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Abstract

In this thesis, the functional integral approach of many-body theory is employed to investi-

gate the thermodynamic properties of both homogeneous and harmonically trapped F = 1

spinor Bose-Einstein condensates. Special emphasis is given to the systems dependence on

the total magnetization, which is preserved in spinor Bose-Einstein condensates. The treat-

ment is divided into three parts.

The first part provides the physical and mathematical basis of this thesis. The main-emphasis

is given to the derivation of the functional integral representation of the grand-canonical par-

tition function and the introduction of the background method.

The second part treats an interaction-free F = 1 spinor gas, where the system exhibits

most of its quantum mechanical nature. Due to the combination of spin degrees of freedom

and the conservation of the total magnetization, the F = 1 spinor system possesses three

different phases: a gas, a ferromagnetic, and an antiferromagnetic phase. The latter phase

is distinct because of the occurrence of a double condensation. Within the framework of the

grand-canonical ensemble, we calculate the critical temperatures of the phase transitions and

their dependence on the total magnetization. Moreover, the finite-size scaling is studied. A

further characterization of the phases is given by determining the occupation number of the

three different Zeeman states of both the excited and the Bose-Einstein condensed particles.

The treatment of the ideal spinor gas is completed by the calculation of the heat capacity

as a function of temperature and magnetization.

In the third part the treatment is generalized to the case of a weakly interacting F = 1

spinor gas. Due to the high dilution of the quantum gas, we restrict our study to a two-

particle delta potential, which is characterized by two s-wave scattering lengths, and discuss

the associated Gross-Pitaevskii equations. Within first-order perturbation theory, we de-

rive an analytical expression for the shift of the first critical temperature of a harmonically

trapped F = 1 spinor gas as a function of magnetization. Our results agree well with a

numerical solution of the Hartree-Fock-Popov approximation [65].
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Chapter 1

Introduction

1.1 History

In 1924 S.N. Bose [1] and A. Einstein [2,3] made the prediction that a phase transition occurs
at a finite critical temperature where bosonic particles with a non-vanishing rest mass would
macroscopically occupy the same quantum state. This phenomenon, called Bose-Einstein
condensation (BEC), happens when the quantum wave functions of the particles start to
overlap. In 1995 – more than 70 years after its theoretical prediction – BEC was realized
experimentally for dilute atomic gases of rubidium [4], lithium [5], and sodium [6]. The
experimental success was made possible by combining the techniques of laser cooling [7–9]
and evaporative cooling [10] in a magnetic trap. Both the laser cooling and the experimental
realization of BEC were rewarded with the Nobel prize in 1997 and 2001, respectively.

Since its experimental realization, the field of BEC has grown rapidly to one of the most
active fields in both experimental and theoretical physics. Its attraction originates from the
fact that Bose-Einstein condensates provide a unique model system for studying quantum
phenomena from scratch. Furthermore, it has developed to a highly interdisciplinary field.
For example, the experimental success of controlling the interaction strength between par-
ticles via a so-called Feshbach resonance [11, 12], opened the way to a comprehensive study
of two-particle interactions such as reversible atom–molecule formation for both bosonic
and fermionic atoms [13–15], which essentially belongs to the field of atomic and molecular
physics. Furthermore, it offered the possibility to study the crossover from a Bose-Einstein
condensate to a Bardeen-Cooper-Schrieffer superfluid [16]. Another highly notable example
is the confinement of Bose-Einstein condensed particles in an optical lattice [17–19], which
is basically an artificial crystal of light and therefore an ideal model system for studying
solid-state physics phenomena under controllable conditions.

Among a considerable number of other intriguing aspects of BEC like the construction of
an atomic laser [20] or the realization of an array of Josephson junctions with a BEC [21],
the subject of Bose-Einstein condensates with atomic spin degrees of freedom, the so-called
spinor condensates [22–24], are experiencing an enormously growing attention today. Its
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2 Introduction

emergence dates back to the year 1997, where a Bose-Einstein condensate was confined by
optical means for the first time [25]. So far, spinor condensates with spin 1 have been
realized in 23Na [25] and in 87Rb [26,27]. The more complex spin 2 state has also been pre-
pared for 87Rb [27], whereas a promising candidate for a spin 3 spinor condensate is 52Cr [28].

Spinor condensates can be considered as multi-component systems, which are described by a
vector order parameter. In contrast to scalar BECs and mixtures of bosonic particles [29,30]
the Zeeman components of spinor condensates are not subjected to the conservation of
the number of particles. On the contrary, they show rich dynamic by exchanging parti-
cles among themselves. Therefore, spinor condensates exhibit a large number of quantum
phenomena that do not occur in single-component or mixtures of single-component Bose-
Einstein condensates. For instance, they allow the study of quantum magnetism such as
spin dynamics [26, 27, 31], spin waves [32, 33], or spin mixing [34, 35]. Mostly, these effects
are caused by coherent collisional processes between two atoms where the spin of each par-
ticle is changed while the total magnetization is preserved. This and its dependence on the
quadratic Zeeman effect caused by a weak external magnetic field has been shown for both
a spinor condensate with a macroscopic number of particles [36, 37] and an effective two-
particle spinor condensate [38]. The latter was realized by embedding a macroscopic spinor
condensate in an optical lattice, where each lattice site was on average occupied by only two
particles.

1.2 Experiment

To realize Bose-Einstein condensation, the thermal de Broglie wavelength

λ =

√

2π~2

MkBT
, (1.1)

where M denotes the mass of the bosonic atoms, has to become comparable to the mean
interatomic distances in the degenerate quantum gas. Therefore, the experimental setup has
to be arranged in such a way that either the density of the quantum gas is sufficiently high
or, accordingly, the temperature very low. The former possibility is ruled out due to the
interaction between the atoms, which at high densities causes the formation of molecules or
the transition to a liquid or even to a solid. On the contrary, to avoid the latter effects, the
particle density has to be of the order of around 1014 − 1015 cm−3, which is 4-5 magnitudes
lower than the density of air under standard conditions. On the other hand, keeping the
density of the gas as low as just stated yields a critical temperature of around 100 nK, which
is far below the temperatures that are achieved by using conventional cooling techniques
which are mainly based on the Joule-Thomson effect. Therefore, atoms have to be cooled
differently.
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Figure 1.1: Evaporative cooling. The atoms are confined in an harmonic magnetic poten-
tial. With the help of radio-frequency radiation, the potential is practically cut at a certain
trap depth and particles with higher energies than this depth leave the trap. Elastic colli-
sional processes cause restoring the equilibrium state and a net cooling is achieved. During
the evaporation time, the trap depth is lowered little by little causing a further decrease of
temperature. With this method, one reaches temperatures down to 500 pK [39].

1.2.1 Cooling Techniques

Essentially, there are two cooling steps for reaching BEC. In the first step the cooling is
performed using laser beams whose wavelengths are adjusted in such a way that, based on
the Doppler effect, only atoms moving towards the laser absorb a photon and consequently
slow down in this direction. This is because of the conservation of total momentum. After
re-emitting the photon in a random direction a net cooling is achieved. Using this method
one achieves temperatures of around 100µK, which is still three magnitudes above the crit-
ical temperature of BEC.

To overcome this temperature difference, another cooling method, the so-called evaporative
cooling, is applied. The idea of evaporative cooling is as simple as cooling a cup of coffee
by blowing on it. Already this example indicates, that a kind of ”cup” is needed to confine
the degenerate quantum gas. This is achieved by applying a strong harmonic magnetic field
that causes a trapping of magnetic atoms in a particular atomic Zeeman state. The cooling
is then achieved by applying a radio-frequency radiation that induces a Zeeman spin flip of
atoms with higher kinetic energy. Due to the fact that the trap is sensitive to the spin state
of the atoms, the spin flipped atoms drop out of the trap. To ensure that only high energetic
particles perform a spin flip, one takes advantage that the energy spacing of the Zeeman
states depends on the external harmonic magnetic field and therefore on the position of the
atoms in the trap. The radio frequency is tuned in such a way, that only particles in a



4 Introduction

given distance to the center of the magnetic field, are in resonance and therefore leave the
trap, i.e., the radio frequency field acts like cutting the magnetic potential at given height.
The particular loss of high energetic atoms finally leads to Bose-Einstein condensation. A
schematic picture of evaporative cooling is given in Figure 1.1.

Today, one can reach temperatures down to 500 pK [39] using a combination of these meth-
ods. However, the cooling techniques demand atoms with quite particular properties. First of
all, in order to be cooled by laser light, the atoms must have an appropriate electronic transi-
tion. Furthermore, the employment of magnetic traps requires atoms with a strong magnetic
dipole moment. The evaporative cooling is also only possible if the particles exchange their
energy by elastic collisions, whereas inelastic collisions lead to molecule formation and to
trap losses. Thus, the ratio between elastic and inelastic interaction plays a crucial role.
The atoms which turned out best to match these conditions, are the alkali atoms. With the
exception of francium all of them have been Bose-Einstein condensed. In their ground state
of alkali atoms all electrons but one occupy closed shells and therefore do not contribute to
the total electronic spin. The remaining electron is situated in the s-orbital of the atom and
consequently does not have an orbital angular momentum, but an intrinsic spin of S = 1/2.
On the other hand, the nucleus of the atom also carries a spin I that couples with the
total electronic spin J . Thus, in case of an alkali atom the total atomic spin is given by
F = |I ± 1/2| which is 2F + 1 times degenerated. In most experiments the alkali atoms
have a nuclear spin of I = 3/2 and therefore the ground state is split into the hyperfine
states F = 1 and F = 2, where the former has the lower energy. In Figure 1.2 the hyperfine
splitting of the electronic ground state of 87Rb is schematically shown, which is typical for
alkali atoms with I = 3/2.

1.2.2 Imaging Technique

The proper experiment starts with the achievement of Bose-Einstein condensation. With
the help of electromagnetic radiation sources the experimentalist directly manipulates the
atoms in the confining trap. During the experiment, the Bose-Einstein condensed cloud
cannot be seen directly. However, imaging pictures are obtained by switching off the trap and
measuring the spatial density distribution of the atomic cloud after free ballistic expansion.
This is done by illuminating the atomic cloud by resonant light. The atoms absorb light and
cast a shadow on a measurement device. Even though the resulting picture is the spatial
density profile of the expanding cloud, it reflects the momentum density distribution of the
trapped quantum gas. This is because particles with high momenta expand faster than
particles with low momenta. Therefore, they are rather found at the edge of the expanded
cloud whereas particles with low momenta are rather situated in the center.

1.2.3 Spinor Bose-Einstein Condensates

Due to the Zeeman splitting, the ground state of a magnetically trapped atom is not de-
generate anymore. On the contrary, only particles in Zeeman states with negative magnetic
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Figure 1.2: Hyperfine splitting of the electronic ground state of 87Rb, which is exemplary for
alkali atoms with nuclear spin I = 3/2. The three times degenerated F = 1 state represents
the lowest energy state. An external magnetic field breaks the degeneracy and causes a
Zeeman splitting. The Landé gF factors denote the Zeeman splitting of the respective states.
The green dots indicate states, which can be trapped magnetically. Experimental values are
taken from Ref. [40].

dipole moment can be trapped experimentally. This is caused of the fact that a magnetic
field with a local maximum cannot be created in a current-free region. Differently speak-
ing, the spin degree of freedom is practically frozen out by the magnetic trap. The Zeeman
states, which are magnetically trappable are shown in Figure 1.2 and denoted by a green dot.
As a consequence of this Zeeman selection, magnetically trapped Bose-Einstein condensates
behave exactly like spinless condensates would behave. In order to preserve the spin degrees
of freedom and to create spinor Bose-Einstein condensates, the atoms have to be trapped
independent from their Zeeman states. This is done with a so-called optical trap [41], which
consists of laser beams that induce a dipole moment to the atoms. The atoms with the
induced dipole moments in turn interact with the intensity gradient of the light field lead-
ing to their trapping. The optical trap can even confine atoms with a vanishing magnetic
dipole moment. However, usually BEC is first evaporatively created in a magnetic trap and
then loaded into an optical trap. Experimentally, the population of the different Zeeman
states can arbitrarily be adjusted. After carrying out the respective manipulations of the
atoms, the optical trap is switched off and the condensate falls freely. In order to distinguish
between the different Zeeman components a Stern-Gerlach configuration, i.e., a strong inho-
mogeneous magnetic field is applied that spatially separates the Zeeman components. The
probing of the atomic cloud is then again performed by the absorption imaging method as
already described above.
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1.3 Outline

This thesis is divided into three parts.

In the first part we give a summary of the necessary mathematical and physical content this
thesis is based on. In Chapter 2, we briefly derive the grand-canonical partition function
in its functional integral representation. Moreover, we explicitly calculate the generating
grand-canonical partition function for an ideal F = 1 spinor system. The first part finishes
in Chapter 3 by introducing the background method, which provides the mathematical
tool for studying phase transitions in BECs.

In the second part of this thesis, we treat the case of an ideal F = 1 spinor gas. We
start in Chapter 4 with deriving the effective action of a homogeneous and harmonically
trapped spinor gas. For the case of the harmonically trapped system, we also elaborate the
finite-size scaling. On the basis of the latter and of the background method, we then derive
in Chapter 5 the Gross-Pitaevskii equations of a F = 1 spinor system and discuss the
respective solutions. Based on this, we calculate the first and the second critical tempera-
ture in Chapter 6 as a function of total magnetization. In order to characterize the three
occurring phases, we determine in Chapter 7 the occupation number of the three Zeeman
states for both the excited and the Bose-Einstein condensed particles. We finish this part
with Chapter 8, which contains the calculation of the heat capacity with emphasis on the
behavior at the points of phase transitions.

In Part three we extend our study to the case of a weakly interacting F = 1 spinor
gas. We start with Chapter 9 by introducing the two-particle interaction potential, which
is described by two scalar quantities only. In Chapter 10, we treat the Gross-Pitaevskii
equations of the interacting spinor system and adopt a Thomas-Fermi approximation to cal-
culate their solutions. In Chapter 11, the main emphasis is given to the determination of
an analytical expression for the first critical temperature. We use first-order perturbation
theory and compare our result with the Hartree-Fock-Popov approximation carried out by
others.
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Mathematical and Physical
Preliminaries
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Chapter 2

Field Theoretic Description of
Quantum Statistics

In this chapter we give a brief introduction into the methods and notations that are used
throughout this thesis.

2.1 Second Quantization

Time-independent, non-relativistic, one-particle systems are described by the Schrödinger
equation

[

− ~
2

2M
∆ + V (x)

]

ϕn(x) = Enϕn(x), (2.1)

where V (x) is an external potential and ϕn(x) the one-particle wave function with the energy
En. The eigenfunctions may be chosen in such a way that they fulfill the orthonormality
condition

∫

d3xϕ∗
n(x)ϕn′(x) = δnn′ . (2.2)

Moreover, because the Schrödinger Hamiltonian is Hermitian, its eigenfunctions obey a com-
pleteness relation (see Ref. [42])

∑

n

ϕ∗
n(x)ϕn(x′) = δ(x − x′). (2.3)

The above formulation of quantum mechanics can be generalized to an arbitrary number
of particles. We simply have to replace on the left-hand side of Eq. (2.1) the one-particle
Hamiltonian by the sum of all one-particle Hamilton functions and additional terms due to
the two, three, or higher particle interactions. However, for a larger number of particles
it is very inconvenient to use the latter formulation of quantum mechanics. Many-particle
physics is most conveniently described in terms of the so-called second quantization, which is
basically a compact formulation of the first quantized Schrödinger quantum mechanics. In

9



10 Field Theoretic Description of Quantum Statistics

the so-called Fock space of a many-particle system the Hamilton operator is given by1 [43]

Ĥ =

∫

d3x φ̂†
a(x)

[

− ~
2

2M
∆ + V (x)

]

φ̂a(x)

+

∫

d3x

∫

d3x′ φ̂†
a(x)φ̂†

a′(x
′)V (int)

aba′b′(x,x
′)φ̂b(x)φ̂b′(x

′), (2.4)

where V
(int)
aba′b′(x,x

′) denotes the two-particle interaction potential2, which fulfills the symmetry
conditions

V
(int)
aba′b′(x,x

′) = V
(int)
aba′b′(x

′,x) = V
(int)
a′b′ab(x

′,x). (2.5)

The first equal sign is due to Newton’s law actio=reactio, whereas the second one arises
from the indistinguishability of identical particles. In Eq. (2.4) we have introduced the field
operators

φ̂a(x) =
∑

n

φ̂naϕn(x), φ̂†
a(x) =

∑

n

φ̂†
naϕ

∗
n(x). (2.6)

Here, the annihilation operator φ̂na with

φ̂na | . . . , Nna, . . .〉 =
√

Nna | . . . , Nna − 1, . . .〉 (2.7)

and the creation operator φ̂†
na with

φ̂†
na | . . . , Nna, . . .〉 =

√

Nna + 1 | . . . , Nna + 1, . . .〉 (2.8)

annihilate or create a particle in the state |n, a〉, respectively. From Eq. (2.6) it follows,
that Eqs. (2.7) and (2.8) also hold for the field operators φ̂†

a(x), φ̂a(x) and therefore they
create and annihilate particles at the place x in the state |a〉. In Eqs. (2.7) and (2.8), the
ket vectors | . . . , Nna, . . .〉 denote a state in occupation number representation, which fulfills
the orthonormality condition

〈 . . . , Nna, . . .| . . . , N ′
na, . . .〉 =

1
∏

a=−1

∏

n

δNna,N ′
na
. (2.9)

The annihilation and creation operators obey the commutator relationship3

[φ̂na, φ̂
†
n′b]− = δabδnn′ , (2.10)

[φ̂na, φ̂n′b]− = [φ̂†
na, φ̂

†
n′b]− = 0. (2.11)

1For indices referring to the spin degree of freedom, we use in the whole thesis Einstein’s summation

convention, i.e., repeated indices are understood to be summed over −1, 0, 1. We do not perform the sum if
at least one index appears in brackets. Any exception from this rule will explicitly be mentioned in the text.

2Based on the experimental realization of Bose-Einstein condensates, we neglect any interaction between
more than two particles.

3We remark that, strictly speaking, (2.7) and (2.8) follow from commutator relationships of the annihi-
lation and creation operators.
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Correspondingly, using the latter commutation relationships and Eqs. (2.3), (2.6) yields the
commutators of the field operators

[φ̂a(x), φ̂†
b(x

′)]− = δab δ(x − x′), (2.12)

[φ̂a(x), φ̂b(x
′)]− = [φ̂†

a(x), φ̂†
b(x

′, t)]− = 0. (2.13)

Now, we write down the operator of the total number of particles

N̂ = N̂1 + N̂0 + N̂−1, (2.14)

where we have defined the operator of the total number of particles in the Zeeman state |a〉
by

N̂a =

∫

d3x φ̂†
a(x)φ̂a(x) (no sum). (2.15)

We also define the dimensionless total magnetization

M̂ =

∫

d3x φ̂†
a(x)Fabφ̂b(x), (2.16)

where F = (F x, F y, F z)T is the matrix representation of the operator of angular momentum

F x =
1√
2









0 1 0

1 0 1

0 1 0









, F y =
i√
2









0 −1 0

1 0 −1

0 1 0









, F z =









1 0 0

0 0 0

0 0 −1









. (2.17)

The matrices F x, F y, and F z fulfill the fundamental commutation relationship of angular
momentum

[F i, F j] = iǫijkFk, ǫijk =















+1 for (i, j, k) even permutation of (1, 2, 3),

−1 for (i, j, k) odd permutation of (1, 2, 3),

0 for otherwise.

(2.18)

Consequently, pairwise different spin matrices, do not have a complete eigensystem in com-
mon. Physically this means, that only one of them can be measured independently. It is
therefore sufficient to choose one particular axis as the quantization axis. Most conveniently,
we choose the z-axis as quantization axis and define the operator of total magnetization as

M̂ ≡ M̂z =

∫

d3x φ̂†
a(x)F z

abφ̂b(x). (2.19)

Using (2.15), (2.17) and (2.19) yields

M̂ = N̂1 − N̂−1, (2.20)

From the latter we observe that the magnetization is dimensionless. This is done for conve-
nience. In this notation, if all particles occupy the Zeeman state |1〉 or |−1〉, then we have
according to Eqs. (2.14) and (2.20) the identity M̂ = N̂ or M̂ = −N̂ , respectively.
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2.2 Coherent States

In the last section we have introduced the complete and orthonormal basis {| . . . , Nna, . . .〉}.
Now, we will present another convenient complete basis, the so-called basis of coherent states,
which turn out to be crucial for the derivation of the functional integral representation
of quantum statistics. A state |ψ〉 is called coherent state, if it is an eigenvector of the
annihilation operator, i.e.,

φ̂na |ψ〉 = ψna |ψ〉 , 〈ψ| φ̂†
na = 〈ψ|ψ∗

na, (2.21)

where ψna is an ordinary, complex number and the vector 〈ψ| the adjoint of |ψ〉. In analogy
to Eq. (2.6) we define the complex functions

ψa(x) =
∑

n

ψnaϕn(x), ψ∗
a(x) =

∑

n

ψ∗
naϕ

∗
n(x). (2.22)

Note that ψa(x) can be a completely arbitrary function, because the functions ϕn(x) fulfill
the completeness relation (2.3) and may therefore represent any function. From Eqs. (2.6)
and (2.21) we deduce

φ̂a(x) |ψ〉 = ψa(x) |ψ〉 , 〈ψ| φ̂†
a(x) = 〈ψ|ψ∗

a(x). (2.23)

Therefore, a coherent state |ψ〉 to the annihilation operator φ̂na is also a coherent state to
the respective field annihilation operator φ̂a(x).

Explicitly, a coherent state is given by (see Ref. [44])

|ψ〉 = exp

{
∫

d3xψa(x)φ̂†
a(x)

}

|0〉 , (2.24)

where |0〉 is the vacuum state of the system in the occupation number representation. To
show that (2.24) is a coherent state, we multiply the annihilation field operator φ̂a(x) from the
left side, perform a Taylor expansion of the exponential function and make use of Eqs. (2.12),
(2.13), (2.23). Another proof is given in Appendix A.1. Note that according to (2.24) it is
possible to create an infinite number of coherent states to the annihilation operator φ̂na.

The coherent states do not fulfill the orthogonality condition. As proven in Appendix A.2,
their scalar product is given by

〈ψ|ψ′〉 = e(ψ|ψ
′), (2.25)

where we have defined

(ψ|ψ′) =

∫

d3xψ∗
a(x)ψ′

a(x). (2.26)

We immediately deduce from Eqs. (2.22), (2.23), and (2.25) that any functional operator
Ô[φ̂†

a, φ̂a] in its normal ordered form, i.e., all creation operators φ̂†
a(x) are on the left side
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and all annihilation operators φ̂a(x) are correspondingly on the right side, have the following
matrix elements

〈ψ| Ô[φ̂†, φ̂] |ψ′〉 = O[ψ∗, ψ′]e(ψ|ψ
′). (2.27)

Instead of Ô[φ̂†
1, φ̂

†
0, φ̂

†
−1, φ̂1, φ̂0, φ̂−1] we wrote more conveniently Ô[φ̂†, φ̂]. For functional ex-

pressions, we will use this notation throughout this thesis. We emphasize that the functional
O[ψ∗, ψ] on the right-hand side of (2.27) is not an operator anymore.

The most important property of the coherent states is that they obey a closure relation,
which is proved in Appendix A.3 to be

[

1
∏

a=−1

∫

Dψ∗
a

∫

Dψa
]

e−(ψ|ψ) |ψ〉 〈ψ| = 1, (2.28)

where 1 denotes the unity operator of the Fock space. The measure in the latter equation
is defined as

1
∏

a=−1

∫

Dψ∗
a

∫

Dψa ≡
1
∏

a=−1

∏

n

∫

dψ∗
na√
2π

∫

dψna√
2π
. (2.29)

Efficiently, the new measure denotes, that we have to sum up any arbitrary function ψa(x),
which is seen from Eqs. (2.22), (2.24), and (2.26). Therefore, the definition in (2.29) is not
only a convenient abbreviation, but it offers a new perspective to the coherent states.

The trace of an operator Ô is defined as

Tr Ô =

( ∞
∑

N0=0

· · ·
∞
∑

Nn=0

· · ·
)

〈N0, . . . , Nn, . . .| Ô |N0, . . . , Nn, . . .〉 . (2.30)

With the help of the complete relation (2.28) this reads in the coherent state representation

Tr Ô =

[

1
∏

a=−1

∫

Dψ∗
a

∫

Dψa
]

e−(ψ|ψ) 〈ψ| Ô |ψ〉 . (2.31)

2.3 Partition Function

The central quantity to describe the equilibrium properties of a quantum mechanical system
is the grand-canonical partition function [45]

Z = Tr
[

e−β(Ĥ−µN̂−ηM̂)
]

, (2.32)

where β = 1/(kBT ), µ is the chemical potential, and η denotes the magnetic chemical po-
tential that is introduced in order to fix the magnetization of the system. We emphasize
that η is not a magnetic field, but a Lagrangian, which, like the Lagrangian µ, is a function
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of temperature. Both µ and η have to be adjusted in such a way that the total number of
particles and the total magnetization is kept fixed.

In quantum statistics, the mean-value of a physical observable associated with the oper-
ator Ô is given by

〈

Ô
〉

=
Tr
[

Ô e−β(Ĥ−µN̂−ηM̂)
]

Tr
[

e−β(Ĥ−µN̂−ηM̂ )
] . (2.33)

Furthermore, the grand-canonical free energy is defined with the help of the partition function
(2.32) as

F = − 1

β
logZ. (2.34)

Using Eqs. (2.32)–(2.34) yields the total number of particles

N ≡
〈

N̂
〉

= −∂F
∂µ

(2.35)

and the total magnetization4

M ≡
〈

M̂
〉

= −∂F
∂η

. (2.36)

At this point we define the normalized total number of particles in the Zeeman state |a〉 and
the normalized total magnetization

Na ≡

〈

N̂a

〉

N
, M ≡ M

N
, N ≡ N

N
= 1. (2.37)

The notation N is introduced for clearness and will sometimes be used for explicitly impli-
cating that the respective value is due to the total number of particles.

2.4 Functional Integral

In the last sections we have briefly introduced the physical framework of this thesis. With the
help of the coherent states, discussed in Section 2.2, we will do now the step from the operator
formulation of many-particle quantum statistics to the field theoretical functional integral
formulation [44,46]. This is a generalization of Feynman’s path integral approach to quantum
mechanics [47]. We start our discussion by applying the coherent state representation of the
tract (2.31) to the partition function in (2.32):

Z =

[

1
∏

a=−1

∫

Dψ∗
a

∫

Dψa
]

e−(ψ|ψ) 〈ψ| e−β(Ĥ−µN̂−ηM̂) |ψ〉 . (2.38)

4The symbol for magnetization must not be mixed up with the one for mass of the atom, which is also
denoted by M .
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The latter equation indicates that we have to calculate the matrix elements of the kind
〈ψP | e−β(Ĥ−µN̂−ηM̂ ) |ψ0〉, where we have set |ψP 〉 = |ψ0〉 ≡ |ψ〉. Note that relation (2.27)
cannot be applied to the latter matrix elements, because, due to the exponential expression,
the normal ordering condition is not fulfilled. At this point we recognize that the Boltz-
mann factor e−β(Ĥ−µN̂−ηM̂) corresponds to the quantum mechanical time evolution operator
Û(t, 0) = e−i(Ĥ−µN̂−ηM̂)t/~ evaluated at t = −i~β. This motivates the definition of the imag-
inary time τ ≡ it. The transition from real to imaginary time is called Wick rotation. Since
in the whole thesis we only treat thermodynamic properties with no further time depen-
dence, we will sometimes refer the imaginary time simply as time.

To calculate the matrix elements we use that Ĥ, N̂ , and M̂ commute among each other.
This allows us to split the (imaginary) time interval [0, ~β] into P pieces with ∆τ = ~β/P

〈ψP | e−β(Ĥ−µN̂−ηM̂) |ψ0〉 = 〈ψP | e−∆τ(Ĥ−µN̂−ηM̂ )/~ e−∆τ(Ĥ−µN̂−ηM̂ )/~ · · · e−∆τ(Ĥ−µN̂−ηM̂ )/~ |ψ0〉 .
(2.39)

Substituting between two time steps, respectively, the closure relation (2.28) leads to

〈ψP | e−β(Ĥ−µN̂−ηM̂ ) |ψ0〉 =
[

P−1
∏

p=1

1
∏

a=−1

∫

Dψ∗
ap

∫

Dψap e−(ψp|ψp)

]

P
∏

p′=1

〈ψp′| e−∆τ(Ĥ−µN̂−ηM̂ )/~ |ψp′−1〉 . (2.40)

The reason for splitting the original matrix element in Eq. (2.38) into P matrix elements is
the following. In order to get rid of the creation and annihilation operators in (2.38), we
like to use the identity (2.27), which is only valid for operators, where all creation operators
φ̂†
a(x) are on the left side and all annihilation operators φ̂a(x) are situated on the right side.

This is the case for the Hamiltonian (2.4), the particle number operators (2.14), (2.15), and
the operator of total magnetization (2.19), but this is not true for the Boltzmann factor
occurring in (2.38), because its Taylor expansion contains terms of the order Ĥ2 and higher.
However, we expand the Boltzmann factor into a Taylor series yielding

e−∆τ(Ĥ−µN̂−ηM̂)/~ =

[

1 − ∆τ

~
(Ĥ − µN̂ − ηM̂) +

1

2

(∆τ)2

~2
(Ĥ − µN̂ − ηM̂)2 + . . .

