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Abstract

In the last two decades the phenomenon of Bose-Einstein condensation, where the ground state of
a quantum system of many bosons gets macroscopically occupied, has been studied extensively.
One of the latest systems, where such a phase transition can occur, is a photon Bose-Einstein
condensate. The core of the system is a dye solution filling a microcavity in which the photons are
effectively harmonically trapped. Due to cyclic absorption and reemission processes of photons
the dye leads to a thermalisation of the photon gas at room temperature. Furthermore, as a
consequence of a nonideal quantum efficiency, those cycles yield in addition a heating of the dye
solution, which results in a change of the refractive index and, thus, in an effective thermo-optic
photon-photon interaction. A second mechanism providing a photon-photon interaction is the
Kerr-effect, i.e. a nonlinearity of the refractive index that is directly proportional to the light
intensity of the photon condensate.

In this thesis we set up a mean-field theory that is able to describe a photon Bose-Einstein
condensate under influence of these two possible kinds of interaction. For this purpose we derive
on heuristic grounds a system of two equations, one for the condensate mean-field wave function
and one for the temperature that is produced by the photons diffusing through the dye solution
in the cavity. These two equations are coupled in the sense that the condensate amplitude is
the source of the temperature, whereas the temperature changes the refractive index of the dye
solution and, thus, shifts the chemical potential of the photons. We will show that this already
describes the thermo-optic effect and that pump and loss effects play an important role for the
temporal evolution of the condensate. Moreover, we make use of the fact that longitudinally
trapped photons behave as massive particles in the remaining two transversal degrees of free-
dom. As the photon equation is now purely stated in two dimensions, we also eliminate the
longitudinal degree of freedom from the temperature equation.
Equipped with this system of both two-dimensional differential equations, our aim is to look on
the imprints of the thermo-optic photon-photon interaction upon the collective excitations of
the photon Bose-Einstein condensate. Thus, we start our analysis by calculating the dispersion
relation of the homogeneous condensate. We find that, in contrast to a Bogoliubov spectrum
that is based on a closed Gross-Pitaevskii equation, here also damping and instabilities occur.
Afterwards we look into the frequencies of the lowest-lying collective excitations of the harmon-
ically trapped condensate via a linear stability analysis. Due to the open-dissipative character
of the system its energy is not conserved and, thus, it is not possible to investigate its dy-
namical properties within a usual variational approach by using an action. Instead, we work
out an approximation which is based on determining the equations of motion for the first two
cumulants under the assumption that both the condensate wave function and the temperature
distribution are Gaussian shaped. In particular, we find that the Kohn theorem is broken due
to the thermo-optic interaction, i.e. the frequency of the dipole mode turns out to depend on
the photon-photon interaction and, thus, is shifted to smaller frequencies.
Finally we eliminate the temperature degrees of freedom by using the Green’s function of the tem-
perature diffusion equation. By doing this we recover a single open-dissipative Gross-Pitaevskii
equation with an interaction that is nonlocal in both space and time due to the interplay of tem-
perature diffusion and thermo-optic interaction. With this equation at hand, we revisit again
both the homogeneous and the trapped case. Whereas in the homogeneous case the same results
as for the previous approach come out, it turns out in the trapped case that the former Gaussian
ansatz for the temperature fails for strong diffusion.





Zusammenfassung

In den vergangenen beiden Jahrzehnten wurden Bose-Einstein Kondensate, bei denen der Grund-
zustand eines quantenmechanischen Systems aus vielen Bosonen makroskopisch besetzt wird,
ausführlich untersucht. Eines der jüngsten Systeme, in denen ein solcher Übergang erzeugt wur-
de, ist ein Bose-Einstein Kondensat aus Photonen. In nuce besteht das System aus einem mit
einer Farbstofflösung gefüllten Mikroresonator, in welchem die Photonen harmonisch gefangen
sind. Da diese mehrere Male vom Farbstoff absorbiert und wieder in die Kavität emittiert werden,
bevor jene den Resonator verlassen, kann das Photonengas zur Raumtemperatur thermalisieren.
Da die Quanteneffizienz des Farbstoffs limitiert ist, führen diese Absorptions- und Emissions-
prozesse zu einer Erwärmung des Farbstoffs, wodurch sich dessen Brechungsindex ändert, was
zu einer effektiven thermooptischen Wechselwirkung zwischen den Photonen führt. Der Kerr-
Effekt, der eine Nichtlinearität des Brechungsindex proportional zur Lichtintensität beschreibt,
ist eine weitere Möglichkeit, eine solche Wechselwirkung herbeizuführen.

Diese Arbeit behandelt eine Molekularfeldtheorie, die in der Lage ist, ein Photonenkondensat,
das eben diese beiden Wechselwirkungsprozessen unterliegt, phänomenologisch zu beschreiben.
Dafür wird unter heuristischen Gesichtspunkten ein System bestehend aus zwei Gleichungen
hergeleitet, von denen eine das Kondensat und die andere die Temperatur beschreibt. Dieses ist
derart gestaltet, dass die Photonendichte als Quelle der Temperatur dient und jene über den
Brechungsindex das chemische Potential der Photonen beeinflussen kann. Es wird gezeigt, dass
diese Annahmen sowie die Beachtung von Pump und dissipativen Prozessen genügen, um den
thermooptischen Effekt zu beschreiben. Darüber hinaus wird ausgenutzt, dass sich Photonen, die
in einer Raumrichtung gefangen sind, als massive Bosonen in den verbleibenden beiden Richtun-
gen verhalten. Da die Kondensatgleichung nun zweidimensional ist, wird auch der longitudinale
Freiheitsgrad der Temperaturgleichung eliminiert.
Das Ziel besteht nun darin, die Auswirkungen der thermooptischen Wechselwirkung auf die
kollektiven Anregungen des Photonenkondensates zu untersuchen. Zu Beginn wird die Disper-
sionsrelation des homogenen Kondensates berechnet. Diese weicht vom bekannten Bogoliubov-
Spektrum einer geschlossenen Gross-Pitaevskii-Gleichung dahingehend ab, dass nun die Anre-
gungen gedämpft sind und auch Instabilitäten auftreten können.
Hernach werden durch eine lineare Stabilitätsanalyse die kollektiven Anregungen des harmonisch
gefangenen Kondensats untersucht. Hierbei muss beachtet werden, dass aufgrund der Offenheit
des Systems keine Wirkung existiert, so dass der übliche Variationszugang nicht zur Verfügung
steht. Stattdessen wird ein Verfahren benutzt, das auf den Bewegungsgleichungen der Kumulan-
ten beruht. Dazu wird angenommen, dass sowohl Kondensatwellenfunktion als auch die Tem-
peraturverteilung einem Gauß’schen Profil entsprechen. Damit lässt sich unter anderem zeigen,
dass das Kohn-Theorem aufgrund der thermooptischen Wechselwirkung nicht mehr gilt, dass
also die Frequenz der Dipolmode nicht mehr identisch der Fallenfrequenz ist und durch diese
Wechselwirkung reduziert wird.
Zuletzt wird die Temperaturgleichung formal durch eine Green’sche Funktion gelöst, woraus sich
eine einzelne Kondensatgleichung gewinnen lässt, die nun Nichtlokalitäten sowohl im Raum als
auch in der Zeit aufweist. Während dies im homogenen Falle zu denselben Ergebnissen führt,
stellt sich heraus, dass durch die Anwesenheit der harmonischen Falle der Gauß’sche Ansatz bei
starker Diffusion nicht mehr gültig ist.
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Introduction

In nova fert animus mutatas dicere formas
corpora: di, coeptis (nam vos mutastis et illas)

adspirate meis primaque ab origine mundi
ad mea perpetuam deducite tempora carmen.

P. Ovidius Naso, Metamorphoseon, ll. 1-4

My soul is wrought to sing of forms transformed
to bodies new and strange! Immortal Gods

inspire my heart, for ye have changed yourselves
and all things you have changed! Oh lead my song
in smooth and measured strains, from olden days

when earth began to this completed time!

This thesis is devoted to the theoretical understanding of an exotic state of light, it is about
what is called a Bose-Einstein condensate of light. Light, as the historic development of its
understanding shows, has been a source of new concepts through all the decades of human
thinking.

