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Meinen Eltern und meiner Familie.
Für die lange Unterstützung.

I met a traveller from an antique land
Who said: “Two vast and trunkless legs of stone
Stand in the desert. Near them, on the sand,
Half sunk, a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them and the heart that fed:
And on the pedestal these words appear:
“My name is Ozymandias, king of kings;
Look on my works, ye Mighty, and despair!”
Nothing beside remains. Round the decay
Of that colossal wreck, boundless and bare
The lone and level sands stretch far away.”

Percy Bysshe Shelley, ”Ozymandias”





List of Publications

[P1] E. Stein, F. Vewinger and A. Pelster, ‘Collective modes of a photon Bose–Einstein
condensate with thermo-optic interaction’, New J. Phys. 21, 103044 (2019).

[P2] E. Stein and A. Pelster, ‘Thermodynamics of trapped photon gases at dimensional
crossover from 2D to 1D’, New J. Phys. 24, 023013 (2022).

[P3] E. Stein and A. Pelster, ‘Photon BEC with thermo-optic interaction at dimen-
sional crossover’, New J. Phys. 24, 023032 (2022).

[P4] E. Stein and A. Pelster, ‘Quantum Mechanical Description of Thermo-Optic In-
teraction’, arXiv: 2203.16955 (2022).

[P5] E. Stein and A. Pelster, ‘Exact Diagonalisation of Photon Bose-Einstein Con-
densates with Thermo-Optic Interaction’, arXiv: 2204.08818 (2022).

i

https://doi.org/10.1088/1367-2630/ab4b06
https://doi.org/10.1088/1367-2630/ab4b06
https://doi.org/10.1088/1367-2630/ab4b06
https://doi.org/10.1088/1367-2630/ac4ee0
https://doi.org/10.1088/1367-2630/ac4ee0
https://doi.org/10.1088/1367-2630/ac4ee0
https://doi.org/10.1088/1367-2630/ac51ec
https://doi.org/10.1088/1367-2630/ac51ec
https://doi.org/10.1088/1367-2630/ac51ec
https://arxiv.org/abs/2203.16955
https://arxiv.org/abs/2203.16955
https://arxiv.org/abs/2203.16955
https://arxiv.org/abs/2204.08818
https://arxiv.org/abs/2204.08818
https://arxiv.org/abs/2204.08818


ii



Abstract

Photons in dye-filled microcavities resemble thermalised gases of massive particles in
two dimensions. The photons develop a standing wave along the optical axis, reducing
their spatial dimension from three to two and providing a finite photon mass. The shape
of the mirror surface yields an effective potential for these particles. Finally, the in-
teraction with the dye molecules allows the photon gas to thermalise and to undergo
Bose-Einstein condensation. However, the dye molecules not only introduce thermalisa-
tion into the system, but also mediate a photon-photon interaction. The latter is due
to the heating of the dye solution as a result of the dye molecules converting absorbed
photons into molecular excitations. This leads to a change of the refractive index and,
thus, to the thermo-optic photon-photon interaction. In contrast to a contact inter-
action, the thermo-optic interaction relies on the heat diffusion inside the die cavity.
Consequently, it is non-local in space and retarded in time. Although experiments on
photon-Bose-Einstein condensates have been carried out since 2010, concrete experi-
mental investigations of the thermo-optic interaction are still lacking.
Therefore, this thesis focuses on a theoretical description of the thermo-optic photon-
photon interaction close to the experimental setup. The aim is to determine possibilities
to increase the thermo-optic interaction and to pave the way for high-resolution meas-
urements of its strength. To this end, working out the detailed heat diffusion inside the
dye cavity is the first step. This allows linking the time constant of the diffusion along
the optical axis to the remaining two-dimensional diffusion. The strength of the thermo-
optic interaction turns out to depend on the geometry of the cavity mirrors. A second
study investigates the dimensional crossover of the photon gas from two dimensions to a
single dimension by introducing a large trap anisotropy. As a result, the effective dimen-
sion of an ideal Bose gas at the dimensional crossover depends on the thermodynamic
temperature of the gas and the trap-aspect ratio. Afterwards, a variational approach
reveals the behaviour of the thermo-optic interaction at the dimensional crossover. The
thermo-optic interaction behaves differently than a contact interaction at the crossover,
as the former saturates for larger trap aspect ratios. This behaviour is due to a compe-
tition of the diffusion length scale with the condensate length scale. Finally, the last step
combines the thermodynamic investigation with a detailed interaction study to obtain a
Hartree-Fock analogue theory for the thermo-optic interaction. This theory allows pre-
dicting the energy shifts of the different eigenmodes due to the thermo-optic interaction
and suggests performing high-precision spectroscopic measurements for determining the
strength of the effective photon-photon interaction.
In conclusion, this thesis provides further understanding of the thermo-optic photon-
photon interaction and first insights into the dimensional crossover of thermalised photon
gases. The theoretical results are close to the experiments, such that the relevant experi-
mental parameter regimes can be identified. In addition, the thesis suggests determining
the strength of the effective photon-photon interaction via high-resolution spectroscopic
measurements.
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Zusammenfassung

Photonen in farbstoffgefüllten Mikrokavitäten ähneln thermalisierten Gasen aus massi-
ven Teilchen in zwei Dimensionen. Die Photonen entwickeln eine stehende Welle entlang
der optischen Achse, wodurch sich ihre räumliche Dimension von drei auf zwei redu-
ziert und eine endliche Photonenmasse entsteht. Die Spiegeloberfläche fungiert hierbei
als ein effektives Potential für diese Teilchen. Schließlich ermöglicht die Wechselwirkung
mit den Farbstoffmolekülen die Thermalisierung des Photonengases und dessen Bose-
Einstein-Kondensation. Allerdings führen die Farbstoffmoleküle nicht nur zur Thermali-
sierung, sondern vermitteln auch eine Photon-Photon-Wechselwirkung. Letztere ist auf
die Erwärmung der Farbstofflösung zurückzuführen. Hierbei wandeln die Farbstoffmo-
leküle absorbierte Photonen in molekulare Anregungen um. Dies führt zu einer Änderung
des Brechungsindexes, was eine thermo-optische Photon-Photon-Wechselwirkung zur
Folge hat. Im Gegensatz zu einer Kontaktwechselwirkung beruht die thermo-optische
Wechselwirkung auf der Wärmediffusion innerhalb der Kavität, sodaß diese nichtlokal
im Raum und in der Zeit retardiert ist. Obwohl Experimente zu Photonen-Bose-Einstein-
Kondensate schon seit 2010 durchgeführt werden, fehlen konkrete experimentelle Unter-
suchungen zur thermo-optischen Wechselwirkung.
Daher konzentriert sich diese Arbeit auf eine experimentnahe, theoretische Beschrei-
bung dieser thermo-optischen Wechselwirkung mit dem Ziel, Möglichkeiten zu ihrer
Verstärkung zu finden und hochauflösende Messungen der Stärke zu ermöglichen. Hierzu
wird in einem ersten Schritt die Wärmediffusion im Inneren der Farbstoffkavität detail-
liert untersucht. Dies ermöglicht es, die Zeitkonstante der Diffusion entlang der optischen
Achse mit der übrigen zweidimensionalen Diffusion zu verknüpfen. Dabei zeigt sich, daß
die Stärke der thermo-optischen Wechselwirkung von der Geometrie der Spiegel abhängt.
In einem zweiten Schritt wird der dimensionale Übergang des Photonengases von zwei Di-
mensionen zu einer einzigen durch Einführung einer großen Fallenanisotropie untersucht.
Hierbei wird die effektive Dimension eines idealen Bose-Gases am Dimensionsübergang
bestimmt, die sowohl von der thermodynamischen Temperatur des Gases als auch dem
Verhältnis der Fallenfrequenzen abhängt. Anschließend wird mithilfe eines Variationsan-
satzes das Verhalten der thermo-optischen Wechselwirkung am dimensionalen Übergang
bestimmt. Die thermooptische Wechselwirkung verhält sich am Übergang anders als eine
Kontaktwechselwirkung, da erstere bei größeren Fallenaspektverhältnissen in Sättigung
geht. Dieses Verhalten läßt sich durch einen Vergleich der Diffusionslängenskala mit der
Kondensatlängenskala verstehen. Im letzten Schritt wird die thermodynamische Untersu-
chung mit der Wechselwirkungsstudie kombiniert und eine Hartree-Fock ähnliche Theo-
rie für die thermo-optische Wechselwirkung aufgestellt. Der Vorteil dieser Theorie liegt
in der Möglichkeit, die Energieverschiebungen der verschiedenen Eigenmoden aufgrund
der thermo-optischen Wechselwirkung vorherzusagen. Sie ermöglicht daher hochpräzise
spektroskopische Messungen zur Bestimmung der Stärke der effektiven Photon-Photon-
Wechselwirkung.
Zusammenfassend lässt sich sagen, daß diese Arbeit einen weiteren Einblick in die
thermo-optische Wechselwirkung und einen ersten Einblick in den Dimensionsübergang
von thermalisierten Photonengasen gibt. Die theoretischen Modelle liegen nahe an den
Experimenten, sodaß die interessanten experimentellen Parameterregime bestimmt wer-
den können. Darüber hinaus werden in der Arbeit Möglichkeiten vorgeschlagen, die
Stärke der effektiven Photon-Photon-Wechselwirkung durch hochauflösende spektrosko-
pische Messungen zu bestimmen.
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Motivation and Outline

Γνῶθι Σεαυτόν

know thyself

Oracle of Delphoi

It was at the island Aiaia, the home of the witch Kirke, that Odysseus and his com-
panions landed on during the ten years homecoming struggle after the Troian war. A
group of the companions soon found Kirke’s palace, when they scouted the island. In
thought of defending herself, she invited the foreigners to a meal, which she used for
transforming the men into pigs. She turned everyone into pigs except Eurylochos who
stayed outside and witnessed the whole spectacle. Scared from what he saw, he ran
back to the ships and reported to Odysseus. Odysseus called together the remaining
fellows and set about freeing the prisoners. Underway, the god Hermes, the Olympian
messenger, handed a herb to Odysseus to circumvent Kirke’s magic. Figure 1 a) shows
Kirke receiving Odysseus to her palace and inviting him and his men to dinner — but
Hermes’ herbs prevent their transformation into pigs this time. Instead, Odysseus drew
his sword and threatened Kirke. Recalling Odysseus from a message, that Hermes de-
livered to her, she promised Odysseus to transform his men back—from pigs to human
beings. After sleeping with Odysseus, she did as she promised. The Troians lived for a
whole year freely on the island, before continuing the journey home.
Who would have thought that nearly 2000 years later, this story from the Odyssey [1, 2]
still occupies the minds of humanity. It shows the strong human interest in observing and
explaining the transformation of different things into each other. Nearly every founda-
tional myth invented by humanity is a story about transformations [6]. Transformations
of human beings into animals and back, transformations of gods into humans, animals
or whatever seemed rational to them. Even the creational chaos itself transformed into
some order, as the Latin poet Ovid sings about at the beginning of the Metamorphosis,
a whole Epos dedicated to the description of transformations. Even possible scientific
explanations of these myths are discussed [7].
This fascination not only found its expression in the storytelling setting of myths, but it
also came down to practical worshipping cults. Throughout the pre-Christian antiquity,
humanity has invented whole new gods and goddesses, whose cults wandered through
the Mediterranean area [8]. Some of them have syncretised into new ones. The most
famous example of this happening is Serapis, the state god of the Ptolemaic Egypt [9].
Serapis, as depicted in figure 1 b), is a mixture between the Egyptian gods Osiris and
Apis and the Greek gods Zeus and Hades [8], as shown in figure 1 c). Ptolemaios I. Soter
ordered this cult to be created to preserve the Ptolemaic rule over Egypt. In the course
of this, Serapis became one of the most important gods in the Hellenic Egypt and, later
on, also in the Roman Empire [10, 11].
But not only in the mythical and cultic realm did transformations help humanity to
understand the world. With the work of the pre-Socratic philosophers these ideas found
their way into the description of nature. Thales from Miletos, who the scientific reader
knows through his famous theorem, was the first to cross the bridge from the mytho-
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Motivation and Outline

a)

b) c)

Fig. 1: a) “Circe Offering the Cup to Ulysses” [3], John William Waterhouse, Oil on
canvas, 1891. b) Serapis as Osiris-Apis [4]. The back shows the Apis bull,
whereas the front shows the human look-alike of Osiris. c) Serapis as Zeus with
the characteristic kalathos (basket) on his head [5], Roman copy of Bryaxis.
The pictures are public domain.
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logical description of nature to a more scientific one [12]. For Thales the kind of main
matter (ἀρχή), which lays at the foundation of all matter being, is water. According
to Aristotle, Thales has deduced this insight from the observation of food being wet
combined with food being transformed into heat, which allows for life. Also, the seeds of
life, either vegetable or animal, are wet. Hence, water is the ἀρχή of life and, therefore,
of everything. But from observations he deduced further that water does not only stay
as water, it can also transform into other things, like smoke and fire. Through these
transformations, water can form the whole of creation. With his theory, Thales started
to question the aphoristic, but admonitory words of the Γνῶθι Σεαυτόν (know thyself)
emblazoned on the walls of Apollos’ temple at Delphoi.
The modern reader might now ask: Why are these old mythological and philosophical
theories still relevant today, and why do they stand at the beginning of a PhD thesis
in physics? Because the main thinking has not changed during the period of the last
two thousand years. Still, the modern physical description of the world is founded
upon elementary particles transforming into each other, like a photon decaying into an
electron-positron pair. According to quantum mechanics, particles change their beha-
viour, being either particle-like or wave-like. Just as Thales declared water as being
the kind of matter from which everything being is deduced, scientists nowadays search
for the fundamental particles of matter and how they constitute all the known mat-
ter. Reference [13] gives an account of this thinking by simulating quantum systems by
other quantum systems. Thinking of transformations between different manifestations
of things was and is always guiding human thinking [6]. To underscore this statement,
the remainder of this section follows the development of understanding and describing
light.
In Ancient Greece, the natural philosophers thought that light developed in the eyes and
strayed as rays out of the eye, allowing for animals and human beings to see. This theory
held until the mechanistic description of Newton arose at the end of the 17th century.
Newton mentioned light as being small particles with different masses, accounting for
different colours [14]. He was able to explain the light propagation in free space, as well
as refraction and reflection. But this corpuscular theory does not describe light inter-
ference, as this is an intrinsic feature of waves. The wave theory of light, first proposed
by Huygens [15], explained the latter. He was able to describe refraction, reflection,
and interference effects as well, but he failed in the description of free-space propaga-
tion. Therefore, in order to deliver a complete theory, Newton mixed some wave-like
behaviour, which Huygens proposed, into his corpuscular theory, showing that light is
described by some new kind of hybrid theory — hybrid in the sense of light being indis-
pensably both a wave and a massive particle.
Until the 19th century, these two theories existed side-by-side. But experimental find-
ings by Young and Faraday, amongst others, resulted in Maxwell formulating his famous
equations describing electromagnetism [16]. These equations support wave solutions,
which were soon identified to represent light. Therefore, the pointer strongly moved in
favour of the wave theory of light. As the experiments by Michelson and Morley suppor-
ted by the theory of Einstein revealed light to propagate in vacuum [17], the common
view was that light is fully understood, apart from minor problems like the black-body
radiation and the photoelectric effect.
However, these so-called small problems of physics at the edge of the 19th and 20th
centuries held the potential to completely revolutionise physics. The first step in this
direction was Planck working on the black-body radiation problem [18–20]. By that
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time, the only existing laws describing the spectral distribution of a black-body radi-
ator were the Wien and the Rayleigh-Jeans law. These were either able to describe
the short or the long wavelength regime, but never the whole spectrum. By assuming
finite energy quanta of the light field, Planck was able to derive a formula describing
black-body radiation at the whole spectrum with the correct short and long wavelength
limits. In the same manner, Einstein successfully described the photoelectric effect also
by introducing discrete quanta for the light field, the photons [21]. These fundamental
discoveries led to the Nobel Prizes for Planck in 1918 and for Einstein in 1921. But it is
noteworthy that discrete energy quanta are more in favour of a particle-like behaviour of
light, standing in slight contradiction to the thinking developed in the former century of
light being a wave. Nevertheless, the up-coming quantum mechanics solved this riddle
by anticipating the wave-particle duality, where the spread of a particle is described as
a wave until measurement, which collapses the wave into the measurement result [22,
23]. Interference effects are in this theory understood probabilistically, such that a whole
ensemble of measurements results in the well-known interference patterns.
Nowadays in physics, the wave-like behaviour of matter is a well known phenomenon
from the Bose-Einstein condensation of ultracold atomic gases. Hereby, atoms macro-
scopically occupy the ground state of the given ensemble, provided the system is below
a certain critical temperature. Consequently, the ground-state atoms are coherent with
each other, behaving like a large matter-wave. In the present thesis, this thinking is kind
of taken upside down and reminds of the Shakespearian comedy “What you Will”, where
Viola, the main role, which at that time a man played, disguises herself as a man. Thus,
it is a man playing a woman pretending to be a man. Photons in a dye-filled cavity
represent nearly the same situation, as such a cavity modifies the photons to behave
like massive particles. Since a microcavity contains the photons, their three-dimensional
wave behaviour turns into that of two-dimensional massive particles. These are tweaked
to thermalise and to effectively resemble a system of atoms, just to be turned into a
wave-like Bose-Einstein condensate again. This shows that transforming things into
each other is still the driving force of modern thinking [13].

Outline

The main topic of this thesis is to develop an experiment-near theory for photon Bose-
Einstein condensates (BECs). In the course of the following chapters, the developed
theories mainly concern the arising effective photon-photon interaction. The results pay
special attention to the differences between this effective photon-photon interaction and
the contact interaction in atomic condensates, in such a way that the corresponding
results can be compared to the experiment. With the same spirit to support planned
experiments in Kaiserslautern, the dimensional crossover of photon BECs from 2D to
1D is also worked out.
To this end, chapter 1 introduces the reader to the topic of phase transitions of light.
The section provides an overview of the first known phase transition of light, namely
the laser phase transition. Afterwards, it touches upon the topic of exciton-polariton
condensates, which are the first condensates involving photons. It concludes with a
detailed discussion of the principles of dye-cavity photon gases and discusses both the
state-of-the-art theoretical modelling and the current experimental status.
The description and the implications of the effective photon-photon interaction are at the
focus of chapter 2. First, it introduces a heuristic model for describing the thermo-optic
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photon-photon interaction. This model contains a detailed description of the temperat-
ure diffusion through the entire cavity structure. As this is a three-dimensional set-up,
the first main effort consists in reducing the diffusion equation to an effectively two-
dimensional problem, such that both the temperature diffusion and the photon BEC are
described on the same footing. This theoretical model allows investigating the effect of
the thermo-optic interaction upon the collective excitations of the photon BEC.
The next two chapters treat the dimensional crossover of the photon BEC from 2D to 1D.
The idea is to strongly confine the gas in a single direction, such that the degrees of free-
dom in this direction freeze out. Hence, only the degrees of freedom in the non-squeezed
direction remain occupied by the system, and it effectively behaves as one-dimensional.
In this context, chapter 3 answers the question of the effective dimensionality of the sys-
tem along the crossover. For this purpose, it analyses the thermodynamics of an ideal
Bose gas in a harmonic confinement, where one of the two directions is squeezed. As a
result, the specific heat defines the effective dimension in both the condensate and the
thermal phase.
Chapter 4 connects to this study and determines the influence of the effective photon-
photon interaction upon the photon BEC ground state at the dimensional crossover. It
turns out that the interaction increases as the trap anisotropy increases. Here, the inter-
play of the length scales set by the temperature diffusion and the condensate diameter
becomes relevant. If the latter is smaller than the first, the thermo-optic interaction
saturates. This saturation effect is the main difference to a corresponding setting for a
standard contact interaction.
As the chapters 3 and 4 either focus on the thermodynamics without interaction or on the
interaction without thermodynamics, the question arises how to unify these two points
of view. Hence, the next two chapters cover this question by deriving a Hartree-Fock
analogue for the thermo-optic interaction.
For this purpose, chapter 5 works out the basic theory for describing the thermo-optic
interaction during a single experimental cycle. The main difference between a stand-
ard Hartree-Fock method for a contact interaction and the one worked out here, lies in
the effect of the time scales. As the temperature diffusion and, therefore, the photon-
photon interaction develop on a much longer timescale than the lifetime of a single
experiment, the theory takes into account the temperature diffusion adiabatically. As
a result, the Hamiltonian describing the photon-photon interaction takes the form of a
time-dependent matrix.
Chapter 6 analyses the implications of this description in greater detail. To this end, a
photon gas inside a harmonic trap is investigated by using exact diagonalisation for the
Hamiltonian matrix derived previously in chapter 5. First, the study verifies that the
method is able to reproduce formerly derived results. Chapter 4 already points out the
increasing interaction strength at the dimensional crossover. This implies that in the
Hartree-Fock case, the coupling to the thermal cloud also increases. Along this line, the
chapter concludes by pointing out the deviations, the thermal cloud introduces, com-
pared to former approaches used in the literature.
Chapter 7 summarises the findings in the thesis, whilst chapter 8 provides an outlook
for further interesting topics and presents selected preliminary results.
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1. Introduction

... eritis sicut deus scientes
bonum et malum.
... ye shall be as god, knowing
good and evil.

Genesis 3, 5

Nowadays, Bose-Einstein condensation of atomic clouds is a well understood macro-
scopic quantum phenomenon and an often used experimental platform [24–26], resulting
in complex machines. Optical experiments, on the other hand, are conceptionally much
easier. Thus, the question arises, whether light can undergo phase transitions just like
atomic systems. However, there are two fundamental differences between an ensemble
of atoms and one of photons. Firstly, in contrast to atomic ensembles, photons do not
interact with each other, preventing light ensembles from thermalising [27]. Due to a
vanishing chemical potential, the photon number itself is not conserved, which leads to
the second difference. Usually, experiments with light as a platform constitute a highly
open-dissipative environment. Hence, the light ensemble is less likely to be in a thermal
state. Thus, which features known from phase transitions in atomic ensembles survive
in light ensembles?
In particular, the phase transition to a Bose-Einstein condensate (BEC) is of interest. In
ideal gases at thermal equilibrium, the most striking feature of a BEC is a macroscopic
occupation of the system’s ground state [24, 25]. Due to this macroscopic occupation,
a long-range coherence builds up in the system. A more formal way to understand and
to classify this phase transition consists of using the concept of spontaneously breaking
the U(1) symmetry of the complex-valued matter field in the condensed phase [26]. In
atomic systems, these considerations are well known and understood, even in the realm
of interacting systems.
The application of these concepts to open-dissipative systems began with the invention
and successful theoretical description of the laser, which section 1.1 recaps. However,
this system consists, in principle, only of a single mode and is highly open-dissipative,
such that from the above listed criteria only the spontaneous symmetry breaking argu-
ment can be used, but no thermal state evolves.
Section 1.2 treats a second example of a highly non-equilibrium condensation phe-
nomenon, the exciton-polariton condensate. In this system, the condensing particles
are polaritons, which are hybrid particles of excitons, i.e., particle-hole excitations con-
fined in a quantum well, and photons from the cavity surrounding the quantum well.
Due to the strong light-matter coupling in this system, the photons and the excitons form
polaritons. Therefore, no condensation of real photons is observed. Moreover, the large
matter part of the polaritons is responsible for a large interaction in these condensates.
Although, they are the opposite to the original thought of BEC in an ideal Bose gas,
they constitute an interesting platform for investigating the definition of Bose-Einstein
condensation and for non-equilibrium dynamics.
Finally, section 1.3 concludes this chapter with an extensive overview of BECs of pure
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1. Introduction

photons. Here, photons coupled to dye molecules resemble a thermal steady state inside
a dye-filled cavity. The photons inherit their thermalisation from the thermalised dye vi-
brations through spontaneously emitted photons. Therefore, the spontaneous emission
plays a key role in achieving a photon BEC. Due to this setup, the effective photon-
photon interaction is quite weak and this kind of BEC is much closer to the ideal gas
case. However, it is still a non-equilibrium system, since cavity losses have to be com-
pensated by a laser, but the strength of the non-equilibrium effects can be controlled
by appropriately tuning the coupling between photons and dye. The section gives an
overview of the involved physical concepts and the existing literature in both theory and
experiments, as well.

1.1. Laser

This section introduces and discusses the description of a single-mode laser, which is
the first example of light undergoing a phase transition in this thesis. In the simplest
approximation, a laser consists of an ensemble of two-level atoms coupled to a single light
field. In addition, the former is subject to an external pump and spontaneous decays
into non-cavity modes, whereas the latter experiences a cavity decay. Hence, the laser is
an open-dissipative system at heart. The book [28] provides a complete review of laser
theory, whilst reference [29] summarises the main points and techniques.

1.1.1. Rate Equations

The easiest approach for understanding laser dynamics is based on rate equations. This
set of equations only accounts for the population dynamics of the ground and the excited
state of the two-level system and a single light mode as well. It neglects all coherences in
the system, which is in general a bad approach, since quantum mechanics is built upon
the emergence of coherences. In an open-dissipative system, however, these coherences
are usually destroyed by the external pump. Brought to simple words, this means, the
more open the system, the better such a “classical” description becomes. This subsection
follows the main points of reference [29].

Equations The rate equation for the population N↑ of excited-state atoms reads

Ṅ↑ = Γ↑N↓ − Γ↓N↑ +B (N↓ −N↑)n , (1.1)

where the first term describes the external pump with rate Γ↑ and ground-state occupa-
tion N↓, the second one the non-radiative decays with rate Γ↓ and excited-state occupa-
tion N↑. The last term introduces the induced emission and absorption of photons. Both
processes happen according to Einstein at the same rate B [30] and are proportional to
the photon population n. Figure 1.1 depicts these different processes. The rate equation
for the ground-state occupation simply follows the one of the upper population

Ṅ↓ = −Ṅ↑ , (1.2)

such that the total number of atoms N = N↑+N↓ is conserved. The photon population
n inherits the interaction term from (1.1) with the cavity decay κ in addition:

ṅ = − [B (N↓ −N↑) + κ]n . (1.3)
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1.1. Laser

Fig. 1.1: Different processes accounted for in the rate equations (1.1)–(1.3). The two
atom levels are denoted by |↓⟩ , |↑⟩, and the light-matter interaction is depicted
in solid blue, while the external processes are in dashed red.

In the system (1.1)–(1.3) the external pump rate Γ↑ serves as a control parameter,
whereas all the other parameters are fixed. The population inversion D = N↑ − N↓
summarises equations (1.1) and (1.2) to a single one, as the total atom number N is
conserved due to (1.2).
In most experimental settings, the matter degrees of freedoms evolve on a faster timescale
than the photon degrees of freedom. Consequently, the former can be adiabatically
eliminated, such that the population inversion takes the form

D =
D0

1 + n/n̄
, (1.4)

where D0 = N(Γ↑ − Γ↓)/(Γ↑ + Γ↓) denotes the population inversion solely due to the
pump and relaxation processes and n̄ = (Γ↑+Γ↓)/(2B) is the saturation-photon number.
Inserting the population inversion (1.4) into (1.3) yields the photon population equation

ṅ =

(
C

1 + n/n̄
− 1

)
κn , (1.5)

with the cooperativity C = BD0/κ, which compares the light-matter coupling B with
the external influences. The remainder of this subsection works out the non-equilibrium
properties of the photon equation (1.5).

Steady States and Their Stability In the steady state, characterised by ṅ = 0, equation
(1.5) yields two solutions for the steady-state photon number n0, namely the trivial
steady state

ntriv0 = 0 , (1.6)

and the non-trivial steady state

n0 = n̄ (C − 1) , (1.7)

which only exists for a large enough cooperativity C ≥ 1. In physical terms, this means
the external pump has to overcome the losses for supporting a finite photon number.
A linearisation of the photon equation (1.5) near the two steady states of the form
n = n0 + δn allows investigating their linear stability. For the trivial case (1.6) the
linearised equation takes the form

δṅ = (C − 1)κδn , (1.8)
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Fig. 1.2: Stable steady states from (1.6) and (1.7) (solid line) compared to the linearised
steady state (1.12) (dashed line).

which is only stable for C < 1, i.e., as long as the non-trivial steady state (1.7) does not
exist. On the other hand, linearising near the non-trivial steady state (1.7) results in

δṅ =

(
1

C
− 1

)
κδn , (1.9)

indicating the non-trivial steady state to be stable, when the trivial one is unstable.

Phase Transition Near the phase transition, meaning the transition from the trivial
to the non-trivial steady state, equation (1.5) can be expanded in orders of the photon
number. Due to the small photon number, a truncation of this expansion after the
second order is justified. The resulting equation is of the form

ṅ ≈ −∂V
∂n

, (1.10)

with the potential

V = −α
2
n2 +

β

3
n3 . (1.11)

The two constants in the potential (1.11) are given by α = (C−1)κ and β = Cκ/n̄. Thus,
the question of linear stability is reduced to the question of finding minima and maxima
of the potential (1.11). As in the former paragraph, the potential (1.11) supports two
extrema, the trivial state ntriv0 = 0 and the non-trivial state

nlin0 = α/β . (1.12)

However, compared to the original expressions (1.6) and (1.7), these two steady-states
are only valid in the immediate vicinity of the phase transition, as figure 1.2 pictures.
The latter exists provided that both α ≥ 0 and β > 0. The second derivative

∂2V

∂n2
= −α+ 2βn (1.13)

yields for the trivial steady state −α, which results for α < 0 in a minimum and, thus, a
stable state, whereas for α > 0 the minimum turns into a maximum, which indicates an
unstable state. For the non-trivial state nlin0 = α/β the second derivative (1.13) takes
the value of α and, thus, the non-trivial state is always stable, if it exists.
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1.1.2. Master Equation and Stochastic Treatment

As already mentioned, rate equations are a simplified description of an open-dissipative
quantum system, which already yield a first view into the system dynamics. A more
fundamental approach consists in using a master equation. The advantages of this
microscopic approach are to link the ad-hoc parameters from the rate equation approach
to microscopic parameters and to provide a full quantum mechanical picture of the
system.

Master Equation The Jaynes-Cummings Hamiltonian [28, 31] describes the dynamics
of a single cavity mode with photon-matter detuning δ, which coherently interacts with
an ensemble of N two-level atoms

ĤJC = ℏδâ†â+ g
N∑

i=1

(
â†σ̂−i + âσ̂+i

)
, (1.14)

where â (â†) denotes the photon annihilation (creation) operator and σ̂±i stand for the
atomic raising/lowering operators. The parameter g quantifies the coherent light-matter
interaction. In the following, a master equation of Lindblad type takes into account
open-dissipative effects like external pumping und cavity decay. Appendix A discusses
the derivation and the generic form of this kind of equation. With the cavity decay rate
κ, the external pump rate Γ↑, the radiationless decay rate Γ↓ and the Jaynes-Cummings
Hamiltonian (1.14), the laser master equation takes the form

˙̂ρ = − i

ℏ

[
ĤJC, ρ̂

]
− 1

2

{
κL[â] + Γ↑

N∑

i=1

L[σ̂+i ] + Γ↓
N∑

i=1

L[σ̂−i ]
}
ρ̂ , (1.15)

with the Lindblad superoperator

L[x̂]ρ̂ = x̂†x̂ρ̂+ ρ̂x̂†x̂− 2x̂ρ̂x̂† , (1.16)

as derived in appendix A.
There are several methods for solving the master equation (1.15). One analytical way
consists in calculating the hierarchy of the expectation values, i.e., the first-order expect-
ation values couple to the second-order ones, etc. This hierarchy has to be truncated at a
certain level. Considering only the first-order expectation values ⟨â⟩,

〈
σ̂−i
〉
and ⟨σ̂zi ⟩ leads

to the so-called semiclassical laser equations, the treatment of which is outlined, e.g., in
references [28, 29, 32]. However, one drawback of this approach is to neglect the spon-
taneous emission. The second-order expectation values contain this effect again. The
authors of reference [33] work this out for the photon BEC case, but it can be adopted
for the laser case as well. Alternatively, a Monte-Carlo wave-function approach [34, 35]
provides numerical insight into the system dynamics. For instance, the Julia quantum
optics package [36] provides a simple to use, but highly sophisticated library for directly
implementing the master equation (1.15). Within the Monte-Carlo approach, the co-
herent system evolution with the Jaynes-Cummings Hamiltonian (1.14) gets enriched
with stochastic quantum jumps according to the Lindblad part of the master equation
(1.15). Another method for treating the master equation (1.15) uses the P -function
representation [37–39] of the photon field together with an adiabatic elimination of the
matter degrees of freedom [40]. P -functions are based on a coherent-state expansion of
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the density matrix. Therefore, they are defined in the phase space and allow for a map-
ping of the quantum-mechanical operators to stochastic variables. On formal grounds,
the P -function is a quasiprobability distribution for normal-ordered averages. In the
following, this method is worked out in more detail for the laser master equation (1.15).

P-Function Representation This method results in a Fokker-Planck equation for the
photon field. The present thesis works out the P -function method in greater detail
than originally proposed in reference [40], where this method is based upon a projector
formalism. However, in reference [40] the method is not treated rigorously, since the
spontaneous emission is not included in the matter equations and the photon popula-
tion is not included in the strength of the spontaneous emission. Therefore, in reference
[40] the formalism cannot reproduce the rate equations including spontaneous emission.
The remainder of this section rederives this method using equations for the expecta-
tion values of the matter based upon the master equation itself. Later, all appearing
partial derivatives, which do not fit into the form of a Fokker-Planck equation, are con-
sistently neglected. This procedure results in the spontaneous emission to be included
self-consistently in the description.
Before starting with the details of the derivation, note that all the two-level systems
are assumed to be equivalent, such that the corresponding index at the Pauli matrices
is dropped, and the sums

∑N
j=1 = N are carried out. Moreover, the master equation

(1.15) is first transformed into a frame rotating with a yet unknown frequency Ω by the
transformation

ρ̂→ eiΩt(â†â+σ̂z/2)ρ̂e−iΩt(â†â+σ̂z/2) . (1.17)

Transformation (1.17) ensures that the system can break the U(1) symmetry leading to a
large occupation in the photon mode. It produces an additional term−iℏΩ

[
â†â+ σ̂z/2, ρ̂

]

on the right-hand side of the master equation (1.15).
The first step consists in writing the density matrix ρ̂ in the form

ρ̂ =

∫
d2α |α⟩ ⟨α| χ̂(α, α∗), (1.18)

where |α⟩ denotes coherent photon states and χ̂ is the P -representation for the photonic
degrees of freedom but still a density matrix for the atomic degrees of freedom. Due to
this the following correspondences with respect to the photon operators can be used [40]

âρ̂↔ αχ̂, (1.19a)

ρ̂â↔
(
α− ∂

∂α∗

)
χ̂, (1.19b)

α̂†ρ̂↔
(
α∗ − ∂

∂a

)
χ̂, (1.19c)

ρ̂â† ↔ α∗χ̂ , (1.19d)

where α is a stochastic variable linked via the eigenvalue equation â |α⟩ = α |α⟩ to the
photon coherent states. Using the representation (1.18) for the density matrix and the
correspondence rules (1.19), the resulting equation of motion for χ̂ decomposes into three
parts:

˙̂χ = (LF +NLM +NLMF) χ̂, (1.20)

6



1.1. Laser

where the first part

LFχ̂ =

[
∂

∂α
α
(
iδ̄ +

κ

2

)
+

∂

∂α∗α
∗
(
−iδ̄ + κ

2

)]
χ̂ (1.21)

describes the pure evolution of the electromagnetic field with δ̄ = δ−Ω being the photon
detuning in the rotating frame. The matter evolution is governed by

LMχ̂ = − iΩ
2

[σ̂z, χ̂]− 1

2

(
Γ↑L[σ̂+] + Γ↓L[σ̂−]

)
χ̂. (1.22)

Lastly, the coupling of matter and field is summarised by the last term in (1.20)

LMFχ̂ = −ig
{
α∗ [σ̂−, χ̂

]
+ α

[
σ̂+, χ̂

]
− ∂

∂α
σ̂−χ̂+

∂

∂α∗ χ̂σ̂
+

}
. (1.23)

In the following, the density matrix χ̂ is assumed to be the direct product

χ̂ ≈ Pχ̂M (1.24)

with P = trMχ̂ denoting the Glauber-Sudarshan P -function for the photon field and
χ̂M = trFχ̂ is the density matrix for the matter. In both cases, M/F indicates the
trace with respect to the matter/photon field, respectively. This approximation neglects
the correlations of light and matter, which may be included in an approach based on a
combined P -function representation for both photon field and matter [41, 42]. Another
approach uses the truncated Wigner function for both matter and light field [43].
With the same argumentation as in the preceding subsection, the matter degrees of
freedom are adiabatically eliminated, meaning the density matrix χ̂M is assumed to be
in its steady state, which still depends on the photon degrees of freedom.

Fokker-Planck Equation The next step is to derive a Fokker-Planck equation for the
P -function and the necessary matter expectation values from the master equation (1.20).
The Fokker-Planck equation is a partial differential equation and summarises the evol-
ution of a probability density subject to a deterministic drift and a stochastic diffusion.
Reference [44] gives a detailed overview on the Fokker-Planck equation. Tracing out
the matter degrees of freedom in (1.20) yields directly the equation of motion for the
P -function

Ṗ ≈
{
LF + igN

[
∂

∂α

〈
σ̂−
〉
M
− ∂

∂α∗
〈
σ̂+
〉
M

]}
P, (1.25)

where the matter expectation value is defined by ⟨•⟩M = trM (• χ̂M) and the approxim-
ation stems from the ansatz for the density matrix (1.24). Note that the field equation
(1.25) couples to the matter expectation values ⟨σ̂±⟩M. As the matter is in its steady
state, the matter expectation values are calculated by

0 = trM

(
σ̂± ˙̂χ

)
, (1.26)

where the fluctuations in the stochastic variables α, α∗ are neglected. Due to the Liouville
equation (1.20), expression (1.26) reduces to

0 = trM
[
σ̂± (LM + LMF) χ̂

]
. (1.27)
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Hence, the expectation value ⟨σ̂−⟩M follows from

0 =

[
(−γ̄ + iΩ)

〈
σ̂−
〉
M
+ igα ⟨σ̂z⟩M − ig

∂

∂α∗
1 + ⟨σ̂z⟩M

2

]
P, (1.28)

where the abbreviation γ̄ = (Γ↑ + Γ↓)/2 has been introduced. Moreover, in order to
avoid derivatives, which cannot be treated analytically, the simplification

trM

(
σ̂−

∂

∂α∗ χ̂σ̂
+

)
≈ ∂

∂α∗
〈
σ̂+σ̂−

〉
M
P (1.29)

has been used [40]. This is valid, if σ̂− does not depend strongly on the photon field.
The conjugated equation (1.28) holds for the σ̂+ expectation value.
Subsequently, the aim is to adiabatically eliminate the matter degrees of freedom. In a
first step, the adiabatic elimination of ⟨σ̂−⟩M yields with (1.28)

〈
σ̂−
〉
M
P ≈ ig

−iΩ+ γ̄

[
α ⟨σ̂z⟩M − ∂

∂α∗
1 + ⟨σ̂z⟩M

2

]
P. (1.30)

Note that equation (1.30) contains both a coupling to the population inversion ⟨σ̂z⟩M
and a derivative with respect to α∗. Therefore, inserting (1.30) and the conjugated
equation for ⟨σ̂+⟩M into the P -function equation (1.25) results in

Ṗ =

{
∂

∂α
α

[
κ

2
+ iδ̄ −

(
iΩg2

Ω2 + γ̄2
+
B

2

)
N ⟨σ̂z⟩M

]
+ c.c. +BN

∂2

∂α∂α∗
1 + ⟨σ̂z⟩M

2

}
P .

(1.31)

with the microscopically determined Einstein coefficient, c.f., (1.1),

B =
2g2γ̄

Ω2 + γ̄2
. (1.32)

Although, equation (1.31) for the P -function is already of the form of a Fokker-Planck
equation, the expectation value ⟨σ̂z⟩M still needs to be calculated. As equation (1.31)
contains already a second derivative of ⟨σ̂z⟩M, in the following all derivatives of the form
∂α(•P ) and ∂α∗(•P ) are neglected.
Therefore, demanding as in (1.27) 0 = trM[σ̂z(LM + LMF)χ̂] the population inversion
follows the equation

0 =
[
Γ↑ − Γ↓ − 2γ̄ ⟨σ̂z⟩M + 2ig

(
α∗ 〈σ̂−

〉
M
− α

〈
σ̂+
〉
M

)]
P. (1.33)

Inserting (1.30) and its complex conjugate into (1.33) results in

0 =

{
Γ↑ − Γ↓ − 2γ̄ ⟨σ̂z⟩M − 4g2γ̄

Ω2 + γ̄2
|α|2 ⟨σ̂z⟩M

+2g2
(

α∗

−iΩ+ γ̄

∂

∂α∗ +
α

iΩ+ γ̄

∂

∂α

)
1 + ⟨σ̂z⟩M

2

}
P .

(1.34)

In the second line of (1.34) the appearing derivatives are turned into the form ∂α(•P )+R,
where R is some remainder, which is kept, while the appearing derivative is neglected.
Using the product rule of differentiation this yields the approximation

α∗ ∂

∂α∗
1 + ⟨σz⟩M

2
P ≈ −1 + ⟨σz⟩M

2
P . (1.35)
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Hence, considering definition (1.32) both the bare population inversion ⟨σ̂z0⟩M = (Γ↑ −
Γ↓−B)/(2γ̄+B) and the saturation photon number n = (γ̄+B/2)/B are now modified
by the spontaneous emission, compared to subsection 1.1.1. Therefore, the population
inversion takes the form

⟨σ̂z⟩M ≈ ⟨σ̂z0⟩M
1 + |α|2/n . (1.36)

Thus, the population inversion (1.36) contains consistently the spontaneous emission
in contrast to the rate-equation population inversion (1.4), which represents the main
improvement of this derivation, compared to [40]. Note that the number of two-level
systems N is not included in (1.36), as it appears explicitly in equation (1.31).
Conclusively, equation (1.31) is indeed a Fokker-Planck equation for the field amplitudes
α and α∗, since the expectation value ⟨σ̂z⟩M only depends on these. With the Gaussian
noise ξ fulfilling ⟨ξ⟩ = 0 and ⟨ξ∗(t)ξ(t′)⟩ = δ(t−t′), the Itô stochastic differential equation
(SDE) corresponding to the Fokker-Planck equation (1.31) reads

α̇ =

[
−1

2
− i

δ̄

κ
+

(
i
∆

κ
+
C̄

2

)
N

1 + |α|2/n

]
κα+

√
BN

2

(
1 +

⟨σz0⟩M
1 + |α|2/n

)
ξ , (1.37)

with the frequency shift ∆ = Ωg2 ⟨σz0⟩M /
(
Ω2 + γ̄2

)
and the modified cooperativity

C̄ = B ⟨σz0⟩M /κ. This equation can also be derived starting from the rate equation (1.5)
and enriching it with the spontaneous emission in order to write down the corresponding
quantum mechanical equation [39]. As a final remark, note that it is important to take
into account the spontaneous emission, since optical experiments always start with an
empty cavity. In order to achieve the lasing state, some photons need to be already in
the cavity, which usually stem from the noise associated with the spontaneous emission.