]

(2.41)

and observe that in the P → ∞ limit, terms of the order (∆τ)2 are negligible. Therefore,
according to (2.41), Eq. (2.27) can be applied on the right-hand sided matrix element of
Eq. (2.40). Using Eqs. (2.4), (2.14), (2.19), (2.23), and (2.27) we get in first order of ∆τ

〈ψp′ | e−∆τ(Ĥ−µN̂−ηM̂)~ |ψp′−1〉 = exp
{

(ψp′|ψp′−1) − ∆τH̃ [ψ∗
p′, ψp′−1]/~

}

, (2.42)
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with the functional expression

H̃[ψ∗
p′ , ψp′−1] ≡ H [ψ∗

p′, ψp′−1] − µN [ψ∗
p′ , ψp′−1] − ηM [ψ∗

p′ , ψp′−1] (2.43)

=

∫

d3xψ∗
ap′(x)

{[

− ~
2

2M
∆ + V (x) − µ

]

δab − ηF z
ab

}

ψb(p′−1)(x)

+

∫

d3x

∫

d3x′ ψ∗
ap′(x)ψ∗

a′p′(x
′)V (int)

aba′b′(x,x
′)ψb(p′−1)(x)ψb′(p′−1)(x

′),

where we are not supposed to sum over p′. Note that no operator appears in the latter
functional expression anymore.

Substituting (2.42) in (2.40) yields after some manipulations

〈ψP | e−β(Ĥ−µN̂−ηM̂) |ψ0〉 = e(ψP |ψP )

[

P−1
∏

p=1

1
∏

a=−1

∫

Dψ∗
ap

∫

Dψap
]

(2.44)

× exp

{

−1

~

P
∑

p′=1

∆τ

[

~

∫

d3xψ∗
ap′(x)

ψap′(x) − ψa(p′−1)(x)

∆τ
+ H̃[ψ∗

p′ , ψp′−1]

]

}

.

We set ψa(x, τp) ≡ ψap(x) with τp ≡ p~β/P and take in Eq. (2.44) the continuum limit
P → ∞ yielding

〈ψP | e−β(Ĥ−µN̂−ηM̂ ) |ψ0〉

= e(ψ(~β)|ψ(~β))

[

1
∏

a=−1

∫ ψ∗(~β)=ψ∗
P

ψ∗(0)=ψ∗
0

Dψ∗
a

∫ ψ(~β)=ψP

ψ(0)=ψ0

Dψa
]

e−A[ψ∗,ψ]/~, (2.45)

where we have introduced the Euclidean action

A[ψ∗, ψ] = A(0)[ψ∗, ψ] + A(int)[ψ∗, ψ]. (2.46)

The first contribution corresponds to a non-interacting F = 1 spinor gas

A(0)[ψ∗, ψ] =

∫

~β

0

dτ

∫

d3xψ∗
a(x, τ)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab

}

ψb(x, τ)

(2.47)
and the second is due to the interaction of the particles:

A(int)[ψ∗, ψ] =
1

2

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)ψ∗
a(x, τ)ψb(x, τ)ψ

∗
a′(x

′, τ)ψb′(x
′, τ).

(2.48)
In Eq. (2.45) the functional integration has to be carried out over all fields ψa(x, τ), ψ

∗
a(x, τ)

with the boundary conditions

ψa(x, 0) = ψa0(x), ψa(x, ~β) = ψaP (x) (2.49)
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and the corresponding one for the complex conjugated.

Note that strictly speaking, we have to add to the imaginary time dependency of the com-
plex conjugated fields ψ∗(x, τ) in Eq. (2.47), (2.48) an infinitesimal positive quantity σ. This
arises from the fact that ψ∗ in the time-sliced version is always one time step in advance
to ψ, which can be seen from (2.43), (2.44). This is because the operators Ĥ, N̂ , M̂ are
always time-ordered, i.e., the creation operators are always on the left side and the anni-
hilation operator on the right side. However, in most cases we can neglect this additional
infinitesimal constant and we therefore omit writing this additional constant, but we keep this
in mind for Appendix C.1, where we calculate the Green’s function for equal imaginary time.

Setting ψa0(x) = ψaP (x) and substituting Eq. (2.45) in (2.38) finally yields the field theo-
retical grand-canonical partition function

Z =

[

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa
]

e−A[ψ∗,ψ]/~, (2.50)

where the loop at the integral sign denotes that we have to functional integrate all fields,
which are periodic in τ such that

ψa(x, 0) = ψa(x, ~β), ψ∗
a(x, 0) = ψ∗

a(x, ~β), a = 1, 0,−1 (2.51)

is fulfilled.

2.5 Generating Grand-Canonical Partition Function

In this section we explicitly calculate the generating grand-canonical partition function of
an ideal F = 1 spinor gas. In this particular case, the functional (2.50) can be solved ana-
lytically. The solution of the generating functional will be used throughout the thesis and is
therefore very important.

In analogy to the result (2.50) of the last section, we write the generating grand-canonical
partition function as the functional integral

Z(0)[j∗, j] =

[

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa
]

e−A(0)[ψ∗,ψ;j∗,j]/~, (2.52)

where the generating action functional is given by

A(0)[ψ∗, ψ; j∗, j] = A(0)[ψ∗, ψ] −
∫

~β

0

dτ

∫

d3x

{

j∗a(x, τ)ψa(x, τ) + ψ∗
a(x, τ)ja(x, τ)

}

. (2.53)

Here, we have introduced arbitrary current fields j∗a(x, τ), ja(x, τ), which couple linearly
to the Bose fields ψa(x, τ) and ψ∗

a(x, τ), respectively. The action functional A(0)[ψ∗, ψ] is
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the same as in (2.47). For vanishing current fields, the generating grand-canonical partition
function coincides with (2.50) for vanishing two-particle interaction.

In order to calculate the functional integral (2.52) we perform a Fourier-Matsubara de-
composition of the fields

ψa(x, τ) =
∞
∑

m=−∞

∑

n

ψnma ϕn(x)f (m)(τ) (2.54)

ψ∗
a(x, τ) =

∞
∑

m=−∞

∑

n

ψ∗
nmaϕ

∗
n(x)f ∗(m)(τ). (2.55)

Here, {ϕn(x)} is the complete orthonormal set of functions that fulfills the eigenvalue equa-
tion (2.1). Furthermore, we have introduced the Matsubara functions

f (m)(τ) = e−iωmτ , f ∗(m)(τ) = eiωmτ (2.56)

with the Matsubara frequencies

ωm =
2π

~β
m, m = 0,±1,±2, . . . . (2.57)

The set of Matsubara functions {f (m)(τ)} provide a complete, orthogonal basis in the space
of ~β-periodic function. In other words, any function of τ with the period ~β, can be
represented as a linear combination of Matsubara functions. Note that according to the
periodicity condition in (2.51) all in here considered fields are periodic in τ and therefore
have a Fourier-Matsubara representation (2.54), (2.55).

Using Eqs. (2.56) and (2.57) it is easily shown that the Matsubara functions are orthog-
onal:

∫

~β

0

dτ f (m)(τ)f ∗(m′)(τ) =

∫

~β

0

dτ ei(ωm−ωm′)τ = ~βδmm′ . (2.58)

Now, we prove the completeness relation for the Matsubara functions. Explicitly substituting
the Matsubara frequencies (2.57) in (2.56) and performing the sum over m yields

∞
∑

m=−∞
f (m)(τ)f ∗(m)(τ ′) =

∞
∑

m=−∞
e−i2πm(τ−τ ′)/(~β). (2.59)

With the help of the Poisson summation formula (B.1) the latter equation reads

∞
∑

m=−∞
f (m)(τ)f ∗(m)(τ ′) = ~β

∞
∑

n=−∞
δ (τ − τ ′ − n~β) , (2.60)

which shows that the Matsubara functions are complete in the ~β-periodic space. In this
thesis, we restrict ourself to the limits τ, τ ′ ∈ [0, ~β) and therefore the right-hand side of
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Eq. (2.60) reduces to ~β δ(τ − τ ′).

Substituting the Fourier-Matsubara transformed fields (2.54), (2.55) in Eqs. (2.47), (2.53)
and considering the orthogonality properties (2.2), (2.58) and the spin matrix F z in (2.17)
yields for the generating action

A[ψ∗, ψ; j∗, j] = ~

∞
∑

m=−∞

∑

n

1
∑

a=−1

(

βψ∗
nmaEnmaψnma + ψnmac

∗
nma + ψ∗

nmacnma

)

(2.61)

where we have used the short-hand notation

cnma = −
∫

~β

0

dτ

∫

d3x ja(x, τ)ϕ
∗
n(x)f ∗(m)(τ)/~, (2.62)

c∗nma = −
∫

~β

0

dτ

∫

d3x j∗a(x, τ)ϕn(x)f (m)(τ)/~, (2.63)

and the eigenvalue

Enma = −i~ωm + En − µ− ηa, a = 1, 0,−1 (2.64)

of the eigenvalue problem
[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ− ηa

]

ϕn(x)f (m)(τ) = Enma ϕn(x)f (m)(τ). (2.65)

Due to the change of the functional variables in (2.54), (2.55), the measure of the functional
integral over all periodic fields reads

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa =

∞
∏

m=−∞

∏

n

1
∏

a=−1

∫

dψ∗
nma√
2π

∫

dψnma√
2π

, (2.66)

where the factor (2π)−1 originates from the closure relation of the coherent states (2.28),
(2.29). Inserting (2.61), (2.66) in the functional expression for the generating grand-canonical
partition function (2.52) leads to

Z(0)[j∗, j] =

[ ∞
∏

m=−∞

∏

n

1
∏

a=−1

∫

dψ∗
nma√
2π

∫

dψnma√
2π

]

(2.67)

× exp

{

−
∞
∑

m=−∞

∑

n

1
∑

a=−1

(

βψ∗
nmaEnmaψnma + ψnmac

∗
nma + ψ∗

nmacnma

)

}

,

which reads more conveniently

Z(0)[j∗, j] =
∞
∏

m=−∞

∏

n

1
∏

a=−1

∫

dψ∗
nma√
2π

∫

dψnma√
2π

(2.68)

× exp
{

− βψ∗
nmaEnmaψnma − ψnmac

∗
nma − ψ∗

nmacnma

}

.



20 Field Theoretic Description of Quantum Statistics

The latter integrals are of the following type

I =

∫

dψ∗
√

2π

∫

dψ√
2π

e−(ψ∗Aψ+ψc∗+ψ∗c). (2.69)

Introducing the substitutions

ψ = ψ1 + iψ2, c = c1 + ic2, ψ1, ψ2, c1, c2 ∈ R (2.70)

equation (2.69) transforms to the product of two integrals of ordinary Gaussian form:

I =
1

π

∫ ∞

−∞
dψ1 e

−(Aψ2
1+2c1ψ1)

∫ ∞

−∞
dψ2 e

−(Aψ2
2+2c2ψ2)

=
ec

∗A−1c

A
, ReA > 0 . (2.71)

Comparing (2.69) with (2.68) leads to the identifications A = βEnma, c = cnma, c
∗ = c∗nma.

Using the latter and Eqs. (2.62)–(2.64), (2.68), and (2.71) yields the generating partition
function of the F = 1 spinor gas

Z(0)[j∗, j] = Z(0) exp

{

1

~2

∫

~β

0

dτ

∫

~β

0

dτ ′
∫

d3x

∫

d3x′j∗a(x, τ)G
(0)
ab (x, τ ;x′, τ ′)jb(x

′, τ ′)

}

(2.72)
with the partition function for vanishing current fields

Z(0) =

∞
∏

m=−∞

∏

n

1
∏

a=−1

1

β (−i~ωm + En − µ− aη)
, En − µ− aη > 0 (2.73)

and the Green’s function of the ideal F = 1 spinor system

G
(0)
ab (x, τ ;x′, τ ′) =

1

β

∑

n

∞
∑

m=−∞

ϕn(x)ϕ∗
n(x′)e−iωm(τ−τ ′)

−i~ωm + En − µ− aη
δab. (2.74)

Here, we have explicitly inserted the Matsubara functions (2.56). Note that the Green’s
function (2.74) satisfies the equation

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δac − ηF z
ac

}

G
(0)
cb (x, τ ;x′, τ ′) = ~ δab δ(x − x′) δ(τ−τ ′), (2.75)

which is shown with the help of the completeness relations (2.3), (2.60) and Eqs. (2.64),

(2.65). Therefore, G
(0)
ab is, indeed, the Green’s function.



Chapter 3

Background Method

Bose-Einstein condensation belongs to the field of critical phenomena [45, 48]. There, the
thermodynamic properties are investigated close to a critical temperature, where a phase
transition occurs. The different phases involved in a phase transition, usually differ in
their symmetry properties. A famous example is the ferromagnetic phase transition in
metals. There, below a certain critical temperature, called the Curie temperature, the
system spontaneously magnetizes, whereas above the Curie temperature the system is not
magnetized at all. The magnetization defines a preferred direction in space and therefore
the rotational invariance is destroyed. The loss of the symmetry has to be accounted for
introducing another describing parameter, the so-called order parameter. In a ferromagnetic
system the order parameter is given by the expectation value of the magnetization. In the
case of spinor Bose-Einstein condensation, the order parameter is given by the expectation
value of the fields

Ψa(x, τ) ≡ 〈ψa(x, τ)〉 , a = 1, 0,−1. (3.1)

Note that the order parameter has a vectorial form with three components. For spinor Bose-
Einstein condensates, the modulus square |Ψa(x, τ)|2 describes the particle density of the
condensed particles in the Zeeman state |a〉.

In order to take account the critical properties of spinor Bose-Einstein condensates, we in-
troduce a convenient method, called background method [47–50], to treat the spinor system
below and above the critical temperature. The starting point of the background method
is the decomposition of the fields into a background field Ψa(x, τ) and a fluctuation field
δψa(x, τ)

ψ∗
a(x, τ) = Ψ∗

a(x, τ) + δψ∗
a(x, τ),

ψa(x, τ) = Ψa(x, τ) + δψa(x, τ), a = 1, 0,−1. (3.2)

The fluctuation fields δψa(x, τ) denote all fields that are spatially orthogonal to the back-
ground fields, i.e., they fulfill the condition [51]

∫

d3xΨ∗
a(x, τ)δψa(x, τ) = 0. (3.3)
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Substituting the decomposition of the fields (3.2) into the Euclidean action (2.46)–(2.48)
yields

A[Ψ∗ + δψ∗,Ψ + δψ] = A[Ψ∗,Ψ] + A(1)[δψ∗, δψ] + A(2)[δψ∗, δψ] + A(cor)[δψ∗, δψ], (3.4)

where the first term on the right-hand side is the Euclidean action evaluated at the back-
ground fields

A[Ψ∗,Ψ] =

∫

~β

0

dτ

∫

d3xΨ∗
a(x, τ)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x)

]

δab − ηF z
ab

}

Ψb(x, τ) (3.5)

+
1

2

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)Ψ∗
a(x, τ)Ψb(x, τ)Ψ

∗
a′(x

′, τ)Ψb′(x
′, τ).

The the linear contribution to the action reads

A(1)[δψ∗, δψ] =

∫

~β

0

dτ

∫

d3xΨ∗
a(x, τ)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x)

]

δab − ηF z
ab

}

δψb(x, τ)

+ δψ∗
a(x, τ)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x)

]

δab − ηF z
ab

}

Ψb(x, τ) +

∫

~β

0

dτ

∫

d3x

∫

d3x′

×V (int)
aba′b′(x,x

′)Ψ∗
a(x, τ)Ψb(x, τ)

[

Ψ∗
a′(x

′, τ) δψb′(x
′, τ) + Ψb′(x

′, τ) δψ∗
a′(x

′, τ)
]

, (3.6)

using (2.5) the quadratic contribution is

A(2)[δψ∗, δψ] =

∫

~β

0

dτ

∫

d3x δψ∗
a(x, τ)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x)

]

δab − ηF z
ab

}

δψb(x, τ)

+
1

2

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)

{

2Ψ∗
a(x, τ)Ψb(x, τ)δψ

∗
a′(x

′, τ)δψb′(x
′, τ)

+ 2Ψ∗
a(x, τ)Ψb′(x

′, τ)δψ∗
a′(x

′, τ)δψb(x, τ) + Ψ∗
a(x, τ)Ψ

∗
a′(x

′, τ)δψb(x, τ)δψb′(x
′, τ)

+Ψb(x, τ)Ψb′(x
′, τ)δψ∗

a(x, τ)δψ
∗
a′(x

′, τ)

}

(3.7)

and, finally, the cubic and quartic contributions are given by

A(cor)[δψ∗, δψ] =
1

2

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)

{

2δψ∗
a′(x

′, τ)δψb′(x
′, τ) (3.8)

×
[

Ψ∗
a(x, τ)δψb(x, τ) + Ψb(x, τ)δψ

∗
a(x, τ)

]

+ δψ∗
a(x, τ)δψb(x, τ)δψ

∗
a′(x

′, τ)δψb′(x
′, τ)

}

,

where we have used the symmetry condition (2.5) of the interaction potential. The back-
ground method now consists in neglecting terms of linear order in the fluctuation fields δψa,
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δψ∗
a, i.e., the functional A(1) is set to zero. By virtue of the background method the action

reads
A[Ψ∗ + δψ∗,Ψ + δψ] = A[Ψ∗,Ψ] + A(2)[δψ∗, δψ] + A(cor)[δψ∗, δψ]. (3.9)

Substituting (3.9) in (2.50) and performing a change of the functional integration variables

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa →
1
∏

a=−1

∮

Dδψ∗
a

∮

Dδψa (3.10)

yields the partition function

Z =

[

1
∏

a=−1

∮

Dδψ∗
a

∮

Dδψa
]

e−A[Ψ∗+δψ∗,Ψ+δψ]/~. (3.11)

Note that the functional integral in Eq. (3.11) has to be carried out over all fluctuating fields,
i.e., over all periodic fields which fulfills the orthogonality condition (3.3).

As the Euclidean action A[Ψ∗,Ψ] does not depend on the fluctuation fields, we write for
Eq. (3.11)

Z = e−A[Ψ∗,Ψ]/~

[

1
∏

a=−1

∮

Dδψ∗
a

∮

Dδψa
]

e−(A(2)[δψ∗,δψ]+A(cor)[δψ∗,δψ])/~. (3.12)

Instead of working directly with the partition function, one uses in field theory the so-called
effective action1

Γ[Ψ∗,Ψ] = − 1

β
logZ, (3.13)

which can be decomposed as

Γ[Ψ∗,Ψ] = Γ(0)[Ψ∗,Ψ] + Γ(1)[Ψ∗,Ψ] + Γ(2)[Ψ∗,Ψ]. (3.14)

Here, the zeroth order term of the effective action in the fluctuation fields reads

Γ(0)[Ψ∗,Ψ] =
A[Ψ∗,Ψ]

~β
, (3.15)

the second order contribution of the fluctuation fields

Γ(1)[Ψ∗,Ψ] = − 1

β
log

[

1
∏

a=−1

∮

Dδψ∗
a

∮

Dδψa
]

e−A(2)[δψ∗,δψ]/~, (3.16)

and the higher order term is given by

Γ(2)[Ψ∗,Ψ] = − 1

β
log

[
∏1

a=−1

∮

Dδψ∗
a

∮

Dδψa
]

e−(A(2)[δψ∗,δψ]+A(cor)[δψ∗,δψ])/~
[
∏1

a=−1

∮

Dδψ∗
a

∮

Dδψa
]

e−A(2) [δψ∗,δψ]/~
. (3.17)

1For a constant background field Ψ the effective action is also called effective potential.
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The contributions Γ(0), Γ(1), and Γ(2) are of zeroth, first, and second order in ~ [50]. It is
shown in Ref. [49,50], that a non-vanishing expectation values of the fields, i.e., 〈ψa(x, τ)〉 6=
0, requires that the effective action Γ[Ψ∗,Ψ] extremizes with respect to the background
fields Ψ∗

a, Ψa. Considering, only the lowest order, this corresponds to the extremization of
the zeroth-order effective action Γ(0) given in Eq. (3.15), which is equivalent to extremizing
the Euclidean action (3.5):

δA[Ψ∗,Ψ]

δΨ∗
a(x, τ)

∣

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

=
δA[Ψ∗,Ψ]

δΨa(x, τ)

∣

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

= 0, a = 1, 0,−1, (3.18)

which yields the following equation

0 =

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab +

∫

d3x′ V (int)
aba′b′(x,x

′)Ψ∗
a′(x

′, τ)Ψb′(x
′, τ)

}

Ψb(x, τ)

(3.19)
and correspondingly

0 =

{[

−~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab +

∫

d3x′ V (int)
baa′b′(x,x

′)Ψ∗
a′(x

′, τ)Ψb′(x
′, τ)

}

Ψ∗
b(x, τ).

(3.20)
These are the Gross-Pitaevskii equations of F = 1 spinor Bose gas, which originally have
been derived for a scalar Bose gas in Ref. [54,55]. We will discuss them in detail later for both
a non-interacting spinor gas in Chapter 5 and a weakly interacting spinor gas in Chapter 10.



Part II

Ideal Spinor Gas
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Chapter 4

Effective Action

In this section we calculate the effective action of an ideal F = 1 spinor gas. The effective
action provides the basis for studying the thermodynamic properties of a physical system
and is therefore of special importance. We consider two cases. In the first case we treat
a homogeneous system, i.e., no external potential is applied. In the second case we calcu-
late the effective action for a system, where an arbitrary harmonic trap is used. The first
case is mainly of theoretical interest, as a homogeneous spinor gas cannot yet be created
experimentally. However, there have been attempts to realize a homogeneous Bose-Einstein
condensate in lower dimensions [52]. In most present-day experiments the harmonic trap is
of special interest. Therefore, the treatment of a harmonically trapped spinor gas makes it
in principle possible to verify our results experimentally. On the other hand, both systems
exhibit to some extent quite different physics, which makes it worthwhile to compare them
with one another.

4.1 General Case

We first calculate the general expression of the effective action. Using Eqs. (2.46)–(2.48)
yields for the action of a non-interacting spinor gas

A[ψ∗, ψ] =

∫

~β

0

dτ

∫

d3xψ∗
a(x, τ)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab

}

ψb(x, τ), (4.1)

where the matrix of angular momentum F z was defined in (2.17).

Substituting Eq. (4.1) in Eqs. (3.14)–(3.17) leads to the effective action

Γ[Ψ∗,Ψ] = Γ(0)[Ψ∗,Ψ] + Γ(1), (4.2)

where the tree-level effective action Γ(0)[Ψ∗,Ψ] is given in (3.15) and the first-order contri-
bution of the effective action reads

Γ(1) = − 1

β
log

[

1
∏

a=−1

∮

Dδψ∗
a

∮

Dδψa
]

e−A[δψ∗,δψ]/~. (4.3)
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Note that the latter does not depend on the background fields anymore, which follows from
Eqs. (3.7), (3.15). Furthermore, the action A(2)[δψ∗, δψ] in (3.16) coincides with (4.1) eval-
uated on the fluctuation fields δψ∗, δψ.

As current fields are not present, the functional integral (4.3) is nearly identical to the
analytically solved functional integral (2.52). The only difference is that (2.52) is performed
over all periodic fields, whereas (4.3) has to be performed over all periodic fluctuation fields,
i.e., over all period fields, which are orthogonal to the background fields Ψ∗, Ψ due to (3.3).
Note, we will show in the next chapter that the background field is proportional to the
ground state wave function ϕ0(x) that solves the one-particle Schrödinger equation (2.1). In
complete analogy to (2.54) and (2.55) the fluctuation fields are given as

δψa(x, τ) =

∞
∑

m=−∞

∑

n

n6=0

δψnma ϕn(x)e−iωmτ (4.4)

δψ∗
a(x, τ) =

∞
∑

m=−∞

∑

n

n6=0

δψ∗
nmaϕ

∗
n(x)eiωmτ , (4.5)

where ϕn is a solution of the Schrödinger equation (2.1), δψ∗
nma is a complex coefficient, and

ωm the Matsubara frequency (2.57). Note that the fluctuations, as defined above, fulfill the
condition (3.3), where we have used Ψa(x) = const × ϕ0(x) and the orthogonality relation
(2.2).

Accordingly, the measure of the functional integral over all periodically fluctuating fields
reads

1
∏

a=−1

∮

Dδψ∗
a

∮

Dδψa =
∞
∏

m=−∞

∏

n

n6=0

1
∏

a=−1

∫

dδψ∗
nma√
2π

∫

dδψnma√
2π

. (4.6)

Therefore, performing the replacements
∏

n

7−→
∏

n

n6=0

,
∑

n

7−→
∑

n

n6=0

(4.7)

the calculation of the functional integral (4.3) turns out to be completely the same as the
one performed in Section 2.5 for vanishing current fields.

Using Eqs. (2.52), (2.73), (4.3), and the latter replacement yields the fluctuation correc-
tion

Γ(1) =
1

β

1
∑

a=−1

∑

n

n6=0

∞
∑

m=−∞
log
[

β (−i~ωm + En − µ− aη)
]

, (4.8)

where En denote the eigenvalues determined by Eq. (2.1). Note that the convergence of the
Gaussian integral leads to the condition

En − µ− aη ≥ 0 for all n, a. (4.9)
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We perform the m sum in (4.8) by using Appendix B.3 that finally leads to

Γ(1) =
1

β

1
∑

a=−1

∑

n

n6=0

log
{

1 − e−β(En−µ−aη)
}

. (4.10)

Using Eqs. (3.15), (4.1), (4.2), and (4.10) we obtain for the total effective action

Γ[Ψ∗,Ψ] =
A[Ψ∗,Ψ]

~β
+

1

β

1
∑

a=−1

∑

n

n6=0

log
{

1 − e−β(En−µ−aη)
}

. (4.11)

Note that Eq. (4.11) is valid for an arbitrary trap configuration which enters the effective
action in form of the one-particle energy eigenvalues En.

In order to further evaluate the latter for a given trap configuration, we have to determine
the one-particle energy eigenvalues En, i.e., we have to solve the one-particle Schrödinger
equation (2.1).

4.2 Homogeneous Spinor Gas

We explicitly calculate the effective action (4.11) for a vanishing trap, i.e., V (x) ≡ 0. In this
case, the eigenvalue equation (2.1) is solved by a plane wave with an appropriate normaliza-
tion

ϕk(x) =
1√
V
eikx, (4.12)

where V denotes the volume, which the particles occupy. The wave vector k is a function of
the quantum number n, whose explicit form is given below. We impose to the eigenfunctions
ϕk(x) periodic boundary conditions1

ϕk(x + Lei) = ϕk(x), i = x, y, z, (4.13)

where ei denote the unit vectors and L = 3
√
V the edge-length of the confining volume, which

is taken to be a cubic box. The energy eigenvalues then read

Ek =
~

2k2

2M
, (4.14)

where the wave vector k is given by

k =
2π
3
√
V

n, (n)i ≡ ni = 0,±1,±2, . . . . (4.15)

1The choice of the boundary condition to let vanish ψ at the border of the box, i.e., assuming a box with
V (x) = ∞ for x ∈ ∂V , where ∂V denotes the border of the box, would give rise to a non-uniform behavior of
the condensates ground state. The uniformity is restored by including two-body interactions as is discussed
in Ref. [69].
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In the thermodynamic limit, i.e., for V → ∞ while keeping the particle density N/V con-
stant, the spacing between neighboring energy eigenvalues En becomes infinitesimally small.
Therefore, we perform the replacement

∑

k

k6=0

7−→ V

∫

d3k

(2π)3/2
. (4.16)

Substituting (4.14) and (4.16) into (4.10) yields

Γ(1) = −V
β

1
∑

a=−1

∞
∑

n=1

1

n

∫

d3k

(2π)3/2
e−nβ[ǫ(k)−µ−aη], (4.17)

where we have used the Taylor series of the logarithmic function

log(1 − z) = −
∞
∑

n=1

zn

n
. (4.18)

Furthermore, in Eq. (4.17) the free-particle dispersion relation is given by

ǫ(k) ≡ ~
2k2

2M
. (4.19)

The integral (4.17) is of a Gaussian type and is immediately evaluated:

Γ(1) = − V

βλ3

1
∑

a=−1

ζ5/2

(

eβ(µ+aη)
)

. (4.20)

Here, we have used the thermal de Broglie wave length (1.1) and the polylogarithmic function

ζν(z) =
∞
∑

n=1

zn

nν
. (4.21)

We define the fugacity as
z ≡ eβ(µ−E0), (4.22)

where E0 denotes the ground state energy of the system, which vanishes for the homogeneous
case. Analogously we define the magnetic fugacity

zη ≡ eβη. (4.23)

Using Eqs. (4.11) and (4.20)–(4.23), the effective action of the homogeneous spinor gas finally
reads

Γ[Ψ∗,Ψ] =
A[Ψ∗,Ψ]

~β
− V

βλ3

[

ζ5/2(zzη) + ζ5/2(z) + ζ5/2(z/zη)

]

, (4.24)

where the tree-level action A[Ψ∗,Ψ] is given in Eq. (4.1). Note that all information of
interest about this system summarized in the effective action. It will be the starting point
for deriving all thermodynamic properties of the homogeneous ideal spinor gas.
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4.3 Harmonically Trapped Spinor Gas

In the last section we have derived the effective action of a homogeneous spinor gas. Now, we
discuss in a similar way the harmonically trapped spinor gas. The potential of an arbitrary
harmonic trap is given by

V (x) =
M

2
ω2
i x

2
i , (4.25)

where ω1, ω2, ω3 denote the trap frequencies in different spatial directions. Using this poten-
tial, the solution of the Schrödinger equation (2.1) is well known from quantum mechanics
(see Ref. [53]). The energy eigenvalues are given by

En =
3

2
~ω̄ + ~ωini, n1, n2, n3 = 0, 1, 2, . . . , (4.26)

where we use for the arithmetic mean of the trap frequencies the short-hand notation

ω̄ = (ω1 + ω2 + ω3)/3. (4.27)

Note that according to (4.26), the ground-state energy of the harmonically trapped spinor
gas is given by E0 = 3~ω̄/2.