1. A Historic Introduction

Already the curiosity driven ancient Greeks spent many thoughts on the true nature of light.
In their reception light per se was at first not a phenomenon by itself but a tool for seeing the
surrounding. The philosopher Empedocles (ca. 495-435 AC), who claimed the existence of the
four roots of the being are fire, water, earth and air, explained light produced by a fire in the
eye and streaming as a ray out of the eye. But on the other hand he also expressed the view
that light is produced by the things visible and streaming on rays to the eyes [1]. A century
later the famous mathematician Euclid (about 300 AC), who brought to us the fundamentals
of geometry, also explained light by rays coming out of one’s eyes that travel at infinite speed.
He was the first one who started to examine light in a scientific way by studying the law of
refraction already by using mathematics [2]. But there was not only the school that treated
light as rays, also the atomistic point of view was already present at that time. For instance, the
Roman philosopher Lucretius (99-55 AC) claimed that light, as the remaining nature (cf. the
work of Democrit), consists of smallest particles that are non dividable [3]. As we see, already
in the ancient days the wave-particle duality was a topic to discuss upon, although it was not
guided by what is nowadays called exact reasoning.

The modern understanding of the nature and the mathematical description of light began with
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Introduction

Descartes. He understood light as a mechanical property of luminous bodies and the medium
in that it propagates. In the course of this he compared light to sound waves and was able to
describe refraction by assuming a change of its propagation velocity. He followed the analogy
between sound waves and light although he was convinced by the corpuscular theory [4]. After
him Fermat claimed that light always follows a route that takes the least time [4]. That is what
is today called Fermat’s principle and is a special case of the least action principle. In the same
century fundamental new experiments by Newton [5], who found the spectral decomposition of
light passing through a prism, and Roemer, who estimated in 1676 the light velocity to being
finite [4], were followed by new theoretical ideas. On the one hand there was Huygens with his
proposal of light being a wave that propagates through a medium that he called aether. With this
perception of light he was able to explain the findings of reflection, refraction and interference,
but he was not able to cover the straightforward movement of light in free space [6]. On the
other hand, by taking a corpuscular view on light Newton was able to describe exactly this
movement in free space as well as the occurrence of colour that he explained with the existence
of many light particles of different weight. Moreover, he was still able to describe reflection
and refraction, but he failed to describe interference effects, since this is an intrinsic property of
linear waves. In order to treat this phenomenon he expressed some thoughts on a theory that
mixes some wave-like behaviour in his corpuscular theory [5, Book III]. Thus, Newton showed
volens nolens that light cannot completely be described by only taking the one or the other point
of view.

In the following century Young was able to conduct detailed experiments on interference phenom-
ena. The most famous of those experiments is his double-slit experiment. He then was able to
propose the interference principle that underlined the wave nature of light as Huygens proposed.
Governed by the findings of Young and Huygens, Fresnel was able to formulate a mathematical
rigorous wave theory of light that was in reasonable agreement with the experiment. But there
was the problem of the deeper understanding why light can be described in exactly that way
since attempts to formulate the wave theory in terms of an collectively oscillating aether were
not successful. More insight into the physical foundations was given by the electromagnetic the-
ory developed by Maxwell that is based on the experiments of Faraday [7,8]. In this theory the
existence of electromagnetic waves follows directly from the equations postulated by Maxwell.
Due to the coincidence of the propagation velocity of the Maxwell waves with the one of the
light waves people were able to identify those electromagnetic waves with light. Concerning the
propagation medium the experiments by Michelson and Morley suggested that no aether exists
and consequently light is able to propagate through vacuum as Einstein concluded in Ref. [9].
Thus, it seemed that all questions concerning the nature of light have been answered or will be
answered in the near future. Two experimental facts that were not answered so far, however,
are the black-body radiation and the photoelectric effect.

In the beginning of the twentieth century Planck was able to solve the riddle of the black-
body radiation [10–12]. He introduced oscillators carrying energy quanta that are multiples of
the eigenfrequencies of the oscillators. With that approach he was able to justify his heuristic
interpolation of the Wien and the Rayleigh-Jeans law that described so far either the small or
long wavelength regime of the black-body radiation distribution, respectively. He was able to
show that a quantisation of the light field was necessary to find a reasonable agreement between
theory and experiment. Along those lines Einstein proposed the existence of light quanta and was
able to solve the mystery concerning the photoelectric effect [13]. From now on it was clear that
light - as the remainder of the fundamental phenomena - is in a need to be described quantum

xii



2. Quantum Fluids of Light and Exciton-Polariton Condensates

mechanically. With the upcoming wave mechanics, as it was suggested by de Broglie [14] and
formulated by Schrödinger [15,16], the old conflict between the followers of the atomistic view on
light and the ones appreciating the wave approach to light were showed to be combinable and the
compromise solution that Newton formulated in an embryonic state seems to be a forethought
of these new ideas.

In 1927 Dirac formulated at first a full quantum mechanical theory of radiation [17] and paved
the way for quantum electrodynamics. With the progress of this very theory, one was also able
to understand the interaction between light and matter at heart. This development led in the
1960s to the invention of the laser [18]. This was nothing but a taming of light as with the
technical process of this apparatus it became very easy to prepare light in some certain state
and to tweak with that light-atom interaction. Now light turned from a phenomenon worth to
be examined to a tool in the laboratories. In the spirit of this the laser cooling mechanism was
been invented and driven forward by Chu, Phillips and Cohen-Tannoudji.

It turned out, that laser cooling is one of the basic techniques needed to get a Bose-Einstein
condensate (BEC). Within this state of bosonic matter, where apart from the thermal cloud,
the bosons occupy the same quantum mechanical state and behave collectively as a quantum
liquid. The first BEC was achieved by Cornell and Wieman [19] as well as by Ketterle [20] in
1995, since then the field of ultracold atoms evolved rapidly and soon the basic properties of
BECs became well known facts.
In today’s research BECs are used as a tool to simulate quantum mechanical systems that are
not directly experimentally accessible or hard to prepare. One example is a BEC in an optical
lattice. Here, one can show that the excitations of the BEC fulfil a dispersion relation that is
analogue to that of electrons in a solid material [21].
A second example is the simulation of black-hole physics with BECs [22]. As the sound velocity
in such a system is finite, one can construct an ereignishorizont in a supersonic BEC, as the
sound velocity plays the role of light velocity in general relativity.
Thus, one can use BECs to simulate different physical systems and resembles physics as the "art
of interchangeable" [23]. One can also ask the question about turning the point of view and let
photons condensate due to the interaction with matter and not to use light as a technique that
allows for tweaking matter.

2. Quantum Fluids of Light and Exciton-Polariton Condensates

Light in a cavity behaves as if it possesses a mass and obeys a two-dimensional Schrödinger
equation, a behaviour that is introduced by the cavity cutoff. Moreover, if the cavity is filled
with a nonlinear material, also photon-photon interactions exist and, depending on the material,
become a relevant part of the temporal evolution. This is the point, where photons start to
behave in a collective manner. Thus, with enough photons in the nonlinear cavity, they behave
as a quantum fluid. Indeed, it was shown in [24] that the equations for an electromagnetic
field in a cavity can be rewritten in a hydrodynamic form and that certain spatial patterns,
which are expected from usual hydrodynamics, can occur. Moreover, it could be shown that
in a nonlinear laser cavity the electric field undergoes a nonequilibrium second-order phase
transition to the lasing behaviour and the nonlinearity of the cavity yields an effective photon-
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FIG. 1: Principle of the first exciton-polariton BEC [31]. The exciton-polariton gas is pumped
by injecting coherently polaritons at a certain point of the dispersion relation indicated by the
point pumping.

photon interaction [25].
Also superfluidity of light was observed. In [26] light was sent through a nonlinear bulk medium.
By means of the paraxial approximation the propagation in the direction of the bulk medium
can be mapped to the time evolution of a two-dimensional superfluid of light. In this system
stable vortices have been observed. Today a similar experimental setup is used to simulate
astronomical effects like the creation of Bose stars [27]. A similar experiment, in which lights
behaves as a superfluid, was recently reported in [28]. In this setup light passed through a cell
filled with atomic vapour. Since the vapour responds nonlinear to the light moving through the
cell, also here a nonlinear photon fluid emerges.