Coherent Evolution In the course of analysing the SDE (1.37), the investigation of the
coherent evolution governed by the equation

˙̃α =

[
−1

2
− i

δ̄

κ
+

(
i
∆

κ
+
C̄

2

)
N

1 + |α̃|2/n

]
κα̃ (1.38)

grants deeper insight, where α̃ = ⟨α⟩ denotes the coherent part of the stochastic variable
α. Note that equation (1.38) is the same equation, as it results from the semiclassical

treatment outlined in [29]. The Madelung representation α̃ =
√
ñ e−iϕ̃ yields from the

real part of (1.38) an equation for the photon number

˙̃n =

(
−1 +

C̄N

1 + ñ/n

)
κñ , (1.39)

which directly corresponds to the rate equation (1.5), but contains the spontaneous emis-
sion in the cooperativity parameter. The imaginary part, on the other hand, determines
the phase

˙̃
ϕ = δ̄ − ∆N

1 + ñ/n
. (1.40)

The steady state of the equations (1.39) and (1.40) allows for calculating the unknown
frequency Ω. Equation (1.39) leads to the steady state

ñ = n(C̄N − 1) , (1.41)
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Fig. 1.3: a) Potential (1.43) describing the coherent evolution of the laser for a resonant
cavity, i.e., δ = 0. The red line shows the steady state (1.41). The blue line
shows the cut, which b) depicts. The cross marks the minimum value.

which is formally equivalent to the corresponding one (1.7) from the rate-equation treat-
ment. Inserting (1.41) in (1.40) and taking the microscopic expression for the Einstein
coefficient (1.32) into account yields

Ω =
δ

1 + κ/(2γ̄)
. (1.42)

Note that the laser frequency (1.42) does neither depend on the photon number nor on
the coherent-coupling strength g.
Remarkably, the coherent evolution (1.38) is summarised by the potential

V = κ

[(
1

2
+ i

δ̄

κ

)
|α̃|2 − nN

(
i
∆

κ
+
C̄

2

)
ln

(
1 +

|α̃|2
n

)]
. (1.43)

Figure 1.3 shows this potential for the case of a resonant cavity, i.e., δ = 0. According to
(1.42), the potential (1.43) is real-valued in this case. The potential shows the steady-
state solution (1.41) to be a stable solution of the coherent evolution. Note that in
this plot, not only the external pump parameter Γ↑ is varied, but also the light-matter
coupling g is changed to achieve a constant Einstein coefficient (1.32), as it is common in
the literature [29, 40]. Otherwise, the Einstein coefficient decays with increasing external
pump and the system leaves the lasing regime for too large pumping strength.
Thus, equation (1.41) yields with (1.36) for ñ = 0 for the critical pump

Γc
↑ = (Γ↓ +B)

BN + κ

BN − κ
. (1.44)

Thus, not only the losses due to radiationless decay, but also due to the spontaneous
emission have to be compensated, before a coherent occupation can develop.

Stochastic Evolution In the following, the cavity detuning is assumed to vanish. Con-
sequently, from equation (1.42) follows Ω = 0, so that also ∆ = 0. Hence, the SDE
(1.37) simplifies to

α̇ =
1

2

[
−1 +

C̄N

1 + |α|2/n

]
κα+

√
BN

2

(
1 +

⟨σz0⟩M
1 + |α|2/n

)
ξ . (1.45)
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Fig. 1.4: Mean photon number
〈
|α|2

〉
calculated from the SDE (1.45) in blue for a single

two-level system. The error bars denote the standard deviation. For a compar-
ison, the rate equation steady state (1.7) is plotted in orange. The inset zooms
at the phase transition.

Figure 1.4 compares the rate equation solution from subsection 1.3.2 with the results of
the solution of the SDE (1.45). The main difference is the inclusion of the spontaneous
emission, which introduces a finite photon population also in the trivial regime. Close
to the phase transition, the photon number is very small, such that the photon number
dependency of the noise can be neglected. Thus, the SDE (1.45) with multiplicative
noise turns approximately into a SDE with additive noise. Therefore, with the potential
(1.43) the P -function of the form [45]

P = N e−V/Q , (1.46)

where Q = BN
2

(
1 + ⟨σz0⟩M

)
denotes the noise and N the normalisation constant, can be

calculated explicitly

P = N
(
1 +

|α|2
n

)κnC̄N/(2Q)

e−κ|α|2/(2Q) . (1.47)

As the P -function only depends on the absolute of α, the phase transition fixes merely
the photon number, but not the phase.
As photons can, indeed, undergo phase transitions, the next step is to investigate other
possible phase transitions. In view of atomic systems, of particular interest is the phase
transition to a Bose-Einstein condensate. The next subsection grants an overview of
exciton-polariton condensation, which is the first evidence for light undergoing Bose-
Einstein condensation.
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1.2. Exciton-Polariton BECs

Light in a non-linear bulk medium is able to resemble the behaviour of a bosonic quantum
gas [46, 47]. Usually, the non-linearity stems from a medium, where the refractive index
contains a third-order susceptibility χ(3). This means, the refractive index depends on
the intensity of the light itself [48]. As a consequence, the light obeys a Gross-Pitaevskii
type of equation in the case of a paraxial approximation, as it is often used in wave-
guide and fibre optics. In these systems, typical non-linear effects like vortices [49, 50]
and superfluidity [51] can be observed. Even the semiclassical laser equations can be
mapped onto a complex Gross-Pitaevskii equation [52]. Therefore, light-based exper-
imental platforms permit the investigation of many properties of bosonic many-body
physics. However, the question remains whether light can undergo Bose-Einstein con-
densation. The first reported BEC of light was prepared in the realm of polariton-exciton
condensates. In these systems, however, it is not light itself that forms a condensate,
but only the light coupled to excitons forming polaritons.
In the following, this section provides a concise overview of the field of exciton-polariton
condensates. To this end, subsection 1.2.1 covers selected experiments, whereas subsec-
tion 1.2.2 gives a short insight into the theoretical description of these condensates on a
mean-field level. A full review on this topic can be found in [46, 53, 54].

1.2.1. Short Experimental Overview

The first observation of polaritons in 1992 [55] laid the foundation for exciton-polariton
condensates. As pictured in figure 1.5, microcavity polaritons form two bands, the upper
and lower polariton branch, which are a mixture of both the quadratic photon dispersion
relation and the constant exciton dispersion relation [56]. The lower branch can undergo
Bose-Einstein condensation at the dispersion minimum. Since the effective mass in the
lower branch is very small at 10−5 times the electron mass, the critical temperature for
BEC extends up to room temperature [54].

Creation of Exciton-Polariton BECs Observing stimulated polariton photolumines-
cence in a cadmium telluride (CdTe) filled microcavity was the first experimental step to-
wards polariton lasers and BECs [57]. The first real exciton-polariton BEC was achieved
in a gallium arsenide (GaAs) microcavity [58]. Here, a laser beam creates excitons with
a large wave vector. These excitons then form polaritons together with the microcav-
ity photons. These polaritons emit phonons by scattering via the excitonic component.
Due to this, they thermalise into a quasi-thermal distribution at the centre of the lower
polariton branch. As a result, the thermalised polaritons are not coherent to the initial
pump beam. A measurement of the temporal g(2) function defined by

g(2)(t1, t2) =

〈
â†(t1)â†(t2)â(t2)â(t1)

〉

⟨â†(t1)â(t1)⟩ ⟨â†(t2)â(t2)⟩
, (1.48)

where â, â† are the ground-state creation and annihilation operators, respectively, re-
vealed the Bose-Einstein condensation of the polaritons. Reference [59] provides more
detailed evidence for exciton-polariton BEC, as figure 1.5 shows. Here, the authors ana-
lysed the light leaking out of the cavity once in real space and once in energy space,
proving the spatial coherence of the condensate. In contrast to the original experiment
[58], reference [59] does not pump resonantly on the outer part of the polariton branch,
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a)

b)

Fig. 1.5: Exciton-Polariton condensation from experiment [59]. a) Principle of exciton-
polariton BEC. The external pump laser creates free carriers which relax back
into the exciton branch, from where the excitation finally relaxes into the lower
polariton branch. The solid black lines denote the upper and lower polariton
branch, while the black dashed lines depict the uncoupled photon and exciton
dispersion. b) Colour-coded polariton density as a function of the energy and
the in-plane wave vector for different external pump strengths. If the external
pump strength is large enough, a sharp condensate peak arises at the dispersion
minimum.
Figure reprinted from [59] with permission from Springer Nature. Copyright © 2006, Nature Pub-
lishing Group.

but creates free carriers which relax into the polariton states. Figure 1.5 a) sketches this
principle. In order to observe well thermalised exciton-polariton BECs, a high finesse
cavity is necessary, as reference [60] demonstrates.
A second way for creating exciton-polariton condensates relies on the strong interaction
in the system. Here, a laser pumps the system resonantly at the inflection point of
the lower polariton branch. This allows to scatter two polaritons, one at the dispersion
minimum at k = 0, the so-called signal mode, and another one in an excited state with
twice the pump wave vector, which is named idler mode and appears due to energy
and momentum conservation [61]. Above a certain critical pump strength, a paramet-
ric oscillation yields a coherent, macroscopic occupation in the ground state [62, 63].
However, this excitation scheme does not allow for thermalisation to happen, since no
thermal cloud is present at all.

Vortices and Superfluidity As the interaction in exciton-polariton condensates is large
due to the electronic part of the polariton, the interplay of superfluidity and external
drive turns out to be interesting. Reference [64] reports the creation of quantised vor-
tices in non-resonantly driven exciton-polariton BECs created in disorder potentials.
The vortex itself is detected by means of interferometry, where it appears as a fork in
the interferometer fringes, as figure 1.6 a) shows. Accompanying this, figure 1.6 b) plots
the condensate phase along a circle around the vortex, which turns out to be quantised
and to have a difference 2π.
Experiment [65] proves the superfluidity of exciton-polariton BECs. There, an excitation
laser resonantly drives an exciton-polariton condensate such that it inherits the wave vec-
tor of the excitation laser and starts to flow. For probing the superfluidity, the condensate
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a) b)

Fig. 1.6: Experimental observation of vortices in exciton-polariton BECs [64]. a) Inter-
ferogram of the exciton-polariton condensate. The fork indicating the vortex is
in the red circle. b) Phase winding along a circle around the vortex.
Figure reprinted from [64] with permission from Springer Nature. Copyright © 2008, Nature Pub-
lishing Group.

is sent over a defect. Figure 1.7 depicts the condensate density while flowing across the
obstacle for different densities and condensate momenta. In the low-momentum regime,
the backscattering from the defect is suppressed, provided the condensate density and,
thus, the mean-field interaction is large enough. On the other hand, if the condensate
flows faster than its sound velocity, a broad backscattering shows the system to be in
the Čerenkov regime.

1.2.2. Theoretical Description

The theoretical modelling of exciton-polariton BECs can be divided into three different
levels of varying complexity. Review [46] gives a detailed account on the different kinds
of modelling. The most fundamental, yet also most complex, description relies on a
field-theoretic treatment of both the polariton and the cavity-light field. This kind of
model allows, e.g., to understand the creation schemes of exciton-polariton BECs. From
the microscopic theory, a stochastic framework based on c-fields for the polariton field
can be derived [66]. Finally, and in view of the topics of the present thesis most relevant,
is the mean-field model developed in [67].

Mean-Field Model Figure 1.8 a) sketches the idea of the mean-field model. In this
model, an open-dissipative Gross-Pitaevskii equation describes the condensate wave
function ψ:

i
∂ψ

∂t
=

{
− ℏ∇2

2mLP
+
i

2
[R (nR)− γ] + g|ψ|2 + 2g̃nR

}
ψ . (1.49)

Here, mLP denotes the polariton mass of the lower branch, R(nR) the incoherent pump
of the condensate by the exciton density nR and γ stands for the cavity decay. Due to the
electronic part of both the polariton and the exciton, the polariton-polariton interaction
with strength g and the polariton-exciton interaction denoted by g̃ are included in the
description. On the other hand, the exciton density obeys the reaction-diffusion equation

∂nR
∂t

= P − γRnR −R (nR) |ψ(r)|2 +D∇2nR , (1.50)
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Fig. 1.7: Superfluid flow of exciton-polariton BEC in experiment [65]. The upper row
shows the real space pictures and the lower row the Fourier space pictures. The
condensate density increases from left to right. On the left, the system is in the
normal fluid regime, while on the most right pictures the system is superfluid.
Figure reprinted from [65] with permission from Springer Nature. Copyright © 2009, Nature Pub-
lishing Group.

where P is the external pump, γR the exciton decay and D the diffusion constant. The
coupling of the complex-valued condensate wave-function ψ to the real-valued reservoir
density nR introduces a complex valued dispersion relation, as figure 1.8 b)-e) show.

Bogoliubov Spectrum The Bogoliubov spectrum is the linearised excitation spectrum
of system (1.49), (1.50) and well known from ultracold atomic gases to yield first insights
into the behaviour of the system [24–26]. For large wave vectors, it turns into that of a
free particle, apart from an additional imaginary frequency indicating a steady decay of
the excitations. In the small wave vector limit, on the other hand, the spectrum changes
drastically, which is due to the open-dissipative terms in (1.49). In the limit k → 0 there
is always a single mode, where both the real and the imaginary part of the frequency
vanish. This corresponds to the massless Goldstone mode, which is due to the broken
U(1) symmetry in the condensate phase. For larger, but still small k values there exists
a diffusive regime, where the real part of the spectrum vanishes. As figure 1.8 reveals,
the imaginary part is either always negative if the reservoir relaxes much faster than
the condensate, or it bears a dynamical instability if the damping of the reservoir is
comparable to the damping of the condensate.

Vortices and Superfluidity This mean-field model allows for understanding the effects
like vortices and superfluidity. Despite the simpleness of the model, it successfully de-
scribes the experimental findings mentioned in the preceding subsection 1.2.1. Figure
1.9 shows a single vortex described by the mean-field model (1.49), (1.50) from study
[68]. As the system is open-dissipative, the vortex behaves differently than in standard
Gross-Pitaevskii theory [24, 25], as the flux j = ℏ/mIm(ψ∇ψ∗) has not only a tangen-
tial, but also a radial component. The latter implies that the vortex does not preserve
the particle number, but it acts as a “particle cannon”. The corresponding supercurrent
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Fig. 1.8: Mean-field model (1.49), (1.50) from [67]. a) Basic idea of the model. The
black solid lines represent the two polariton branches. The reservoir is pumped
externally with a rate P , and decays into the condensate, c.f., (1.50). The
condensate sits at the dispersion minimum of the lower polariton branch. b)–
e) Corresponding Bogoliubov spectrum, where the coupling to the real-valued
reservoir density introduces a complex frequency. The dashed lines depict the
standard Bogoliubov spectrum for comparable interaction strength. b), c)
Strongly damped reservoir γR ≫ γ with stable condensate. d), e) Reservoir
and condensate damping rates are equal, γR = γ yielding dynamical instabilit-
ies.
Reprinted figure with permission from [67]. Copyright (2007) by the American Physical Society.

Fig. 1.9: Vortex in strongly non-equilibrium exciton-polariton condensate from [68]. The
arrows indicate the flux j = ℏ/mIm (ψ∗∇ψ) of the exciton polariton condens-
ate. The right-hand picture is a zoom into the vortex core, as indicated by the
red box.
The figure reprinted from [68] is licensed under CC-BY-3.0.
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flows also yield an acceleration of the vortex, meaning it starts to move around in the
simulation box. This generates interesting interaction effects of several vortices with
each other. For instance, vortex-antivortex pairs do not annihilate each other in the
presence of strong non-equilibrium, but they rather repel each other.
These findings come together with a numerical investigation of the normal and super-
fluid fractions in random potentials, where the standard definitions of these fractions are
tested [69]. It turns out that the common definition of superfluid fraction, e.g., via syn-
thetic gauge fields, fail, as even in the case without external gauge fields superfluid fluxes
are present. The latter are due to the open-dissipative character of the system. Sub-
tracting these zero-field fluxes results in definitions for normal and superfluid fractions
which do not add up to the total flux, provided the system is in a strong non-equilibrium
state.
However, the question arises whether condensation of pure photons can be achieved.
The following section carefully introduces the reader to the phenomenon of photon Bose-
Einstein condensation.

1.3. Photon Bose-Einstein Condensates

This section presents the concept of photon BECs as realised in dye-filled microcavities
[70, 71]. For this purpose, subsection 1.3.1 introduces the basic ideas for creating photon
BECs, whereas subsection 1.3.2 depicts the basic principles of photon thermalisation
by considering a simple model based on rate equations. It is able to show, how the
thermalisation of the photon gas happens. Afterwards, subsection 1.3.3 introduces the
intriguing physics of the effective photon-photon interaction emerging in the dye-cavity
photon BEC. As a rare feature, the so-called thermo-optic photon-photon interaction
is not only non-local in space, but also retarded in time, as it is based on temperature
diffusion through the cavity setup changing the refractive index. The subsection closes
with how the temporal retardation changes the lowest-lying collective excitations of
the photon condensate. The different theoretical models for photon condensates are
the topic of subsection 1.3.4. These approaches span the range from a microscopic
modelling of both the cavity photon modes and the molecular spectra relying on a
Lindblad ansatz via a Gross-Pitaevskii like equation for describing the effective photon-
photon interaction up to a phasor model for describing the vortex physics in arrays of
cavity photon BECs. Subsection 1.3.5 closes the introduction of the photon BEC by
summarising all experiments, which the different groups conducted up to now. The
tutorial [72] also yields an experimental introduction into the topic.

1.3.1. Basic Concept

A typical dye-cavity photon BEC setup consists of three parts, namely the cavity, the
dye solution, which provides both a heat and a particle reservoir for the photons, and
the external pump laser, exciting the dye molecules [70, 73].

Experimental Setup Figure 1.10 a) shows a picture of the experimental setup. Due
to the cavity mirrors, a standing wave emerges along the optical axis. As the dis-
tance between the two mirrors is only of the order of a few micrometers, the different
longitudinal eigenmodes are well separated. Therefore, the selection of only a single
of these eigenmodes provides a finite ground-state energy. Via the Einstein relation
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Fig. 1.10: a) Cavity used in the experiments [73]. The external laser pumps the dye me-
dium, which is placed between the mirrors. The latter are spherically shaped
and, therefore, provide a harmonic trapping potential for the photons. b)
Photon dispersion inside the cavity. The cavity changes the linear free-space
dispersion to a quadratic dispersion with a finite energy cut-off.
Figure a) taken by Frank Vewinger and modified with his friendly permission. Figure b) based on
[70] with permission from Springer Nature. Copyright © 2010, Nature Publishing Group.

ℏωcutoff = mc2/n2, with n being the refractive index of the dye solution, yields a finite
mass for the photons, see figure 1.10 b). The Dirichlet boundary conditions on the cavity
mirrors link the cutoff frequency and, thus, the effective photon mass via the dispersion
relation ωcutoff = µπc/(nL0), with µ ∈ N, to the length L0 of the cavity at the optical
axes. The longitudinal mode index µ amounts in most experiments to µ = 7, 8. In
addition, this selection freezes out the motion of the photons along the optical axis,
reducing the dimension from 3D to 2D.
As the aim consists in achieving a Bose-Einstein condensate of photons, also an external
potential is necessary, as otherwise the Mermin-Wagner-Hohenberg theorem [74, 75] for-
bids the Bose-Einstein condensation in homogeneous gases in lower dimensions. Here,
the surface shape of the mirrors becomes important. As the inset in figure 1.10 sketches,
the paraxial approximation only accounts for light rays near the optical axis and trans-
lates the surface shapes of the mirrors into an effective potential for the cavity photons.
Standard photon BEC experiments use spherically grinded mirrors, which the paraxial
approximation turns into a harmonic potential for the photons, as figure 1.10 b) indicates.
The trapping frequency Ω is again linked to the cavity geometry via Ω = c/n

√
2/(L0R) ,

where R stands for the radius of curvature of the cavity mirrors. Hence, confining light
in a cavity maps this very light onto a massive gas of two-dimensional bosons in a given
potential.

Thermalisation Thus, the question, how photons thermalise, remains open. As photons
do not interact with each other, matter has to introduce the thermalisation of the 2D
photon gas via absorption and emission processes. It is important that the matter not
only possesses pure electronic transitions, as it is, i.e., the case for simple atoms, but
also states, with much smaller energy spacing on top of these. If the latter are thermal-
ised, the Kennard-Stepanov relation [76, 77] predicts a Boltzmann factor to connect the
absorption and emission spectra. So the photon gas inherits this thermalisation by ab-
sorption and re-emission cycles, provided the mean photon lifetime is much larger than
the absorption/re-emission time. In standard photon BEC experiments, a dye solution
fulfils these requirements. Here, the vibronic degrees of freedom of the dye molecules
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Fig. 1.11: Top) Cavity spectrum. Bottom) Corresponding spectrum of Rhodamine 6G
as used in all the state-of-the-art experiments.
Figure reprinted from [71] with permission from Springer Nature. Copyright © 2011, Springer-
Verlag.

thermalise to the surrounding solvent molecules. Figure 1.11 depicts the corresponding
absorption and emission spectrum together with the corresponding cavity modes.

Analysing the Photon Gas The advantage of the dye-cavity photon BEC lies within
the possibility to analyse the light leaking out of the cavity in two ways: once spatially
by directly taking a picture of the light and, on the other hand, by sending the light
through a spectrometer. Therein, panels a) and b) in figure 1.12 show the spatial
photon distribution, below and above the BEC threshold, respectively. As these two
pictures are plotted using real colours, they clearly show the photon thermalisation, as
the higher energy photons (green) are distributed in the outer region, whereas the lower
energy photons (orange) concentrate in the trap centre. Therefore, the photon BEC,
which is the bright spot in panel b), appears in the trap centre. The spectra shown in
panel c) support these findings, as they follow the Bose-Einstein distribution at room
temperature. Once the pump power is large enough, the spectra show a large occupation
of the ground state.

Timescales All the different ingredients of the experimental setup yield a rich plethora
of timescales, as figures 1.13 a), c) visualise. The fastest timescale in the system stems
from the interaction between the dye molecules and the solvent molecules. As a result
of these collisions, the vibronic degrees of freedom of the dye molecules relax on a sub-
picosecond timescale, such that these are in thermal equilibrium just before both photon
absorption and photon emission happens. This is the crucial point in generating a
thermal photon gas, as it is discussed in greater detail in the next section on the bases of
rate equations. The absorption and re-emission cycles of photons by the dye molecules
set the next faster timescale at 10 ps. In addition, these cycles also set the timescale
for photon thermalisation, which typically lasts for a few absorption and re-emission
cycles. The by far largest timescale is the heating of the cavity during an experiment,
taking place at a timescale of 0.1 s. This heating stems from non-perfect absorption/re-
emission cycles, meaning that some electronic excitations of the dye are not re-emitted as
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a)

b)

c)

Fig. 1.12: Bose-Einstein condensation of Photons. a), b) Spatial photon distribution
below and above the BEC threshold, respectively. The colour code in the
picture is the real colour of the photons leaking out of the cavity. The bright
spot in the centre of panel b) is the photon BEC. c) Spectrum of the light
leaking out of the cavity for different pump powers P .
Figure reprinted from [70] with permission from Springer Nature. Copyright © 2010, Nature Pub-
lishing Group.
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Fig. 1.13: Different timescales in dye-cavity photon BECs. a) Timescales in a single
experiment. The lifetime of the condensate is given by the external pump
pulse (green). Consequently, the photon gas inside the cavity thermalises
(grey) and on very long scales the temperature (red) builds up. b) Emergence
of the effective photon-photon interaction. The photon condensate heats the
dye medium, which leads to a change ∆n of the refractive index. This change
acts back on the condensate. c) Embedding of a single experiment in a whole
experimental cycle, within which the temperature can reach its effective steady
state.
Picture reprinted from own publication [P4], distributed under arXiv license.
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photons, but are converted into vibronic excitations of the dye molecules. These vibronic
excitations can effectively be seen as the temperature of the dye molecules rising. Due to
collisions with the surrounding solvent molecules, this temperature diffuses through the
whole dye solution and even through the cavity mirrors, as study [P1] shows in detail.
At the end, this process changes the refractive index and results in an effective photon-
photon interaction, as figure 1.13 pictures, and subsection 1.3.3 discusses in detail.
Figure 1.13 a) shows that the temperature cannot reach an equilibrium state during
a single pump pulse. Dye bleaching limits the lifetime of a single condensate in most
experiments by 500 ns. If the external pump laser runs too long, it pumps the dye
molecules into a metastable triplet state and, therefore, these molecules are useless for
the ongoing experiment. A possible workaround is putting a whole experimental cycle
together, like depicted in figure 1.13 c), such that the temperature produced in the
former experiment still influences the next experiment. In this way, the temperature can
reach its maximal value. Appendix B covers the details of this.
However, before coming to the details of the interaction, the next subsection explains
how a photon BEC emerges in detail by using rate equations.

1.3.2. Rate Equations

Rate equations provide a simple but profound understanding of the thermalisation pro-
cess of the photon gas and can be derived from microscopic models [78]. This model
consists of the electronic ground and excited state, which are labelled by ↓, ↑, respect-
ively, and of the different photon modes with frequencies denoted by ωl with mode index
l. Figure 1.14 summarises all the effects, which the rate equation model takes into ac-
count. The absorption and emission coefficients B↑↓(ωl) contain the influence of the dye
vibrations and vary with the mode frequency ωl. The Kennard-Stepanov relation [76,
77]

B↓(ωl) = B↑(ωl)e
−ℏ(ωl−ωZPL)/(kBT ) (1.51)

connects the absorption and emission coefficients by a Boltzmann factor, c.f., subsection
1.3.1 and figure 1.11. This factor stems directly from the assumption that the vibronic
degrees of freedom are thermalised right before photon absorption and photon emission,
respectively. Changing the detuning to the so-called zero-phonon-line frequency ωZPL,
varies the thermal contact of the photons to the dye. Moreover, as the cavity mirrors are
not perfect, the photons are subject to a cavity loss κ. For compensating this loss, an
external laser pumps the dye molecules with the rate p. In addition, the dye molecules
can undergo a radiationless decay by the rate γ. Therefore, the rate equation for the
population N↓ of ground-state molecules reads

Ṅ↓ = γN↑ − pN↓ +
∑

l

[B↓(ωl)N↑ −B↑(ωl)N↓]nl +
∑

l

B↓(ωl)N↑ . (1.52)

Here, the first two terms are due to radiationless decay and external pumping. The
next two terms, which are proportional to the photon occupation nl of the lth mode,
describe the stimulated emission and absorption processes. The last term accounts for
the spontaneous emission, which turns out to be crucial for thermalising the photon
gas. Neglecting dye bleaching effects, the excited state population N↑ follows the rate
equation

Ṅ↑ = −Ṅ↓ . (1.53)
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Fig. 1.14: Rate equation model. The circle marks a single molecule, with the black solid
lines showing the pure electronic levels and the yellow rectangles standing
for the vibronic degrees of freedom. The external pump and decay processes
as well as the cavity losses are marked in red. The arrows symbolise the
absorption and emission processes taken into account with the corresponding
rates.

Finally, the photon population of the lth cavity mode is governed by

ṅl = [B↓(ωl)N↑ −B↑(ωl)N↓ − κ]nl +B↓(ωl)N↑ . (1.54)

The steady state ṅl = 0 of the photon population nl amounts from (1.54) to

nl =
1

κ
B↓(ωl)N↑

+
B↑(ωl)N↓
B↓(ωl)N↑

− 1
. (1.55)

The first term in the denominator compares the cavity lifetime 1/κ with the emission
time 1/(B↓(ωl)N↑), whereas the second term is the ratio of the absorption and emission
rate. The Kennard-Stepanov relation (1.51) brings the latter into the form

B↑(ωl)N↓
B↓(ωl)N↑

= e(ℏωl−µ)/(kBT ) , (1.56)

where the chemical potential is identified to be

µ = −kBT ln
N↓
N↑

+ ℏωZPL . (1.57)

The latter can be defined due to the chemical equilibrium established by the dye-photon
interaction. Hence, for obtaining a Bose-Einstein distribution the first term in the de-
nominator of equation (1.55) has to be sufficiently small, meaning that the photon
lifetime has to be larger than the re-emission cycle. Experimentally, this amounts to
use cavity mirrors with a high reflectivity, e.g., in experiment [70] the mirrors had a
reflectivity larger than 99.997. In this case, the steady-state distribution (1.55) turns
into a Bose-Einstein distribution

nl ≈
1

e(ℏωl−µ)/(kBT ) − 1
, (1.58)
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with the chemical potential (1.57).
Solving (1.52) in the steady state results in

N↓
N↑

=
γ +

∑
lB↓(ωl)(nl + 1)

p+
∑

lB↑(ωl)nl
, (1.59)

revealing the photon number dependency of the chemical potential (1.57). Comparing
to the laser rate equations investigated in subsection 1.1.1 the photon BEC rate equa-
tions consider many modes in order to achieve a thermal photon distribution. As the
fundamental ingredient is the Kennard-Stepanov relation (1.51), also the absorption and
emission rates for a single mode vary, whereas for a laser these are the same. On phys-
ical grounds, this is due to the laser relying on a two-level description of atoms, whilst
the photon BEC works with vibrating dye molecules. Finally, the spontaneous emission
turns out to be crucial in the photon BEC as otherwise no thermalisation can happen,
whereas for a laser the spontaneous emission is usually neglected in order to work out
the critical behaviour of the laser rate equations.
In conclusion, this subsection shows that although light in a cavity is a highly open-
dissipative system, its steady-state resembles the thermodynamic equilibrium expecta-
tion values. Beneath the thermalisation dynamics, the photons also bear an effective
interaction, which is the subject of the next section.

1.3.3. Effective Photon-Photon Interaction

Consider a general plane-wave dispersion relation ω2 = k2c2/n2 in a dye solution with
refractive index n showing the photon energy to depend on the refractive index itself.
For the case of the dye-filled cavity, the diploma thesis [79] works it out in detail. If the
photons change the refractive index, a corresponding change in the energy accompanies
this, which results in an effective photon-photon interaction. As the dye solution is
mainly made up of the solvent molecules, they also determine its refractive index. The
photons modify the refractive index of the solvent in two distinct ways, by the so-called
Kerr effect and via the thermo-optic effect. The first one is a non-linear effect, where the
refractive index n changes directly with the photon intensity. The latter, on the other
hand, is a temperature dependent shift of the refractive index, compare to figure 1.13 b).
The photons produce a temperature difference, which diffuses through the whole cavity
setup. Therefore, spoken in terms of a Gross-Pitaevskii type of equation, the Kerr effect
yields a contact interaction, whereas the thermo-optic interaction is non-local in space
and retarded in time. Experimental measurements [70, 71] reveal that the thermo-optic
interaction strength is the dominating interaction mechanism.
The thermo-optic interaction and its implications on the photon BEC dynamics was
already at the focus of the author’s diploma thesis [79]. It uses as a minimal model the
modified two-dimensional Gross-Pitaevskii equation

iℏ∂tψ =

(
− ℏ2

2m
∇2 +

mΩ2

2
r2 + gK |ψ|2 + gT∆T

)
ψ , (1.60)

which reference [80] similarly states for the homogeneous case. Here, r =
√
x2 + y2

denotes the radius in the plane orthogonal to the optical axis, gK the strength of the
Kerr interaction, gT the thermal energy shift and ∆T the temperature difference the
photons produce. The last two terms directly describe the energy shift due to the
Kerr and thermal non-linearity of the refractive index, respectively. In the diploma
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Fig. 1.15: Lowest-lying collective excitations of a photon BEC. The solid lines stem di-
rectly from (1.63), whereas the dashed lines are the corresponding results
from a plain Gross-Pitaevskii equation with the same interaction strength.
The markers show numerical results. The sketches on the right depict and
colour code the various excitation modes.
The picture is modified from [P1] under the licence CC-BY-3.0.

thesis [79], also some imaginary non-linearities are added for simulating the external
pump and decay. However, these terms turned out to be highly artificial, since they do
not stem from the interaction with the matter itself. Hence, this section describes the
effective photon-photon interaction in a coarse-grained picture, where the absorption
and emission processes of photons with the dye molecules are not resolved.
The temperature shift ∆T , the photons produce, obeys the diffusion equation

∂t∆T =

(
D∇2 − 1

τ

)
∆T +B|ψ|2 , (1.61)

where D denotes the thermal diffusion constant of the solvent, τ the relaxation due
to the diffusion along the optical axis and B the heating coefficient of the solvent. The
system (1.60) and (1.61) is formally equivalent to the system (1.49) and (1.50) describing
the exciton-polariton condensate in the mean-field description. The diploma thesis [79]
compares the two systems in great detail.
Chapter 2 revisits the derivation of equation (1.61) and puts it on more rigorous physical
and mathematical grounds, as the approach there also takes the temperature diffusion
in the mirrors into account. The Green’s function

G(x, t) = 1

4πDt exp
(
− x2

4Dt −
t

τ

)
(1.62)

directly solves the diffusion equation (1.61). Inserting the Green’s function (1.62) into
the photon Gross-Pitaevskii equation (1.60) yields

iℏ∂tψ =

(
− ℏ2

2m
∇2 +

mΩ2

2
r2 + gK |ψ|2

+gTB

∫
d2x′

∫ t

0
dt′ G(x− x′, t− t′)|ψ(x′, t′)|2

)
ψ ,

(1.63)
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revealing that the thermo-optic interaction is non-local in space and retarded in time.
Equation (1.63) is now the starting point for calculating the lowest lying collective excita-
tions of the photon condensate subject to the thermo-optic interaction. A modified vari-
ational approach allows for calculating the lowest-lying collective excitations as dipole,
breathing, and quadrupole mode. However, as the photon BEC is an open-dissipative
system, no Hamilton principle exists as an anchor for the variational approach. Instead,
this variational approach relies on directly calculating the cumulants of the trial wave
function of the condensate, including the open-dissipative terms [81].
Figure 1.15 pictures the resulting lowest-lying collective excitations described by (1.63).
Compared to the collective excitations of a standard Gross-Pitaevskii equation, the
thermo-optic interaction shifts all the collective frequencies to lower ones. This be-
haviour is most dominant for the so-called Kohn mode, which describes a centre-of-mass
oscillation of the condensate [82]. A contact interaction does not couple to the centre-
of-mass coordinate, whereas a temporally retarded interaction does. As a result, the
oscillation frequency gets smaller. The physical reason behind this are the different
timescales of the photon-condensate motion and the temperature diffusion. On times-
cales of the temperature, the condensate stays on average in the trap centre. Hence, the
raising temperature effectively changes the trapping potential at this place by creating a
slight Gaussian peak. Due to this obstacle, the collective frequencies of the condensate
decrease.

1.3.4. Theoretical Modelling of Photon BECs

Photon Bose-Einstein condensates are complex systems made out of many subsystems
like the photons themselves, the two-level systems describing the electronic transition
and the molecule vibrations leading to the thermalisation. As figure 1.16 summarises,
many ways of theoretically describing these BEC exist, ranging from microscopic mas-
ter equations to stochastic classical fields. This section reviews the different levels of
describing photon BECs.

Microscopic Model The most fundamental way of analysing the system is based on a
microscopic treatment of the molecular Hamiltonian coupled to the cavity modes. Ap-
pendix C shows the derivation of this Hamiltonian. Reference [83] was the first to work
out such a microscopic model, which was further developed in [84]. However, a more de-
tailed investigation [33] improved several shortcomings of this first model, like neglecting
the coherent photon–matter interaction. In particular, reference [33] also included these
terms consistently in order to be able to describe the transition between the operation of
the cavity as a laser and a true photon BEC. Due to that, this section only shortly intro-
duces the latter model; the differences to the first are more hidden in the details and are
explained in detail in the derivation in appendix C. Within this model, the molecules are
described as two-level-systems coupled to the phonons arising from the normal-modes
of the dye molecules. Subsequently, these molecules are coupled to the cavity-photon
modes by a Jaynes-Cummings like interaction Hamiltonian. A polaron transformation
simplifies the Hamiltonian and ensures a treatment of the electron-phonon coupling up
to infinite order, as single-phonon processes prevent a thermalisation of the radiation.
Afterwards, the phonons are assumed to be in a thermal state and are traced out from
the dynamics by means of a Lindblad-master equation approach, details on which are in
appendix A. Along this line also external pump, radiationless decays and dephasing are
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Microscopic Model

• Fundamental description [83, 84]
• Spatial degrees of freedom [85]
• Polarisation [86]
• Crossover laser ⇔ BEC [33]

Rate-Equation Model

• Thermalisation [83]
• Fluctuations [87]
• Mode competition [88, 89]
• Non-hermitian phase transition [90]

Mean-Field Model

• Thermo-optic interaction
and superfluidity [80]

• Coordinate dependent mass [91, 92]
• Thermo-optic interaction
in harmonic trap [P1]

• Dimensional crossover [P3]
• Quantum mechanical thermo-optic
interaction [P4, P5]

Stochastic Model

• C-field model [93]
• Vortices in photon BECs [94]
• BKT-like physics [95, 96]

Fig. 1.16: Different ways of theoretical modelling. This thesis mostly focuses on the
mean-field description.

introduced. The resulting master equation, which appendix C derives, reads
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(1.64)

The first line of (1.64) describes the coherent Jaynes-Cummings interaction of the cavity
photons with the plain two level systems. The cavity detuning is denoted by δm. The
phonon dressing appears in the coupling strength gβ depending on the thermodynamic
inverse temperature β. The second line describes the external dissipative processes by
means of the Lindblad superoperator

L[x̂]ρ̂ = x̂†x̂ρ̂+ ρ̂x̂†x̂− 2x̂ρ̂x̂† . (1.65)

These include, in order of appearance, the cavity decay, the external pump laser, the
radiationless decay and the dephasing of the two-level systems with the corresponding
rates κ, γ↑, γ↓ and γϕ, respectively. These two lines together are already enough for
describing a multimode laser. The last line introduces the photon thermalisation by
non-coherent absorption and re-emission processes. The coupling to the phonon bath
determines corresponding absorption and emission rates γ+m and γ−m, respectively. As the
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a) b)

Fig. 1.17: Photon spectra for different cavity decays taken from [83]. The dots are the
numerical results from their rate equations, while the solid lines are fits of the
Bose-Einstein distribution to the thermal tail. a) Spectrum for the experi-
mental parameters b) Spectrum for a larger cavity decay.
Reprinted figure with permission from [83]. Copyright (2013) by the American Physical Society.

a) b)

Fig. 1.18: Photon intensity oscillations after an off-centre pump pulse. a) For a cutoff
frequency of 3200 THz. b) The same for a cutoff of 3250 THz.
Reprinted figure with permission from [85]. Copyright (2016) by the American Physical Society.

phonon bath is assumed to be thermal, the rates γ+m and γ−m fulfil the Kennard-Stepanov
relation (1.51). Since the latter are dominant in the photon BEC regime, the authors of
references [83, 84] argue to neglect the coherent coupling, as it appears in the first line
in the master equation (1.64).
From this point of view, the authors of reference [83] derive the rate equations, which
section 1.3.2 uses as a starting point. They discuss, especially, under which circumstances
their model yields the photon distribution to be a Bose-Einstein distribution, see figure
1.17. They figure out that a too large cavity decay prevents the thermalisation of the
photon gas, as explained in subsection 1.3.2. In reference [84] the authors investigate
how the photon thermalisation breaks down once leaving the experimental parameter
regime. They also go beyond the rate-equation model and investigate both the second-
order coherence function and the emission line width in the single mode approximation.
Later on, the Kirton-Keeling model has been further improved. In one branch, also the
spatial degrees of freedom were included for describing the influence of the spatial extent
of the photon gas inside the cavity and the resulting varying coupling to the molecules
[85]. Hence, they are able to describe the effect of a finite sized pump spot and its
implication at the relaxation of the photon gas into the thermal condensate as well, the
results are depicted in figure 1.18. These show that thermalisation after an off-centre
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Fig. 1.19: Colour-coded the polarisation P of the photon BEC in dependency of the
pump laser polarisation Ppump and the ratio of pump and decay rate Γ↑/Γ↓.
Reprinted figure with permission from [86]. Copyright (2017) by the American Physical Society.

a) b)

Fig. 1.20: Steady-state photon occupation from the model (1.64) with the cumulants
approach from [33]. a) BEC phase. b) the laser-like state.
The picture is reprinted from [33] under the license CC-BY-3.0.

pump pulse happens provided the coupling to the dye medium is large enough, as it is
the case in figure 1.18 b). If this coupling is too small, no thermalisation happens and
the photon oscillations are nearly undamped, see figure 1.18 a). In a second branch,
the model has been extended for describing the polarisation of the photon gas inside
the cavity in dependency on the pump polarisation [86]. The results, shown in figure
1.19, clearly prove the thermal gas to be unpolarised, but once entering the condensate
regime the condensate itself follows the pump polarisation. Still, the model from study
[83] suffers from not taking into account the coherent light-matter coupling. Thus, it is
not able to properly describe the transition of the system from the photon BEC to the
laser regime.
The authors of reference [33] elaborate on this problem and take into account both
the coherent light-matter coupling and the corrections due to the phonon dressing, and
derive under these circumstances the master equation (1.64). Based on this, the reference
works out in detail the crossover from a laser-like state to the photon BEC state and
how the photon-distribution changes. The latter is shown in figure 1.20 once for the
BEC case and once for the laser-like case. Moreover, it determines the strength of the
effective photon-photon interaction arising from the coherent light-matter interaction.
Finally, the model (1.64) also serves as a starting point for calculating the rate equations
governing the fluctuations of the photon condensate [87]. Here, it turns out that the
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Fig. 1.21: Non-hermitian phase transition, as worked out in [90]. The top row shows two

exemplary measurements of the g(2) function, while the lower plot shows the
phase diagram for the behaviour of the g(2) function.
From [90]. Reprinted with permission from AAAS.

fluctuation dynamics is different from what is predicted by the standard equilibrium
statistical mechanics, since the g(2) function (1.48) shows an oscillatory behaviour in the
BEC regime, as depicted in figure 1.21 top row on the right. This is surprising in that
the photon distribution follows the Bose-Einstein distribution and, thus, corresponds to
thermal equilibrium. Reference [90] refines these findings in more detail by figuring out
an exceptional point separating a bi-exponential BEC phase, see figure 1.21 top row on
the left, from the oscillatory BEC phase. The latter is reached, when the photon loss
is increased, effectively corresponding to a smaller thermalisation rate, just before the
crossover to the laser regime occurs for even larger photon numbers, as figure 1.21 bottom
indicates. Hence, these microscopic findings clearly reveal that the photon BEC does
not result from a real equilibrium phase transition, but is rather described as the steady
state of an open-dissipative system, where the particle distribution mimics a thermal
equilibrium.