Substituting the energy eigenvalues (4.26) into the fluctuation contribution of the effective
action (4.10) gives

Γ(1) = − 1

β

1
∑

a=−1

∞
∑

n=1

1

n
enβ(µ+aη−E0)

( ∞
∑

n1,n2,n3=0

e−nβ~ωini − 1

)

. (4.28)

The second term on the right-hand of the latter equation is introduced, because Γ(1) does
not contain terms originating from the ground state.

The ni–sums are of the geometric type and can be performed analytically:

Γ(1) = − 1

β

1
∑

a=−1

∞
∑

n=1

1

n

[

enβ(µ+aη−E0)

(1 − e−nβ~ω1)(1 − e−nβ~ω2)(1 − e−nβ~ω3)
− 1

]

. (4.29)

However, it is not necessary to take the exact form of Γ(1). We will always work in the regime
where we can adopt the semiclassical approximation, i.e., we assume the thermal energy to
be much smaller than the level spacing between the one-particle energy eigenvalues:

β~ωi ≪ 1, i = 1, 2, 3 . (4.30)

Substituting the Taylor expansion of the exponential function

e−nβ~ωi = 1 − nβ~ωi +
1

2
(nβ~ωi)

2 + . . . i = 1, 2, 3 (4.31)
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in (4.29) yields in first order of β~ωi

Γ(1) = − 1

β(β~ω̃)3

1
∑

a=−1

∞
∑

n=1

enβ(µ+aη−E0)

n4

{

1 +
3

2
nβ~ω̄ + O(β2

~
2ω2

i )

}

. (4.32)

where we have introduced the geometric mean frequency

ω̃ = (ω1ω2ω3)
1/3. (4.33)

We note that the ground-state correction on the right-hand side of Eqs. (4.28) and (4.29) is
of the order (β~ωi)

3.

With the help of the polylogarithmic function (4.21) and the abbreviations (4.22) we obtain
for the first order of the semiclassical approximation

Γ(1) = − 1

β(β~ω̃)3

{

ζ4(zzη) + ζ4(z) + ζ4(z/zη) +
3

2
β~ω̄ [ζ3(zzη) + ζ3(z) + ζ3(z/zη)]

}

, (4.34)

so that the effective action (4.11) reads in first order

Γ[Ψ∗,Ψ] =
A[Ψ∗,Ψ]

~β
− 1

β(β~ω̃)3

{

ζ4(zzη) + ζ4(z) + ζ4(z/zη)

+
3

2
β~ω̄ [ζ3(zzη) + ζ3(z) + ζ3(z/zη)]

}

. (4.35)

In analogy to Eq. (4.24) this equation provides the basis for studying the harmonically
trapped ideal spinor condensate up to the first order in β~ω̄.

In the further chapters we will always discuss both the homogeneous F = 1 spinor gas
and the harmonically trapped spinor gas. As we will see in the following chapters, the treat-
ment of both cases are quite similar. In order to have a compact notation, we summarize
Eqs. (4.24) and (4.35) as

Γ[Ψ∗,Ψ] =
A[Ψ∗,Ψ]

~β
− Cν

β

{

ζν+1(zzη) + ζν+1(z) + ζν+1(z/zη)

+
3

2
δ3νβ~ω̄

[

ζ3(zzη) + ζ3(z) + ζ3(z/zη)
]

}

, (4.36)

where the different traps are characterized by

ν =

{

3/2 No trap,

3 Harmonic trap.
(4.37)
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The coefficient C3/2 belonging to the homogeneous spinor gas reads

C3/2 =
V

λ3
, (4.38)

whereas the coefficient belonging to the harmonically trapped spinor gas is

C3 =
1

(β~ω̃)3
. (4.39)

Note that according to its definition Cν is not a constant, but a function of temperature T .

Physically, the first term on the right-hand side of Eq. (4.36) is the contribution due to
the macroscopic occupation of the ground-state, whereas the second term represents the
contribution of particles being in excited states.





Chapter 5

Gross-Pitaevskii Equations

In the last section we have derived for two different trap configurations the effective action of
an ideal F = 1 spinor gas. As mentioned before, extremizing the effective action with respect
to the background fields Ψ(x, τ) and Ψ∗(x, τ) yields the grand-canonical free energy of the
system. This is the most important global quantity of a thermodynamical system, as it al-
lows to calculate all interesting quantities like heat capacity, entropy, magnetic susceptibility,
etc. In this section we discuss the explicit form of the background fields Ψ(x, τ) and Ψ∗(x, τ)
and their physical meaning. As we will see below, the background fields only become im-
portant below the transition temperature to the Bose-Einstein phase. The equations, which
determine the background fields, are known as Gross-Pitaevskii equations [54, 55] and have
already been derived for the general case in Chapter 3.

5.1 Motivation

We start by motivating the physical meaning of the background fields.

According to Eq. (2.35) the total number of particles N in the spinor gas is given by the
partial derivative of the grand-canonical free energy with respect to the chemical potential.
Analogously, if we work with the effective action (3.13), the total number of particles is given
by

N = −∂Γ[Ψ∗,Ψ]

∂µ

∣

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

. (5.1)

Note that in the effective action approach, we first have to perform the partial derivative
and then substitute the extremized background fields.

Substituting the general result of the effective action (4.11) in (5.1) yields with the Eu-
clidean action (4.1)

N =
1

~β

∫

~β

0

dτ

∫

d3xΨ∗
a(x, τ)Ψa(x, τ)

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

+
1
∑

a=−1

∑

n

n6=0

1

eβ(En−µ−aη) − 1
. (5.2)
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The second term on the right-hand side of (5.2) is the Bose-Einstein distribution, whereas the
first term on the right-hand side is the total number of particles in the condensate fraction.
This can directly be seen by taking the limit T → 0, i.e. β → ∞, and considering the
condition E0 − µ− aη:

N = lim
β→∞

1

~β

∫

~β

0

dτ

∫

d3xΨ∗
a(x, τ)Ψa(x, τ)

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

. (5.3)

Neglecting the dependence on the imaginary time corresponds to the case of a time-independent
system. In this thesis we exclusively consider stationary solutions of the order parameter,
i.e., solutions with vanishing time dependence. We then get for the total number of particles

N =

∫

d3xΨ∗
a(x)Ψa(x)

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

. (5.4)

Clearly, |Ψa(x)|2 is the condensates particle density in the ath Zeeman state. According to
thermodynamics the occupied state at T = 0 is the ground state.

5.2 Derivation of Gross-Pitaevskii Equations

As mentioned before the Gross-Pitaevskii equations are obtained by extremizing the effective
action with respect to the background fields. However, according to Eq. (4.11), this is
equivalent to extremizing the action of the system, hence

δA[Ψ∗,Ψ]

δΨ∗
a(x, τ)

∣

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

= 0. (5.5)

Substituting Eq. (4.1) in (5.5) yields the Gross-Pitaevskii equations

{

[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab

}

Ψb(x, τ) = 0, a = −1, 0, 1. (5.6)

For convenience we have neglected the notation Ψb,extr and used instead simply Ψb. We will
use this notation throughout the work.

As discussed above, we consider only time-independent background fields. Furthermore,
we have motivated in the last section that the background fields have to be identified with
the ground-state wave function, i.e., they fulfill the one-particle Schrödinger equation

[

− ~
2

2M
∆ + V (x)

]

Ψa(x) = E0Ψa(x) (5.7)

with the ground-state energy eigenvalue E0.
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Using the latter equation and the fact that the matrix on the left-hand side of (5.6) is
diagonal, we obtain three independent Gross-Pitaevskii equations

(

E0 − µ− aη

)

Ψa(x) = 0, a = 1, 0,−1 . (5.8)

We choose the background field to be real and set

Ψa(x) =
√

NC
a ϕ0(x), a = 1, 0,−1 (5.9)

with ϕ0(x) defined in (2.1)–(2.3). Moreover, the real number NC
a represents the total num-

ber of particles in the electronic quantum ground Zeeman state |a〉.

We deduce from (5.9) that in a spinor Bose-Einstein condensate the spatial particle dis-
tribution of every Zeeman state differs only by a normalization factor. Finally, substituting
(5.9) in (5.8) gives us the Gross-Pitaevskii equations in an algebraic form

(

E0 − µ− aη

)

NC
a = 0, a = −1, 0, 1. (5.10)

Together with the effective action (4.36), the Gross-Pitaevskii equations (5.10) provide the
fundamental basis for studying phase transitions of a spinor gas to a spinor Bose-Einstein
condensate. As we will see in the next section, different solutions of (5.10) correspond for a
given magnetization to different phases at different temperatures.

5.3 Solution of Gross-Pitaevskii Equations

In the last section we have derived the algebraic Gross-Pitaevskii equations

(

E0 − µ− η

)

NC
1 = 0, (5.11)

(

E0 − µ

)

NC
0 = 0, (5.12)

(

E0 − µ+ η

)

NC
−1 = 0. (5.13)

This set of equations has to be fulfilled for all temperatures at any given magnetization
M . The dependence on the temperature and magnetization of Eqs. (5.11)–(5.13) enters via
the chemical potential µ and the magnetic chemical potential η, which have to be adjusted
in such a way, that the conservation of the total number of particles (5.1) and the total
magnetization

M = −∂Γ[Ψ∗,Ψ]

∂η

∣

∣

∣

∣

Ψ=Ψextr

Ψ∗=Ψ∗
extr

(5.14)
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is fulfilled.

Using Eqs. (4.1), (4.36), (5.6), and (5.9) we obtain for (5.1) and (5.14)

N = NC + Cν

{

ζν(zzη) + ζν(z) + ζν(z/zη) +
3

2
δ3νβ~ω̄

[

ζ2(zzη) + ζ2(z) + ζ2(z/zη)
]

}

, (5.15)

M = NC
1 −NC

−1 + Cν

{

ζν(zzη) − ζν(z/zη) +
3

2
δ3νβ~ω̄

[

ζ2(zzη) − ζ2(z/zη)
]

}

, (5.16)

where Cν is a function of temperature defined in (4.38), (4.39). Furthermore, we have
introduced the total number of particles being in the condensed state

NC = NC
1 +NC

0 +NC
−1. (5.17)

We emphasize that Eqs. (5.11)–(5.13), (5.15), and (5.16) have always to be fulfilled. In or-
der to solve these five equation simultaneously, we need five free quantities which enter the
latter equations. Our free quantities are given by the condensates densities NC

1 , NC
0 , NC

−1,
and both fugacities z and zη.

The convenient structure of the algebraic Gross-Pitaevskii equations Eqs. (5.11)–(5.13) sug-
gests taking the most obvious solution, namely,

NC
1 = NC

0 = NC
−1 = 0. (5.18)

Physically, this solution corresponds to the case, that no particles are Bose-Einstein con-
densed, i.e., this corresponds to a gas phase. Substituting (5.18) into (5.15), (5.16) yields
the total number of particles

N = Cν

{

ζν(zzη) + ζν(z) + ζν(z/zη) +
3

2
δ3νβ~ω̄

[

ζ2(zzη) + ζ2(z) + ζ2(z/zη)
]

}

(5.19)

and the total magnetization

M = Cν

{

ζν(zzη) − ζν(z/zη) +
3

2
δ3νβ~ω̄

[

ζ2(zzη) − ζ2(z/zη)
]

}

(5.20)

in the gas phase. From the definition of the magnetic fugacity (4.23) and the monotony of
the polylogarithmic function (4.21), which is depicted in Figure 5.1, we can deduce from
Eq. (5.20) for the gas phase

M > 0 ⇐⇒ η > 0,

M = 0 ⇐⇒ η = 0,

M < 0 ⇐⇒ η < 0.

(5.21)

For convenience, we restrict ourselves in this thesis to the case M ≥ 0, where we have η > 0
according to (5.21). The case of a negative magnetization is treated by simply redefining the
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Figure 5.1: Behavior of the polylogarithmic function (4.21) which is continuous in its
domain. For z > 1 it diverges for any ν. Moreover, for ν > 1 it has a well defined value at
z = 1.

arbitrarily chosen z-axis in the opposite direction. The magnetization is then again positive.

We search now solutions, which differ from (5.18), namely, we work out the first phase
transition of the system. Therefore, we consider Eq. (4.9), which states

E0 − µ− η ≥ 0. (5.22)

Here, E0 is the ground state energy of the system. The phase transition occurs if one of the
order parameters NC

a in Eqs. (5.11)–(5.13) changes from zero to a finite value. Considering
a positive magnetization, we get with (5.21) and (5.22) as the only possible solution of the
Gross-Pitaevskii equations (5.11)–(5.13):

NC
0 = NC

−1 = 0, (5.23)

E0 − µ− η = 0. (5.24)

As seen from the latter equations, the number of particles NC
1 , which denotes the particles in

the BEC state |a = 1〉, is not restricted anymore by the Gross-Pitaevskii equations, whereas
the remaining BEC states |0〉 and |−1〉 are not occupied at all. Therefore, the condensate
fraction is fully polarized and we call the temperature/magnetization domain, where (5.23),
(5.24) is fulfilled, ferromagnetic phase. Furthermore, we refer to the critical temperature,
where the phase transition from the gas phase to the ferromagnetic phase occurs, as the first
critical temperature Tc1 . The ferromagnetic phase has interesting physical properties. For
example, particles in the Bose-Einstein condensed state may have a magnetization, which is
quite different from the magnetization of the thermal cloud.

In order to determine the unknown particle number NC
1 and the remaining fugacity, we

substitute the condition of the ferromagnetic phase (5.23), (5.24) in (5.15), (5.16) yielding
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the total number of particles

N = NC
1 + Cν

{

ζ(ν) + ζν(z) + ζν(z
2) +

3

2
δ3ν β~ ω̄

[

ζ(2) + ζ2(z) + ζ2(z
2)
]

}

, (5.25)

and the total magnetization

M = NC
1 + Cν

{

ζ(ν) − ζν(z
2) +

3

2
δ3ν β~ ω̄

[

ζ(2) − ζ2(z
2)
]

}

. (5.26)

Here, we have zzη = 1, which follows from (4.22), (4.23), and (5.24). Moreover, we have
introduced the Riemann zeta function ζ(ν) ≡ ζν(1).

So far, we have discussed two solutions of the algebraic Gross-Pitaevskii equations (5.11)–
(5.13). Now, we search for an additional phase. Substituting (5.24) in (5.12), (5.13) yields
the following Gross-Pitaevskii equations

ηNC
0 = 0, (5.27)

ηNC
−1 = 0, (5.28)

As discussed above, in the ferromagnetic phase the latter equations are fulfilled with Eq. (5.23).
To enter a new phase, one of the components of the order parameter in Eqs. (5.27) and (5.28)
has to take a non-zero value. This is only possible if the condition

η = 0 (5.29)

is fulfilled, so that we obtain from (5.24)

E0 − µ = 0. (5.30)

At this point, we strongly emphasize that η is not a magnetic field, but a Lagrangian param-
eter, which was introduced in order to fix the total magnetization of the system. Therefore,
it is possible to set η equal zero as done in (5.29).

From (5.27)–(5.29) we see that for η = 0 both the |a = 0〉 and the |a = −1〉 Zeeman state of
the condensed fraction may take a non-zero value. Under the given conditions, none of the
latter states is preferred, so that we assume that both Zeeman ground states get occupied
at the same critical temperature, i.e., it occurs a double condensation [56]. Substituting the
conditions (5.29) and (5.30) in Eqs. (5.15), (5.16) yields for the total number of particles

N = NC
1 +NC

0 +NC
−1 + 3Cν ζ(3)

[

1 +
3

2
δ3νβ~ω̄

ζ(2)

ζ(3)

]

(5.31)

and for the total magnetization

M = NC
1 −NC

−1. (5.32)
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The latter equation clearly indicates that the total magnetization is only due to Bose-Einstein
condensed particles. Conversely speaking, the thermal cloud is not magnetized at all and
therefore we call this phase antiferromagnetic phase. Moreover, we refer the transition tem-
perature, where the second phase transition occurs, the second critical temperature Tc2 .

In Figure 5.2 we have schematically summarized the phases with the respective solutions
of the Gross-Pitaevskii equations.
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T/K

Tc1

Tc2

0

Gas Phase

NC
1 = NC

0 = NC
−1 = 0

Ferromagnetic Phase

NC
0 = NC

−1 = 0

E0 − µ − η = 0

Antiferromagnetic Phase

E0 − µ = 0

η = 0

Tc1–Condition

NC
1 = NC

0 = NC
−1 = 0

E0 − µ − η = 0

Tc2–Condition

NC
0 = NC

−1 = 0

E0 − µ = η = 0

Figure 5.2: The ideal F = 1 spinor gas exhibits three different phases. The phases and the
corresponding conditions to the order parameters and the fugacities are summarized in the
boxes. The transition point between two phases, both of the respective conditions have to
be fulfilled simultaneously, which is indicated in the circle.



Chapter 6

Critical Temperatures

In the last chapter we have derived the solutions of the Gross-Pitaevskii equations (5.11)–
(5.13). We have shown that they correspond to three phases: a gas phase, a ferromagnetic
phase, and an antiferromagnetic phase, which are summarized schematically in Figure 5.2.
The occurrence of the corresponding transition temperatures have only been discussed qual-
itatively. In this chapter, we will calculate the first and the second critical temperature,
which turn out to be dependent on the total magnetization of the F = 1 spinor gas.

6.1 First Critical Temperature

We start with the calculation of the first critical temperature. In order to have a dimension-
less temperature scaling, we first calculate the critical temperature of a full polarized spinor
gas where we neglect any finite-size effects.

6.1.1 Full Polarized Spinor Gas

According to (5.19) and (5.20) we get in zeroth order of the semiclassical approximation for
the total number of particles in the gas phase

N = Cν

[

ζν(zzη) + ζν(z) + ζν(z/zη)
]

(6.1)

and the total magnetization

M = Cν

[

ζν(zzη) − ζν(z/zη)
]

. (6.2)

Subtracting (6.2) from (6.1) yields

N −M = Cν

[

ζν(z) + 2ζν(z/zη)
]

. (6.3)

In case of a full polarized spinor gas we have M → N . Therefore, assuming a constant
temperature, we get with Eqs. (4.38) and (4.39) the condition that the bracket on the right-
hand side of (6.3) vanishes. Moreover, using the monotony of the polylogarithmic function

43
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and Eq. (6.2) we deduce that for positive M we have the condition zη > 1. Using the latter
arguments, we obtain from (6.1) for the case of a full polarized spinor gas the relation

N = Cν ζν(zzη). (6.4)

If we reach the first critical temperature T0, we have to fulfill the Tc1– condition zzη = 1
given in Figure 5.2. According to (6.4) we then have

N = Cν ζ(ν)
∣

∣

∣

T=T0

. (6.5)

Note that Cν as defined in Eqs. (4.38), (4.39) is a function of temperature. Substituting
Eqs. (4.38) and (4.39) into Eq. (6.5) we obtain in zeroth order for the full polarized spinor
gas for the homogeneous case

T0 =
2π~

2

kBM

[

N

V ζ(3/2)

]2/3

(6.6)

and for the harmonically trapped system

T0 =
~ω̃

kB

[

N

ζ(3)

]1/3

. (6.7)

In the further work we always will scale temperatures with respect to (6.6) and (6.7) and
denote this as

T• ≡
T•
T0

. (6.8)

So far, we have only calculated the first critical temperature of a full polarized spinor gas,
which was rather for formal reasons. Now, we turn to the calculation of the first critical
temperature for an arbitrary magnetization. Substituting from Figure 5.2 the Tc1– condition,
i.e., N0 = N−1 = 0, zzη = 1 in Eqs. (5.15) and (5.16) yields

N =
T ν

c1

ζ(ν)

{

ζ(ν) + ζν(z) + ζν(z
2) +

3

2

δ3ν
Tc1

ω̄

ω̃

[

ζ(3)

N

]1/3
[

ζ(2) + ζ2(z) + ζ2(z
2)
]

}

, (6.9)

M =
T ν

c1

ζ(ν)

{

ζ(ν) − ζν(z
2) +

3

2

δ3ν
Tc1

ω̄

ω̃

[

ζ(3)

N

]1/3
[

ζ(2) − ζ2(z
2)
]

}

, (6.10)

where we have divided Eqs. (5.15) and (5.16) by Eq. (6.5) and adopted the notation (2.37).
Furthermore, we have used Eqs. (6.7) and (6.8) to rewrite the second order term β~ω̄ as

β~ω̄ = β0~ω̄
T0

T
=
ω̄

ω̃

[

ζ(3)

N

]1/3
1

T . (6.11)

From the latter we deduce that the first-order correction represents a finite-size scaling. Note
that the first-order correction also vanishes in the high-temperature limit as clearly can be
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seen from (6.11). Let us return to the calculation. In order to get an expression for the first
critical temperature Tc1 , we rewrite (6.9) as

Tc1 =

[

ζ(ν)

ζ(ν) + ζν(z) + ζν(z2)

]1/ν
{

1 +
3

2

δ3ν
Tc1

ω̄

ω̃

[

ζ(3)

N

]1/3
ζ(2) + ζ2(z) + ζ2(z

2)

ζ(3) + ζ3(z) + ζ3(z2)

}−1/3

.

(6.12)
Iterating the latter and expanding it into a Taylor series up to the first order in N−1/3 yields
the first critical temperature

Tc1 =

[

ζ(ν)

ζ(ν) + ζν(z) + ζν(z2)

]1/ν
{

1 − δ3ν
2

ω̄

ω̃

1

N1/3

ζ(2) + ζ2(z) + ζ2(z
2)

[ζ(3) + ζ3(z) + ζ3(z2)]2/3

}

. (6.13)

In order to obtain the first critical temperature (6.13) as a function of the magnetization
M, we perform the same manipulation as done above with Eq. (6.10). With the help of
Eq. (6.13) we then get up to the first order in N−1/3

M =
ζ(ν) − ζν(z

2)

ζ(ν) + ζν(z) + ζν(z2)
+

3

2

ω̄

ω̃

δ3ν
N1/3

{

ζ(2) − ζ2(z
2)

[ζ(3) + ζ3(z) + ζ3(z2)]2/3

− [ζ(3) − ζ3(z
2)] [ζ(2) + ζ2(z) + ζ2(z

2)]

[ζ(3) + ζ3(z) + ζ3(z2)]5/3

}

. (6.14)

Here, we again emphasize that the magnetization M is a constant. In principle, using
Eq. (6.14), one could explicitly calculate z as a function of M and substitute in (6.13).
However, the determination of the fugacity is analytically not possible. Therefore, we will
consider the fugacity z as a parameter which ranges from 0 to 1, corresponding to a full
polarized and non-polarized spinor gas, respectively, and plot the critical temperature para-
metrically. This is shown in Figure 6.1 for both the homogeneous trapped spinor gas and
the harmonically trapped spinor gas. In case of the harmonically trapped spinor gas we have
chosen the particle number 10.000 and ∞ and have set ω̄ = ω̃.

6.2 Second Critical Temperature

The second critical temperature is calculated in complete analogy as done above. Substitut-
ing from Figure 5.2 the Tc2–conditions, i.e. NC

0 = NC
−1 = 0 and z = zη = 1, into (5.25) and

(5.26) yields

N = N C
1 + 3

T ν

c2

ζ(ν)

{

ζ(ν) +
3

2

δ3ν
Tc2

ω̄

ω̃

[

ζ(3)

N

]1/3

ζ(2)

}

, (6.15)

M = N C
1 . (6.16)



46 Critical Temperatures

The latter has been divided by Eq. (6.5) and we have used the abbreviation (2.37). We
observe again the property of the antiferromagnetic phase that the whole polarization is in
the condensate fraction as can be seen from (6.16).

From (6.15) and (6.16) we can explicitly calculate Tc2 as a function of M. We subtract
(6.16) from (6.15) and solve for the second critical temperature

Tc2 =

[

ζ(ν)

3

]1/ν

(1 −M)1/ν

{

ζ(ν) +
3

2

δ3ν
Tc2

ω̄

ω̃

[

ζ(3)

N

]1/3

ζ(2)

}−1/ν

. (6.17)

Iterating the latter and performing a Taylor series up to the orderN−1/3 leads to the following
expression for the second critical temperature

Tc2 =

(

1 −M
3

)1/ν

− δ3ν
2

ω̄

ω̃

ζ(2)

ζ(3)

[

ζ(3)

N

]1/3

. (6.18)

Note that for the case of a harmonically trapped spinor gas the latter is only valid where

(1 −M)1/3 ≫ 31/3

2

ω̄

ω̃

ζ(2)

ζ(3)

[

ζ(3)

N

]1/3

(6.19)

is fulfilled. Otherwise, Tc2 would becomes negative, which is obviously wrong. Note that
this is not the case if we directly use Eq. (6.17). However, as the typical experimental values
for the total number of particles are 105 − 107 particles, Eq. (6.18) is a good approximation
for a wide range of magnetizations M.

In Figure 6.1 (b) we plot the critical temperatures for a finite number of particles. In
the following we discuss our results for the first and the second critical temperature. To this
end we observe that for a vanishing magnetization the first and the second critical tend to
the same value, i.e.,

lim
M→0

(Tc1 − Tc2) = 0. (6.20)

This can also directly be seen from the Gross-Pitaevskii equations (5.11)–(5.13). According
to Eq. (5.21) the magnetic chemical potential takes in the gas phase at zero magnetization
the value η = 0. Substituting this into the Gross-Pitaevskii equations leads to the occurrence
of a triple condensation, which is due to the degeneracy of all Zeeman states.

6.3 Discussion

We discuss the critical temperatures of the homogeneous and harmonically trapped spinor
system. For both trapping configurations, we see from Figure 6.1 that the critical tem-
peratures depend strongly on the total magnetization of the spinor gas. The first critical
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Figure 6.1: Critical temperatures of (a) homogeneous and (b) harmonically trapped spinor
gas with ω̄ = ω̃.

temperature depends approximatively linear on the magnetization. By definition the first
critical temperature reaches unity temperature for the full polarized case. Consequently, the
first critical temperature decreases for lower magnetization. Furthermore, we see that Tc1 of
the homogeneous spinor gas is much more sensitive to a change of the magnetization than
the one of the harmonically trapped system.

As mentioned above, for zero magnetization the first critical temperature (6.13) and the
second critical temperature (6.18) coincide. Therefore, the non-polarized spinor gas has
only two phases and the ferromagnetic phase does not show up. Investigating further the
characteristic properties of the Tc2 curve, we recognize that, in contrast to the behavior of
Tc1 , the second critical temperature decreases for a larger magnetization. For the case of
a full polarized spinor system Tc2 takes the value zero. In other words, for a full polarized
spinor gas the antiferromagnetic phase is missing, whereas for magnetizations ranging be-
tween one and zero we always have three phases.

We discuss the effect of a finite number of particles for the case ω̄ = ω̃ which is realized,
for instance, in an isotropic trap. In Figure 6.1 (b) we plot the critical temperatures for
N = 10.000 and N → ∞ particles, where we have set ω̄ = ω̃. From Figure 6.1 (b) we see
that for a smaller amount of particles those critical temperatures are decreased.





Chapter 7

Particle Numbers

In the last chapter we have derived the critical temperatures of a F = 1 spinor gas. In
contrast to a scalar Bose gas, where we have only one critical temperature and two phases,
the F = 1 spinor gas system has two critical temperatures and therefore three phases. In
this chapter we derive the particle occupation number of the different Zeeman states as a
function of the temperature for a given total magnetization. From this we will get a deeper
physical understanding of the F = 1 spinor properties below Tc1 .