Therefore, the question arises whether light can also undergo an equilibrium phase transition to
a Bose-Einstein condensate. However, the first condensate of light was not a condensate of pure
light, but a nonequilibrium condensate of exciton-polaritons. For a detailed review on this topic,
we refer to [29,30]. These are condensates of quasi-particles, which are built up of electron-hole
pairs and cavity photons. This was achieved for the first time in the experiment of [31], whose
principle is shown in Figure 1. Here, the cavity is pumped coherently, i.e. resonantly near the
dispersion minimum. The injected excitations can then relax towards the minimum of the lower
polariton dispersion. Above a certain pump threshold a parametric oscillation occurs that is
due to a spontaneous U(1) symmetry breaking, [32]. However, this leads to a nonthermalised
condensate.
In order to achieve thermalisation of the condensate one needs to inject polaritons incoherently
into the cavity, since under this circumstance interactions with the environment are much more
relevant in order to relax to the ground state, see Figure 2. Therefore, a quasithermal state can
evolve and, if the pump power exceeds the BEC threshold, even a thermalised BEC can occur,
as was successfully demonstrated in [33]. Therefore, one gets an open-dissipative condensate,
since it is coupled to a reservoir and polaritons can also be emitted. One year later, a heuristic
mean-field model was introduced in order to describe this condensate [34]. This model consists
of a Gross-Pitaevskii equation for the condensate that has also an imaginary part acting on
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3. Outline

(a) (b)

FIG. 2: Experimental principle from [33]. Panel (a) shows the dispersion relation of the polari-
tons and the incoherent excitation principle. The laser excites free carrier states at high energy,
which then decay into polariton states. If the pump intensity is high enough, a BEC can form
in the lowest polariton state. Panel (b) shows the creation of the condensate.

the amplitude of the condensate wave function in order to take pump and loss into account.
Moreover, also the reservoir is modelled by a diffusion equation, that is coupled to the Gross-
Pitaevskii equation. With this model it becomes possible to answer fundamental questions as
the condensate dispersion and also examine the condensate in a double well potential.

Finally one can ask the question whether pure photons can condensate. This question was
tackled in 2010 by the group of Martin Weitz [35] and already brings us to the topic of the
present thesis.

3. Outline

In this thesis the question is formulated, whether a mean-field model for the photon BEC exists
that is as easy as the one presented in [34] for the exciton-polariton BEC. For this purpose the
thesis consists of three parts. The first part is dedicated to the experimental and theoretical
foundations of the experiment. In Chapter 1 basic physical mechanisms and the experimental
setup, which is needed to achieve a photon BEC, is explained. Following that, an overview
over the recent results is also given. As we will see, the debate on the origin of the effective
photon-photon interaction is still going on. The nature of the interaction is the second question
that underlies this thesis. We will assume that a thermo-optic interaction dominates and then
peal out what are the signs of this very interaction. In particular, we examine the effect of this
interaction upon the frequencies of the collective modes of the condensate.

Equipped with the experimental knowledge we proceed in deriving the equation of motion of
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the photon BEC in Chapter 2. The essence of this equation is already encoded in Maxwell’s
equations. But, as the aim is to describe the photon BEC in presence of a thermo-optic in-
teraction, it turns out that also an evolution equation for the temperature is needed, which
is produced by ongoing absorption and reemission processes of light in the dye solution and
spreading through this solution. That equation is provided by the thermal diffusion equation,
where the photon condensate appears as the source. After projecting the resulting equations to
the longitudinal cavity modes, we argue that only one mode of the condensate wave function and
one of the temperature, respectively, is relevant. The resulting two equations for the remaining
transversal degrees of freedom are then shown to be formally equivalent to similar equations in
the exciton-polariton case.

In the second part of the thesis the equations, that have been derived in the first part, are
analysed in detail. In Chapter 3 we deal with the homogeneous system and determine its
spectrum. As the system is open-dissipative, we find that this spectrum does not only consist of
eigenfrequencies for a given wave number but also of corresponding eigendampings. In the same
analysis we are able to peal out the effective photon-photon interaction. Moreover, it turns out
that for small wave vectors an instability occurs.

In the fourth Chapter we will finally calculate the lowest-lying collective frequencies of the
harmonically trapped condensate. The usual way to approximately derive those frequencies is
to write down the action and insert a suitable ansatz for the wave function into the action.
Then Hamilton’s principle of least action is applied in order to gather the evolution equation for
the variational parameters of the ansatz. As the photon Bose-Einstein condensate is, however,
an open-dissipative system, meaning that the energy is not conserved, this approach cannot be
used, since no action exists and therefore Hamilton’s principle is not available. Hence, we use
a different approach that is based on determining the equations of motion for the cumulants of
both the condensate wave function and the temperature distribution. Due to this no action is
needed anymore and we can derive the collective modes. At first we determine the steady state.
We find that the usual steady state, that is known from a closed Gross-Pitaevskii equation, is
modified by both the pump of the condensate and by the diffusion of the temperature. In the
dynamic case it turns out that the dipole mode is also effected by the thermo-optic interaction
and, thus, breaks the Kohn theorem. We show even that it can break down completely, meaning
that no centre-of-mass oscillation is possible anymore, beyond a critical photon number. Also
for the breathing and quadrupole mode we find that the frequencies are reduced due to the
thermo-optic interaction.

The third part of the thesis deals with eliminating the temperature equation in order to get rid
of the necessity to assume a certain shape of the temperature function. As a consequence, we
will see that the mathematical description gets much more involved. For this purpose in Chapter
5 the Green’s function of the temperature equation from Chapter 2 is calculated. We encounter
that this leads to an effective photon-photon interaction that is nonlocal in space and in time in
form of a partial-integro differential equation of second kind for the condensate wave function.
Furthermore we find that the mathematical methods of choice to deal with these nonlocalities
are on the one hand the Fourier transformation in order to deal with the spatial one and on
the other hand the Laplace transformation for the temporal one. With this at hand we revisit
the homogeneous case again in Chapter 6, where we encounter basically the same results for the
collective modes. By analysing again the case of a trapped condensate in Chapter 7, we derive
the specifications in which the ansatz with two seperate equations is valid and obtain some shift
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in the collective frequencies and the emergence of damping, which, however, turn out to be small
for the experimental parameters.
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1. Experimental Foundations

In the beginning was the Word, and the Word was with God, and the Word was God.
He was with God in the beginning.

Through him all things were made; without him nothing was made that has been made.
In him was life, and that life was the light of all mankind.

The light shines in the darkness, and the darkness has not overcome it.

John 1,1-5

As the aim of this thesis is to find an appropriate phenomenological mean-field model of a
photon Bose-Einstein condensate, the knowledge of the underlying experimental setup is crucial.
Therefore, this Chapter reviews the experimental work done so far. For a detailed review on
the topic of photon BECs we refer to [36] and to the tutorial [37]. We begin in Section 1.1
with an overview of the fundamental principles and of the experimental setup as it is used in
the current experiments in Bonn, London and Utrecht. Also the thermalisation procedure is
explained. After that the different experimental results obtained so far are reviewed. Section
1.2 deals with the phase transition from a thermal cloud to the Bose-Einstein condensate itself.
A comment on the polarisation of the photon BEC is given in Section 1.3. In Section 1.4 an
experimental procedure, that is able to produce arbitrary potentials, is described. Especially,
the possibility of creating and measuring the double well potential is mentioned. Finally, the
Chapter closes with a discussion on the effective photon-photon interaction in Section 1.5.