Stochastic Field Modelling Stochastic fields constitute the second pillar for describing
lattices of photon BECs [93–96]. These models are built upon the stochastic open-
dissipative Schrödinger equation for a lattice of coupled cavities. They consider the
Kennard-Stepanov relation (1.51) by replacing the condensate frequency with the time
derivative, i.e., ω → −i∂t [93]. However, this approximation bears the problem to figure
out the parameter regime where the approximation is valid. Hence, it is crucial to work
with an array of flat mirror cavities, corresponding to a lattice of photon BECs. In this
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Fig. 1.22: Vortex physics in plain cavity arrays as calculated in [94]. The top row shows
the vortex motion and the bottom row the corresponding phase distribution
of the BEC. The relevant parameters are written below the bottom row.
Modified figure with permission from [94]. Copyright (2020) by the American Physical Society.

situation, the site-dependent complex order parameter ψ takes the form

i
∂

∂t
ψ = (1− iκ)T̂ψ +

i

2
B21

(
M2 − eβ∆M1 − γ

)
ψ , (1.66)

where T̂ denotes the hopping matrix, B21 the emission coefficient, γ the cavity loss,
β = 1/kBT the inverse temperature, ∆ the cavity-molecule detuning, M1,2 the number
of molecules in the ground and excited state, respectively, and κ = βB21e

β∆M1 the re-
laxation rate. The latter gives rise to an imaginary part in the hopping matrix element.
In this model, a stochastic unit-length phase models the spontaneous emission into the
photon condensate. Firstly, this model is applied to two coupled cavities realising a
Josephson junction [93]. It turns out that the tailoring of the reservoir, which determ-
ines whether the condensate appears in a canonical or a grand-canonical environment,
and the accompanying change of the photon fluctuations have a high impact on the
resulting effective tunnelling rate.
The vortex physics in a 2D box-shaped cavity array lies at the focus of the studies [94–
96]. Here, the first result was to figure out the vortices behaving like centres of particle
creation, as it is the case for polariton-exction condensates in subsection 1.2.2. The
spiral phase pattern supports this interpretation, c.f., figure 1.22 bottom row. Thus, like
in the case of exciton-polariton condensates, the vortex shoots particles [68]. Due to
this, the vortex also shows some self-acceleration behaviour leading to a circular motion
of the vortex core itself, see top row of figure 1.22. These two findings are attributed
to the presence of spontaneous emission. The most important finding in reference [94]
is the existence of a stable vortex without having an explicit photon-photon interaction
in (1.66). Instead, the vortex is stabilised by the absorption and re-emission processes
of photons with the dye molecules. This interpretation is supported by the fact that
a reduction of the emission coefficient B21 yields the vortex to become unstable. As a
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Fig. 1.23: Time evolution of vortex-pair density σ in photon BEC arrays for different
emission coefficients B21 as calculated in [96].
Modified figure with permission from [96]. Copyright (2022) by the American Physical Society.

result of this, the follow-up study [95] relates the latter to a BKT-like phase transition in
photon condensates and works out the critical cavity-cavity coupling strength in depend-
ency on both, the relaxation rate κ and the on-site photon population. Here, BKT-like
transition refers to the Berezinskii–Kosterlitz–Thouless transition in 2D systems, which
is a phase transition of infinite order, where for temperatures larger than a certain crit-
ical temperature unbound vortex-antivortex pairs destroy the order in the system [97–
100]. In this respect, reference [96] deals with the vortex-antivortex annihilation. To this
end, a quench into the condensate phase first creates the vortex pairs and, subsequently,
the vortex-pair density σ, i.e., the number of vortices per cavity site, is investigated
afterwards. Figure 1.23 depicts the time evolution of the vortex-pair density. After a
short metastable vortex-pair density at the beginning, this density starts to decay, cor-
responding to vortex-antivortex annihilation. Interestingly, this annihilation dynamics
stays in competition with the motion of the vortices, leading for special configurations to
another metastable vortex configuration. Finally, the vortex-pair density decays faster
for increasing emission coefficient B21 as this corresponds to a faster thermalisation of
the condensate.

Mean-Field Gross-Pitaevskii Model Apart from microscopic and stochastic models,
also effective ones based on a Gross-Pitaevskii equation are considered for describing the
thermo-optic photon-photon interaction as subsection 1.3.3 discusses it. Publication [80]
is the first to work with such a model. There, the authors investigate the Bogoliubov
spectrum of the free photon condensate subject to the thermo-optic interaction and
the resulting sound velocity. However, this model can only be understood as a local
approximation in the centre of the trap, as homogeneous BECs in 2D are forbidden by
the Mermin-Wagner-Hohenberg theorem [74, 75]. Nevertheless, this kind of model proves
to be convenient for describing the interaction effects and, thus, builds the cornerstone of
the present thesis, c.f., figure 1.16. But the thesis adopts this model for a harmonically
trapped case, such that Bose-Einstein condensation is well-defined. A comparison to
subsection 1.2.2 shows that these models are formally equivalent to corresponding models
for the exciton-polariton BEC. This comparison is worked out in detail in reference [79].
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Further Modelling Further studies investigate the mode competition by using modified
rate equations [88, 89]. Here, the rate equations have basically the form from subsection
1.3.2, but the equation for the dye also includes the spatial distribution of the excitations
of the dye molecules. In reference [88] the authors work out the influence of an off-centred
external pump beam for both the harmonic and the double-well potential. In both
cases, they determine which mode grants a macroscopic occupation in dependency on
the pump-beam centre and the pump strength as well. Moreover, for large enough pump
strength more than one mode can gain macroscopic occupation. In reference [89] they
continue this investigation and derive a phase diagram for the macroscopically occupied
modes in dependency of both the pump and the thermalisation strength. Moreover, in
the phase, selecting the ground mode, the numerically obtained mode occupations are
compared to the Bose-Einstein distribution in order to examine the conditions for having
a photon BEC.
Another minor line of studies examines the effect of coordinate-dependent masses [91,
92]. Here the mass depends on the spatial coordinate inside the microcavity according
to the mirror surface. Therefore, the coordinate-dependency of the mass generalises the
interpretation of the mirror surface variation as a potential. However, the corrections
to the mass are small for current experimental parameters, such that the potential
interpretation is physically sufficient and preferable due to the minor computational
effort.

1.3.5. Experimental tour d’horizon

This subsection summarises all the experimental progress in achieving and examining
photon condensates up to summer 2022. Map 1.30 on page 40 grants an overview of
the different experimental publications. Mainly three different groups are active on this
topic, the Weitz group at the University of Bonn, which created the first photon BEC,
then the Nyman group at Imperial College in London and, lastly, the Klaers group at
the University Twente. Map 1.30 differentiates between these three groups and mentions
also the sporadic contributions by other groups to the field.

Creation of Photon BECs As a first step to photon condensation reference [73] reports
the thermalisation of a photon gas in the dye-cavity setup by using techniques and ideas
introduced in subsection 1.3.1. This setup, sketched in figure 1.24, has proven to be a
favourable environment for creating the first photon condensates [70, 71]. As already
pointed out in subsection 1.3.1 one of the advantages of this setup is the possibility to
observe the photon gas in-situ by measuring the light leaking out of the cavity. This
light is available for both spatial and spectral analysis at the same time, as figure 1.24
shows.
Instead of having a liquid dye solution inside the cavity, also the possibility of confining
the dye molecules inside a polymer was studied [101]. However, the major problem of
the polymer setup is the ongoing photodegradation of the polymer, such that it cannot
be used for detailed studies.
Dye-filled cavities are not the only possible experimental setup for obtaining photon
BECs. Also, one-dimensional photon condensates in optical fibre cavities have been
realised [102, 103]. These experiments bear the advantage that the cavity temperature
can be varied more easily than in the dye-cavity setups, as the fibre cavity is much
smaller. However, this comes with the problem that the Kennard-Stepanov relation
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Fig. 1.24: Sketch of experimental setup used in the most experiments in the Bonn group,
e.g., [71]. The cavity is filled with a dye medium, which is pumped externally
by a Nd:YAG laser. The light leaking out of the cavity is either analysed
spatially by directly taking a picture of the light beam or analysed spectrally
by sending upon a diffraction grating.
The picture is reprinted from [71] with permission of Springer Nature. Copyright © 2011, Springer-
Verlag.

(1.51) is worse fulfilled than by using Rhodamine 6G molecules. Especially in the latter
experiment [103], the 1D condensate is possible due to the sublinear photon dispersion,
for which the fibre is fabricated and not due to a certain photon potential.

Photon Potentials A second technical exploration of photon condensates lies within
the creation of different trapping potentials for the photon gas. The first technique
developed consists of bringing a thermosensitive polymer into the dye solution [104].
Figure 1.25 a) shows the experimental setup for this technique. The polymer undergoes
a sharp, reversible phase transition at a temperature of 305 K. The higher temperat-
ure phase of the polymer possesses an increased refractive index, such that the optical
length between the mirrors increases. As this corresponds to a larger wavelength, i.e.,
to a smaller photon energy, this technique is able to produce effective photon potentials.
However, this method lacks controllability, since both the transversal temperature dif-
fusion and the build-up time of the potential represent non-negligible effects. The first
effect limits the lateral resolution to 3µm.
A second way, builds upon this delamination technique, but instead of relying on a poly-
mer inside the dye solution, the dielectric coating of the mirrors is steadily deformed
[105]. A highly absorptive silicon layer directly below the dielectric coating, which ex-
pands when heated by a laser, introduces a static deformation of the dielectric coating,
as figure 1.25 b) sketches. In addition, this method lacks from a limited writing resol-
ution, which is due to the thickness of the laser beam and the heat diffusion inside the
mirrors again up to 3µm. However, this method allowed for the first photon condensate
in a double-well potential [106], as shown in figure 1.25 c), and in a box potential [107].
Focused ion beam milling prospects another way for creating photon potentials [108].
The essential advantage of this method is the increased writing resolution of about
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a)

b)

c)

Fig. 1.25: Comparison of different delamination techniques. a) Potential via thermo-
sensitive polymer as described in [104]. b) Potential via steady deformation
of the dielectric coating by heating an absorption layer of silicone as described
in [105]. c) Example for eigenmodes in double-well potential written via the
steady deformation technique. The x-direction is integrated out and the y-
dependency of the different modes is shown. The top plot demos the photon
gas below condensation threshold, while the bottom plot is above condensa-
tion threshold. The picture stems from [106].
Figure a) reprinted from [104] with permission from Springer Nature. Copyright © 2017, Nature
Publishing Group. Figure b) reprinted from [105] with permission from EPL Association. Figure c)
reprinted from [106] with permission from AAAS.
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a) b) c)

Fig. 1.26: Application of controllable potentials for photon BECs. a) Controllable
Josephson junction from [113]. The above plot shows the mirror height map,
where the rectangular surrounding is written by the delamination technique
developed in [105], whereas the barrier height is controlled by the polymer
technique from [104]. The bottom plot shows a slice through the centre of the
junction. b) Mach-Zehnder interferometer for photon BECs from [114]. The
above plot shows the cavity mirrors with the dye-polymer solution in between.
The bottom plot is the height map of the nanostructured mirror, yielding the
photon potential. On the most left point, the condensate is created and the
time delay of one of the arms is controlled by locally heating the dye-polymer
solution. The intensities on the right are then detected. c) Intensity distribu-
tions in the Mach-Zehnder interferometer from b) for different time delays.
Figure a) reprinted from [113] and b), c) reprinted from [114], both under the CC-BY-4.0 licence.

300 nm, but at the same time bears the disadvantage of having a large mirror surface
roughness. The latter yields the problem of an increased cavity decay, preventing the
photon gas inside the cavity to thermalise for higher photon intensities and, thus, to
condense.
In a current line of study, where the experiments are just built up in Kaiserslautern,
the microstructuring of mirrors via 3D laser writing stands in the foreground [109–112].
The advantage of this technique is the high writing resolution in the sub-µm regime,
such that potentials with a larger anisotropy can be produced, whilst the mirror-surface
roughness gets not too large. The aims consists in realising effectively one-dimensional
photon condensates and in studying the corresponding dimensional crossover from 2D
to 1D.

Controllable Potentials In the track of the Twente experiments, see map 1.30 on 40,
the static delamination method developed in reference [105] is combined with the dy-
namical polymer-based method used in reference [104]. In experiment [113] this led to
a construction of a controllable Josephson junction, where the delamination technique
creates the static confining potential and the polymer method controls the height of the
potential barrier. Figure 1.26 a) shows the details of the prepared potential. The latter
allows controlling the height of the barrier by modulating the power of the external heat-
ing laser. The same idea has led to the creation of a Mach-Zehnder interferometer for
photon BECs [114]. Here, the paths of the interferometer are statically written and the
delay in one of the paths is externally controlled by heating the polymer inside the dye
medium, see figure 1.26 b). As a result, figure 1.26 c) shows the intensity distribution
in such a Mach-Zehnder interferometer for different delay times.
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a) b) c)

Fig. 1.27: Statistical physics of photon condensate. a) Fluctuation catastrophe of the
photon BEC from [115]. The plot shows that at each time the condensate van-
ishes, the phase of the latter randomly jumps and stays constant for the “new”
condensate that emerges. b) Coherence length of the photon condensate along
the phase transition from thermal gas to condensate (black line) according to
[116]. The green dashed line shows the thermal de-Broglie wavelength, which
is the coherence length in the thermal regime. The blue line depicts the width
of the ground-state mode, which yields in the trapped system the threshold
coherence length for the photon condensate. The dashed black line is the
theoretically expected coherence length, while the black solid line takes cor-
rections to the finite resolution of the apparatus into account. The dots show
the measurement. c) Specific heat of the photon condensate as measured in
[117]. The solid lines show the theoretical prediction for an ideal Bose gas
with different particle numbers, whereas the dots represent the measurement.
Reprinted figure a) with permission from [115]. Copyright (2016) by the American Physical Society.
Figure b) reprinted from [116] and figure c) reprinted from [117], both under the CC-BY-4.0 licence.

Statistical Physics and Thermodynamics Another branch of experiments investig-
ates the statistical physics and thermodynamics of photon condensates. The coupling
to a sizeable reservoir is one of the most important differences to atomic condensates.
This allows photon condensates to be tuned continuously between canonical and grand-
canonical ensembles [118]. The recent study [119] confirms this finding by investigating
the fluctuation-dissipation relation [27]. Statistical physics predicts for a grand-canonical
ideal Bose gas the fluctuations of the photon number to be at the same order of mag-
nitude than the condensate occupation itself, if the gas is Bose-Einstein condensed [27].
This effect is called fluctuation catastrophe [120]. As this results in the condensate dis-
appearing and reappearing randomly, the fluctuation catastrophe has been considered
for a long time as a consequence of the grand-canonical description without any physical
relevance. Reference [121], however, revealed for the first time the physical evidence of
the fluctuation catastrophe, as the photon condensate represents a grand-canonical en-
semble. Measuring the interference signal of a photon BEC with a dye laser supports the
same findings [115]. In this study, the phase jumps accompanying the vanishing of the
photon condensate are explicitly measured, showing that the condensate breaks down
and reappears again, see figure 1.27 a). In this respect also the first-order coherence
function

g(1)(r,−r; τ) =

〈
Ê†(r, t)Ê(−r, t+ τ)

〉

√〈
Ê(r, t)|2

〉〈
|Ê(−r, t+ τ)|2

〉 , (1.67)
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with Ê being the electric-field operator, was measured [116]. Here, the authors determ-
ined both the thermal de-Broglie wavelength in the thermal regime and the correlation
length of the condensate in the BEC regime. They paid particular attention to how
coherence develops during the phase transition to the BEC phase, which is depicted in
figure 1.27 b).
But not only the local statistics lies within the focus of the experiments, several one
examinate the thermodynamic properties of the dye-cavity photon gas. Measurements
of the thermodynamics in large condensates revealed the photon gas to behave as an
ideal 2D gas in a harmonic potential [117]. The photon spectrum allows for determining
thermodynamic quantities like the condensate fraction, serving as an order parameter
for the phase transition, and the specific heat as well, shown in figure 1.27 c). Note that
these experiments vary the particle number N instead of changing the temperature T , as
it is the case in atomic BECs. In a 2D system, the mapping T/Tc =

√
Nc/N allows for

transforming a change of the particle number into a change of the temperature. Here Tc
and Nc stand for the critical temperature and the critical particle number, respectively,
Meanwhile, also the thermodynamics of a photon gas in a box potential is investigated,
including its compressibility [107]. The latter is measured by imposing a linear potential
gradient on the condensate, such that a constant force acts on the photon gas.

Microcondensates However, so far only the standard definition for a BEC has been
used for classifying the phase of the system. This relies on having a macroscopic oc-
cupation in the ground state accompanied by a Bose-Einstein distribution of the oc-
cupation numbers and a long-range coherence within the condensate. The question of
what actually discriminates a photon BEC from a laser-like state is answered by sev-
eral experiments conducted by the Nyman group [122–124]. They ask, what happens
if the parameter ℏΩ/(kBT ) is equal or larger than 1 by varying the harmonic trapping
frequency Ω. In this case, only the ground state of the photon gas can be occupied,
and no phase transition is observed [122]. Hence, a microlaser cannot be distinguished
from a photon BEC. In the work [123] they succeeded in creating a photon condensate
with only seven photons. However, in this experiment they face the problem that the
condensate does not thermalise to the solvent molecules, but discuss not further where
this behaviour stems from. Figure 1.28 a) depicts the situation by comparing the meas-
ured high resolution spectrum to a fitted Bose-Einstein distribution. They compare the
experimental data to two different models, once to a corresponding Bose-Einstein distri-
bution and once to a microlaser model and find that both explain the measurement of
the mode population. As a second part, also a condensation of many modes is investig-
ated. If the cavity is detuned, such that not only the ground state but also excited states
are near to the emission maximum of the dye medium, nearly every mode can gain a
macroscopic occupation. This situation is shown in figure 1.28 b) and c). Whereas in b)
still a standard BEC is observed, the situation changes in c) due to an increased mirror
spacing, corresponding to a larger cut-off wavelength, such that the first two modes are
condensed. In [124] the different phases of these multimode condensates are investigated
quantitatively by using an AI-supported algorithm. With this, they are able to work
out the complex phase diagram of these condensates.

Non-Equilibrium Properties The last major track of experiments investigates the non-
equilibrium properties of dye-cavity photon gases. As already shown in subsection 1.3.2
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a) b) c)

Fig. 1.28: Formation of microcondensates according to [123]. a) High-resolution spec-
trum of the microcondensate. The blue line is above the threshold, whereas
the pink line depicts the thermal situation. Note that in the latter, the scaling
indicates a mode occupation less than one. The green dashed line compares
to a Bose-Einstein distribution at T = 150 K. b), c) Mode occupation in
dependency of the external pump power. The inset shows in both situations
the condensate fraction. In b) the cavity is tuned, such that the ground state
condenses. In c) the cavity length supports a multimode condensation.
Figures reprinted from [123] with permission from Springer Nature. Copyright © 2018, The Au-
thor(s).

photons in a dye filled cavity represent a highly open-dissipative system resembling
thermal-equilibrium expectation values. Hence, some experiments aimed at the intrinsic
non-equilibrium properties of the photon condensate. Reference [125] delivered the first
investigation in this respect. This study focuses on the influence of a pump beam outside
the trap centre and how the photon gas thermalises into the condensate phase. Here,
too, the advantage of the photon BEC setup pays off in that it can be measured simul-
taneously in real and Fourier space. In real space, the photon gas relaxes into the trap
centre, provided the cavity-dye detuning is small enough to allow for thermalisation.
Figure 1.29 a) depicts the results of this experiment. In Fourier space, a BEC forms
right at the cavity cutoff under the same circumstances. Not only the place, where the
pump beam is injected is relevant, but also the geometry of the pump spot itself influ-
ences the shape of the photon gas [127]. The size of the pump spot directly yields the
size of the photon gas, if the former is smaller than the thermal size of the gas.
Reference [126] investigates the condensate formation after an initial pump pulse. If the
latter is strong enough, a condensate forms after a certain time and then decays again
into a thermal gas before it vanishes. In this respect also the temporal fluctuations were
subject to measurements via the temporal g(2) function (1.48), pictured in figure 1.29 b).
The basic observation consists in the ground-state being correlated along the diagonal
and being anti-correlated at off-diagonal times. Since the diagonal correlation function
g(2)(t, t) corresponds to the particle number fluctuations, this behaviour is interpreted
as the condensate formation. As the latter can only happen with spontaneously emitted
photons in the ground state, the condensate can only form, when fluctuations are large
enough, but once it is formed, it dominates the dynamics. Hence, the anti-correlation
at off-diagonal times (t1, t2) vanish, when the condensate exists.
The same correlation function (1.48) is at the focus of the studies [87, 90], which were
already discussed in the theory section 1.3.4. According to figure 1.21, this measurement
shows the most striking features of the open-dissipative character of the photon BEC in
contrast to atomic BECs.
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a) b)

Fig. 1.29: Non-equilibrium dynamics of the photon BEC. a) Relaxation dynamics of an
off-centre photon gas for different cut-off wavelengths according to [125]. For
smaller cut-off wavelength (most right picture) the thermal coupling to the dye
medium is enhanced compared to the larger cut-off wavelength (left picture),
such that the photon gas can condense into the trap centre. b) Measurement

of the g(2) function (1.48) for different pump powers above the BEC threshold
from [126]. Red indicates the correlated regimes along the diagonal, whereas
black denotes the uncorrelated regimes at the off-diagonal part.
Reprinted figure a) with permission from [125]. Copyright (2015) by the American Physical Society.
Figure b) reprinted from [126] under the CC-BY-4.0 licence.

Miscellaneous Experiments Finally, some loosely connected experiments are also re-
ported in the literature. At first, the Nyman group investigated the phase-space dis-
tribution of the photon gas [128]. This means, they measured both the momentum
and spatial distribution dependent on the photon wavelength below, slightly above and
far above the BEC threshold. In the latter case, they already reached the multimode
condensed phase. By fitting the thermal cloud, they also report the photon-gas temper-
ature to depend on the size of the pump spot. Also, the van-Oosten group in Utrecht
was able to create photon BECs. One publication [129] focuses on the density profile of
the photon cloud inside the dye-filled cavity with the aim to investigate the behaviour
of the photon temperature by varying the numerical aperture of the collecting lens. A
second publication [130] analyses the width of the photon condensate for measuring
the strength of the effective photon-photon interaction, c.f., subsection 1.3.3. However,
the reported values are an order of magnitude larger than in comparable experiments
by the Weitz group [70]. Furthermore, they seem to indicate counter-intuitively that
a reduced dye-molecule concentration leads to an increased photon-photon interaction
strength. Lastly, they succeeded in determining the polarisation of the photon BEC by
determining the four Stokes parameters [131], which uniquely define the polarisation.
The thermal cloud turns out to be unpolarised, whereas the polarisation of the photon
BEC appears to follow the one of the pump laser. Thus, these results seem to agree with
the theoretical study [86].
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2. Collective Modes of a Photon
Bose–Einstein Condensate with
Thermo-Optic Interaction

Versuch ich wohl, euch diesmal
festzuhalten?
Fühl ich mein Herz noch jenem
Wahn geneigt?
Shall I attempt to hold you fast
once more?//Heart’s willing still
to suffer that illusion?

J. W. Goethe, Faust I, ll. 3-4

This study directly builds upon the results discussed in section 1.3.3 and examines the
effect of the thermo-optic photon-photon interaction on the lowest-lying collective fre-
quencies. The theory works with a cumulants’ expansion together with proper ansatzes
for both the condensate wave function and the temperature distribution based on refer-
ence [81].
A discussion with experimental colleagues revealed the importance of the mirrors for
describing the temperature diffusion. Here, it turns out that not only the temperature
diffusion inside the cavity, but also the temperature diffusion inside the mirrors needs to
be taken into account properly. The appendix of the paper describes how to reduce the
dimension of the temperature-diffusion equation from 3D to 2D by including the cavity
mirrors. Therefore, the whole appendix, which is important to link the theory with the
experiment, has been developed in the doctorate.
Additionally, the discussion unveiled the difference between the experimental pump
scheme and the one used in the theoretical analysis in [79]. While the experiments
work with a pulsed pump scheme, which is characterised by the duty cycle σ, i.e., the
ratio of the time between two single experiments and the duration of a single experi-
ment, the theory uses a continuous pump. For being consistent, the theory has to use
the number of photons σN that are on average in the photon BEC. Appendix B covers
some additional details on this. These additional findings were crucial for estimating the
correct order of magnitude for the effective photon-photon interaction.
As a last modification in comparison to the diploma thesis, this study uses a more soph-
isticated numerical scheme based on a finite-difference discretisation of the Laplacian
operator of the kinetic energy. This change has increased both the simulation speed and
its precision.
Hence, the new contributions move the mean-field model closer to the experiments. As
it builds the fundamental block to describe the thermo-optic photon-photon interaction,
the model is of high relevance to the remaining results achieved in the present thesis.

Here, I have worked out all the details of the analysis of both the variational approach
and the reduction of the dimension of the fundamental equations, in particular for the
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temperature degree of freedom as described above. Further on, together with Antun
Balaž, I adapted the numerical scheme from references [133–135] to the description of
the thermo-optic interaction, as the latter was originally developed for a Gross-Pitaveskii
equation. Afterwards, I have performed the necessary simulations and have implemented
the analysis script for the obtained numerical data. Finally, I have also prepared the
first draft of the manuscript. The co-authors contributed to the manuscript during the
review process.

44



New J. Phys. 21 (2019) 103044 https://doi.org/10.1088/1367-2630/ab4b06

PAPER

Collective modes of a photon Bose–Einstein condensate with
thermo-optic interaction

Enrico Stein1,3 , FrankVewinger2 andAxel Pelster1

1 Department of Physics andResearchCenterOPTIMAS, TechnischeUniversität Kaiserslautern, Erwin-Schrödinger Strasse 46, D-67663
Kaiserslautern, Germany

2 Institut für Angewandte Physik, Universität Bonn,Wegelerstrasse 8,D-53115 Bonn,Germany
3 Author towhomany correspondence should be addressed.

E-mail: estein@rhrk.uni-kl.de, vewinger@iap.uni-bonn.de and axel.pelster@physik.uni-kl.de

Keywords: open dissipative quantum systems, photon–photon interaction, photon Bose–Einstein condensate

Abstract
Although for photon Bose–Einstein condensates themainmechanismof the observed photon–
photon interaction has already been identified to be of a thermo-optic nature, its influence on the
condensate dynamics is still unknown.Here amean-field description of this effect is derived, which
consists of an open-dissipative Schrödinger equation for the condensate wave function coupled to a
diffusion equation for the temperature of the dye solution.With this system at hand, the lowest-lying
collectivemodes of a harmonically trapped photon Bose–Einstein condensate are calculated
analytically via a linear stability analysis. As a result, the collective frequencies and, thus, the strength of
the effective photon–photon interaction turn out to strongly depend on the thermal diffusion in the
cavitymirrors. In particular, a breakdownof the Kohn theorem is predicted, i.e.the frequency of the
centre-of-mass oscillation is reduced due to the thermo-optic photon–photon interaction.

1. Introduction

In recent yearsmany theoretical and experimental results have contributed to a basic understanding of quantum
fluids of light [1], wheremany photons propagate in nonlinear optical systems. The corresponding collective
features are due to effective photon–photon interactions, which are induced by the nonlinearmatter. The
hydrodynamic behaviour of light in a cavity, first noted by Lugiato and Lefever in 1987 [2], was theoretically
brought forward in [3] by deriving aGinzburg–Landau equation for laser light inside a cavity. These theoretical
workswere complemented by the experimental proof of superfluidity of light via the pioneering observation of
stable quantised vortices by Swartzlander and Law in 1992 [4].With this the natural question arose, whether
light could also undergo the equilibriumphase transition of Bose–Einstein condensation. This intriguing
questionwas partly answered in 2002when thefirst exciton-polariton condensate was realised [5]. However,
such condensates have turned out to be not of a Bose–Einstein type, as their life time is shorter than the intrinsic
equilibration time. In contrast to that an equilibriumBose–Einstein condensate (BEC) of pure light was
achieved in Bonn in 2010 [6]. Although this is still a driven-dissipative system like the exciton-polariton
condensates, the favourable time scale ratio allows for the observation of equilibrium effects [7].

The experimental setup to create a BECof photons consists of amicrocavity filledwith a dye solution. There
the cavity provides awell-defined ground state for the effective two-dimensional photon gas, as can be seen from
the paraxial approximation, and the dye leads to a thermalisation of the photon gas via absorption and emission
processes of the photons [8]. As the corresponding absorption and emission rates are related via a Boltzmann
factor according to theKennard–Stepanov relation [9–12], the photon gas inherits the thermalisation from the
dyemolecules. Provided that the pumping power is large enough in order to compensate unavoidable cavity
losses and thermalisation proceeds faster than these losses, the photon gas can undergo an equilibriumBose–
Einstein phase transition [13].
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Furthermore, the absorption and emission processes lead to effective photon–photon interaction
mechanisms, see figure 1.One is the Kerr effect, where a nonlinear susceptibility causes the refractive index of
the dye solution to be proportional to the intensity of the electric field in the cavity [14]. Note that amicroscopic
theory of theKerr interaction in a photon BEC is based on a Lindbladmaster equation [15–17]. A second
interaction effect is due to the heating of the dye solution, as the quantum efficiency of the dye is below 100%.
This leads to a shift of the refractive index of the solvent [14] and correspondingly to a thermo-optic photon–
photon interaction. As the latter ismediated by the temperature diffusing through the dye solution, it is non-
local in space and retarded in time. So far the strength of the effective photon–photon interaction has been
experimentally determined bymeasuring the increase of the condensate widthwith the photon number [6, 13].
From this it is concluded, that themain contribution of the interaction is due to the thermo-optic effect. The
strength of the interaction, which can be defined to be dimensionless in two spatial dimensions [18, 19], is
measured to have values up to = ´ -˜ ( )g 7 3 10 4 [6, 13], where the precise value depends on the detailed
experimental configuration. An interaction strength of the same order was observed in another experiment in
London in 2016 [20].

From atomic BECs it is known that observing the condensate dynamics represents a valuable diagnostic tool
tomeasure systemproperties in general and two-particle interaction strengths in particular. For instance,
observing collective frequencies of trapped condensates is a precise way tomeasure the strength of the contact
interaction up to an astonishing precision of1‰ [21]. Therefore, observing the collective frequencies of a
photonBEC is expected to yield additional profound information about the nature and the strength of the
effective photon–photon interaction. Thismotivates to analyse in the following the lowest-lying collective
modes of a photon BECunder the influence of the thermo-optic interaction in view of future experiments.

2.Model

Aminimalmean-field description of the thermo-optic interaction consists of two equations [22–24]. One is a
nonlinear Schrödinger equation that accounts for the evolution of the electric field inside the cavity, which is
assumed to be linearly polarised. The second equation describes the diffusion of the temperature, produced by
the non-perfect absorption processes of photons.

As the experiment takes place inside amicrocavity, the electric field can be treated in paraxial approximation
[14, 25–28]which allows us tomap the three-dimensionalmassless photon gas in a sphericalmirror geometry to
a two-dimensional gas of bosonic particles. These particles possess amass w= ( )m n ccutoff 0

2, where the
cavity-cutoff frequency is denoted byωcutoff and the light velocity in the dye solution is c/n0. Furthermore, these
particles are trapped in a harmonic potential with frequency W = ( )c L R n2 0 0, that is determined by the
cavity length L0 and the radius of curvatureR of themirror [6, 13, 29]. Thus, the evolution of the condensate
wave function y ( )tr, , i.e.the electricfield normalised to the photon number, is described by an open-
dissipative Schrödinger equation of the form [23, 29–31]

Figure 1. Scheme of effective photon–photon interactionmechanisms. The electric field, here represented by the condensatewave
functionψ, couples in twoways to the refractive index n. Once via theKerr effect, which is due to the non-vanishing third-order
susceptibilityχ(3), and, secondly, also an increase of the dye-solution temperatureT due to the heating coefficientB is present. This
yields via the thermo-optic coefficientβ a changeΔn of the refractive index.
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Here, the remaining transversal degrees of freedom are denoted by = ( )r rr , T
1 2 . The thermo-optic effect is

described by the nonlinearity in (1) involving the temperature differenceD ( )T tr, between the actual intra-
cavity temperature and the room temperature. Here the coupling coefficient gT=−βmc2/n0 with the thermo-
optic coefficientβ quantifies the energy shift due to the heating. As discussed above, it is justified to neglect the
much smaller Kerr interaction. Due to the unavoidable cavity losses, the photon BEC is intrinsically an open
system. Following [32], an incoherent pump scheme ismodelled by the imaginary part in (1). The pump is
described by the coefficient p and the losses by the decay rateΓ. Note that the emission and absorption processes,
which do not lead to a loss of photons, i.e.the coherent ones that are proportional to the quantum efficiency η,
are not considered here. Thus, the loss rateΓ is only proportional to 1−η and gives rise to a heating of the dye
solution as discussed below. Furthermore, the effects of a coordinate dependentmass and interaction strength
[33, 34] are not taken into account, as these effects are negligible within the experimental parameter range.

On the other hand the temperature differenceD ( )T tr, follows a diffusion equation. Reducing it from three
to two spatial dimensions by the procedure described in appendix yields

t
y¶ D =  - D +⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ∣ ( ) ∣ ( )T t D T t B tr r r,

1
, , , 2t 0

2 2

where the temperature diffusion constant is denoted byD0=λw/(cpρ). It depends on the thermal conductivity
λw, the specific heat cp and the density ρ of the solvent [35]. The heating coefficient of the dye solution is given by

r= G ( )B mc L n cp
2

0 0 [24].Moreover, the temperature relaxation is governed by the time scale τ, which
depends in general on the length scales of both the cavity and themirrors, see appendix.Note that in [22] only
the limiting case t  ¥ is treated.

A formally similarmean-fieldmodel was already establishedwithin the realmof exciton-polariton
condensates [32], where the exciton bath plays a role comparable to the temperature for the photon BEC.
However, the time scales of the two systems are inverted. In an exciton-polariton condensate the relaxation of
the exciton reservoir is fast compared to the dynamics of the condensate, allowing its adiabatic elimination. In
contrast to that, the photon BECdynamics, which is determined by the trap frequencyΩ, occurs on amuch
faster time scale than the dynamics of the temperature, whose time scale is given by the large relaxation time τ.
Thus, the resulting thermo-optic photon–photon interaction yields such a significant temporal retardation that
no influence on any condensate dynamics is expected.

Nevertheless, in the following it is shown that the collective frequencies of the photonBEC turn out to be
modified by the thermo-optic photon–photon interaction. The reason is that, in the steady state, the refractive
index near the trap centre ismodified, so the collectivemodes exploring its neighbourhood experience
effectively a changed potential. Or, put differently, the temperature profile can be considered as themotional
history of the condensate and, thus, the condensate effectively scatters with its ownhistory.

3.Methods

An analytical and a numerical evaluation of the system (1), (2) is performed.Whereas the analyticalmethod
relies on aGaussian ansatz for both the condensate wave function and the temperature difference in order to
reduce the PDE system to a set ofODEs, the numerical technique is based on afinite-differencemethod. Both
methods are explained in detail below.

3.1. Analyticalmethod
The usual variational approach for dealingwith collective excitations in ultracold quantumgases is based on
Hamilton’s principle [36–38]. As the photonBEC is intrinsically an open system, however, no such principle
exists, as the energy is not a conserved quantity. This problem can be circumvented by considering the equations
ofmotion of the cumulants [39, 40], i.e. calculating the evolution equations for the centre-of-mass and for the
widths. Due to the openness of the system also the photon number ò y=( ) ∣ ( )∣N t r trd ,2 2 represents an
additional variational parameter. For finding an ansatz for the photonwave function it is worthwhile noting that
the ground state of the non-interacting system is a simpleGaussian function. As the interaction in the photon
BEC ismeasured to be small, it is justified to consider the condensate wave function to be ofGaussian shape,
where thewidth is used as a variational parameter. Note, that this ansatz still holds true for small pump and loss
parameters [41]. Therefore, the ansatz for the condensate wavefunction is chosen to be of the form:
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where the centre-of-mass coordinates are denoted by x0j(t)with the phasesCj(t), whereas qj(t) describe the
condensate widths, and theAj(t) stand for the corresponding phases. The different coordinate directions are
indicated by j=1, 2. Since all current photonBEC experiments are workingwith a particular pump sequence
[6, 13], the duty cycleσmodels a continuous pump in the ansatz. Thus, the number of photons present on
average in the cavity is given byσN. This averaging coarse-grains the dynamics, and for the steady-state values
considered later the ansatz turns out to be reasonable. As the temperature difference is induced by the photons, it
is justified to assume also aGaussian shape for its distribution, which solves by itself the homogeneous part of the
diffusion equation (2):
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HereΔT0(t) denotes the amplitude of the temperature difference, y0i(t) describes the centres of the distribution
and si(t) their widths. The aim is now to calculate the equations ofmotion for the amplitudes, the centre-of-
masses and thewidths, as well as their phases, following the procedure of [40].

Themean-field equations (1), (2) are solvedwith the ansatz (3), (4) for condensate wave function and
temperature difference by applying the cumulant approach [40]. After eliminating the phases, the evolution of
the remaining dynamical variables is described by the following set of equations
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Here, the overlap of the temperature-difference distribution and the condensate is described by
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accounts for the pump and loss influence on thewidths, whereas
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are the corresponding ones for the centre-of-mass.

3.2. Numericalmethod
The numerics performed in the present work is based on themethod developed in [42–44]. Here, the
propagation of the two equations (1) and (2) is done via a split-stepmethod. First, both the condensate wave
function and the temperature difference distribution are propagatedwith respect to the spatial derivatives by a
Crank–Nicholson scheme. Afterwards the evolution regarding the remaining (non)linear equations is
performed by infinitesimal exponential propagation. The space-time discretisation is chosen such that the
calculational effort and the discretisation errors are well balanced. As initial wave function the steady state wave

4

New J. Phys. 21 (2019) 103044 E Stein et al

48



functionwith slightly perturbedwidth and finite centre-of-mass is used.Due to this all threemodes, which are
calculated analytically, are excited. From the calculatedwave function both the centre-of-mass and thewidth of
the photon density are extracted and analysed by using a fast Fourier transformation. From thismethod the
oscillation frequencies of the different collectivemodes can be read off.

4. Steady state

From the equations ofmotion of the cumulants (5a), it follows that the temperature evolution is determined by
the condensate. So the steady state is completely described by the latter. Furthermore, due to the trap isotropy
the condensate shape is also isotropic. Accordingly, the dependence of the equilibrium condensate width q0 on
the equilibriumphoton numberN0 is described by

p t
= - +

+
˜

( ) ( )
q l

gN

q D
0

1 1 2

2
, 9

0
4

osc
4

0

0
2

0
2

where = W( )l mosc denotes the oscillator length.Moreover, the dimensionless interaction strength turns
out to be


s t=˜ ( )g

m
g B, 10T2

showing that the interaction strength is determined by the properties of the used dye solution, the geometry of
themicrocavity, as well as by the pump scheme.Note, that this result is comparable to that in [24]. In addition,
the effective photon–photon interaction can directly be controlled via the relaxation time τ by changing the
geometry of the cavitymirrors, see (A.11). However, it turns out that in the experimental situation, where the
longitudinal and the transversal extension of themirrors are of the order L1∼1 cm and L⊥∼1 mm, the
temperature relaxation inside the cavity is governed by the transversal temperature diffusion in themirrors and
(A.11) simplifies to

t
p

= ^ ( )L

D2
, 11

2

2
1

with the diffusion constantD1 of themirror. In case of a large diffusion constant of the solvent, i.e. t D q0 0
2,

the condensate width q0 approaches the non-interacting value losc. This results from a suppression of the
thermo-optic interaction as all the temperature excitations are quickly transported through the dye solution. In
the opposite case the behaviour p= +[ ˜ ( )]q l N g1 20 osc 0

1 4 is reproduced, which is well known from2D
atomic BECs [45].

The numerical solution of (9) is shown infigure 2, where the values of the Bonn experiment with the solvent
ethylene glycol are used [13, 46, 47]. The dye solution is characterised by

l r b= = = = = - ´- - - - - -n c1.46, 0.26 W m kg , 144.5 J mol K , 1110 kg m , 4.68 10 Kw p0
1 1 1 1 3 6 and

G = 1 s. The cavity geometry is given by = ´ =-L R1.5 10 K and 1 m0
6 . The pump scheme yields a duty

cycle ofσ=1/16 000. The effectivemirror diffusion constantD1 is of the order of - -10 m s6 2 1, thus yielding the
relaxation time t ~ 0.1 s.With this the value of the dimensionless interaction constant is calculatedwithin the
mean-fieldmodel to be

Figure 2. Steady state (9) of the system (1), (2)with the ansatz (3), (4) for two different values of the diffusion constantD. The red line
(circles) corresponds to the experimental value = ´ - -D 9.16 10 m s0,exp

8 2 1 and the green one (diamonds) to the larger value
= ´D D 100 0,exp

2. Themarkers indicate the full numerical solution of the system (1) and (2) as explained in section 3.2.
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~ -˜ ( )g 10 , 124

which is in remarkable agreementwith the experimental value [6, 13, 20].

5. Linearised dynamics

Linearising the equations ofmotionwith respect to small elongations out of the equilibrium yields a decoupling
of the centre-of-mass from thewidth dynamics. Therefore, the dipolemode, which is a pure centre-of-mass
motion, can be discussed separately from the breathing and the quadrupolemode, which are in- or out-of-phase
width oscillations, respectively. Atfirst the investigation aims for the dipolemode, which can be described by the
vector d d d= ( ˙ )x x yv , ,i i i i

T
0 0 0 , where δ denotes small perturbations of the steady state and i=1, 2 indicates the

respective coordinate directions. The linearised equation ofmotion is given by =˙ Sv vi idipole . The eigenvalues of
Sdipole are complex due to the pumping and the coupling to the diffusion equation. The real parts describe the
oscillation frequency of the dipolemode, whereas the imaginary parts represent the corresponding damping
rates, which are discussed below. The frequencies are shown infigure 3, where the dashed lines are the results of a
variational solution of the plainGross–Pitaevskii equation [36]. In atomic BECs the dipolemode frequency
equals the trap frequency, which corresponds to a centre-of-massmotion in a harmonic potential, according to
theKohn theorem [38]. In the present case of a temporal non-local interaction, however, a shift to smaller
frequencies is observed, which shows that the aforementioned scattering of the condensate with its own history
leads, indeed, to a slowing down of the condensatemotion and, thus, to the breakdown of theKohn theorem.
Furthermore, a stronger temperature diffusion in the solvent leads to a smaller frequency shift. This shows again
that the diffusion suppresses the thermo-optic interaction.

