quantitatively estimated the effect of the kinetic term. This
can be done by inspecting the variational approach in detail. To this end we check the
validity of the approximation considering the results for the minima of the variational
parameter in Eq. (5.41) and in Fig. 5.3. Eq. (5.41) appears only in connection with the
oscillator length and can be rewritten as

lλ01,2 =
l

2 ũ
+
√

l2/(4 ũ2) + l2g̃/ũ (5.44)

but using the definitions (5.37), l/ũ is basically proportional to 1/N und thus rather small.
Hence we might approximate (5.44) by lλ01,2 = l

√

g̃/ũ which is the condition for the “TF-
Grav” regime. Therefore, the Thomas-Fermi approximation is at least good in the regime
of the variational approach. But a comparison of variational and Thomas-Fermi solutions
shows indeed that these results match in good agreement. This can be seen from both a
density comparison as in Fig. 5.5 and a comparison of the respective energies. The energy
of the Thomas-Fermi case was already calculated in (5.19). The variational one simply
follows from the Hamiltonian (5.39) evaluated at the minimal variational parameter λ0

from Fig. 5.3:

Evar =
2

3

√

2π

3
ESB ≈ 0.964802ESB . (5.45)
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Thus, they only differ by less than 4%. As these results are in good agreement, we can
assume that the Thomas-Fermi approximation is a good choice for an exact calculation
of the Gross-Pitaevskii equation.
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6. Dynamics

After we have discussed the static solutions of the time-independent Gross-Pitaevskii
equation in Chapter 5, we will now focus on solutions of the time-dependent Gross-
Pitaevskii equation. To this end we note again the importance of the dynamical behaviour
as the most suitable way to measure properties of the condensates.

In this chapter, we will tackle the dynamics within two different approaches. At first, we
compare the condensate to a quantum liquid to derive equations of motion similar to those
of a liquid in hydrodynamics. And later, we generalize the variational approach in Section
5.2 to a time-dependent one. In both approaches the goal is to calculate the frequencies
of collective excitations because these are the experimentally accessible parameters rather
than the specific eigenfunctions of the motion.

6.1. Hydrodynamic Equations

The time-dependent Gross-Pitaevskii equation can be used to derive hydrodynamic equa-
tions that describe the dynamics of the condensate as a quantum liquid at zero tempera-
ture [59,61]. This theory has originally been derived by Bogoliubov [62] for homogeneous
systems and a contact interaction. Here, we generalize these hydrodynamic equations to a
general two-particle interaction and treat, in particular, the consequences for an attractive
long-range interaction.

6.1.1. General Formalism

We start with the time-dependent Gross-Pitaevskii equation (4.33) and its conjugate
(4.34) where the external and two-body interaction potentials are time-independent but
otherwise yet arbitrary and will be specified once necessary.

First, we show that a continuity equation can be derived for the Gross-Pitaevskii equa-
tion that corresponds to the one of the ordinary Schrödinger equation. To this end, we
have to multiply (4.33) with Ψ∗ and (4.34) with Ψ and subtract both from each other.
This leads directly to the continuity equation

∂

∂t
n(x, t) + ∇ · j(x, t) = 0 (6.1)

with the particle density
n(x, t) = |Ψ(x, t)|2 (6.2)
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and the current density

j(x, t) =
h̄

2Mı
[Ψ∗(x, t)∇Ψ(x, t) − Ψ(x, t)∇Ψ∗(x, t)] . (6.3)

They are connected by the velocity v(x, t) via

j(x, t) = n(x, t)v(x, t). (6.4)

The main goal is to derive equations of motion for the particle density and velocity
which are equivalent to (4.33) and (4.34). Due to (6.1) to (6.4), the continuity equation
determines the particle density, once the velocity is known:

∂

∂t
n(x, t) + ∇ · [n(x, t)v(x, t)] = 0 . (6.5)

Now we need a separate equation of motion which determines the velocity. Therefore, we
rewrite the condensate wave function as

Ψ(x, t) =
√

n(x, t) exp [ı ϕ(x, t)] . (6.6)

Substituting (6.6) into (6.3) and the result into (6.4), we obtain an important relation
between the phase ϕ(x, t) of the condensate and its velocity

v(x, t) =
h̄

M
∇ϕ(x, t). (6.7)

Inserting (6.6) into (4.33), we get

ıh̄

(

∂n

∂t

1

2
√
n

+ ı
√
n
∂ϕ

∂t

)

= − h̄2

2M

[

∇2
√
n+ ı(2∇

√
n∇ϕ+

√
n∇2ϕ) −

√
n(∇ϕ)2

]

+V (ext)
√
n+

√
n

∫

V (int)n d3x′. (6.8)

The imaginary part of (6.8) is exactly the continuity equation (6.5). The real part of (6.8)
leads to

−h̄∂ϕ
∂t

= − h̄2

2M

[∇2
√
n√
n

− (∇ϕ)2

]

+ V (ext) +

∫

V (int)n d3x′. (6.9)

As we rather need equations for v and n but not for the phase ϕ, we convert the equation
into an equation of motion by taking the gradient of (6.9) and keeping in mind (6.7):

M
∂v

∂t
= −∇

(

Mv2

2
+ V (ext) +

∫

V (int)n d3x′ − h̄2

2M

∇2
√
n√
n

)

. (6.10)

Equation (6.10) is just an Euler-equation [63,64] for the velocity field v of an ideal,
inviscid liquid that is governed by forces given by the gradients of the kinetic energy,

60



CHAPTER 6. DYNAMICS

trap, interaction potential, and the latter term, the quantum pressure. This term impacts
on the spatial behaviour and is important when the condensate varies spatially but thus
can be neglected within the Thomas-Fermi approximation. Finally, we get the second
equation of motion

∂v(x, t)

∂t
= −∇v(x, t)2

2
− ∇
M

[

V (ext)(x) +

∫

V (int)(x,x′)n(x′, t)d3x′
]

, (6.11)

yielding together with (6.5) a system of two coupled equations.

6.1.2. Linearization

Now we are going to investigate just small deviations from the equilibrium configuration.
Therefore, we split the density and velocity into equilibrium solutions plus weak deviations

n(x, t) = neq(x, t) + δn(x, t) , (6.12)

v(x, t) = veq(x, t) + δv(x, t). (6.13)

The equilibrium solutions belong to the time-independent Gross-Pitaevskii equation in
Thomas-Fermi approximation which have already been calculated in Section 5.1 for a
contact and an additional 1/r-interaction. Because we assumed both interaction poten-
tials to be time-independent in the beginning of this section, the equilibrium solutions
do not depend on time as well and, of course, the velocity equilibrium mode veq simply
vanishes.

Because we expect the deviations to be reasonably small, it is sufficient to neglect higher
than first orders in δn(x, t), δv(x, t). Hence, we insert (6.12) and (6.13) into (6.5), (6.11)
and drop higher order terms:

∂

∂t
δn(x, t) = −∇x [neq(x) δv(x, t)] , (6.14)

∂

∂t
δv(x, t) = − 1

M
∇x

{

V (ext)(x) +

∫

V (int)(x,x′) [neq(x
′) + δn(x′, t)] d3x′

}

. (6.15)

If we differentiate (6.14) once with respect to t, we can replace the velocity term by (6.15).
Consequently, we get one differential equation just for the density deviations alone

∂2

∂t2
δn(x, t) = ∇x

[

neq(x)
1

M
∇x

{

V (ext)(x) +

∫

V (int)(x,x′) [neq(x
′) + δn(x′)] d3x′

}]

.

(6.16)
Now we use the time-independent Gross-Pitaevskii equation (4.36) in Thomas-Fermi ap-
proximation to replace the external potential, according to

V (ext)(x) = µ̄−
∫

V (int)(x,x′)neq(x
′) d3x′. (6.17)
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This means that the external potential merely appears through the equilibrium solution.
Instead, we have to take into account the chemical potential which does not depend on
the spatial variable and drops out by reason of the ∇-differentiation. So, we obtain

M
∂2

∂t2
δn(x, t) = [∇x neq(x)] ·

[

∇x

∫

V (int)(x,x′) δn(x′, t) d3x′
]

+neq(x) ∆x

∫

V (int)(x,x′) δn(x′, t) d3x′. (6.18)

6.1.3. Specifying the Interaction

As neither the equilibrium solution nor the interaction potentials depend explicitly on
time, we can separate the time variable off. Furthermore, we introduce spherical coordi-
nates for the spatial function:

δn(x, t) = cos(Ωt+ φ)F (r, ϑ, ϕ) (6.19)

The differential equation for the spatial function F (r, ϑ, ϕ) then follows from (6.18) as

−MΩ2F (r, ϑ, ϕ) = [∇x neq(x)] ·
[

∇x

∫

V (int)(x,x′)F (r′, ϑ′, ϕ′) d3x′
]

+neq(x) ∆x

∫

V (int)(x,x′)F (r′, ϑ′, ϕ′) d3x′. (6.20)

Now we specialize to the two interaction potentials (1.2), (1.5), while the integrals con-
taining the contact interaction can immediately be evaluated:

−MΩ2F (r, ϑ, ϕ) = [∇x neq(x)] · ∇x

[

gF (r, ϑ, ϕ) −
∫

u

|x − x′| F (r′, ϑ′, ϕ′) d3x′
]

(6.21)

+neq(x)

[

g∆xF (r, ϑ, ϕ) − u∆x

∫

1

|x − x′| F (r′, ϑ′, ϕ′) d3x′
]

.

The last term in (6.21) can easily be evaluated as the Laplacian acts on x only, while the
integration runs over x ′. Thus, we can use the distributional identity

∆
1

|x − x′| = −4πδ(x − x′) , (6.22)

which is well known from electrostatics, and carry out the spatial integration. The other
spatial integral in (6.21) is treated by splitting the spatial arguments into radial and
angular parts: F (r, ϑ, ϕ) = f(r) Ylm(ϑ, ϕ), where the angular part consists of the spherical
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harmonics. Furthermore, we use the expansion of 1/|x − x′| in spherical harmonics [65]

1

|x − x′| =
∞
∑

l=0

l
∑

m=−l

4π

2l + 1

r′l

rl+1
Y ∗
lm(ϑ′, ϕ′) Ylm(ϑ, ϕ)Θ(r − r′) (6.23)

+
∞
∑

l=0

l
∑

m=−l

4π

2l + 1

rl

r′l+1
Y ∗
lm(ϑ′, ϕ′) Ylm(ϑ, ϕ)Θ(r′ − r).