1.1. Physical Principles and Experimental Setup

The first step in realising a Bose-Einstein condensate of photons is to establish thermal equilib-
rium in the photon gas. Photons do no interact directly with each other but via absorption and
emission processes with matter. In this way an effective photon-photon interaction as well as a
thermalisation mechanism can be generated.
According to Einstein [38] there are three elementary processes on how a single light mode inter-
acts with two-level systems. On the one hand a corresponding photon can be absorbed with the
rate B12N1n, where N1 denotes the number of two-level systems in equilibrium and n describes
the number of photons. Whereas on the other hand a photon can also be emitted in the light
mode by the N2 excited two-level systems, once via spontaneous emission with the rate AN2

and once by stimulated emission with the rate B21N2n. The respective rate factors B12, A and
B21 represent the Einstein coefficients. The rate equation for the photon number is, thus, given
by

ṅ = AN2 +B21N2n−B12N1n (1.1)
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1. Experimental Foundations

yielding the equilibrium photon number

n =
1

B12N1
B21N2

− 1
, (1.2)

where A = B21 is assumed [39]. Accordingly, the photon distribution is determined by the ratio
of total absorption and total stimulated emission rate.
If one considers instead of simple two-level systems dye molecules, that can be seen as two-level
systems dressed by phononic decay channels, the Kennard-Stepanov relation [39–42]

B12(ω)

B21(ω)
= e
− ~(ω−ωZPL)

kBT (1.3)

has to be applied. For a heuristic derivation of the Kennard-Stepanov relation see Appendix
A. Here ωZPL is the so called zero-phonon line frequency, which is the transition frequency of
the bare two-level system. This relation connects the emission and absorption coefficient by
assuming a thermal equilibrium of the phononic excitations is achieved before the emission or
the absorption process, respectively. In the experimental situation usually Rhodamine 6G is
used as a dye.
In [37,43] it is shown that the Kennard-Stepanov relation together with the chemical equilibrium
between the photon gas and the (un-)excited molecules results in the Bose-Einstein distribution
of the equilibrium photon number

n =
1

e[~(ω−ωcutoff)−µ]/kBT − 1
, (1.4)

where µ stands for the chemical potential of the photons stemming from the photon-dye inter-
action and ωcutoff represents the cutoff frequency of the cavity.
This already indicates that the cavity is the second crucial part of the experiment. As the free-
space dispersion relation is linear in the absolute value of the wave vector k, it is not possible to
cool a free photon gas to the lowest state since this is already the vacuum of the electrical field.
But, by means of a cavity one can introduce a quadratic dispersion relation with a well defined
cutoff frequency due to the paraxial approximation [44], see Figure 1.1. This cutoff frequency
is selected by the interplay of cavity spectrum and dye spectrum, both are shown in Figure 1.2.
Thus, the cavity provides a ground state for the photon gas. Moreover, since the dispersion
relation is quadratic, the photons behave as massive particles. It is also possible to introduce
a trapping potential for the photons by using curved cavity mirrors. Usually, those mirrors are
curved spherically, thus, yielding a harmonic trapping potential [44].
The second advantage of using a cavity is, that the intracavity field can directly be measured, as
photons from inside the resonator are leaking out. However, this means, that an external photon
source is needed, making the system open-dissipative. In order to not destroy the coherence of
the intracavity photon gas, the dye molecules are pumped far off the cavity cutoff frequency.
Thus, basically the same pump mechanism occurs as in the case of an incoherently pumped
exciton-polariton condensate, see Figure 2.
Those three points are the main ingredients that are needed to create a photon Bose-Einstein
condensate. The concrete experimental setup is shown in Figure 1.3.
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1.1. Physical Principles and Experimental Setup

FIG. 1.1: Dispersion of photons in a cavity compared to the dispersion of free photons. The
photons can condense to the ground state with energy ~ωcutoff . The picture is taken from [45]

FIG. 1.2: Cavity spectrum (top) together with the absorption α(ν) and emission f(ν) coef-
ficients of Rhodamine 6G (bottom). In the Bonn experiment the highlighted TEM7 mode is
selected. The picture is taken from [44].
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FIG. 1.3: Complete experimental setup. The dye-filled microresonator is pumped by a Nd:YAG
laser. The light leaking out of the cavity is due to the beamsplitter analysed at the same time
in both real space and Fourier space. The picture is taken from [44].
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1.2. Phase Transition

The first experimental realisation of a photon Bose-Einstein condensate was achieved by the
Weitz group in Bonn [35]. They were able to show that the above mechanism is, indeed, suitable
for providing a thermalised photon gas and that it can be brought to the Bose condensed range
by tuning the photon number above criticality. As the two-dimensional photon gas experiences
a harmonic trapping potential, the thermalisation as well as the phase transition can be seen
in real space. In Figure 1.4 real colour pictures of the condensate are shown. The thermalised
photon gas below the threshold of Bose-Einstein condensation can be seen in panel (a). The
red light comes from the middle of the trap, whereas green light comes from the areas far away
from the centre. This indicates the thermalisation of the gas in a harmonic trapping potential,
as the lowest energy states are centred in the middle and the higher energy states show up on
the outside. As the pump intensity is increased beyond the threshold for condensation, a bright
spot in the trap centre occurs, as can be seen in panel (b) of Figure 1.4. This means that the
lowest energy state gathers a high photon population, i.e. the photon gas undergoes a transition
to a Bose-Einstein condensate. One can confirm thermalisation and condensation of the photon
gas by observing its spectra as shown in Figure 1.5.
With the same techniques it became possible to measure the crossover between a thermalised
state and a lasing state [46] and to show that the final state crucially depends on the thermal
contact to the dye. Also experiments concerning the statistical [47,48] and the caloric properties
[49] of the photon gas have been conducted, see Figure 1.6. The latter show that the photon
gas mainly behaves as a gas of ideal bosons. With this it was, indeed, demonstrated, that a
second-order phase transition occurs by exceeding the BEC threshold. Whereas the group of
Martin Weitz aimed to have large photon condensates of about 10,000 photons, more recently,
in experiments in the group of Robert Nyman in London BECs of only seven photons [50] were
achieved.

1.3. Polarisation

The group of Dries van Oosten in Utrecht published recently measurements of the four Stokes
parameters showing a clear occurrence of polarisation in the BEC cloud, whereas the thermal
cloud is not polarised [51]. The degree of polarisation in dependence of the total photon number is
shown in Figure 1.7. There both the degree of polarisation in the trap centre, i.e. the polarisation
of the condensate, and the corresponding quantity at the edge of the trap, where the thermal
cloud is located, are shown. As the photon number exceeds the critical point for Bose-Einstein
condensation, polarised light comes out of the trap centre. This shows clearly, that the photon
BEC is polarised. It was also demonstrated, that the polarisation of the condensate follows the
polarisation of the pump beam.
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1.3. Polarisation

(a)

(b)

FIG. 1.4: Picture of the spatial photon distribution (a) below threshold showing the thermalised
photon gas and (b) above threshold with the condensate in the trap centre and the thermal cloud
around the condensate. Note, that the colours in these pictures are the real colours of the light
leaking out the cavity. The red photons with the lowest energy are located in the trap centre,
whereas the green photons with the higher energy are settled on the outside of the trap. In
panel (b) the bright spot in the centre is the BEC. The pictures are taken from [35]
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FIG. 1.5: Spectrum of the intracavity photon gas. The spectrum follows below and above the
phase transition the Bose-Einstein distribution. Over the threshold the condensate peak occurs
at the cutoff energy. The picture is taken from [44].

(a) (b)

FIG. 1.6: (a) Measured specific heat of the photon gas (blue circles) compared to the theory
for noninteracting bosons suggesting a nearly ideal Bose gas. (b) Order parameter of the photon
BEC. The circles show the measured quantities and the line shows the theoretical curve. The
picture is taken from [49].
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FIG. 1.7: Dependence of the polarisation of the photon gas in the microcavity on the total
photon number. As one can see with the occurrence of a photon BEC the degree of polarisation
increases. The picture is taken from [51].
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1.4. Arbitrary Potentials and Double Well

Another promising experiment has recently been conducted by the Weitz group. It has been
shown that it is possible to generate an arbitrary potential for the photons in the cavity [52].
To this end a layer of silicon, that absorbs the light of a separate laser well, is mounted on one
of the cavity mirrors and a thermosensitive polymer is additionally included in the dye solution.
Due to that absorption the silicon layer heats up in the vicinity of the laser spot yielding a
phase transition of the polymer to a phase with higher refractive index, which has the effect of
a additional trapping potential for the photons. Thus, one can generate an arbitrary potential
by moving the spot of this extra laser over the silicon layer. In particular, one can create a
double-well potential as has been done in [52]. However, detailed results on the oscillation of
the condensate wave function between the two sites of the double well are not published yet.