The equations ofmotion describing the breathing and the quadrupolemode are coupled equations of the
temperature and the condensate widths in both directions aswell as the photon number and the temperature
amplitude, which are summarised in the vector d d d d d d d d= ( ˙ ˙ )T N q q r q q rw , , , , , , , T

1 1 1 2 2 2 . The evolution of
these quantities is described by =˙ Sw wwidths , where the real part of the eigenvalues of Swidths is shown in
figure 3. Again, the frequencies are shifted to smaller values compared to a contact interaction. Even the
breathingmode frequency, which turns out to be always twice the trap frequency for a contact interaction
irrespective of the particle number and the strength of the contact interaction [45], gets shifted to smaller values.
As before, wefind that a larger diffusion strength yields a smaller frequency shift.

Infigure 4 the damping rates corresponding to the oscillation frequencies are plotted. As only a thermo-
optic damping effect and no damping stemming from thematter is taken into account, these rates turn out to be
quite small and also slightly positive. However, compared to the pulse duration, which is about 500ns, the
instability occurs on amuch larger time scale of W ~-10 10 s6 4 . Nevertheless, this instability reflects the
missingmatter degree of freedomof the presentmean-field theory.

Figure 3.Oscillation frequencies obtained from real parts of the eigenvalues of Sdipole describing the dipolemode oscillation (green,
squares) and of Swidths describing the quadrupole (blue, diamonds) and the breathingmode (red, circles) for the experimental value of
the diffusion constant = ´ - -D 9.16 10 m s0,exp

8 2 1. For the larger diffusion constant = ´D D 100 0,exp
2 the dipolemode frequency

is visualised by the light blue (left triangles), the one of the quadrupolemode by the grey line (lower triangles) and the breathingmode
by the pink (upper triangles) line. The dashed ones result from a variational evaluation of a simple Gross–Pitaevskii equationwith a
harmonic trapping potential. Themarkers visualise the results of a numerical evaluation of system (1) and (2) as explained in section
3.2.
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However, the damping rates are expected to be of the order of the reabsorption time, i.e.of the order of 10ps
to 100ps [7]. Thus, in view of a trap frequency of pW = ´2 37 GHz, a few oscillations should be
experimentally observable.

6. Summary and experimental perspective

In this paper the influence of a thermal shift of the refractive index on the photon BECdynamics is worked out.
This shift yields an effective photon–photon interactionwhich is non-local in space and retarded in time. Due to
the geometry dependence of the temperature diffusion, the strength of the effective photon–photon interaction
can be controlled by the shape of themirrors.Moreover, due to the retardation in time, theKohn theoremdoes
not hold in the present case and the dipolemode frequency is shifted to frequencies smaller than the trap
frequency. Additionally, the temperature diffusion of the solvent has a large influence on the effective photon–
photon interaction. The same happens to the breathing and the quadrupolemode. However, the damping rates
of the collectivemodes are supposed to be larger once amore detailed theory takes the absorption and emission
behaviour of the dye properly into account.

The above predicted features can, in principle, bemeasured in twoways. Thefirst one relies on a direct
observation of the collectivemodes. The dipolemode, e.g. can be excited by using two lasers, where the first one
pumps the cavity homogeneously and the second one creates a BEC via an off-centre pulse. The excitedmode
can then be observed bymeasuring spatially the light leaking out of the cavity. As the dipolemode oscillation
frequencies are expected to be of the order of the trap frequency, a streak camera is necessary in order to resolve
these extreme time scales. The experiment performed in [7] can be seen as a proof of principle in this respect.
The secondmethod is an indirectmeasurement via the eigenfrequencies of the cavity [48]. In case of small
interaction, which is the case in the photonBEC, the dipolemode corresponds to the difference of the lowest two
cavity eigenfrequencies. Due to the interaction and the corresponding condensate broadening the third lowest
energy state is also partially populated. This allows us to examine the breathing-mode by spectrally resolving the
cavity emission.
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Appendix. Temperature diffusion inmirrors

The purpose of this appendix is to derive the diffusion behaviour of the temperaturewithin the cavity setup
depicted infigure A1. The geometry is simplified by assuming planarmirrors in comparison to the original
geometry, which consists of spherically curvedmirrors.

A.1. Formulation of boundary value problem
The complete cavity ranges from z=−L/2 to z=L/2, whereas themirrors extend from the boundaries up to
z=−L0/2 and z=L0/2, respectively. The temperature diffusion constants of the dye solution filling the space

Figure 4.Damping rates of the eigenmodes of Sdipole and Swidths. The green solid line corresponds to the damping of the dipolemode,
whereas the green dashed line belongs to the temperature-difference oscillation. The remainder visualises the damping rates of the
breathingmode (red, dashed), the quadrupolemode (blue, short dashed), the temperature-difference amplitude (brown, dashed–
dotted), the temperature-difference breathingmode (orange, dotted) and one of the photon number (dashed-double-dotted).
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between themirrors and of themirrors themselves are denoted byD0 andD1, respectively. Thus, the
corresponding diffusion equation for the temperature differenceΔT between the actual temperature of the
experimental setup and the room temperature reads [49]

¶ D =  D +· [ ( ) ] ( )T D z T S, A.1t

with the function q= + - -( ) ( ) (∣ ∣ )D z D D D z L 20 1 0 0 containing the respective diffusion constants and S
being a source termwith support only inside the cavity. Due to the symmetry of the considered geometry in
figure A1, it is sufficient to consider only the non-negative z half space togetherwith the vonNeumann boundary
condition

¶ D ==∣ ( )T 0. A.2z z 0

On the other hand, the temperature difference obeys theDirichlet condition

D = =( ) ( )T z L 2 0 A.3

at the border of themirror. Furthermore, at z=L0/2, i.e.the contact of themirror and the dye solution, the
temperature difference is continuous:

 
 
D - = D +

 
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )T

L
T

L
lim

2
lim

2
. A.4

0

0

0

0

Integrating (A.1) in the neighbourhood of thematerial transition yields a jump condition for the first derivative
of the temperature difference





¶ D = ¶ D


= -


= +∣ ∣ ( )D T D Tlim lim . A.5z z L z z L0

0
2 1

0
20 0

A.2. Dimensional reduction of boundary value problem
The aim is now to derive an effective equation for the transversal diffusion of the temperature difference within
the cavity. Due to the piecewise defined diffusion functionD(z), the ansatz for the temperature difference is
chosen to be

D = D D^ ^ ( ) ( ) ( )T T t T zr , A.60 0 0

inside the cavity and

D = D Dt-
^ ^ ( ) ( ) ( )T T T zre A.7t

1 1 1

for themirror. Bywriting down these two ansatzes three assumptions have beenmade. First, the transversal
component inside the cavityDT̂ 0 varies on a time scale set by the photon condensate. This scale ismuch faster
than the intrinsic scale of the diffusion process and, therefore, this component acts on its own time scale. The
second assumption accounts for the steady state of the diffusion process in themirror. Accordingly, the ansatz
(A.7) involves only an exponential time dependencewith the relaxation time τ. Lastly, only the lowest
temperature differencemode is considered, as thismode decays least and has, therefore, the largest amplitude.
With the two ansatzes (A.6), (A.7) the diffusion equation (A.1) reduces to one equation for each region, which
are linked via the boundary conditions (A.2)–(A.5).

Solving the diffusion boundary value problem leads to the following results. The relaxation time τ in the
mirrors consists of the decay time of the transversal diffusion process

Figure A1. Simplified geometry of the cavity setupwith flatmirrors.Within the region  -L z L2 20 0 the diffusion constant
takes the valueD0, whereas in the outer region  ∣ ∣L z L2 20 the diffusion constant is given byD1.
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t
p

=^ ^ ( )L

D4
A.8

2

2
1

and the longitudinal relaxation time twhich is determined by the transcendental equation

t t t t
=

 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )D L

D

D L

D
tan

2
cot

2
. A.90 0

0

1 1

1

Here, themirror length is denoted by L1=L−L0. Furthermore, we assume that the relaxation time of the
longitudinal diffusion inside the cavity occurs at the same time scale as the diffusion process inside themirrors.
In the limit of amicrocavity, i.e. L L0 1, one finds

t
p

= ( )L

D
. A.101

2

2
1

Therefore, the totalmirror decay time τ is given by

t
p p

= +
^

( )D

L

D

L

1 4
. A.11

2
1

2

2
1

1
2

This result is plotted infigureA2 for the parameters of the Bonn experiment, where thewidth of themirrors is
given by =L̂ 1 mm, whereas the length of themirror L1 is of the order of 1cm. Thus, in that cases (A.11)
simplifies to (11). As a consequence, the effective longitudinal relaxation time of the temperature difference
inside the cavity is provided by the transversal temperature difference diffusion in themirrors. Finally, the
resulting two-dimensional diffusion equation for the transversal temperature difference within the cavity turns
out to be

t
¶ D =  - D +^ ^ ^ ^⎜ ⎟⎛

⎝
⎞
⎠ ( )T D T S

1
, A.12t 0 0

2
0

which coincides with (2) in themain part. Note that the remaining source term takes the form

ò= D^ ^ ^ ( ) ( ) ( ) ( )S t
L

z S z t T zr r,
2

d , , . A.13
L

0 0

2

0

0
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3. Thermodynamics of Trapped Photon
Gases at Dimensional Crossover from 2D
to 1D

O Captain! my Captain! our
fearful trip is done!
The ship has weathered every
wrack, the prize we sought is
won,
The port is near, the bells I hear,
the people all exulting.

W. Whitman, O Captain! My
Captain!, ll. 1-3

New experimental techniques for microstructuring the cavity mirrors [109–112], which
subsection 1.3.5 describes, suggest shifting the focus of the photon BEC studies towards
the dimensional crossover from 2D to 1D. Confining the photon gas in highly anisotropic
trapping potentials allows for treating the gas as being effectively one dimensional, since
the motion in the squeezed direction is frozen out. Here, the main task is to define
the effective dimension of the system along the dimensional crossover. Although lower-
dimensional quantum gases have already been realised in atomic BECs, e.g. [136, 137],
no proper definition of the effective system dimension across the dimensional crossover
exists in the literature.
To this end, this paper works out the behaviour of the thermodynamic quantities like
the critical particle number, the condensate fraction and the specific heat at the dimen-
sional crossover for an ideal Bose gas in a harmonic trap. As the effective photon-photon
interaction is measured to be quite small [70], photon BECs are able to resemble ideal
Bose gases [116]. The calculation itself builds upon reference [138] and is arranged such
that it determines the one-dimensional quantities exactly, but only approximates the
second dimension.
The specific heat CN for a fixed particle number N turns out to be the most conveni-
ent quantity for defining the effective system dimension. In the thermal phase, the gas
obeys the Dulong-Petit law and the specific heat per photon is directly proportional to
the number of degrees of freedom. For a harmonic trapping potential the latter corres-
ponds to the dimension of the system. In the condensed regime, the situation is slightly
more complicated. Here, the slope of the specific heat for varying temperature T is pro-
portional to the dimensionality of the system. Hence, the double-logarithmic derivative
∂ lnCN/∂ lnT yields the effective dimensionality. Conclusively, this paper defines the
effective system dimension to be the specific heat per photon in the thermal phase and
the double-logarithmic derivative in the condensed regime.
Moreover, finite-size effects turn out to be crucial for this investigation, since in the ther-
modynamic limit no BEC exists in a 1D harmonic trapping potential, as references [139,
140] calculate in detail. For finite-size systems, which are the only ones of experimental
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interest, a one-dimensional condensate exists, which is consistent with the calculation in
reference [141] and the experiments [102, 136]. Therefore, this study carefully determ-
ines the finite-size corrections.

For this study, I performed the analytical calculation and wrote the complete manu-
script. The co-author significantly contributed to the extensive reviewing process.
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Abstract
Photon Bose–Einstein condensates are characterised by a quite weak interaction, so they behave
nearly as an ideal Bose gas. Moreover, since the current experiments are conducted in a
microcavity, the longitudinal motion is frozen out and the photon gas represents effectively a
two-dimensional trapped gas of massive bosons. In this paper we focus on a harmonically
confined ideal Bose gas in two dimensions, where the anisotropy of the confinement allows for a
dimensional crossover. If the confinement in one direction is strong enough so that this squeezed
direction is frozen out, then only one degree of freedom survives and the system can be considered
to be quasi-one dimensional. In view of an experimental set-up we work out analytically the
thermodynamic properties for such a system with a finite number of photons. In particular, we
focus on examining the dimensional information which is contained in the respective
thermodynamic quantities.

1. Introduction

The question of Bose–Einstein condensation in lower dimensions got already tackled quite early in the
post-war era of physics. Soon it was found out that in the case of lower dimensional systems without
trapping potential no long-range order can emerge [1, 2] and, thus, no Bose–Einstein condensation in such
systems is possible. Later on in the early 1990s but prior to the experimental realisation of Bose–Einstein
condensates (BECs), the authors of reference [3] worked out that, with the aid of an external trapping
potential, the excited states of lower-dimensional ideal Bose gases can saturate, meaning that Bose–Einstein
condensation is possible, whereas in three spatial dimensions this is also possible for the non-trapped case.
In the thermodynamic limit they showed for a trapping potential, which is stronger confining than a box in
the sense of a monomial spatial dependence ∼xα, that a condensation in 2D can occur, whilst in a 1D
setting a potential more confining than a quadratic potential is necessary. Soon after this a full quantum
mechanical follow-up study [4] revealed that for the harmonically trapped 1D-Bose gas with a finite
number of particles BEC is possible. Furthermore, reference [5] generalised the semiclassical ansatz from
reference [3] and showed, that these improved results agree with the corresponding finite-size results from
[4]. After the experimental realisation of BECs [6, 7] naturally the question came up, how to achieve
systems with an effective dimension lower than three.

In the experimental work of reference [8] the question of the effective dimensionality of the system is
reduced to a comparison of different length scales, which are in a 3D axially symmetrically trapped Bose gas
the in-plane radius, the axial width, the scattering length, and the healing length. A system is effectively 2D,
if the healing length is larger than the axial width, and effectively 1D, if the healing length is larger than the
in-plane radius with the axial width being still larger than the healing length. As the healing length is
inversely proportional to the square root of both the density and the scattering length, one can control the
effective dimension either by changing the density, as is done in reference [8], or by changing the
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interaction strength itself via a Feshbach resonance [9]. Nowadays, harmonically trapped 1D and 2D
condensates can not only be found in atomic systems [10] but also in condensates of light created in
1D-fiber cavities [11].

Another possibility of tuning the effective dimension of a system is to modify the kinetic energy in a
certain direction. This can be achieved in lattice systems by changing the hopping matrix amplitude, e.g. by
changing the lattice depth in a certain direction. One possible experimental realisation is to use coupled 2D
BECs in order to perform a crossover from 2D to 3D [12]. A more recent experiment [13], which is
described by the theoretical works [14, 15], consists of 2D arrays of coupled 1D Bose gases. Decreasing the
2D lattice depth yields an increase of the hopping amplitude and thus gives rise to a dimensional crossover
to higher dimensions.

In the following, however, we dedicate our discussion for the sake of concreteness on photon BECs as
realised in reference [16–18]. As these kinds of experiments are conducted in a microcavity, the direction
along the optical axis is already frozen out, since it corresponds to a standing wave along this very direction.
Therefore, these systems are intrinsically two-dimensional. On the one hand experiments have found an
effective photon–photon interaction [16, 19], which is explained by a thermo-optic effect, and also
theoretical investigations [20–22] have revealed the influence of this kind of interactions on the photon
BEC. Contrarily to that experimental measurements have also figured out that the thermodynamical
behaviour of this system is not affected by this kind of interaction [23]. In this respect the photon BEC can
be seen as a realisation of an ideal Bose gas. Thus, the question remains how to define and how to
determine the effective dimension of the gas when changing from an isotropic harmonic confinement to a
highly anisotropic confinement giving rise for a dimensional crossover from a two-dimensional gas to a
quasi-1D gas. To this end, we work out how the thermodynamic quantities change as a function of the
trap-aspect ratio. In particular, we carefully analyse not only the thermodynamic limit but also the
respective finite-size corrections similarly to a corresponding seminal study in 3D [24], whose predictions
where experimentally confirmed despite of systematic measurement errors for thermodynamic quantities in
[25]. As we find in this work that these finite-size corrections increase by lowering the dimension of the
system, we expect that they can also be confirmed in the dimensional crossover of photon BECs.
Furthermore, in this setting the detection of finite-size effects is even more straight-forward than for atomic
BECs, as these effects are not masked by interaction effects. As so far photon BEC experiments have only
been performed in an isotropic setup, this theoretical paper paves the way towards future experiments with
strongly anisotropic harmonic trapping potentials. Such potentials can be achieved, for instance, by
ellipsoidally grinding the mirrors or by heat induced mirror surface delamination [26, 27] which allows,
however, only for traps with small anisotropies due to the limited resolution. Thus, in view of achieving
stronger anisotropies it is more promising to use direct laser writing [28–30] or focused ion beam milling
[31] as a microstructuring technique, as it is then possible to create potential landscapes with spatial
variations of the order of the wavelength of the photons.

This paper is organised as follows. Section 2 introduces the setting and provides an analytical expression
for the thermodynamic potential of an ideal Bose gas at the dimensional crossover from 2D to 1D.
Equipped with this, section 3 specialises to the photon gas and derives expressions for the critical particle
number as well as for the condensate fraction. Afterwards, the specific heat of the photon gas is discussed in
section 4, which is finally used to define the effective dimension of the system in section 5.

2. Grand-canonical potential

At first we analyse the thermodynamic properties of an ideal Bose gas at the dimensional crossover between
2D and 1D. To this end we consider a two-dimensional harmonic trap for bosons, where the trapping
frequency in y-direction can be altered. Thus, with the quantum numbers j, n in the respective dimensions
the energy levels are given by:

Ejn(λ) = �Ω

(
j + λn +

1 + λ

2

)
, (1)

where Ω stands for the trapping frequency in x-direction and λ = Ωy/Ω denotes the trap-aspect ratio. We
remark, that for a isotropic 2D oscillator, which we will call the 2D case in the following, we have λ = 1,
whereas the one-dimensional case is approached in the limit λ → ∞. In this paper we always fix the
trapping frequency Ω in x-direction and increase the trap-aspect ratio λ, corresponding to a squeezing in
the y-direction. Intuitively, the gas can already be considered to be effectively one dimensional, if the energy
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spacing λ�Ω in y-direction is larger than the thermal energy kBT, which leads for the trap-aspect ratio to
the condition

λ > λ1D. (2)

Here we define the effective one-dimensional trap-aspect ratio λ1D, which depends on the temperature T of
the system and comprises the Boltzmann constant kB as well as the reduced Planck constant �:

λ1D =
kBT

�Ω
. (3)

Again we point out that regarding the experimental findings in [23] it is a very good approximation to
neglect the effective photon–photon interaction for discussing the thermodynamic properties of the photon
BECs.

Taking into account the energy levels (1), we have with the chemical potential μ, the inverse temperature
β = 1/(kBT), and the degeneracy g, which takes for photons the two polarisation degrees of freedom into
account, the grand-canonical potential [32]

Π = − g

β

∞∑

j,n=0

∞∑

k=1

e−β[Ejn(λ)−μ]k

k
, (4)

where we have used the series representation of the logarithm ln(1 + x) = −∑∞
k=1(−x)k/k. Performing the

sum over the energy levels in the non-squeezed direction, which are labelled by j, allows us to write the
potential Π in the form of a dimensional expansion

Π = Π1D + ΔΠ(λ). (5)

Here the one-dimensional grand-canonical potential reads

Π1D = −g
�Ω

b
I (μ̃, b, −1) , (6)

where we introduced the dimensionless variables b = β�Ω and μ̃ = (1 + λ)/2 − μ/(�Ω) as well as the
auxiliary function

I(a, b, l) =

∞∑

k=1

kl e−abk

1 − e−bk
, (7)

cf reference [33]. The correction ΔΠ(λ) to the 1D potential, which takes the second dimension into
account, depends on the trap-aspect ratio λ via

ΔΠ(λ) = −g
�Ω

b

∞∑

n=1

I (μ̃ + λn, b, −1) . (8)

The auxiliary function I(a, b, −1) appearing in (6) and (8) is determined in appendix A in the form (A.16)
and (A.20), respectively. Therefore, we find for the total grand-canonical potential analytically:

Π = −g
�Ω

b

{
f (μ̃) +

1

b
ζ2

(
e−μ̃b

)
+

1

2
ζ1

(
e−μ̃b

)
+

b

12
ζ0

(
e−μ̃b

)}

− g
�Ω

b

{
1

λb2
ζ3

(
e−(μ̃+λ)b

)
+

1

2λb
ζ2

(
e−(μ̃+λ)b

)
+

1

12λ
ζ1

(
e−(μ̃+λ)b

)
+

1

λ

∫ ∞

μ̃+λ

dy f (y)

+
1

2

[
f (μ̃ + λ) +

1

b
ζ2

(
e−(μ̃+λ)b

)
+

1

2
ζ1

(
e−(μ̃+λ)b

)
+

b

12
ζ0

(
e−(μ̃+λ)b

)]}
+ · · · . (9)

Here, ζl(x) =
∑∞

k=1xk/kl denotes the polylogarithm [34] and f (μ̃) is defined in equation (A.17). The dots
indicate here and in the following terms of order b2 and higher. We remark, that the one-dimensional limit
is given by λ → ∞, which corresponds to the vanishing of the last two lines in equation (9).

In the following we discuss the thermodynamic consequences of the grand-canonical potential (9) for a
general ideal Bose gas, but for illustrating the functional dependencies of the thermodynamic quantities we
specialise these general results to the photon BEC experiments in Bonn [16, 23]. There, we have to take into
account the two polarisational degrees of freedom of the photons resulting in the degeneracy g = 2. For
typical values, i.e. T0 = 300 K and Ω = 2π × 40 GHz, the system can be considered to be effectively one
dimensional, if the trap-aspect ratio fulfills condition (2) with λ1D ≈ 156. Moreover, since the photon BEC
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experiment is performed at room temperature T0 [16, 23], the approximation of small b is well fulfilled, as
we have then b0 ≡ �Ω/kBT0 ≈ 6 × 10−3. Note, that the same order of magnitude is also obtained for the
atomic BEC case, when taking the experimental parameters from [7].

3. Particle number

By calculating the derivative N = −∂Π/∂μ, we find from the potential (9) for the total particle number

N = g

{
−1

b
f ′(μ̃) +

1

b
ζ1

(
e−μ̃b

)
+

1

2
ζ0

(
e−μ̃b

)
+

b

12
ζ−1

(
e−μ̃b

)

+
1

λb2
ζ2

(
e−(μ̃+λ)b

)
+

1

2λb
ζ1

(
e−(μ̃+λ)b

)
+

1

12λ
ζ0

(
e−(μ̃+λ)b

)
+

1

λb
f (μ̃ + λ)

+
1

2

[
−1

b
f ′(μ̃ + λ) +

1

b
ζ1

(
e−(μ̃+λ)b

)
+

1

2
ζ0

(
e−(μ̃+λ)b

)
+

b

12
ζ−1

(
e−(μ̃+λ)b

)]}
+ · · · . (10)

This explicit expression allows to determine the critical particle number, the critical temperature and,
likewise, the condensate fraction as will be derived in sections 3.1–3.3, respectively. Already here, we
mention that we will indeed find a critical particle number and critical temperature in the 1D case in
accordance with references [4, 5, 33, 35]. For further detail, we refer to the discussion at the beginning of
section 3.2.

3.1. Critical particle number
In order to calculate the critical particle number, we consider the deep condensate limit μ̃ → 0. We remark,
that this limit corresponds to the order parameter approach, as worked out in reference [33], where the
ground-state particle number is used as an order parameter for the BEC phase transition and only the
excited states are treated in a thermodynamic way. This approach corresponds to describing the Bose gas in
the thermodynamic limit. In the present work, however, we treat all states, including the ground state,
thermodynamically as this description is closer to the experimental situation, where the system is finite.
With this the particle number (10) can be written in the form

N ≈ N0 + Nc, (11)

with the ground-state particle number

N0 =
g

eμ̃b − 1
, (12)

which acquires in the limit μ̃ → 0 the form N0 ≈ g/(μ̃b), and the critical particle number

Nc = g
γ − ln(b)

b
+ g

{
1

λb2
ζ2

(
e−λb

)
+

1

2λb
ζ1

(
e−λb

)
+

1

12λ
ζ0

(
e−λb

)
+

1

λb
f (λ)

+
1

2

[
−1

b
f ′(λ) +

1

b
ζ1

(
e−λb

)
+

1

2
ζ0

(
e−λb

)
+

b

12
ζ−1

(
e−λb

)]}
+ O

(
(μ̃b)0

)
, (13)

with the Euler–Mascheroni constant γ ≈ 0.577. Note that, due to the limit process involved, this result is
only accurate up to order O

(
(μ̃b)0

)
, but it is still accurate to all orders of λb. Moreover, we note the same

structure as for the grand-canonical potential in equation (5), namely the bare one-dimensional quantity in
the first line gets modified by the terms in the other two lines, which depend on the trap-aspect ratio and
describe the influence of the second dimension, see figure 1(a). Note that the first line in (13) follows from
the first line in equation (10) by applying the Robinson formula [36],

ζl

(
e−a

)
=

(−a)l−1

(l − 1)!

{
l−1∑

k=1

1

k
− ln a

}
+

∞∑

k=0
k	=l−1

(−a)k

k!
ζ(l − k), (14)

where ζ(l) denotes the Riemann-ζ function and a > 0, in order to expand the occurring polylogarithms
with positive integer index l and by using for the corresponding polylogarithms with negative index the
representation

ζ−l

(
e−a

)
=

1

(1 − e−a)l+1

l−1∑

k=0

〈
l

k

〉
e−(l−k)a (15)

with the Eulerian numbers
〈

l
k

〉
[37].
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Figure 1. (a) Critical particle number (13) at room temperature T0 for varying trap-aspect ratio (blue/solid line). The green
(dashed dotted) line illustrates the 1D limit (16). (b) Critical particle number (13) for different trap-aspect ratios λ as a function
of the temperature T normalised to the room temperature T0. The blue (solid) line represents the isotropic 2D case, i.e. λ = 1,
the orange (dashed) line is for λ = kBT0/�Ω ≡ λ1D, and the green (dash–dotted) depicts the 1D limit, i.e. λ → ∞.

From (13) we find for the 1D critical particle number

Nc,1D = g
kBT

�Ω

[
γ − ln

(
�Ω

kBT

)]
. (16)

Near two dimensions, meaning small anisotropy λ 
 1/b, the critical particle number (13) reads

Nc,≈2D = Nc,1D + g

{
ζ(2)

λ(�Ωβ)2
+

1

2�Ωβ

[
ln(�Ωβ) +

ln Γ(λ) − ln(2π�Ωβ)

λ
− ψ0(λ)

]}
, (17)

where Γ(x) =
∫∞

0 dt tx−1 e−t denotes the Γ-function and ψ0(x) = ∂x ln Γ(x) is the digamma function. In
two dimensions, i.e. λ = 1, this reduces to

Nc,2D = Nc,1D + g

{
ζ(2)

(
kBT

�Ω

)2

+
kBT

2�Ω
[γ − ln(2π)]

}
. (18)

At first, a comparison with reference [33] shows that equation (16) is exact, whereas the corresponding
expression for the two-dimensional critical particle number (18) contains the last term in addition. This
difference is solely due to our approach, where we calculate at first the one-dimensional quantities and
approximate afterwards the corresponding two-dimensional ones. As the leading order of the relative
deviation of our result (18) compared to the corresponding one in references [33, 38] is of the order of the
magnitude of b itself, the difference for the experimental parameter regime, i.e. room temperature
T0 = 300 K and Ω = 2π × 40 GHz, is of the order b0 ≈ 6 × 10−3 and, thus, negligible for all practical
purposes.

Already here, we also encounter a qualitative difference between the two special cases of dimensions. In
1D the critical particle number (16) depends linearly on the temperature, apart from the logarithmic term,
whereas in 2D the leading order in equation (18) is quadratic in the temperature. In figure 1(b) we plot the
critical particle number (13) as a function of the temperature for different trap-aspect ratios λ. Neither in
the 2D case, λ = 1, nor in the 1D case, which amounts to the limit λ → ∞, the functional dependence of
the critical particle number on the temperature changes. However, we note the different exponents one and
two in accordance with (16) and (18), which can be interpreted as a sign for the corresponding dimension.
For an intermediate trap-aspect ratio of λ = kBT0/(�Ω) ≡ λ1D the temperature dependence changes
qualitatively for T ≈ T0. For smaller temperatures the curve coincides with the 1D curve, while for larger
temperatures the orange curve gets parallel to the 2D curve. This means, that in the former case the system
behaves effectively one dimensional, whereas in the latter case the system reveals a two-dimensional
behaviour. This observation completely agrees with the criterion (2) for quasi one-dimensionality.

3.2. Critical temperature
Finally, we also solve the critical particle number N(Tc) for the critical temperature Tc in the respective
dimension. In 1D, we obtain from directly inverting equation (16) the implicit equation

Tc,1D =
�Ω

gkB

N

γ − ln(�Ω/kBTc,1D)
. (19)
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In [3] it is derived, that no Bose–Einstein condensation is possible for a harmonic confining potential in
one spatial dimension, as the critical temperature tends to zero in this limit. In contrast to that, we find in
(19) a finite critical temperature and, thus, the possibility for a BEC. The difference between the approach
in [3] and our approach is, that the former work is performed entirely in the thermodynamic limit, whereas
we always assume a finite system size. A further difference is that the approach in [3] relies on the density of
states, whereas we directly evaluate the appearing sum in (4). Therefore, on a mathematical basis the
divergent value ζ(1), which is obtained by [3] in the limit of a harmonic trapping potential, is in our
calculation resolved by the logarithm appearing in (19) due to our finite-size ansatz. Furthermore, we
emphasise that our result is also obtained in [33], where an order-parameter approach has been used, and
similar results, which are also based on a full thermodynamic approach, but with a less systematic
application of the Euler–Maclaurin formula, are found in [35]. Finally, we remark that due to this finite-size
behaviour, we will refer to the one-dimensional condensed phase still as BEC in accordance with references
[4, 5, 8].

In order to figure out an approximate solution to the transcendental equation (19) we iterate (19) once
and neglect the further logarithmic dependencies. For large photon numbers N we have then a leading term
of the critical temperature in 1D, which is already determined by an inverse logarithmic dependence

TL.T.
c,1D ≈ �Ω

gkB

N

ln(N/g)
. (20)

We remark, that this critical temperature in 1D can be derived by a generalisation of the semiclassical
approach used in [3] as has been shown in [5] and is backed up experimentally, e.g. [10, 11]. However, we
emphasise here, that the thermodynamic limit relies on a finite Tc. Thus, according to the numerator of
(20) this implies ΩN = const. Therefore, from the denominator of (20) we have then Tc → 0 in the limit
N → ∞. With this we rederive the results of [3] from our finite-size considerations in accordance with [5].
Consequently, in the thermodynamic limit, indeed, no Bose–Einstein condensation is possible at any finite
temperature. However, in the realistic experimental settings, where the particle number N may be large but
finite, Bose–Einstein condensation can always be observed in a one-dimensional harmonic trap.

The finite-size corrections we define by

ΔTF.S.
c,• =

Tc,• − TL.T.
c,•

TL.T.
c,•

, (21)

where the bullet stands for the corresponding dimension. In 1D we have for the finite-size corrections (21)

ΔTF.S.
c,1D =

ln(γ) − γ

ln(N/g)
, (22)

which is also determined by a logarithm.
In nearly two dimensions we find by iterating equation (17) once for bλ 
 1 as leading term

TL.T.
c,≈2D =

�Ω

kB

√
λN

gζ(2)
, (23)

which reduces in 2D to

TL.T.
c,2D =

�Ω

kB

√
N

gζ(2)
. (24)

The finite-size corrections (21) near 2D are given by

ΔTF.S.
c,≈2D = − λ

4ζ(2)

√
gζ(2)

λN

⎡
⎣2γ − ψ0(λ) +

ln Γ(λ) − ln
(

2π
√

gζ(2)/(λN)
)

λ
− 1

2
ln

(
gζ(2)

λN

)⎤
⎦ (25)

simplifying in 2D to the form

ΔTF.S.
c,2D = − 1

4ζ(2)

√
gζ(2)

N

[
3γ − ln

(
2π

gζ(2)

N

)]
. (26)
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Figure 2. Finite-size corrections (21) to the critical temperature in 2D (blue), for finite trap-aspect ratio λ = 10 (orange,
dashed) and in the 1D case λ → ∞ (green, dashed–dotted) according to (22), (25) and (26), respectively.

Comparing equations (20) and (24) we note the following two differences between the two limiting cases of
the dimension. At first, in 1D the total particle number contributes with the exponent one to the critical
temperature, whereas in 2D it appears with a square root. A second difference between 1D and 2D is the
occurrence of the logarithm. In 1D the logarithm shows up already in the leading term (20) of the critical
temperature, while in 2D the logarithm determines the first finite-size correction (26).

In figure 2 we compare the contribution of the finite-size corrections of the critical temperature in 1D
(22) with the corrections for the near 2D and 2D critical temperature (25) and (26), respectively. We see
directly, that in two dimensions the finite-size corrections are one order of magnitude smaller than in the
1D case. Thus, we deduce that when performing the crossover from 2D to 1D the importance of the
finiteness of the system increases, as the finite-size corrections increase.

3.3. Condensate fraction
In this section we calculate the condensate fraction N0/N, where N0 is the ground-state particle number, in
the deep condensate limit, i.e. for N � Nc. Thus, using equation (11) we have

N0

N
≈ 1 − Nc

N
. (27)

In 1D we find for the fraction Nc/N by using the critical particle number (16)

(
Nc

N

)

1D

=
T

Tc

[
1 − ln

(
T/Tc

)

γ − ln(�Ω/kBTc)

]
, (28)

so we have in leading order a linear temperature dependence. In contrast to this, when we approach two
spatial dimensions, using the corresponding expression (17), we find in the leading order a quadratic
dependence on the temperature

(
Nc

N

)

≈2D

=

(
T

Tc

)2

+
1

2ζ(2)

√
gζ(2)

N

⎧
⎨
⎩

[
T

Tc
−
(

T

Tc

)2
]

×

⎡
⎣−1

2
ln

gζ(2)

N
+

ln Γ(λ) − ln
(

2π
√

gζ(2)/N
)

λ
− ψ0(λ) + 2γ

⎤
⎦+

T

Tc

(
1 +

1

λ

)
ln

T

Tc

⎫
⎬
⎭ .

(29)

In the two-dimensional limit equation (29) reduces to

(
Nc

N

)

2D

=

(
T

Tc

)2

+

√
gζ(2)

N

{[
T

Tc
−
(

T

Tc

)2
]

3γ − ln(2πgζ(2)/N)

2ζ(2)
− T ln(T/Tc)

Tcζ(2)

}
. (30)

Figure 3 shows a numerical calculation of the temperature dependence of the condensate fraction for an
experimentally realistic number of N = 100 000 photons for different values of the trap-aspect ratio λ.
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Figure 3. Condensate fraction N0/N for fixed particle number N = 100 000. The blue (solid) line represents the isotropic 2D
case, i.e. λ = 1, the orange (dashed) line is for λ = 500, and the green (dash–dotted) line shows the 1D limit λ → ∞. The red
crosses are experimental values with the corresponding errors for the 2D case [39].

The numerical calculation of the condensate fraction is done as follows. At first, we invert the particle
number equation (10) in order to extract the dimensionless chemical potential μ̃. We then use this value to
calculate the ground-state population N0 and, thus, the condensate fraction. We note that the isotropic 2D
curve is in good agreement with the experiment of reference [39]. The discrepancy in the thermal phase is
attributed to the finite resolution of the experimental apparatus. Moreover, we observe the inverted
parabolic temperature dependence (30). Also in the 1D case the curve agrees with the linear temperature
dependence predicted in (28). For the curve with an intermediate trap-aspect ratio of λ = 500 the curve
shows characteristics of both the 1D curve and as the temperature increases also of the 2D curve, meaning
that here the effective dimension of the system changes from 1D to 2D.

To conclude this discussion, we remark that in the experimental situation of photon BECs the
temperature is always fixed to the room temperature T0, but the usual way for measuring thermodynamic
quantities is to change the temperature T. So far this problem has been experimentally circumvented by
varying the particle number and using that for integer dimensions D = 1, 2 an analytic correspondence is
available in the form T/Tc = (Nc/N)1/D [23]. Thus, we see already here, that this procedure is not well
suited for a dimensional crossover, where one deals with non-integer dimensions. The second problem is
that due to the finite system size also the thermodynamic quantities change with the particle number N.
Instead of this, we propose to change the parameter b via the trapping frequency Ω. This is possible, since
from its very definition we have bc/b = T/Tc and also bc/b = Ωc/Ω.

Finally, we estimate the experimentally achievable regions of T/Tc in photon BECs for realistic total
particle numbers of Nmin ∼ 102 up to Nmax ∼ 105 in both 2D and 1D. We find in 2D that the order of
magnitude of the fraction T/Tc ranges from 0.1 up to 10, whereas in 1D we have the range from 0.1 to 1. As
all calculated quantities depend smoothly on the trap-aspect ratio, we expect that for a certain value of the
trap-aspect ratio the reachable values of T/Tc lie in between the corresponding 2D and 1D ratio, such that
the phase transition is always observable.

4. Specific heat

In the following we calculate the specific heat CN for a constant particle number N from the internal energy
U = Π + TS + μN [32], where S denotes the entropy, according to

CN =
∂U

∂T
+

∂U

∂μ

(
∂μ

∂T

)

N

, (31)

where the second term takes the condition of a fixed particle number into account. However, due to the
complexity of the resulting formula, we restrict the discussion to the deeply condensed case at first. In this
approximation we find for the internal energy

U ≈ E0(N0 + Nc) + �ΩλΔN + g
�Ω

b

[
f ′(λ)

2
− f (λ)

λ

]

+g�Ω

[
ζ(2)

b2
− 1

2b
+

2

λb3
ζ3

(
e−λb

)
+

λ + 1

2λb2
ζ2

(
e−λb

)
+

1

24
ζ0

(
e−λb

)]
,

(32)
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Figure 4. Temperature dependence of specific heat CN for the particle number N = 100 000. The blue (solid) line covers the
isotropic 2D case, i.e. λ = 1, the orange (dashed) line is for λ = 2000, the pink (dotted) line represents λ = 500 000, and the
green (dash–dotted) line is for λ → ∞. The red crosses are experimental values with the corresponding errors for the 2D case
from reference [23].

where ΔN = N − N1D. We note, that in this limit we have ∂μ/∂T ≈ 0, so the specific heat in the leading
order of 1/b reads

CN ≈ gkB

[
2ζ(2)

b
+

6

λb2
ζ3

(
e−λb

)
+

3λ + 1

b
ζ2

(
e−λb

)]
. (33)

Therefore, taking into account equation (19), in the one-dimensional limit the specific heat is given by

CN ,1D = NkB
2ζ(2)

γ − ln(�Ω/kBTc)

T

Tc
, (34)

and in leading order in b near 2D we obtain from equation (23) together with equation (25)

CN ,≈2D ≈ 6λNkB

(
T

Tc

)2
ζ(3)

ζ(2)

⎧
⎨
⎩1 − 1

2ζ(2)

√
gζ(2)

λN

×

⎡
⎣2γ − ψ0(λ) −

ln Γ(λ) − ln
(

2π
√

gζ(2)/λN
)

λ
− 1

2
ln

gζ(2)

λN

⎤
⎦
⎫
⎬
⎭ . (35)

In two dimensions equation (35) reduces to

CN ,2D ≈ 6NkB

(
T

Tc

)2
ζ(3)

ζ(2)

{
1 − 1

2ζ(2)

√
gζ(2)

N

[
3γ − ln

(
2π

gζ(2)

N

)]}
. (36)

After deriving these analytic formulas in the deeply condensed case, we discuss now the obtained results and
compare them with the experimental results of reference [23]. In figure 4 we plot the full specific heat for
different values of the trap-aspect ratio λ as a function of the temperature T. In the two-dimensional case
we find the expected λ-like transition with the high-temperature limit of CN = 2NkB, where the latter is in
accordance with the Dulong–Petit law. Note, that in our case of a finite system the specific heat does not
undergo a jump at the critical point as it occurs in the thermodynamic limit [33]. Instead, it remains a
continuous function. Furthermore, we point out that in 1D the specific heat is always a continuous function
at the phase transition which explicitly includes the thermodynamic limit, cf [33]. However, as we increase
the trap-aspect ratio, we see that this characteristic λ-shaped behaviour near the critical temperature Tc

gradually washes out and a plateau emerges just above the critical temperature. This plateau has the value
CN = NkB and, thus, resembles the one-dimensional Dulong–Petit law, meaning that here the system,
indeed, behaves as one-dimensional. By further increasing the temperature the system approaches again the
2D Dulong–Petit law. However, the dotted line in figure 4 is slightly above CN = NkB since here the system
undergoes the crossover from 2D to 1D producing the corresponding λ-like form near the crossover
temperature. The reason for the described behaviour is as follows. The temperature can be seen as

9
67



New J. Phys. 24 (2022) 023013 E Stein and A Pelster

Figure 5. (a) Phase diagram of the ideal Bose gas at the dimensional crossover by plotting colour coded the specific heat (33) as a
function of both the temperature and the trap-aspect ratio. (b) Effective dimension of the BEC phase according to the definition
(37). In both plots the solid white line shows the critical temperature following from inverting (13), whereas the dashed white
curve depicts the criterion (2) of being quasi 1D. Both calculations have been performed for N = 1000 particles.

a measure for which states can be occupied, namely as the temperature raises also states with higher
energies are populated. Therefore, we can invert the 1D condition (2) and define for a fixed trap-aspect
ratio λ the effective 1D temperature T1D = λ�Ω/kB. We note, that the system is in the 1D regime if
T < T1D, as here the occupation in the excited states in the squeezed direction is exponentially suppressed,
and otherwise in the 2D regime, since then the thermal energy is large enough to have also states in the
squeezed direction populated.

A similar behaviour is well known in the literature, e.g. for the thermodynamics of molecular gases [32].
At low temperatures only the translational degrees of freedom of the molecules can be thermally excited
and, thus, only those can contribute to the specific heat. Increasing the temperature above a certain
threshold allows the molecules to rotate such that these degrees of freedom additionally contribute to the
specific heat. Increasing the temperature even further allows also the vibrational modes of the molecules to
be thermally excited.