Herewith, we obtain

∇x

∫

1

|x − x′| F (r′, ϑ′, ϕ′) d3x′ = ∇x

∞
∑

l′=0

l′
∑

m′=−l′

4π

2l′ + 1
Yl′m′(ϑ, ϕ) (6.24)

×
[

∫

r′l
′

rl′+1
Y ∗
l′m′(ϑ′, ϕ′) Ylm(ϑ′, ϕ′)Θ(r − r′)f(r′) d3x′

+

∫

rl
′

r′l′+1
Y ∗
l′m′(ϑ′, ϕ′) Ylm(ϑ′, ϕ′)Θ(r′ − r)f(r′) d3x′

]

.

The angular integrals are solved using the orthonormality relation of the spherical har-
monics

∫

dΩY ∗
l′m′(ϑ, ϕ) Ylm(ϑ, ϕ) = δll′δmm′ . (6.25)

The Kronecker symbols make it possible to calculate the sums in (6.24) which leads to
the final expression:

∇x

∫

1

|x − x′| F (r′, ϑ′, ϕ′) d3r′ =
4π

2l + 1
∇x

{

Ylm(ϑ, ϕ)

[ ∞
∫

0

r′l+2

rl+1
Θ(r − r′)f(r′) dr′ +

+

∞
∫

0

rl

r′l−1
Θ(r′ − r)f(r′) dr′

]}

. (6.26)

If we look back at Section 5.1, we notice that the equilibrium solution neq(r) in (5.18)
depends only on the radial coordinate which means that the scalar product in (6.20) is
only non-zero in the r-component. Hence, we have to consider just the differentiation with
respect to r in (6.26), whereby we are able to separate radial and angular coordinates in
(6.20). We split the Laplacian into radial and angular part according to

∆x = ∆r +
1

r2
∆ϑ,ϕ (6.27)
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with the two parts

∆r
1

r2

∂

∂r
r2 ∂

∂r
, ∆ϑ,ϕ =

1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2
. (6.28)

For the angular part we get the equation

∆ϑ,ϕ Ylm(ϑ, ϕ) = −l(l + 1)Ylm(ϑ, ϕ) , (6.29)

which is the defining equation of the spherical harmonics with the separation constant
−l(l + 1). Up to now we have found the solution

δn(r, t) = f(r) Ylm(ϑ, ϕ) cos(Ωt+ φ) , (6.30)

from where we get a rather difficult integro-differential equation for f(r) after collecting
all the previous results (6.21), (6.22), (6.26), and (6.29)

0 = ∆r f(r) + f(r)

[

4πu

g
+

MΩ2

gneq(r)
− l(l + 1)

r2

]

+

[

1

neq(r)

∂neq(r)

∂r

]

(6.31)

×







∂f(r)

∂r
+

4πu

g(2l + 1)





l + 1

rl+2

r
∫

0

r′l+2f(r′)dr′ − lrl−1

∞
∫

r

1

r′l−1
f(r′)dr′











.

Some numerical results of (6.31), in the case of the self-trapping solution (5.18), can be
found in Ref. [66]. As we are rather interested in analytical calculations, we investigate
Eq. (6.31) for a special case in the following section.

6.1.4. Solutions for Small Radii

To simplify the equation (6.31), we remind on the fact, that we consider only small
deviations from equilibrium here. As a first approach we investigate the limit of small r
in Eq. (6.31). According to (5.18) the equilibrium solution is given by

neq(r) =
A

r
sin(kr)Θ(R0 − r) . (6.32)
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In the limit of small r we get the following expansions

1

neq(r)
≈ 1

Ak

[

1 +
(kr)2

6

]

, (6.33)

1

neq(r)

∂neq(r)

∂r
≈ −kr/3 , (6.34)

1

rl+2

r
∫

0

r′l+2f(r′)dr′ ≈ f(0)r +
1

2
f ′(0)r2 , (6.35)

rl−1

∞
∫

r

1

r′l−1
f(r′)dr′ ≈

∞
∫

0

dr′f(r′) − f(0)r − 1

2
f ′(0)r2 . (6.36)

For the expansions of the integrals, we used the relation (5.6). Inserting these results into
(6.31) leads to a rough estimation to lowest order in r

0 =
∂2f(r)

∂r2
+

2

r

∂f(r)

∂r
+ f(r)

[

4πu

g
+
MΩ2

gkA
− l(l + 1)

r2

]

. (6.37)

This is a Bessel differential equation with the general solution [60, 8.401–8.403]

f(r) = c1
J 1

2
(2l+1)

(

r
√

Agk3+MΩ2

Akg

)

√
r

+ c2
Y 1

2
(2l+1)

(

r
√

Agk3+MΩ2

Akg

)

√
r

, (6.38)

where Jν(x) and Yν(x) are Bessel functions of first and second kind. For the monopole
mode: l=0, we obtain

f(r) =

√

2
π

[

c1 sin
(

r
√

k2 + MΩ2

Agk

)

− c2 cos
(

r
√

k2 + MΩ2

Agk

)]

r
√

k2 + MΩ2

Agk

. (6.39)

However, we additionally need boundary conditions. To keep the function finite in the
limit r → 0, we have to set c2 = 0. Furthermore, we assume the condition that the
excitations vanish at the Thomas-Fermi radius, f(R0) = 0, respectively as the equilibrium
solution does at R0 = π/k:

R0

√

k2 +
MΩ2

Agk
= nπ . (6.40)

Using the definitions of A of (5.15) and k of (5.10), we get

Ω2 = (n2 − 1)
N8

√
π

M

u5/2

g3/2
. (6.41)

For n = 0 the whole equation (6.40) vanishes and so does the function f(r) in (6.39).
And for n = 1 the frequency vanishes and the result goes back to the static solution. So,
the first excitation occurs for n = 2.
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6.2. Time-Dependent Variational Approach

In this section we follow Ref. [67] and use a variational test function to calculate the
dynamics of the condensate at T = 0. The test function that we use is almost the
same as the one we had previously used in Section 5.2. But now we take into account
time-dependent parameters λ(t) and B(t). With the oscillator length l, we introduce

Ψ(r, t) =

√
N

π3/4λ(t)3/2l3/2
exp

{

−r2

[

1

2λ(t)2l2
+ ıB(t)

]}

. (6.42)

Here, λ(t) describes the time-dependent spatial width of the Gaussian and B(t) is the
curvature and corresponds to the width in momentum space, which is necessary as shown
in Ref. [68]. The function has to be plugged into the Lagrange-density (5.29) and in-
tegrated over d3r to receive the Lagrange-function. We use an isotropic harmonic trap
only. Anisotropy would just give rise to frequencies that are affected by different trap
modes, but trap features are not a main goal of this thesis. The result for the Lagrangian
depending on λ(t) and B(t), compare to (5.33) to (5.36), reads with dots for partial time
derivatives

L =
3Nh̄2

2Mω
Ḃλ2 − 3Nh̄2

4M

[

Mω

h̄λ2
+

(2Bλ)2h̄

Mω

]

− 3Nh̄ω

4
(λ2 +

2

3
g̃λ−3 − 2ũλ−1) (6.43)

with the dimensionless parameters ũ and g̃ that were already introduced in (5.37). To
derive equations of motion for λ and B, we have to calculate the corresponding Euler-
Lagrange-equations

∂L

∂λ
− d

dt

∂L

∂λ̇
= 0 ,

∂L

∂B
− d

dt

∂L

∂Ḃ
= 0 (6.44)

that lead to the following system of coupled differential equations

h̄

Mω
Ḃλ− h̄

4M

(

−2Mω

h̄λ3
+

8B2λh̄

Mω

)

− ω

2

(

λ− g̃λ−4 − ũλ−2
)

= 0 , (6.45)

B = −Mλ̇

2h̄λ
. (6.46)

After inserting B(t) and Ḃ(t) from (6.46) into (6.45), we obtain a resulting differential
equation for λ(t)

λ̈− ω2/λ3 = −ω2
(

λ− g̃λ−4 + ũλ−2
)

. (6.47)

The result (6.47) can be understood as a particle moving in a time-dependent potential

λ̈(t) = −∂V (t)

∂λ
(6.48)
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with the potential

V (λ) =
ω2

2

(

wλ2 + κλ−2 +
2

3
g̃λ−3 − 2ũλ−1

)

. (6.49)

Here we introduced again the parameters w and κ to keep in mind that the terms origi-
nated from the trap and kinetic energy, respectively.

Our goal was to investigate the dynamics of the condensate. Therefore we assume
the condensate to be slightly elongated out of rest: λ(t) = λ0 + δλ(t) where λ0 is the
rest position and δλ(t) the small excitation. First, it is necessary to calculate the rest
positions, i.e., the minima of the potential, but the attentive reader immediately notices
that (6.49) corresponds to H(λ) in (5.39) and we may just copy the values of λ0 from
Section 5.2, see Fig. 5.3 and Eq. (5.41). Now we can plug the expansion into (6.48), (6.49)
and collect all terms of the same order in δλ:

V (λ0, δλ) = V (λ0) +
δλ2ω2

2

(

w +
3κ

λ0
4 +

4 g̃

λ0
5 − 2 ũ

λ0
3

)

+ . . . . (6.50)

Here, we can simply read off the oscillation frequency

Ω/ω =

√

w +
3κ

λ0
4 +

4 g̃

λ0
5 − 2 ũ

λ0
3 . (6.51)

The mode corresponding to our frequency is the breathing mode as illustrated in Fig. 6.1
as the test function depends only on the radial coordinate. This simple mode just grows
and shrinks along the radial coordinate. Finally, we can compare the modes of the different
regions listed in the table in Fig. 6.1 (compare to Section 5.2) which lead to the three rather
simple results of Fig. 6.1. The frequencies of “TF-Hard” and “Ideal” are proportional to
the trap frequency and so just modulated by the applied potential. The third, “Grav”, is
proportional to the square of the magnitude of the long-range interaction and so implicitly
to the square of the oscillator length wherefore the trap frequency is cancelled in Ω/ω.

TF-Grav and Trapless Modes

The important regimes of “TF-Grav”, κ = 0, w = 0, and “Trapless”, w = 0, will be
discussed in more detail. To avoid ambiguities, as there is still the trap frequency included
in ũ, g̃, we return to a description using the interaction strengths according to (5.37).