7.1 Identification of Zeeman States

In order to determine the occupation number of each Zeeman state, we first have to identify
the underlying equations. We start with considering a spinor gas in the gas phase, i.e., for
temperatures above Tc1 . Dividing Eqs. (5.19) and (5.20) by Eq. (6.5) and using (6.11) leads
to

N =
T ν

ζ(ν)

{

ζν(zzη)+ζν(z)+ζν(z/zη)+
3

2

δ3ν
T
ω̄

ω̃

[

ζ(3)

N

]1/3
[

ζ2(zzη)+ζ2(z)+ζ2(z/zη)
]

}

(7.1)

and

M =
T ν

ζ(ν)

{

ζν(zzη) − ζν(z/zη) +
3

2

δ3ν
T
ω̄

ω̃

[

ζ(3)

N

]1/3
[

ζ2(zzη) − ζ2(z/zη)
]

}

. (7.2)

Note that according to (2.37) we have N = 1. However, we use this notation to emphasize
that physically the left-hand side of Eq. (7.1) corresponds to the total number of particles.
In the high-temperature limit T → ∞ the factor T ν in Eqs. (7.1) and (7.2) tends to infinity.
In order to keep the left-hand side of Eqs. (7.1) and (7.2) constant, the second factors on the
right-hand side of the latter equations have to tend to zero for high temperatures. According
to Eqs. (4.22) and (4.23) we always have z(T ), zη(T ) > 0. Furthermore, taking into account,
that the zeta function is a monotonously increasing function (see Figure 5.1), we get with
Eqs. (7.1) and (7.2) the following behavior of the fugacities in the high-temperature limit:

lim
T →∞

z(T ) −→ 0, (7.3)

49
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lim
T →∞

z(T ) zη(T ) −→ 0, (7.4)

lim
T →∞

z(T ) zη(T )−1 −→ 0. (7.5)

Using Eqs. (4.21), (7.1), (7.3)–(7.5) we may write for Eq. (7.2) in the high-temperature limit

MT ≫Tc1−→ zη − z−1
η

zη + 1 + z−1
η

. (7.6)

Note that the first-order contribution no longer appears in Eq. (7.6) due to the condition
T ≫ Tc1. Therefore, in the high-temperature limit, the value of the magnetic fugacity
zη is the same for both the homogeneous spinor gas and the harmonically trapped one.
Furthermore, we can deduce from Eq. (7.6) the following dependence of the magnetic fugacity
on the magnetization

lim
T →∞

zη(T ) =
1

2

1

1 −M
{

M +
√

4 − 3M2
}

(7.7)

and its reciprocal

lim
T →∞

z−1
η (T ) =

1

2

1

1 + M
{

−M +
√

4 − 3M2
}

. (7.8)

Hence, we observe the symmetry

lim
T →∞

zη = lim
T →∞

z−1
η

∣

∣

∣

M→−M
. (7.9)

This finding motivates to study three special cases. At first, we study a system which is fully
polarized in z-direction, i.e., M = +1. The second limit is a system which has the opposite
polarization of the first one, i.e. M = −1. The last limit is a system with no polarization
where M = 0. From Eqs. (7.7) and (7.9) we conclude then the following behavior for the
magnetic fugacity

lim
T →∞

z±1
η (T ) →















∞ M = ±1,

1 M = 0,

0 M = ∓1.

(7.10)

We substitute the latter in Eq. (7.1) and deduce, that for the high-temperature limit the
total number of particles are given by

N → T ν

ζ(ν)















ζν(zzη) M = 1,

3 ζν(z) M = 0,

ζν(z/zη) M = −1,

(7.11)

where, again, the first-order contribution could be neglected.

If the spinor gas is fully polarized in ±z-direction, then every particle has to occupy the
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Zeeman state |a = ±1〉. On the other hand, if the spinor gas in not polarized at all but still
in thermal equilibrium, we expect each Zeeman state to be occupied by the same number of
particles. Relating this to our results summarized in Eq. (7.11) motivates us to identify the
particle number being in the excited ath Zeeman state as follows

N T
a =

T ν

ζ(ν)















ζν(zzη) + 3 δ3νβ~ω̄ ζ2(zzη)/2 a = 1,

ζν(z) + 3 δ3νβ~ω̄ ζ2(z)/2 a = 0,

ζν(z/zη) + 3 δ3νβ~ω̄ ζ2(z/zη)/2 a = −1,

(7.12)

where the superscript T denotes the thermal particles. In general, the total number of
particles being in the ath Zeeman state is given by a sum of particles being Bose-Einstein
condensed and the thermal particles

Na = N C
a + N T

a . (7.13)

With Eqs. (7.12) and (7.13) we are now able to make predictions for the particle number
in every Zeeman state, which is of particular experimental interest. In a spinor condensate
experiment it is, in principle, possible to measure via Stern-Gerlach separation the particle
occupation number of the different Zeeman states [25]. This opens the possibility to verify
the predictions which will be made in upcoming sections.

7.2 Particles in Gas Phase

We briefly discuss the occupation numbers of the different Zeeman states in the gas phase.
We will see that the fluctuation of the occupation number is very small for T > Tc1 . Fur-
thermore, we show that the first-order corrections become negligible in the high-temperature
limit.

We see from Eq. (7.12) that, in order to determine the occupation number of the ath Zeeman
state, we first have to calculate the fugacity and the magnetic fugacity. Using the coupled
set of Eqs. (7.1) and (7.2), we obtain z and zη as a function of the temperature and the
magnetization. Unfortunately, this cannot be done in an analytic way. In order to obtain
an exact result, which is also valid for temperatures near Tc1, we carry out the calculation
numerically with the program Mathematica. The calculation itself turns out to be quite
uncomplicated and needs no further explanation.

In Figure 7.1 the particle number of different Zeeman states of an homogeneous and har-
monically trapped spinor gas, respectively, is plotted for a total magnetization M = 0.25.
In order to see the correct behavior of the particle numbers near the first transition tempera-
ture we use the numerical data for the fugacity and magnetic fugacity. The particle numbers
of every Zeeman state tend to a constant value for high temperatures, i.e., the spinor gas
behaves like a classical gas. On the other hand, at temperatures close to the first transition
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Figure 7.1: Occupation number of Zeeman states for (a) homogeneous and (b) harmoni-
cally trapped spinor gas with M = 0.25. For (b), the finite-size corrections are completely
negligible. It is seen that for temperature closely above the first critical temperature, the
occupation number is nearly a constant in temperature.

point the particle numbers start to arrange themselves in a different way. For a homogeneous
spinor gas this can be clearly seen in Figure 7.1 (a).

7.3 High-Temperature Limit

It is also possible to obtain an analytical result for both the fugacity and the magnetic
fugacity in the high-temperature limit. To this end, we write Eqs. (7.1) and (7.2) differently
by adding and subtracting them from each other. We then obtain

x = (1 + M)−1
[

2ζν(zzη) + ζν(z)
]

(7.14)

and
x = (1 −M)−1

[

ζν(z) + 2ζν(z/zη)
]

. (7.15)

Here, we have defined the dimensionless parameter

x ≡ ζ(ν)T −ν , (7.16)

which is small for T ≫ 1. Together with (7.3) and (7.10), this motivates to introduce the
following Taylor expansion for the fugacity

z(x) = α0 + α1x+ α2x
2 + . . . , (7.17)

and the magnetic fugacity

zη(x) = a0 + a1x+ a2x
2 + . . . . (7.18)

Therein the parameter (7.16) is used as a smallness parameter which can also be interpreted
in a physical way. To this end we restrict ourself to a homogeneous spinor gas. Using
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Eqs. (4.38), (5.19), (5.20), and (6.5) we may write for the total number of particles in the
homogeneous case

N =
V

λ3
ζ(3/2)T −3/2. (7.19)

Comparing x as defined in (7.16) with the latter yields the following relation

x =
N

V
λ3. (7.20)

Hence, x is the density of the spinor gas multiplied by the third power of the average thermal
length. But this is nothing but the average number of particles occupying a volume which is
equal to the average size a particle itself. If x approaches unity, then the overlap of the wave
functions of different particles in the system is no longer negligible. In this case we expect de-
viations from the classically predicted behavior which are due to quantum mechanical effects.

We will calculate the first two contributions to the fugacity z and to the magnetic fugacity
zη. The zeroth order of both functions has already been calculated in the last section. With
Eqs. (7.3) and (7.7) we get for α0 in (7.17) and a0 in (7.18)

α0 = 0, (7.21)

a0 =
1

2

1

1 −M
(

M +
√

4 − 3M2
)

. (7.22)

Alternatively, we can calculate a0 in the following way. According to Eq. (7.6) the magneti-
zation reads for high temperatures

M = lim
T →∞

zη − z−1
η

zη + 1 + z−1
η

. (7.23)

On the other hand, from Eqs. (7.14) and (7.18) we deduce

lim
T →∞

zη = a0. (7.24)

Substituting the latter into the former equation yields

M =
a0 − a−1

0

a0 + 1 + a−1
0

. (7.25)

Note, the magnetization is constant for all temperatures. Therefore, Eq. (7.25) is always
valid. Solving Eq. (7.25) for a0 yields the same as in Eq. (7.22).

To calculate the remaining coefficients αi and ai we use the polylogarithmic function (4.21)
to rewrite Eqs. (7.14) and (7.15) in the following way

x =
1

1 + M

(

2zzη + 2
z2z2

η

2ν
+ . . .+ z +

z2

2ν
+ . . .

)

, (7.26)

x =
1

1 −M

(

z +
z2

2ν
+ . . .+ 2zz−1

η + 2
z2z−2

η

2ν
+ . . .

)

. (7.27)
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Substituting Eqs. (7.17) and (7.18) into (7.26) and (7.27) yields

x =
1

1 + M

[

2(α1x+ α2x
2 + . . .)(a0 + a1x+ . . .) + 2−ν+1(α1x+ . . .)2(a0 + . . .)2

+ . . . + α1x+ α2x
2 + . . . + 2−ν(α1x+ α2x

2 . . .)2 + . . .

]

, (7.28)

and

(a0 + a1x+ . . .)2 x =
1

1 −M

[

(α1x+ α2x
2 + . . .)(a0 + a1x+ . . .)2

+ 2−ν(α1x+ . . .)2(a0 + . . .)2 + . . . + 2(α1x+ α2x
2 + . . .)

× (a0 + a1x+ . . .) + 2−ν+1(α1x+ α2x
2 + . . .)2 + . . .

]

. (7.29)

By comparing the respective coefficients of different powers of x in Eqs. (7.28) and (7.29),
we can calculate successively the coefficients α1, α2, . . . and a1, a2, . . ..

7.3.1 First Order

Comparing the coefficients of the power x1 in Eqs. (7.28) and (7.29) yields the following set
of equations

1 = (1 + M)−1 (2α1a0 + α1) , (7.30)

a2
0 = (1 −M)−1 (α1a

2
0 + 2α1a0

)

. (7.31)

In order to calculate α1, one of these equations is sufficient as we have already determined
a0 in Eq. (7.22). Substituting Eq. (7.25) in (7.30) or (7.31), respectively, leads to

α1 =
(

a0 + 1 + a−1
0

)−1

. (7.32)

Using Eq. (7.22) the latter can be rewritten as

α1 =
1

3

√
4 − 3M2 − 1

3
. (7.33)

To calculate α2 and a1 we have to compare the coefficients of the next order in x.

7.3.2 Second Order

Comparing the coefficients of x2 in (7.28) and (7.29) and using Eqs. (7.25) and (7.32) leads
to the following matrix equation

M

(

a1

α2

)

= 2−να2
1

(

−2a2
0 − 1

a2
0 + 2

)

, (7.34)
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with the matrix

M =

(

2α1 2a0 + 1

2α1 −a0(a0 + 2)

)

. (7.35)

The inverse of M is easily calculated as

M−1 =
1

detM

(

−a0(a0 + 2) −(2a0 + 1)

−2α1 2α1

)

. (7.36)

Inverting (7.34) with the help of (7.36) by using Eqs. (7.25), (7.32) leads to

a1 = −2−νa0
a2

0 − 1

a2
0 + 4a0 + 1

, (7.37)

α2 = −2−ν 3α2
1(a

2
0 + 1)

a2
0 + 4a0 + 1

. (7.38)

The coefficients of higher order in x can be calculated in the same manner. In Figure 7.2 the
numerical results of the fugacity and the magnetic fugacity is compared with the analytical
result just obtained for the magnetization M = 0.25. As can clear be seen, taking the first
two contributions terms of the analytical result already yields a good agreement with the
exact numerical result for T ≫ 1.

7.4 Particles in Ferro- and Antiferromagnetic Phase

In this section we discuss the particle occupation number of the different Zeeman states for
the ferro- and antiferromagnetic phase. We will see that the spinor gas exhibits a quite
interesting behavior in these two phases.

We start with the ensemble being in the ferromagnetic phase. Substituting the solutions
of the algebraic Gross-Pitaevskii equations for the ferromagnetic phase, which are summa-
rized in Figure 5.2, in Eqs. (7.12) and (7.13) yields

N = N C
1 +

T ν

ζ(ν)

{

ζ(ν) + ζν(z) + ζν(z
2) +

3

2

δ3ν
T
ω̄

ω̃

[

ζ(3)

N

]1/3
[

ζ(2) + ζ2(z) + ζ2(z
2)
]

}

, (7.39)

M = N C
1 +

T ν

ζ(ν)

{

ζ(ν) − ζν(z
2) +

3

2

δ3ν
T
ω̄

ω̃

[

ζ(3)

N

]1/3
[

ζ(2) − ζ2(z
2)
]

}

. (7.40)

In contrast to Eqs. (7.1) and (7.2), where we used the fugacity z and magnetic fugacity zη
to adjust the total number of particles and the total magnetization of the system, we have
to use now as an adjusting parameter the particle number of the condensed fraction in the
first Zeeman state N C

1 and the fugacity z. The numerical result for the homogeneous and
the harmonically trapped spinor gas is plotted in Figure 7.3. Before we discuss Figure 7.3,
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Figure 7.2: Exact versus approximative solutions of fugacity z and magnetic fugacity zη in
the high-temperature limit. In (a), (b) homogeneous and in (c), (d) harmonically trapped
spinor gas with magnetization M = 0.25.

we also treat the antiferromagnetic case. Again, taking the solutions of the Gross-Pitaevskii
equations for the antiferromagnetic spinor gas from Figure 5.2 and substituting them into
Eqs. (7.12) and (7.13) yields

1 = N C
1 + N C

0 + N C
−1 + 3 T ν

{

1 +
3

2

δ3ν
T
ω̄

ω̃

ζ(2)

ζ(3)

[

ζ(3)

N

]1/3
}

, (7.41)

M = N C
1 −N C

−1. (7.42)

In contrast to Eqs. (7.1), (7.2) and Eqs. (7.39), (7.40), where we had two adjusting parameter,
we have in Eqs. (7.41), (7.42) three parameters, namely, the occupation numbers of each
Zeeman state in the condensed fraction. Therefore, in order to fix the value of the additional
adjusting parameter we need another condition. To find this extra condition we remember
the discussion in Section 5.3. There, we emphasized that a double condensation of the states
|a = 0〉 and |a = −1〉 occurs at the second critical temperature. As none of both states is
preferred for T ≤ Tc2 , we assume the condition N C

1 = N C
0 [56]. From Eqs. (7.41) and (7.42)
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we then deduce

N C
1 −M = N C

0 = N C
−1 =

1 −M
3

− T ν

{

1 +
3

2

δ3ν
T
ω̄

ω̃

ζ(2)

ζ(3)

[

ζ(3)

N

]1/3
}

. (7.43)

We thus have for temperatures below Tc2 an analytical result for the occupation numbers.

We finish this chapter with a discussion of Figure 7.3. We first treat the homogeneous
case. As discussed in Section 7.2, coming from temperatures far above the first critical tem-
perature, the occupation numbers of each Zeeman state is altered only weakly by changing
the temperature. This is what one would expect from an ideal classical spinor gas. As
long as the temperatures are far above the first critical temperatures the average distances
between the particle are large compared to the average spatial extension of a single parti-
cle. Therefore, quantum effects can be neglected. Reaching temperatures near to Tc1 the
extension of a single particle is close to the average distance between neighboring particles.
Thus the bosonic quantum mechanical nature of the particles can no longer be neglected.
Depending on the total magnetization of the system this manifests itself in a deviation of
the occupation number from the high-temperature behavior in the gas phase, as can be seen
in Figure 7.3 for the magnetization M = 0.25.

Reaching the first critical temperature, the |a = 1〉 state of the system starts to Bose-Einstein
condense. In Figure 7.3 the condensed part of the spinor gas is denoted by the dashed line.
It can be seen quite clearly that the particles in the condensed fraction are fully polarized.
Furthermore, the thermal occupation numbers of the different Zeeman states change dras-
tically. We see that the occupation number of the thermal particles in the first Zeeman
level N T

1 reduces drastically with decreasing temperature. Reaching Tc2 , the system shows
a remarkable property. Here, the occupation number of each thermal Zeeman state is equal,
i.e., the magnetization of the thermal cloud is zero which correspond to an antiferromagnetic
behavior. It is worthwhile noticing that for the special case of a magnetization of M = 0.25,
the occupation number of each thermal Zeeman component and the occupation number of
the condensed first Zeeman state coincide. From an experimental point of view this is an
interesting observation, because it is much easier to measure and compare identical occupa-
tion numbers of different Zeeman states than to compare different ones.

Going below the second critical temperature, the behavior of the occupation numbers can be
described analytically, see Eq. (7.43). It is remarkable that the second phase transition shows
a double condensation [56], i.e., particles being in the Zeeman state |a = 0〉 and |a = −1〉
start to Bose-Einstein condense at the same critical temperature. Furthermore, we have
the characteristic property of the antiferromagnetic phase that the particle numbers of the
excited are the same in every Zeeman state, i.e., the magnetization of the thermal cloud re-
mains zero for T ≤ Tc2 . At zero temperature all excited particles Bose-Einstein condense, so
in complete analogy to a scalar Bose-Einstein condensate the ideal spinor condensate shows
no depletion of the ground-state at zero temperature. As it can be seen from Eq. (7.43),
the number of particles being in the Bose-Einstein condensed state are the same for Zeeman



58 Particle Numbers

0.25 0.5 0.75 1 1.25 1.5

0.1

0.2

0.3

0.4

0.5NT,C
a

T

Tc2
Tc1 M = 0.25

(a)

NT
1 NT

0 NT
−1

NC
1 NC

0 NC
−1

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8NT,C
a

T

Tc2
Tc1 M = 0.75

(b)

0.25 0.5 0.75 1 1.25 1.5

0.1

0.2

0.3

0.4

0.5NT,C
a

T

Tc2
Tc1 M = 0.25

(c)

NT
1 NT

0 NT
−1

NC
1 NC

0 NC
−1

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8NT,C
a

T

Tc2
Tc1 M = 0.75

(d)

Figure 7.3: Particle occupation of Zeeman state a for the thermal and condensed fraction
in case of (a), (b) homogeneous and (c), (d) harmonically trapped spinor gas with mag-
netizations M = 0.25 and 0.75 . For (c) and (d) the case of an infinite number of particles
N → ∞ (dark color) and of a finite number of N = 10.000 particles (bright color) is plotted.

state |a = 0,−1〉, whereas the number of particles being in the condensed |a = 1〉 state dif-
fers at a given magnetization by a constant which remains the same for T ≤ Tc2. Note that
the discussion of harmonically trapped spinor gas can be given in complete analogy to the
homogeneous spinor gas. They just differ qualitatively. This can be seen from Figure 7.3.



Chapter 8

Heat Capacity

In this chapter the heat capacity of a homogeneous and a harmonically trapped F = 1 spinor
gas is discussed. Like in the chapters before we emphasize how the temperature dependence
of the heat capacity changes with the total magnetization of the system. We will see that the
phase transitions discussed above also show up in a characteristic way in the heat capacity.
In the following we will neglect the finite size scaling.

8.1 General Procedure

The heat capacity is defined as

CV =
∂U

∂T

∣

∣

∣

∣

N,M,V

, (8.1)

where U is the internal energy given by

U = F + TS + µN + ηM. (8.2)

For convenience, we calculate instead of Eq. (8.1) the heat capacity per particle

CV
NkB

=
1

NkBT0

∂U

∂T

∣

∣

∣

∣

N ,M,V

, (8.3)

where we also performed a change of variables using Eq. (6.8). In Eq. (8.2), S denotes the
entropy

S = − 1

T0

∂F
∂T

∣

∣

∣

∣

V,µ,η

. (8.4)

and F is the grand-canonical free energy of the system. Using the property that the effective
action Γ[Ψ∗,Ψ] reduces at extremized Background fields to the grand-canonical free energy
and (4.36), (5.10), (6.5) we obtain approximation

F
NkB

= − T ν+1

ζ(ν)

[

ζν+1(zzη) + ζν+1(z) + ζν+1(z/zη)

]

. (8.5)
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Note that the tree-level action A[Ψ∗,Ψ] in Eq. (4.36) does not contribute to the grand-
canonical free energy in (8.5) if we consider the Gross-Pitaevskii equations (5.10) to be
fulfilled. This means that the condensed particles do not contribute to the thermal properties
of the gas, which is due the Gross-Pitaevskii equations (5.11)–(5.13). To calculate the total
number of particles and the total magnetization of the system, we cannot start directly from
Eq. (8.5), but have to proceed according to Chapter 5. Using Eqs. (5.15), (5.16), (6.5), (8.2),
(8.4), and (8.5) yields for the internal energy

U = ν
T ν+1

ζ(ν)

[

ζν+1(zzη) + ζν+1(z) + ζν+1(z/zη)

]

. (8.6)

The latter equation is the starting point for calculating the heat capacity (8.3) for all phases.

8.2 Gas Phase

In this section we calculate the heat capacity of a F = 1 spinor gas in the gas phase.
Furthermore, we will show that for T → ∞ the heat capacity follows the Dulong-Petit law.
In addition, we calculate the heat capacity in the limit T ց Tc1.

8.2.1 Derivation

The internal energy of the system being in the gas phase is simply given by the general
expression (8.6). Using Eq. (8.3) we get after a straight-forward calculation for the heat
capacity

CV
NkB

= ν
T ν

ζ(ν)

{

(ν + 1)
[

ζν+1(zzη) + ζν+1(z) + ζν+1(z/zη)
]

+ ζν (zzη) T
∂

∂T log zzη + ζν (z) T ∂

∂T log z + ζν (z/zη)T
∂

∂T log z/zη

}

. (8.7)

To get rid of the partial derivatives in Eq. (8.7) we make use of the condition that the total
number of particles and the total magnetization are not altered by changing temperature,
i.e.,

∂N
∂T

∣

∣

∣

∣

N ,M,V

= 0,
∂M
∂T

∣

∣

∣

∣

N ,M,V

= 0. (8.8)

With (5.19), (5.20) the latter yields a coupled set of equations, which can be written as a
matrix equation

M
T ν+1

ζ(ν)

∂

∂T

(

log z

log zη

)

= −ν
(

N
M

)

, (8.9)

M =

(

ζν−1(zzη) + ζν−1(z) + ζν−1(z/zη) ζν−1(zzη) − ζν−1(z/zη)

ζν−1(zzη) − ζν−1(z/zη) ζν−1(zzη) + ζν−1(z/zη)

)

, (8.10)
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In order to solve Eq. (8.9) for ∂T z and ∂T zη, we have to invert M, which is simply

M−1 =
1

detM

(

ζν−1(zzη) + ζν−1(z/zη) −ζν−1(zzη) + ζν−1(z/zη)

−ζν−1(zzη) + ζν−1(z/zη) ζν−1(zzη) + ζν−1(z) + ζν−1(z/zη)

)

, (8.11)

with the determinant

det M = 4ζν−1 (zzη) ζν−1 (z/zη) + ζν−1 (z)
[

ζν−1 (zzη) + ζν−1 (z/zη)
]

. (8.12)

Multiplying (8.9) from the left side with (8.11) yields

T ν+1

ζ(ν)

∂

∂T

(

log z

log zη

)

= a, (8.13)

with the vector

a = − ν

detM(0)

(

N [ζν−1 (zzη) + ζν−1 (z/zη)] −M [ζν−1 (zzη) − ζν−1 (z/zη)]

−N [ζν−1 (zzη) − ζν−1 (z/zη)] + M [ζν−1 (zzη) + ζν−1 (z) + ζν−1 (z/zη)]

)

.

(8.14)
Substituting Eqs. (8.13), (8.14) into (8.7) yields for the heat capacity in the gas phase

CV
NkB

= ν(ν + 1)
ζν+1 (zzη) + ζν+1 (z) + ζν+1 (z/zη)

ζν (zzη) + ζν (z) + ζν (z/zη)
− ν2

{

ζν−1 (zzη) + ζν−1 (z/zη) −

− 2M
[

ζν−1 (zzη) − ζν−1 (z/zη)
]

+ M2
[

ζν−1 (zzη) + ζν−1 (z) + ζν−1 (z/zη)
]

}

× ζν (zzη) + ζν (z) + ζν (z/zη)

4 ζν−1 (zzη) ζν−1 (z/zη) + ζν−1 (z) [ζν−1 (zzη) + ζν−1 (z/zη)]
(8.15)

In Figure 8.1, which at the end of this chapter, the heat capacity is plotted versus the
temperature for the typical magnetizations M = 0.25 and 0.75.

8.2.2 High-Temperature Limit

In Figure 8.1, we see that the heat capacity of both the homogeneous and harmonically
trapped spinor gas tends for high temperatures to a constant value. To quantify this, we use
the definition of the polylogarithmic function (4.21) and Eqs. (7.3)–(7.6), so that we get for
(8.15) the following expression

lim
T→∞

CV
NkB

= ν(ν + 1) − ν2

{

zzη + zz−1
η − 2

zη − z−1
η

zη + 1 + z−1
η

(

zzη − zz−1
η

)

+

(

zη − z−1
η

zη + 1 + z−1
η

)2

(zzη + z + zz−1
η )

}

zzη + z + zz−1
η

4z2 + z(zzη + zz−1
η )

. (8.16)
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It turns out that the all z, zη cancel each other, so that we obtain

lim
T →∞

CV
NkB

= ν. (8.17)

In other words, the homogeneous and the harmonically trapped spinor gas fulfill the Dulong-
Petit law [45]

lim
T →∞

CV = νNkB, (8.18)

which states that every degree of freedom contributes with kB/2 to the heat capacity. This
is an important result, as it confirms our result for the heat capacity in the high-temperature
limit.

8.2.3 First Critical Temperature

We investigate now the other interesting limit of the heat capacity where we reach the first
critical temperature from above. According to Figure 5.2 we have at Tc1 the conditions
NC
a = 0 and E0 − µ− η = 0. With the definition of z and zη in Eqs. (4.22) and (4.23), this

corresponds to
lim

TցTc1

zzη → 1. (8.19)

Therefore, we can make use of the replacement

lim
TցTc1

→ lim
zzη→1

. (8.20)

For the limit zzη → 1 we have to treat the case of a homogeneous and harmonically trapped
spinor condensate separately. The reason is that in Eq. (8.15) terms of the kind ζν−1(zzη)
occur, which diverge in the homogeneous case ν = 3/2 for zzη → 1. They remain finite for
the harmonically trapped case ν = 3. Therefore, using

lim
zzη→1

ζν−1(zzη)
∣

∣

∣

ν=3/2
→ ∞ (8.21)

we get for the heat capacity in case of a homogeneous spinor gas

lim
zzη→1

CV
NkB

=
15

4

ζ (5/2) + ζ5/2 (z) + ζ5/2(z
2)

ζ (3/2) + ζ3/2 (z) + ζ3/2(z2)
− 9

4

ζ (3/2) + ζ3/2 (z) + ζ3/2(z
2)

ζ1/2(z) + 4ζ1/2(z2)
(1 −M)2.

(8.22)
The corresponding limit of the harmonically trapped spinor gas reads

lim
zzη→1

CV
NkB

= 12
ζ(4) + ζ4 (z) + ζ4 (z2)

ζ(3) + ζ3 (z) + ζ3 (z2)
− 9

{

ζ(2) + ζ2
(

z2
)

− 2M
[

ζ(2) − ζ2
(

z2
)

]

+ M2
[

ζ(2) + ζ2 (z) + ζ2
(

z2
)

]

}

ζ(3) + ζ3 (z) + ζ3 (z2)

4 ζ(2) ζ2 (z2) + ζ2 (z) [ζ(2) + ζ2 (z2)]
.