We note the different behaviour of the specific heat in the low-temperature limit, which is worked out in
equations (34) and (36). Thus, in contrast to the condensate fraction and the critical particle number, using
the specific heat can be instrumental to define and to determine the effective dimension of the system both
in the low and the high temperature limit.

5. Phase diagram and effective dimension

Finally, we analyse how the phase diagram of the system changes as a function of the trap aspect ratio λ and
the temperature T by plotting the specific heat CN in figure 5(a). However, due to numerical reasons we are
forced to use a small particle number of N = 1000 photons, as otherwise we are not able to cover such a
large range of parameters λ and kBT/�Ω. At first we note that the phase transition from the BEC to the
thermal phase happens at the critical temperature Tc, which is calculated by inverting the critical photon
number (13) with the limiting cases (19) and (24). Moreover, in the thermal phase, we can directly read off
the effective dimension of the system according to the respective Dulong–Petit law, as is explained at the
end of section 4. The dashed white line depicting the lower bound λ1D = kBT/�Ω of criterion (2),
discriminates between the different dimensional behaviour. However, therefrom we can only learn about the
effective dimension in the thermal phase. From equations (34) and (36), though, we read off, that in the
condensed regime the effective dimension follows from the polynomial dependency of the specific heat on
the temperature. Therefore, we suggest to define as the effective dimension in the BEC phase the
double-logarithmic derivative

dBEC = − 1

NkB

∂ ln CN

∂ ln b
. (37)

Figure 5(b) shows the corresponding results as a function of both the temperature T and the trap aspect
ratio λ. We note that in the thermal phase this definition yields a constant value of 0 due to the
Dulong–Petit law except right at the crossover from 2D to 1D. Thus, this definition cannot be used in the
thermal case to determine the effective system dimension. In the BEC phase, however, we find values
between 1 and 2 according to the limiting cases deduced from equations (34) and (36). Near the phase
transition, however, this definition fails as here the quantitative behaviour of the specific heat changes

10
68



New J. Phys. 24 (2022) 023013 E Stein and A Pelster

Figure 6. Effective dimension d of the ideal Bose gas at the dimensional crossover as defined by (38) as a function of both the
temperature and the trap-aspect ratio. The solid white curve shows the critical temperature obtained by inverting (13), whereas
the dashed white line indicates the quasi-1D criterion (2). The calculation has been performed for N = 1000 particles.

yielding e.g. negative values of dBEC. The precise value of the BEC dimension is determined by the
temperature and trap-aspect ratio. We see that, for an increasing trap-aspect ratio, the system behaves,
indeed, quasi one-dimensional.

Summarising the two observations from figure 5, we suggest to define the effective dimension of the
system by

d =

{
CN/(NkB), in the thermal phase,

dBEC, in the BEC phase,
(38)

where dBEC is defined in (37). With this we are able to describe the effective dimension of the system in both
the Bose-condensed and the thermal regime. In figure 6 we plot the definition (38) in dependence of both
the temperature and the trap aspect ratio. However, as figure 6 shows, the definition (37) yields a
non-continuous effective dimension at the phase boundaries as here the slopes of the specific heat change.
This can be read off from the reddish area in the plot. Nevertheless, we also note, that the effective
dimension of the system changes from 2D to effective 1D in agreement with the criterion (2). We remark,
that in the crossover region both the temperature and the trap-aspect ratio determine the effective
dimension of the system. Finally, we point out that trap-aspect ratios up to λ ∼ 103 are experimentally
realisable, which is due to the expected resolution of the mirror fabrication method [40]. Consequently,
according to figure 6 the onset of the effective 1D region is reachable at room temperature, where we have
kBT0/�Ω ≈ 160.

6. Conclusions

In this paper we present an analytical description of the dimensional crossover from 1D to 2D for an ideal
Bose gas in terms of a dimensional expansion, see equation (5). We find the same structure for all
investigated thermodynamic quantities, such as the critical particle number, the condensate fraction, and
the specific heat, namely that the 1D expression gets corrected by terms yielding the 2D result. Furthermore,
from the specific heat we are able to define an effective dimension d, given by equation (38), in both the
BEC and the thermal phase. This definition shows a change of the effective dimension, which is consistent
with the criterion (2). But we also note, that this definition has a minor drawback as it produces a
non-continuous behaviour of the effective dimension near the phase boundary, as can be seen in figure 6.
However, our results allow to determine the effective dimension of the system for a given temperature and
trap-aspect ratio. We especially focus on how to determine the effective dimension by examining the
polynomial dependency of the specific heat in the BEC case and by observing the Dulong–Petit law in the
thermal regime. We remark, that our calculational approach, which is based on an expansion in the
smallness parameter �Ω/(kBT), is especially suitable for photon gases, where this value is of the order of a
few per mille.

The present work could be extended to also determine the spatio-temporal behaviour of the correlation
function of the ideal Bose gas at the dimensional crossover, which has already been measured for an
isotropic two-dimensional photon gas [41]. Concerning the fact, that in the 2D photon BEC experiments a
retarded thermo-optic interaction is dominant, despite of an additional negligible contact interaction [16,
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22, 42], it is an interesting question, whether this is still true in the quasi-1D case. Moreover, for a more
realistic modelling of the experiments, one needs to include also the pump and the decay processes, as a
photon gas in a dye-filled microcavity is intrinsically an open system. A recent study [43] indeed shows that
due to the open-dissipative character of the system the higher correlation function shows a phase transition,
which does not exist in closed systems. In a second attempt one should also include the effective
photon–photon interaction, as it is known, that e.g. contact interactions increase along a dimensional
crossover. Another research direction would be to investigate in view of the dimensional crossover different
potential landscapes, such as potentials with arbitrary exponents, cf [3], or even anharmonic
potentials [44].
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Appendix A. Cutoff regularisation

The aim of this appendix is to work out the behaviour of the auxiliary functions I(a, b, l) defined in
equation (7) for integer l and a, b > 0 and also to provide a procedure allowing to approximate these
functions analytically. First we start with two recursion relations obeyed by the auxiliary functions. For
increasing the integer l we have

I(a, b, l + 1) = −1

b

∂

∂a
I(a, b, l), (A.1)

whereas decreasing l yields correspondingly

I(a, b, l − 1) = b

∫ ∞

a
dx I(x, b, l). (A.2)

Thus, from the analytical knowledge of one particular I(a, b, l∗) all other functions I(a, b, l) can be calculated
analytically.

A.1. Special case l∗ = 0
It turns out, that the case l∗ = 0 can be calculated analytically for small values of b. According to the
definition (7) we start with

I(a, b, 0) =

∞∑

k=1

e−abk

1 − e−bk
. (A.3)

In order to calculate expression (A.3), we follow reference [33] and perform an expansion for small values
of b. However, the first step is to include also the k = 0 term in the summation (A.3). As this is a divergent
term, we add and subtract the first three terms of the corresponding Laurent series. Note, that in reference
[33] only the first term of the Laurent series is introduced yielding an approximation up to O(b0). However,
here we need higher order terms for obtaining a converging result for the two-dimensional case. Thus, we
have

I(a, b, 0) =

∞∑

k=0

e−abk

(
1

1 − e−bk
− 1

bk
− 1

2
− bk

12

)
+

∞∑

k=1

e−abk

(
1

bk
+

1

2
+

bk

12

)
+ O(b2). (A.4)
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In the first term we replace the summation by an integral using the Euler–Maclaurin formula for a smooth
function f(n)

∞∑

n=0

f (n) ≈
∫ ∞

0
dn f (n) +

1

2

[
f (0) + f (∞)

]
. (A.5)

Due to the construction of expression (A.4), all higher terms in the Euler–Maclaurin series (A.5) vanish
exactly. In the second term we recognise the polylogarithmic functions ζn(x) with n = −1, 0, +1. Thus, we
have

I(a, b, 0) =

∫ ∞

0
dk e−abk

(
1

1 − e−bk
− 1

bk
− 1

2
− bk

12

)

+
1

b
ζ1

(
e−ab

)
+

1

2
ζ0

(
e−ab

)
+

b

12
ζ−1

(
e−ab

)
+ O(b2). (A.6)

Whereas in reference [33] the remaining integrals are solved by using a dimensional regularisation, we
introduce here an infrared cutoff Λ as the integrands are divergent for k → 0:

I(a, b, 0) = lim
Λ→0

∫ ∞

Λ

dk e−abk

(
1

1 − e−bk
− 1

bk
− 1

2
− bk

12

)

+
1

b
ζ1

(
e−ab

)
+

1

2
ζ0

(
e−ab

)
+

b

12
ζ−1

(
e−ab

)
+ O(b2). (A.7)

First, we obtain ∫ ∞

Λ

dk (bk)n e−abk =
1

an+1b
Γ(n + 1, abΛ), (A.8)

where Γ(s, x) is the upper incomplete Γ function. For small Λ we find in leading order

Γ(0, abΛ) ≈ −γ − ln(abΛ)

b
, (A.9)

whereas the incomplete Γ functions with indices n � 1 simply reduce to the standard Γ functions:

Γ(n, abΛ) ≈ Γ(n), n � 1. (A.10)

In the remaining first integral of equation (A.7) we substitute x = e−bk and calculate by using the
incomplete beta function,

B(x; a, b) =

∫ x

0
dt ta−1(1 − t)b−1, (A.11)

the integral ∫ ∞

Λ

dk
e−abk

1 − e−bk
=

1

b
B(ebΛ; a, 0). (A.12)

This yields in the limit of small Λ

B(e−bΛ; a, 0) ≈ − ln(bΛ) − γ − ψ0(a). (A.13)

Inserting equations (A.9), (A.10) and (A.13) into equation (A.7) we finally have

I(a, b, 0) =
1

b

[
ln(a) − ψ0(a) − 1

2a
− 1

12a2

]
+

1

b
ζ1

(
e−ab

)
+

1

2
ζ0

(
e−ab

)
+

b

12
ζ−1

(
e−ab

)
+ O(b2), (A.14)

which coincides with the result in reference [33], apart from the additional higher order terms. In the
following we calculate I(a, b, −1) from applying the recurrence relation (A.2). To this end we use the Stirling
formula [34],

ln Γ(z) ≈ z(ln z − 1) − 1

2
ln(2πz), (A.15)
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Figure A1. Relative error of analytical approximation of the one-dimensional sum (A.14) with respect to the numerical
evaluation of equation (A.3) (orange line). The blue line shows the relative error by using the approximation performed in
reference [33].

for regularising the upper integration limit in equation (A.2), and obtain

I(a, b, −1) = f (a) +
1

b
ζ2

(
e−ab

)
+

1

2
ζ1

(
e−ab

)
+

b

12
ζ0

(
e−ab

)
+ O(b2), (A.16)

where we defined

f (a) =
1

2
ln
( a

2π

)
− a [ln(a) − 1] + ln Γ(a) − 1

12a
. (A.17)

This result is still correct to order O(b2), because the recurrence relation (A.2) preserves the corresponding
order.

A.2. Resummation for second dimension
In (8) we have seen, that we also need to calculate a sum over the auxiliary functions (7). With the result
(A.16) we can also analytically approximate the sum

S =

∞∑

n=1

I(a + λn, b, −1) (A.18)

by using again the Euler–Maclaurin series (A.5). Thus, we obtain the approximation

S ≈
∫ ∞

1
dn I(a + λn, b, −1) +

1

2
I(a + λ, b, −1). (A.19)

Taking equation (A.16) into account, we have

S =
1

λb2
ζ3

(
e−(a+λ)b

)
+

1

2λb
ζ2

(
e−(a+λ)b

)
+

1

12λ
ζ1

(
e−(a+λ)b

)
+

1

λ

∫ ∞

a+λ

dy f (y)

+
1

2
I(a + λ, b, −1) + O(b2). (A.20)

We note that the error, stemming from the Euler–Maclaurin approximation in equation (A.19), cannot be
evaluated in a systematic way. However, we show in the next section, that the performed approximation
yields errors, which are small in the relevant parameter regime of photon gases.

A.3. Analytical vs numerical summation
Finally, we compare the analytical results from the preceding sections with a numerical summation of
equation (A.3) itself. Figure A1 shows the relative error of the numerical approximation (A.14) with respect
to the direct numerical evaluation of the sum (A.3). The orange line shows our result, whereas the blue line
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Figure A2. Relative error of analytical approximation of the correction terms leading to the second dimension (A.20) with
respect to the numerical evaluation in equation (A.21).

shows the accuracy achieved in reference [33]. At first, we note that both results yield a good approximation
as b tends to 0. However, as we use additional terms from the Laurent series in equation (A.4), the accuracy
of our result is increased compared to the result from reference [33].

In order to analyse the error of the 2D result we first note that the sum (A.18) can also be performed by
using the definition (A.3) and interchanging the summation signs, which yields

S2D =
∞∑

k=1

e−abk

k(1 − e−bk)(eλbk − 1)
. (A.21)

Note, that due to the factor 1/k this expression cannot be treated analytically along the philosophy of
reference [33] and this appendix. However, expression (A.21) can be used as a numerical comparison with
the analytical approximation obtained in (A.20). The relative error of the approximation of the
two-dimensional sum (A.18) is shown in figure A2. It reveals, as suspected, the same overall behaviour as
the approximation of the one-dimensional sum, namely that the approximation gets better at small b and
worse at large values of b.
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ἀλλ᾿ ἄνδρα, κεἴ τις ᾖ σοφός, τὸ

μανθάνειν

πόλλ᾿, αἰσχρὸν οὐδὲν καὶ τὸ μὴ

τείνειν ἄγαν.

There is no shame in a man
learning more, // Be he ever so
wise, nor in remaining flexible.

Sophokles, Antigone l. 710f

While chapter 3 discusses in detail the dimensional crossover for an ideal Bose gas and
works out the effective dimension along the crossover, the present chapter covers the
influence of both the thermo-optic and the Kerr interaction upon the condensate ground
state at the dimensional crossover. The starting point consists of coupled equations for
both the photon condensate in a mean-field description and the temperature diffusion
describing the thermo-optic photon-photon interaction, as introduced in subsection 1.3.3
and used in chapter 2. This study utilises the Green’s function of the diffusion equation
to eliminate the temperature degree of freedom, such that only a single equation for
the photon-condensate ground state remains. As the total photon-photon interaction is
weak, a variational approach yields approximate results for the condensate wave function.
With the trapping potential being harmonic, the trial function for the photon condensate
wave function is of Gaussian form, with its widths being the variational parameters. A
minimisation of the corresponding energy functional with respect to these widths yields
their defining equations.
This chapter explores performing the crossover in two ways, either by fixing the x-
direction and by squeezing the y-direction, or by loosening the trap in x-direction while
simultaneously increasing the trapping potential in y-direction. In the first setup, a
saturation of the thermo-optic interaction appears. This stems from the competition
between the length scale of the temperature distribution and the length scale of the
condensate in the squeezed direction. In case the condensate width gets smaller than
the diffusion length scale, a certain part of the temperature created by the condensate
diffuses to regions where no condensate is present. Therefore, it cannot contribute to the
photon-photon interaction. In this situation the Kerr interaction, which grows linearly
with the trap-aspect ratio, takes over for large trap anisotropies. In the second setup, the
simultaneous elongation of the condensate in the x-direction prevents this from happen-
ing and the thermo-optic interaction increases during the entire dimensional crossover.

Within this study, I worked out the theory, performed the necessary calculations and
prepared the complete manuscript for submission. I also implemented the numerical
calculations by using a Fourier split-step algorithm in imaginary time, as well as the
scripts for data analysis. All authors were engaged with the reviewing process of the
manuscript.
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Abstract
Since the advent of experiments with photon Bose–Einstein condensates (phBECs) in dye-filled
microcavities in 2010, many investigations have focussed upon the emerging effective
photon–photon interaction. Despite its smallness, it can be identified to stem from two physically
distinct mechanisms. On the one hand, a Kerr nonlinearity of the dye medium yields a
photon–photon contact interaction. On the other hand, a heating of the dye medium leads to an
additional thermo-optic interaction, which is both delayed and non-local. The latter turns out to
represent the leading contribution to the effective interaction for the current 2D experiments. Here
we analyse theoretically how the effective photon–photon interaction increases when the system
dimension is reduced from 2D to 1D. To this end, we consider an anisotropic harmonic trapping
potential and determine via a variational approach how the properties of the phBEC in general,
and both aforementioned interaction mechanisms in particular, change with increasing
anisotropy. We find that the thermo-optic interaction strength increases at first linearly with the
trap aspect ratio and later on saturates at a certain value of the trap aspect ratio. Furthermore, in
the strong 1D limit the roles of both interactions get reversed as the thermo-optic interaction
remains saturated and the contact Kerr interaction becomes the leading interaction mechanism.
Finally, we discuss how the predicted effects can be measured experimentally.

1. Introduction

Ultracold atomic quantum systems in dimensions lower than three bear interesting physics [1, 2]. In 2D an

interacting Bose gas can undergo a crossover from a Bose–Einstein condensate to a
Berezinskii–Kosterlitz–Thouless phase [3–5], where vortex and anti-vortex pairs are produced and can

move through the gas. In one-dimensional systems large phase fluctuations are detected [6], which induce

an algebraic decay of the correlation function, in contrast to an exponential decay in higher dimensions.

Moreover, it is also known that the effective interaction strength increases by reducing the dimension of the
system [7]. For systems of bosonic atoms the dimensional crossover has already been investigated broadly

from 3D to 2D [8] and even down to 1D [9, 10]. The question of the effective system dimension can be

reduced to a discussion of the relevant length scales [11]. Provided that the healing length of a
three-dimensional condensate confined by an axially symmetrical trap is larger than the axial width, the

system is effectively two-dimensional. In case that the in-plane radius is smaller than the healing length, the

system is quasi-1D.

For photon Bose–Einstein condensates (phBEC) [12], however, such a dimensional crossover has so far
not been realised. As these kinds of experiments are conducted in a microcavity, they turn out to be already

two-dimensional. It is expected that the crossover to 1D can be achieved experimentally by writing an

anisotropic harmonic confining potential directly on the mirror [13–15]. This should yield a simple control

of the trap anisotropy, which then allows to freeze out the higher dimension as has already been shown in

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Sketch of the interaction mechanisms mediated by the dye solution. The change Δn of the refractive index n of the
dye solution stems from both a Kerr nonlinearity χ(3) and thermo-optics described by the coefficient β. Reproduced from [22].
CC BY 4.0.

the theoretical study [16]. Thus, such photonic systems constitute a useful platform to investigate the
crossover from higher to lower dimensions.

Following this line of reasoning necessitates a glimpse into whether a true Bose–Einstein condensate in
the one-dimensional harmonic trap exists at all. Although in an early work [17] it was shown via a
semiclassical ansatz, that an ideal gas cannot Bose–Einstein condense in such a trap, a full quantum
mechanical investigation has, indeed, shown the existence of such a condensate [18]. In the later work [19]
these two former results have been brought together by generalising the semiclassical ansatz from [17], see
also [16] for a detailed discussion. However, in this paper we focus on the T = 0 situation for a weakly
interacting Bose gas. In the realm of quantum degenerate Bose gases in 1D it has been pointed out in [20],
that for T = 0 one always deals with a true Bose–Einstein condensate. Therefore, we will always use the
term BEC throughout this paper.

In the corresponding experimental set-up, photons are trapped in a dye-filled cavity and, due to the
contact with the dye, the photon gas is allowed to thermalise [21] and finally to Bose–Einstein condense
[12]. Moreover, the dye solution leads also to an effective photon–photon interaction via two mechanisms,
as is depicted in figure 1. One is the Kerr effect, which is due to a nonlinearity χ(3) of the solvent molecules,
where a change of the refractive index Δn ∝ |ψ|2 leads to an effective contact interaction. The second
mechanism for the effective photon–photon interaction is the thermo-optic effect. Since the quantum
efficiency of the dye lies below one, some electronic excitations of the dye molecules are converted into
phononic excitations due to the electron–phonon coupling in the molecule. Since these are also distributed
through the solvent, this leads to a net heating of the dye solution. This changes the refractive index of the
dye solution according to the thermo-optic coefficient β and, thus, contributes to the effective
photon–photon interaction.

It turns out that the thermo-optic interaction is the leading contribution in the current 2D experiments,
whereas the Kerr interaction is completely negligible in this situation. However, the total interaction
strength is still quite small as the dimensionless interaction strength amounts to about g̃ = mg/�2 ∼ 10−4

[12, 23]. Therefore, effects of stronger interaction like superfluidity are not yet observable and even the
thermodynamics turns out to be not affected by the interaction [24]. This finding motivated our previous
study [16], where we investigated as a first step the dimensional crossover of a non-interacting photon BEC
from 2D to 1D by determining its thermodynamic properties and by extracting from them the effective
system dimension for a given temperature and trap aspect ratio. In a second step, it is now crucial to search
for mechanisms to increase the effective photon–photon interaction. In this respect we already found in the
former theoretical study [22] the intriguing result that the strength of the thermo-optic interaction
increases quadratically with the lateral extension of the cavity mirrors. However, as this would be quite
laborious to achieve experimentally, we explore here an alternative mechanism, which relies on increasing
the effective photon–photon interaction strength by reducing the system dimension from 2D to 1D. As it is
already known that this increases effectively the contact interaction [25], our main focus lies hereby on the
question how the dimensional crossover modifies the thermo-optic interaction.

To this end, we start by introducing in section 2 a coupled system of mean-field equations describing the
steady state of both the phBEC ground state and the temperature, which is produced by the phBEC and
which conversely affects the photon–photon interaction. Instead of straight-forwardly solving this coupled
system of equations by numerical means, we construct an approximate solution within a semi-analytic
procedure as follows. At first, we eliminate the temperature degrees of freedom by using the corresponding
Green’s function and determine with this the resulting energy functional for the condensate. As the profile
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of the photon condensate wave function is a Gaussian in the non-interacting case, it is reasonable to assume
that this profile remains to be valid also in the mutual presence of both Kerr and thermo-optic interaction.
Therefore, within a variational approach, we minimise the condensate energy function with respect to the
widths of the used Gaussian trial function in section 3. Solving the corresponding self-consistency
conditions for these widths, it turns out that the dimensional crossover can physically be divided into three
different regimes. The first one corresponds to small trap aspect ratios λ and shows, as expected, an increase
of the thermo-optic interaction strength. In the second regime for intermediate λ, the thermo-optic
interaction turns out to saturate, as here the condensate width in the squeezed direction is smaller than the
characteristic length scale of the temperature diffusion. Finally, in the third regime for large λ the contact
Kerr interaction turns out to take over the leading role in the effective photon–photon interaction. At the
end, we discuss that the respective strengths of Kerr and thermo-optic interaction can not only be extracted
from the condensate widths but also from analysing the energy in the quasi 1D regime. To conclude this
work, we also apply this method in section 4 to the crossover in a potential, where in addition to the
tightening of the confinement in a single direction the potential in the second direction is loosened. This
potential bears the advantage of a constant particle density in the trap centre, since by only tightening a
single direction the photon density in the trap centre steadily increases, which yields in the experimental
situation to mirror loss processes and, consequently, to multimode condensates. Here we find, that both the
thermo-optic and the Kerr interaction increase linearly with the trap-aspect ration, such that a much larger
effective photon–photon interaction strength might be achieved. With this we demonstrate how the
dimensional crossover depends on the details of the chosen potential.

2. General equations

Our starting point for describing the photon BEC ground state is the mean-field theory worked out in
reference [22], see figure 1. There we used a set of two coupled equations in order to describe both the
photon BEC wave function in the microcavity and the heat diffusion in the dye solution inducing the
thermo optics. However, for the current purpose, we consider two modifications of this mean-field theory.
On the one hand, we neglect the imaginary part of the equation for the condensate wave function, as this
simply determines the photon number N. On the other hand, we also need to take the Kerr effect into
account, which gives rise to an additional contact interaction term in the equation for the photon BEC wave
function. In total, the steady state of the condensate is, thus, described by

μψ =

�
−�2∇2

2m
+ V + gK|ψ|2 + γΔT

�
ψ, (1)

where m represents the effective photon mass and V describes the external potential. The strength of the
Kerr interaction is given by gK and the energy shift due to the temperature difference ΔT between the actual
intracavity temperature and the room temperature is intermediated by the parameter γ, which is
proportional to the thermo-optic coefficient β from figure 1 [22]. Furthermore, the photon BEC wave
function is normalised according to

�
d2x|ψ|2 = N.

The steady state of the temperature difference ΔT, which is produced by the photon condensate due to
non-perfect absorption–reemission cycles and which diffuses through the cavity, is described by the
diffusion equation

ΔT = τD∇2 ΔT + στB|ψ|2. (2)

Here τ denotes the longitudinal relaxation time stemming from the diffusion along the optical axis, see
reference [22] and the appendix therein, D stands for the diffusion coefficient of the temperature, and the
heating of the dye solution is modelled via the heating rate B. Furthermore, the duty cycle σ describes that
the experiment operates with a pulsed pump laser, whereas our theoretical description works with a
continuous pump for reaching the steady state. This modification is needed here, as the temperature
necessitates several experimental cycles to achieve its steady state [22].

2.1. Elimination of temperature difference
As a first step, we eliminate the temperature difference as a degree of freedom from our description. To this
end, we formally solve the diffusion equation (2) according to

ΔT(x) = στB

�
d2x� G(x − x�)|ψ(x�)|2, (3)
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where we have introduced the Green’s function G(x). Its Fourier transform G̃(k) reads

G̃(k) =
1

τDk2 + 1
, (4)

so we conclude for the real space

G(x) =

�
d2k

4π2

eik·x

τDk2 + 1
. (5)

In order to evaluate the integral we use the Schwinger parametrisation [26]
� ∞

0
dt e−at =

1

a
, (6)

and have then

G(x) =

� ∞

0
dt

�
d2k

4π2
e−(1+τDk2)t+ik·x. (7)

As the integral over k represents now a Gaussian, we can calculate it and find

G(x) =

� ∞

0
dt G(x, t), (8)

with the integrand

G(x, t) =
e−x2/(4l2difft)−t

4πl2difft
. (9)

Here ldiff =
√
τD represents the diffusion length and the Schwinger parameter t corresponds physically to

the time in units of the longitudinal relaxation time τ . We recognise expression (9) to be the Green’s
function of the time-dependent diffusion equation. Whereas at initial time the Green’s function (9) reduces
to the delta function, i.e.

G(x, 0) = δ(x), (10)

summing (9) over all times finally yields the steady-state Green’s function (8). Evaluating the remaining
Schwinger integral in equation (8) leads to a modified Bessel function of the second kind K0 [27, (3.471.9)]:

G(x) =
	x	

4πl2diff

K0

⎛
⎝
�

	x	
ldiff

⎞
⎠ . (11)

Whereas the initial Green’s function (10) has its maximum at the origin x = 0, the steady-state Green’s
function (11) is maximal at a circle, whose radius is given by 	x	 ∼ ldiff . Although we have an explicit
expression (11) for the Green’s function (8), the Schwinger integral representation (9) turns out to be more
advantageous for the following analytic calculation, such that we prefer to use it instead throughout the
remainder of this paper. Taking this into account, equation (3) can be written as

ΔT(x) = στB

� ∞

0
dt

�
d2x� G(x − x�, t)|ψ(x�)|2. (12)

With this the steady-state profile of the temperature difference is given due to diffusion by the photon
density.

2.2. Photon functional
Using the formal solution of the diffusion equation (2) in the form (12), the photon BEC wave function
equation (1) goes over into

μψ =

�
−�2∇2

2m
+ V + gK|ψ|2 + gT

� ∞

0
dt

�
d2x� G(x − x�, t)|ψ(x�)|2

�
ψ. (13)

Here the resulting thermo-optic interaction strength is defined as [22]

gT = σγτB, (14)

and is, thus, determined by various material properties of the dye solution. As a next step, we determine the
energy functional corresponding to equation (13), which turns out to consist of three parts:

E[ψ∗,ψ] = E0[ψ∗,ψ] + EK[ψ∗,ψ] + ET[ψ∗,ψ]. (15)
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The first one describes both the kinetic and the potential energy of the photon BEC and reads

E0[ψ∗,ψ] =

�
d2x

�
�2

2m
|∇ψ|2 + V|ψ|2

�
, (16)

whereas the second one,

EK[ψ∗,ψ] =
gK

2

�
d2x|ψ|4, (17)

represents the contact Kerr interaction. The last term comprises the thermo-optic effects via

ET[ψ∗,ψ] =
gT

2

� ∞

0
dt

�
d2x

�
d2x� G(x − x�, t)|ψ(x�)|2|ψ(x)|2. (18)

In the following we aim at minimising the energy functional (15) for a harmonic confinement along the
dimensional crossover within a variational approach, similar to our preceding work [22].

3. Variational approach

We express the harmonic potential in the form

V =
mΩ2

2
(x2 + λ4y2), (19)

where the trap aspect ratio λ = lx/ly determines the ratio of the oscillator length li =

�/(mΩi) with

i = x, y in the respective dimensions and Ω = Ωx is the trapping frequency in x-direction. As the photon
condensate wave function is a Gaussian in the non-interacting case, it is reasonable to assume that this
profile remains to be valid also in the mutual presence of both Kerr and thermo-optic interaction.
Therefore, the variational ansatz for the phBEC ground-state wave function reads

ψ =

�
λN

αxαyπl2x
exp

�
− 1

2l2x

�
x2

α2
x

+ λ2 y2

α2
y

��
, (20)

where we treat αx,αy as the corresponding variational parameters. Note that due to this choice, these
parameters are dimensionless and αx = αy = 1 describes the non-interacting case. Inserting the ansatz (20)
into the functional (15) yields the energy as a function of the two variational parameters and the ratio
λdiff = lx/ldiff of the oscillator length lx and the diffusion length ldiff :

E(αx,αy) = N�Ω

�
1

4

�
1

α2
x

+
λ2

α2
y

�
+

1

4

�
α2

x + λ2α2
y

�
+

g̃KλN

4παxαy

+
g̃TλN

4παxαy

� ∞

0
dt

e−t

�
[1 + 2t/(λ2

diffα
2
x)][1 + 2tλ2/(λ2

diffα
2
y)]

⎤
⎦ . (21)

Note that we have defined here the dimensionless interaction strength g̃• = mg•/�2. Thus, by performing
the derivative of the function (21) either with respect to αx or with respect to αy we can calculate the
corresponding equations for the variational parameters and obtain

αx =
1

α3
x

+
g̃KλN

2πα2
xαy

+
g̃TλN

2πα2
xαy

� ∞

0
dt

e−t

�
[1 + 2t/(λ2

diffα
2
x)]3[1 + 2tλ2/(λ2

diffα
2
y)]

, (22)

for the x direction and in the squeezed y direction we have

λ2αy =
λ2

α3
y

+
g̃KλN

2παxα2
y

+
g̃TλN

2παxα2
y

� ∞

0
dt

e−t

�
[1 + 2t/(λ2

diffα
2
x)][1 + 2tλ2/(λ2

diffα
2
y)]3

. (23)

3.1. General solution
At first, we discuss the general solution of the self-consistency equations (22) and (23) as depicted in
figure 2(a). We see that, as the trap aspect ratio λ increases, the variational parameter αy approaches the
value 1. This indicates that in this direction the broadening due to the interaction gets negligible, which
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Figure 2. Condensate widths for experimental parameters N = 104, g̃K = 10−8, g̃T = 10−4, and λdiff = 32 for varying trap
aspect ratio λ. (a) Variational parameters αx (blue, solid) and αy (red, solid) from equations (22) and (23). The dashed lines take
merely the thermo-optic (orange) and the Kerr (green) influence upon αx into account. The crosses show the results from a
corresponding numerical treatment of equations (1) and (2). (b) Schematic representation of length scales of the condensate l
and l/λ in different directions in comparison with the diffusion length scale ldiff for different values of the trap aspect ratio λ.

means that the system behaves effectively one-dimensional. On the other hand, we observe a much more
complex behaviour for the variational parameter αx, where we discern in total three regions. For small trap
aspect ratios λ the parameter αx starts to grow, which is a characteristic sign of increasing interaction. Then,
for intermediate λ ∼ λdiff , we find that the variational parameter αx saturates, which signals a saturation of
the interaction. And finally, for large trap aspect ratio λ, the variational parameter αx increases again. We
can understand this behaviour in more detail by separating the different interaction mechanisms
numerically. The green and the red dashed line show the width by only taking the thermo-optic interaction
and the Kerr interaction into account, respectively. We note, that, indeed, the thermo-optic interaction is
the dominant interaction effect for small λ and saturates at λ ∼ λdiff . The Kerr interaction, on the other
hand, behaves differently. Its contribution for small trap aspect ratio λ is negligible, but becomes stronger
than the thermo-optic interaction at λ � λKerr = λdiff gT/gK. This threefold behaviour is schematically
shown in figure 2(b) by depicting the length scales of the condensate l and l/λ in different directions in
comparison with the diffusion length scale ldiff for different values of the trap aspect ratio λ. Note that the
particular role of the diffusion length scale ldiff can be traced back to the steady-state Green function (11),
which is maximal at the circle with radius proportional to ldiff .

In order to support these findings, a numerical evaluation of equations (1) and (2) has been performed.
Our numerics is based on an imaginary time split-step Fourier method, where the propagation with respect
to the Laplacian appearing in (1) is done in the Fourier space and the remaining propagation takes place in
the real space. Furthermore, the actual temperature distribution defined via the convolution integral (3) is
also calculated in Fourier space using the Green’s function (4). The used space–time discretisation is chosen
such that for a given trap aspect ratio λ the phBEC wavefunction can also be resolved in the squeezed
direction. Thus, after a sufficiently long propagation in imaginary time we can calculate the widths
qx =


2
x2� and qy =


2
y2� from the resulting steady-state photon distribution. From the variational

ansatz (20) we see, that the variational parameter αx can directly be identified with the width qx, whereas
for the y direction we have αy = λqy. As we see in figure 2 our numerical results agree well with the results
obtained from the variational equations (22) and (23). However, due to the increasing numerical effort, we
have only compare the results for trap aspect ratios up to λ = 5λdiff . In the following we discuss our
findings in more detail from an analytical point of view.
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3.2. Isotropic case
In the isotropic case we have λ = 1 and αx = αy = :α, so equations (22) and (23) reduce to the single
equation

α =
1

α3
+

g̃KN

2πα3
+

g̃TN

2πα3

� ∞

0
dt

e−t

(1 + 2t/λ2
diffα

2)2
. (24)

For the parameters of the Bonn experiment [12, 23] we estimate that λ2
diff ∼ 103 � 1. Furthermore, the

exponential in the integral leads to an effective cutoff of the integral for t ∼ 1. Then the term 2t/λ2
diffα

2 in
the denominator can be neglected, since it only contributes to the integral at times t ∼ α2λ2

diff/2 � 1. With
this we can calculate approximately the integral and conclude that α is determined by the algebraic equation

α ≈ 1

α3
+

g̃KN

2πα3
+

g̃TN

2πα3
. (25)

Here the thermo-optic interaction behaves exactly as the Kerr interaction, as the influence of the diffusion
dropped out. Furthermore, we can solve equation (25) for the variational parameter and obtain

α =
4

�
1 +

(g̃K + g̃T)N

2π
, (26)

which we already obtained in the former work [22].

3.3. Quasi 1D case
Now we deal with the opposite situation, where the system is quasi-one-dimensional and determine at first
for which trap aspect ratios λ this regime starts. To this end we read off from figure 2(a) that already for
λ � λdiff we have αy ≈ 1, which is a sign that in the squeezed direction the influence of the interaction is
negligible. In this case the sum of kinetic and potential energy Ey ≈ N�Ωλ2/2 stored in the squeezed spatial
degree of freedom is proportional to the square of the trap aspect ratio, whereas the interaction energy
Eint = EK + ET increases linearly with λ according to expression (21). Indeed, in this regime the
contribution of the Kerr interaction can be neglected in comparison to the thermo-optic interaction
according to figure 2(a). For the remaining integral we can apply the same approximation as in section 3.2,
resulting finally in Eint ≈ �Ωg̃TλN/(4παx). A further inspection of figure 2 reveals that we can roughly
approximate αx ≈ 1 in this regime as well. Thus, as the quasi-1D region amounts to the inequality
Ey � Eint, we obtain the criterion

λ � λ1D =
g̃TN

2π
. (27)

As current photon BEC experiments are characterized by g̃T = 10−4 and a maximal photon number
N = 105, the 1D criterion (27) is basically fulfiled slightly above the 2D case λ = 1.

We proceed now to larger values of the trap aspect ratio λ, where we can still assume αy ≈ 1, according
to figure 2(a). We can now determine αx self-consistently from equation (22), yielding

αx ≈
1

α3
x

+
g̃KλN

2πα2
x

+
g̃TλN

2πα2
x

� ∞

0
dt

e−t


(1 + 2t/λ2

diffα
2
x)3(1 + 2tλ2/λ2

diff)
. (28)

This integral is simplified along similar lines as in section 3.2, and it reduces to

α4
x ≈ 1 +

g̃1D(λ)N√
2π

αx, (29)

where we have introduced the effective 1D interaction strength inspired by a comparison with
equation (A.4):

g̃1D(λ) =
1√
2π

�
g̃Kλ + g̃Tλdiff

�
π

2
eλ

2
diff/(2λ2)erfc

�
λdiff√

2λ

��
. (30)

We note that the contribution of the thermo-optic interaction is determined by the ratio λ/λdiff = λldiff /lx,
i.e. the ratio of the diffusion length ldiff and the oscillator length in the squeezed y direction lx/λ. Figure 3
depicts the total effective 1D interaction strength g̃1D(λ) from equation (30) as a function of λ. Also here we
note the aforementioned three different regions of the crossover. For small trap aspect ratio λ the
thermo-optic interaction, which gives here the leading contribution, increases and then indeed, as stated
above, saturates. But for λ > λKerr = λdiff g̃T/g̃K the Kerr interaction takes over and the total interaction
grows again.
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Figure 3. Effective one-dimensional interaction strength g̃1D(λ) from definition (30) normalised to the isotropic 2D interaction
constant g̃ = g̃K + g̃T in blue for the experimental parameters g̃T = 10−4, g̃K = 10−8, and λdiff = 32. The dashed orange line
shows the thermo-optic contribution, whereas the dashed green line depicts the contribution of the Kerr interaction.

Let us now discuss these findings in more detail. For small trap aspect ratio, i.e. λ � λdiff , we can
approximate equation (30) by

g̃1D,0(λ) ≈ 1√
2π

�
g̃K + g̃T

�
λ, (31)

and in this case the thermo-optic interaction behaves like the Kerr interaction showing a linear increase in
λ. The reason for this is that here the diffusion length is negligible compared to the condensate width in
both x and y direction. Thus, the heat produced by the condensate only diffuses within a region where the
condensate wave function does not vary, such that the thermo-optic interaction behaves approximately as a
local contact interaction. On the other hand, once we have entered deeply the quasi-1D regime, i.e.
λ � λdiff , the effective 1D interaction strength (30) is given by

g̃1D,∞(λ) ≈ 1√
2π

�
g̃Kλ + g̃T,∞

�
. (32)

Thus, in this limit the thermo-optic part of the interaction strength no longer depends on the trap aspect
ratio λ and saturates at the value

g̃T,∞ = g̃Tλdiff, (33)

which is fixed by the geometry of the experiment and by the used solvent. This is due to the fact that here
the width of the condensate in the squeezed direction lx/λ is much smaller than the diffusion length ldiff

and, thus, the heat being produced by the condensate diffuses through the dye medium to regions where no
condensate exists, cf figure 2. This heat, therefore, cannot contribute to the interaction, such that the
thermo-optic interaction saturates. For the Kerr contribution, however, the situation does not change and
the total interaction strength still shows according to equation (32) a linear dependency in the trap aspect
ratio λ.

Note that it is currently reasonably to expect achieving experimentally a trap anisotropy of at most
λ ∼ 102λdiff [28]. From figure 1 we read off that in this case the Kerr interaction is still negligible and that
the total effective 1D interaction is due to the thermo-optic effect. Thus, the maximally achievable effective
1D interaction strength g̃exp

1D,∞ reads, with the help of expressions (32) and (33)

g̃exp
1D,∞ =

λdiff√
2π

g̃T. (34)

Therefore, we can, indeed, expect an increase of the effective photon–photon interaction strength via a
dimensional crossover. Taking into account that λdiff ∼ 32, the expected increase of the interaction strength
amounts to more than one order of magnitude.

3.4. Energy
From analysing the behaviour of the variational parameters, which are basically the widths of the phBEC
wave function, at the dimensional crossover it is obvious that the effective photon–photon interaction
strength can be measured quite directly. However, we emphasise that this measurement relies on evaluating
real space images of the light leaking out the cavity. More precise results are expected from spectroscopic
measurements of this light, which directly reveals the phBEC energy. Thus, we discuss now the resulting
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Figure 4. Interaction energy Eint,1D given by equation (37) for the experimental parameters N = 104, g̃K = 10−8, g̃T = 10−4, and
λdiff = 32. The orange dashed line shows the contribution of the thermo-optic effect, whereas the green dashed line indicates the
contribution of the Kerr effect. The inset shows the interaction energy relative to the non-interacting energy E0 from (36).

energy of the condensate in more detail. In the effective 1D case by using αy ≈ 1 and the definition (30) of
the effective 1D interaction strength from the energy function (21), we find for the energy

E1D ≈ N�Ω
2

�
1

2

�
1

α2
x

+ α2
x

�
+ λ2 +

g̃1D(λ)N√
2παx

�
. (35)

This formally coincides with (A.4) from appendix A apart from the λ2 dependency, which represents the
shift of the ground state due to the energy of the squeezed direction. Introducing the non-interacting
energy

E0 =
N�Ω

2

�
1 + λ2

�
, (36)

we can define the interaction contribution to the energy by

Eint, 1D = E1D − E0, (37)

which is plotted in figure 4 as a function of the trap aspect ratio λ.
Again, we find the same threefold behaviour we have already observed for the widths and the interaction

strength, which stems from a saturation of the thermo-optic interaction for intermediate λ. Moreover, we
see from the inset in figure 4 that the interaction energy Eint,1D is quite small compared to the unperturbed
energy (36), so that our variational approach is a good approximation of the true ground state.