These two regimes differ only in the kinetic term which is included in the Trapless case.
For the “TF-Grav” regime, we obtain the result

ΩTF−Grav =
√

2
ũ5/4

g̃3/4
ω =

8π2h̄
√
N

3M

(

2π

3

1

a3a5
G

)1/4

. (6.52)

67



6.2. TIME-DEPENDENT VARIATIONAL APPROACH

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

TF-Hard Ideal Grav
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Fig. 6.1: Illustration of the breathing mode and summary of three simple excitation
frequencies. In the Grav-regime, ũ2 is proportional to 1/ω by its definition (5.37).

This regime describes the self-stability of the condensate enabled by the balance of the
two interactions. In the “Trapless” region the kinetic term adds to the repulsive contact
interaction. The comparison of the two gives again rise to the strength of the kinetic term
and the validity of the Thomas-Fermi approximation. In the second case, we get with

ΩTrapless = 4ũ2 (1 + 4ũg̃)1/4

(1 +
√

1 + 4ũg̃)2
ω =

128N2π3h̄

9Ma2
G

(

1 + 32aN2π
3aG

)1/4

(

1 +
√

1 + 32aN2π
3aG

)2 . (6.53)

For reasonable particle numbers, we can approximate 32aN2π/3aG � 1 and neglect all
“+1” summands in (6.53). In that limit (6.53) passes over to (6.52). Therefore, it is suf-
ficient to discuss only the “TF-Grav” regime. Graphical results are depicted in Fig. 6.2.
The set of curves shows the oscillation frequency particularly as a function of the char-
acteristic lengths of the interactions, a, aG, for several values of the other parameter. In
the “Trapless” case the curves look almost the same except for slight shifts.

The differential equation (6.48) has also been solved numerically for the Trapless regime,
depicted in Fig. 6.2(b). The chosen initial conditions are

λ(0) = λ0 , λ̇(0) = 0 , (6.54)

while λ0 was given in (5.41). Here, we used the dimensionless quantities as given in (6.48).
So, we still had the trap frequency involved but it drops out in all results. To compare
the frequency, we can estimate the periodic time from the plot Fig. 6.2(b). For instance,
for the black curve we get Ω = 2.37, while the value from (6.53) yields Ω = 2.18. So, we
can assume that the linearization of (6.50) is a good approximation. We also see that for
larger relation ũ/g̃ the oscillation frequency rises.

Comparison with Hydrodynamic Result

The result of the “TF-Grav” regime (6.52) can be compared with the approximative result
of the hydrodynamic theory for small radii Eq. (6.41). The quantities g̃ and ũ were defined
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Fig. 6.2: Excitation frequency of the TF-Grav regime. (a): as a function of the s-wave
scattering length a for different values of the long-range length aG for (dark red to light
red): 0.1, 0.2, 0.3, 0.4 m. Inlet: vice versa, excitation frequency as a function aG for
different a: 1, 3, 6, 10 nm. The ordinate has the same label in both cases. (b): Numerical
solutions of (6.48) in the Trapless regime with the initial conditions (6.54). Here, for
ũ = 20 and different g̃: 5, 40, 80 (light to dark red).

proportional to the interaction strengths g and u in (5.38). Thus, both results (6.41) and
(6.52) show already the same dependence on u and g. So, it remains to compare the
coefficients of the excitation frequency. Expressing ũ, g̃ by u, g in (6.52), we obtain

2
ũ5/2

g̃3/2
ω2 =

512πN

9
√

3M

u5/2

g3/2
. (6.55)

Hence, we get for the two frequencies, with the lowest order n = 2 for (6.41),

Ω2
Hy = 3

N8
√
π

M

u5/2

g3/2
, Ω2

TF−Grav =
64
√
π

9
√

3

N8
√
π

M

u5/2

g3/2
. (6.56)

The coefficient of the right-hand side is 64
√
π

9
√

3
= 7.28 which makes the result for ΩTF−Grav

about 2.4 times than ΩHy. As the approximation for small radii in Section 6.1.4 was
pretty rough, we rather trust the result of the variational approach but the dependence
on the interaction strengths ũ5/4/g̃3/2 was confirmed.
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7. Shift of Critical Temperature
In this part of the thesis we focus our attention on the critical region around the phase
transition. In detail, we will calculate the temperature shift that is caused by both
interactions, the contact interaction (1.2) and the long-range 1/r interaction (1.5). In
the first section we will derive the tools to get the shift using Feynman’s diagrammatic
technique of many-body physics for an arbitrary two-particle interaction [14,38,69–72].
Because the gas is dilute, it is sufficient to calculate only the first-order diagrams of the
grand-canonical free energy and the corresponding self-energy. The latter describes the
effect of the interaction to the correlation function and is of big importance as it is an
indicator of the phase transition as we have already seen discussing the non-interacting
case in Section 3.5. As we will not take into account the order parameter, this method
is valid when we approach the critical point from above. In Section 7.4.2 we will show
that we get the same result starting from the Hartree-Fock mean-field theory derived in
Section 4. In contrast to the first method, this method includes a fraction of condensed
particles and reaches the critical point from below Tc. The results will be discussed in
Section 7.5.

7.1. First-Order Perturbation Theory

In this section we investigate the influence of a weak interaction to the thermodynamics
of Bose gases. Therefore, we determine the grand-canonical free energy within first-
order perturbation theory in the case of an arbitrary two-particle interaction potential
V (int)(x − x′). At first, we need the partition function of the full problem (4.6) with the
action (4.7). The associated correlation function is defined just like the non-interacting
one according to (3.27) as

G(x, τ ;x′, τ ′) =
1

Z

∮

Dψ∗Dψ ψ(x, τ)ψ∗(x′, τ ′) e−(A(0)[ψ∗,ψ]+A(int)[ψ∗,ψ])/h̄ . (7.1)

As we assumed the interaction to be reasonably small, we expand the functional integrals
in (4.6) in powers of V (int)(x − x′) up to first order:

Z =

∮

Dψ∗ Dψ e−A(0)[ψ∗,ψ]
[

1 − 1

2h̄

h̄β
∫

0

dτ

∫

d3x

∫

d3x′ψ∗(x, τ)ψ∗(x′, τ)

× ψ(x, τ)ψ(x′, τ)V (int)(x − x′) + . . .
]

.

(7.2)
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The first term is just the interaction free partition function, while the second contains
the interaction-free expectation values of the fields. The expectation of the four fields can
be evaluated with the help of Wick’s rule, i.e., a pairwise contraction of the fields. With
(3.27) and the constraint that we regard only normal averages, we get

〈ψ∗(x, τ)ψ∗(x′, τ)ψ(x, τ)ψ(x′, τ)〉(0) = G(0)(x, τ ;x, τ)G(0)(x′, τ ;x′, τ)

+ G(0)(x, τ ;x′, τ)G(0)(x′, τ ;x, τ) .
(7.3)

The notation can be simplified, if we use Feynman diagrams, which are constructed out
of lines and vertices. The construction of the diagram follows from a few Feynman rules.
A straight line with an arrow represents the interaction-free correlation function (3.27),
also known as the propagator from space-time point (x′, τ ′) to (x, τ):

x,τ x′,τ ′ ≡ G(0)(x, τ ;x′, τ ′) . (7.4)

Furthermore, spatio-temporal integrals over the two-particle interaction potential are pic-
tured by two vertices connected by a dashed line

τ
x x′ ≡ −1

h̄

h̄β
∫

0

dτ

∫

d3x

∫

d3x′ V (int)(x − x′) . (7.5)

Up to the first order in the two-particle interaction, the grand-canonical free energy (3.3)
reads with the upper diagrammatic rules

F = F (0) − 1

β

{

1

2
+

1

2
+ . . .

}

. (7.6)

The first term in (7.6) is the interaction-free contribution to the grand-canonical free en-
ergy (3.34). The second term in (7.6) is called direct or Hartree-like vacuum diagram
because the vertex connects only propagators with equal spatio-temporal arguments. Fi-
nally, in the third term, propagators with different spatial arguments are connected; that
is the reason why it is called exchange or Fock-like vacuum diagram. Besides, it is worth
while to mention, that all these and higher-order connected vacuum diagrams together
with their proper weights follow from solving a graphical recursion relation [73]. The
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diagrammatic contributions have the following analytic expressions:

F (D) =
1

2h̄β

h̄β
∫

0

dτ

∫

d3x

∫

d3x′ V (int)(x − x′)G(0)(x, τ ;x, τ)G(0)(x′, τ ;x′, τ) , (7.7)

F (E) =
1

2h̄β

h̄β
∫

0

dτ

∫

d3x

∫

d3x′ V (int)(x − x′)G(0)(x, τ ;x′, τ)G(0)(x′, τ ;x, τ) . (7.8)

Both expressions contain the interaction-free correlation function (3.27) with equal imag-
inary times, which is given in semiclassical approximation in Eq. (3.31). The calculation
of Eq. (7.7) and (7.8) is pretty straight-forward. We only add for this purpose, that we
replace the interaction potential by its Fourier transform

V (x − x′) =

∫

d3q

(2πh̄)3
V (q)eıq(x−x′)/h̄. (7.9)

For the special case of the harmonic trap potential (3.33), we obtain

F (D) =
1

2(h̄βω̃)6

∞
∑

n=1

∞
∑

n′=1

e(n+n′)βµ

n3n′3

∫

d3q

(2πh̄)3
V (int)(q) exp

{

−
3
∑

j=1

(n+ n′) q2
j

2h̄2βMnn′ω2
j

}

,

(7.10)

F (E) =
1

2(h̄βω̃)3

∞
∑

n=1

∞
∑

n′=1

e(n+n′)βµ

(n+ n′)3

∫

d3q

(2πh̄)3
V (int)(q) exp

{

− βnn′q2

2M(n + n′)

}

. (7.11)

In the calculation from (7.7) and (7.8) to (7.10) and (7.11) the spatial integrals with
respect to x and x′ had to be evaluated. These two only converge if a trapping potential
is present. The geometric mean trap frequency ω̃ was already defined in (3.35).