(8.23)

Comparing Eq. (8.22) with (8.23), we see that the divergent term occurring in the homo-
geneous case causes a cancelation of a number of terms, which do not cancel out in the
harmonic case (8.23).
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8.3 Ferromagnetic Phase

In the last section we have derived the heat capacity of a F = 1 spinor gas for a temperature
above Tc1. We study now the heat capacity of a spinor system which is in the ferromagnetic
phase, i.e., we cover the temperature range Tc2 ≤ T ≤ Tc1. The derivation of the heat capac-
ity in the ferromagnetic phase is analogous to the one given in the last section. Substituting
the conditions for the ferromagnetic phase (5.23), (5.24) in Eq. (8.6) yields for the internal
energy of the system in the ferromagnetic phase

U

NkB
= ν

T ν+1

ζ(ν)

[

ζ(ν + 1) + ζν+1(z) + ζν+1(z
2)

]

. (8.24)

The calculation of the heat capacity is now straight-forward. With Eqs. (8.3) and (8.24) we
get

CV
NkB

= ν
T ν

ζ(ν)

{

(ν+1)
[

ζ(ν+1)+ζν+1(z)+ζν+1(z
2)
]

+
[

ζν(z)+2ζν(z
2)
]

T ∂

∂T log z

}

(8.25)

We remove the partial derivatives with respect to T by using the conservation of the total
number of particles (7.39) and of the magnetization (7.40). Note that, in the ferromagnetic
phase, we have a contribution to the total number of particles and to the magnetization
which is due to the condensed fraction. We eliminate this contribution by subtracting M in
(7.40) from N in (7.39). Performing the partial derivative with respect to T yields

T ∂

∂T (N −M) =ν
T ν

ζ(ν)

[

ζν(z)+2ζν(z
2)
]

+
T ν

ζ(ν)

[

ζν−1(z)+4ζν−1(z
2)
]

T ∂

∂T log z = 0. (8.26)

Thus, we obtain
T
ζ(ν)

∂

∂T log z = − ν

ζ(ν)

ζν(z) + 2ζν(z
2)

ζν−1(z) + 4ζν−1(z2)
. (8.27)

Substituting (8.27) in (8.25) yields for the heat capacity in the ferromagnetic phase

CV
NkB

= ν
T ν

ζ(ν)

{

ν(ν + 1)
[

ζ(ν + 1) + ζν+1(z) + ζν+1(z
2)
]

− ν
[ζν(z) + 2ζν(z

2)]
2

ζν−1(z) + 4ζν−1(z2)

}

. (8.28)

We study the two limiting cases where the temperature reaches Tc1 and Tc2 , respectively.
Substituting the zeroth-order contribution of Eq. (6.13) in (8.28) yields for the Tc1–limit of
the heat capacity

lim
T րTc1

CV
NkB

= ν(ν + 1)
ζ(ν + 1) + ζν+1(z) + ζν+1(z

2)

ζ(ν) + ζν(z) + ζν(z2)

−ν2 [ζν(z) + 2ζν(z
2)]

2

[ζ(ν) + ζν(z) + ζν(z2)][ζν−1(z) + 4ζν−1(z2)]
. (8.29)

We note, that the fugacity z is continuous for all temperatures, i.e., at the same total number
of particles and total magnetization we have

lim
T ցTci

z = lim
T րTci

z, i = 1, 2. (8.30)
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This is an important remark, because it allows us to compare the limits of the heat capacity
coming from above and below Ti. Comparing Eqs. (8.22), (8.23), (8.29) and that the heat
capacity is continuous at Tc1 yields for the homogeneous spinor gas

lim
T ցTc1

CV
NkB

− lim
T րTc1

CV
NkB

= 0, ν = 3/2, (8.31)

whereas the harmonically trapped spinor gas leads to the jump

lim
T ցTc1

CV
NkB

− lim
T րTc1

CV
NkB

= − 9
ζ(3) + ζ3 (z) + ζ3 (z2)

4 ζ(2) ζ2 (z2) + ζ2 (z) [ζ(2) + ζ2 (z2)]

×
{

ζ(2) + ζ2
(

z2
)

− 2M
[

ζ(2) − ζ2
(

z2
)

]

+ M2
[

ζ(2) + ζ2 (z) + ζ2
(

z2
)

]

}

+ 9
ζ(3) + ζ3(z) + ζ3(z

2)

ζ2(z) + 4ζ2(z2)
(1 −M)2, ν = 3. (8.32)

From Eq. (8.31) and (8.32) we see that the heat capacity of a homogeneous and harmonically
trapped spinor gas are fundamentally different.

We are also interested in the limit T → Tc2. According to Figure 5.2 we have the following
condition for the fugacity

lim
T →Tc2

z = 1. (8.33)

Furthermore, using Eq. (6.18) for the second critical temperature leads for the Tc2 limit of
the heat capacity of the homogeneous spinor gas to

lim
T ցTc2

CV
NkB

=
15

4

ζ(5/2)

ζ(3/2)
(1 −M) (8.34)

and for the harmonically trapped spinor gas

lim
T ցTc2

CV
NkB

=

{

12
ζ(4)

ζ(3)
− 27

5

ζ(3)

ζ(2)

}

(1 −M). (8.35)

8.4 Antiferromagnetic Phase

We turn now to the calculation of the heat capacity in the antiferromagnetic phase. In
complete analogy to the case of a spinor gas in the gas and the ferromagnetic phase we
obtain for the internal energy of a spinor gas in the antiferromagnetic phase

U

NkB
= 3ν

T ν+1

ζ(ν)
ζ(ν + 1). (8.36)

The heat capacity then reads

CV
NkB

= 3ν(ν + 1)
ζ(ν + 1)

ζ(ν)
T ν . (8.37)
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We also calculate the limits of the heat capacity for the limit T → 0 and T → Tc2.

The T → 0 limit is trivial

lim
T →0

CV
NkB

= 0. (8.38)

This is exactly the result which is predicted by the third law of thermodynamics.

We turn to the limit T → Tc2 . Substituting Eq. (6.18) in Eq. (8.37) leads to the following
result

lim
T րTc2

CV
NkB

= ν(ν + 1)
ζ(ν + 1)

ζ(ν)
(1 −M). (8.39)

With Eqs. (8.34), (8.35), and (8.39) we get for the jump of the heat capacity in the homo-
geneous case

lim
T ցTc2

CV
NkB

− lim
T րTc2

CV
NkB

= 0, ν = 3/2, (8.40)

and for the harmonically trapped case

lim
T ցTc2

CV
NkB

− lim
T րTc2

CV
NkB

= −27

5

ζ(3)

ζ(2)
(1 −M), ν = 3. (8.41)

In analogy to the first phase transition discussed above, we see that a homogeneous spinor gas
has a continuous heat capacity, whereas the harmonically trapped spinor gas shows a jump
which is described by Eq. (8.41). In Figure 8.2 we have plotted the jump of the heat capacity
for both the first and the second phase transition. There are two remarkable details. First,
we see that the jump depends on the total magnetization of the system. Furthermore, there
exists a special value for the magnetization, where the size of the first and the second jump
become equal. Another remarkable property is, that the second jump vanishes for a fully
polarized spinor condensate. This is not a surprising result, because the antiferromagnetic
phase vanishes for a full polarized F = 1 spinor gas.
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Figure 8.1: Heat capacity of (a), (b) homogeneous and (c), (d) harmonically trapped
spinor gas for magnetizations M = 0.25 and 0.75.
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Chapter 9

Interaction Potential

This chapter provides an appropriate description of the interaction between particles of a
dilute spinor gas in the low-temperature regime. We will see that in such a system it is
sufficient to consider only a two-particle interaction between particles. Furthermore, we will
show that in this regime the interaction of the F = 1 spinor gas is adequately described by
only two scalars.

9.1 Experimental Environment

In order to study BECs theoretically, we can use several simplifications, which are mainly due
to the experimental environment. In the following we mention some typical physical values
of a spinor Bose-Einstein condensate experiment, which are taken from Ref. [25]. There, the
total number of particles in the system are around 5− 10× 105. The particle density ranges
from 1014 − 1015 cm−3. By contrast, the density of particles in air under standard conditions
is around 1019 cm−3, therefore, the spinor gas can be considered as very dilute. The critical
temperature in case of sodium is experimentally measured to be of the order 1−2µK, i.e., the
particles are considerably slow. Due to the dilute environment, the most probable interaction
between particles will be the two-particle interaction. However, three-particle collisions also
occur in the system. Two particles being involved in such a three-body collision may form
a molecule, whereas the third carries away the released momentum and energy. Due to the
trapping configuration, which is very sensitive to the properties of the particles, the particles
will leave the trap after the three-body collision. Therefore, they do not directly contribute
to effects being seen in spinor Bose-Einstein experiments, but cause a considerable trap loss.
We will neglect such trap losses and consider only two-particle interactions.

9.2 Pseudopotential

In general, the appropriate choice of the two-particle interaction potential plays an important
role in explaining the physics of a collisional process. We first consider spinless particles.
The exact atom-atom interaction potential can only be calculated numerically. However, for
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Figure 9.1: Lennard-Jones potential (9.1) shows the typical behavior of an atom-atom
interaction potential.

many cases it is sufficient to approximate this interaction potential by the Lennard-Jones
potential [72]

V (int) (x1 − x2) = 2C

[

1

2

(

R0

R

)12

−
(

R0

R

)6
]

, R ≡ |x1 − x2|, (9.1)

where R0 denotes the position of the potential minimum and C its depth. Both R0 and C
are empirical constants. We have shown such a potential in Figure 9.1.

Equation (9.1) already imposes that the particles interact via central forces. This is not
true for particles with a non-vanishing magnetic dipole moment [66]. For low temperatures
it turns out, that we can replace Eq. (9.1) by a pseudopotential [45, 73]

V (int) (x1 − x2) = g δ (x1 − x2) , (9.2)

where the interaction strength is summarized by one single parameter g. Furthermore, we
introduce the s-wave scattering length a, which is defined through the interaction strength
by [67]

g =
4π~

2

M
a (9.3)

with the single-particle mass M . Note that the interaction potential (9.2) cannot repro-
duce for example bounding states of two colliding particles. However, it provides a good
description of the physics for particle distances R ≫ |a|, which is important for studying
thermodynamic properties of a system. We note that the s-wave scattering length a may
take positive or negative values. The former correspond to a repulsive and the latter to an
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attractive interaction potential. With the help of Feshbach resonances it has been demon-
strated [5] that Bose-Einstein condensates with an attractive interaction could be unstable
so that they collapses.

The generalization of the pseudopotential (9.2) to a system of two atoms with spin F = 1 is
given by [22, 23]

V (int) (x1 − x2) = δ (x1 − x2)

2
∑

f=0

gfPf . (9.4)

Here, Pf denotes the projection operator, which projects the pair wave function of atom
1 and atom 2 into the total hyperfine spin state f . The constants g0, g1, and g2 are the
respective interaction strengths defined in analogy to Eq. (9.3) as

gf =
2π~

2

µ
af , µ =

M1M2

M1 +M2
, (9.5)

where µ is the reduced mass of the colliding atoms.

The physical description of the two-particle interaction potential (9.4) is the following. Con-
sider two F = 1 particles, which are at distances where they do not interact with each other.
Each of them is completely described by a single particle wave function. However, if the
particles start to interact with each other, they have to be described by a two-particle wave
function. Using the rules for adding two angular momenta, the two-particle system can have
a total angular momentum of f = 0, 1, and 2. The crucial point is now, that the strength
of the particle-particle interaction is not necessarily the same for each f . This is taken into
account by introducing different interaction strength gf as done in Eq. (9.4).

In case of a system with identical bosonic particles, we have to take the bosonic symmetriza-
tion condition into account. It follows, that the odd f contribution in (9.4) vanishes (see
App. D), i.e., the pseudopotential reduces to

V (int) (x1 − x2) = δ (x1 − x2)
(

g0P0 + g2P2

)

. (9.6)

In Figure 9.2 we have schematically drawn the collision of two particle via a delta potential.
For practical purposes, we rewrite 9.6 as shown in Appendix D as

V (int)(x1 − x2) = δ(x1 − x2)(c01112 + c2F̂1 · F̂2) (9.7)

with the operator of angular momentum F̂i acting on the ith atom, the unit operator 1i, and
the newly introduced interaction strengths

c0 = (g0 + 2g2)/3 and c2 = (g2 − g0)/3. (9.8)
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Figure 9.2: Collision of two particles with delta interaction. Two particles being initially
in the one-particle states |m1〉 and |m2〉 couple in the interaction zone with each other to
a two-particle state. The two-particle state can take the angular momentum f=0 or f=2,
whereas f=1 is forbidden due to the principal bosonic symmetrization condition. Depending
on the total angular momentum of the two-particle state, the interaction potential differs in
its strength, which is accounted for with different interaction strength g0, g2. The angular
momentum is conserved after the collision.

In analogy to Eq. (9.8) we define newly s-wave scattering lengths

ã0 = (a0 + 2a2)/3, ã2 = (a2 − a0)/3. (9.9)

In matrix representation Eq. (9.7) reads

V
(int)
aba′b′(x1 − x2) = δ(x1 − x2)

(

c0δabδa′b′ + c2F
j
abF

j
a′b′

)

, (9.10)

where the operators of angular momentum are replaced by the respective spin-1 matrices
given in Eq. (2.17).



Chapter 10

Gross-Pitaevskii Equations

In Chapter 5 we studied the Gross-Pitaevskii equations and their solutions for a non-
interacting F = 1 spinor gas. It turned out that it is possible to solve the Gross-Pitaevskii
equations analytically for the case of a homogeneous and a harmonically trapped system.
In this chapter, we study the Gross-Pitaevskii equations for the case of a weakly interacting
spinor gas. We will see, that their solutions cannot be given analytically, so that we have
to employ several approximations. We start this chapter with deriving the Gross-Pitaevskii
equations of the interacting F = 1 system, which provides the basis for studying all possible
phases. We will then work out their solutions and discuss them. At the end, we show that in
case of a non-magnetization conserving system, the solutions of the Gross-Pitaevskii equa-
tions can be summarized in a compact form, which provides a deeper insight about spinor
condensates with non-vanishing particle interaction.

10.1 Action of Interacting Spinor Gas

The starting point for the calculation of the Gross-Pitaevskii equations is the action of the
system:

A[ψ∗, ψ] = A(0)[ψ∗, ψ] + A(int)[ψ∗, ψ]. (10.1)

The first contribution is equal to the action of the non-interacting spinor gas (2.47), whereas
the second contribution, given in (2.48), is due to the interaction of the particles.

As discussed in the last chapter, for low temperatures it is possible to approximate the
potential of the two-particle interaction by an appropriate pseudopotential (9.10). Substi-
tuting the latter into (2.48) yields for the interaction contribution of the action [22, 23]

A(int)[ψ∗, ψ] =
1

2

∫

~β

0

dτ

∫

d3x

{

c0

[

ψ∗
a(x, τ)ψa(x, τ)

]2

+ c2
∑

j=x,y,z

[

ψ∗
a(x, τ)F

j
abψb(x, τ)

]2
}

.

(10.2)
Splitting the spinor-fields ψ into a background field Ψ and a fluctuation field δψ, leads with
(3.9)

A[Ψ∗ + δψ∗,Ψ + δψ] = A[Ψ∗,Ψ] + A(2)[δψ∗, δψ] + A(cor)[δψ∗, δψ]. (10.3)

73
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Here, the tree-level action A[Ψ∗,Ψ] is simply the action (10.1) evaluated at the background
fields. Using Eqs. (3.7) and (9.10), the fluctuating part of the action is given by

A(2) =

∫

~β

0

dτ

∫

d3x δψ∗
a

{[(

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

)

δab − ηF z
ab

]

δψb (10.4)

+
c0
2

[

(Ψ∗
aδψa)

2 + (Ψaδψ
∗
a)

2 + 2Ψ∗
aΨaδψ

∗
b δψb + 2Ψ∗

aδψaδψ
∗
bΨb

]

+
c2
2

∑

j=x,y,z

[

(Ψ∗
aF

j
abδψb)

2 + (δψ∗
aF

j
abΨb)

2 + 2Ψ∗
aF

j
abΨbδψ

∗
cF

j
cd δψd + 2δψ∗

aF
j
abΨbΨ

∗
cF

j
cd δψd

]

}

and with Eq. (3.8) we obtain the correlation action

A(cor) =

∫

~β

0

dτ

∫

d3x

{

c0
2

[

2Ψ∗
aδψaδψ

∗
bδψb + 2δψ∗

aΨaδψ
∗
bδψb + (δψ∗

aδψa)
2
]

(10.5)

+
c2
2

∑

j=x,y,z

[

2δψ∗
aF

j
abΨb δψ

∗
c F

j
cd δψd + 2Ψ∗

aF
j
ab δψbδψ

∗
cF

j
cd δψd + (δψ∗

aF
j
abδψb)

2
]

}

.

For convenience we omitted writing the dependence of the fields on the respective space-time
points.

10.2 Derivation of Gross-Pitaevskii Equations

According to (3.15), the leading order of the effective action is determined by the Euclidean
action (10.1) evaluated at the background fields. The background fields in turn, are cal-
culated by extremizing the Euclidean action with respect to the background fields. The
resulting set of equations are the Gross-Pitaevskii equations. For a general two-particle in-
teraction potential they are given by (3.19), (3.20). For our particular interaction potential
9.10 they read

0 =

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab

}

Ψb + c0Ψ
∗
a′Ψa′Ψa

+ c2F
j
abΨbΨ

∗
a′F

j
a′b′Ψb′, a = 1, 0,−1. (10.6)

Using the explicit form of the spin matrices (2.17) yields the identities

Ψ∗
aF

x
abΨb =

1√
2

(

Ψ∗
1Ψ0 + Ψ∗

0Ψ1 + Ψ∗
0Ψ−1 + Ψ∗

−1Ψ0

)

, (10.7)

Ψ∗
aF

y
abΨb =

i√
2

(

− Ψ∗
1Ψ0 + Ψ∗

0Ψ1 − Ψ∗
0Ψ−1 + Ψ∗

−1Ψ0

)

, (10.8)

Ψ∗
aF

z
abΨb = Ψ∗

1Ψ1 − Ψ∗
−1Ψ−1 , (10.9)

which are used to rewrite (10.6) more conveniently
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−~
∂

∂τ
Ψ1 =

[

− ~
2

2M
∆ + (c0 + c2)

(

|Ψ1|2 + |Ψ0|2
)

+ (c0 − c2)|Ψ−1|2 + V (x) − (µ+ η)

]

Ψ1 + c2Ψ
∗
−1Ψ

2
0, (10.10)

−~
∂

∂τ
Ψ0 =

[

− ~
2

2M
∆ + (c0 + c2)

(

|Ψ1|2 + |Ψ−1|2
)

+ c0|Ψ0|2 + V (x) − µ

]

Ψ0 + 2c2Ψ
∗
0Ψ1Ψ−1, (10.11)

−~
∂

∂τ
Ψ−1 =

[

− ~
2

2M
∆ + (c0 + c2)

(

|Ψ−1|2 + |Ψ0|2
)

+ (c0 − c2)|Ψ1|2 + V (x) − (µ− η)

]

Ψ−1 + c2Ψ
∗
1Ψ

2
0. (10.12)

The latter Gross-Pitaevskii equations represent a coupled set of differential equations. In
contrast to the algebraic Gross-Pitaevskii equations of an ideal spinor gas (5.10), they cannot
be solved analytically without further simplifications.

10.3 Solution of Gross-Pitaevskii Equations

We show in this section, how the two-particle interaction changes the system properties. In
order to properly solve the Gross-Pitaevskii equations, we adopt the Thomas-Fermi approx-
imation, which consists in neglecting the kinetic part in (10.10)–(10.12), i.e., we perform the
replacement

− ~
2

2M
∆ → 0. (10.13)

In Ref. [67] it is shown for low temperatures that the Thomas-Fermi solution of the con-
densates wave function is in excellent agreement with the exact solution for the bulk of
the condensate, whereas at the condensate surface its solution deviates from the exact one.
However, for our purposes it is a quite good approximation. Moreover, we assume the
background fields to be independent of imaginary time. This corresponds to the case of a
stationary spinor Bose-Einstein condensate.

Thus, we start by rewriting the background fields as

Ψa(x) =
√

na(x)eiϕa(x), na(x), ϕa(x) ∈ R, a = 1, 0,−1, (10.14)
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where na(x) = |Ψa(x)|2 is the condensates particle density in the ath Zeeman state. Using
the latter, we obtain for the Gross-Pitaevskii equations (10.10)–(10.12):

0 =
[

c0 n+ c2(m+ n0) + V (x) − µ− η
]√

n1e
iϕ1 + c2n0

√
n−1e

i(2ϕ0−ϕ−1), (10.15)

0 =

{

[

c0 n+ c2(n− n0) + V (x) − µ
]

eiϕ0 + 2c2
√
n1n−1e

i(−ϕ0+ϕ1+ϕ−1)
}√

n0, (10.16)

0 =
[

c0 n+ c2(−m+ n0) + V (x) − µ+ η
]√

n−1e
iϕ−1 + c2n0

√
n1e

i(2ϕ0−ϕ1) (10.17)

with the total condensates particle density

n(x) = n1(x) + n0(x) + n−1(x) (10.18)

and the total condensates magnetization density

m(x) = n1(x) − n−1(x). (10.19)

10.3.1 Investigation of Different Cases

In order to find the most general solution of Eqs. (10.15)–(10.17), we discuss the Gross-
Pitaevskii equations for every possible particle occupation number of the Zeeman states,
which are given by

1.) n1 = n0 = n−1 = 0, 4.) n0 6= 0, n1 = n−1 = 0, 7.) n1, n−1 6= 0, n0 = 0,

2.) n1 6= 0, n0 = n−1 = 0, 5.) n1, n0 6= 0, n−1 = 0, 8.) n1, n−1, n0 6= 0.

3.) n−1 6= 0, n0 = n1 = 0, 6.) n−1, n0, 6= 0, n1 = 0.

(10.20)

We substitute each of the possibilities (10.20) in the Gross-Pitaevskii equations (10.15)–
(10.17) and discuss them in tabular form:

1.) The first case solves all Gross-Pitaevskii equations identically. It represents the physical
situation that no particles are in the condensed fraction.

2.) Equations (10.16) and (10.17) are solved identically. From Eq. (10.15) we deduce with
help of (10.18), (10.19) the relation

(c0 + c2)n(x) + V (x) − µ− η = 0. (10.21)

3.) In complete analogy to 2.), Eqs. (10.15) and (10.16) are solved directly and we deduce
from (10.17)

(c0 + c2)n(x) + V (x) − µ+ η = 0. (10.22)

4.) Equations (10.15) and (10.17) are identically fulfilled. From Eq. (10.16) we get the
condition

c0 n(x) + V (x) − µ = 0 (10.23)
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5.) Equation (10.17) leads to the equation c2n1(x)n0(x) = 0. For c2 6= 0 this contradicts
against the assumptions, hence, there is no solution for this case.

6.) No solution, see 5.).

7.) From Eqs. (10.15) and (10.17) one obtains the following set equations

c0 n(x) + c2m(x) + V (x) − µ− η = 0, (10.24)

c0 n(x) − c2m(x) + V (x) − µ+ η = 0, (10.25)

which are rewritten as

c2m(x) − η = 0, (10.26)

c0 n(x) + V (x) − µ = 0. (10.27)

8.) The Gross-Pitaevskii equations have to be fulfilled separately for both real and imag-
inary part. According to (10.14), the imaginary contributions are due to the complex
exponential functions. Therefore, we deduce from Eqs. (10.15)–(10.17)

2ϕ0(x) = ϕ1(x) + ϕ−1(x) + p π, p ∈ Z. (10.28)

Note that the latter is also fulfilled by a global change phase, i.e.,

ϕa(x) → ϕa(x) + θ(x), a = 1, 0 − 1, θ(x) ∈ R. (10.29)

Substituting (10.28) in Eqs. (10.15)–(10.17) yields

0 =

{

c0 n + c2(m+ n0) + V (x) − µ− η

}√
n1 ± c2n0

√
n−1, (10.30)

0 = c0 n+ c2(n− n0) + V (x) − µ± 2c2
√
n1n−1, (10.31)

0 =

{

c0 n + c2(−m+ n0) + V (x) − µ+ η

}√
n−1 ± c2n0

√
n1. (10.32)

In the latter equations the upper sign represents the case where p in Eq. (10.28) is an
even number, whereas the lower sign holds for p being an odd number.

By adding and subtracting Eqs. (10.30) and (10.32) from each other and using (10.18),
(10.19) we get

0 = c2 n0

(√
n1n−1 ∓

n0

2

)

+ n
(

c0
√
n1n−1 ± c2

n0

2

)

+ [V (x) − µ]
√
n1n−1, (10.33)

0 = c2m
(√

n1n−1 ∓
n0

2

)

− η
√
n1n−1. (10.34)
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Furthermore, we deduce from Eqs. (10.31) and (10.33) the relation

0 =
√
n1n−1(n− 2n0) ∓

1

2

[

n0(n− n0) − 4n1n−1

]

(10.35)

We discuss the latter equations for both p even and p odd:

a) p even:

For p being an even number, the upper sign holds in (10.33)–(10.35). We have to
discuss two cases:

Case 1: m(x) = 0 ⇐⇒ n1(x) = n−1(x) 6= 0

From Eq. (10.34) we deduce

η
√
n1n−1 = 0 ⇒ η = 0. (10.36)

Substituting the assumption n1(x) = n−1(x) in (10.35) yields n0(x) = 2n1(x).
With Eq. (10.18) we then obtain

n1(x) = n−1(x) = n(x)/4, n0(x) = n(x)/2. (10.37)

Finally, inserting the latter in (10.33) gives the following relation for the
condensate density

(

c0 + c2

)

n(x) + V (x) − µ = 0. (10.38)

Case 2: m(x) 6= 0

We directly obtain from Eq. (10.34)

n0(x) = 2

[

1 − η

c2m(x)

]

√

n1(x)n−1(x). (10.39)

Substituting the latter in (10.35) yields the condition

n(x) = n0(x)

[

1 +
c2m(x)

c2m(x) − η

]

. (10.40)

We substitute this into Eq. (10.33) leading to

n(x)

[

c0 + 2c2
c2m(x)

2c2m(x) − η

]

+
c2m(x)

c2m(x) − η

[

V (x) − µ
]

= 0. (10.41)

We note that the latter reduces for η = 0 to (10.38).

b) p odd:

Now, the lower sign in Eqs. (10.33)–(10.35) is considered.

Case 1: m(x) = 0 ⇐⇒ n1(x) = n−1(x) 6= 0
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In this case Eq. (10.35) is directly fulfilled. Note that this is not the case
for 1a). There, for vanishing magnetization density, the particle densities
must obey the more strict condition (10.37). With Eq. (10.34) we get η = 0.
Substituting n1(x) = n−1(x) in Eq. (10.33) yields the relation

c0n(x) + V (x) − µ = 0. (10.42)

Case 2: m(x) 6= 0

We obtain from Eq. (10.34)

n0(x) = 2

[

η

c2m(x)
− 1

]

√

n1(x)n−1(x). (10.43)

We substitute this into (10.35) yielding the condition

n(x) = n0(x)

[

1 − c2m(x)

c2m(x) − η

]

. (10.44)

With Eq. (10.33) this leads to

n(x) [c0 − 2c2m(x)/η] +
c2m(x)

c2m(x) − η

[

V (x) − µ
]

= 0. (10.45)

10.3.2 Discussion of Solutions

We discuss the latter solutions. The first one, is the most trivial one, because it indicates
that no particles are in the condensate fraction, which corresponds to a system being in the
gas phase.

The solutions 2.) and 3.) are essentially the same. They correspond to magnetizations
with opposite direction, where η simply changes its sign. These solutions correspond to the
ferromagnetic solution obtained for a ideal spinor gas in Chapter 5, where the BEC fraction
was fully polarized.

Before we turn to 4.), we discuss the solutions 5.), 6.). We first note that both describe
essentially the same physical system, where we use the same arguments as used in 1.), 2.).
With the assumption of 5.) and 6.), it is not possible to solve the Gross-Pitaeskii equations.
We also had the same situation for the ideal F = 1 spinor system as discussed in Chapter
5. Therefore, it is not possible to have a condensate where only the Zeeman states |1〉 and
|0〉 are Bose-Einstein condensed.

We discuss now the solutions 4.) and 7.). Stating that for vanishing magnetization so-
lution 7.) is equivalent to 4.), we can restrict our discussion to 7.). This solution of the
Gross-Pitaevskii equation is quite interesting, because it states that we may have magne-
tized spinor condensate, where only two Zeeman components are condensed at the same
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time. This is in contrast to the ideal F = 1 spinor system, where such a solution was not
possible. There, the second phase was characterized by a double condensation.

The solution 8.) represents a spinor Bose-Einstein condensate, where all three Zeeman
states of the BEC fraction are occupied. Here, we have two different kind of solutions, which
essentially depend on the magnetization of the system. In the first solution, a vanishing mag-
netization occurs only for one particular particle configuration, which is given by (10.37).
Note that this is not the case for 8b.).

10.3.3 System without Conservation of Magnetization

We finish this chapter by considering the special case of a system where the conservation
of magnetization is not fulfilled. This is for example the case for particles, whose magnetic
dipole moment cannot neglected anymore. As discussed in Chapter 2, neglecting the con-
servation of the magnetization correspond to setting η = 0. By doing so, we observe that
the solution derived above, can be divided into two different:

Solution A: 4.), 7.), 8b.)
ϕ1 + ϕ−1 + (2p+ 1)π = 2ϕ0, p ∈ Z, (10.46)

n1(x) − n−1(x) = 0, (10.47)

c0 n(x) + V (x) − µ = 0. (10.48)

Solution B: 2.), 3.), 8a.) ϕ1 + ϕ−1 + 2p π = 2ϕ0, p ∈ Z, (10.49)

n0(x) − 2
√

n1(x)n−1(x) = 0, (10.50)

(c0 + c2)n(x) + V (x) − µ = 0. (10.51)

We read from Solution A, that the magnetization in z-direction is always zero. Note, that
this is also the case in 8b.), otherwise we would have a divergency in (10.45). Therefore,
we refer to this solution to be antiferromagnetic. For reasons which will soon become clear
we refer to the second solution to be ferromagnetic. Note that the ferromagnetic and the
antiferromagnetic solution must not be mixed up with the ferromagnetic and antiferromag-
netic phase of Chapter 5. We derive now the most general expression of the order parameter
Ψa(x) for both the antiferromagnetic and the ferromagnetic state.

Antiferromagnetic State:

Using Eqs. (10.18) and (10.47) we may introduce the convenient notation

√

n1(x) =
√

n−1(x) =

√

n(x)

2
sin β̃, 0 ≤ β̃ ≤ π

2
(10.52)

√

n0(x) =
√

n(x) cos β̃. (10.53)
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According to Eq. (10.14) the vector order parameter Ψ(x) =
(

Ψ1(x),Ψ0(x),Ψ−1(x)
)T

then

reads

Ψ(x) =
√

n(x) eiθ̃









1√
2
sin β̃ eiϕ1

cos β̃ eiϕ0

1√
2
sin β̃ eiϕ−1









, 0 ≤ β̃ ≤ π

2
. (10.54)

In order to maintain the complete generality of the order parameter we have multiplied a
global phase factor eiθ̃ to the latter [see also Eq. (10.29)].