Finally, we remark that our findings can be measured by utilising the fact that the thermo-optic
interaction builds up steadily during the experimental run. At the beginning of the experiment the
dye-filled solution in the cavity does not have any temperature difference with respect to the environment,
so the thermo-optic interaction does not yet occur, whereas the instantaneous Kerr interaction is already
fully present. As a single experiment lasts only about 500 ns, the temperature difference saturates only after
several pump pulses, such that then the thermo-optic interaction is in its steady state and yields its full
contribution. Consequently, the resulting strength of the thermo-optic interaction can be measured by
determining the energy of the condensate at the beginning of the experiment and by comparing it with the
energy at the end. In principle this would involve subtracting the Kerr contribution from the interaction
energy (37),

Eth, 1D = Eint, 1D − �Ωg̃KλN2

2
√

2παx
. (38)

However, as already mentioned above, in the experiment only the thermo-optic saturation region is
expected to be accessible. According to figure 4 the energy contribution due to the Kerr effect is negligible in
the whole experimental regime. According to equation (38) the total interaction energy (37) coincides with
the thermo-optic energy contribution. Therefore, one can directly use expression (37) to determine the
strength of the effective photon–photon interaction. We remark that for sufficiently small particle number
N one can enter the regime where it is valid to determine the variational parameters perturbatively in first
order with respect to the smallness parameter g̃1D(λ)N/

√
2π. In this case the interaction energy (37) is

directly given by

Eint, 1D ≈ �Ωg̃1D(λ)N2

2
√

2π
. (39)

allowing to directly determine the effective interaction strength from the measured value of Eint,1D.
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4. Dimensional crossover with constant particle density

So far we have studied the crossover for a constant particle number only. However, increasing the trap
aspect ratio implies a corresponding increase of the photon density, so it is unavoidable from an
experimental point of view for intrinsic mirror losses to lead the condensate turning multimode [29].
Therefore, we study now a complementary approach to the dimensional crossover, where we fix the
geometric mean Ω̄ = λΩx, which yields the potential in the form

V =
mΩ̄2

2

�
x2

λ2
+ λ2y2

�
. (40)

Thus, increasing the trap-aspect ratio λ tightens the trap in the y-direction while loosening the trapping
potential in the x-direction. Due to this, the photon density in the trap centre stays the same throughout the
whole crossover. However, note that the exact 1D limit, i.e. λ→∞ corresponds to a free particle in
x-direction. In this situation a suitable ansatz function for a minimisation procedure is given by

ψ =

�
N

ᾱxᾱyπl̄ 2
exp

�
− 1

2l̄

�
x2

λᾱ2
x

+
λy2

ᾱ2
y

��
, (41)

where l̄ = lx/
√
λ denotes the geometric mean of the oscillator lengths and ᾱx, ᾱy are the new variational

constants. Inserting ansatz (41) into the energy functional (15) with the potential (40) yields for the energy
the expression

Ē =
N�Ω̄

4

�
1

λᾱ2
x

+
ᾱ2

x

λ
+

λ

ᾱ2
y

+ λᾱ2
y +

g̃KN

πᾱxᾱy
+

g̃TN

πᾱxᾱy
I

�
, (42)

where I abbreviates the integral

I =

� ∞

0
dt

e−t

��
1 + 2t/(ᾱ2

yλ
2
diff)

� �
1 + 2t/(ᾱ2

xλ
2
diffλ

2)
� . (43)

Here we can approximate I ≈ 1 since both factors in the root can be treated as explained below
equation (24). This implies, that in this situation the Kerr interaction and the thermo-optic interaction
behave identically and only the total interaction strength g̃ = g̃K + g̃T appears. On the other hand this also
implies, that a saturation effect of the thermo-optic interaction, as found in the proceeding section, does
not exist here and, therefore, a larger effective photon–photon interaction is achievable. We derive from the
energy (42) the following equations for the variational parameters

ᾱx =
1

ᾱ3
x

+
g̃λN

2πᾱ2
xᾱy

, (44)

in the x-direction and for the y-direction we have

ᾱy =
1

ᾱ3
y

+
g̃N

2πλᾱxᾱ2
y

. (45)

Figure 5(a) shows a numerical solution of the coupled equations (44) and (45) for the experimentally
relevant parameters N = 104, g̃K = 10−8 and g̃T = 10−4. We see also here, that for increasing trap-aspect
ratio the variational parameter ᾱy in the squeezed direction attends the value 1, implying the interaction in
this direction to be less relevant. Secondly, we note the monotonous increase of the variational parameter in
the x direction in contrast to the previous results indicating the absence of a saturation effect. Therefore,
larger condensate widths and, thus, larger effective photon–photon interactions are reachable. Moreover,
also here we perform a numerical evaluation of the original equations (1) and (2) as above, which perfectly
agrees with the evaluation of the variational equations (44) and (45).

For increasing trap-aspect ratio λ we note in (45) that the interaction term vanishes. Taking
approximately ᾱx ≈ 1 and ᾱy ≈ 1 again reveals the 1D criterion (27). For evaluating the effective 1D
behaviour we stay as above with the approximation ᾱy ≈ 1 and insert this into equation (44). We end up
with

ᾱ4
x ≈ 1 +

g̃λN

2π
ᾱx. (46)
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Figure 5. (a) Variational parameters from the coupled equations (44) and (45) for experimentally relevant parameters N = 104,
g̃K = 10−8 and g̃T = 10−4. The green (red) line shows the variational parameter ᾱx (ᾱy), whereas the crosses indicate the
corresponding numerical evaluation of equations (1) and (2). The dashed line depicts the variational parameter αx using the
potential (19). (b) Effective 1D interaction strength (47) for the potential (40) (orange) compared to the effective 1D interaction
strength (30) for the potential (19) (blue).

Thus, comparing (A.6) with (46) yields for the effective 1D interaction strength in the current crossover
setting governed by the potential (40) a linear increase with the trap-aspect ratio

¯̃g1D(λ) =
g̃λ√
2π

. (47)

As already mentioned in the beginning of this section, indeed, no saturation regime for the thermo-optic
interaction is observed in this setting and, consequently, even larger effective interaction constants can be
achieved. A comparison of the interaction strength (47) with the previously derived interaction strength
(30) is shown in figure 5(b). Whereas the interaction strength (30) saturates for larger anisotropies the new
interaction strength (47) grows linearly for all values of the trap-aspect ratio.

5. Summary

In this paper we have shown how the ground state of a phBEC changes during the dimensional crossover
from 2D to 1D. Our main focus in this investigation was the behaviour the effective photon–photon
interaction strength in the crossover in order to make effects like superfluidity accessible in experiments. We
have found that the effective photon–photon interaction strength increases through the crossover. However,
we have shown that the thermo-optic interaction can only be increased up to a factor λdiff/

√
2π, cf

section 3.3. The deeper physical reason behind this finding is that for large enough trap aspect ratio a large
amount of energy is carried away by the heat diffusion from the region occupied by the condensate and
cannot contribute to the interaction anymore. Contrarily to that, the Kerr interaction increases linearly with
the trap aspect ratio such that for a large trap anisotropy, which is presumably not achievable in current
experiments, the Kerr interaction gives the leading interaction effect. Therefore, we have shown that the
effective photon–photon interaction may be increased by more than an order of magnitude compared to
the currently available experiments in 2D. We also work out a complementary dimensional crossover
scenario, where an additional loosing of the confinement of the second dimension results in a linear growth
of the effective 1D interaction constant by more than an order of magnitude. In conclusion, we show that
the behaviour of the condensate in the effective 1D limit depends on the details of how the dimensional
crossover is performed concretely.
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Appendix A. 1D Gross–Pitaevskii equation

In order to compare the results from the dimensional crossover to the exact 1D scenario, we review in this
section the steady state of a one-dimensional Gross–Pitaevskii equation with harmonic trapping potential.
Thus, we have to solve

μψ =

�
−�2∇2

2m
+

mΩ2

2
x2 + g1D|ψ|2

�
ψ, (A.1)

with the corresponding functional

E1D[ψ,ψ∗] =
�2

2m

�
dx |∂xψ|2 +

mΩ2

2

�
dx x2|ψ|2 +

g1D

2

�
dx|ψ|4. (A.2)

In order to obtain an approximate solution, we use a Gaussian ansatz function

ψ =

�
N√
πlα

e−x2/(2l2α2), (A.3)

where l =

�/(mΩ) stands for the oscillator length and α represents the dimensionless variational

parameter. Inserting ansatz (A.3) in the energy functional (A.2) yields for the energy

E1D =
�Ω
2

�
1

2α2
+

α2

2
+

g̃1DN√
2πα

�
, (A.4)

where we define the dimensionless 1D interaction strength [30, section 15.3.2]

g̃1D =
g1Dml

�2
. (A.5)

Extremising (A.4) with respect to the dimensionless width α, we obtain the algebraic equation

α4 = 1 +
Ng̃1D√

2π
α. (A.6)
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5. Quantum Mechanical Description of
Thermo-Optic Interaction

What’s in a name? That which
we call a rose,
By any other name would smell
as sweet.

W. Shakespeare,
Romeo and Juliet, Scene 2-2

The main objective of this study is to develop a Hartree-Fock analogue description of
the thermo-optic interaction in order to calculate the shift of the eigenenergies due to
this interaction. The experiments determine these shifts by spectroscopic measurements,
which allow quantifying the thermo-optic photon-photon interaction strength with a lar-
ger accuracy than the current measurements based on observing the width of the photon
BEC [70].
Chapter 3 only covers the dimensional crossover for an ideal gas, whereas chapter 4
deals with the photon-photon interaction at the dimensional crossover. The current
chapter combines the ideas from these two studies to a description of the photon gas
subject to the thermo-optic interaction during a single experimental cycle, as discussed
in subsection 1.3.1 and appendix B. As the temperature-diffusion time is several or-
ders of magnitude smaller than the photon-condensate lifetime, the diffusion itself does
not contribute to the dynamics. Instead, the temperature distribution retains the same
shape as that of the entire photon gas at the beginning of the experiment. Thus, the
thermo-optic interaction can be seen as an effective potential, the strength of which in-
creases linearly in time. The latter increase is also slow compared to the thermalisation
dynamics of the photons, c.f., figure 1.13 a), such that it can be treated adiabatically
by coarse graining the photon dynamics. As a last approximation, this study also neg-
lects the photon thermalisation at the beginning and the photon decay at the end of
the experimental cycle. Hence, this theory only covers the thermalised photon gas to-
gether with the influence of the thermo-optic interaction and can, therefore, be seen as
a Hartree-Fock analogue of thermo-optic interaction.
This theory bears two advantages. The first one is its fundamental simplicity. With
all the approximations, the problem effectively shrinks to a single-particle Hamiltonian,
which depends adiabatically on time, such that it can be diagonalised at every time step.
Due to its generic formulation, the versatility of the ansatz is the second advantage. In
the cavity photon BEC setup, this means that the theory can easily be adapted to dif-
ferent photon potentials, the necessity of which subsection 1.3.5 demonstrates. In the
broader view, this theory can in principle be applied to all systems which bear a con-
siderable thermo-optic non-linearity. The second part of the paper demonstrates these
two advantages. Here, the shifts of the eigenenergies due to the thermo-optic interaction
are calculated by using a first-order perturbation theory for both a harmonic and a box
potential.
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5. Quantum Mechanical Description of Thermo-Optic Interaction

For this publication, I developed the complete theory and worked out the first-order
perturbation theory in the second part of the paper. Moreover, I prepared the manuscript
for submission. Currently, the manuscript is under review at New Journal of Physics.
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Abstract. Thermo-optic interaction significantly differs from the usual particle-

particle interactions in physics, as it is retarded in time. A prominent platform

for realising this kind of interaction are photon Bose-Einstein condensates, which are

created in dye-filled microcavities. The dye solution continually absorbs and re-emits

these photons, causing the photon gas to thermalise and to form a Bose-Einstein

condensate. Because of a non-ideal quantum efficiency, these cycles heat the dye

solution, creating a medium that provides an effective thermo-optic photon-photon

interaction. So far, only a mean-field description of this process exists.

This paper goes beyond by working out a quantum mechanical description of the

effective thermo-optic photon-photon interaction. To this end, the self-consistent

modelling of the temperature diffusion builds the backbone of the modelling.

Furthermore, the manyfold experimental timescales allow for deriving an approximate

Hamiltonian. The resulting quantum theory is applied in the perturbative regime

to both a harmonic and a box potential for investigating its prospect for precise

measurements of the effective photon-photon interaction strength.

Keywords: Photon Bose–Einstein Condensate, Thermo-Optic Interaction, Dimensional
Crossover
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1. Introduction

Ultracold quantum gases usually deal with a contact particle interaction, since in these

systems only s-wave scattering takes place due to the very low involved energy scales

[1, 2]. Thus, two particles have to be at the same time at the same place for a scattering

event to happen. Experiments with dipolar quantum gases loosen the latter restriction.

Here, also particles at different places can interact with each other via the dipole-dipole

interaction, which is both anisotropic and slowly decreasing in space [3]. The scope

of this work, however, lies on thermo-optic interactions, that are both non-local in

space and retarded in time. Therefore, two particles can interact with each other even

though they are neither in proximity nor meet at the same time. Photon Bose-Einstein

condensates (phBEC) provide a well controllable environment for observing this kind of

unusual interaction. The theoretical description of thermo-optic interaction in phBECs

is at the very focus of this work.

Photon Bose-Einstein condensates contain many competing timescales, which are

schematically summarised in figure 1, (a). A dye-filled microcavity is the main part of

the experimental setup [4, 5]. The dye molecules set the fastest timescale by absorption

and re-emission of photons (∼ 1 ps). Since the vibrations of the dye molecules thermalise

due to surrounding solvent molecules, the photon gas itself thermalises at the molecular

timescale (∼ 10 ps). Two more timescales determine the condensate lifetime. On the

one hand, light leaks out of the cavity (∼ 1 ns), and, on the other hand, the duration

of counteracting external pump pulses is limited by dye bleaching (∼ 500 ns). Finally,

the heating of the whole experimental setup introduces the slowest timescale (∼ 0.1

s). This heating stems from electronic excitations of the dye molecules, which are not

remitted as photons, but are converted into vibronic excitations of the dye molecules.

The temperature increase, which the incoherent photon absorption processes produce,

changes the refractive index of the dye solution, ultimately leading to an effective

thermo-optic photon-photon interaction, see figure 1, (b). Since this temperature

diffuses through the cavity, the resulting effective photon-photon interaction is non-

local in space and retarded in time.

Hitherto, former works have only focused on how the effective photon-photon interaction

influences the phBEC ground state. For instance, the first publication on the

experimental realisation of phBECs investigates, amongst other things, the effective

photon-photon interaction by using a Gross-Pitaevskii equation for the modelling [4].

Introducing a coupled Schrödinger and temperature-diffusion equation improves the

model on physical grounds [6]. Here, the Schrödinger equation describes the fast

evolution of the phBEC ground state, whereas the diffusion equation describes the

slow dynamics of the temperature. The above-mentioned incoherent photon absorption

processes steadily produce the latter. This model successfully describes the photon-

photon interaction in the steady state of the temperature diffusion, which follows after

several pump pulses, see figure 1, (c). Further, this model allows for calculating the

lowest-lying collective mode frequencies of the condensate [7] as well as its intricate
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Figure 1. Timescales and interaction in typical photon BEC experiments. a)

Timescales in a single experimental cycle. The green line visualises the external pump

pulse, the grey line the corresponding temporal evolution of the total photon population

and the red line marks the behaviour of the temperature, which is produced by the

photons. b) Emergence of the effective photon-photon interaction. Here |ψ|2 stands for

the photon density, ∆T for the temperature produced by the photons, and ∆n denotes

the resulting shift of the refractive index. c) Temperature steady state after several

experimental cycles. The green bars represent single experiments, like in a), and the

red line indicates the evolution of the temperature between two single experiments.

behaviour at the dimensional crossover from 2D to 1D [8]. The authors of reference

[6] succeed in describing the thermo-optic interaction emerging during a single pump

pulse by applying a heuristic approximation, which relies on the photon timescales being

much shorter than the temperature diffusion time.

Current measurements of the effective photon-photon interaction bear several

disadvantages, as they are based on determining the condensate width. First, this

approach relies on using the spatial data only, whilst the spectral data is, in principle,

available at the same time. Utilising instead all experimentally accessible data promises

to enhance the measurement accuracy for the photon-photon interaction strength.

Second, these methods only consider the ground mode, which necessitates a large

condensate fraction. But state-of-the-art experiments are only capable of achieving

condensate fractions of about 50 %, so the impact of the thermal cloud may not be

neglected in a theoretical description. Third, the trapping geometry must be known

well enough to obtain reliable information about the interaction-induced condensate

broadening. To this end, the current experimental trend of realising more sophisticated

trapping potentials is advantageous. Standard phBEC experiments use an isotropic

harmonic potential [4, 5, 6, 9] or double-well potentials [10]. Reference [11] reports

the realisation of micro-condensates with only a few photons in such setups. Recently,

experiments have even achieved box potentials for phBECs [12].
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The theoretical description presented in this paper paves the way to more precise

measurements of the effective photon-photon interaction strength, which are based

on performing a detailed spectrometric analysis of the photon gas. This demands

to extend the previous mean-field modelling by working out the underlying second-

quantised Hamiltonian of the full photon field coupled to the temperature diffusion.

A formal elimination of the temperature by its Green’s function leads to a compact

expression for the resulting phBEC Hamiltonian during a single pump pulse, when

taking the respective experimental timescales into account. Moreover, abstracting from

single absorption/re-emission processes coarse grains the evolution during a single pump

pulse and leads to a thermal photon gas in this description. Therefore, this procedure

treating the thermo-optic interaction includes the thermal cloud self-consistently and

corresponds to the usual Hartree-Fock approximation used, e.g., for atomic BECs in

order to describe the impact of a contact interaction at finite temperature [1, 2].

The paper is structured as follows: In section 2 the underlying second-quantised

Hamiltonian describing the effective thermo-optic photon-photon interaction is

introduced and simplified according to the respective experimental timescales. Finally,

section 3 provides a perturbative calculation of the first few eigenenergies subject to

the thermo-optic interaction and elucidates its perspective for precisely measuring the

effective photon-photon interaction strength.

2. Thermo-Optic Hamiltonian

This section starts with formulating the basis of the quantum mechanical description

of the thermo-optic interaction. To this end, the modelling considers the dynamics of

both the second-quantised photon field and the temperature, that is produced by the

incoherent photon absorption processes. Subsequently, taking the common experimental

timescales into account provides a simplification of this general formulation with an

approximate Hamiltonian.

2.1. Generic Formulation

The photon field operators Ψ̂(x, t), Ψ̂†(x, t) describe the electric field inside the cavity

and fulfil the standard bosonic equal-time commutation relations,
[
Ψ̂(x, t), Ψ̂(x′, t)

]
=
[
Ψ̂†(x, t), Ψ̂†(x′, t)

]
= 0 ,

[
Ψ̂(x, t), Ψ̂†(x′, t)

]
= δ(x− x′) . (1)

The corresponding second-quantised Hamiltonian includes the energy shift due to the

temperature ∆T , produced by the photons during the experiment, and reads

Ĥ(t) =

∫
d2x Ψ̂†(x, t)

{
h(x) + γ∆T (x, t)

}
Ψ̂(x, t) . (2)

Here,

h(x) = −~2∇2

2m
+ V (x) (3)
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denotes the first-quantised Hamiltonian containing the effective photon mass m and the

trapping potential V (x), whereas the parameter γ quantifies the energy shift due to the

thermo-optic effect, see figure 1 (b).

Conversely, the temperature ∆T (x, t) obeys the diffusion equation

∂∆T (x, t)

∂t
=

(
D∇2 − 1

τ

)
∆T (x, t) +Bn(x, t) . (4)

Here, D denotes the diffusion coefficient of the solvent medium, τ the longitudinal

relaxation time, and B the heating coefficient of the dye solution [7]. Furthermore, the

photon density

n(x, t) =
〈

Ψ̂†(x, t)Ψ̂(x, t)
〉
, (5)

with 〈•〉 denoting the quantum mechanical expectation value, represents the source of

the temperature ∆T (x, t).

2.2. Experimental Timescales

For the sake of simplicity, this work only considers the first pump pulse. Hence, no

initial temperature distribution is present. Therefore, using the Green’s function

G(x, t) =
1

4πDt e
−x2/4Dt−t/τ (6)

allows solving the diffusion equation (4) according to

∆T (x, t) = τB

∫ t/τ

0

dt′
∫
d2x′ G(x− x′, t− τt′)n(x′, t′) . (7)

Here the time integration variable is changed to τt′ with a dimensionless variable t′

to explicitly reveal the t/τ dependency. Experimentally, t corresponds to the phBEC

lifetime and τ denotes the decay time of the temperature difference, cf. figure 1, (a).

Since these timescales imply the ratio t/τ ∼ 10−6, an expansion up to the first order

in t/τ yields an accurate approximation for the temperature (7). In particular, the

Gaussian function in (6) goes over into a Dirac-δ distribution and (7) reduces to

∆T (x, t) ≈ τB
t

τ
n(x, 0) (8)

As a consequence of this approximation, the details of the Green’s function (6) are

irrelevant, and only the initial photon density n(x, 0) defined in the density (5)

determines the spatial temperature profile.

Inserting the result (8) into the second-quantised Hamiltonian (2) yields

Ĥ(t) =

∫
d2x Ψ̂†(x, t)

{
h(x) + g(t)n(x, 0)

}
Ψ̂(x, t) , (9)
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with the effective time-dependent thermo-optic interaction strength

g(t) = tγB . (10)

Therefore, the thermo-optic interaction behaves like an effective potential, that increases

linearly in time, rather than like a usual two-particle interaction, which is local in time.

This is the immediate consequence of the interplay between the slow growth of the

temperature during a single pump pulse and the fast thermalisation timescale. This

result bears the main physical difference compared to the standard Hartree-Fock theory

for a two-particle contact interaction.

2.3. Adiabatic Treatment

Since the temperature timescale is by far the slowest, as figure 1, (a) illustrates, treating

the time dependence of the interaction strength (10) adiabatically is justified [13]. The

aim is to investigate the instantaneous steady states of the second-quantised Hamiltonian

(9). To this end, the eigenvalue problem of the first-quantised Hamiltonian (3)

h(x)ψn(x) = En(0)ψn(x) (11)

yields a basis of orthonormal eigenmodes ψn(x) with corresponding eigenenergies En(0).

Here, n is a multi-index denoting all the quantum numbers of the corresponding state.

This provides an expansion of the field operators

Ψ̂(x, t) =
∑

n

ân(t)ψn(x) , Ψ̂†(x, t) =
∑

n

â†n(t)ψ∗n(x) . (12)

Here, the annihilation and creation operators ân(t) and â†n(t) fulfil the canonical bosonic

commutation relations:
[
ân(t), ân′(t)

]
=
[
â†n(t), â†n′(t)

]
= 0 ,

[
ân(t), â†n′(t)

]
= δn,n′ . (13)

As at the beginning of the experiment no interaction is present, the annihilation, and

creation operators ân(0) and â†n(0) belong to the plain eigenmodes ψn(x) of the first-

quantised Hamiltonian (3). Moreover, since the pump laser determines the polarisation

of the photon field in the condensed phase [14, 15], only a single photon polarisation is

present, thus, the annihilation and creation operators do not carry a polarisation index.

The expansion (12) allows writing the second-quantised Hamiltonian (9) in the form

Ĥ(t) =
∑

nn′
Hn,n′(t)â†n(t)ân′(t) , (14)

with the Hamiltonian matrix

Hn,n′(t) = En(0)δn,n′ + g(t)Fn,n′ . (15)
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The non-diagonal matrix

Fn,n′ =

∫
d2x ψ∗n(x)n(x, 0)ψn′(x) (16)

contains the overlap of two modes n ,n′ with the initial density n(x, 0) and, thus,

describes the influence of the thermo-optic interaction. Diagonalising the Hamiltonian

matrix (15) determines the finite-time operators ân(t), â†n(t), which specify the

instantaneous eigenmodes.

2.4. Thermal Steady State

In the following, this work does not include the actual thermalisation dynamics of the

photons, but instead focuses on the long timescales during a single pump pulse, where

the influence of the thermo-optic interaction becomes of interest, cf., figure 1, (a). Hence,

in the following, the photon gas is assumed to be always in a thermal steady state and

the beginning of the experiment refers to right after the thermalisation. This justifies

to interpret the quantum mechanical expectation value Nl(t) = 〈â†l(t)âl(t)〉 as the Bose-

Einstein distribution

Nl(t) =
{
eβ[El(t)−µ(t)] − 1

}−1
. (17)

Here, El(t) denotes the instantaneous eigenenergies of the Hamiltonian matrix (15),

β = 1/(kBT ) is the inverse temperature, and µ(t) stands for the instantaneous chemical

potential, which is fixed by the conserved total particle number N =
∑
lNl(t).

Moreover, in the thermal steady state the density (5) appearing in (9) takes the form

n(x, t) =
∑

l

Nl(t)|ψl(x)|2 , (18)

such that the interaction matrix (16) is finally given by

Fn,n′ =
∑

l

Nl(0)

∫
d2x ψ∗n(x)|ψl(x)|2ψn′(x) . (19)

Here only the photon occupation from the beginning of the experiment appears due to

the temporal retardation of the interaction.

2.5. Potentials

The formulation of the second-quantised Hamiltonian matrix (15) is generally valid for

any trapping potential. For the purpose of illustration the next section focuses in detail

on two concrete trapping potentials. On the one hand, an isotropic harmonic potential

of the form

VHo =
~Ω

2

x2 + y2

l2
(20)
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is considered, with the trapping frequency Ω and the oscillator length l =
√
~/mΩ. On

the other hand, also the box potential

VBox =

{
0, 0 ≤ x ≤ L, 0 ≤ y ≤ L

∞, elsewhere
, (21)

is analysed, where L denotes the width of the box in both directions.

3. First-Order Perturbation Theory

Since the photon-photon interaction is small, calculating the first-order in Rayleigh-

Schrödinger perturbation theory offers initial insights into the physics contained in

the Hamiltonian matrix (15). Note that first-order perturbation theory neglects the

interaction between different energy subspaces in the interaction matrix (19).

Although reaching a condensate fraction of more than 50 % is a hard task in

current phBEC experiments, this section concentrates on the theoretical analysis of

the deep condensate limit, where the ground-state occupation number N0 coincides

approximately with the total particle number N , i.e., N0 ≈ N . Hence, the interaction

matrix (19) reduces to

Fα,β ≈ N0(0)

∫
d2x ψα(x)|ψ0(x)|2ψ∗β(x) , (22)

where, the indices α, β belong to the same energy subspace, such that Eα(0) = Eβ(0).

Consequently, the instantaneous eigenenergies En(t) have the approximate form

En(t) ≈ En(0) + g(t)N0E (1)n , (23)

where E (1)n denotes the first-order correction of the nth eigenenergy. Appendix Appendix

A summarises the respective details of calculating these corrections, and table 1 lists

the corresponding results.

The perturbative calculation aims at the energy differences ∆En,n′(t) = En(t)−En′(t)

between two different modes. In the considered precision they are given by

∆En,n′(t) ≈ En(0)− En′(0) + g(t)N0

[
E (1)n − E (1)n′

]
. (24)

Figure 2, (a) shows the corresponding eigenenergies up to the second excited states.

They are plotted versus the dimensionless interaction strength g̃(t) = mg(t)/~2 [16],

which depends linearly on time t according to (10). With this choice of the scaling, the

results presented here are broadly valid for different experimental settings and do not

depend on the material specific parameters γ and B. In addition, the chosen maximum

value of 1 for N0g̃(t) corresponds to existing measurements [4]. As a consequence of

the repulsive thermo-optic interaction, the eigenenergies are generically shifted to larger

values. Depending on the mode symmetry, the interaction also lifts some degeneracies,

100



QM Thermo-Optics 9

Table 1. First-order correction to energy eigenvalues (23) for a) the harmonic

potential (20) and b) the box potential (21). The multi-index n takes here the form

n = (nx ny) and the square brackets denote the mode hybridisation due to the thermo-

optic interaction.

a)

n l2E (1)n
(00) 1/(2π)

(10) 1/(4π)

(01) 1/(4π)

2+ = [(20) + (02)]/
√

2 1/(4π)

(11) 1/(8π)

2− = [(20)− (02)]/
√

2 1/(8π)

b)

n L2E (1)n
(11) 9/4

(21) 3/2

(12) 3/2

(22) 1

3+ = [(31) + (13)]/
√

2 7/4

3− = [(31)− (13)]/
√

2 5/4

a) b)

Figure 2. First-order perturbative calculation of eigenenergies. a) Absolute

eigenenergies in the form of (23) as a function of the interaction strength. b)

Corresponding energy differences to the ground-state energies EHo
(00) and EBox

(11),

respectively. In both pictures, the solid lines and the left y-axis refer to the harmonic

potential (20), whereas the dashed lines and the right y-axis correspond to the box

potential (21). The different mode indices are summarised in table 1.

for details see table 1. Moreover, the thermo-optic interaction influences the ground

state most, and is less relevant for higher excited states. Since the effective photon-

photon interaction causes these energy shifts, its strength can be extracted from them.

Spectroscopic measurements offer experimental access to the energy differences between

these modes, as depicted in figure 2, (b).

A comparison of the results from the different potentials shows that in the case of the box

potential the interaction effects are more dominant, which is due to the much stronger

confinement of the photon gas. In the harmonic potential the width of the excited states

increases since for higher excitations the confinement effectively weakens. This leads to

smaller interaction matrix elements (22) and, hence, to a smaller effective interaction

strength. In case of the box potential, however, this is not possible due to the Dirichlet

boundary conditions upon the condensate wave function.
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First-order perturbation theory yields analytical formulas, that allow determining the

effective photon-photon interaction. In the harmonic case, the corresponding energy

difference ∆EHo
(10,00) between the first excited and the ground state yields for the effective

photon-photon interaction strength the formula

g̃Ho(t) =
4π

N0

[
1−

∆EHo
(10,00)(t)

~Ω

]
, (25)

while for the box potential (21) this correspondingly amounts to

g̃Box(t) =
2π2

3N0

[
3−

∆EBox
(21,11)(t)

EBox

]
, (26)

with the 1D ground-state energy EBox = π2~2/(2mL2). Similar formulas can be derived

for other combinations of the energy eigenstates.

Thus, equations (25) and (26) offer the prospect for spectroscopically determining the

effective photon-photon interaction strength with a higher precision than in previous

measurements, which were based on detecting the condensate width [4]. For instance,

interfering two cavity eigenmodes results in a beating signal, the frequency of which

corresponds to the energy difference (24) of the involved modes.

4. Summary and Outlook

The theory presented in this work is crucial for understanding and precisely quantifying

the effective photon-photon interaction strength in current and future phBEC

experiments. The second-quantised Hamiltonian (9) represents the backbone of this

theory. It describes the impact of the thermo-optic photon-photon interaction emerging

during a single pump pulse. The experimental timescales allow treating the thermo-

optic photon-photon interaction adiabatically, yielding a matrix formulation (15) of

the Hamiltonian (9). With this, it is possible to predict the shifts of the photon

eigenenergies, which allow a precise spectroscopic measurement of the emerging photon-

photon interaction.

The Hamiltonian matrix (15) also contains information about the excited states, which

permits calculating the impact of the thermal cloud on the measurement. However,

this impact is only relevant in case of an increased effective photon-photon interaction,

as it may occur at the dimensional crossover [8]. Due to the increased photon-photon

interaction, a perturbative approach like the one used in section 3 is no longer valid.

Therefore, in such a situation, Exact Diagonalisation turns out to be a necessary tool

for analysing the Hamiltonian matrix (15) [17].
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Appendix A. Perturbation Theory

This appendix deals with the calculation of perturbative results used in section 3.

Appendix A.1. Harmonic Oscillator

The eigenenergies of the harmonic potential (20) read

En(0) = ~Ω (nx + ny + 1) (A.1)

and the corresponding eigenfunctions are the Gauß-Hermite functions

ψn(x) =

√
1

2nx+nynx!ny!πl2
Hnx

(x
l

)
Hny

(y
l

)
e−(x

2+y2)/(2l2) , (A.2)

where Hn(x) denote the Hermite polynomials. The eigenfunctions (A.2) give rise to the

simplified interaction matrix (22) up to the third energy subspace

FHo =
N(00)

πl2




1/2 0 0 −1/(4
√

2) 0 −1/(4
√

2)

0 1/4 0 0 0 0

0 0 1/4 0 0 0

−1/(4
√

2) 0 0 3/16 0 1/16

0 0 0 0 1/8 0

−1/(4
√

2) 0 0 1/16 0 3/16



, (A.3)

where the modes are ordered with respect to their vectorised mode indices, c.f., table

A1, (a). Calculating the first-order corrections to the energies amounts to neglecting

the interaction between different energy subspaces, i.e., neglecting the coupling between

ground state and second excited state in (A.3). The resulting eigenvalues E (1)n are shown

in table 1.

Appendix A.2. Box Potential

The eigenenergies of the box potential (21) are given by

En(0) = EBox

(
n2
x + n2

y

)
, (A.4)

with the 1D ground-state energy EBox = π2~2/(2mL2) and the eigenfunctions read

ψn(x) =
2

L
sin
(nxπx

L

)
sin
(nyπy

L

)
. (A.5)

This yields for the simplified interaction matrix (22)
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Table A1. Index ordering a) for harmonic potential (20) and b) for box potential

(21) in the corresponding Hamiltonian matrix.

a)

n Vectorised index

(00) 1

(10) 2

(01) 3

(20) 4

(11) 5

(02) 6

b)

n Vectorised index

(11) 1

(21) 2

(12) 3

(22) 4

(31) 5

(13) 6

FBox =
N(11)

L2




9/4 0 0 0 −3/4 −3/4

0 3/2 0 0 0 0

0 0 3/2 0 0 0

0 0 0 1 0 0

−3/4 0 0 0 3/2 1/4

−3/4 0 0 0 1/4 3/2



, (A.6)

which is treated as the corresponding one for the harmonic potential (A.3).
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6. Exact Diagonalisation of Photon
Bose-Einstein Condensates with
Thermo-Optic Interaction

Gather ye rosebuds while ye may,
Old Time is still a-flying;
And this same flower that smiles
today,
Tomorrow will be dying.

Robert Herrick
To the Virgins ll. 1-4

Equipped with the fundamental theory worked out in chapter 5, this chapter applies this
theory to a harmonic trapping potential. The main focus lies on numerically determining
the new photon eigenstates subject to thermo-optic interaction via exact diagonalisation.
This allows to determine the shift of the photon eigenenergies due to the thermo-optic
interaction in view of spectroscopically measuring its strength.
The first part of the paper reproduces results which have been previously derived by us-
ing different methods, like a variational ansatz, see chapters 2 and 4 as well as reference
[104]. The current method supersedes and extends these methods, as it includes the
thermal cloud and is, thus, capable of describing finite temperatures. However, it turns
out that in the thermal phase no sign of the thermo-optic interaction can be found, as
here the ground-state occupation is too small to considerably change the eigenstates.
Moreover, not even the thermodynamics changes in the deeply condensed limit. A com-
parison of the Bose-Einstein distribution at the beginning of the experiment, where no
interaction is present, with the one at the end of the experiment, where the thermo-optic
interaction has developed, reveals this finding. Therefore, this study justifies the ideal
Bose gas assumption of chapter 3 and explains the results of experiment [116].
Finally, it turns out that the quantum mechanical description of the thermo-optic in-
teraction gets relevant at the dimensional crossover from 2D to 1D. Chapter 4 already
shows the increase of the thermo-optic interaction strength with larger trap anisotrop-
ies due to an increased photon density at the trap centre. The same effect also occurs
in the quantum description. For large trap anisotropies, i.e., enhanced photon-photon
interaction strengths, the exact diagonalisation results in a larger condensate width
than a corresponding variational ansatz predicts. Hence, experimentally measuring the
photon-photon interaction strength at the dimensional crossover necessitates to consider
the thermal cloud, as a theory which only studies the photon BEC ground state overes-
timates the interaction strength.

For this study, I applied the theory from chapter 5 to the special case of a harmonic
confining potential and implemented the exact diagonalisation algorithm. I have also
carried out and analysed the necessary simulations and wrote the manuscript. The latter
is currently under review at New Journal of Physics.
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Abstract. Although photon Bose-Einstein condensates have already been used for

studying many interesting effects, the precise role of the photon-photon interaction is

not fully clarified up to now. In view of this, it is advantageous that these systems allow

measuring both the intensity of the light leaking out of the cavity and its spectrum at

the same time. Therefore, the photon-photon interaction strength can be determined

once via analysing the condensate broadening and once via examining the interaction-

induced modifications of the cavity modes. As the former method depends crucially

on the concrete shape of the trapping potential and the spatial resolution of the used

camera, interferometric methods promise more precise measurements.

To this end, the present paper works out the impact of the photon-photon interaction

upon the cavity modes. A quantum mechanical description of the photon-photon

interaction, including the thermal cloud, builds the theoretical backbone of the method.

An exact diagonalisation approach introduced here exposes how the effective photon-

photon interaction modifies both the spectrum and the width of the photon gas.

A comparison with a variational approach based on the Gross-Pitaevskii equation

quantifies the contribution of the thermal cloud in the respective applications.

Keywords: Photon Bose–Einstein Condensate, Thermo-Optic Interaction, Dimensional
Crossover
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Figure 1. Possible photon-photon interaction processes. a) Interaction vertex in

vacuum. Two incoming photons produce a virtual electron-positron pair, which

recombines again. b) Photons in non-linear media, here represented via their

density |ψ|2, interact with the non-linear medium. This effectively introduces a Kerr

interaction between two photons via changes of the refractive index ∆n.

1. Introduction

Observing photon-photon interactions is a demanding task. Classical electrodynamics

considers light as a linear phenomenon, such that two crossing light beams only interfere

with each other, but do not scatter. However, the advent of quantum electrodynamics

changed this view, since in this theory electromagnetic fields can polarise the vacuum.

Halpern was the first to express the idea of light-by-light scattering within the Dirac

theory of electrons and positrons [1]. Afterwards, references [2] and [3] formalised the

idea already to the modern picture, as figure 1 (a) portrays it. Here, two photons

interact by polarising the vacuum via the production of a virtual electron-positron

pair. The pair then recombines back into two photons with different wave vectors.

Subsequently, reference [4] works out the corresponding modification of the Maxwell

equations in vacuum, which is nowadays referred to as the Euler-Heisenberg Lagrangian.

However, the authors of reference [4] point out, that this only works with photons in the

Röntgen- or gamma-ray regime, since the energy needs to be high enough for supporting

the electron-positron pair creation. The later works [5, 6] support these findings by

applying the more modern S-matrix apparatus. Since this process appears in fourth-

order perturbation theory, the cross-section for this kind of photon-photon interaction

is proportional to the fourth power of Sommerfeld’s constant. Therefore, only particle

accelerators allow access to this kind of processes. In 2017 the ATLAS experiment at

the Large Hadron Collider was able to observe light-by-light scattering in vacuum for

the first time [7].

Embedding photons in non-linear materials increases the photon-photon interaction

significantly. One prominent example for such a non-linear process is the Kerr effect
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a) b)

Figure 2. Photon-photon interaction in photon BEC setups. a) Mechanism of thermo-

optic interaction. The photon density |ψ|2 heats the medium to a temperature ∆T .

This shifts the refractive index by ∆n, which effectively introduces a photon-photon

interaction. b) Timescales of thermo-optic interaction. The timescales of the photon

population and the external pump pulse are the fastest timescales, whereas the scale

of the temperature diffusion is the slowest one.

[8], see figure 1 (b). Here, the refractive index of the material changes with the photon

density, leading to effects like the self-focusing of a light beam or the existence of optical

solitons. Such experiments are performed in effectively two-dimensional setups. This

is remnant from light propagation in, e.g., glass cylinders, where the coordinate along

the optical axis, due to the paraxial approximation, acts as the time coordinate and

the remaining two dimensions as true spatial dimensions [9, 10]. A second possibility

relies on confining the light together with the non-linear medium inside a cavity. As the

cavity mirrors impose Dirichlet boundary conditions upon the light field, a standing wave

emerges along the optical axis, freezing out the motion along this direction. However,

the used photons are usually prepared in a dissipative state, as light leaks out of the

apparatus and has to be reinjected by an external light source for achieving a steady

state.

However, filling a microcavity with a dye solution offers the possibility to create light

in a steady state, which resembles thermal equilibrium [11, 12]. In these systems, also

a small effective photon-photon interaction emerges, which does not stem from a Kerr

effect but from a thermal non-linearity, the mechanism of which figure 2 (a) sketches.

This originates from a heating of the dye molecules, which do not emit back all absorbed

photons into the photon gas, but instead convert them into vibronic excitations. As a

consequence, the dye solution heats up, changing its refractive index. As the heat

diffuses through the experimental setup, the resulting effective thermo-optic photon-

photon interaction is non-local in space and retarded in time, which represents the main

difference to the photon-photon interactions sketched in figure 1. Since the temporal

retardation is large compared to the remaining experimental timescales, see figure 2 (b),

the thermo-optic photon-photon interaction effectively corresponds to a potential, which
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increases linearly in time [13, 14]. As the thermo-optic interaction turns out to be weak,

only the photon BEC (phBEC) regime allows determining its strength by measuring the

condensate width [11]. However, due to the smallness of the effective photon-photon

interaction, this method lacks of precision.

Instead, spectroscopic measurements promise an increased precision by measuring the

small energy shifts, which the thermo-optic photon-photon interaction induces during

a single pump pulse. The basis of the theoretical description of this thermo-optic

interaction is a detailed model for the diffusion of the temperature produced in a

single pump pulse. As the temperature slowly builds up, an adiabatic approximation

of the corresponding quantum mechanical modelling grants access to the instantaneous

eigenvalues. This allows determining the effective photon-photon interaction strength

from the energy difference between two eigenmodes. Whilst reference [14] works out the

corresponding basic theory and applies first-order perturbation theory for deriving some

initial results, this paper goes beyond and works out in detail both the energy shifts

and the condensate broadening by applying exact diagonalisation (ED) [15].

The ED of the underlying second-quantised Hamiltonian represents a powerful method

in case of increased effective photon-photon interactions. For instance, reference [16]

predicts this situation at the dimensional crossover from 2D to 1D, where a significant

trap anisotropy enhances the photon-photon interaction via an increased photon density.

Experimentally, microstructured mirrors provide such anisotropic traps [17, 18, 19].

However, the thermal cloud leads to a stronger increase of the condensate width and

to a possible overestimation of the effective photon-photon interaction, provided the

theoretical modelling only considers the phBEC ground state. To avoid this, the

ED method combines the investigation of the thermodynamic behaviour of the non-

interacting phBEC [20] with the influence of the thermo-optic interaction upon the

phBEC ground state at the dimensional crossover [16].

The present paper is structured as follows: Section 2 starts with a short summary of

the underlying second-quantised Hamiltonian and uses ED for working out the new

eigenmodes of the harmonically trapped photon gas. Moreover, the corresponding

condensate width is compared to former results and special attention lies on the

temperature dependence of both the eigenenergies and the width of the photon

gas. Subsequently, section 3 deals with the dimensional crossover and presents the

corresponding results. Section 4 summarises the main findings of the paper.