7.2. Corrections to Chemical Potential

In Section 3.5, we found for the non-interacting Bose gas the criterion for the phase transi-
tion from a Bose gas to BEC to be a divergence of the correlation function G(0)(x, τ ;x′, τ ′),
i.e., its functional inverse G(0)−1(x, τ ;x′, τ ′) had to vanish. The same argument will be
used to find the critical point also in the interacting case. But due to the two-particle
interaction, we have to take into account the correlation function (7.1) of the full par-
tition function (4.6). This is not any more given by the integral kernel (3.19), but gets
additional terms because of the interaction. All interaction effects are incorporated by
the so-called self-energy Σ(x, τ ;x′, τ ′):

G−1(x, τ ;x′, τ ′) = G(0)−1(x, τ ;x′, τ ′) − Σ(x, τ ;x′, τ ′) . (7.12)
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Writing the interaction action (4.8) with an integral kernel Σ(x, τ ;x′, τ ′) according to
(3.19), we obtain in first order perturbation theory the two contributions [18]:

Σ(D)(x, τ ;x′, τ ′) =
−1

h̄
δ(τ − τ ′)δ(x − x′)

∫

d3x′′ V (int)(x − x′′)G(0)(x′′, τ ;x′′, τ) , (7.13)

Σ(E)(x, τ ;x′, τ ′) =
−1

h̄
δ(τ − τ ′)V (int)(x − x′)G(0)(x, τ ;x′, τ) . (7.14)

Eq. (7.13) is the direct of Hartree term of the self energy and (7.14) the exchange or Fock
term. These results could have also been obtained by the functional differentiation (4.29)

Σ(x, τ ;x′, τ ′) = −β δF
δG(0)(x′′, τ ′;x′′′, τ ′′)

. (7.15)

Graphically, this functional differentiation corresponds to the amputation of a line in
every connected vacuum diagram of the grand-canonical free energy [53,54]. Thus, we
obtain from (7.6)

Σ(x, τ ;x′, τ ′) =
x,τ x′,τ ′

+
x,τ x′,τ ′

+ . . . . (7.16)

For the critical point, we have to find the zero of (7.12). Therefore, we consider its
Fourier-Matsubara transform

G−1(x, τ ;x′, τ ′) =
1

h̄β

∞
∑

m=−∞
e−ıωm(τ−τ ′)

∫

d3p

(2πh̄)3
eıp(x−x′)/h̄G−1(p, ωm;x) , (7.17)

where the Matsubara frequencies are defined in (3.15). This leads with (3.40) to the
equation

G−1(p, ωm;x) =
1

h̄

{

−ıh̄ωm +
p2

2M
+ V (ext)(x) − µ

}

− Σ(p, ωm;x) = 0 , (7.18)

where the Fourier-Matsubara transform of the self-energy follows in analogy to Eq. (3.37)
from

Σ(p, ωm;x) =

h̄β
∫

0

dτ eıωmτ

∫

dDx′ e−ıpx′/h̄ Σ

(

x +
x′

2
, τ ;x − x′

2
, 0

)

. (7.19)

The critical point is reached as the lowest possibility to fulfill Eq. (7.18). This happens
up to lowest perturbative order at vanishing momentum p = 0 and Matsubara frequency
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ωm = 0 like in the Section 3.5. Furthermore, we conclude that the additional contributions
(7.13), (7.14) of the self-energy do not change the location of the potential minimum
xmin = 0. So, we get from Eq. (7.18) the equation for the new critical potential as

µc = −h̄Σ(0, 0; 0) . (7.20)

Here, we also have two contributions to the chemical potential, namely the direct term
µ(D)
c = −h̄Σ(D)(0, 0; 0) and the exchange term µ(E)

c = −h̄Σ(E)(0, 0; 0). So, we obtain up to
first order the complete critical potential µc = 0 + µ(D)

c + µ(E)
c + . . ., where the respective

terms read, according to (3.30), (7.13), and (7.14):

µ(D)
c =

1

(h̄βω̃)3

∞
∑

n=1

1

n3

∫

d3q

(2πh̄)3
V (int)(q) exp

{

−
3
∑

j=1

q2
j

2h̄2βMnω2
j

}

, (7.21)

µ(E)
c =

∞
∑

n=1

∫

d3q

(2πh̄)3
V (int)(q) exp

{

−
3
∑

j=1

βn q2
j

2M

}

. (7.22)

During the calculation of (7.21) and (7.22), we had to insert the correlation function (3.30)
into (7.13) and (7.14). That Eq. (3.30) contains the factor enβµ, which was set to “1” in

first order in (7.21) and (7.22), according to µ
(0)
c = 0 from (3.41).

7.3. Model Interaction

In the following section, we calculate the grand-canonical free energy and self-energy terms
for a contact plus long-range interaction. At first, we need their Fourier-transforms to
further evaluate the expressions (7.10), (7.11), (7.21), and (7.22).

7.3.1. Fourier Transform of Interaction

The expressions for the self-energy and grand-canonical free energy contain the Fourier
transform (7.9) of the interaction, which has to be further specified. In the case of a
contact interaction, we immediately get

V
(int)
δ (q) =

4πh̄2a

M
. (7.23)

In more detail we will show how to get the Fourier transform of V (int)(x) = C/|x|:

V (int)(q) =

∫

d3x
C

|x| e
−ıqx/h̄ . (7.24)
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In total we will work out three different methods. First, the direct calculation, yields with
spherical coordinates:

V (int)(q) = 2π

∞
∫

0

dr r

+1
∫

−1

d cosϑC e−ıqr cosϑ/h̄. (7.25)

The ϑ-integration can easily be evaluated but we have to introduce a convergence factor
”limη→0 e

−ηr” for the remaining r-integration:

V (int)(q) =
4πh̄C

q
lim
η→0

∞
∫

0

dr sin
(qr

h̄

)

e−ηr. (7.26)

After integrating and taking the limit, we end up with the result

V (int)(q) =
4πCh̄2

q2
. (7.27)

In the second version we integrate Eq. (7.24) twice by parts. Here we have to mention,
that the boundary terms vanish:

V (int)(q) = −C
∫

d3x

(

∆
1

|x|

)

h̄2

q2
e−ıqx/h̄. (7.28)

Now we use the distributional relation (6.22) and get the same result, Eq. (7.27).

Last, in the third version, we will use the Schwinger proper-time representation (4.54).
After plugging Eq. (4.54) into Eq. (7.24), we complete the exponent to a quadratic form
in x and substitute x → x + ıq/(2h̄y):

V (int)(q) =

∞
∫

0

dy e
− q2

4h̄2y y−1/2

∫

d3x e−yx
2

. (7.29)

The latter integral is simply Gaussian, thus we get, with Γ (1/2) =
√
π,

V (int)(q) = πC

∞
∫

0

dy
1

y2
e
− q2

4h̄2y . (7.30)

The integral in Eq. (7.30) is of the form
∫

dxf(x)f ′(x), thus we again obtain the result
Eq. (7.27).
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7.3.2. Semiclassical Results

Combining both interactions (7.23) and (7.27), we can write the total two-particle model
interaction using g = 4πh̄2a/M as

V (int)(q) =
4πh̄2C

q2
+ g . (7.31)

In the following, we again restrict ourselves to a cylinder-symmetric trap, ω1 = ω2 =
ωr, ω3 = ωz, as illustrated in Fig. 4.1. Now we calculate the influence of the interaction
(7.31) on the thermodynamical quantities. To this end, we mention that the remaining
integrals in (7.10), (7.11) and (7.21), (7.22) are either Gaussian or of the form

I(a1, a3) =

∫

d3q
1

q2
exp

[

−a1(q
2
1 + q2

2) − a3q
2
3

]

. (7.32)

The latter integral can be solved by applying the Schwinger proper-time representation
(4.54) and we get a simplified form of the master integral (4.58):

I(a1, a3) =

∞
∫

0

dy
[

(a1 + y)
√

a3y + y2
]−1

(7.33)

With the definition of the anisotropy function f(κ) of (4.64) with κ = ωr/ωz, we get:

I(a1, a3) =
2π3/2

√
a1

κ−1/3f(κ) . (7.34)

Therefore, we find for our perturbative results (7.10), (7.11) and (7.21), (7.22):

F (D) =
1

2(h̄βω̃)3

1

λ3
T

[

g ζ 3
2
, 3
2
, 3
2
(eβµ) +

4πh̄2Cβ

M (h̄βω̃)2
ζ 5

2
, 5
2
, 1
2
(eβµ) f(κ)

]

, (7.35)

F (E) =
1

2(h̄βω̃)3

1

λ3
T

[

g ζ 3
2
, 3
2
, 3
2
(eβµ) +

4πh̄2Cβ

M
ζ 1

2
, 1
2
, 5
2
(eβµ)

]

, (7.36)

µ(D)
c =

1

λ3
T

[

g ζ

(

3

2

)

+
4πh̄2Cβ

M (h̄βω̃)2
ζ

(

5

2

)

f(κ)

]

, (7.37)

µ(E)
c =

1

λ3
T

[

g ζ

(

3

2

)

+
4πh̄2Cβ

M
ζ

(

1

2

)]

, (7.38)

where λT is the thermal de Broglie wavelength (1.1) and ζa,b,c(z) the generalization of the
polylogarithmic function (4.70). One can see, that the terms in (7.35) to (7.38) depend
only on the ratio and the geometric mean of the trap frequencies (3.35).
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7.3.3. Divergence of Chemical Potential

In Eq. (7.38), we obtained the diverging term ζ(1/2) which is shorthanded for the sum-
mation

ζ

(

1

2

)

=

∞
∑

n=1

1√
n
. (7.39)

Actually, it is not correct to write (7.39) in this representation. The left-hand side is a
zeta function which has a fixed value ζ(1/2) = −1.4604 as its analytic continuation and
on the right-hand side we have a diverging sum. As using the analytic continuation of
ζ(1/2) is not justified physically, we investigate its origin.

It appeared through the integration in (7.22). If one performs the summation over n
first, which is a geometric series, one gets for the long-range interaction

µ(E)
c (g = 0) =

∫

d3q

(2πh̄)3

4πh̄2C

q2

1

1 − exp
{

−β q2

2M

} . (7.40)

The integral diverges for q = 0, which is the infrared divergence of a 1/r-interaction. Here,
the reason of its occurrence is the semiclassical approximation of the correlation function
(3.31) in (7.14). Therefore, we evaluate the expressions of grand-canonical free energy
and self-energy again, this time, however, by using the quantum-mechanical propagator
of a harmonic oscillator instead of the semiclassical one.