1.5. Interaction

It is also observed that a repulsive photon-photon interaction is provided in the experiment, as
the condensate width increases with increasing photon number [35, 53] as shown in Figure 1.8.
Due to dimensional reasons the interaction strength in two-dimensional BECs corresponds to a
dimensionless number g̃ = mg/~2 [54]. The measurements in Bonn suggest for the dimensionless
interaction constant the value g̃ = (7± 3)× 10−4 [44], whereas the corresponding measurements
in Utrecht result in a value that is of the order 10−2 [53]. Moreover, the Utrecht experiments
also show the interaction strength g̃ to depend on the dye concentration in such a way, that
the interaction gets smaller as the dye concentration increases, see panel (b) in Figure 1.8. A
comment on that counter-intuitive finding is given at the end of Section 9.1.
In the given system two interaction mechanisms have been identified [44]. On the one hand

there is the Kerr interaction resulting from a nonlinear answer of the dye solution to ongoing
absorption and emission processes. This results in a direct modification of the refractive index
of the dye solution n by the photon intensity I itself

n = n0 + n2I. (1.5)

This yields a photon-photon interaction that is local in space and instantaneous in time. The
second mechanism is provided by thermo-optical lensing. This means that the refractive index is
varied by changing the dye-solution temperature. The dye-solution can, indeed, heat up during
the experiment since the quantum efficiency of the dye molecules is less than 1, meaning that
some absorbed photons are converted into vibronic dye excitations. Therefore, the change of
refractive index varies according to

n = n0 +
∂n

∂T
T, (1.6)

where T describes the temperature produced by the absorption of photons themselves. This has
the consequence that the photon-photon interaction, which is introduced by this mechanism,
turns out to be nonlocal in space and retarded in time as the temperature excitations diffuse
through the medium.
Thus, the question arises, which is the dominating interaction mechanism. In [44] it is pointed
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FIG. 1.8: Measurements of the condensate width from which the interaction constant can be
derived: (a) Bonn experiment [44] and (b) Utrecht experiment [53]. Note that in (b) the
interaction constant is measured to be two orders of magnitude higher than in (a). Moreover,
the concentration dependency is clearly visible.

out that the thermo-optic interaction is clearly dominating since the intracavity intensity is by
far too small for the given Kerr coefficient to contribute to the interaction. Thus, basically the
complete interaction comes from the thermo-optic effect. The group in Utrecht formulates this
more cautious in [53]. They claim that the precise interaction mechanism is not known, but the
thermo-optic one is a reasonable explanation.

10



2. Theoretical Foundations

Ich bin ein Teil des Teils, der anfangs alles war
Ein Teil der Finsternis, die sich das Licht gebar

Das stolze Licht, das nun der Mutter Nacht
Den alten Rang, den Raum ihr streitig macht [. . . ]

Johann Wolfgang Goethe, Faust I, ll. 1349–1352

I’m part of the part, that once was - everything,
Part of the darkness, from which Light, issuing,

Proud Light, emergent, disputed the highest place
With its mother Night, the bounds of Space,[. . . ]

In this Chapter our aim is to derive a macroscopic mean-field model that is able to describe a
light field in a microcavity being filled with a thermo-optic medium, for greater detail on the
experimental setup consult Chapter 1. As already explained in Section 1.5 the main contribution
to the photon-photon interaction in such materials is caused by thermal lensing [44]. This
necessitates to describe both the temperature diffusing through the dye-solution and the photon
BEC. The former is modelled by a diffusion equation with the photon density as a source, whereas
the photon BEC is described by its mean-field wave function fulfilling the wave equation in the
cavity containing the dye solution. There are also several similar models that already have been
discussed thitherto [52,55,56]. In Ref. [57] the authors work out a microscopic approach to the
description of the system including only the Kerr effect as they do not include the heating and,
thus, a dynamic change of the absorption and emission behaviour of the dye. The fundamentals
of our concrete model go back to Martin Weitz [52,58], which are also the basis of [59]. There the
authors take a three-dimensional Schrödinger equation and couple this to a three-dimensional
diffusion equation in order to incorporate the thermo-optic effect. But this approach lacks of two
problems. First, as we will show in following, the photon mass is only defined in two dimensions
as it emerges due to the boundary conditions of the cavity. The second problem is that pump
and loss processes are completely ignored. But as a thermo-optic interaction is based on the
absorption of photons, this assumption is not valid. In the following derivation we will work upon
these issues and derive a complete two-dimensional model, that also incorporates the intrinsic
pump and loss processes.
We start by reviewing Maxwell’s equations in absorptive and dispersive media and derive the
electric-field wave equation in such materials in Section 2.1. To be able to further describe
the thermo-optic interaction the dye-solution temperature is introduced with its own diffusion
equation in Section 2.2. Afterwards we make use of the concrete geometry of the cavity by
performing a paraxial approximation in Section 2.3. With its aid we are able to peal out
the different time scales that are determining the dynamical behaviour of the photon BEC.
Following that in Section 2.4, we carry out an expansion of both the electric field and the
temperature field into the longitudinal modes by taking into account the underlying geometry,
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which reduces the effective dimension of both fields from three to two. In case of the electric
field this is accompanied by a slowly-varying amplitude approximation, which necessitates a
subsequent rotating wave approximation in Section 2.5. In the wake of these steps we are in the
right position to choose only one dominant longitudinal mode of both the temperature and the
electrical field. In Section 2.6 we amend the last missing ingredient to the model by introducing
a pump mechanism on heuristic grounds. Finally, in Section 2.7 we compare the equations of our
model to the corresponding mean-field equations of the incoherently pumped exciton-polariton
condensate.

2.1. Maxwell’s Equations in Matter

We begin our derivation at the heart of electromagnetism, namely at Maxwell’s equations in
matter. In the following we denote as usual with E the electrical field and its matter analogue,
the displacement field, by D and the magnetic field is referred to as B. Note, that we do not
introduce a matter analogue for the magnetic field, since the dye solution is not magnetic at all.
Thus, we start with [60]:

∇ ·D = 0, ∇ ·B = 0,

∇×E = −∂tB, ∇×B = µ0∂tD, (2.1)

where we have already assumed, that no free charges exist in the cavity and, thus no fluxes are
present in (2.1).
The relation between the electrical field and the displacement field is given in terms of the
polarisation P by [60, (6.25)]

D = ε0E + P. (2.2)

We assume the polarisation to react immediately upon the perturbative incident electrical field
and that the dye molecules are distributed homogeneously and aligned isotropically. Therefore,
we obtain up to third order in the incident field the following relation between E and P [61,
(1.1.2)]

P = ε0

(
χ(1) + χ(3)|E|2

)
E. (2.3)

Here χ(1) describes the linear influence of the medium on the electrical field and χ(3) models
the nonlinear influence that will later on lead to the so called Kerr effect. Due to the assumed
isotropy the term proportional to χ(2) is not present. Therefore, relation (2.2) acquires under
usage of (2.3) the well-known form

D = ε0εE, (2.4)
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with the dielectric function

ε =
(

1 + χ(1) + χ(3)|E|2
)
. (2.5)

Details on the dielectric function are worked out in Appendix A.
Note, that we are dealing with a dissipative and absorptive material, which finds its expression
in ε being complex. The real part of the dielectric function is given by the square of the refractive
index of the solvent, whereas the imaginary part is given by the absorption properties of the dye,
because the wavelength of the intracavity light is far from any absorption line of the solvent.
Thus, we write in the following ε = ε′ + iε′′, where according to the experimental data [35] we
can assume ε′′ � ε′ and the non-linearity to be small, i.e. |χ(3)| � |χ(1)|. To catch up with the
notation used in experimental circumstances, see e.g. [35], we write down the equations using the
refractive index n and the extinction coefficient γ rather than the dielectric function ε. Those
quantities are connected via the complex refractive index, see [60,61],

n+ iγ =
√
ε . (2.6)

Using ε′′ � ε′, that implies γ � n, we find

n ≈
√
ε′ ≈ n0

(
1 +

∆n

n0

)
, (2.7a)

γ =
ε′′

2n
≈ γ0

(
1 +

∆γ

γ0

)
. (2.7b)

Here we have introduced both the linear index of refraction

n0 =
√

1 + Re
(
χ(1)