Substituting Eq. (10.46) in (10.54) leads to

Ψ(x) =
√

n(x) ei[θ̃+
π
2
+(ϕ1+ϕ−1)/2]









1√
2
sin β̃ e−i(ϕ−1−ϕ1)/2−iπ

2

cos β̃ eip π

1√
2
sin β̃ ei(ϕ−1−ϕ1)/2−iπ

2









, 0 ≤ β̃ ≤ π

2
, p ∈ Z.

(10.55)
We continue simplifying the order parameter by introducing of the new variables

θ ≡ θ̃ + (π + ϕ1 + ϕ−1)/2, (10.56)

τ ≡ −1

2
(ϕ1 + ϕ−1), (10.57)

α ≡ 1

2
(ϕ−1 − ϕ1 − π), (10.58)

β ≡ β̃ + pπ, (10.59)

and finally obtain the most general solution for the Gross-Pitaevskii equations of the anti-
ferromagnetic state

Ψ(x) =
√

n(x) eiθ









− 1√
2
sin β e−iα

cosβ
1√
2
sin β eiα









, α, β, θ ∈ R. (10.60)

The special solutions 1.), 4.), 7.), and 8b.) of the last subsection are easily verified to be
particular solutions of Eq. (10.60). The total particle density is determined by the condition

c0 n(x) + V (x) − µ = 0. (10.61)

It is also possible to write Eq. (10.60) with the help of the unitary spin rotation matrix

U(α, β, γ) = e−iF
zαe−iF

yβe−iF
zγ , (10.62)

where α, β, γ are Euler angles. Applying this to (10.60) yields [22]

Ψ(x) =
√

n(x) eiθ U(α, β, γ)









0

1

0









. (10.63)
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Note that the order parameter does not depend on the Euler angle γ. The latter solution
clearly reflects the invariance of the action (2.47), (10.1), (10.2) to a change of the global
phase of the condensates wave function and to a rotation in spin-space. Therefore, we could
have obtained the latter solution by simply guessing one particular solution and then using
the symmetries of the action as done in Ref. [22]. Using the general result that the scalar
product of two vectors is not altered by multiplying both vectors with an unitary matrix [42],
we easily find that the expectation value of angular momentum vanishes, i.e.,

〈F〉 ≡
∫

d3xΨ†(x)FΨ(x) = 0, (10.64)

where we used the definition F =
(

F x, F y, F z
)T

with the spin matrices F x, F y, F z defined

in (2.17). This again confirms that the state corresponds to an antiferromagnetic state.

Ferromagnetic State:

To determine the most general solution for the order parameter for the ferromagnetic state,
we proceed analogous to the antiferromagnetic case. Using Eqs. (10.18) and (10.50) we may
introduce the following convenient parametrization

√

n1(x) ≡
√

n(x) cos2 β̃

2
, (10.65)

√

n−1(x) ≡
√

n(x) sin2 β̃

2
, (10.66)

√

n0(x) =
√

2n(x) cos
β̃

2
sin

β̃

2
, 0 ≤ β̃ ≤ π. (10.67)

Substituting the latter in Eq. (10.14) yields for the order parameter of the ferromagnetic
state

Ψ(x) =
√

n(x) eiθ̃









cos2 β̃
2
eiϕ1

√
2 sin β̃

2
cos β̃

2
eiϕ0

sin2 β̃
2
eiϕ−1









, 0 ≤ β̃ ≤ π. (10.68)

We continue in complete analogy to the last subsection by introducing the abbreviations

α =
ϕ−1 − ϕ1

2
, (10.69)

τ = −ϕ1 − ϕ−1

2
, (10.70)

θ = θ̃ − τ, (10.71)

β ≡ β̃ + pπ. (10.72)
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Thus, Eq. (10.68) reads

Ψ(x) =
√

n(x) eiθ









cos2 β
2
e−iα√

2 sin β
2

cos β
2

sin2 β
2
eiα









, α, β, θ ∈ R, (10.73)

where n(x) obeys the relation

(c0 + c2)n(x) + V (x) − µ = 0. (10.74)

We also rewrite Eq. (10.73) with the help of the spin rotation matrix (10.62), which finally
yields

Ψ(x) =
√

n(x) U(α, β, γ)









1

0

0









, (10.75)

where we have set γ ≡ −θ. Note that in (10.75) the global phase factor eiθ was absorbed
in the spin rotation matrix, whereas in the antiferrmagnetic case Eq. (10.63) this was not
possible. This has also physical consequences. If one calculates the superfluid velocity
vs ∝ Ψ†∇Ψ of the system, it turns out that it depends on the gradient of the global phase
factor. Therefore, in case of the ferromagnetic solution, the superfluid velocity is directly
coupled with the spin rotation, which is not the case for the antiferromagnetic solution (see
discussion in Ref. [22]). We also calculate the expectation value of the angular momentum.
From Eq. (10.75) we deduce

| 〈F〉 | =

∫

d3xn(x) ≡ N, (~ ≡ 1). (10.76)

Hence, all particles are polarized in the same direction, which justifies to call this phase
ferromagnetic.

Occurrence of Phases

To the end of this chapter we derive the conditions for the occurrence of the antiferromagnetic
and ferromagnetic state. As discussed above, the two phases extremize the Euclidian action
(10.1). However, we do not know if the phases maximize or minimize it. Therefore, we
take the interacting part of the Euclidian action (10.2). Using the vectorial notation for the
background fields and omitting the imaginary time dependency it reads

A(int)[Ψ∗,Ψ] =
1

2

∫

~β

0

dτ

∫

d3x

{

c0

[

Ψ†(x)Ψ(x)
]2

+ c2
∑

j=x,y,z

[

Ψ†(x)FjΨ(x)
]2
}

. (10.77)

The first term on the right-hand side is simply an invariant, whereas the second term depends
on the spin configuration of the system. For positive c2 it is seen from the latter equation that
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the Euclidian action is minimized by minimization of the sum of the second term. This is
exactly the case in the antiferromagnetic phase, i.e., the background field (10.64) minimizes
the Euclidean action for c2 > 0 [22, 23]. In contrast, for c2 < 0, the Euclidean action is
minimized by the ferromagnetic solution (10.76). Therefore, the behavior of the atoms are
essentially determined by the sign of c2. A example for a ferromagnetic atom is 87Rb and
for an antiferromagnetic 23Na.



Chapter 11

First Critical Temperature in
Perturbation Theory

In the last chapter we have shown for a particular case that a two-particle interaction leads
to a noticeable change of the physical properties of the system. In this chapter we study the
influence of such an interaction to the first critical temperature for a harmonically trapped
F = 1 spinor gas. To this end we will adopt perturbation theory, which is a widely used
and a well-known analytical approximation method [43]. It is applied to systems, which
are exactly solvable for a vanishing coupling parameter. Then, it is possible to expand
the physical quantities of the system into a power expansion with respect to the coupling
parameter. One prominent example for a weak-coupling parameter is the fine-structure
constant α ≈ 1/137 of quantum electrodynamics (QED). Due to its smallness, physical
quantities in QED are perturbatively treated with a high accuracy. On the other hand, it
is also possible to calculate series expansions for systems with a strong-coupling parameter.
One method is based on a variational approach given in Ref. [57] and is called variational
perturbation theory [47, 48, Chapter 5]. In our system we have the former case, namely
a weak-coupling parameters, which we identify with the interaction strengths c0, c2. For
vanishing interaction strengths c0, c2 the system reduces to the ideal case, which we have
extensively treated in Part II.

11.1 Grand-Canonical Partition Function

We start with deriving a perturbative expression for the grand-canonical partition function

Z =

[

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa
]

e−A[ψ∗,ψ]/~, (11.1)

where the action is given as a sum of a non-interacting action functional A(0)[ψ∗, ψ] in
(2.47) and an interacting functional A(int)[ψ∗, ψ] given in (2.48). Considering only a weak
two-particle interaction, we may assume A(int) as a small correction to A(0). Therefore, we

85
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expand the Boltzmann factor e−(A(0)+A(int))/~ in Eq. (11.1) in a Taylor series around the non-
interacting action A(0), which yields with (2.48) the grand-canonical partition function in a
perturbative expansion

Z = Z(0)

{

1 − 1

2~

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)

×
〈

ψ∗
a(x, τ)ψb(x, τ)ψ

∗
a′(x

′, τ)ψb′(x
′, τ)

〉(0)

+ . . .

}

. (11.2)

Here Z(0) denotes the partition function of the non-interacting system (2.73) and 〈•〉(0) is the
expectation value of the quantity • in the non-interacting system. The general definition of
this expectation value is given in (2.33), whereas within the functional integral approach it
reads

〈

•
〉(0)

=
1

Z(0)

[

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa
]

• e−A(0)[ψ∗,ψ]/~. (11.3)

In order to calculate the expectation value of the fields, we use the generating grand-canonical
partition function (2.52), which was introduced in Section 2.5. Using (2.72), it allows us to
write the two-point correlation function as

〈

ψa(x, τ)ψ
∗
b (x

′, τ ′)
〉(0)

=
~

2

Z(0)

δ

δjb(x′, τ ′)

δ

δj∗a(x, τ)
Z(0)[j∗, j]

∣

∣

∣

∣

j=0

j∗=0

= G
(0)
ab (x, τ ;x′, τ ′), (11.4)

where the Green’s function is given in Eq. (2.74). Moreover, we have used the property that
the functional derivatives with respect to the current fields ja(x, τ), j

∗
a(x, τ) interchange with

the functional integrals with respect to the fields ψa(x, τ), ψ
∗
a(x, τ).

Analogously, the four-point correlation function in (11.2) reads

〈

ψ∗
a(x, τ)ψb(x, τ)ψ

∗
a′(x

′, τ)ψb′(x
′, τ)

〉(0)

=
~

4

Z(0)[j∗, j]

δ

δja(x, τ)

δ

δj∗b (x, τ)

δ

δja′(x′, τ)

δ

δj∗b′(x
′, τ)

Z(0)[j∗, j]

∣

∣

∣

∣

j∗=0

j=0

. (11.5)

Thus, the latter expectation value is completely determined by the generating grand-canonical
partition function Z(0)[j∗, j]. This is also true for expectation values of higher orders in the
fields. Explicit calculation of (11.5) with the help of the generating partition function (2.72)
yields the following relation between the four-point correlation function and the Green’s
function
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〈

ψ∗
a(x, τ)ψb(x, τ)ψ

∗
a′(x

′, τ)ψb′(x
′, τ)

〉(0)

= G
(0)
ba (x, τ ;x, τ)G

(0)
b′a′(x

′, τ ;x′, τ) +G
(0)
ba′(x, τ ;x

′, τ)G(0)
b′a(x

′, τ ;x, τ). (11.6)

Using the identity (11.4), one identifies (11.6) as the famous Wick’s theorem [58]. Further-
more, according to (11.2) and (11.6), the perturbative calculation of the grand-canonical
partition function reduces to the evaluation of integrals over products of Green’s functions.

We now turn our attention to the physical meaning of the Green’s function. Therefore,
we start to derive a relation between the Green’s function and the particle density of the
system. In Chapter 2 we have derived for the total number of particles the following quantum
statistical identity

N =
1

β

∂

∂µ
logZ(0)

=

1
∑

a=−1

∫

d3xn(0)
a (x) (11.7)

and, correspondingly, for the total magnetization

M =
1

β

∂

∂η
logZ(0)

=

∫

d3x
[

n
(0)
1 (x) − n

(0)
−1(x)

]

, (11.8)

where n
(0)
a (x) denotes the particle density of the Zeeman state |a〉 in case of a non-interacting

system. On the other hand, using Eqs. (2.73), (2.74) and the orthonormality condition (2.2),
it is straightforward to verify

1

β

∂

∂µ
logZ(0) =

1
∑

a=−1

∫

d3xG(0)
aa (x, τ ;x, τ) (11.9)

and
1

β

∂

∂η
logZ(0) =

∫

d3x
[

G
(0)
11 (x, τ ;x, τ) −G

(0)
−1−1(x, τ ;x, τ)

]

. (11.10)

We emphasize that G
(0)
ab (x, τ ;x, τ) in the latter equations are evaluated for equal space-time

points. Comparing Eqs. (11.7) and (11.9) with each other we get the relation

n(0)
a (x) = G(0)

aa (x, τ ;x, τ), a = +1, 0,−1. (11.11)

Therefore, the diagonal elements of the Green’s function correspond for equal space-time
points to the particle densities of the respective Zeeman state. Using Eqs. (11.4) and (11.11)
yields

n(0)
a (x) =

〈

ψa(x, τ)ψ
∗
a(x, τ)

〉(0)

, a = +1, 0,−1. (11.12)
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Therefore, we define the total particle density of the non-interacting system as

n(0)(x) ≡
1
∑

a=−1

n(0)
a (x) =

1
∑

a=−1

G(0)
aa (x, τ ;x, τ) (11.13)

and the corresponding total magnetization density as

m(0)(x) ≡ n
(0)
1 (x) − n

(0)
−1(x) = G

(0)
11 (x, τ ;x, τ) −G

(0)
−1−1(x, τ ;x, τ). (11.14)

11.2 Grand-Canonical Free Energy

In the last subsection we have derived a general perturbative expression for the grand-
canonical partition function of an interacting F = 1 spinor gas. We now explicitly calculate
the corresponding grand-canonical free energy (2.34) for the case of a harmonically trapped
spinor gas, where we restrict ourself to the semiclassical approximation.

11.2.1 General Interaction Potential

Substituting (11.2) in the grand-canonical free energy (2.34) yields in first-order perturbation
theory

F = F (0) + F (D) + F (E). (11.15)

The first contribution is the grand-canonical free energy of the non-interacting spinor system

F (0) = − 1

β
logZ(0). (11.16)

For the system being in the gas phase, the latter expression has already been evaluated in
Eq. (4.36), yielding

F (0) = − 1

β(β~ω̃)3

[

ζ4(e
β(µ+η)) + ζ4(e

βµ) + ζ4(e
β(µ−η))

]

(11.17)

The second contribution is the so-called direct term

F (D) =
1

2β~

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)G(0)
ba (x, τ ;x, τ)G

(0)
b′a′(x

′, τ ;x′, τ), (11.18)

and the last term is called the exchange term

F (E) =
1

2β~

∫

~β

0

dτ

∫

d3x

∫

d3x′ V (int)
aba′b′(x,x

′)G(0)
ba′(x, τ ;x

′, τ)G(0)
b′a(x

′, τ ;x, τ). (11.19)

The grand-canonical free energy is conveniently represented in a graphical way, namely, with
the help of Feynman diagrams [43]. In order to interpret the Feynman diagrams correctly,
we have to introduce the corresponding Feynman rules of our systems.
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11.2.2 Feynman Rules

The diagrammatical representation of the non-interacting Green’s function (2.74) is given
by a straight line with an arrow

x,τ ,a x′,τ ′,b ≡ G
(0)
ab (x, τ ;x′, τ ′). (11.20)

Furthermore, two vertices connected by a dashed line denote the interaction potential

x,τ,a

y,τ̃ ,b

x′,τ ′,b′

y′,τ̃ ′,a′

≡ − 1

~
Uaba′b′(x, τ ;y, τ̃ ;x

′, τ ′;y′, τ̃ ′), (11.21)

where we have defined

Uaba′b′(x, τ ;y, τ̃ ;x
′, τ ′;y′, τ̃ ′) ≡ δ(τ − τ ′)δ(τ − τ̃ )δ(τ ′ − τ̃ ′)δ(x − y)δ(x′ − y′)Vaba′b′(x,x

′).
(11.22)

This rather formal way of writing the interaction potential is necessary to define properly
the graphical connection of the Green’s function and the interaction potential, which has to
be performed according to the rule

x,τ,a

y,τ̃ ,b y′,τ̃ ′,a′

x′′,τ ′′,c

≡
1
∑

b′=−1

∫

~β

0

dτ ′
∫

d3x′
x,τ,a

y,τ̃ ,b

x′,τ ′,b′

y′,τ̃ ′,a′

× x′,τ ′,b′ x′′,τ ′′,c .

(11.23)

Note that according to the latter rule we connect the ends with the same sets of indices.
After performing the integrations and the summation, the respective indices vanish from the
diagrams.

Applying the latter rules to (11.18) and (11.19), we obtain for the direct term

F (D) = − 1

2β
(11.24)

and for the exchange term

F (E) = − 1

2β
. (11.25)

We just state that the grand-canonical free energy reads in second order perturbation theory

F (2) =
1

4
+ +

1

2
+

1

4
+

1

2
. (11.26)

Most conveniently, higher order contributions to the grand-canonical free energy can be
obtained by adopting a graphical recursion formula presented in Ref. [59].
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11.2.3 Delta Interaction Potential

So far, we have not specified the two-particle interaction Vaba′b′(x,x
′) in (11.22). Using the

two-particle interaction (9.10) and the diagonal form of the Green’s function (2.74) gives for
the direct contribution of the grand-canonical free energy (11.18)

F (D) =
1

2β~

∫

~β

0

dτ

∫

d3x



c0

(

1
∑

a=−1

G
(a)
0

)2

+ c2

(

G
(1)
0 −G

(−1)
0

)2



 (11.27)

and for the exchange contribution (11.19)

F (E) =
1

2β~

∫

~β

0

dτ

∫

d3x







c0

1
∑

a=−1

G
(a)
0

2
+ c2





(

1
∑

a=−1

G
(a)
0

)2

−G
(0)
0

2− 2G
(1)
0 G

(−1)
0











, (11.28)

where we used the abbreviation

G
(a)
0 ≡ G

(a)
0 (x, τ ;x, τ). (11.29)

As it can be seen from (2.74), the Green’s function does not depend on the imaginary time
anymore for τ = τ ′. Therefore, the time integrals in Eqs. (11.27) and (11.28) are trivially be
integrated out. Using (11.13) and (11.14) we get for the direct term

F (D) =
1

2

∫

d3x
[

c0n
(0)(x)2 + c2m

(0)(x)2
]

(11.30)

and correspondingly for the exchange contribution

F (E) =
1

2

∫

d3x

{

c0

1
∑

a=−1

n(0)
a (x)2+ c2

[

n(0)(x)2− n
(0)
0 (x)2− 2n

(0)
1 (x)n

(0)
−1(x)

]

}

. (11.31)

As seen from (11.30) and (11.31), the direct contribution depends only on the total particle
density and the total magnetization, whereas the exchange contribution is also sensitive to
the particle density in a single Zeeman state. Furthermore, we observe that, if the system
occupies only one Zeeman state, then F (D) coincides with F (E).

In order to calculate analytically the spatial integrals in (11.30) and (11.31), we use the
semiclassical expression of the Green’s function (see Appendix C.2). For τ = τ ′ and x = x′

it is given by

G
(a)
0 (x, τ ;x, τ) =

1

λ3
ζ3/2

(

e−β[V (x)−µ−a′η]
)

, a = 1, 0,−1. (11.32)

The integrals in (11.30) and (11.31) are then analytically solvable. The explicit calculation
is shown in Appendix C.3. Using (11.27), (11.28), (11.32), (C.25), and (C.28) yields the
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direct free energy

F (D) =
1

2

1

(λβ~ω̃)3

{

c0

[

ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η)
)

+ ζ 3
2
, 3
2
, 3
2

(

eβµ
)

+ ζ 3
2
, 3
2
, 3
2

(

eβ(µ−η))

+ 2ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η), eβ(µ−η))+ 2ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η), eβµ
)

+ 2ζ 3
2
, 3
2
, 3
2

(

eβ(µ−η), eβµ
)

]

+ c2

[

ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η)
)

+ ζ 3
2
, 3
2
, 3
2

(

eβ(µ−η))− 2ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η), eβ(µ−η))
]

}

(11.33)

and the exchange term of the free energy

F (E) =
1

2

1

(λβ~ω̃)3

{

c0

[

ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η)
)

+ ζ 3
2
, 3
2
, 3
2

(

eβµ
)

+ ζ 3
2
, 3
2
, 3
2

(

eβ(µ−η))
]

(11.34)

+ c2

[

ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η)
)

+ ζ 3
2
, 3
2
, 3
2

(

eβ(µ−η))+ 2ζ 3
2
, 3
2
, 3
2

(

eβ(µ+η), eβµ
)

+ 2ζ 3
2
, 3
2
, 3
2

(

eβ(µ−η), eβµ
)

]

}

,

where we have introduced the generalized polylogarithmic function

ζa,b,c (z1, z2) ≡
∞
∑

n=1

∞
∑

n′=1

zn1 z
n′

2

na n′b(n+ n′)c
,

ζa,b,c (z) ≡ ζa,b,c (z, z) . (11.35)

Moreover, we define the total first-order contribution to the grand-canonical free energy as

F (D+E) = F (D) + F (E). (11.36)

This provides us the basis for studying the interacting system up to the first order in per-
turbation theory.

11.3 Particle Number / Magnetization

In this subsection we calculate the dependence of the fugacity and the magnetic fugacity
on the total number of particles and the total magnetization. This is important, because
µ and η have to be chosen in such a way that the total number of particles and the total
magnetization are conserved. We start with the normalized number of particles which is
given by

N = − 1

N

∂F
∂µ

. (11.37)

In analogy to the treatment of the ideal spinor gas we set

N ≡ ζ(3)

(~β0ω̃)3
. (11.38)
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Here the zero in the subscript indicates that β is computed at the critical temperature T0,
which is defined in Eq. (6.7) as the critical temperature of a full-polarized ideal spinor gas
without finite-size scaling. Using (11.15)–(11.17), (11.33), (11.34), and the differentiation
rules (C.32), (C.33) we obtain for the normalized total number of particles

N = N (0)(µ, η, T ) + N (D+E)(µ, η, T ), (11.39)

with the zeroth order contribution

N (0)(µ, η, T ) =
T 3

ζ(3)

[

ζ3
(

eβ(µ+η)
)

+ ζ3
(

eβµ
)

+ ζ3
(

eβ(µ−η))
]

(11.40)

and with contribution due to the particle interaction

N (D+E)(µ, η, T ) = −2
T 7/2

ζ(3)λ0

{

(ã0 + ã2)
[

ζ 3
2
, 3
2
, 1
2

(

eβ(µ+η)
)

+ ζ 3
2
, 3
2
, 1
2

(

eβ(µ−η))

+ ζ 3
2
, 3
2
, 1
2

(

eβ(µ+η), eβµ
)

+ ζ 3
2
, 3
2
, 1
2

(

eβ(µ−η), eβµ
)

]

+ ã0 ζ 3
2
, 3
2
, 1
2

(

eβµ
)

+ (ã0 − ã2) ζ 3
2
, 3
2
, 1
2

(

eβ(µ+η), eβ(µ−η))
}

, (11.41)

where the s-wave scattering lengths ãj are defined in (9.9). Note that according to the
definition of the normalized quantities (2.37) we have N = 1. However, for the time being
we continue to use the notation N , as it indicates that this term corresponds to the total
number of particles. Analogously we get for the normalized magnetization

M = M(0)(µ, η, T ) + M(D+E)(µ, η, T ), (11.42)

with the zeroth order contribution

M(0)(µ, η, T ) =
T 3

ζ(3)

{

ζ3
(

eβ(µ+η)
)

− ζ3
(

eβ(µ−η))
}

(11.43)

and with the contribution due to the particle interaction

M(D+E)(µ, η, T ) = −2
T 7/2

ζ(3)λ0

{

(ã0 + ã2)
[

ζ 3
2
, 3
2
, 1
2

(

eβ(µ+η)
)

− ζ 3
2
, 3
2
, 1
2

(

eβ(µ−η)) (11.44)

+ ζ 1
2
, 3
2
, 3
2

(

eβ(µ+η), eβµ
)

− ζ 1
2
, 3
2
, 3
2

(

eβ(µ−η), eβµ
)

]

+ (ã0 − ã2)
[

ζ 1
2
, 3
2
, 3
2

(

eβ(µ+η), eβ(µ−η))− ζ 1
2
, 3
2
, 3
2

(

eβ(µ−η), eβ(µ+η)
)

]

}

.

As can be seen from the latter equations, both the fugacity and the magnetic fugacity have
to be determined as a function of temperature. In principle, Eqs. (11.39)–(11.44) could be
solved numerically for any temperature above the first critical temperature. However, here
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we are only interested in calculating the first critical temperature Tc1. Assuming that µc1,
ηc1 and Tc1 depend only weakly on the interaction we may write

µc1 ≈ µ(0)
c1

+ µ(1)
c1
, µ(1)

c1
≪ µ(0)

c1
, (11.45)

ηc1 ≈ η(0)
c1 + η(1)

c1 , η(1)
c1 ≪ η(0)

c1 , (11.46)

Tc1 ≈ T (0)
c1

+ T (1)
c1
, T (1)

c1
≪ T (0)

c1
, (11.47)

where µ
(0)
c1 , η

(0)
c1 , T (0)

c1 are the respective solutions for the ideal spinor gas and µ
(1)
c1 , η

(1)
c1 ,

T (1)
c1 the respective first-order corrections. The subscript c1 indicates that the quantities are

computed at the first critical temperature T = Tc1. Substituting Eqs. (11.45)–(11.47) in
Eqs. (11.39)–(11.44) and neglecting terms of the order ãiãj or higher orders yields at the
critical point

N =

[

1 + 3
T (1)
c1

T (0)
c1

]

N (0)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

+ N (D+E)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

(11.48)

− T (0)
c1

3

ζ(3)

T (1)
c1

T (0)
c1

β(0)
c1

[

(

µ(0)
c1

+ η(0)
c1

)

ζ2(zzη) + µ(0)
c1
ζ2(z) +

(

µ(0)
c1

− η(0)
c1

)

ζ2(z/zη)
]

+
T (0)
c1

3

ζ(3)
β(0)
c1

(

µ(1)
c1 + η(1)

c1

)

[

ζ2(zzη) + ζ2(z) + ζ2(z/zη)
]

− T (0)
c1

3
β

(0)
c1 η

(1)
c1

ζ(3)

[

ζ2(z) + 2 ζ2(z/zη)
]

and for the total magnetization

M =

[

1 + 3
T (1)
c1

T (0)
c1

]

M(0)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

+ M(D+E)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

(11.49)

− T (0)
c1

3

ζ(3)

T (1)
c1

T (0)
c1

β(0)
c1

[

(

µ(0)
c1

+ η(0)
c1

)

ζ2(zzη) −
(

µ(0)
c1

− η(0)
c1

)

ζ2(z/zη)
]

+
T (0)
c1

3

ζ(3)
β(0)
c1

(

µ(1)
c1

+ η(1)
c1

)

[

ζ2(zzη) − ζ2(z/zη)
]

+ 2
T (0)
c1

3
β

(0)
c1 η

(1)
c1

ζ(3)
ζ2(z/zη),

where we have introduced the abbreviations

β(0)
c1 = 1/(kBT

(0)
c1 ), z = eβ

(0)
c1
µ

(0)
c1 , zη = eβ

(0)
c1
η
(0)
c1 . (11.50)

To eliminate the last term in (11.48) we use (11.49) and solve for T (1)
c1 leading to
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T (1)
c1

T (0)
c1

=

{

∆N + ∆M
(

1 +
ζ2(z)

2ζ2(z/zη)

)

− T (0)
c1

3

2ζ(3)
β(0)
c1

(

µ(1)
c1

+ η(1)
c1

)

×
[

4ζ2(zzη) + ζ2(z/zη) +
ζ2(zzη)ζ2(z)

ζ2(z/zη)

]}/{

3

[

N (0)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

+ M(0)
(

µ(0)
c1
, η(0)
c1
, T (0)

c1

)

(

1 +
ζ2(z)

2ζ2(z/zη)

)]

− T (0)
c1

3

2ζ(3)
β(0)
c1

×
(

µ(0)
c1

+ η(0)
c1

)

(

4ζ2(zzη) + ζ2(z) +
ζ2(z)ζ2(zzη)

ζ2(z/zη)

)}

, (11.51)

where we have defined

∆N ≡ N −N (0)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

−N (D+E)
(

µ(0)
c1 , η

(0)
c1 , T (0)

c1

)

, (11.52)

∆M ≡ M−M(0)
(

µ(0)
c1
, η(0)
c1
, T (0)

c1

)

−M(D+E)
(

µ(0)
c1
, η(0)
c1
, T (0)

c1

)

. (11.53)

For vanishing two-particle interaction the quantities ∆N , ∆M, µ
(1)
c1 + η

(1)
c1 become equally

zero and therefore also the critical temperature shift T (1)
c1 vanishes. To explicitly calculate

(11.51), we have to know the quantities T (0)
c1 , µ

(0)
c1 , η

(0)
c1 and µ

(1)
c1 + η

(1)
c1 . In principle, the first

three quantities could be taken from Part II of this thesis, where we have treated the ideal
spinor gas. The last quantity, which is due to the interaction, could also be obtained by
solving the Gross-Pitaevksii equation in first order for the interacting spinor gas. However,
this would be inconsistent with the present perturbative treatment of the problem. For
example, the Gross-Pitaevskii equations are, in principle, only valid in the zero-temperature
limit, where nearly all particles are Bose-Einstein condensed. In contrast, the perturbative
approach is only valid for temperatures above the first phase transition. Thus, it would be
delicate to mix those two different approaches. Therefore, we calculate T (0)

c1 , µ
(0)
c1 , η

(0)
c1 and

µ
(1)
c1 + η

(1)
c1 consistently within perturbation theory.