7.3.4. Quantum-Mechanical Calculation

The many-body propagator follows from the imaginary-time amplitude according to
(A.21) and Ref. [36] for equal imaginary times as

G(0)(x, τ ;x′; τ) =
∞
∑

n=1

enβµ

[

3
∏

j=1

√

Mωj
2πh̄ sinh h̄βωjn

(7.41)

× exp

{

− Mωj
2h̄ sinh h̄βωjn

[(

x2
j + x′2j

)

cosh h̄βωjn− 2xjx
′
j

]

}

]

.

We have seen in Fig. 4.2 in Section 4.5 that the anisotropy function f(κ) has its maximum
for an isotropic trap and the same holds for the critical temperature according to the
semiclassical results of Section 7.3.2. As the results for a cylinder-symmetric trap show a
rather difficult shape, we restrict ourselves here to the isotropic case but state the more
general results for a cylinder-symmetric trap in Appendix B.
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For the free energy (7.7), (7.8) and the critical chemical potential (7.20) we solve the
integrals similar to the semiclassical way and get the following results

F (D)
QM =

1

2λ3
T(h̄βω̃)3

[

gζ
(D)
Fg
(

eβµ
)

+
4πh̄2Cβ

M(h̄βω̃)2
ζ

(D)
FC
(

eβµ
)

]

, (7.42)

F (E)
QM =

1

2λ3
T(h̄βω̃)3

[

g ζ
(E)
Fg
(

eβµ
)

+
4πh̄2Cβ

M
ζ

(E)
FC
(

eβµ
)

]

, (7.43)

µ
(D)
QM =

1

λ3
T

[

g ζ (E)
µg +

4πh̄2Cβ

M(h̄βω̃)3
ζ

(D)
µC

]

, (7.44)

µ
(E)
QM =

1

λ3
T

[

g ζ (E)
µg +

4πCh̄2

M
ζ

(E)
µC

]

. (7.45)

Here, we introduced the modified zeta-functions of the free energy which depend on h̄βω

ζ
(D)
Fg
(

eβµ
)

=
∞
∑

n,m=1

eβµ(m+n)

[

(h̄βω)2

sinh(h̄βωn) sinh(h̄βωm)

h̄βω/2
(

tanh h̄βωn
2

+ tanh h̄βωm
2

)

]3/2

,

(7.46)

ζ
(E)
Fg
(

eβµ
)

= ζ
(D)
Fg
(

eβµ
)

, (7.47)

ζ
(D)
FC
(

eβµ
)

=

∞
∑

n,m=1

eβµ(m+n) sinh[h̄βω(n+m)/2] h̄βω/2

sinh(h̄βωn/2) sinh(h̄βωm/2)
(7.48)

×
[

(h̄βω)2

sinh(h̄βωn) sinh(h̄βωm)

h̄βω/2

tanh h̄βωn/2 + tanh h̄βωm/2

]3/2

,

ζ
(E)
FC
(

eβµ
)

=
∞
∑

n,m=1

eβµ(n+m)

[

(h̄βω)2

sinh(h̄βωn) sinh(h̄βωm)

]3/2

×
√

h̄βω/2
(

tanh h̄βωn
2

+ tanh h̄βωm
2

)3/2

1
(

coth h̄βωn
2

+ coth h̄βωm
2

) . (7.49)

The corresponding expressions for the functions appearing in the chemical potential read

ζ (D)
µg =

∞
∑

n=1

[

h̄βω

sinh h̄βωn

]3/2

, (7.50)

ζ (E)
µg = ζ (D)

µg , (7.51)

ζ
(D)
µC =

∞
∑

n=1

[

h̄βω

sinh h̄βωn

]3/2
h̄βω/2

tanh(h̄βωn/2)
, (7.52)

ζ
(E)
µC =

∞
∑

n=1

[

h̄βω

sinh h̄βωn

]3/2
tanh(h̄βωn/2)

h̄βω/2
. (7.53)
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The results (7.42)– (7.44) reduce to (7.35)– (7.37) in the limit h̄βω � 1 that corresponds
to the semiclassical approximation. The comparison between the Riemann zeta functions
and new corresponding zeta functions is illustrated in Fig. 7.1. We see, that for larger
particle numbers the results approach the semiclassical values. But now the previous
divergence of the second sum in (7.45) is suppressed by the exponentially growing factor
sinh h̄βωn in the denominator and we get finite values. This also means that the analytic
continuation of ζ(1/2) fails in this case.

7.4. Critical Temperature

In this section we calculate the specific shift of the critical temperature for a fixed particle
number in an isotropic trap. At first, we use the method that we worked out in this chapter
and in the subsequent section, starting from the Hartree-Fock mean-field theory. As we
said in the introduction of this chapter, the Feynman perturbation theory approaches the
critical point from above and the Hartree-Fock theory from below.

7.4.1. Feynman Perturbation Expansion

The total grand-canonical free energy follows from Eq. (7.6) as the sum of (3.34), (7.35),
and (7.36). We will see shortly that the expression for the critical temperature shift
only depends on differences of the respective zeta functions. As the zeta functions of
the direct term of the long-range interaction for adequate particle numbers are close
to the semiclassical generalized zeta-functions and both below the semiclassical values,
taking their difference will even diminish errors caused by this approximation. For the
contributions of the other terms, we use the quantum results derived in Section 7.3.4.

The complete first-order free energy becomes

(h̄βω)3F = − 1

β
ζ4
(

eβµ
)

+
g ζ

(D,E)
Fg

(

eβµ
)

λ3
T

+
4πh̄2Cβ

2Mλ3
T

[

ζ
(E)
FC
(

eβµ
)

+
ζ 5

2
, 5
2
, 1
2

(

eβµ
)

(h̄βω)2

]

. . . .

(7.54)
The full problem has to be studied at a fixed particle number N = −∂F/∂µ which is
valid above the critical temperature:

(h̄βω)3N = ζ3
(

eβµ
)

− g β

λ3
T

∂ζ
(D,E)
Fg

(

eβµ
)

∂(βµ)
− 4πh̄2Cβ2

2Mλ3
T

[

∂ζ
(E)
FC
(

eβµ
)

∂(βµ)
+
ζ 5

2
, 5
2
,− 1

2

(

eβµ
)

(h̄βω)2

]

. . . .

(7.55)
The first term in Eq. (7.55) contains the interaction-free part. The second term embodies
the exchange as well as direct contribution of the contact interaction, while the latter
two arise due to the long-range interaction. The term holding the frequency dependence
originates in the direct diagram and the remaining one stems from the exchange part. The
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N 10 100 103 104 105 106

h̄β
(0)
c ω 0.4935 0.2291 0.1063 0.0494 0.0229 0.01063

ζ
(D,E)
µg 1.4347 1.8041 2.0604 2.2361 2.3561 2.4388

ζ
(D,E)
µg /ζ

(

3
2

)

0.5492 0.6906 0.7887 0.8560 0.9019 0.9336

ζ
(D,E)
µgHF 1.1431 1.5045 1.8055 2.0379 2.2093 2.3324

ζ
(D,E)
µgHF /ζ(

3
2
) 0.4376 0.5759 0.6911 0.7801 0.8457 0.8928

∂ζ
(D,E)
Fg /∂(βµ) 1.3656 1.8443 2.1246 2.2728 2.3470 2.3697

∂ζ
(D,E)
Fg /∂(βµ)/ζ(3

2
, 3

2
, 1

2
) 0.5650 0.7631 0.8790 0.9404 0.9711 0.9805

ζ
(E)
µC 2.0607 3.7052 6.1210 9.9161 15.2095 24.2802

ζ
(E)
µCHF 1.3445 2.5374 4.3497 7.0403 11.0041 16.8290

∂ζ
(E)
FC /∂(βµ) 0.8661 1.4057 1.8703 2.2335 2.4882 2.6146

∂ζ
(E)
FC /∂(βµ)/ζ(1

2
, 1

2
, 3

2
) 0.2760 0.4480 0.5960 0.7118 0.7929 0.8332

ζ
(D)
µC 1.1865 1.2865 1.32281 1.3353 1.3395 1.3408

ζ
(D)
µC /ζ(5/2) 0.8844 0.9590 0.9861 0.9954 0.9985 0.9995

∂ζ
(D)
FC /∂(βµ) 2.3047 2.7912 3.0213 3.1255 3.1719 3.2617

∂ζ
(D)
FC /∂(βµ)/ζ(5

2
, 5

2
,−1

2
) 0.7178 0.8693 0.9410 0.9734 0.9879 1.0158

Fig. 7.1: Comparing the difference between the Riemann zeta functions and the modified

zeta functions for an isotropic trap. At the critical point we get from Eq. (3.44): h̄β
(0)
c ω =

[ζ(3)/N ]1/3. Blue terms: troubling ζ
(E)
µC and the corresponding values of the Hartree-Fock

result ζ
(E)
µCHF. We see, that the analytic continuation ζ(1/2) = −1.4604 disagrees in this

case. The zeta functions of the free energy are defined in this way because the functions
appear this way in the results (7.60), (7.69). Furthermore, after the differentiation the
chemical potential has to be set to 0.
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critical temperature Tc is obtained from Eq. (7.55) in the limit µ ↑ µc = 0+µ
(D)
c +µ

(E)
c +. . .

Of course, the differentiation with respect to (βµ) has to be done before we go to the limit
µ→ 0, which is indicated at the particular terms:

N =
1

(h̄βcω)3
ζ (3) +

βc

(h̄βcω)3

[

µ(D)
c + µ(E)

c

]
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)

∂(βµ)
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∣

∣
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− 4πh̄2Cβc
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∂ζ
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)

∂(βµ)

∣

∣

∣

∣

∣

µ→0

+
1

(h̄βcω)2
ζ

(

5

2
,
5

2
,−1

2

)



+ . . . (7.56)

Recalling (7.37), (7.38), we obtain within first-order perturbation theory

N =
ζ (3)

(h̄βcω)3
+

2gβc

λ3
Tc

(h̄βcω)3



ζ (2) ζ (D,E)
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∂ζ
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∣

∣

∣
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+
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2
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ζ (2) ζ
(E)
µC − 1

2

∂ζ
(E)
FC
(

eβµ
)

∂(βµ)

∣

∣

∣

∣

∣

µ→0





+
4πh̄2Cβc

2

Mλ3
Tc

1

(h̄βcω)5

[

ζ (2) ζ

(

5

2

)

− ζ

(

3

2
,
5

2
,
1

2

)]

+ . . . (7.57)

Here, we used for the last term the fact that the generalized zeta-functions obey the
identity ζ(a, a, c) = 2 ζ(a − 1, a, c + 1). The first term in Eq. (7.57) stems from F (0)

and thus contains the interaction-free critical temperature Eq. (3.44) and its first-order
correction. In order to get the shift of the critical temperature, we expand

1

βc
≈ 1

β(0)
c

(

1 +
∆Tc

T
(0)
c

+ . . .