)
(2.8)

and the linear coefficient of absorption

γ0 = Im
(
χ(1)

)
/n0 (2.9)

as well as their perturbative counterparts arising from the non-linear susceptibility

∆n =
Re
(
χ(3)

)
|E|2

2n0
(2.10)

and the absorption

∆γ =
Im
(
χ(3)

)
|E|2

2n0
− γ0

∆n

n0
. (2.11)

Since the absorption as well as the non-linearity are small, we conclude the perturbation of γ to
be negligible, i.e. ∆γ ≈ 0.
We can now combine (2.1), (2.4), and (2.6) to derive the wave equation in dispersive and
dissipative matter

0 ≈ ∇2E− n2 + 2inγ

c2
∂2
tE, (2.12)

with the light velocity c = 1/
√
ε0µ0 .
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2.2. Temperature Influence

So far, we are just able to describe the evolution of the photon BEC under influence of the Kerr
nonlinearity. However, as already explained in Section 1.5, the photon BEC experiments [35,44]
show that this nonlinearity turns out to be negligibly small and cannot be the dominant interac-
tion mechanism. Instead a thermo-optic effect is claimed to introduce the effective interaction,
that governs the temporal development. The latter effect is already well studied in the litera-
ture [55,61–63] and it is clearly shown that it leads to an additional perturbation of the refractive
index induced by the change of the dye-solution temperature. Thus, (2.10) is modified by taking
into account the change of temperature linearly [61,62]

∆n =
∂n

∂T
∆T +

Re
(
χ(3)

)
|E|2

2n0
. (2.13)

Here ∆T = T − T0 describes the temperature difference that arises due to the absorption
of photons by the dye with respect to the environmental temperature T0. Observe, that the
notation ∆T will not lead to a confusion since we denote the Laplacian always with ∇2.
The temperature difference also has its own dynamics that is described by a thermal diffusion
equation

∂t∆T = D∇2∆T + B̃|E|2, (2.14)

where the electrical field appears as a source. Here D = κ/(cpρ) = 9.16× 10−8 m2/s represents
the thermal diffusion coefficient [64, (50,3)] that is determined by the thermal conductivity κ,
the specific, isobaric heat cp as well as the dye-solution density ρ. The numeric values of those
constants for Rhodamine 6G solved in Ethylene Glycol are given in Appendix D.
As already mentioned, the photons are the intrinsic source of heating with rate B̃ that is deter-
mined by the energy density u = n2

0ε0|E|2/2 of the electric field, the photon (absorptive) loss
rate Γeff, that is given by the quantum efficiency η = 0.95 [52], and the frequency dependent
absorption rate Γabs

Γeff = (1− η)Γabs, (2.15)

as well as a conversion factor to temperature. With this we find

B̃ =
ε0n

2
0

2cpρ
Γeff. (2.16)

2.3. Paraxial Approximation

In this Section the influence of the cavity geometry upon the temperature and the light field
is worked out. For this purpose we take into account the dispersion relations of both the wave
equation (2.12) and the diffusion equation (2.14) and perform the so-called paraxial approxima-
tion [44,60,65]. With this we are able to peal out the different time scales arising in our system.
In Figure 2.1(a) the geometry of the cavity is shown. Within the paraxial approximation we
assume that the angle between the travel direction of the light and the optical axis is small. In
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L(r)

L0
z

r

R1

R2

kz

kr
z1 ≈ r2

2R1
z2 ≈ L0 − r2

2R2

(a)

E n Tχ(3)

B̃

∂n/∂T∆n

T = T0 T = T0

E = 0E = 0

(b)

FIG. 2.1: Setup of the cavity. In (a) its geometry is shown. The spherically curved mirrors
have maximally a distance of L0 and, due to the curvature R, this holds just at the optical
axis. For light beams close to the optical axis the paraxial assumption (2.17) is applicable. For
those rays the boundary curvature can be approximated by z1 = r2/(2R) at the origin and by
z2 = L0 − r2/(2R) at the other cavity end. Note, that in the real cavity we have L0 � Ri,
contrary to the suggestion of the picture.
In (b) the boundary conditions at the cavity mirrors and the interactions inside the cavity are
sketched. The electrical field E changes the refractive index in two ways. On the one hand there
is a change directly via the Kerr nonlinearity χ(3) and on the other hand indirectly via a heating
of the dye solution with rate B̃. The temperature difference ∆T = T − T0 then changes the
refractive index by an amount ∂n

∂T
∆T . Since the refractive index represents an effective potential

for the photons, its change ∆n acts back on the electrical field E and imposes in that way an
effective photon-photon interaction. Moreover, the mirrors yield Dirichlet boundary conditions
for both fields.

other words, we assume the light to propagate close to the optical axis. This yields directly that
the transversal part of the wave vector kr is much smaller than its longitudinal component kz.
Consequently, the paraxial approximation consists of assuming

k2
r � k2

z . (2.17)

Moreover, we work with a microcavity, meaning the length of the cavity L is much smaller than
the curvature radii Ri, i = 1, 2, of the spherically curved mirrors. For the following geometric
considerations, the origin of the coordinate system is set to the left end of the cavity as shown
in 2.1(a). From geometrical reasoning, we can conclude that the left boundary is given via the
Pythagoras’ theorem as

z1(r) = R1

(
1−

√
1− r2

R2
1

)
, (2.18)

where R1 is the radius of the left mirror. As we are working in the paraxial limit, the restriction
r ≤ R1 holds and (2.18) can be approximated to

z1(r) ≈ r2

2R1
. (2.19)

The analogue reasoning yields for the right boundary condition

z2(r) ≈ L0 −
r2

2R2
, (2.20)
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2. Theoretical Foundations

with the corresponding mirror curvature R2. Therefore, by taking the difference z2(r) − z1(r)
the cavity length L(r) in dependency on the distance from the optical axis r is given by

L(r) ≈ L0

[
1− r2

L0

(
1

R1
+

1

R2

)]
. (2.21)

In the following we stick to the experimental case of identical mirrors with radius R1 = R2 = R,
so that (2.21) simplifies to

L(r) ≈ L0

(
1− r2

L0R

)
. (2.22)

The mirrors impose Dirichlet boundary conditions for both fields as it is illustrated in Figure
2.1(b). Thus, the longitudinal wave-vector component is given by

kz ≡ kzµ =≈ k0µ (1 + ∆kz) , µ ∈ N, (2.23)

where we introduced k0µ = µπ/L0 and ∆kz = r2/(L0R).

2.3.1. Photon Condensate Wave Function

The plane wave dispersion relation of the wave equation (2.12) reads with the frequency ωµ of
the µth mode

ωµ =
c

n
kµ. (2.24)

Taking into account the small extinction coefficient γ and the small nonlinearity ∆n from (2.7)
modifies (2.24) to

ωµ =
c

n0

(
1− ∆n

n0
− iγµ

n0

)
kµ. (2.25)

Ascribed to the boundary conditions, we take throughout this thesis the wave vector k to be
real and describe the absorption processes by a (small) imaginary part of the mode frequency
ωµ.
The total absolute value of the wave vector is per definition given by

kµ =
√
k2
z + k2

r . (2.26)

Using (2.17) implies for the absolute value

kµ ≈ kzµ +
kr

2

2kzµ
. (2.27)

Inserting the z-component from (2.23) we find

kµ ≈ k0µ + ∆kzk0µ +
kr

2

2k0µ
. (2.28)
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2.3. Paraxial Approximation

Thus, combining (2.24) and (2.28) yields

ωµ =
c

n0
k0µ

(
1 +

krµ
2

2k2
0µ

+ ∆kz

)(
1− ∆n

n0
− iγµ

n0

)
. (2.29)

Ergo, in leading order we obtain

ωµ ≈
ck0µ

n0

[
1 +

krµ
2

2k2
0µ

+
r2

L0R
− ∆n

n0
− iγµ

n0

]
. (2.30)

Thus, due to those perturbative considerations, we get several modifications of the dispersion
relation. The first one stems from the photon movement in the transversal plane and corresponds
to their effective kinetic energy. The second one is proportional to the square of the distance
from the resonator axis and can, therefore, be interpreted as a harmonic confinement of the
photons in the transversal plane. From these two observations we can already deduce that the
photons behave like massive particles trapped in a two-dimensional harmonic oscillator potential.
Therefore, we can define their mass mµ and the oscillator frequency Ω from the corresponding
prefactors as