11.4 Criterion for Phase Transition

We have to find a criterion where the phase transition occurs. Two major characteristics of
Bose-Einstein condensates are that particles macroscopically occupy the ground state and
that the correlation between the particles start to diverge. This is because they share the
same wave-function with the same phase. Therefore, we introduce the criterion that one of
the correlation functions

Gab(x, τ ;x
′, τ ′) =

1

Z

[

1
∏

a′=−1

∮

Dψ∗
a′

∮

Dψa′
]

ψa(x, τ)ψ
∗
b (x

′, τ ′)e−A[ψ∗,ψ]/~ (11.54)
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diverges at the first critical temperature. Note that (11.54) defines the Green’s function
of the interacting system, where the Feynman diagrammatical representation is given in
analogy to the non-interacting Green’s function (11.20) by

x,τ,a x′,τ ′,b ≡ Gab(x, τ ;x
′, τ ′). (11.55)

Thus, the divergence of Gab(x, τ ;x
′, τ ′) implies that its functional inverse G−1

ab (x, τ ;x′, τ ′),
defined as

∫

~β

0

dτ ′′
∫

d3x′′G−1
ac (x, τ ;x′′, τ ′′)Gcb(x

′′, τ ′′;x′, τ ′) = δabδ(x − x′)δ(τ − τ ′), (11.56)

vanishes. Both the Green’s function of the interacting system Gab and its functional inverse
cannot be calculated analytically. Therefore, we write the functional inverse as the sum of
the functional inverse of the ideal spinor gas and an additional term, called the self-energy:

G−1
ab (x, τ ;x′, τ ′) = G

(0)−1
ab (x, τ ;x′, τ ′) − Σab(x, τ ;x

′, τ ′). (11.57)

We introduce the Feynman diagrammatical symbol for the self-energy as

x,τ,a x′,τ ′,b ≡ Σab(x, τ ;x
′, τ ′). (11.58)

Note that in the latter definition the small arrows on the left and right side of the circle,
belong to the definition of the self-energy and must not be mixed up with the symbol of the
Green’s function (11.20).

In (11.57), the functional inverse of the non-interacting Green’s function is given by

G
(0)−1
ab (x, τ ;x′, τ ′) =

1

~
δ(x − x′)δ(τ − τ ′)

{[

~
∂

∂τ
− ~

2

2M
∆ + V (x) − µ

]

δab − ηF z
ab

}

,

(11.59)
which comes from the fact, that the Green’s function fulfills the differential equation (2.75).
In order to get rid of the derivatives in Eqs. (11.57), (11.59), we perform a Fourier-Matsubara
decomposition of the Green’s function

G−1
ab (x, τ ;x′, τ ′) =

1

~β

∞
∑

m=−∞
e−iωm(τ−τ ′)

∫

d3k

(2π)3
eik(x−x′)G−1

ab

(

k, ωm;
x + x′

2

)

. (11.60)

Note that we imposed G−1
ab (x, τ ;x′, τ ′) to be ~β periodic and therefore we were able to per-

form a Matsubara decomposition, where ωm = 2πm/(~β) denote the Matsubara frequencies.
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Comparing (11.57), (11.59) with (11.60) leads to the identification

G−1
ab (k, ωm;x) =

1

~

{[

−i~ωm +
~

2k2

2M
+ V (x) − µ

]

δab − ηF z
ab

}

− Σab(k, ωm;x) (11.61)

with the Fourier-Matsubara transformed of the self-energy

Σab(k, ωm;x) =

∫

~β

0

dτ eiωmτ

∫

d3x′e−ik·x
′

Σab(x + x′/2, τ ;x − x′/2, 0). (11.62)

In (11.60), we have decomposed the inverse of the correlation function in its Fourier compo-
nents. Physically, we know that the correlation function only diverges for particles starting
to Bose-Einstein condense. Such particles are in the ground-state and therefore the corre-
sponding contribution to the Green’s function is the one describing particles with k = 0.
Furthermore, these particles do not depend on imaginary time. Therefore, only the k = 0,
ωm = 0 contribution to the Green’s function can diverge. Correspondingly, only G−1

ab (0, 0;x)
can become zero at the first phase transition. By defining an effective potential

V
(eff)
ab (x, µ, η) ≡ ~G−1

ab (0, 0;x) (11.63)

the problem reduces to the determination of the point, where the minimum of V
(eff)
ab (x, µ, η)

becomes zero with respect to x, µ and η, i.e., we have the condition

min
x
V

(eff)
ab (x, µc1, ηc1) = 0. (11.64)

Using (11.61) we can equally write for (11.63)

V
(eff)
ab (x, µ, η) =

[

V (x) − µ
]

δab − ηF z
ab − ~ Σab(0, 0;x). (11.65)

Before explicitly calculating the self-energy, we consider an ideal spinor gas. In this particular
case we have the identity G−1

ab = G
(0)−1
ab . From (11.57) we then deduce that the self-energy

vanishes identically and therefore the effective potential reduces to

V
(eff,0)
ab (x, µ, η) =

[

V (x) − µ(0)
]

δab − η(0)F z
ab. (11.66)

The superscript denotes that we are in the ideal spinor system. Considering a positive
magnetizated spinor gas we get with (11.64), (11.66) the condition

min
x
V

(eff,0)
11 (x, µ, η) = −(µ(0)

c1
+ η(0)

c1
) = 0. (11.67)

The quantity V
(eff)
11 is related to G

(0)
11 through Eq. (11.63) and the fact that the Green’s

function is diagonal in our system. Furthermore, we know from (11.11) that for equal space-

time points G
(0)
11 coincides with the particle density of the first Zeeman state. We therefore

deduce, that particles in the first Zeeman state first Bose-Einstein condense. We turn back
to the case of an weakly-interacting spinor gas and calculate the self-energy of the system.
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11.5 Self-Energy

In order to calculate the self-energy we start with the Schwinger-Dyson equation [43]

Gab(x, τ ;x
′, τ ′) = G

(0)
ab (x, τ ;x′, τ ′) (11.68)

+

∫

~β

0

dτ ′′
∫

d3x′′
∫

~β

0

dτ ′′′
∫

d3x′′′G(0)
ac (x, τ ;x′′, τ ′′)Σcd(x

′′, τ ′′;x′′′, τ ′′′)Gdb(x
′′′, τ ′′′;x′, τ ′).

In terms of Feynman diagrams, it reads with (11.20), (11.55), and (11.58)

x,τ ,a x′,τ ′,b = x,τ ,a x′,τ ′,b + x,τ,a x′,τ ′,b . (11.69)

To prove the Schwinger-Dyson equation we simply insert the definition of the self-energy
(11.57) in (11.68), use (11.56) and the corresponding equation for the non-interacting Green’s
function. Note that the Schwinger-Dyson equation is still an exact expression. Furthermore,
we have the relation

1

Z0

[

1
∏

a=−1

∮

Dψ∗
a

∮

Dψa
]

ψa(x, τ)ψ
∗
b (x

′, τ ′) e−A[ψ∗,ψ]/~ (11.70)

= G
(0)
ab (x, τ ;x′, τ ′) − 1

2~

∫

~β

0

dτ ′′
∫

d3x′′
∫

~β

0

dτ ′′′
∫

d3x′′′ δ(τ ′′ − τ ′′′)V (int)
cdc′d′(x

′′,x′′′)

×
〈

ψa(x, τ)ψ
∗
b (x

′, τ ′)ψ∗
c (x

′′, τ ′′)ψd(x
′′, τ ′′)ψ∗

c′(x
′′′, τ ′′′)ψd′(x

′′′, τ ′′′)
〉(0)

,

which is derived in analogy to Section 11.1 by expanding the exponential function into a
Taylor series around A(0) and using the first-order result of the partition function (11.2) in
(11.54). Thus, using the Wick rule and the symmetry properties of the interaction potential
(2.5), the Green’s function in first-order perturbation theory reads

Gab(x, τ ;x
′, τ ′) = G

(0)
ab (x, τ ;x′, τ ′) − 1

~

∫

~β

0

dτ ′′
∫

d3x′′
∫

~β

0

dτ ′′′
∫

d3x′′′ δ(τ ′′ − τ ′′′)V (int)
cdc′d′(x

′′,x′′′)

×
{

G(0)
ac (x, τ ;x′′, τ ′′)G(0)

d′c′(x
′′′, τ ′′′;x′′′, τ ′′′)G(0)

db (x′′, τ ′′;x′, τ ′)

+ G(0)
ac (x, τ ;x′′, τ ′′)G(0)

dc′(x
′′, τ ′′;x′′′, τ ′′′)G(0)

d′b(x
′′′, τ ′′′;x′, τ ′)

}

(11.71)

or equivalently

Gab(x, τ ;x
′, τ ′) = + + + · · · , (11.72)
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where we omitted for simplicity writing the respective indices. On the other hand an iteration
of the Dyson equation (11.68), (11.69) leads to

= + + · · · , (11.73)

which corresponds to the following analytical expression

Gab(x, τ ;x
′, τ ′) = G

(0)
ab (x, τ ;x′, τ ′)

+

∫

~β

0

dτ ′′
∫

d3x′′
∫

~β

0

dτ ′′′
∫

d3x′′′G(0)
ac (x, τ ;x′′, τ ′′)Σcd(x

′′, τ ′′;x′′′, τ ′′′)G(0)
db (x′′′, τ ′′′;x′, τ ′).

(11.74)

Comparing (11.72) with (11.73) and amputating a line on the left-hand and the right-hand
side of the diagrams we get the following one-particle irreducible diagrams of the self-energy

Σcd(x
′′, τ ′′;x′′′, τ ′′′) =

x,τ,a x′,τ ′,b

+ x,τ,a x′,τ ′,b + . . . . (11.75)

The first term on the right-hand side is the direct contribution to the self-energy

Σ
(D)
cd (x′′, τ ′′;x′′′, τ ′′′) = −1

~
δ(τ ′′ − τ ′′′) δ(x′′ − x′′′)

∫

d3xV
(int)
cdc′d′(x

′′,x)G
(0)
d′c′(x, τ

′′;x, τ ′′′)

(11.76)
and the second one

Σ
(E)
cd (x′′, τ ′′;x′′′, τ ′′′) = −1

~
δ(τ ′′ − τ ′′′)V (int)

cd′c′d(x
′′,x′′′)G(0)

d′c′(x
′′, τ ′′;x′′′, τ ′′′). (11.77)

The dots in (11.75) denote terms of higher order, which contribute contributing to the self-
energy.

The expressions of the self-energy (11.77),(11.77) are valid for an arbitrary two-particle
interaction potential in first-order perturbation theory. We now substitute our particular
interaction potential (9.10) in Eqs. (11.76), (11.77) and obtain for the direct diagram

Σ
(D)
ab (x, τ ;x′, τ ′) = −1

~
δ(τ − τ ′) δ(x − x′)

[

c0 n
(0)(x)δab + c2m

(0)(x)F z
ab

]

, (11.78)

where we also have used the relations (11.13) and (11.14). Correspondingly, the exchange
contribution of the self-energy reads

Σ
(E)
ab (x, τ ;x′, τ ′) = −1

~
δ(τ − τ ′) δ(x − x′)

[

n
(0)
1 (x) diag

(

c0 + c2, c2, 0
)

+ n
(0)
0 (x) diag

(

c2, c0, c2

)

+ n
(0)
−1(x) diag

(

0, c2, c0 + c2

)

]

, (11.79)

where diag(a, b, c) denotes a 3 × 3 matrix with the diagonal elements a, b, c. We are now
able to continue our derivation of the first critical temperature of Section 11.3.
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11.6 First Critical Temperature

In order to obtain the first-order correction of the critical temperature, we have to calculate
the remaining quantity µ

(1)
c1 + η

(1)
c1 . As derived in Section 11.3, we can calculate the latter by

minimizing the effective potential V
(eff)
ab . Using the semiclassical expression of the Green’s

function (11.32) and Eqs. (11.13), (11.14), (11.57), (11.62), (11.63), (11.75), (11.78), (11.79)
yields for the diagonal components of the effective potential

V
(eff)
11 (x, µ, η) = V (x) − µ− η +

1

λ3

[

2(c0 + c2)ζ3/2
(

e−β[V (x)−µ−η])

+(c0 + c2)ζ3/2
(

e−β[V (x)−µ]
)

+ (c0 − c2)ζ3/2
(

e−β[V (x)−µ+η]
)

]

,

V
(eff)
00 (x, µ, η) = V (x) − µ+

1

λ3

[

(c0 + c2)ζ3/2
(

e−β[V (x)−µ−η])

+2c0 ζ3/2
(

e−β[V (x)−µ]
)

+ (c0 + c2)ζ3/2
(

e−β[V (x)−µ+η]
)

]

,

V
(eff)
−1−1(x, µ, η) = V (x) − µ+ η +

1

λ3

[

(c0 − c2)ζ3/2
(

e−β[V (x)−µ−η])

+(c0 + c2)ζ3/2
(

e−β[V (x)−µ]
)

+ 2(c0 + c2)ζ3/2
(

e−β[V (x)−µ+η]
)

]

. (11.80)

The remaining components of the effective potential are identical zero.

In Section 11.4 we have shown that for the limiting case of a non-interacting spinor gas,
the component V

(eff)
11 becomes first zero, namely, at the point x = 0. Now, taking a weak

interaction into account, leads to the assumption that the system deviates only weakly from
the non-interacting case. Therefore, we again expect V

(eff)
11 to become first equally zero at

the space-point x = 0. Thus, using Eqs. (11.45), (11.46), (11.67), and (11.80) leads to the
condition

µ(1)
c1

+ η(1)
c1

=
1

λ3
c1

[

2(c0 + c2) ζ(3/2) + (c0 + c2) ζ3/2(z) + (c0 − c2) ζ3/2(z
2)
]

. (11.81)

This was exactly the equation, which was missing to determine the shift of the critical
temperature (11.51) in first-order perturbation theory. With Eqs. (11.39)–(11.53), (11.67),
and (11.81) we get for the temperature shift

T (1)
c1

T (0)
c1

= α0(M)
a0

λ0
+ α2(M)

a2

λ0

(11.82)
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with the coefficient

α0(M) =
1

9

{

4ζ 1
2
, 3
2
, 3
2
(z) + 8ζ 1

2
, 3
2
, 3
2

(

1, z2
)

− 4ζ3/2(z
2)

[

2ζ(2) + ζ2(z) + [ζ(2) − ζ2(z
2)]

ζ2(z)

2ζ2(z2)

]

+ 2
ζ2(z)

ζ2(z2)

[

ζ 1
2
, 3
2
, 3
2

(

1, z2
)

− ζ 1
2
, 3
2
, 3
2

(

z2, 1
)

]

}
√

T (0)
c1 (z)

/{

2ζ(3) + ζ3(z)

+
ζ2(z)

2 ζ2(z2)

[

ζ(3) − ζ3(z
2)
]

}

(11.83)

and

α2(M) =
1

9

{

24ζ 1
2
, 3
2
, 3
2
(1) + 12ζ 1

2
, 3
2
, 3
2
(1, z) + 6ζ 1

2
, 3
2
, 3
2
(z, 1) + 6ζ 1

2
, 3
2
, 3
2

(

z, z2
)

+ 8ζ 1
2
, 3
2
, 3
2
(z)

+ 4ζ 1
2
, 3
2
, 3
2

(

1, z2
)

− 2
[

6ζ(3/2) + 3ζ3/2(z) + ζ3/2(z
2)
][

2ζ(2) + ζ2(z)

+ [ζ(2) − ζ2(z
2)]

ζ2(z)

2ζ2(z2)

]

+
ζ2(z)

ζ2(z2)

[

6ζ 1
2
, 3
2
, 3
2
(1) − 6ζ 1

2
, 3
2
, 3
2

(

z2
)

+ 3ζ 1
2
, 3
2
, 3
2
(1, z)

− 3ζ 1
2
, 3
2
, 3
2

(

z2, z
)

+ ζ 1
2
, 3
2
, 3
2

(

1, z2
)

− ζ 1
2
, 3
2
, 3
2

(

z2, 1
)

]

}
√

T (0)
c1 (z)

/{

2ζ(3) + ζ3(z) +
ζ2(z)

2 ζ2(z2)

[

ζ(3) − ζ3(z
2)
]

}

. (11.84)

Here, we have for the first critical temperature in zeroth order according to Eq. (6.13)

T (0)
c1

(z) =

[

ζ(3)

ζ(3) + ζ3(z) + ζ3(z2)

]1/3

(11.85)

and, using Eq. (6.14), the respective expression for the magnetization reads

M =
ζ(3) − ζ3(z

2)

ζ(3) + ζ3(z) + ζ3(z2)
. (11.86)

We note that the coefficients α0, α2 do only depend implicitly on the magnetization, i.e.,
α0,2(M) = α0,2(z(M)), where z has to be determined from Eq. (11.86). In Figure 11.1, we
have plotted α0, α2 parametrically as a function of the magnetization. We observe that the
coefficients are always negative. Therefore, according to Eq. (11.82), for positive (negative)
s-wave scattering lengths the critical temperature shift is always negative (positive). Positive
(negative) s-wave scattering lengths correspond to repulsive (attractive) interaction during
a two-particle collision, i.e., the higher (lower) the s-wave scattering lengths, the more the
mean interparticle distances increase (decrease). If we take the rough criterium that Bose-
Einstein condensation occurs if the de Broglie wavelengths of the particles are equal to the
mean distances between the particles, then the shift of the critical temperature is directly
explained.
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Figure 11.1: Behavior of the critical temperature shift coefficients α0, α2 in (11.82) as a
function of magnetization. α0 vanishes for a full polarized F = 1 spinor gas, which is due to
that not collisions with a two-particle total angular 0 occur. For vanishing magnetization,
α2 is exactly 5 times smaller than α0, which originates from that the two-particle state with
total angular momentum 2 is five time degenerate, whereas the other one is not degenerate.

To gain more physical insight and more trust into the solution for the first critical temper-
ature shift (11.82)–(11.84), we discuss two particular cases. At first we treat the case of a
full polarized spinor gas and then the case of a non-polarized spinor gas.

11.6.1 Fully Polarized Spinor Gas

In a full polarized F = 1 spinor gas all particles occupy the Zeeman state |1〉. The magneti-
zation M then coincides with the total number of particles N = 1. According to Eq. (11.86)
this is the case for z → 0. Substituting this in Eqs. (11.83)–(11.85) and taking properly the
limit z → 0 yields

α0(M=N ) = 0, α2(M=N ) =
4

3ζ(3)

[

ζ 1
2
, 3
2
, 3
2
(1) − ζ(3/2)ζ(2)

]

≈ −3.426. (11.87)

and consequently with (11.82), (11.85) the relative critical temperature shift reads

T (1)
c1

T (0)
c1

= −3.426
a2

λ0
. (11.88)

Therefore, for a full polarized spinor gas the contribution to the first critical temperature of
the s-wave scattering length a0 vanishes. This is because a0 takes account to collisions, where
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the two-particle state has a total angular momentum of F = 0 as can seen in Eqs. (9.5),
(9.6). However, in a full polarized F = 1 spinor gas the total angular momentum of the total
state of two colliding particle is necessarily always |F = 2; a = 2〉, otherwise the conservation
of total angular momentum would be violated.

Our particular result (11.88) for the critical temperature shift of a full polarized spinor
gas coincides with the one of a spinless BEC as derived in Ref. [60, 61], which recently has
been approved experimentally to high accuracy [62]. This happens because, due to the
conservation of the magnetization, the full polarized spinor gas behaves practically like a
spinless Bose gas. Therefore, our result (11.82)–(11.84) also obtains the scalar BEC physics.

11.6.2 Non-Polarized Spinor Gas

Now, we discuss the limit of a non-polarized spinor gas. According to Eq. (11.86) a vanishing
magnetization corresponds to a fugacity z = 1. We substitute this value in (11.83)–(11.85)
and get for the coefficients

α0(0) =
4

31/69ζ(3)

[

ζ 1
2
, 3
2
, 3
2
(1) − ζ(3/2)ζ(2)

]

≈ −1.371, α2(0) = 5α0(0) (11.89)

and according to Eqs. (11.82), (11.85) for the critical temperature shift

T (1)
c1

T (0)
c1

= −1.371

(

a0

λ0
+ 5

a2

λ0

)

. (11.90)

This is a quite interesting result, because it states that in first-order perturbation theory
the contribution of the s-wave scattering length a2 is exactly five times higher than the one
of a0 for a vanishing total magnetization. The physical explanation is the following. In a
non-polarized spinor gas all Zeeman states are completely degenerate. Therefore, during a
two-particle collision, the total two-particle wave function is not restricted to only one par-
ticular state, like for the case of a fully polarized spinor gas as discussed in Sec. 11.6.1.
On the contrary, the probability to form one of the two-particle states |F = 0, a = 0〉,
|F = 2, a = 2, 1, 0,−1,−2〉 is the same. Therefore, due to the five times higher degener-
acy of the |F = 2〉 state, the probability to form the latter state is five times higher than the
one to form the state |F = 0〉. The factor five in Eq. (11.90) reflects this behavior.

11.7 Examples: Rubidium and Sodium

So far, we have discussed the coefficients α0, α2 in (11.82). Now, we consider two important
examples, namely, a spinor condensate consisting of 87Rb and 23Na atoms, respectively. To
this day, the only F = 1 spinor condensates, that have been realized experimentally, were
from the latter two kinds. In Table 11.1 the s-wave scattering lengths and masses of Ru-
bidium and Sodium are summarized. According to Table 11.1 both atoms, 87Rb and 23Na,
have a positive s-wave scattering length. Therefore, we have a negative shift of the first
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a0 a2 M

23Na 50.0 55.0 22.99
87Rb 101.8 100.4 86.91

Table 11.1: Atomic parameters for 23Na and 87Rb atoms [63, 64]. a0 and a2 are in units
of Bohr radius aB = 0.529 × 10−10 m and the atom mass M is given in units of u = 1.66 ×
10−27 kg.

critical temperature. In Figure 11.2 we have plotted the relative (a) and absolute (b) critical
temperatures for both kinds of atoms. Here, we have chosen the trap frequency ω̃ = 2π 100
Hz and the total number of particles N = 106, as typical experimental values.

We first discuss Figure 11.2 (a). The black and the grey line denote the first and sec-
ond critical temperature of an ideal F = 1 spinor condensate. For the ideal system these
critical temperatures have been discussed extensively in Chapter 6. Note that according
to (6.7), (6.13) the critical temperature of an ideal spinor condensate does not depend on
the properties of the atoms, but only on the total number of particles in the system. The
first-order critical temperatures of Sodium and Rubidium are denoted by a red and blue
line, respectively. As it can be seen, the shift of the critical temperature of Rubidium is
around four times higher than the one of Sodium. This is because of two facts. First the
s-wave scattering length of Rubidium is two times higher than the corresponding of Sodium.
Second, the critical temperature shift also depends according to Eq. (11.82) on the reciprocal
de Broglie wave length λ0 from Eq. (1.1), which is proportional to 1/

√
M . Considering that

the mass of Rubidium is four times higher than the mass of Sodium leads to another factor
two contributing to the shift of critical temperature.

In Figure 11.2 (b) we have plotted the first critical temperature on an absolute tempera-
ture scale together with a numerical result of a Hartree-Fock-Popov approximation, which
is taken from Ref. [65]. The color mapping is the same as in Fig. 11.2 (a). Our analytical
result clearly predicts a larger shift of the first critical temperature than the numerical re-
sult. We point out that the analytical result has been well approved for the case of a full
polarized 87Rb condensate [62], which is shown in Figure 11.3. Here, the critical tempera-
ture was measured as a function of total number of particles. The dashed line denotes the
critical temperature of a full polarized 87Rb system with finite-size correction, which is given
according to Eqs. (6.7), (6.13) by

T (0,FS)
c1

= T (0)
c1

− ~ω̄

kB

ζ(2)

6ζ(3)
, T (0)

c1
=

~ω̃

kB

[

N

ζ(3)

]1/3

, (11.91)
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Figure 11.2: First critical temperature in first-order perturbation theory for sodium and
rubidium for N = 106 and ω̃ = 2π×100Hz. Due to the repulsive two-particle interaction, the
critical temperature of sodium and rubidium experience a shift towards lower temperatures.
In (a), the critical temperatures are given on a relative temperature scale and are compared
to the first and second critical temperature of a non-interacting F = 1 spinor gas. In (b),
Tc1 is plotted on an absolute temperature scale and compared with a numerical Hartree-
Fock-Popov calculation, given in Ref. [65], where the red (sodium) and blue (rubidium) dots
denote the respective numerical solutions.

whereas the solid line is the critical temperature in first-order perturbation theory, i.e.,
according to Eqs. (1.1), (11.88)

Tc1 = T (0,FS)
c1 − 1.326 a2N

1/6

√

Mω̃

~
. (11.92)

We see that the experimental observations show a good agreement with the first-order per-
turbative result in the limit of a full polarized spinor gas.
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Figure 11.3: Critical temperature of a full polarized 87Rb BEC as a function of atom
number at Tc1. The experimental points are denoted as circles. The dashed line follows the
ideal gas law Eq. (11.91), whereas the solid line is the first-order perturbative result of the
first critical temperature (11.92) in a full polarized system . The shaded area is the range
of acceptable fits taking statistical and systematic errors into account. The figure is taken
from Ref. [62].





Summary

On the basis of the quantum-field theoretical description of many-particle physics, we stud-

ied the thermodynamic properties of a F = 1 spinor Bose-Einstein condensate for both a

non-interacting and a weakly interacting system. By doing so, we took into account the

experimental constraint that the total number of particles and the total magnetization are

conserved.

For the case of a non-interacting F = 1 spinor gas, we have shown in Chapter 5 that

the additional condition of a conserving total magnetization leads to the occurrence of three

phases: a gas, a ferromagnetic, and an antiferromagnetic phase [56], whose properties are

depicted in Figure 5.2. In the gas phase, all particles occupy excited quantum states, whereas

in the ferromagnetic phase, the spinor system consists of a full polarized Bose-Einstein con-

densate and a partially polarized thermal cloud. Reaching the antiferromagnetic phase,

the magnetization of the BEC fraction coincides with the total magnetization of the whole

system. In contrast, the magnetization of the thermal cloud vanishes completely in the an-

tiferromagnetic phase. We then calculated in Chapter 6 the critical temperatures of those

phase transitions as a function of magnetization for both a homogeneous and a harmonically

trapped spinor gas, which are plotted in Figure 6.1. For the harmonically trapped spinor

system, we studied its finite-size scaling where we observed a decrease of the first and the

second critical temperature. In order to compare our results with future experiments, we

calculated in Chapter 7 the occupation numbers of the respective Zeeman states in the ther-

mal and the BEC fraction for different magnetizations and temperatures, which are shown

in Figure 7.3. In Chapter 8 we finished the treatment of the ideal F = 1 spinor system by

calculating the heat capacity for all three phases, which are plotted in Figure 8.1. There,

we observed in case of a homogeneous spinor gas that the heat capacity is continuous for

all temperatures. However, it exhibits at the first and second critical temperature a phase

transition of third order. In contrast, the harmonically trapped spinor gas is continuous for

all temperatures except for the first and second critical temperature, where it shows a phase

transition of second order, i.e., it has a discontinuity at those temperatures. The jumps

of the heat capacity at the critical points are depicted as a function of magnetization in

Figure 8.2.
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After having elucidated the contact interaction in a spinor Bose gas in Chapter 9, we de-

rived in Chapter 10 the Gross-Pitaevskii equations of a weakly interacting F = 1 spinor gas

and determined the solution within a Thomas-Fermi approximation. For the special case

of a non-conserving magnetization, it turned out that the weakly interacting F = 1 spinor

system exhibits either a ferromagnetic or an antiferromagnetic phase, depending on the sign

of the interaction strength c2 [22, 23]. The ferromagnetic phase occurs for c2 < 0 and is

characterized by a fully polarized BEC fraction. In contrast, for c2 > 0 the BEC is not

polarized at all and shows an antiferromagnetic behavior. Taking again the conservation of

the magnetization into account, we continued our study in Chapter 11 with an analytical

first-order perturbative calculation of the first critical temperature. For repulsive interaction

strengths we predict a negative temperature shift compared to the ideal system, whereas for

attractive interactions a positive shift is expected. We studied the limit of a fully polarized

spinor gas, where our result coincides with the first-order result for the critical temperature

of a scalar Bose gas, which was originally derived in Ref. [60] and experimentally observed

in Ref. [62]. We finished this thesis by comparing our first-order result for the first critical

temperature with a numerical Hartree-Fock-Popov calculation performed in Ref. [65], which

was valid for arbitrary magnetizations. As shown in Figure 11.2 (b), our result predicts a

larger shift towards negative temperatures.
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Appendix A

Coherent States

In this appendix we show different properties of coherent states

|ψ〉 = exp

{
∫

d3xψa(x)φ̂†
a(x)

}

|0〉 , (A.1)

which are important for deriving the functional integral picture representation of the grand-
canonical partition function. In the following we consider only spinless particle, i.e., we set
ψa → ψ, φ̂†

a → φ̂†. The proofs for bosons with non-vanishing spin is completely analogous.