)

(7.58)

and restrict ourselves again to the first order. Within that first order, the shift of the
critical temperature, caused by the interactions, reads

∆Tc

T (0)
c

= − 1

3ζ(3)λ3

T
(0)
c

{

2gβ(0)

c



ζ (2) ζ (D,E)
µg − 1

2

∂ζ
(D,E)
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(

eβµ
)

∂(βµ)

∣

∣

∣

∣

∣

µ→0





+
4πh̄2C [β(0)

c ]2

M



ζ (2) ζ
(E)
µC − 1

2

∂ζ
(E)
FC
(

eβµ
)

∂(βµ)

∣

∣

∣

∣

∣

µ→0





+
4πh̄2C

M

[β(0)
c ]2

(h̄β(0)
c ω)2

[

ζ(2)ζ

(

5

2

)

− ζ

(

3

2
,
5

2
,
1

2
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}

.

(7.59)
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Here we have three contributing terms. The first one comes from the contact interaction
and contains direct as well as exchange contributions. The other two are due to the long-
range interaction. The second one represents the exchange diagram, while the third has
again the frequency dependence and belongs to the direct term. If we specialize to the
gravitation-like interaction CG = −4π2h̄2/(MaG), we express the result in a dimensionless
form

(

∆Tc

T (0)
c

)(QM)

= −cδ

a

λ
T

(0)
c

+
λ

T
(0)
c

aG

[

cE + cD

1
(

h̄β(0)
c ω
)2

]

, (7.60)

where aG is defined in (2.33) and numerical values are given in Fig. 2.5. Furthermore, we
defined the coefficients

cδ =
4

3ζ (3)



ζ (2) ζ (D,E)
µg − 1

2

∂ζ
(D,E)
Fg

(

eβµ
)

∂(βµ)

∣

∣

∣

∣

∣

µ→0



 , (7.61)

cE =
4π

3ζ (3)



ζ (2) ζ
(E)
µC − 1

2

∂ζ
(E)
FC
(

eβµ
)

∂(βµ)

∣

∣

∣

∣

∣

µ→0



 , (7.62)

cD =
4π

3ζ (3)

[

ζ (2) ζ

(

5

2

)

− ζ

(

3

2
,
5

2
,
1

2

)]

≈ 2.0951 , (7.63)

which still depend on h̄β
(0)
c ω that can be expressed by the particle number using (3.44).

The result is graphically shown in Fig. 7.2. We will derive the results starting from the
Hartree-Fock theory in the following section and thereafter discuss both results jointly.

7.4.2. Hartree-Fock Mean-Field Theory

In addition to the previous result, we can show how to get the equation for the shift
starting from the Hartree-Fock mean-field theory derived in Section 4. This approach
takes into account a non-vanishing number N0 of condensed particles. So, in contrast to
the previous calculation we approach here the critical point from the condensate phase.

The first-order free energy in semiclassical approximation has been calculated in Eq. (4.69)
in the case of a cylinder-symmetrical trap. To get comparable results with the previous
calculation of the shift, we again restrict ourselves to an isotropic trap. At first, we

83



7.4. CRITICAL TEMPERATURE
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∆Tc
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Fig. 7.2: Shift of the critical temperature including contact and gravitation-like inter-
action. Additionally, we took into account the finite-size correction (3.46). The blue
dots show the quantum result (7.60), while the red curve shows the shift obtained by the
Hartree-Fock mean-field theory (7.69). In the upper curves both interactions are included,
while the lower three are only due to the contact interaction. The black line depicts the
corresponding behaviour of the shift Eq. (7.73). All plotted for 87Rb, an isotropic trap
with ω = 2π · 100 Hz, a = 5.31 nm, and aG = 0.027 m.

calculate the particle number using (3.6):

N = N0

{

1 − 2gβ

λ3
T

∞
∑

n=1

enβµ

n1/2

[(

1 +
nβh̄ω

2

)]−3/2

− 4πh̄2Cβ2

λ3
T (h̄βω)2M

∞
∑

n=1

enβµ

n3/2
√

1 + nβh̄ω/2

−4πh̄2Cβ2

λ3
TM

∞
∑

n=1

enβµn1/2

(1 + nβh̄ω/2)3/2 (1 + nβh̄ω/2)

}

+
ζ3
(

eβµ
)

(h̄βω)3
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λ3
T

ζ 3
2
, 3
2
, 1
2

(

eβµ
)

(h̄βω)3

−1

2

4πh̄2Cβ2

λ3
T (h̄βω)5M

ζ 5
2
, 5
2
,− 1

2

(

eβµ
)

− 1

2

4πh̄2Cβ2

λ3
T (h̄βω)3M

ζ 1
2
, 1
2
, 3
2

(

eβµ
)

. (7.64)

As we approach the critical point from below, we have some terms proportional to the
number of condensed particles N0. But the remaining three terms of (7.64) without this
dependence are equal to the results of the semiclassical evaluation Eqs. (7.35) and (7.36).

Now we plug in the first-order chemical potential, µ0 and µ1 from (4.63). At the critical
point, there are almost no particles in the ground state and we can assume N0 → 0.
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Herewith, we obtain

N =
ζ(3)

(h̄βω)3
+
C4πh̄2β2ζ(2)

λ3
TM (h̄βω)5

∞
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(7.65)

+2
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∞
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.

Furthermore, we set µ0 → 0 at the critical point as in the previous calculation. The first
term in Eq. (7.65) has contains again the interaction-free critical temperature Eq. (3.44)
and its first correction. In order to get the shift of the critical temperature, we again
expand βc as in (7.58) and proceed as in the previous section. Within that first order,
the shift of the critical temperature reads

∆Tc

T (0)
c

= − 1

3ζ(3)λ3

T
(0)
c

{

2gβ(0)

c

[

ζ(2)ζ
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,
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+
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(h̄β(0)
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)
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,
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2
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}

.

(7.66)

Here, we introduced modified zeta-functions of the Hartree-Fock theory. Their numerical
values are given for certain particle numbers in Fig. 7.1 to compare them to the quantum-
mechanical results. At the critical point, we use (3.44) to replace β(0)

c by N and obtain

ζ
(D,E)
µgHF =

∞
∑

n=1

1

n3/2{1 + [ζ(3)/N ]1/3 n/2}3/2
, (7.67)

ζ
(E)
µCHF =

∞
∑

n=1

1

n1/2{1 + [ζ(3)/N ]1/3 n/2}5/2
. (7.68)

Eq. (7.66) can be brought to an analogous form to (7.60) but with slightly different
constants:

(

∆Tc

T (0)
c

)(HF)

= −c̄δ

a

λ
T

(0)
c

+
λ

T
(0)
c
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c̄E + cD

1
(

h̄β
(0)
c ω
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. (7.69)
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Here, the combinations of the zeta-functions are defined as

c̄δ =
4

3ζ (3)

[

ζ (2) ζ
(D,E)
µgHF − ζ

(

1

2
,
3

2
,
3

2

)]

, (7.70)

c̄E =
4π

3ζ (3)

[

ζ (2) ζ
(E)
µCHF − ζ

(

−1

2
,
1

2
,
5

2

)]

, (7.71)

cD =
4π

3ζ (3)

[

ζ (2) ζ

(

5

2

)

− ζ

(

3

2
,
5

2
,
1

2

)]

≈ 2.0951 . (7.72)

Comparing the results (7.60) and (7.69), we register that the term caused by the direct
term is equal in both expressions.

7.5. Discussion of Results

In this final section, we discuss the physical implications of our first-order perturbative
results (7.60) and (7.69). In the beginning, we discuss the results for a long-range inter-
action plus contact interaction and later on compare the different results for the contact
interaction only.

In the case of the gravitationally bound gas, the results of the quantum and Hartree-
Fock calculation are analyzed graphically in Fig. 7.2. We see that the shift of the contact
interaction is negative, as repulsive interactions always lower the critical temperature.
It is of the size of about 5 − 6% for 104 − 105 numbers. The additional long-range
interaction shifts the critical temperature above as expected for an attractive interaction.
For about 6·104 particles the shift of the long-range interaction clears the one of the contact
interaction. At this place, both interactions equalize each other and the system can get
into the self-trapping situation without an external trap. A positive shift can serve as an
experimental possibility to prove the long-range interaction within a Bose gas. Actually,
the combined curves of long-range plus contact interaction diverge for higher particle
numbers because the direct term of the 1/r interaction in both results is proportional to√
N . We have already seen in Section 5.1.1 concerning the self-binding solution of the

Gross-Pitaevskii equation in Thomas-Fermi approximation, that the energy per particle
rises with the particle number (5.19). Here, we get the same thermodynamical instability.

Comparing the results of quantum and Hartree-Fock calculation, we see that the curve
of the Hartree-Fock theory is shifted slightly upwards. This can be understood from the
results (7.60) and (7.69). Both of them have the same direct term which is proportional
to

√
N . Thus, for the 104−105 particles as in Fig. 7.2 it is about a factor 100 higher than

the exchange term. Hence, the difference is determined by the contact interaction.
Therefore, we discuss the contact interaction separately. By setting C = 0, i.e., aG →

∞, we obtain the result of the temperature shift for the contact interaction in an isotropic
trap. In the semiclassical limit of h̄βω → 0, which is equivalent to the thermodynamical
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Fig. 7.3: (a): Experiment measuring the shift of the critical temperature as a function of
the particle number [39]. The dashed line belongs to the ideal gas including the finite-size
correction (3.46). The solid black line corresponds to (7.73) and the grey shaded area
indicates possible results taking statistical and systematic errors into account. (b): Same
representation with all three possible theoretical results: black line=semiclassical result
(7.73); blue dots=quantum result; blue line=Hartree-Fock result. The curves are plotted
for a cylinder-symmetric trap. To derive expressions equivalent to (7.60) and (7.69), we
used (B.1) and (B.7) for the quantum result and started with the anisotropic results for
chemical potential (4.44) and free energy (4.69) in the Hartree-Fock case.

limit N → ∞ at the critical point, we obtain the semiclassical result for the shift of the
critical temperature:

∆Tc

T (0)
c

= − 4

3ζ(3)

[

ζ (2) ζ

(

3

2

)

− ζ

(

1

2
,
3

2
,
3

2

)]

a

λ
T

(0)
c

= −3.42603
a

λ
T

(0)
c

, (7.73)

which depends only on the geometric mean trap frequency via λ
T

(0)
c

. This result has
originally been derived within a mean-field approach using the Popov-approximation in
Ref. [74].