~
mµ

=
c

k0µn0
⇔ mµ =

~k0µn0

c
= 1.08× 10−36µ kg, (2.31a)

mµΩ2

2~
=
ck0µ

n0

1

L0R
⇔ Ω =

c

n0

√
2

L0R
= 2.37× 1011 Hz. (2.31b)

The concrete values used here are listed in Appendix D.
The first condition simply follows from the kinetic energy of a free massive particle ~2k2

r/(2mµ)
and the second one comes from the potential energy of a harmonic oscillator mµΩ2r2/2. Thus,
we have an explicit mapping between photons trapped in a microcavity with spherically curved
mirrors and massive bosons in a two-dimensional harmonic oscillator at hand. But note, the
mass depends on the mode index µ, which is due to the Einstein relation ~ω0µ = mµc

2/n2
0, that

is here given by the zeroth order of (2.30).
The third modification in (2.30) being proportional to ∆n takes into account the thermo-optic
and the nonlinear index of refraction, due to (2.13). The last term in (2.30) has the particularity
of being purely imaginary, meaning this term introduces a decay of the electrical field, which is
interpreted as absorptive losses. Therefore, the photon absorption rate is given by

Γµ =
mµc

2γµ
~n3

0

(2.32)

that we identify with Γeff from (2.15). Note here the large differences in the respective time scales
that we have introduced so far. Whereas the mode frequency is given in multiples of ω01 =
4.3× 1014 Hz, the photon trap frequency Ω = 2.37× 1011 Hz is several orders of magnitude
below. The thermo-optic interaction takes place at the scale −ω01

∂n
∂T ∆T ∼ 1010 Hz, since the

temperature difference is of the order ∆T ∼ 10−1 K [44]. Thus, the fastest time scale is given
by the mode frequency.
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2. Theoretical Foundations

2.3.2. Temperature Field

The diffusive dispersion relation for a plane wave has the form

ων = −iDk2
ν ≈ −iDk2

0ν

(
1 +

krν
2

k2
0ν

+ ∆kz

)
, (2.33)

where we used (2.28). Note that the full plane-wave ansatz for the temperature reads T =
Aei(k·r−ωt) + A∗e−i(k·r−ω

∗t) with a complex frequency ω as is suggested by the above equation
and common in the literature of open dissipative systems, see e.g. [34]. Accordingly, the complex
frequency here contains a damping rate.
Thus, we can also define for the temperature an effective mass mT and find also a harmonic
confinement for a fixed temperature mode with frequency ΩTν . With the same reasoning as at
the end of Subsection 2.3.1 we find

mT =
~

2D = 5.75× 10−28 kg, (2.34a)

ΩTν = 2Dk0ν

√
1

L0R
= 313.43 ν Hz. (2.34b)

The corresponding numerical values can be found in Appendix D.
Note, that in contrast to Section 2.3.1, instead of the effective mass the effective trap frequency
depends on the mode index ν as can be seen by comparing (2.31a) and (2.31b) with (2.34a) and
(2.34b), respectively. This results from the fact that the mode frequency depends quadratically
on the absolute value of the wave vector and not linearly as in case of the wave equation.
Moreover we have in (2.33) the term −Dk2

0ν . According to the sign and the fact that we consider
here a diffusion equation, this term describes an effective loss coming from the reduction of
dimensions from three to two by separating the z-dynamics. The corresponding decay time is
given by

τν =
1

Dk2
0ν

=
2.49× 10−6

ν2
s. (2.35)

Note, that the time scale which is set by τ turns out to be much faster than the one set by
1/ΩT . This suggests to neglect the temperature trap at all. This is also verified by comparing
the imposed energy scales

EHO

Eτ
∼ mΩ2l2osc

~/τ
, (2.36)

where losc =
√

~/mΩ is the harmonic oscillator length. After simplification we find

EHO

Eτ
∼ τΩ. (2.37)

This ratio is of the order 1× 10−4 and is, thus, negligible.
Furtheron, we see that the time scales for the temperature are generically much slower than
those for the photons.
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2.4. Mode Expansion and Slowly-Varying Envelope Approximation

2.4. Mode Expansion and Slowly-Varying Envelope
Approximation

Based on the paraxial approximation performed in Section 2.3 we derive now from the full
three-dimensional evolution equations for the electric field (2.12) and the temperature (2.14)
the corresponding equations describing the evolution of the transversal degrees of freedom. The
respective Dirichlet boundary conditions, see Figure 2.1(b), imply for both the electrical field
and the temperature difference the following expansions in longitudinal modes

E(r, z, t) =
∑

µ∈N
Eµ(r, t)e−iω0µt sin kzµz̃, (2.38a)

∆T (r, z, t) =
∑

ν∈N
∆Tν(r, t) sin kzν z̃, (2.38b)

where kzµ = µπ/L, µ ∈ N, as in (2.23). Note, that the shift z̃ = z−r2/(2R) in the sin arguments is
introduced to meet the boundary conditions, see Figure 2.1(a). Moreover, in (2.38a) we separate
the fast oscillating cavity frequency ω0µ, see end of Subsection 2.3.1, and assume accordingly

∣∣∂2
tEµ

∣∣� |ω0µ∂tEµ| , (2.39)

which represents the so-called slowly varying envelope approximation [66–69].

2.4.1. Temperature Diffusion Equation

Let us first, for the sake of simplicity, work on the diffusion equation (2.14), where we insert
(2.38b). With this we obtain at first
∑

ν∈N
∂t∆Tν ≈

∑

ν∈N
D
[
∇2
r − (kzν)2

]
∆Tν sin kzν z̃ + B̃

∑

ν,µ∈N
Eν ·E∗µe−iωνµt sin kzν z̃ sin kzµz̃, (2.40)

where we defined the mode frequency difference ωµν = ω0µ−ω0ν and neglected the terms ∇2
rk
z
µz̃

due to the small curvature of the wave front caused by the paraxial approximation.
Since we are interested in the evolution of a single mode Tσ, we project (2.40) to this very mode
by using the orthonormality relation of the longitudinal modes

2

L

∫ L

0
dz̃ sin kzν z̃ sin kzσ z̃ = δνσ. (2.41)

Thus, multiplying (2.40) with 2 sin(kzσ)z̃/L and performing the z̃-integral over the cavity length
L yields

∂t∆Tσ = D
[
∇2
r − (kzσ)2

]
∆Tσ + B̃

∑

µ,ν∈N
aµνσEν ·E∗µe−iωνµt, (2.42)
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where we defined the coupling constants

aµνσ =
2

L

∫ L

0
dz̃ sin kzµz̃ sin kzν z̃ sin kzσ z̃. (2.43)

Evaluating the integral yields

aµνσ =
4µνσ

π

(−1)µ+ν+σ − 1

(µ+ ν + σ)(µ− ν − σ)(µ+ ν − σ)(µ− ν + σ)
, (2.44)

thus, we only get a non-vanishing coupling aµνσ if the sum of the mode indices µ+ ν+σ is odd.
With this (2.44) reads

aµνσ =
∑

n,m,l∈N

8µνσ

π

δσ,2l+1 (δµ,2n+1δν,2m+1 + δµ,2nδν,2m) + δσ,2l (δµ,2nδν,2m+1 + δµ,2n+1δν,2m)

(µ+ ν + σ)(µ− ν − σ)(µ+ ν − σ)(µ− ν + σ)
.

(2.45)

With the corrections (2.22), the newly introduced two-dimensional heating coefficient B̃µνσ =
B̃aµνσ and the decay time τµ (2.35) the temperature equation in (2.42) reduces to

∂t∆Tσ =

(
D∇2

r −
1

τσ

)
∆Tσ +

∑

µ,ν∈N
B̃µνσEµ ·E∗νe−iωµνt. (2.46)

Note, that we have now an effective two-dimensional diffusion equation and that in the source
term we neglect the correction arising due to the mirror curvature. To incorporate the results
of Subsection 2.3.2 we rewrite the diffusion equation according to

~∂t∆Tσ =

(
~2

2mT
∇2
r −

~
τσ

)
∆Tσ + ~

∑

µ,ν∈N
B̃µνσEµ ·E∗νe−iωµνt. (2.47)

Here, we recognise, that this corresponds to a Schrödinger-like equation in imaginary time. Thus,
after imposing a Wick rotation, i.e. rotating the time into the imaginary plane by t = −iτ , the
two-dimensional Schrödinger equation with an external pump is obtained.