A.1 Coherent States

In this section we explicitly show that (A.1) is a coherent state. Using Eqs. (2.2), (2.6), and
(2.22) leads to following expression for the coherent state

|ψ〉 = exp

{

∑

n

ψnφ̂
†
n

}

|0〉 , (A.2)

where |0〉 is the vacuum state in the particle number representation. By virtue of the
commutator relationship (2.11) we equally write for the latter

|ψ〉 =







∏

n

∞
∑

Nn=0

(

ψnφ̂
†
n

)Nn

Nn!






|0〉 . (A.3)

Applying Eq. (2.8) Nn-times leads to

|ψ〉 =
∏

n

∞
∑

Nn=0

(ψn)Nn

√
Nn!

|Nn〉 , (A.4)

where the state |Nn〉 denotes that Nn particles are in the state |n〉 and the total state is
then given by

∏

n

|Nn〉 = | . . . , Nn, . . .〉 . (A.5)
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We multiply Eq. (A.4) from the left side with the annihilation operator φ̂n′ and obtain with
Eq. (2.7)

φ̂n′ |ψ〉 =

∞
∑

N
n′=1

(ψn′)Nn′

√

(Nn′ − 1)!
|Nn′ − 1〉

∏

n

n6=n′

∞
∑

Nn=0

(ψn)Nn

√
Nn!

|Nn〉 . (A.6)

Relabeling the summation index Nn′ and comparing with Eq. (A.4) directly leads to the
desired result

φ̂n′ |ψ〉 = ψn′ |ψ〉 . (A.7)

A.2 Scalar Product

We prove that the scalar product of two coherent states is given by

〈ψ|ψ′〉 = exp

{

∑

n

ψ∗
nψ

′
n

}

. (A.8)

According to Eq. (A.4) the left-hand side of (A.8) reads

〈ψ|ψ′〉 =
∏

n,n′

∞
∑

Nn=0

∞
∑

N ′
n′=0

(ψ∗
n)Nn

√
Nn!

(ψ′
n′)

N ′
n′

√

N ′
n′ !

〈Nn|Nn′〉 . (A.9)

The vectors of the occupation number representation fulfill the orthonormality condition,
i.e., 〈Nn|Nn′〉 = δnn′ leading to

〈ψ|ψ′〉 =
∏

n

∞
∑

Nn=0

(ψ∗
nψ

′
n)Nn

Nn!
, (A.10)

which is identical to Eq. (A.8).

A.3 Closure Relationship

We show that the coherent states obey the closure relationship

∫

Dψ∗
∫

Dψ e−(ψ|ψ) |ψ〉 〈ψ| = 1 (A.11)

with the measure defined as

∫

Dψ∗
∫

Dψ ≡
[

∏

n

∫

dψ∗
n√

2π

∫

dψn√
2π

]

. (A.12)
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Using the definition e(ψ|ψ) = 〈ψ|ψ〉 and substituting Eqs. (A.4), (A.8), (A.12) in (A.11) yields

1 =

[

∏

n

∫

dψ∗
n√

2π

∫

dψn√
2π

e−ψ
∗
nψn

]





∏

n′

∞
∑

N
n′=0

(ψn′)Nn′

√
Nn′ !

|Nn′〉









∏

n′′

∞
∑

N ′
n′′=0

(ψ∗
n′′)

N ′
n′′

√

N ′
n′′ !

〈N ′
n′′ |





(A.13)
To simplify the latter expression we define the product

⊗

n

Cn |Nn〉 〈N ′
n| ≡

(

∏

n

Cn

)(

∏

n′

|Nn′〉
)(

∏

n′′

〈N ′
n′′ |
)

, (A.14)

where Cn may contain c-numbers, sums, and integrals. Note that

⊗

n

|Nn〉 〈Nn| = | . . . , Nn, . . .〉 〈 . . . , Nn, . . .| 6=
∏

n

|Nn〉 〈Nn| . (A.15)

With the definition (A.14) we write (A.13) more conveniently

1 =
⊗

n

∫

dψ∗
n√

2π

∫

dψn√
2π

e−ψ
∗
nψn

∞
∑

Nn=0

(ψn)Nn

√
Nn!

|Nn〉
∞
∑

N ′
n=0

(ψ∗
n)N

′
n

√

N ′
n!

〈N ′
n| . (A.16)

We perform a coordinate transformation

ψn = rne
iφn =⇒ dψ∗

ndψn = 2rdrdφ (A.17)

and write (A.16) as

1 =
⊗

n

∫ ∞

0

dr
re−r

2

π

∞
∑

Nn=0

∞
∑

N ′
n=0

rNn+N ′
n

√

Nn!N ′
n!

|Nn〉 〈N ′
n|
∫ 2π

0

dφne
iφn(Nn−N ′

n). (A.18)

On the right-hand side, the second integral is simply 2πδNn,N ′
n

and therefore the latter term
simplifies to

1 =
⊗

n

∞
∑

Nn=0

|Nn〉 〈Nn|
2

Nn!

∫ ∞

0

dr r1+2Nne−r
2

. (A.19)

The integral cancels the precedent factor, which leads with (A.14) to the final result

1 =

( ∞
∑

N0=0

· · ·
∞
∑

Nn=0

· · ·
)

|N0, . . . , Nn, . . .〉 〈N0, . . . , Nn, . . .| . (A.20)

On the right-hand side we have the completeness relationship in the occupation number
representation, which proves our assumption (A.11).





Appendix B

Useful Formulas

In this appendix we derive several mathematical formulas, which are used in this theses.

B.1 Poisson Summation Formula

We prove the Poisson summation formula [47]

∞
∑

m=−∞
δ(x−m) =

∞
∑

n=−∞
e−i2πnx . (B.1)

By multiplying the latter with a function f(x) and integrating over all x, we can equivalently
write for Eq. (B.1)

∞
∑

m=−∞
f(m) =

∞
∑

n=−∞

∫ ∞

−∞
dx f(x)e−i2πnx . (B.2)

The proof is as follows. The comb function

s(x) ≡
∞
∑

m=−∞
δ(x−m) (B.3)

is periodic in x, i.e., we have

s(x+ k) = s(x), k = 0,±1,±2, . . . . (B.4)

Therefore, we may expand s(x) in a discrete Fourier series

s(x) =
∞
∑

n=−∞
sne

i2πxn, (B.5)

with the Fourier coefficients

sn =

∫ 1
2

− 1
2

dx s(x)e−i2πxn. (B.6)
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Substituting the definition (B.3) into Eq. (B.6) yields

sn =

∫ 1
2

− 1
2

dx

∞
∑

m=−∞
δ(x−m)e−i2πxn = 1. (B.7)

Using Eqs. (B.3), (B.5) and (B.7) leads directly to the desired Poisson formula (B.1).

B.2 Schwinger Formula

Due to Schwinger [48] we have for α > 0 the relation

1

αx
=

1

Γ(x)

∫ ∞

0

dτ τx−1e−ατ , (B.8)

where the Gamma function is defined as

Γ(x) ≡
∫ ∞

0

dt tx−1e−t. (B.9)

The proof of the Schwinger formula (B.8) is straightforward. Performing in Eq. (B.9) a
variable substitution t = ατ and solving for α−x yields (B.8).

A useful application of the Schwinger formula is the integral representation of the loga-
rithmic function. We use the identity

α−x = e−x logα ⇒ ∂

∂x
α−x = − logα e−x logα (B.10)

to write the logarithmic function as

logα = − ∂

∂x
α−x

∣

∣

∣

∣

x=0

, α > 0. (B.11)

Using the Schwinger formula (B.8) in Eq. (B.11) yields the following integral representation
of the logarithmic function

logα = − ∂

∂x

{

1

Γ(x)

∫ ∞

0

dτ τx−1e−ατ
}∣

∣

∣

∣

x=0

. (B.12)

B.3 Sum Computation

In the following we give an application of both the Poisson summation formula and the
Schwinger formula by calculating the sum

S ≡
∞
∑

m=−∞
log (−i2πmA +B) with A,B > 0. (B.13)
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Before we evaluate the latter sum, we have to perform several manipulation. With the
Poisson summation formula (B.2) we obtain

S =
∞
∑

n=−∞

∫ ∞

−∞
dz log (−i2πzA +B) e−i2πnz. (B.14)

With the help of the integral representation of the logarithmic function (B.12) we write the
latter as

S = − ∂

∂x

{ ∞
∑

n=−∞

1

Γ(x)

∫ ∞

0

dτ τx−1e−τB
∫ ∞

−∞
dz e−i2π(n+Aτ)z

}∣

∣

∣

∣

x=0

. (B.15)

With the identity
∫ ∞

−∞
dz ei2πyz = δ(y), (B.16)

where δ(y) is the Dirac delta function, Eq. (B.15) turns to

S = − ∂

∂x

{ ∞
∑

n=−∞

1

Γ(x)

∫ ∞

0

dτ τx−1e−τB δ(n + Aτ)

}∣

∣

∣

∣

x=0

. (B.17)

Evaluating the Schwinger integral leads to

S = − ∂

∂x

{ ∞
∑

n=1

1

Γ(x)

(

A

n

)1−x
e−nB/A

A

}∣

∣

∣

∣

x=0

. (B.18)

Before we perform the differentiation with respect to x, we replace the x-dependent functions
in (B.18) by their Taylor expansions

τ 1−x = τ + O(x),
1

Γ(x)
= x+ O(x2) . (B.19)

Thus, the differentiation with respect to x yields

S = −
∞
∑

n=1

e−nB/A

n
. (B.20)

The latter expression is the Taylor expansion of the logarithmic function, so we finally have

S =

∞
∑

m=−∞
log (−i2πmA +B) = log

{

1 − e−B/A
}

. (B.21)





Appendix C

Green’s Function

The Green’s function of a system is a important quantity. Once it is calculated, we can
derive many important physical quantities from it. For example, in Chapter 11 we have
derived the connection between the Green’s function and partition function, which is the
basic quantity in a thermodynamic system. Therefore, we discuss in this appendix several
properties of the Green’s function (2.74). We start by rewriting the Green’s function in a
more convenient way.

C.1 Applying Poisson Summation Formula

We further simplify the Green’s function given in Eq. (2.74) by performing the sum over m.
The Green’s function is periodic in imaginary time. Thus it is valid to apply the Poisson
summation formula proved in Appendix B.1. Using (B.2) we may write for (2.74)

G
(0)
ab (x, τ ;x′, τ ′) =

∞
∑

n=−∞
g

(0)
ab (x,x′; τ − τ ′ + n~β) (C.1)

with

g
(0)
ab (x,x′; τ) = − δab

2πi

∑

n

ϕn(x)ϕ∗
n(x′)

∫ ∞

−∞
dω

e−iωτ

ω + i(En − µ− aη)/~
. (C.2)

The ω-integral has a pole in the lower half plane, namely, at ω = −i(Enp − µ− aη)/~ > 0.
It is easily solved with the help of the residue theorem. For τ > 0, the path of integration
on the real axis of the complex plane must be closed by a semicircle in the lower half plane
due to convergence reasons. If the integration is performed over the whole real axis, then
the contribution of the respective semicircle, which now has an infinite radius, turns out to
be zero. Thus, the value of the integral is now completely determined by the residue:

τ > 0 : − 1

2πi

∫ ∞

−∞
dω

e−iωτ

ω + i(En − µ− aη)/~
= Resω

e−iωτ

ω + i(En − µ− a′η)/~

= e−(En−µ−aη)τ/~. (C.3)
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The minus sign on the right hand side of the first line is due to the direction of integration.

For τ < 0 we must put the semicircle in the upper half plane, otherwise the integral would
diverge. There, the integrand does not have any poles, hence the integral becomes equally
zero. Thus, we may summarize

− 1

2πi

∫ ∞

−∞
dω

e−iωτ

ω + i(En − µ− aη)/~
= Θ(τ)e−(En−µ−aη)τ/~, (C.4)

where Θ(τ) is the step function which is defined as

Θ(τ) =

{

1 for τ > 0 ,

0 for τ < 0 .
(C.5)

The function (C.2) then reads

g
(0)
ab (x,x′; τ) = Θ(τ)δab

∑

n

ϕn(x)ϕ∗
n(x′)e−(En−µ−aη)τ/~. (C.6)

We substitute the latter in Eq. (C.1) and consider two different cases. First we treat the
case τ − τ ′ ∈ (0, ~β). Performing the geometric m-sum in Eq. (C.1) then yields

G
(0)
ab (x, τ ;x′, τ ′) =

∑

n

ϕn(x)ϕ∗
n(x′)

e−(En−µ−aη)(τ−τ ′)/~

1 − e−β(En−µ−aη) δab. (C.7)

In analogy we obtain for τ − τ ′ ∈ (−~β, 0)

G
(0)
ab (x, τ ;x′, τ ′) =

∑

n

ϕn(x)ϕ∗
n(x′)

e−(En−µ−aη)(τ−τ ′)/~

eβ(En−µ−aη) − 1
δab. (C.8)

Both cases can be summarized as

G
(0)
ab (x, τ ;x′, τ ′) = G

(a)
0 (x, τ ;x′, τ ′) δab, (C.9)

where we have introduced the abbreviation

G
(a)
0 (x, τ ;x′, τ ′) = lim

σց0

∑

n

ϕn(x)ϕ∗
n(x′)

2 sinh[β(En − µ− aη)/2]
(C.10)

×
{

Θ(τ − τ ′)e−(En−µ−aη)(τ−τ ′−~β/2)/~ + Θ(τ ′ − τ)e−(En−µ−aη)(τ−τ ′+~β/2)/~

}

,

and the hyperbolic sine function sinh(x) ≡ −i sin(ix). Note that G
(0)
0 (x, τ ;x′, τ ′) coincides

with the Green’s function of a non-interacting Bose gas with no spin.
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The representation of the Green’s function (C.10) is valid for all space-time point, except
for τ = τ ′. Here, due to the step functions in (C.10), we have the problem that

lim
τրτ ′

G
(a)
0 (x, τ ;x′, τ ′) 6= lim

τցτ ′
G

(a)
0 (x, τ ;x′, τ ′). (C.11)

However, as discussed at the end of Section 2.4, we most correctly have to add an infinitesimal
positive constant to τ ′, which was essentially due to the right time-ordering of the fields. In
this case, an equal sign in (C.11) and Eq. (C.10) reduces for τ = τ ′ to the important special
case

G
(a)
0 (x, τ ;x′, τ) =

∑

n

ϕn(x)ϕ∗
n(x′)

exp [β(En − µ− aη)/2] − 1
. (C.12)

C.2 Semiclassical Approximation

In spite of the simplifications of the Green’s function achieved in the last section, it is still
difficult to handle. This originates from the fact, that according to Eq. (C.10), we have to
know all the eigenfunctions of the system. However, even if we know all the eigenfunctions,
it is still very inconvenient to calculate most of the physical quantities. Therefore, we briefly
introduce a semiclassical approximation of the Green’s function. We start by noting that
Eq. (C.6) coincides with the imaginary one-particle transition amplitude in the following
way

g
(0)
ab (x,x′; τ) = θ(τ)δab(x, τ |x′, 0)

∣

∣

∣

E→E−µ−aη
. (C.13)

This is a quite important observation, because it reduces the search of an appropriate semi-
classical of the Green’s function (C.9) to the extensively studied time evolution amplitude
(see for example [47, Chap. 4]). In leading order the semiclassical approximation of the
imaginary time evolution amplitude is given by [68, Chap. 2]:

(x, τ |x′, 0) =
( m

2π~τ

)3/2

exp

[

− m

2~τ
(x − x′)2 − τ

~
V

(

x + x′

2

)]

. (C.14)

The Fourier transformed of the latter is given by

(x, τ |x′, 0) =

∫

d3k

(2π)3
exp

{

−ik(x − x′) − τ

~

[

~
2k2

2m
+ V

(

x + x′

2

)]}

, (C.15)

and therefore

(x, τ |x′, 0)
∣

∣

∣

E→E−µ−aη
=

∫

d3k

(2π)3
exp

[

− ik(x − x′) − τHa(x,x
′;k)/~

]

(C.16)

with

Ha(x,x
′;k) =

~
2k2

2m
+ V

(

x + x′

2

)

− µ− aη. (C.17)
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Substituting Eqs. (C.13), (C.16), (C.17) in Eq. (C.1) and performing the same steps as done
in Appendix C.1 yields for Eq. (C.10)

G
(a)
0 (x, τ ;x′, τ ′) = lim

σց0

∫

d3k

(2π)3

eik
′(x−x′)

2 sinh[βHa(x,x′;k)/2]
(C.18)

×
{

Θ(τ − τ ′ − σ)e−Ha(x,x′;k)(τ−τ ′−~β/2)/~ + Θ(τ ′ − τ + σ)e−Ha(x,x′;k)(τ−τ ′+~β/2)/~

}

.

For equal imaginary time arguments the Green’s function is given in semiclassical approxi-
mation as

G
(a)
0 (x, τ ;x′, τ) =

∫

d3k

(2π)3

eik
′(x−x′)

exp [βHa(x,x′;k)/2] − 1
. (C.19)

This can be integrated out analytically. To do this we expand the fraction in Eq. (C.19) into
a Taylor series which yields with Eq. (C.17)

G
(a)
0 (x, τ ;x′, τ) =

∞
∑

n=1

exp

{

−βn
[

V

(

x + x′

2

)

− µ− aη

]}

×
∫

d3k

(2π)3
exp

[

ik′(x − x′) − βn
~

2k2

2m

]

. (C.20)

With the substitution

k̃ = k − i(x − x′)
m

βn~2
, (C.21)

the latter integral becomes Gaussian and can analytically be integrated out, which leads to
the result

G
(a)
0 (x, τ ;x′, τ) =

1

λ3

∞
∑

n=1

1

n3/2
exp

{

−nβ
[

V

(

x + x′

2

)

− µ− aη

]}

e
− m

2~2βn
(x−x′)2

. (C.22)

Setting x = x′ the latter can be written in the compact form

G
(a)
0 (x, τ ;x, τ) =

1

λ3
ζ3/2

(

e−β[V (x)−µ−aη]) , (C.23)

where we used the definition of the polylogarithmic function

ζν(z) =
∞
∑

n=1

zn

nν
. (C.24)

and the de Broglie wave length (1.1).
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C.3 Integral

In this section we calculate the spatial

Iaa′ ≡
∫

d3xG
(a)
0 (x, τ ;x, τ)G

(a′)
0 (x, τ ;x, τ), (C.25)

where the Green’s function is given Eq. (C.23). Using Eq. (C.24) we can write

Iaa′ =
1

λ6

∞
∑

n,n′=1

enβ(µ+aη)

n3/2

en
′β(µ+a′η)

n′3/2

∫

d3x e−β(n+n′)V (x) (C.26)

Considering an isotropic harmonic trap

V (x) =
m

2
ω2
jx

2
j , (C.27)

the integral (C.26) can analytically be integrated out as

Iaa′ =
1

λ3

1

(β~ω̃)3
ζ 3

2
, 3
2
, 3
2

(

zzaη , zz
a′

η

)

. (C.28)

Here, we have used the fugacity (4.22), the magnetic fugacity (4.23) and defined the gener-
alized polylogarithmic function

ζa,b,c (z1, z2) ≡
∞
∑

n=1

∞
∑

n′=1

zn1 z
n′

2

na n′b(n+ n′)c
. (C.29)

Furthermore, we introduce for our convenience the following abbreviation

ζa,b,c (z) ≡ ζa,b,c (z, z) . (C.30)

The generalized polylogarithmic function has the following property

ζa,b,c (z1, z2) = ζa−1,b,c+1 (z1, z2) + ζa,b−1,c+1 (z1, z2) . (C.31)

Furthermore, let z1 and z2 be a function of x, then taking the derivative of the generalized
polylogarithmic function with respective to x yields

d

dx
ζa,b,c (z1, z2) =

z′1
z1
ζa−1,b,c (z1, z2) +

z′2
z2
ζa,b−1,c (z1, z2) (C.32)

and
d

dx
ζa,b,c (z) =

z′

z
ζa,b,c−1 (z) . (C.33)





Appendix D

Angular Momentum

In this appendix we treat several properties of the operator of angular momentum and its
consequences.

D.1 Addition of Angular Momentum

We start with briefly discussing the behavior of the total angular momentum of two particles.

D.1.1 Distinguishable Particles

Let us consider a system of two distinguishable particles with the respective one-particle
wave function |f1m1〉 and |f2m2〉. Here, we omit other quantum number, because we are
only interested in the behavior of the angular momentum. If the particles do not have a
coupling among each other, for example if the inter-particle distance is large, then the latter
wave functions do not change, which is due to the conservation of angular momentum. Once
the particles are coupled, they have to be described by a two-particle wave function

|f1f2;FM〉 =
∑

m1m2

|f1f2;m1m2〉 〈f1f2;m1m2|f1f2;FM〉 , (D.1)

where we have multiplied the two-particle wave function from the left side with the unity
operator of the spin subspace f1 ⊗ f2

1f1⊗f2 =
∑

m1,m2

|f1f2;m1m2〉 〈f1f2;m1m2| . (D.2)

The scalar products on the right-hand side of Eq. (D.1) are the so-called Clebsch-Gordan
coefficients (see, for example, Ref. [53]). Their values are only different from zero if the
equations

m1 +m2 = M and |f1 − f2| ≤ F ≤ f1 + f2 (D.3)

are satisfied. Physically, this ensures the conservation of the total momentum. The complete
total wave function of the particles is then given by the tensorial product

|Ψ̃〉 = |1, 2〉 ⊗ |f1f2;FM〉 , (D.4)
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where |1, 2〉 denotes the contributions to the wave function due to all other quantum number.
Consider now two distinguishable particles, where both have an angular momentum one, i.e.,
f1 = f2 = 1. Then, according to Eq. (D.3), the two-particle wave function can have a total
angular momentum of F = 0, 1, 2.

D.1.2 Identical Particles

We treat now the case of two identical particles. It can be shown that the Clebsch-Gordan
coefficients obey [53]

〈f1f2;m1m2|FM〉 = (−1)f1+f2−f 〈f2f1;m2m1|FM〉 (D.5)

and therefore

P12 |f1f2;FM〉 = (−1)f1+f2−F |f1f2;FM〉 , (D.6)

where P12 is the permutation operator, which interchanges particle one with particle two.
The important point for a system of two identical particles is, that the physical predic-
tion must not be altered by permuting the particles, i.e., by changing the particles indices.
This is achieved by symmetrizing the two-particle wave function (D.4) with the help of the
permutation operator P12

|Ψ〉 = |Ψ̃〉 + P12|Ψ̃〉. (D.7)

On the other hand we have the properties of the Clebsch-Gordan coefficients (D.5) and (D.6),
which yield with Eq. (D.4)

|Ψ〉 =











(

|1, 2〉 + |2, 1〉
)

⊗ |f1f2;FM〉 for F − f1 − f2 even,
(

|1, 2〉 − |2, 1〉
)

⊗ |f1f2;FM〉 for F − f1 − f2 odd.
(D.8)

This is a important result, because it states that the parity of the two-particle wave function
depends on the total angular momentum. On the other hand we know from quantum me-
chanics that for two particles, with each having an integer value of angular momentum, the
wave-function has to be symmetric and for particles having a half-integer value antisymmet-
ric. Therefore, Eq. (D.8) immediately leads to the result that the two-particle wave function
of identical Bosons (integer spin) cannot have an odd quantum number of total angular
momentum and Fermions (half-integer spin) cannot have an even total angular momentum.
Let us consider the above case, where we had two bosons with f1 = f2 = 1. Assuming them
to be equal, we get according the latter discussion, that they can form a two-particle state
with total angular momentum of F = 0, 2, i.e., in contrast to the case of two distinguishable
particles the total angular momentum state F = 1 has dropped out.
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D.2 Operator Transformation

In this appendix we introduce a operator transformation of the projection operator

PF =
F
∑

M=−F
|f1f2;FM〉 〈f1f2;FM | , 〈f1f2;FM |f1f2;F

′M ′〉 = δFF ′δMM ′, (D.9)

which is defined for the subspace f1 ⊗ f2. The projection operator PF applied on a state |Ψ〉
yields the contributing wave functions with total angular momentum F .

D.2.1 Distinguishable Particles

We start again with treating the case of distinguishable particles. With the help of the
projection operator (D.9) we can write the identity operator 1 of the angular momentum
subspace f1 ⊗ f2 as

1 =

f1+f2
∑

F=|f1−f2|
PF . (D.10)

We introduce the operators of angular momentum

F2
i |f1f2;FM〉 = fi(fi + 1) |f1f2;FM〉 i = 1, 2 (D.11)

and the corresponding operator for the total angular momentum

F2 |f1f2;FM〉 = F (F + 1) |f1f2;FM〉 , F = F1 + F2. (D.12)

They satisfy the relation

F1 · F2 =
1

2

(

F2 − F2
1 − F2

2

)

. (D.13)

Multiplying Eq. (D.13) from the right side with the unity operator (D.10) and using Eqs. (D.9),
(D.11)–(D.13) leads to the identity

F1 · F2 =

f1+f2
∑

F=|f1−f2|
λFPF

with the coefficients

λF =
1

2

[

F (F + 1) − f1(f1 + 1) − f2(f2 + 1)
]

. (D.14)

Using Eq. (D.9) we get the property PFPF ′ = PF δFF ′. Applying this relation to Eq. (D.14)
yields the generalized result

(F1 · F2)
n =

f1+f2
∑

F=|f1−f2|
λnFPF , n = 0, 1, 2, . . . . (D.15)
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With (D.15) we have a set of linear equation which can be summarized in the following
k ×k-matrix equation



















(F1 · F2)
k−1

(F1 · F2)
k−2

...

(F1 · F2)

1



















= V



















Pf1+f2

Pf1+f2−1

...

P|f1−f2|+1

P|f1−f2|



















, (D.16)

where k − 1 = j1 + j2 − |j1 − j2| and V is a matrix of Vandermond’s form

V =



















λk−1
f1+f2

λk−1
f1+f2−1 . . . λk−1

|f1−f2|
λk−2
f1+f2

λk−2
f1+f2−1 . . . λk−2

|f1−f2|
...

...
. . .

...

λ1
f1+f2

λ1
f1+f2−1 · · · λ1

|f1−f2|
1 1 . . . 1



















(D.17)

with the characteristic determinant (see Ref. [42])

det V =
∏

i>j

(λi − λj). (D.18)

According to Eq. (D.14) we always have λi 6= λj for i 6= j; i, j ≥ 0. Therefore, the Van-
dermond’s determinant (D.18) is non-vanishing, hence the inverse V−1 exists. Thus, we are
able to express the projectors Pn in terms of the operators (F1 · F2)

m

PF =

k−1
∑

F ′=0

(V−1)FF ′(F1 · F2)
F ′

. (D.19)

D.2.2 Identical Particles

We now regard a system of identical Bosons and Fermions, respectively. As discussed in
Appendix D.1.2 we always have for a bosonic and fermonic system that PF |Ψ〉 = 0 for F
an even and odd number, respectively. Therefore, we can set the respective projectors in
(D.15) equally zero. After removing the respective row from the matrix V we again obtain
a matrix of the Vandermond’s form, where we can use the arguments as done above.

We discuss the particular case of two identical bosons with spin one. The matrix equa-
tion (D.16) then reads

(

F1 · F2

1

)

=

(

λ2 λ0

1 1

)(

P2

P0

)

(D.20)
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Solving for the projection operators leads to

P0 =
1

3
(1− F1 · F2) , (D.21)

P2 =
1

3
(21 + F1 · F2) . (D.22)

Considering now a delta potential of the following

V (int) (x1 − x2) = δ (x1 − x2)
(

g0P0 + g2P2

)

(D.23)

then we can write this equally as

V (int) (x1 − x2) = δ (x1 − x2)
(

c01 + c2F1 · F2

)

, (D.24)

with the coefficients

c0 =
1

3
(2g2 + g0), (D.25)

c2 =
1

3
(g2 − g0). (D.26)

We can also consider a delta potential for spin two, spin three, or higher order particles. We
treat the first two examples explicitly. For two particles identical particles with f = 2 the
delta potential is given by

V (int) (x1 − x2) = δ (x1 − x2)
(

g0P0 + g2P2 + g4P4

)

. (D.27)

The transformed potential then reads

V (int)(x1,x2) = δ(x1 − x2)
[

c0 + c2F1 · F2 + c4(F1 · F2)
2
]

(D.28)

with the coefficients

c0 =
9

35
g4 +

8

7
g2 −

2

5
g0,

c2 =
9

70
g4 −

2

21
g2 −

1

30
g0,

c4 =
1

70
g4 −

1

21
g2 +

1

30
g0.

Such a system has been realized for 87Rb [27, 31]. In contrast to a spinor condensate with
spin one, the Gross-Pitaevskii equations of the spin 2 system are not integrable anymore, be-
cause of the large number of degrees of freedom. On the contrary, it shows a chaotic behavior.

Analogously, we find for identical particles with spin three

V (int) (x1 − x2) = δ (x1 − x2)
(

g0P0 + g2P2 + g4P4 + g6P6

)

(D.29)
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and therefore

V (int)(x1,x2) = δ(x1 − x2)
[

c0 + c2F1 · F2 + c4(F1 · F2)
2 + c6(F1 · F2)

3
]

(D.30)

with

c0 = − 4

231
g6 +

27

77
g4 −

1

7
g2 +

20

21
g0,

c2 = − 1

231
g6 +

117

770
g4 −

1

7
g2 −

1

210
g0,

c4 =
5

4158
g6 +

3

385
g4 −

13

378
g2 +

8

315
g0,

c6 = − 1

4158
g6 −

1

770
g4 +

1

378
g2 −

1

630
g0. (D.31)

A system with particles of spin three, namely 52Cr has already successfully be Bose-Einstein
condensed [66], but so far only within a magnetical trap, i.e., most of the spin degrees of
freedom are frozen out. On the other hand, for higher spins the magnetic dipole moment
of the atoms, become so strong, that the latter delta potential has to be modified by a
respective dipole correction.
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