The difference between our results and (7.73) is determined by the values of cδ and
c̄δ. We see from Fig. 7.1 that both approach the semiclassical value rather slow. For
instance, the Hartree-Fock result is for 106 particles still 10% below the semiclassical value.
To compare the results to experimental data, we again use the experiment of Ref. [39]
presented in Section 3.5. We shortly repeat that the shift of the critical temperature was
measured as a function of the particle number in a full-polarized 87Rb gas confined in a
cylinder-symmetric trap with ωr = 2π · 413 Hz and ωz = 2π · 8.69 Hz. The measurements
coincide quite well with the prediction of (7.73), see Fig. 7.3(a). In fact, the majority of
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7.5. DISCUSSION OF RESULTS

the data points lies rather slightly below the theoretical prediction by (7.73). To compare
it to our results, we repeated the calculation of the shift of the critical temperature for
the contact interaction using the anisotropic (4.44) and (4.69) for a cylinder-symmetric
trap. In the quantum case, we replaced the modified zeta-functions in (7.60) by (B.1)
and (B.7). Actually, the quantum result (7.60) should reproduce the shift best as there
are fewer approximations made but this produces an even smaller shift, see Fig.7.3(b).
However, our results are still in agreement with the experimental data taking the statistical
and systematic errors of the experiment into account.
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8. Summary and Outlook

In conclusion, we have studied thermal and dynamical properties of a Bose-Einstein con-
densate underlying a short-range contact as well as a long-range 1/r interaction. At first,
we have elucidated in Chapter 2 how an attractive long-range interaction can artificially
be created. It follows from treating the interaction of neutral atoms with a radiation
field within a fourth order perturbative quantum-electrodynamical calculation [26–28].
Altogether, 24 Feynman diagrams have been taken into account to derive the potential
Eq. (2.24) which reduces to purely 1/r in the near-zone, a well fulfilled approximation
for a dilute Bose gas. Furthermore, we have shown how the experiment could be set up
either with a combination of static [22] or rotating lasers. Here, our latter approach has
the advantage of requiring less lasers and thus might be favourable to realize.

To describe interacting bosons, we have used the functional integral formalism of many-
body physics. After recalling some features of the non-interacting Bose gas in Chapter
3, we have derived a self-consistent Hartree-Fock mean-field theory using the background
method in Chapter 4. The result is a set of two coupled equations, one integro-differential
equation (4.30) for the background field, which is the order parameter of BEC, and a
second equation (4.16) for the correlation function that describes the thermal bosons. A
first-order perturbative solution of this set represents the starting point of investigating
two special cases.

In the limit of zero temperature, we have analyzed the Gross-Pitaevskii equation in
Chapter 5. On the one hand, we have shown how the equation is solved in Thomas-Fermi
approximation. The self-binding case without an external trap (5.18) corresponds to the
physical situation of a Bose star. We have also applied a Gaussian variational test function
to include the kinetic term. A comparison of both approximations has shown that the
Thomas-Fermi approximation is well fulfilled. Furthermore, we have treated dynamical
properties of a BEC by using two approaches in Chapter 6. At first, we have compared
the BEC to a quantum liquid applying the hydrodynamic theory. After we had obtained
a differential equation for the density corrections, we have separated the angular part
and have derived with (6.31) a second-order integro-differential equation for the radial
part. From there, the excitation frequencies are obtainable as eigenvalues. Although we
could not solve the equation exactly, we have shown, that it becomes a Bessel differential
equation in the limit of small radii for the self-binding case without an external trap. Ap-
plying proper boundary conditions, we have obtained the excitation frequency Eq. (6.41)
which depends on the total number of particles and the two interaction strengths. In
a second approach, we have used a time-dependent Gaussian variational test function.
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There, we could investigate the breathing mode for different physical regimes in the case
of an isotropic harmonic trap, shown in Figs. 6.1 and 6.2. In the self-binding case, the
two approaches have shown the same dependence on the interaction strengths.

The second special case of interest has been the regime of the critical temperature.
In fact, in Chapter 7 we have calculated the first-order shift of the critical temperature
caused by the interactions adopting two methods. In both of them, we have used a
harmonic trapping potential and the constraint of conserving the total number of particles.
On the one hand, we have applied Feynman’s diagrammatic perturbation theory. Two
Feynman diagrams have been calculated both for the free energy and self-energy. First,
we tried to use the semiclassical approximation but this method has shown an infrared
divergence in the exchange diagram of the self-energy. The problem was solved using
the quantum-mechanical propagator rather than the semiclassical one, yielding the TC-
shift Eq. (7.60). On the other hand, we have used the Hartree-Fock mean-field theory
of Chapter 4. Here, we obtained the result (7.69) which is in good agreement with
the former calculation. Furthermore, we have improved the results adding the quantum-
mechanical finite-size correction to the semiclassical expression of the interaction-free shift
and interpreted the result graphically in Fig. 7.2. For the attractive long-range interaction
we got an upward shift as expected, while the repulsive contact interaction has lowered
the critical temperature. In the limit of a vanishing long-range interaction, the known
result for the shift of a contact interaction could be confirmed in the semiclassical limit
with recent data and theory [39,74], depicted in Fig. 7.3. The combined shift of both
interactions can take positive or negative values depending on the particle number and
can thus serve as an experimental possibility to prove that a long-range interaction is,
indeed, present.

Of course, not all points of interest could be treated within this thesis. Our suggestion
in Chapter 2 to use a rotating scheme in the realization of the experiment is only valid
within a quasi-static regime. To extend it to higher rotation speeds a time-dependent
perturbative treatment of the quantum-electrodynamical derivation of the potential would
be necessary. Furthermore, the mean-field theory derived in Chapter 4 can be improved
by considering also anomalous averages within a Hartree-Fock-Bogoliubov theory. We also
had the ambition to handle the system analytically, although there are some interesting
areas which are only numerically accessible. As an interpolation between the analytically
treatable case of zero and the critical temperature, the temperature-dependence of the
specific heat could be calculated. In the zero-temperature limit possible goals are a
solution of the Gross-Pitaevskii equation including the kinetic term or a numerical result
for the excitation frequency following from (6.31).

Summarizing, we basically restricted ourselves to describe the main properties of a
BEC underlying the additional long-range interaction. With this, we set the framework
for an analysis what is expected to happen to a Bose gas which is exposed to the new
interaction in the laboratory. But if cosmology is simulated this way, specific calculations
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CHAPTER 8. SUMMARY AND OUTLOOK

for cosmological quantities must be the purpose of future work as well as opening the
possibility to measure their characteristics. So, there are lots of open questions and it is
passed to theorists as well as experimentalists to further push research in this field.
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A. Auxiliary Calculations

In this first part of the appendix, we calculate in detail some quantities of the grand-
canonical ensemble that appeared in the thesis.

A.1. Free Energy

The grand-canonical free energy follows from Eq. (3.3) with the non-interacting partition
function (3.25) as

F (0) =
1

β

∑

k

∞
∑

m=−∞
ln [β (−ıh̄ωm + Ek − µ)] . (A.1)

The first step is to evaluate the sum over the Matsubara frequencies defined in (3.15).
Therefore, we use the Poisson sum rule [72, Chap. 2] and introduce a convergence factor
limη→0 e

2πıωmη to guarantee the normal ordering:

∞
∑

m=−∞
f(ωm) =

h̄β

2π

∞
∑

n=−∞

∞
∫

−∞

dωmf(ωm)e−ınh̄βωm . (A.2)

The choice of the introduced factor refers to the definition of the Heavyside-function in
Eq. (3.30), where one has to take the limit τ ′ ↓ τ (compare to Eq. (7.7) to (7.11)). We
rewrite (A.1)

F (0) = lim
η→0

h̄

2π

∑

k

∞
∑

n=−∞

∞
∫

−∞

dωm ln [β (−ıh̄ωm + Ek − µ)] e−ıh̄βωm(n−η). (A.3)

We express the logarithm as

ln x = − ∂

∂a

1

xa

∣

∣

∣

a=0
(A.4)

and use the Schwinger formula [50]

− ∂

∂a

1

xa

∣

∣

∣

a=0
= − ∂

∂a

1

Γ(a)

∞
∫

0

dy ya−1e−yx
∣

∣

∣

a=0
. (A.5)
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A.1. FREE ENERGY

Inserting Eq. (A.5) into Eq. (A.3) and interchanging the integrals, we get

F (0) = − lim
η→0

h̄

2π

∑

k

∞
∑

n=−∞

∂

∂a

1

Γ(a)

∞
∫

0

dy ya−1e−yβ(Ek−µ)

∞
∫

−∞

dωme
ıh̄βωm(y+η−n)

∣

∣

∣

a=0
. (A.6)

The latter integral is known as

∞
∫

−∞

dωme
ıh̄βωm(y+η−n) =

2π

h̄β
δ (y + η − n) . (A.7)

The y-integration in Eq. (A.6) runs over all positive y. That means, as η is arbitrary
small, that we have to take into account only positive values of n. Consequently, the sum
reduces to positive n as well:

F (0) = − 1

β
lim
η→0

∑

k

∞
∑

n=1

∂

∂a

1

Γ(a)
(n− η)a−1e−(n−η)β(Ek−µ)

∣

∣

∣

a=0
. (A.8)

At this point, we can perform the limit η → 0. Subsequently, we calculate the dif-
ferentiation with respect to a at the point a → 0. To this end, we use the relation
Γ(a) = Γ(a+ 1)/a and expand na−1/Γ(a) to lowest order in a

1

Γ(a)
na−1 ≈ a

n
. (A.9)

So the final expression for the free energy reads with the Taylor expansion of the logarithm
− ln(1 − x) =

∑∞
n=1 x

n/n:

F (0) =
1

β

∑

k

ln
[

1 − eβ(µ−Ek)
]

. (A.10)

At the end of this section, we show how the free energy is connected to the free propagator
(3.27) in a formal language. If we look at (3.13), (3.18) and (3.19), we see that the
functional integration in the partition function is of Gaussian type and it can be solved
formally as