2. Exact Diagonalisation of Harmonic Potential

This section provides a concise introduction to the model used for describing the thermo-

optic interaction, which is based on reference [13] and worked out more rigorously in

the preceding paper [14]. Afterwards, ED serves as a method for benchmarking both

the perturbative results on the energy spectrum derived in [14] and the variational

approach performed in [13]. The last part of this section goes beyond these findings

and investigates the impact of finite temperatures on both the energy spectrum and the
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cloud width.

2.1. Model

As the phBEC itself varies on timescales, which are much faster than the produced

temperature, see figure 2 (b), reference [14] breaks down the quantum mechanical

description of the thermo-optic interaction to an effective potential, which increases

linearly in time. Hence, the second-quantised Hamiltonian,

Ĥ(t) =
∑

nn′
Hn,n′(t)â†n(t)ân′(t) , (1)

bears an adiabatic time dependency introduced by the temporal retardation of

the thermo-optic photon-photon interaction. The bosonic creation and annihilation

operators â†n(t), ân′(t) belong to the instantaneous eigenmodes of the Hamiltonian (1).

The Hamiltonian matrix in (1) has the form

Hn,n′(t) = En(0)δn,n′ + g(t)Fn,n′ , (2)

with the effective time-dependent thermo-optic interaction strength g(t) increasing

linearly in time [14]. At the beginning of the experiment, i.e., at t = 0, no interaction is

present, yielding the initial value g(0) = 0. The corresponding eigenvalue problem leads

to the eigenenergies En(0) and the eigenfunctions ψn(x). Furthermore, the non-diagonal

matrix

Fn,n′ =
∑

l

Nl(0)

∫
d2x ψ∗n(x)|ψl(x)|2ψn′(x) (3)

contains the information about the thermo-optic interaction. It uses the mode

occupation in the form of a Bose-Einstein distribution at the beginning of the

experiment, which stems from the temporal retardation of the thermo-optic interaction:

Nl(0) =
{
eβ[El(0)−µ(0)] − 1

}−1
. (4)

Here β = 1/(kBT ) denotes the inverse temperature and µ(0) represents the initial

chemical potential, which is fixed by the conserved total particle number N =∑
l〈a†l(t)al(t)〉.

2.2. Harmonic Potential

This paper specialises to a harmonic trapping potential of the form

V (x) =
mΩ2

x

2

(
x2 + λ4y2

)
, (5)

with the effective photon mass m and the trapping frequency Ωx in x-direction. The

trap-aspect ratio λ =
√

Ωy/Ωx determines the trapping frequency Ωy in y-direction.

Therefore, the eigenenergies take the form

En(0) = ~Ωx

[
nx + λ2ny + (1 + λ2)/2

]
. (6)
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Furthermore, the Gauß-Hermite functions

ψn(x) =

√
1

2nx+nynx!ny!πlxly
Hnx

(
x

lx

)
Hny

(
y

ly

)
e−x

2/(2l2x)−y2/(2l2y) (7)

determine the eigenfunctions of the second-quantised Hamiltonian (1) and the

corresponding Hamiltonian matrix (2), where li =
√
~/(mΩi), i = x, y, denote the

oscillator lengths in both directions and Hn are the Hermite polynomials.

This paper numerically determines the new eigenmodes of the Hamiltonian matrix (2)

with the potential (5) by applying exact diagonalisation. As this method necessitates

using a finite number of Gauß-Hermite eigenmodes (7), the sixty lowest energy

subspaces are included. This ensures in the Bose-Einstein condensed regime, that the

relative occupation of higher excited states is negligible. With this finite number of

modes, the interaction matrix (3) is constructed for a given total particle number N

and thermodynamic temperature T . Hence, the presented method not only verifies

previously published calculations relying on different methods, but also reveals possible

deviations from the latter. To be specific, this section focuses on the isotropic case, i.e.,

λ = 1.

2.3. Spectrum

This paragraph presents the results for the adiabatic time-dependent energy eigenvalues

En(t) of the Hamilton matrix (2) for the potential (5). Figure 3 (a) compares the

eigenenergies obtained by the ED method with the results of first-order perturbation

theory from the preceding paper [14]. It plots the eigenenergies as a function of

the dimensionless interaction strength g̃(t) = mg(t)/~2, the magnitude of which is

determined by the duration of the external pump beam. The results of both approaches

agree well and, thus, the same observation holds for the corresponding energy differences

shown in figure 3 (b). However, for larger interaction strengths, a slight deviation

of up to 10−3 between the ED results and the first-order perturbation theory [14]

becomes visible in figure 3 (c). Hence, the perturbation theory derived in [14] yields

a good approximation in this regime of parameters. Therefore, the corresponding

formulas, which analytically express the photon-photon interaction strength via the

energy differences, are precise enough for being applied to spectroscopic measurements.

2.4. Condensate Width

The new eigenstates also show a broadening of the photon gas. The unitary matrix

Un,m(t), which rotates into the instantaneous eigenbasis of the Hamiltonian matrix (2),

defines creation and annihilation operators ân(t), â†n(t) at a given time t:

ân(t) =
∑

l

Un,l(t)âl(0), â†n(t) =
∑

l

U †n,l(t)â
†
l(0). (8)
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a) b)

c)

Figure 3. a) First few eigenenergies of the second-quantised Hamiltonian matrix

(2). The dots stand for the results of the ED, whereas the lines represent the first-

order perturbative results from reference [14]. b) Corresponding energy differences

∆En,n′ = En − En′ . c) Relative deviation of energy differences once calculated

by the perturbation theory and once by the ED method. In all plots, the indices

2± = [(20)± (02)]/
√

2 denote the mode hybridisation due to the interaction.

With these at hand, the total photon density,

n(x, t) =
∑

l

Nl(t)nl(x, t), (9)

is expressed in terms of the instantaneous eigenstate occupations,

Nl(t) =
{
eβ[El(t)−µ(t)] − 1

}−1
, (10)

and the corresponding eigenstate density,

nl(x, t) =
∑

n,m

U †l,n(t)ψ∗n(x)ψm(x)Um,l(t) . (11)

Therefore, the total width σx of the photon gas is defined by the FWHM

σx(t) =
√

2 〈x2〉 (t) . (12)
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Figure 4. Comparison of the resulting condensate width σx from the ED of the

Hamiltonian matrix (2) (dots) with the variational approach from appendix Appendix

A (solid line). The inset shows the relative deviation between both results.

Here, the second moment of the density distribution

〈
x2
〉

(t) =

∫
d2x x2n(x, t)∫
d2x n(x, t)

(13)

with the adiabatic time-dependent photon density (9), takes the form

〈
x2
〉

(t) =
∑

l

Nl(t)

N

〈
x2
〉
l
(t) , (14)

with the adiabatic time-dependent matrix elements

〈
x2
〉
l
(t) =

∫
d2x x2nl(x, t) . (15)

Older calculations and measurements [11, 13] consider the deep condensate limit N0(t) ≈
N . In this case, (12) reduces to the width of the ground state, i.e., σx(t) ≈

√
2 〈x2〉0 (t).

Appendix Appendix A reproduces the corresponding variational calculation of the

photon-condensate width, which was first given in reference [13]. Figure 4 compares the

results for the condensate width, calculated via ED and via the variational approach

from Appendix Appendix A. As the results agree well, the ED method developed here is

found to be able to reliably reproduce the former theoretical and experimental results.

However, a closer look at the inset in figure 4 for larger effective interaction strengths

reveals that the results tend to deviate for larger effective photon-photon interaction

strengths. Since the width calculated from the ED is larger than the corresponding

width from the variational approach, this deviation stems from an increased coupling

to the thermal cloud. Thus, the larger the photon-photon interaction strength is, the

ground-state-only description is less accurate.
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Figure 5. a) Temperature dependence of the first few energy eigenvalues of the

Hamiltonian matrix (2). b) Corresponding energy differences. The dots denote the

results from the ED and the black lines are the corresponding a) energy eigenvalues and

b) energy differences without the interaction, i.e., at the beginning of the experiment.

Both plots are for total particle number N = 104 and interaction strength g̃ = 10−4.

0 10 20 30 40 50 60
En(t)/ x

10 4

10 3

10 2

10 1

100

N
l(t

)/
N

1 2 3 4
En(t)/ x

10 2

10 1

N
l(t

)/
N

Figure 6. Photon occupation Nl(t) of the different states relative to the total

photon number N = 104 in the Bose-Einstein condensed regime characterised by the

condensate fraction N0/N ≈ 0.9. The dots (crosses) indicate the photon occupation

without (with) interaction at the beginning (end) of the experiment. The inset

shows the details for the lowest-lying states. The maximal interaction strength is

g̃(tend) = 10−4.

2.5. Thermal Cloud

Previous investigations of the effective photon-photon interaction only consider the zero-

temperature limit. This section, however, deals with the effects of finite temperature,

which the Hamiltonian matrix (2) naturally includes. At the beginning of the

experiment, the thermo-optic interaction is not present, and the phBEC behaves as an
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Figure 7. Total width of the photon gas at the beginning of the experiment (blue) and

at the end of the experiment (orange), as well as the width of the ground state with

interaction (green). The black line indicates the oscillator length, which is also the

width of the ground state without interaction. The drawn lines are guides to the eye.

The calculation uses the total particle number N = 104 and the maximal interaction

strength g̃(tend) = 10−4.

ideal Bose gas in 2D [20]. As the photon-photon interaction strength increases along the

duration of an experiment, this section aims at describing the influence of the thermal

cloud upon the phBEC properties.

First, the focus lies on the temperature dependence of the energy eigenvalues, which

figure 5 (a) shows. In the thermal regime, the energies undergo a small shift due to

the interaction, whereas in the condensed regime, i.e., for T < Tc, a more significant

shift builds up. This is due to the small ground-state occupation in the thermal phase.

Since the coupling to the ground state is always the largest, significant energy shifts

only occur in the condensed regime, as figure 5 (a) clearly indicates. Experiments can

validate this finding by measuring the differences between the energy levels, which are

plotted in figure 5 (b).

The time-dependent shifts of the energy eigenstates El(t) also affect the Bose-Einstein

distribution (10) of the photons. Figure 6 compares the photon number distribution (10)

at the beginning (dots) and at the end of the experiment (crosses). The horizontal shift

of the occupation numbers at the end of the experiment indicates interaction-induced

shifts of the eigenenergies. The occupation numbers themselves, however, undergo only

minor modifications due to the smallness of the interaction.

Finally, the ED also allows calculating the width (12) of the total photon gas, which

figure 7 depicts. In the zero-temperature limit, the width of the photon gas approaches

the ground-state width. At the beginning of the experiment, where no interaction is
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present, this width corresponds to the oscillator length, whereas during an experimental

run the ground-state width increases and so the width of the total gas increases with

the photon-photon interaction. In the thermal regime, however, the interaction does

not lead to a noticeable change of the photon-gas width. This finding coincides with the

observations above, showing only very small shifts in the energy levels in the thermal

regime. The saturation of the width, which occurs for large temperatures, is a remnant

from the finite number of considered eigenmodes.

3. Dimensional Crossover

With the development of new experimental techniques for micro-structuring the cavity

mirrors [17, 18, 19], also large trap anisotropies for phBECs can be manufactured.

Therefore, these techniques allow realising a dimensional crossover from 2D to 1D.

In this case, the ED method turns out to be essential, since reference [16] predicts

a considerable enhancement of the effective photon-photon interaction strength.

The beginning of the section maps the 2D gas in a strong anisotropic trap onto a 1D gas,

which determines the effective 1D interaction strength. The latter turns out to depend

on the trap-aspect ratio λ. With this at hand, the effective 1D energy spectrum is

calculated on the one hand numerically and on the other hand approximated analytically.

The latter grants access to an approximation formula determining the effective photon-

photon interaction strength from the differences of the eigenenergies in the quasi-1D

limit. Finally, the calculation of the condensate width in the quasi-1D limit shows the

significance of the ED method, as the width turns out to deviate from the variational

approach presented in [13], which is recovered in Appendix Appendix A.

3.1. Effective 1D Interaction Strength

Reference [20] demonstrates that for trap-aspect ratios larger than a critical value λ1D
the squeezed direction freezes out in its ground state and that the systems behaves

effectively quasi one-dimensional. In addition, the density in the frozen out direction

alters the bare 2D interaction strength g̃ [16]. The resulting effective quasi one-

dimensional interaction strength g̃1D(λ) turns out to be a function of the trap-aspect

ratio λ.

The current paper uses the same reasoning for a single pump pulse, which reference [16]

applies to the steady state after several pump pulses. According to definition (5) an

increasing trap-aspect ratio squeezes the y-direction and, so, in the quasi-1D case the

photons only populate the ground mode in this direction. This suggests the factorisation

ψn(x) = χnx(x)ϕ0(y;λ) (16)
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for the Gauß-Hermite eigenmodes of the potential (5). Therefore, the interaction matrix

(3) reduces to

Fnx,n′
x

= w(λ)
∑

lx

N(lx,0)

∫
dx χ∗nx

(x)|χlx(x)|2χn′
x
(x) , (17)

where the weight

w(λ) =

∫
dy |ϕ0(y;λ)|4 (18)

incorporates the influence of the squeezed direction and, thus, depends on the trap-

aspect ratio λ. In the real 1D case, however, the structure of the Hamiltonian matrix

(2) remains the same; only the multi-indices turn into single indices. Hence, the

identification

g̃1D(t;λ) = g̃(t)w(λ) (19)

of an effective 1D interaction strength allows a mapping of the matrix (3) onto the real

1D case. The explicit calculation of the weight (18) for the harmonic potential (5) leads

to

g̃1D(t;λ) =
g̃(t)λ√

2π
. (20)

The effective 1D interaction (20) agrees with the corresponding result for the contact

Kerr interaction obtained in reference [16], but not with the similar one for the thermo-

optic interaction, although the current work considers only the latter. The reason is the

used short-time approximation in (1). Due to this, the matrix elements (3) effectively

resemble the corresponding ones for a contact interaction. Reference [16] investigates

the steady state after several pump pulses, such that the temperature diffusion has a

significant impact on the behaviour. In the current work, however, this does not happen

due to the short-time approximation.

3.2. Energy Spectrum

As the effective 1D interaction (20) increases along the dimensional crossover, the

deviations observed in the previous sections become significantly large and both the

perturbative and the variational calculation are no longer valid in the case λ � 1.

Figure 8 illustrates this finding. In figure 8 (a) the new eigenenergies are plotted

with respect to the non-interacting ground-state energy E0 = ~Ωx(1 + λ2)/2 at the

dimensional crossover for a fixed interaction strength g̃(t), revealing an increasing

effective 1D interaction strength g̃1D(t;λ). Due to the enhanced effective interaction

strength, increasing the trap anisotropy shifts the eigenenergies to larger values. Here

too, the ground-state energy undergoes the largest change, which is clearly non-linear.

Figure 8 (b) shows that the energy differences likewise increase with the trap-aspect ratio
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a) b)

Figure 8. a) First few eigenenergies of the Hamiltonian matrix (2) relative to the

ground state energy E0 = ~Ωx(1 + λ2)/2 at dimensional crossover. b) Corresponding

energy differences. Here, the dashed line shows the linearisation for the lowest energy

difference ∆E1,0. In both pictures, the dots represent the results from the ED and the

lines are the analytical approximations (B.2). The calculation uses the total particle

number N = 104, a condensate fraction of N0/N ≈ 0.9 and the maximal interaction

strength g̃(tend) = 10−5.

pointing towards the predicted increased photon-photon interaction at the dimensional

crossover, cf., reference [16]. Thus, the ED method also allows determining the effective

photon-photon interaction strength along the dimensional crossover in the same way

by spectroscopic measurements as outlined above. For instance, one approach relies on

interfering different cavity modes and observing the resulting beating signal.

Appendix Appendix B derives an analytic approximation for the eigenvalues, which are

numerically calculated by the ED in the deep condensate limit. This approach considers

the first four eigenmodes and diagonalises the corresponding 1D Hamiltonian matrix.

This reveals the non-linear character of the eigenvalues, shown in figure 8 (a) to stem

from avoided crossings with the next-higher eigenmodes with the same symmetry. Due

to the same reason, this method only approximates the ground and first excited state

well, whereas the ED and the analytical approximation for the higher excited states

agree less for larger anisotropies. This can be avoided by taking into account even higher

excited states, which is necessary for going to larger trap anisotropies respectively larger

interaction strength, but makes the analytical diagonalisation more difficult. However,

if the effective photon-photon interaction strength is small enough for a linearisation,

the analytical approximation for the ground and first-excited state represents a result

for determining it according to

g̃1D(λ) ≈ 2
√

2π

N0

(
1− ∆E1,0(t)

~Ωx

)
. (21)
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a) b)

Figure 9. Dimensional crossover. Both plots are for a total particle number N = 104

and a maximal interaction strength g̃(tend) = 10−5. a) Comparison of condensate

width (12) at the end of the experiment for different trap-aspect ratios at fixed

interaction strength. Here, the condensate fraction amounts to N0/N ≈ 0.9. Dots:

results from ED; lines: variational approach. b) Total width of the photon gas at the

beginning of the experiment (blue) and at the end of the experiment (orange), as well

as the width of the ground state with interaction (green) for trap-aspect ratio λ = 10.

The black line indicates the oscillator length, which is also the width of the ground

state without interaction. The drawn lines are a guide to the eye.

3.3. Width

Figure 9 (a) compares the widths from the ED with the results from the variational

approach for a fixed interaction strength. Whereas in the squeezed y-direction the

results from both methods agree quite well at the whole crossover, the results coincide

only for small trap-aspect ratios in the un-squeezed x-direction. At larger trap-aspect

ratios, the results deviate up to several percent, which is caused by the coupling to

the thermal cloud. Since the effective photon-photon interaction increases along the

dimensional crossover, the thermal cloud becomes more and more important in this

scenario. Consequently, the ED method plays a crucial role for measuring the effective

photon-photon interaction at the dimensional crossover.

Also, for larger trap anisotropies the total width of the photon gas can be calculated from

(12), which figure 9 (b) pictures. Here, the blue line depicts again the total width of the

photon gas at the beginning of the experiment for a certain thermodynamic temperature

T . As the experiment runs, the effective photon-photon interaction increases and, thus,

also the photon gas width grows during the experiment. Alas, only in the condensed

regime this growth is significant and due to the trap anisotropy enhanced in comparison

to the situation in the isotropic trap, see figure 7. In the thermal regime, however, still

no impact of the effective photon-photon interaction is observable.
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4. Summary

The findings presented in this work are crucial for precisely quantifying the effective

photon-photon interaction strength in current and future phBEC experiments.

The present paper analyses in detail the theory of reference [14] by using exact

diagonalisation for a harmonically trapped photon gas. The aim consists in determining

the impact of the thermo-optic interaction upon the cavity modes. The accurate

prediction of the shifts of the eigenenergies allows for a precise interferometric

measurement of the emerging photon-photon interaction. The method reproduces

formerly derived results and extends these systematically by taking the thermal cloud

into account. The influence of thermal cloud turns out to be crucial for understanding

the dimensional crossover and prevents a possible overestimation of the effective

photon-photon interaction strength. Where possible, analytic estimates provide aid

for determining the effective photon-photon interaction strength from measurements.
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Appendix A. Variational Approach

This appendix follows reference [13] and calculates a variational solution for the

Hamiltonian (1) at T = 0 with the potential (5). In this case, a suitable ansatz for

the eigenfunction is given by

ψ(x, t) =

√
λN

πl2αx(t)αy(t)
exp

{
− 1

2l2

[
x2

αx(t)2
+

y2

αy(t)2

]}
, (A.1)

where l =
√
~/(mΩx) denotes the oscillator length and αx(t), αy(t) stand for the

dimensionless variational parameters with the adiabatic time dependency. Consequently,

the initial density is given by n(x, 0) = |ψ(x, 0)|2, with αx(0) = 1 = αy(0). The standard

procedure yields the variational equations

α4
x = 1 +

2g̃(t)λN

π

α4
x√

(1 + α2
x)

3 (1 + α2
y

) (A.2)

and

α4
y = 1 +

2g̃(t)N

πλ

α4
y√

(1 + α2
x)
(
1 + α2

y

)3 . (A.3)
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Appendix B. Analytical Approximation in the 1D Case

The aim of this appendix is to work out an analytical approximation for the quasi-1D

case of a harmonic potential. Since the trap-aspect ratio determines the interaction

strength g̃1D(λ), the latter can reach comparatively large values. Therefore, the first

four eigenstates are taken into account and the resulting 1D Hamiltonian matrix is

diagonalised. Moreover, the deep condensate limit N0 ≈ N is assumed. With the

harmonic-oscillator eigenfunctions, the Hamiltonian matrix reads

H1D = ~Ωx




N0g̃1D(λ)√
2π

0 −N0g̃1D(λ)
4
√
π

0

0 1 + N0g̃1D(λ)

2
√
2π

0 −N0g̃1D(λ)
√
3

8
√
π

−N0g̃1D(λ)
4
√
π

0 2 + 3N0g̃1D(λ)

8
√
2π

0

0 −N0g̃1D(λ)
√
3

8
√
π

0 3 + 5N0g̃1D(λ)

16
√
2π



, (B.1)

where the shift due to the unperturbed ground-state energy has been dropped. The

Hamiltonian matrix possesses the eigenvalues

E0 = ~Ωx

(
1 +

11N0g̃1D(λ)

16
√

2π
−
√

1− 5N0g̃1D(λ)

8
√

2π
+

57(N0g̃1D(λ))2

512π

)
, (B.2a)

E1 = ~Ωx

(
2 +

13N0g̃1D(λ)

32
√

2π
−
√

1− 3N0g̃1D(λ)

16
√

2π
+

105(N0g̃1D(λ))2

2048π

)
, (B.2b)

E2 = ~Ωx

(
1 +

11N0g̃1D(λ)

16
√

2π
+

√
1− 5N0g̃1D(λ)

8
√

2π
+

57(N0g̃1D(λ))2

512π

)
, (B.2c)

E3 = ~Ωx

(
2 +

13N0g̃1D(λ)

32
√

2π
+

√
1− 3N0g̃1D(λ)

16
√

2π
+

105(N0g̃1D(λ))2

2048π

)
. (B.2d)
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[2] H. Euler and B. Kockel. Über die Streuung von Licht an Licht nach der Diracschen Theorie.

Naturwissenschaften, 23:246, 1935.
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7. Conclusion

Da steh’ ich nun, ich armer Tor
Und bin so klug als wie zuvor!
And here, poor fool, I stand once
more, // No wiser than I was
before.

Johann W. Goethe, Faust ll. 358

Although photon Bose-Einstein condensates were created more than ten years ago, their
overall behaviour is not understood completely. For instance, the role of the thermo-
optic photon-photon interaction is still lacking knowledge. Especially, the question of
how to increase its strength remains open. This theoretical thesis provides results which
have a clear perspective to be measured experimentally in the near future. It examines
in detail two possible ways for strengthening the interaction.
On the one hand, changing the cavity-mirror geometry allows for increasing the thermo-
optic interaction, as chapter 2 reveals. As the strength of the thermo-optic interaction
depends on the amount of heat stored in the whole dye-cavity setup, the strength of
the thermo-optic interaction can be tuned by changing the size of the cavity mirrors.
This result arises from the detailed consideration of the temperature diffusion in the
dye-cavity structure, taking into account the different temperature diffusion constants.
Moreover, for a detailed measurement of the thermo-optic interaction strength both the
condensate broadening and the lowest-lying collective modes can be utilised.
On the other hand, the dimensional crossover from 2D to 1D bears a second possibility
for changing the effective photon-photon interaction strength. This crossover is thought
to be realised by anisotropic confining potentials for the photon gas, such that the energy
gap in the squeezed dimension is of the order of the thermal energy. Hence, a further
increase of the trap anisotropy leads the squeezed dimension to be frozen out. In view
of the new developments of creating photon potentials, which are outlined in subsection
1.3.5, the following studies are of special interest for planned experiments. These stud-
ies investigate both the thermodynamics of an ideal Bose gas and the behaviour of the
thermo-optic interaction at the dimensional crossover.
To this end, chapter 3 answers the question of the effective dimension of the photon
gas for a given temperature and trap-aspect ratio in a harmonic trapping potential. For
this purpose, the chapter analytically works out the thermodynamics of an ideal Bose
gas. The analysis puts emphasis on the finite-size effects which are inherently present
in the experiments. Therefore, the theory is analytically solved without using an order
parameter. The most interesting thermodynamic quantity for defining the effective di-
mension appears to be the specific heat. The advantage of the specific heat over other
thermodynamic quantities, like the condensate fraction, lies in the fact that it can be
used in both regimes, the thermal and the Bose-Einstein condensed. As it obeys the
Dulong-Petit law in the thermal regime, it yields directly the dimension of the thermal
gas. On the other hand, the specific heat in the BEC regime depends on the dimension
of the system via a power law. Combining the Dulong-Petit law and the power law yields
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7. Conclusion

a definition of the effective dimension of the system at the entire dimensional crossover.
Therefore, these results provide direct guidance for the experiments to figure out the
relevant parameter regime for measuring the dimensional crossover.
The next step in understanding the dimensional crossover of a photon BEC consists
in elaborating the behaviour of the effective photon-photon interaction. For this pur-
pose, chapter 4 investigates the influence of the photon-photon interaction upon the
photon BEC ground state at the dimensional crossover. The chapter assumes the zero-
temperature limit and relies on a variational approach based on the energy functional
of the ground state. It suggests two different ways of performing the dimensional cros-
sover. On the one hand, as described in chapter 3, the idea consists of squeezing only a
single dimension. In this case, the thermo-optic interaction behaves differently from the
contact Kerr interaction, since it saturates for certain trap-aspect ratios. This behaviour
originates in a competition of the length scales of both the condensate and the temper-
ature diffusion. If the condensate width in the squeezed direction is smaller than the
intrinsic length scale of the temperature diffusion, the temperature, which the condens-
ate induces, diffuses into regions where no condensate is present. Thus, this temperature
cannot contribute to the effective photon-photon interaction and its strength saturates.
On the other hand, if not only a single dimension is squeezed but at the same time the
second dimension is expanded, no such saturation effect can be observed. Instead, both
the thermo-optic interaction and the Kerr interaction behave in the same way, namely
they increase linearly with the trap-aspect ratio. In this way, larger effective photon-
photon interactions can be realised.
So far, thermodynamics and interaction effects are treated separately. Hence, the goal
of chapter 5 consists of combining the approaches from chapters 3 and 4 to a Hartree-
Fock analogue theory for the thermo-optic photon-photon interaction. To this end, a
quantum-field theoretical treatment of this interaction, where the Hamiltonian depends
on the temperature diffusion, is developed. As the experimental photon BEC lifetime is
much shorter than the temperature-diffusion time, the timescales of the photon BEC and
the thermo-optic interaction separate. This separation turns the thermo-optic photon-
photon interaction into an effective photon potential. As a consequence, the photon gas
depends adiabatically on the slowly increasing photon-photon interaction strength, while
the total photon density from the beginning of the experiment determines the shape of
this effective potential. This setting is closer to the real experiments than the approaches
from chapters 2 and 4, since these two rely on the temperature being in a steady state,
which cannot be realised experimentally. As a first application, the chapter concludes
with a perturbative spectrum for both the box and the harmonic potential. It turns out
that the energy shifts due to interaction are stronger in the box than in the harmonic
potential, which is attributed to the stronger spatial confinement in the box case.
With this theory at hand, chapter 6 revisits the harmonically trapped photon gas. The
final aim of this approach is to obtain the spectrum of the photon gas and how it changes
during a single experiment. These data allow for an increased precision in determining
the effective photon-photon interaction strength by using spectroscopic measurements.
Chapter 6 produces this very data by exact diagonalisation of the Hamiltonian derived
in chapter 5. Also, the dynamical broadening of the photon BEC, which can be directly
observed in the experiments, and finite temperature effects are at the centre of this study.
Finally, the advantage of this method, namely considering the thermal cloud, pays out
at the dimensional crossover, where the effective photon-photon interaction can be tuned
to larger values. Here, the coupling to the thermal cloud cannot be neglected anymore,
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and the spectrum cannot be treated perturbatively. Thus, the exact diagonalisation of
the Hamiltonian from chapter 5 is essential. In direct comparison with the variational
approach from chapter 4 the exact diagonalisation yields a larger condensate width in
the unsqueezed direction than the variational approach. This hints towards an increased
role of the thermal cloud, which is not present in the latter calculation. In view of an
appropriate experimental investigation of the effective photon-photon interaction at the
dimensional crossover, the approach developed in chapter 5 needs to be taken into ac-
count together with an exact diagonalisation approach used in this chapter.
In conclusion, this thesis provides results, which are relevant for understanding the ef-
fective photon-photon interaction, especially at the dimensional crossover from 2D to
1D. It reveals how the interaction can be increased and how it affects the dimensional
crossover. The results of the thesis are quite near to current experiments, such that these
results can be used to divulge interesting experimental regimes and to directly compare
between experiment and theory.
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8. Outlook

I too am not a bit tamed, I too
am untranslatable,
I sound my barbaric yawp over
the roofs of the world.

W. Whitman, Song of Myself,
52, ll. 2

The ideas presented in this thesis yield many prospects for future work. For instance,
from the experimental view, the thermodynamic investigation of the dimensional cros-
sover in chapter 3 can be performed for a dimple potential as well. These potentials
are of special interest for the photon BEC community, as they allow for realising one-
dimensional photon BECs and, thus, they provide a platform for investigating the dimen-
sional crossover of nearly ideal Bose gases. To this end, section 8.1 presents preliminary
results for both a harmonic and a box dimple potential.
Even the effective photon-photon interaction still bears open questions. Firstly, how
can the field-theoretical description of the thermo-optic interaction, as used in chapters
2 and 4, be combined with the matter degrees of freedom? Chapter 8.2 discusses one
possible way, which builds upon the rate equations from subsection 1.3.2. This results
in a theory, which is comparable to the projected Gross-Pitaevskii equation [142–144].
Another approach deals with the saturation effect of the matter, effectively yielding an
imaginary interaction. Section 8.3 outlines the possibility to connect this non-linearity
with the discussion at the end of subsection 1.3.4 about vortices. As a third way for
coupling the matter to the photon field, section 8.4 takes up the P -function formalism
introduced in subsection 1.1.2 and applies it to the incoherent absorption and re-emission
terms of the master equation (1.64).
Finally, so far neither a theoretical nor an experimental study of the dye bleaching pro-
cesses in the photon BEC experiments does exist. Section 8.5 discusses several points,
why this should be done in view of developing a full understanding of photon BEC
experiments.

8.1. Thermodynamics

The thermodynamic investigation performed in chapter 3 can be extended in several
ways. The microstructuring techniques developed in the von Freymann group [110–112]
allow preparing photon potentials for investigating the dimensional crossover from 2D
to 1D [145]. Contrarily to the investigation in chapter 3, the resulting potentials are
not infinitely deep, but have the form of dimple traps. Therefore, the definition of
the effective dimension from chapter 3 needs to be rethought, as the finite number of
available energy states introduces a saturation of the energy. Subsection 8.1.1 elaborates
this point and provides first numerical insights for a harmonic dimple potential.
Another possible direction, which these techniques allow, is the investigation of box
potentials. Due to the large spatial resolution, the microstructured potentials are better
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suited for investigating the dimensional crossover from 2D to 1D, in contrast to the
delimination technique utilised in the experiment [107]. In the latter case, the spatial
resolution is too small for providing box potentials over the whole crossover, so these
potentials rather turn into harmonic confining potentials for large trap anisotropies. So
the question arises how to define the effective dimension in such a potential. Subsection
8.1.2 presents some initial findings on this topic.

8.1.1. Harmonic Dimple Potential

Thus, harmonic dimple potentials printed on top of spherically shaped mirrors are of
special interest to both experiment and theory. The latter superimpose a harmonic
potential with much smaller trapping frequency in the order of magnitude of 40 GHz,
whereas the former obtain a large trapping frequency in the terahertz regime. For the
sake of simplicity, the following discussion covers first the 1D case and then generalises
to the 2D potential. In 1D, the dimple potential has the form

V =

{
V0(x), |x| > x0

V0(x)− U0(1− x2/x20), |x| ≤ x0
, (8.1)

where V0(x) = mΩ2x2/2 is the mirror potential. In addition, U0 and x0 denote the depth
and the width of the dimple, respectively. Experimentally realistic parameters are Ω=40
GHz, U0 ∼ kBT0 ≈ 160ℏΩ, with T0 being the room temperature, and x0 varies from 0.5
µm to 40 µm.

Eigenmodes In the region x ≪ x0 figure 8.1 a) shows the dimple to be the dominant
part of the potential (8.1). Therefore, the trap takes approximatively the form of a
harmonic potential with the dimple trapping frequency ωd, which amounts from (8.1) to

ωd = Ω

√
1 +

2U0

ℏΩ
l2osc
x20

, (8.2)

where losc =
√

ℏ/(mΩ) stands for the oscillator length of the mirror potential. Note
that the trapping frequency of the dimple ωd is in the order of terahertz, such that
ωd ≫ Ω. According to 8.1 b), an imaginary time evolution using the dimple potential
(8.1) reveals the eigenstates inside the dimple to be well separated from the one in the
external potential, so these two regions can be discriminated experimentally. This allows
for experimentally controlling the photon gas in the dimple potential only and, therefore,
it suffices to take into account only the few states inside the dimple for the theoretical
modelling. Figure 8.1 b) suggests that these eigenenergies can be approximated by the
harmonic oscillator eigenenergies

Ed
n = ℏωd

(
n+

1

2

)
− U0 , (8.3)

whereas the outer modes can be less accurately approximated by the harmonic oscillator
modes from the mirror trap by

E0
n = ℏΩ

(
n+

1

2

)
. (8.4)
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Fig. 8.1: Numerical investigation of the dimple potential (8.1) for x0 = 18 µm ≈ 1.83 losc
and U0 ≈ −160ℏΩ. a) Plot of the potential. The shaded area marks the
dimple region. b) Corresponding eigenenergies. The blue dots are the nu-
merical results, whereas the green (orange) dashed line indicates the dimple
(mirror) eigenenergies (8.3) ((8.4)).

Inner Energy and Specific Heat As a consequence, the whole thermodynamics of
the dimple potential can be described by just taking the modes inside the dimple into
account. Therefore, in the case of the 2D dimple potential at the dimensional crossover,
the inner energy takes the form

U =

lx∑

n=0

ly∑

m=0

Ed
n + λEd

m

eβ(Ed
n+λEd

m−µ) − 1
, (8.5)

where β = 1/(kBT ) is the inverse temperature and µ denotes the chemical potential.
Here, the trap-aspect ratio is denoted by λ = ωd,x/ωd,y and lx, ly represent the cutoff
values of the quantum numbers in x and y-direction, respectively. The inequality

Ed
n + λEd

m = n+mλ+
1 + λ

2
≤ U0

ℏωd
(8.6)

determines the cutoff value in the unsqueezed x-direction to

lx =

{⌊
U0
ℏωd

− 1+λ
2

⌋
, U0 ≥ ℏωdλ

2

0 , else
. (8.7)

Here, the second case ensures that for increasing trap-aspect ratio λ the ground state of
the potential is always present. In the squeezed y-direction it is

ly =

{⌊
1
λ

(
U0
ℏωd

− 1+λ
2

)⌋
, U0 ≥ ℏωdλ

2

0 , else
(8.8)

which converges to 0 for λ→ ∞ meaning that only the ground state remains. Equation
(8.7) and (8.8) imply that all thermodynamic quantities highly depend on the trap-aspect
ratio λ, even in the effective 1D case. Moreover, due to the few energy states available,
finite-size effects are more pronounced, as figure 8.2 shows. The most prominent effect
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Fig. 8.2: a) Inner energy and b) specific heat per particle for the harmonic dimple po-
tential (8.1) with U0 = kBT0. The blue curves depict the istropic case λ = 1
and the orange curves the quasi-1D case with λ = 50. The solid lines are for
N = 100 particles and the dashed lines for N = 10 particles. The solid black
lines in b) are a guide to the eye for recognising the low-temperature power-law
dependency and the dashed black lines depict the 2D and 1D Dulong-Petit law,
respectively.

is the cutoff yielding an upper limit for the inner energy, as the high-temperature part
of figure 8.2 a) reveals. In view of the specific heat CN , this saturation of the inner
energy destroys the Dulong-Petit law in the thermal phase, c.f., figure 8.2 b). In this
case, the definition of the effective system dimension from chapter 3 cannot be applied.
However, considering a small particle number restores the Dulong-Petit law in a certain
temperature regime for the price that the phase transition from the BEC to the thermal
regime is largely smeared out and turns into a smooth crossover. In the BEC regime,
on the other hand, the inner energy behaves as usual and converges for T → 0 to the
ground-state energy, and the specific heat for fixed particle numberN obeys the standard
power law behaviour, i.e., CN ∝ T/Tc in the 1D case and CN ∝ (T/Tc)

2 in the 2D case.
Therefore, the definition of the effective system dimension from chapter 3 in the BEC
case can still be used.
In view of future experiments, an analytical evaluation of the thermodynamics of the
harmonic dimple potential is necessary. Especially, the mapping T/Tc = (Nc/N)1/D for
a given dimension D needs to be worked out analytically for the dimple potential. This
turns out to be essential, as photon BEC experiments rely on tuning the particle number
instead of changing the temperature [116].

8.1.2. Box Dimple Potential

Another interesting case for the experiment is the finite box potential and the dimen-
sional crossover in this setting. As in the case of the harmonic dimple potential, it is
sufficient to take into account only the box eigenenergie. Here, the same questions as
in the case of the harmonic dimple potential arise: What is the influence of the finite
cutoff, and how can the effective system dimension be defined?
The inner energy is defined in the same manner as for the harmonic dimple potential by
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Fig. 8.3: a) Inner energy and b) specific heat per particle for the box dimple potential.
The blue curves correspond to the 2D case with λ = 1 and the orange curves
belong to a trap-aspect ratio λ = 10. The solid lines are for N = 100 and the
dashed lines for N = 10 particles.

(8.5), but just replacing the harmonic oscillator eigenenergies with the box eigenergies

Ebox
n = E0n

2 , (8.9)

where E0 = π2ℏ2/(2mL2) denotes the ground-state energy of a 1D box with length
L. In the box case, the trap-aspect ratio λ is defined via the ratio λ = L2

x/L
2
y of the

squares of the lengths in the x- and y-direction, respectively. This definition ensures
that box and harmonic potential are comparable. Due to the quadratic scaling of the
energy with the quantum number n, much fewer states exist in the box dimple potential
compared to the harmonic dimple potential, provided both length scales are comparable,
i.e., L ∼

√
ℏ/(mωd) . Consequently, finite-size effects are even more important as in the

harmonic case. Figure 8.3 shows the inner energy and specific heat of the box dimple
potential. Both quantities behave qualitatively like in the harmonic case in figure 8.2,
namely, the existence of an upper bound of the energy prevents the Dulong-Petit law
to exist. In both the 2D and the quasi-1D case, the transition of the specific heat is
smooth, showing that in this case rather a crossover from BEC phase to thermal phase
than a phase transition occurs. In the 1D case, the specific heat does nearly not change
at all. Thus, the interesting question arises, how to characterise the phases in the quasi
1D case.
However, for a sincere interpretation of the data in figure 8.3 an analytical theory for the
infinite deep box potential needs to be worked out. With this at hand, the corresponding
dependency of the specific heat upon the system dimension would be available, allowing
to define the effective system dimension at the dimensional crossover analogue to chapter
3.

8.2. Projected Gross-Pitaevskii Equation

The mean-field model in subsection 1.3.3 defined by equations (1.60) and (1.61) bears
an unstable behaviour due to the increasing width of the temperature distribution, as
chapter 2 discusses. This results from not considering the absorption and re-emission of
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photons in this approach. Therefore, a possible way for improving the model consists in
coupling the mean-field model to rate equations from subsection 1.3.2. On the simplest
level, this may be done by expanding the photon-gas wave function ψ in an appropriate
basis set {ψm} of some Hamiltonian Ĥ with Ĥψm = ℏωmψm. The corresponding
expansion coefficients

am =

∫
d2x ψ∗

mψ (8.10)

allow bringing together the Gross-Piatevskii equation (1.60) with the molecular popula-
tion of the ground and excited states according to

ψ̇ =− i

ℏ

(
−ℏ2∇2

2m
+ V (x) + gT∆T − iκ

2

)
ψ

+
1

2

∑

m

[B↓(ωm)N↑ −B↑(ωm)N↓] amψm ,
(8.11)

with the same notations as in subsections 1.3.2 and 1.3.3. The first line in (8.11) de-
scribes the evolution acting on the whole wave function, i.e., both the coherent evolution
and the cavity decay. The second line considers the absorption and emission of the dye
molecules, such that different absorption and emission rates B↑↓(ωm) for different modes
are taken into account. The corresponding temperature diffusion equation (1.61) is not
altered. The rate equations for the matter (1.52) and (1.53) have the same form, except
from identifying nm = |am|2. However, one has to neglect the spontaneous emission
in the matter rate equations, if the projected Gross-Pitaevskii equation is taken in the
form (8.11). The spontaneous emission may be restored by appropriate stochastic terms
therein. Moreover, when performing numerical simulations, the numerical procedure
needs to ensure that the coherent evolution in (8.11) does not leave the considered part
of the basis set. Or, to put in other words, also the coherent evolution has to respect
the cutoff introduced in the wave function expansion. This consideration brings the
approach described in this section close to the realm of projected Gross-Pitaevskii equa-
tions [142–144].
With this method at hand, the aim consists in working out the dynamical properties
of the thermo-optic interaction, the prospect of superfluidity of photon BECs and ulti-
mately the vortex physics of photon gases. Therefore, this model has the potential for
improving the stochastic model (1.66).

8.3. Vortices

The question of vortices in photon Bose-Einstein condensates is both an interesting and
a challenging one, as it represents an open-dissipative system with very small or even
without interaction. The works by Michiel Wouters et al., which are discussed in sub-
section 1.3.4 and are based on the stochastic equation (1.66), reveal that, indeed, no
interaction is needed for creating stable vortices, provided the matter introduces some
non-linearity. However, the drawback is that these works are only numerical and so far
neither a theoretical analysis nor a corresponding experiment has been performed.
The study [78] provides a simple test model for these considerations. The correspond-
ing open-dissipative Gross-Pitaevskii equation, originally developed for exciton-polariton
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Fig. 8.4: Rise of vortex lattice from the open-dissipative Gross-Pitaevskii equation (8.12)
with g = 0. The different slides show the photon density for different times.
In the numerical simulation, the emerging vortex lattice rotates. The spatial
coordinates are rescaled by the oscillator length losc =

√
ℏ/(mΩ) and the time

coordinates by the trap frequency Ω. The pump spot has a radius of R = 3losc
and a rate of p = 3Ω. The non-linear constant is given by Γ = Ω.