Z(0) =
1

detG(0)−1
, (A.11)

where “det” denotes the functional determinant. Using (3.3) and the matrix identity
ln detA = Tr lnA, we get the relation between grand-canonical free energy and the prop-
agator

F =
1

β
Tr lnG(0) . (A.12)

The calculation of the free propagator will be the topic of the next section.
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APPENDIX A. AUXILIARY CALCULATIONS

A.2. Free Propagator

In the following, we calculate the free propagator in the functional integral formal-
ism, starting from its definition (3.27) by using the grand-canonical partition function
Eq. (3.13) and the free action Eq. (3.18). Again, we decompose the bosonical Schrödinger
fields according to Eqs. (3.16) and (3.17) and apply Eq. (3.20):

G(0)(x, τ ;x′, τ ′) =
1

Z(0)

[

∏

k

∞
∏

m=−∞

1

2π

∫

dc∗kmdckm

]

∑

k′

∞
∑

m′=−∞
ck′m′ψk′(x)e−ıωm′ τ

×
∑

k′′

∞
∑

m′′=−∞
c∗k′′m′′ψ∗

k′′(x′)eıωm′′ τ ′
∏

k

∞
∏

m=−∞
e−β|ckm|2(−ıh̄ωm+Ek−µ).(A.13)

At this point, we can simplify the problem with help of the symmetry. If k′, m′ 6= k′′, m′′,
there will be one integral in the product of the form

∫∞
−∞ dxxe−x

2
, that vanishes and so

will the entire product. Thus, we can set k′, m′ = k′′, m′′:

G(0)(x, τ ;x′, τ ′) =
1

Z(0)

∑

k′

∞
∑

m′=−∞
ψk′(x)ψ∗

k′(x′)eıωm′ (τ ′−τ) (A.14)

×
∏

k

∞
∏

m=−∞

1

2π

∫

dc∗kmdckm |ck′m′ |2 e−β|ckm|2(−ıh̄ωm+Ek−µ).

Now we adopt Eq. (3.22) and (3.23) and extract the integral with k, m = k′, m′:

G(0)(x, τ ;x′, τ ′) =
1

Z(0)

∑

k′

∞
∑

m′=−∞
ψk′(x)ψ∗

k′(x′)eıωm′ (τ ′−τ) (A.15)

×1

π
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dak′m′dbk′m′

(

a2
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)

e−β(a
2
k′m′+b

2
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×
∏
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∞
∏

m=−∞
m6=m′

1

π

∫

dakmdbkme
−β(a2km+b2

km)(−ıh̄ωm+Ek−µ).

After the integration, we use Eq. (3.25) and rename k′, m′ = k, m:

G(0)(x, τ ;x′, τ ′) =
∑

k

∞
∑

m=−∞
ψk(x)ψ∗

k(x′)
eıωm(τ ′−τ)

β (−ıh̄ωm + Ek − µ)
. (A.16)

Just as in Section A.1, we solve the sum over the Matsubara frequencies with help of the
Poisson sum rule (A.2):

∑

k

∞
∑

m=−∞

ψk(x)ψ∗
k(x′)eıωm(τ ′−τ)

β (−ıh̄ωm + Ek − µ)
= lim

η↓0

∑

k

ψk(x)ψ∗
k(x′)

∞
∑

n=−∞

∞
∫

−∞

dz
e

2πız
h̄β

[τ ′−τ+(n+η)h̄β]

−2πız + β (Ek − µ)
.

(A.17)
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A.2. FREE PROPAGATOR

Thus, the many-body propagator can be written for later convenience as

G(0)(x, τ ;x′, τ ′) = lim
η↓0

∞
∑

n=−∞
g(0)(x,x′; τ − τ ′ + (n+ η)h̄β) (A.18)

where the new function is given by

g(0)(x,x′; τ) =
∑

k

ψk(x)ψ∗
k(x′)

ı

2π

∞
∫

−∞

dz
e−

2πız
h̄β

τ

z + ı β
2π

(Ek − µ)
. (A.19)

The integral on the right-hand side can be solved using the residue theorem. The pole of
the function lies on the negative imaginary axis at z = −ıβ/(2π) (Ek − µ), whereas we
have to obey the constraint Ek − µ ≥ 0. Thus the closed curve in the positive z-plane,
where τ < 0, does not contribute. However, the way in the negative z-plane, i.e., τ > 0,
contains the pole. Here we get the contribution given by the residue. Besides we have
to regard that the integration in the negative plane is performed in the mathematically
wrong direction which leads to an additional minus sign. Thus the joined result reads

g(0)(x;x′, τ) = Θ (τ)
∑

k

ψk(x)ψ∗
k(x′)e−(Ek−µ)τ/h̄ . (A.20)

Now, we can justify the introduction of the function g(0)(x, ;x′, τ). Except for the
Heavyside-function it is the one-particle imaginary time evolution amplitude in spectral
decomposition [36,37]. Thus, the many-body propagator (A.18) can be interpreted as a
periodic repetition of all one-particle amplitudes with the energy shifted by the chemical
potential:

G(0)(x, τ ;x′, τ ′) = lim
η↓0

∞
∑

n=−∞
Θ (τ − τ ′ + (n+ η)h̄β) (x, τ − τ ′ + (n+ η)h̄β;x′, 0)|Ek→Ek−µ .

(A.21)
To get a proper expression for G(0), we still have to evaluate the summation in (A.18).
The domain of τ and τ ′ is limited by τ−τ ′ ∈ [0; h̄β]. Hence, that constricts the Heavyside-
function in Eq. (A.20) to the following cases: it is only non-zero, if τ > τ ′and n ≤ 0 or if
τ < τ ′ and n < 0. To get a nicer expression, we rename −n→ n and yield

G(0)(x, τ ;x′, τ ′) = lim
η↓0

∑

k

ψk(x)ψ∗
k(x

′)

{ ∞
∑

n=0

Θ (τ − τ ′ − η) e−(Ek−µ)[τ−τ ′+(n+η)h̄β]/h̄

+

∞
∑

n=1

Θ (τ ′ − τ + η) e−(Ek−µ)[τ−τ ′+(n+η)h̄β]/h̄

}

. (A.22)

Here, we can go to the limit of η ↓ 0. We see that the introduction of η was crucial because
it determines in the case of equal imaginary times that only the second Heavyside-function
in (A.22) contributes. If we can forget about the η we must keep in mind that for equal
time arguments the limit becomes τ ′ ↓ τ .
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B. Modified Zeta-Functions

For two reasons we restricted us in Chapter 7 to the isotropic case. On the one hand, the
shift of the critical temperature is the largest for an isotropic trap. And on the other hand,
we could simplify the calculation enormously. In this Appendix, we state the result for the
critical chemical potential and the grand-canonical free energy for a cylinder-symmetric
trap. These results have to be inserted into (7.61) and (7.62) to obtain the shift of the
critical temperature for a cylinder-symmetric trap. For the direct terms of the free energy
we get the two expressions

ζ
(D)
Fg
(

eβµ
)

=

∞
∑

n,m=1

eβµ(m+n)

[

∏

j=r,r,z

√

(h̄βωj)2

sinh(h̄βωjn) sinh(h̄βωjm)
(B.1)

×
√

√

√

√

h̄βωj/2
(

tanh
h̄βωjn

2
+ tanh

h̄βωjm

2

)

]

ζ
(D)
FC

(

eβµ, f
(D)
C

)

=
∞
∑

n,m=1

eβµ(m+n)

[

∏

j=r,z

√

sinh(h̄βωj(n+m)/2) h̄βωj/2

sinh(h̄βωjn/2) sinh(h̄βωjm/2)

]

f
(D)
C(n,m) (ωr, ωz)

×
[

∏

j=r,r,z

√

h̄βωjh̄βωj
sinh(h̄βωjn) sinh(h̄βωjm)

h̄βωj/2

tanh h̄βωjn/2 + tanh h̄βωjm/2

]

(B.2)

with the modified anisotropy function

f
(D)
C(n,m) (ωr, ωz) =

(

ωr

ωz

)1/3 arccos ωr

ωz

√

tanh(h̄βωrn/2) tanh(h̄βωrm/2)
tanh(h̄βωzn/2) tanh(h̄βωzm/2)

tanh(h̄βωzn/2)+tanh(h̄βωzm/2)
tanh(h̄βωrm/2)+tanh(h̄βωzm/2

)
√

1 −
(

ωr

ωz

)2
tanh(h̄βωrn/2) tanh(h̄βωrm/2)
tanh(h̄βωzn/2) tanh(h̄βωzm/2)

tanh(h̄βωzn/2)+tanh(h̄βωzm/2)
tanh(h̄βωrm/2)+tanh(h̄βωzm/2)

.

(B.3)
The exchange diagrams give the following contributions. The terms for the contact inter-
action are equal in both cases

ζ
(E)
Fg
(

eβµ
)

= ζ
(D)
Fg
(

eβµ
)

, (B.4)
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but the free energy differs

ζ
(E)
FC
(

eβµ
)

=
∞
∑

n,m=1

e(n+m)βµ (h̄βωr)
2
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√
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×
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+ coth

h̄βωjm

2

)






,

where the anisotropy factor reads for this case

κ(n,m) =

√

ωr

ωz

coth h̄βωrn
2

+ coth h̄βωrm
2

coth h̄βωzn
2

+ coth h̄βωzm
2

. (B.6)

For the chemical potential we obtain for the direct terms

ζ (D)
µg =

∞
∑

n=1

∏

j=r,r,z

√

h̄βωj
sinh h̄βωjn

, (B.7)

ζ
(D)
µC =

∞
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h̄βωr

sinh h̄βωrn

√
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sinh h̄βωzn

√

h̄βωr/2 h̄βωz/2

tanh(h̄βωrn/2) tanh(h̄βωzn/2)

×
(

ωr

ωz
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ωr
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√
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tanh h̄βωzn/2

, (B.8)

where the latter term again determines the anisotropy. The exchange terms read

ζ (E)
µg = ζ (D)

µg , (B.9)
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(E)
µC =

∞
∑

n=1

h̄βωr

sinh h̄βωrn
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√

tanh (h̄βωrn/2) tanh (h̄βωzn/2)
h̄βωr

2
h̄βωz
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arccos κ(n)
√

1 − κ2
(n)

,

(B.10)

where the anisotropy is defined this time as

κ(n) =

√

ωr

ωz

coth

(

h̄βωrn

2

)

tanh

(

h̄βωzn

2

)

. (B.11)
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