BECs, reads

iℏψ̇ =

(
−ℏ2∇2

2m
+ V (x) + g|ψ|2

)
ψ + iℏ

(
p− Γ|ψ|2

)
ψ . (8.12)

Here, the first term on the right-hand side represents the standard Gross-Pitaevskii equa-
tion with the external potential V (x) and the interaction strength g. The second term
stems from the open-dissipative character, with p being the pump parameter and Γ the
non-linear loss channel. It turns out that for homogeneous pumping the steady state of
(8.12) is unstable, and for a finite homogeneous pump spot even a rotating vortex lattice
emerges.
The interaction-free regime g = 0 is of special interest for the photon Bose-Einstein con-
densate. The open-dissipative term is in this case reminiscent of an adiabatic elimination
of the matter degrees of freedom, and the non-linearity traces back to the matter satur-
ation, compare to the laser equation (1.5). A numerical evaluation of the corresponding
equation (8.12) for g = 0 reveals the existence of vortex lattices even in this situation.
Figure 8.4 shows the emergence of a rotating vortex lattice from equation (8.12) for van-
ishing interaction strength in the case of a harmonic potential V = mΩ2x2/2. However,
the interpretation of vortices in this situation is slightly different from that in closed sys-
tems. According to (8.12) the loss is large, where the photon density |ψ|2 is large. Right
at the vortex core, the photon density vanishes, such that there is only the pump term p
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present. As a result, the vortex acts like a “particle canon”. This behaviour is confirmed
by observing the flux j = ℏ/mIm (ψ∗∇ψ) of the condensate near the vortex. Reference
[68] studies this in detail for a similar equation for exciton-polariton condensates, see
figure 1.9 in subsection 1.2.2. The authors find exactly the described behaviour, with
the flux pointing to the outside of the vortex.

8.4. P-Function Representation for Photon Bose-Einstein
Condensate

Subsection 1.1.2 introduces a P -function representation for the photon field inside a
laser cavity, which adiabatically eliminates the matter degrees of freedom. The same
approach allows for treating the photon BEC master equation (1.64). For the sake of
simplicity, this section just discusses the P -function approach for the thermalisation part
of the master equation and neglects the coherent dye-photon coupling.

P-Function Thus, the master equation is given by

˙̂ρ = −i
∑

n

[
δnâ

†
nân, ρ̂

]
− 1

2

{
κ
∑

n

L [ân] +
∑

m

(
Γ↑L

[
σ̂+m
]
+ Γ↓L

[
σ̂−m
])
}
ρ̂

− 1

2

∑

nm

{
γ+nL[ânσ̂+m] + γ−nL[â†nσ̂−m]

}
ρ̂ ,

(8.13)

where the notations are the same as in the master equation (1.64) and L[x̂]ρ̂ denotes the
Lindblad superoperator. The ansatz (1.18) for the density matrix is here generalised to
many photon modes and reads

ρ̂ =

{∏

n

∫
d2αn |αn⟩ ⟨αn|

}
χ̂({αn, α

∗
n}) , (8.14)

with χ̂ playing the role of the P -function for the photons and being a density matrix
for the matter. Moreover, |α⟩n denotes the nth coherent state, to which the stochastic
variable αn is linked via the eigenvalue equation ân |αn⟩ = αn |αn⟩. Applying the
correspondence rules (1.19) yields the evolution to split in three different parts. The
first describes the evolution of the light field only and reads

LFχ̂ =
∑

n

{
∂

∂αn
αn

(
iδn +

κ

2

)
+ c.c.

}
χ̂ . (8.15)

The matter in this approach follows the Liouvillian

LMχ̂ = −1

2

∑

m

{(
Γ↑ +

∑

n

|αn|2
)
L[σ̂+m]

+

[
Γ↓ +

∑

n

(
|αn|2 −

∂

∂αn
αn − ∂

∂α∗
n

α∗
n

)]
L[σ̂−m]

}
χ̂ .

(8.16)

Although the photon numbers |αn|2 appear in (8.16), this does not represent an inter-
action between light and matter, since these terms vanish when tracing out the matter
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8.4. P-Function Representation for Photon Bose-Einstein Condensate

degrees of freedom. Instead, it adds to the incoherent pump and decay channels. Finally,
the light-matter interaction is described by

LMFχ̂ = −1

2

∑

nm

{
γ−n

[
∂

∂αn
αnχ̂σ̂

+
mσ̂

−
m + h.c.− 2

∂2

∂αn∂α∗
n

σ̂−mχ̂σ̂
+
m

]

− γ+n

[
∂

∂αn
αnσ̂

−
mσ̂

+
mχ̂+ h.c.

]}
.

(8.17)

The total time evolution of the density matrix χ̂ is then described by

˙̂χ = (LF + LM + LMF) χ̂ . (8.18)

Fokker-Planck Equation As in subsection 1.1.2, the Fokker-Planck equation for the
photon modes is derived under the assumption that the total density matrix χ̂ factorises
into the P -function and the density matrix χ̂M of the matter, which is assumed to be in
its steady state. Tracing over the matter degrees of freedom in (8.18) yields already the
form of the Fokker-Planck equation as

Ṗ =
∑

n

{
∂

∂αn
αn

[
iδn +

κ

2
−
∑

m

(
γ−n
2

1 + ⟨σ̂zm⟩M
2

− γ+n
2

1− ⟨σ̂zm⟩M
2

)]
+ c.c.

+
∑

m

γ−n
∂2

∂αn∂α∗
n

1 + ⟨σ̂zm⟩M
2

}
P .

(8.19)

Equation (8.19) is already close to the form of a Fokker-Planck equation, just the expect-
ation value of the σ̂z operators has to be calculated. With the matter Liouvillian (8.16)
this is calculated from evaluating 0 = trM [σ̂zn(LM + LMF)χ̂]. As equation (8.19) already
contains second-order derivates of ⟨σ̂zm⟩M, the appearing derivates in the Liouvillian
(8.16) are neglected. This procedure results in

⟨σ̂zm⟩M ≈ Γ↑ − Γ↓ +
∑

n

[
γ+n |αn|2 − γ−n

(
|αn|2 + 1

)]

Γ↑ + Γ↓ +
∑

n

[
γ+n |αn|2 + γ−n (|αn|2 + 1)

] . (8.20)

Due to this approximation, equation (8.19) is, indeed, a Fokker-Planck equation for the
different photon modes, which can be interpreted in the following way. The first line of
(8.19) describes the coherent evolution, as well as stimulated emission and absorption.
The second line, on the other hand, accounts for the spontaneous emission into the re-
spective cavity mode, yielding the photon gas to thermalise. The set of Itô SDEs with
multiplicative noise corresponding to the Fokker-Planck equation (8.19) can be solved
numerically for obtaining the steady state, which figure 8.5 depicts. Figure 8.5 a) shows
for a 1D harmonic potential with trapping frequency Ω that the ground-mode occupation〈
|α0|2

〉
gets macroscopic, if the external pump Γ↑ is larger than a certain critical pump

γcrit = Γ↓eβℏΩ +
γ+
0

1−e−βℏΩ , which follows from the steady state of the coherent evolution.
The absorption and emission coefficients have to fulfil the Kennard-Stepanov relation
(1.51) for a certain temperature β. Figure 8.5 b) verifies the resulting photon distribu-
tion for a given external pump to obey the Bose-Einstein distribution (1.58). Note that
these results are comparable to a corresponding treatment of the rate equations from
subsection 1.3.2.
The Fokker-Planck equation (8.19) allows for different studies, such as the emergence of
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Fig. 8.5: Steady state resulting from simulating the set of Itô SDEs corresponding to the
Fokker-Planck equation (8.19) for the case of a 1D harmonic potential. The
first eleven modes of the harmonic potential are included, and the absorption
coefficient is simplified to be γ+n = 10κ for all modes, whereas the emission
coefficient follows the Kennard-Stepanov relation (1.51) at the temperature
ℏΩβ = 0.1. The non-radiant decay of the molecules is chosen to be Γ↓ = 0.5κ.
a) Mode occupation ni =

〈
|αi|2

〉
as function of the external pump Γ↑. The

ground state is depicted in blue, the first excited state in orange, and so on.
b) Verification of Bose-Einstein distribution of photon occupation in thermal
phase (orange, Γ↑ = 0.01γcrit) and in Bose-Einstein condensed phase (blue,
Γ↑ = 100γcrit).

coherence along the phase transition, the influence of the fluctuations, c.f., [87, 90], or it
can be generalised to also take into account the thermo-optic photon-photon interaction.
Note that the latter works here, since the thermo-optic interaction is a mean-field inter-
action per definition, c.f., chapter 5. Another possible way of improving this approach
consists of switching to the Wigner function and also take into account the full evolution
of the matter via the truncated Wigner approximation from [43].

8.5. Dye Bleaching

One point, which so far is not included in all theoretical studies and only qualitatively
in the experiments, is the dye bleaching. Subsection 1.3.1 mentions the dye bleaching
as a limiting factor of a single experimental cycle [71]. In fact, already in this timespan,
some molecules are lost, such that after each cycle the power of the pump laser has
to be increased in order to reach the desired photon number [146]. A further point of
discussion is how the dye bleaching affects the photon condensate dynamically, or, more
precisely, how can dye bleaching effectively mimic the behaviour of the thermo-optic
interaction? This has to be considered as both processes accumulate over time.
There are mainly two different processes responsible for dye bleaching. On the one hand,
a dye molecule can spontaneously decay into a metastable triplet state, such that this
molecule is not available for the remainder of the experiment. On the other hand, a
Förster resonance energy transfer yields a total loss of a molecule [147, 148]. The idea
here is that one excited dye molecule de-excites by transferring its excitation via dipole-
dipole interaction to a second excited dye molecule nearby. As a result, the energy of the
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Fig. 8.6: Mean condensate width (8.22) from the 2D equation (8.21) with harmonic po-
tential V = mΩ2x2/2. The mean is taken after a sufficient time, such that the
condensate width oscillates around its new steady state.

second molecule is so high that it breaks up and is completely lost to the experiment.
As both of these effects are proportional to the density of excited dye molecules, they
are also proportional to the photon density. Hence, in the region of high photon density
the dye molecule loss is also large, such that the photon density drops in this region. As
a result, this may look like an effective broadening of the photon condensate, which is
usually attributed to the effective photon-photon interaction. As both the dye bleaching
and the thermo-optic interaction increase slowly in time, see chapters 5 and 6 for the
latter, the distinction of these two effects is not obvious. This is in particular complic-
ated, as the dye bleaching sets an upper limit to the condensate lifetime of 500µs, but
in contrast to the thermo-optic interaction, it is not clear, whether a timescale exists for
the dye bleaching due to its non-linear origin. Therefore, a detailed modelling of the dye
bleaching is indispensable for achieving a deeper understanding of this issue.
A simple model for describing the effect of dye bleaching on the mean-field level consists
of a Gross-Pitaevskii equation with imaginary interaction

iℏψ̇ =

[
−ℏ2∇2

2m
+ V (x)

]
ψ − iδ|ψ|2ψ . (8.21)

The first term on the right-hand side consists of the kinetic and potential energy, whereas
the last term of the right-hand side considers effectively the dye bleaching, where the
prefactor δ is assumed to be non-negative. The latter leads to a non-linear decay of
the condensate. Figure 8.6 shows the results from a numerical simulation of the 2D
Gross-Pitaevskii equation (8.21) with harmonic potential V = mΩ2x2/2. It seems that,
indeed, the mean of the condensate width

σ = 2

√∫
d2x x2|ψ|2∫
d2x |ψ|2 (8.22)

tends to increase with increasing bleaching and, thus, behaves like an effective photon-
photon interaction. This underlines the importance for developing a detailed theory for
the dye-bleaching dynamics.
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A. Harmonic Oscillator Coupled to a
Bosonic Heat Bath

Systems coupled to large reservoirs are a common problem appearing in nearly every
branch of physics with regard to, e.g., thermalisation of a subsystem to a reservoir or,
as it is the case in section 1.1, when a system is externally driven. The dynamics of
these systems can be described using a variety of methods [39, 40, 149]. The present
appendix focuses on the master equation in Lindblad form, which is the most common
type of master equation in the realm of quantum optics. This kind of master equation
is also at the heart of microscopic models for photon BECs, as subsection 1.3.4 outlines.
This section illustrates the derivation of the Lindblad master equation for the important
example of a harmonic oscillator coupled to a thermal bath of harmonic oscillators. An
example of such a system is a photon mode inside a cavity coupled to the electrical field
outside the cavity, describing the decay of an optical photon mode. At first, section A.1
derives the generic form of the Born-Markov master equation. Subsection A.2 specialises
this master equation to the case a harmonic oscillator coupled to a bath of harmonic
oscillators and brings it to the form of a Lindblad master equation.

A.1. Born-Markov Master Equation

The total Hamiltonian

Ĥ = ĤS + ĤR + ĤI (A.1)

consists of a part ĤS describing the system of interest, the reservoir Hamiltonian ĤR

and the system-reservoir interaction ĤI . The energy scale of the latter is assumed to be
much smaller than the energy scale of the system and the reservoir. In order to ensure
this, the Hamiltonian (A.1) is rewritten in the form

Ĥ = ĤS + ĤR + ĤI , (A.2)

where ĤS = ĤS+
〈
ĤI

〉
R
contains the remaining system part of the interaction Hamilto-

nian with ⟨•⟩R denoting the reservoir expectation value and ĤI = ĤI −
〈
ĤI

〉
R
can be

seen as the perturbation due to the interaction of the system with the reservoir. The
dynamics of the total density matrix ρ̂ is determined by the von-Neumann equation

˙̂ρ(t) = − i

ℏ

[
Ĥ, ρ̂(t)

]
. (A.3)

The aim consists in finding an equation of motion for the system density matrix ρ̂S =
trRρ̂, where trR denotes the partial trace of the reservoir degrees of freedom. The
following derivation is abundant in literature [39, 40, 149, 150]. The derivation is most
conveniently done in the interaction picture, which, for an operator Â, is defined by

ˆ̃A(t) = e(i/ℏ)(ĤS+ĤR)tÂe(−i/ℏ)(ĤS+ĤR)t . (A.4)
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Therefore, the von-Neumann equation (A.3) takes the form

˙̂
ρ̃(t) = − i

ℏ

[
ˆ̃HI(t), ˆ̃ρ(t)

]
. (A.5)

Equation (A.5) can be formally integrated to yield

ˆ̃ρ(t) = ˆ̃ρ(0)− i

ℏ

∫ t

0
dt′

[
ˆ̃HI(t

′), ˆ̃ρ(t′)
]
. (A.6)

Inserting the integrated equation (A.6) into the differential equation (A.5) yields the
exact equation

˙̂
ρ̃(t) = − i

ℏ

[
ˆ̃HI(t), ˆ̃ρ(0)

]
− 1

ℏ2

∫ t

0
dt′

[
ˆ̃HI(t),

[
ˆ̃HI(t

′), ˆ̃ρ(t′)
]]
, (A.7)

from which several approximations are made. At first, the reservoir is assumed to be
sufficiently large such that the weak coupling to the system does not affect the reservoir’s
state. Thus, the reservoir stays in its steady state described by the density matrix ρ̂R.
Next, the initial state is chosen such that no correlations exist, i.e., ρ̂(0) = ρ̂S(0)ρ̂R. As
the system-reservoir coupling is small, this holds for all times t and it is

ˆ̃ρ(t) ≈ ˆ̃ρS(t)ρ̂R . (A.8)

The Born approximation uses the approximation (A.8) in the integral in equation (A.7).
Therefore, the resulting equation is of second order in the interaction ĤI , but still
an integro-differential equation. Finally, the Markov approximation neglects the system
memory, which corresponds to replacing ˆ̃ρS(t

′) by ˆ̃ρS(t) in the integral in (A.7), and turns
the integro-differential equation into a differential equation. Finally, tracing out the bath
degrees of freedom results in the master equation in Born-Markov approximation

˙̂
ρ̃S(t) = − 1

ℏ2

∫ t

0
dt′ trR

[
ˆ̃HI(t),

[
ˆ̃HI(t

′), ˆ̃ρS(t)ρ̂R
]]
, (A.9)

where the first term in (A.7) does not appear due to
〈
ˆ̃HI

〉
R
= 0 and ⟨•⟩R = trR(•ρ̂R)

denotes the reservoir expectation value. As a final approximation, the time evolution in
(A.9) is coarse-grained, such that the decay of the reservoir-correlation functions in (A.9)
is assumed to be much faster than the times, at which (A.9) is valid [40]. Therefore,
the lower integration limit in the time integral can be sent to −∞ and a change of the
integration variable t′ to τ = t− t′ yields

˙̂
ρ̃S(t) = − 1

ℏ2

∫ ∞

0
dτ trR

[
ˆ̃HI(t),

[
ˆ̃HI(t− τ), ˆ̃ρS(t)ρ̂R

]]
. (A.10)

The Born-Markov master equation (A.10) contains only the second-order contribution
of the system-reservoir coupling explicitly, as the first-order term is hidden in the inter-
action picture (A.4). Therefore, transforming back to the Schrödinger picture yields for
the full Born-Markov master equation

˙̂ρS(t) = − i

ℏ

[
ĤS +

〈
ĤI

〉
R
, ρ̂S(t)

]
− 1

ℏ2

∫ ∞

0
dτ trR

[
ĤI ,

[
ˆ̃HI(−τ), ρ̂S(t)ρ̂R

]]
, (A.11)

144



A.2. Master Equation of Lindblad Form

where the term
〈
ĤI

〉
R
denotes the first-order contribution in the first commutator. The

remaining time-dependency ˆ̃HI(−τ) is approximated by

ˆ̃HI(−τ) ≈ e−i/ℏ(ĤS+ĤR)τ ĤIe
i/ℏ(ĤS+ĤR)τ , (A.12)

as the double commutator in (A.11) is already of second order in the system-reservoir
coupling.

A.2. Master Equation of Lindblad Form

This section specifies the Born-Markov master equation (A.10) to the Lindblad master
equation for the special case of a harmonic oscillator coupled to a thermal bath of
harmonic oscillators. The system Hamiltonian reads

ĤS = ℏωâ†â , (A.13)

where ω is the oscillator frequency and â (â†) denotes the bosonic annihilation (cre-
ation) operator of the system oscillator. With the bosonic bath annihilation (creation)

operators b̂j (b̂†j) the bath Hamiltonian is of similar form

ĤB =
∑

j

ℏΩj b̂
†
j b̂j , (A.14)

with the bath frequencies Ωj . Finally, the system-reservoir coupling reads

ĤI = ℏg
∑

j

(
â†b̂j + âb̂†j

)
. (A.15)

Here, g denotes the interaction strength, which is assumed to be much smaller than the
frequencies ω,Ωj , i.e., g ≪ ω,Ω. The thermal state at temperature T of the bath is
governed by the reservoir density matrix [27]

ρ̂R =
∏

j

e−ℏωj b̂
†
j b̂j/(kBT )

(
1− e−ℏωj/(kBT )

)
. (A.16)

For this system, the first order term in (A.11) vanishes, as it is proportional to
〈
b̂
〉
R
= 0.

For the same reason, ĤI reduces to ĤI . The expression
∫∞
0 dτ trRĤI

ˆ̃HI(τ)ρ̂S(t)ρ̂R/ℏ2
allows for deriving the second order terms explicitly. Inserting the corresponding oper-
ators yields

1

ℏ2

∫ ∞

0
dτ trRĤI

ˆ̃HI(−τ)ρ̂S(t)ρ̂R =

g2
∑

j

∫ ∞

0
dτ
[
â†â(n̄j + 1)ei(ω−Ωj)τ + ââ†n̄je−i(ω−Ωj)τ

]
ρ̂S(t) ,

(A.17)

where n̄j =
〈
b̂†j b̂j

〉
R

denotes the only surviving second order expectation value of the

reservoir. In order to further work out the time integral, the reservoir sum is turned into
an integral with the corresponding density of states D(Ω) [39, 45]

∑

j

n̄je
i(ω−Ωj)τ ≈

∫ ∞

−∞
dΩ n̄(Ω)D(Ω)ei(ω−Ω)τ . (A.18)
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For large times τ , the integral (A.18) has a non-vanishing value, iff ω ≈ Ω. Thus, further
approximation turns the sum into a Dirac-δ function [45]

∑

j

n̄je
i(ω−Ωj)τ ≈ 2πn̄(ω)D(ω)δ(τ) . (A.19)

Inserting (A.19) into the expression (A.17) yields

1

ℏ2

∫ ∞

0
dτ trRĤI

ˆ̃HI(−τ)ρ̂S(t)ρ̂R ≈ g2πD(ω)
{
â†â[n̄(ω) + 1] + ââ†n̄(ω)

}
ρ̂S(t) . (A.20)

The remaining terms in the double commutator in the Born-Markov master equation
(A.10) can be treated in the same way. Summarising all the terms yields the Linblad
master equation for a harmonic oscillator coupled to a thermal bath of harmonic oscil-
lators

˙̂ρS(t) ≈ − i

ℏ

[
ℏωâ†â, ρs(t)

]
− γ

2

{
[n̄(ω) + 1]L[â] + n̄(ω)L[â†]

}
ρ̂S(t) , (A.21)

where

L[x̂]ρ̂S = x̂†x̂ρ̂S + ρ̂S x̂
†x̂− 2x̂ρ̂S x̂

† (A.22)

denotes the Linblad superoperator and γ = 2πg2D(ω) the rate of the corresponding
processes.
The equation of motion for the expectation value of the occupation n(t) =

〈
â†â
〉
(t) yields

a physical interpretation of the master equation (A.21). By using ṅ(t) = tr
(
â†â ˙̂ρS(t)

)

the equation of motion for n takes the form

ṅ(t) = γ(−n(t) + n̄) , (A.23)

with the solution

n(t) = n0e
−γt + n̄

(
1− e−γt

)
, (A.24)

where n0 is the initial cavity occupation. The solution (A.24) reveals the bath pushing
the system into the bath’s steady state with the rate γ. In the case n̄ = 0, which occurs
for instance for an optical cavity at room temperature, the solution (A.24) tends to 0.
In the master equation (A.21) only the first Lindblad superoperator survives, revealing
its interpretation as a pure dissipator. Thus, the second Lindblad superoperator pumps
particles into the system, establishing the finite steady state limt→∞ n(t) = n̄.
The equation (A.21) builds the foundation for describing incoherent processes, as they
occur due to incoherent pumping, like in subsection 1.1.2 for pump and dissipative
processes in the laser or in subsection 1.3.4 for describing incoherent absorption and
emission processes in the photon BEC setup. Hence, the reasoning outlined in this
appendix can be straightforwardly generalised to more involved system-bath couplings,
while the ideas and the general interpretations do not change.
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B. Effective Steady State of Temperature

The thermo-optic photon-photon interaction introduced in subsection 1.3.1 highly de-
pends on the temperature diffusion inside the microcavity. In particular, the strength
of the thermo-optic interaction is proportional to the temperature accumulated during
a single experiment, as figure 1.13 a) depicts. This is especially important, as the maxi-
mum condensate lifetime is limited by the dye bleaching, as outlined in subsection 1.3.1
and in section 8.5. Therefore, this appendix deals with the quasi steady-state of the
temperature amplitude during a whole experimental sequence, as it is depicted in figure
1.13 c). As the temperature decay time τ is much larger than the condensate lifetime
texp, a δ-function peak models the temperature gain ∆T during a single experiment. For
the detailed timescales, consider figure 1.13 a). The temperature gain is connected to
the heating rate B, the condensate lifetime texp and the photon number N in a single
pump pulse via

∆T = texpBN . (B.1)

In this appendix, ∆T is assumed to be equal throughout an experimental cycle. Hence,
the equation

Ṫ = −1

τ
T +∆T

M∑

n=1

δ(t−∆tn) (B.2)

describes the temperature amplitude during a whole sequence of M experiments, each
separated by the time ∆t. A Dirac comb models the sequence of experiments heating
the cavity. The first step for working out the solution of (B.2) is to consider a single
pulse at t = ∆t. Integrating equation (B.2) from ∆t− ϵ to ∆t+ ϵ and taking the limit
ϵ → 0 yields the temperature gain ∆T during this pulse. For t > ∆t, equation (B.2)
reduces to a simple decay equation. Hence, for a single pulse at t = ∆t the temperature
amounts to

T =

{
0 , 0 ≤ t < ∆t

∆Te−(t−∆t)/τ , t ≥ ∆t
. (B.3)

Combining now two δ-function peaks leads with the same reasoning to

T =





0 , 0 ≤ t < ∆t

∆Te−(t−∆t)/τ ,∆t ≤ t < 2∆t

∆T
(
1 + e−∆t/τ

)
e−(t−2∆t)/τ , t ≥ 2∆t

. (B.4)

Therefore, the temperature amplitude TM after M experiments, i.e., TM = T (∆tM)
takes the recursive form

TM = ∆T + TM−1e
−∆t/τ , (B.5)
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Fig. B.1: Comparison of the solutions of the temperature equation (B.2) for ∆t = τ/2.
The blue line is the direct numerical solution of (B.2), whereas the orange
markers indicate the temperature amplitude right after a δ-function peak from
the explicit expression (B.6). The dashed green line indicates the maximal
temperature (B.7).

with T1 = ∆T and formally defining T0 = 0. Bringing (B.5) into explicit form and
solving the resulting geometric series yields for the total temperature

TM = ∆T
1− e−M∆t/τ

1− e−∆t/τ
. (B.6)

The maximum temperature of (B.6) corresponds to the limit M → ∞ and is given by

Tmax =
∆T

1− e−∆t/τ
. (B.7)

Equation (B.7) shows how the maximal temperature depends on ∆T and the ratio ∆t/τ .
Figure B.1 compares the different solutions with each other.
In the case of ∆t ≫ τ subsequent experiments do not influence each other, as here
Tmax = ∆T , i.e., the maximally reached temperature is just the one from a single
experiment. On the other hand, realistic experimental settings [71] amount to τ ∼ 1 s
and ∆t ≈ 8ms, realising the opposite case τ ≫ ∆t. With (B.1) the maximal temperature
(B.7) acquires the form

Tmax = στBN , (B.8)

where σ = texp/∆t is the so-called duty cycle of the experiment, which has in most
experiments the value σ = 1/16 000 due to the condensate lifetime texp = 500 ns. Thus,
the larger the duty cycle, i.e., the condensate lifetime, the larger the interaction. The
result (B.8) already shows that a theory working with a CW pump, as it is assumed in
chapters 2 and 4, has to average over the different pump pulses.
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C. Derivation of Microscopic Model

For a full description of photon Bose-Einstein condensation, a deeper understanding of
the microscopic absorption and emission processes of photons with dye molecules is ne-
cessary. Molecules are complex structures built of atomic nuclei and electrons, which
all interact with each other. Therefore, not only the pure electronic transitions, but
also the molecular vibrations contribute to the absorption and re-emission processes.
This electron-phonon coupling is at the focus of section C.1. Starting with the fun-
damental Hamiltonian of a molecule, this section derives the effective Hamiltonian for
only two electronic levels coupled to phononic excitations of the molecule in the form
of a Spin-Boson model. Subsequently, section C.2 couples the resulting Hamiltonian
to a single photonic mode, constituting the microscopic model of a photon BEC. The
section continues with deriving the photon BEC master equation (8.18). For this pur-
pose, the molecule-photon Hamiltonian dynamics is enriched by the external dissipative
processes. After tracing out the phononic degrees of freedom by means of a Lindblad
master equation as in appendix A, this more complex model yields the photon BEC
master equation (8.18). In contrast to the derivation of the Lindblad master equation
in appendix A, the interaction picture used in this section has to be modified in order
to include the external dissipative processes. The arising dissipative interaction picture
[151, 152] allows for using the Born-Markov master equation (A.11) as a starting point.

C.1. Molecular Hamiltonian

The generic Hamiltonian of a molecule

Ĥmol = T̂N + T̂e + V (r̂, R̂) (C.1)

does not only contain the kinetic energy T̂N of the nuclei, but also the kinetic energy T̂e of
the electrons and the interaction V (r̂, R̂), which depends on both, the electron position
r̂ and the position of the nuclei R̂. The details of the Hamiltonian (C.1) are not of
interest for the purpose of this appendix, but can be found in textbooks of molecular
physics, e.g., [153, 154]. The Born-Oppenheimer approximation assumes the timescales
of the nuclei and the electrons to be separated, such that the electrons adiabatically
depend upon the nuclear motions. Thus, assuming only two electronic levels, |g⟩ and
|e⟩ for ground and excited state, respectively, the adiabatic Hamiltonian (C.1) takes the
form [155–158]

Ĥmol = |g⟩ ⟨g| Ĥg(R̂) + |e⟩ ⟨e| Ĥe(R̂) , (C.2)

where the Hamiltonians

Ĥg/e(R̂) = T̂N + ℏΩg/e(R̂) (C.3)

describe the nuclear energies in the electronic ground and excited state, respectively,
which depend on the electronic energies ℏΩg/e(R̂) themselves. Expanding the energies
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ℏΩ•(R̂) around the potential minimum allows for writing the nuclear Hamiltonians in the
form of harmonic oscillators, such that the nuclear Hamiltonian (C.3) for the electronic
ground state can be written in the form

Ĥg =
∑

i

(
p̂2i
2mi

+
miω

2
i q̂

2
i

2

)
+ ℏΩ0g . (C.4)

Here, p̂i and q̂i denote the operators for the excitations of nuclear equilibrium configu-
rations in the electronic ground state, mi the corresponding masses and ωi the accom-
panying oscillation eigenfrequencies. Note that the index i also includes the different
polarisation degrees of freedom.
The displacements di accounting for a different nuclear equilibrium position slightly alter
the nuclear Hamiltonian for the excited electronic state, such that

Ĥe =
∑

i

[
p̂2i
2mi

+
miω

2
i (q̂i + di)

2

2

]
+ ℏΩ0e . (C.5)

Note that the displacement di is also responsible for the Stokes shift, i.e., a relative
shift between the maxima of the absorption and emission spectrum, respectively. In the
following, it is more convenient to shift the nuclear coordinates to q̂i → q̂i + di/2 and
the energies to the energy gap ∆ = Ω0e − Ω0g. These shifts allow for introducing the

standard harmonic-oscillator ladder operators b̂i for the phononic degrees of freedom.
Hence, the Hamiltonians (C.4) and (C.5) can be brought to the form

Ĥg/e =
∑

i

ℏωib̂
†
i b̂i ∓

∑

i

ℏωi

√
Si

(
b̂†i + b̂i

)
∓ ℏ∆

2
+
∑

i

ℏωiSi , (C.6)

where the upper signs are for the ground state and the lower signs for the excited state.
Moreover, Si = mωid

2
i /(8ℏ) denotes the Huang-Rhys factor [156, 158], which denotes

the coupling of the corresponding phonon state to the electronic transition. Note that in
standard photon BEC models [83, 84] the Huang-Rhys factor is assumed to be the same
for all modes. Inserting the Hamiltonians (C.6) into the total molecular Hamiltonian
(C.2) finally yields

Ĥmol =
∑

i

ℏωib̂
†
i b̂i +

[
ℏ∆
2

+
∑

i

ℏ
√
Si

(
b̂†i + b̂i

)]
σ̂z . (C.7)

Here, the representations Î = |g⟩ ⟨g|+ |e⟩ ⟨e| and σ̂z = |e⟩ ⟨e| − |g⟩ ⟨g| for the electronic
identity and the electronic population are used. Moreover, the constant energy shift∑

i ℏωiSi has been neglected. Hence, the molecule is effectively modelled by a two-level
system with energy spacing ∆ coupled to a bath of harmonic oscillators.

C.2. Photon BEC Master Equation

The remaining chapter derives the master equation for a photon BEC, as used in [33,
83, 84, 152]. In order to simplify the derivation, only a single cavity mode and a single
molecule is considered. Within this simplification, the molecular Hamiltonian (C.7)
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coupled to the photon mode with frequency Ω, denoted by â, in the sense of Jaynes-
Cummings, as introduced in subsection 1.1.2 and in references [28, 39], builds the total
Hamiltonian as

Ĥ = ℏΩâ†â+

[
ℏ∆
2

+
∑

i

ℏ
√
Si

(
b̂†i + b̂i

)]
σ̂z + g

(
â†σ̂− + âσ̂+

)
, (C.8)

where g denotes the light-matter coupling strength and â (â†) is the photonic annihilation
(creation) operator. The polaron transformation Ĥ = ÛĤÛ †, where the transformation
is defined by

Û = exp

{
σ̂z
∑

i

√
Si
ωi

(
b̂†i − b̂i

)}
, (C.9)

allows for treating the electron-phonon coupling up to infinite order [33, 83, 84, 152].
This is essential for the thermalisation of the photon gas inside the cavity, as the trans-
formation also includes multi-phonon processes. In the result, the Hamiltonian (C.8)
takes the form

Ĥ = ℏΩâ†â+
∑

i

ℏωib̂
†
i b̂i +

ℏ∆
2
σ̂z + ℏg

(
â†σ̂−D̂− + âσ̂+D̂+

)
, (C.10)

with the polaron displacement operator

D̂± = exp

{
±
∑

i

2
√
Si
ωi

(
b̂†i − b̂i

)}
. (C.11)

The system is subject to loss and external pump processes. Therefore, the Hamiltonian
(C.10) is not sufficient for the description. Instead, the following master equation with
the dissipator D is considered:

˙̂ρ = − i

ℏ

[
Ĥ, ρ̂

]
−Dρ̂ , (C.12)

where D includes the cavity loss κ, the emission into non-cavity modes Γ↓ and the
external pump rate Γ↑ and has the form:

Dρ̂ =
1

2

{
κL[â] + Γ↓L[σ̂−] + Γ↑L[σ̂+]

}
ρ̂ , (C.13)

with the Lindblad superoperator L[x̂]ρ̂ as defined in (A.22). As a remark for later
usage, note that the right-hand side of the intermediate master equation (C.12) can be
summarised by the Liouvillian L, such that the total time evolution of the density matrix
is formally given by

ρ̂(t) = eLtρ̂(0) . (C.14)

As the processes captured in the Lindblad part in equation (C.12) already present a
bath for the whole system, it also effects the “inner” bath of the phonons. Hence, this
model is also called bath-in-the-bath or nested model.
In the following, the phonon bath is assumed to be in a thermal steady state and, there-
fore, eliminated from the dynamics by means of a master equation approach as in ap-
pendix A. This comes together with the standard assumption for the Kennard-Stepanov
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relation, in which the vibrational degrees of freedom of a molecule are thermalised to
their surroundings before and after the photon emission [76, 77]. In order to achieve
this, the “dissipative interaction picture” turns out to replace the standard interaction
picture used in the derivation of the Born-Markov master equation (A.11). This kind
of interaction picture was developed in [151] and used in [152]. As in appendix A, the
following parts of the total Hamiltonian (C.10) are identified. The system Hamiltonian
ĤS is given by

ĤS = ℏΩâ†â+
ℏ∆
2
σ̂z + ℏg

(
â†σ̂−

〈
D̂−
〉
R
+ âσ̂+

〈
D̂+
〉
R

)
, (C.15)

where ⟨•̂⟩R = trR(•̂ρR) denotes the expectation value with respect to the thermal phonon
bath and ρR the respective phonon density matrix. The reservoir Hamiltonian reads

ĤR =
∑

i

ℏωib̂
†
i b̂i . (C.16)

Using ∆D̂± = D̂± −
〈
D̂±
〉
R
, the interaction Hamiltonian is given by

ĤI = ℏg
(
â†σ̂−∆D̂− + âσ̂+∆D̂+

)
. (C.17)

Note that most references, which derive the photon BEC master equation, do not con-
sider this. So far, only [33] takes this mandatory rewriting of the Hamiltonian into
account.

Dissipative Interaction Picture In section A.1 the interaction picture was defined with
respect to ĤS+ĤR. Now, this interaction picture is modified to also include the influence
of the Lindbladian part of the intermediate master equation (C.12), which describes the
influence of the outer bath. This is most conveniently done by the dissipative interaction
picture [151], which is formally defined by

ρ̂ = e(LS+LR+LD)t ˆ̃ρ , (C.18)

where L• denotes the Liouvillian superoperator with respect to the evolution with
ĤS , ĤR, D. The adjoint equation of motion allows adapting equation (C.18) to the
operator level. In general, the adjoint equation of an operator X̂ with a Hamiltonian ĥ

and Lindbladian L
[
Ŷ
]
, where Ŷ is some jump operator, has the form

˙̂
X =

i

ℏ

[
ĥ, X̂

]
− L†

[
Ŷ
]
X̂ , (C.19)

with the adjoint Lindbladian

L†
[
Ŷ
]
X̂ =

[
X̂, Ŷ †

]
Ŷ + Ŷ †

[
Ŷ , X̂

]
. (C.20)

The first term in (C.19) represents the standard Heisenberg equation of motion for the
operator X̂, whereas the second term takes into account the open-dissipative dynamics.
On formal grounds the adjoint Liouvillian L† summarises the right-hand side of equation
(C.19), such that, analogously to (C.14), the formal solution to the adjoint equation can
be written down as

X̂(t) = eL
†tX̂(0) . (C.21)
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Hence, inverting (C.21) with the adjoint Liouvillian L† = L†
S + L†

R + L†
D yields the

operator X̂(t) in the dissipative interaction picture to be [151]

ˆ̃X(t) = e−(L†
S+L†

R+L†
D)tX̂. (C.22)

In particular, this implies for the appearing time-dependent interaction Hamiltonian
ˆ̃H(−τ) in the Born-Markov master equation (A.11) [151]

ˆ̃HI(−τ) = e(L
†
S+L†

R+L†
D)τ ĤI , (C.23)

which looks like the formal solution (C.21) to the adjoint equation with the appropriate
Liouvillians corresponding to (C.15), (C.16) and (C.13). Equation (C.23) generalises the
interaction-picture representation of (A.12) to a dissipative-interaction picture. Note
that the time in (C.23) is inverted with respect to (A.12), which is due to the derivation
of (C.23) via the adjoint equation of motion. As in (A.12) the evolution due to the system
Liouvillian is only with respect to ĤS , as the corresponding term in the Born-Markov
equation is already of second order in the system-reservoir coupling. Conclusively, the
Born-Markov master equation (A.11) for the photon BEC takes the form [151, 152]

˙̂ρS(t) = − i

ℏ

[
ĤS , ρ̂S(t)

]
−Dρ̂S(t)−

1

ℏ2

∫ ∞

0
dτ trR

[
ĤI ,

[
e(L

†
S+L†

R+L†
D)τ
(
ĤI

)
, ρ̂S(t)ρ̂R

]]
,

(C.24)

with the Hamiltonians for the system (C.15), the interaction (C.17) and the dissipator
(C.13).
Before continuing with the actual derivation of the photon BEC master equation, the
dissipative interaction picture for the appearing operators is summarised. As all the
operators in the interaction Hamiltonian (C.17) are defined on different Hilbert spaces,
it is sufficient to take into account the corresponding part of the adjoint equation (C.19).
This amounts for the photon operators to

d

dt
â =

(
−iΩ− κ

2

)
â , (C.25)

such that the time evolution of the photon annihilation operator takes the form

â(t) = e(−iΩ−κ/2)tâ . (C.26)

In the same manner, one finds for the electron operators

σ̂−(t) = e[−i∆−(Γ↑+Γ↓)/2]tσ̂− (C.27)

and, finally, for the phonon displacement operators

D̂±(t) = exp




∑

j

2
√
Sj

ωj

(
b̂†je

iωjt − b̂je
−iωjt

)


 . (C.28)
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Master Equation The final step for deriving the photon BEC master equation consists
in evaluating the reservoir trace for the double commutator in (C.24). First, the single
term

Ŝ(t) =
1

ℏ2

∫ ∞

0
dτ trR

{
ĤIe

(L†
S+L†

R+L†
D)τ
(
ĤI

)
ρ̂S(t)ρ̂R

}
(C.29)

with the interaction Hamiltonian (C.17) is considered. With the time-dependent oper-
ators (C.26)–(C.28) the only two surviving terms read

Ŝ(t) = g2
{
â†âσ̂−σ̂+K∗(δ) + ââ†σ̂+σ̂−K∗(−δ)

}
ρ̂S(t) , (C.30)

with the dye-cavity detuning δ = Ω−∆ and the reservoir-correlation function [33]

K(δ) = g2
∫ ∞

0
dτ
(〈
D̂−(τ)D̂+

〉
R
−
〈
D̂−(τ)

〉
R

〈
D̂+
〉
R

)
e(iδ−Γ/2)τ , (C.31)

depending on the total damping Γ = κ + Γ↑ + Γ↓. Note that in addition to [33, 83,
84] the cavity decay κ also contributes to the correlation function [152]. Reference [33]
provides a detailed modelling of the phonon bath and the corresponding treatment of
the arising bath expectation values in the reservoir-correlation function (C.31).
Treating the remaining terms in the double commutator in (C.24) in the same way yields

Ĉ(t) = − 1

ℏ2

∫ ∞

0
dτ trR

[
ĤI ,

[
e(L

†
S+L†

R+L†
D)τ
(
ĤI

)
, ρ̂S(t)ρ̂R

]]

=
[
â†σ̂−, âσ̂+ρ̂S(t)

]
K∗(δ) +

[
âσ̂+, â†σ̂−ρ̂S(t)

]
K∗(−δ)

+
[
ρ̂S(t)â

†σ̂−, âσ̂+
]
K(δ) +

[
ρ̂S(t)âσ̂

−, â†σ̂+
]
K(−δ) .

(C.32)

In the photon BEC field, it is standard to only consider the real part of the correlation
function (C.31) and to neglect the Lamb shift [33, 83, 84], which arises from the corres-
ponding imaginary part. In doing so, the double commutator (C.32) acquires the form
of two Lindblad terms

Ĉ(t) = −1

2

{
γ+L

[
âσ̂+

]
+ γ−L

[
â†σ̂−

]}
ρ̂S(t) , (C.33)

where γ+ = 2ReK(δ) describes the incoherent absorption and γ− = 2ReK(−δ) the
incoherent emission processes. These two terms are essential for the description of the
photon BEC as they introduce photon thermalisation. Therefore, the Born-Markov
master equation (C.24) now takes the form

˙̂ρS(t) = − i

ℏ

[
ĤS , ρ̂S(t)

]
−Dρ̂S(t)−

1

2

{
γ+L

[
âσ̂+

]
+ γ−L

[
â†σ̂−

]}
ρ̂S(t) , (C.34)

which is of the same form as the master equation (8.18), apart from the additional phase
diffusion, which does not stem from the interaction with the molecules.
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L. S. Dang and B. Deveaud-Plédran, ‘Quantized vortices in an exciton–polariton
condensate’, Nature Physics 4, 706 (2008).

[65] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré,
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Weggefährten wie Christoph Dauer, der mich bereits seit dem ersten Semester aushält
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