2.4.2. Photon Condensate Wave Function Equation

We focus now on the derivation of the condensate-wave equation. As the first step, we insert
the ansatzes (2.38) into the wave equation (2.12). The corresponding derivatives read

∇2E ≈
∑

µ∈N

[
∇2
r − (kzµ)2

]
Eµ sin kzµz̃, (2.48)

where we neglected again the ∇2
rk
z
µz̃ terms describing the wave-front curvature due to the parax-

ial approximation, and

∂2
tE =

∑

µ∈N

(
∂2
t − 2iω0µ∂t − ω2

0µ

)
Eµe

−iω0µt sin kzµz̃. (2.49)
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2.4. Mode Expansion and Slowly-Varying Envelope Approximation

We apply now the slowly-varying envelope approximation (2.39), so the temporal derivative
simplifies to

∂2
tE ≈

∑

µ∈N

(
−2iω0µ∂t − ω2

0µ

)
Eµe

−iω0µt sin kzµz̃. (2.50)

Thus, inserting the above two derivatives (2.48) and (2.50) into (2.12) leads to

∑

µ∈N
e−iω0µt sin kzµz̃

[
∇2
r − (kzµ)2 +

n2

c2

(
1 + i

γµ
n

) (
2iω0µ∂t + ω2

0µ

)]
Eµ = 0. (2.51)

The expression in brackets can be further processed by taking into account (2.13)

∇2
r − (kzµ)2 +

n2
0

c2

[
1 + i

γµ
n0

(
1− ∆n

n0

)
+

2∆n

n0

] (
2iω0µ∂t + ω2

0µ

)
. (2.52)

Since we aim for an equation up to first order in ∆n, we can restrict ourselves to only use the
zeroth order of the dispersion relation (2.30) and obtain

∇2
r − 2kµ0∆kµ + 2i

n2
0

c2
ω0µ

[
1 + i

γµ
n0

(
1− ∆n

n0

)
+ 2

∆n

n0

]
∂t +

n2
0ω

2
0µ

c2

[
i
γµ
n0

(
1− ∆n

n0

)
+ 2

∆n

n0

]
.

(2.53)

Neglecting the small terms yields

∇2
r − 2kµ0∆kµ + 2i

n2
0

c2
ω0µ∂t +

n2
0ω

2
0µ

c2

[
i
γµ
n0

(
1− ∆n

n0

)
+ 2

∆n

n0

]
. (2.54)

As our aim is to derive a Schrödinger equation, we divide the whole equation by the prefactor
of i∂t and multiply by ~. Then, the very same term acquires the form

~c2

2n2
0ω0µ

(
∇2
r − 2kµ0∆kµ

)
+ i~∂t +

~ω0µ

2

[
i
γµ
n0

(
1− ∆n

n0

)
+ 2

∆n

n0

]
. (2.55)

With the notation from the end of Subsection 2.3.1 this reduces to
(

~2

2mµ
∇2
r −

mµΩ2

2
r2

)
+ i~∂t +

mµc
2

2n2
0

[
i
γµ
n0

(
1− ∆n

n0

)
+ 2

∆n

n0

]
. (2.56)

Therefore, by reinserting the evaluated bracket into the equation (2.51) we find

0 ≈
∑

µ∈N
e−iω0µt sin kzµz̃

{
i~∂t +

~2

2mµ
∇2
r −

mµΩ2

2
r2 +

mµc
2

2n2
0

[
i
γµ
n0

(
1− ∆n

n0

)
+ 2

∆n

n0

]}
Eµ.

(2.57)

As in Subsection 2.4.1 we are interested in the temporal evolution of one specific longitudinal
mode Eκ. To achieve this we will also project down to this mode via (2.41). By doing this we
recall ∆n = ∆n(∆T, |E|2) from (2.13). Before projecting the complete equation let us investigate
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the projection of ∆n separately:

2

L

∫ L

0
dz̃ sin kzκz̃ sin kzµz̃∆n =

∂n

∂T

∑

ν∈N
aµνκ∆Tν +K

∑

ν,λ∈N
bµνλκEν ·E∗λe−iωνλt, (2.58)

where we defined K = Re
(
χ(3)

)
/(2n2

0) and the coupling coefficients

bµνλκ =
2

L

∫ L

0
dz̃ sin kzµz̃ sin kzν z̃ sin kzλz̃ sin kzκz̃. (2.59)

Those coefficients bµνλσ turn out to be related to the previously defined coefficients aµνσ in (2.43).
This can be seen by expanding the product sin kzµz̃ sin kzν z̃ sin kzλz̃ once via the a coefficients

sin kzµz̃ sin kzν z̃ sin kzλz̃ =
∑

κ∈N
aµνκ sin kzκz̃ sinλ k

z z̃ =
∑

κ,σ∈N
aµνκaκλσ sin kzσ z̃ (2.60)

and once by using (2.59) directly

sin kzµz̃ sin kzν z̃ sin kzλz̃ =
∑

σ∈N
bµνλσ sin kzσ z̃. (2.61)

A comparison between (2.60) and (2.61) yields

bµνλσ =
∑

κ∈N
aµνκaκλσ. (2.62)

Thus, with definition (2.32) we obtain for the projection of (2.57) upon the mode κ

i~∂tEκ =

(
− ~2

2mκ
∇2
r +

mκΩ2

2
r2 − i

2
~Γκ

)
Eκ

−
∑

µ,ν∈N

(
∂n

∂T
aµνκTν +K

∑

λ∈N
bµνλκEν ·E∗λe−iωνλt

)(
mµc

2

n2
0

− i

2
~Γµ

)
Eµe

−iωµκt.

(2.63)

Thus, every longitudinal mode interacts in a two-fold way with the mode κ. The first one is the
interaction between the light field and the temperature with the coupling constant

gthermo
µνκ = −mµc

2

n2
0

∂n

∂T
aµνκ. (2.64)

The interaction constant due to the Kerr-effect on the other hand is given by

gKerr
µνλκ = −mµc

2

n2
0

Kbµνλκ. (2.65)

Note, that in those two definitions (2.64) and (2.65) the inequalities ∂n
∂T < 0 and K < 0 are

valid [35], respectively.
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Inserting the definitions (2.64) and (2.65) into the electrical field equation (2.63) yields

i~∂tEκ =

(
− ~2

2mκ
∇2
r +

mκΩ2

2
r2 − i

2
~Γκ

)
Eκ (2.66)

+
∑

µ,ν∈N

(
gthermo
µνκ Tν +

∑

λ∈N
gKerr
µνλκEν ·E∗λe−iωνλt

)
Eµe

−iωµκt − i~
2

∂n

n0∂T

∑

µ,ν∈N
ΓµaµνκTνEµe

−iωµκt.

This equation now represents a Gross-Pitaevskii like equation for the longitudinal mode Eκ. The
first part is basically a harmonic oscillator in the transversal plane underlying dissipation. The
second part introduces both the thermo-optic and the Kerr interaction between all the modes.

2.5. Rotating Wave Approximation and Mode Selection

In equation (2.47) as well as in equation (2.66) we have terms that are of the form e−iωµνt, i.e. they
describe oscillations with a frequency that is an integer multiple of the mode spacing ω01. In
Section 2.3 we have shown that the remaining frequencies are several orders of magnitude less
than this spacing. Thus, we can perform a rotating wave approximation (RWA) by integrating
out the fast time scale. That yields effectively e−iωµνt ≈ δµν . Consequently, the temperature
equation (2.47) simplifies to

∂t∆Tσ ≈
(
D∇2

r −
1

τσ
− mTΩTσ

2
r2

)
∆Tσ +

∑

µ∈N
B̃µµσ|Eµ|2. (2.67)

The electric field equation (2.66) simplifies correspondingly to

i~∂tEκ =

{
− ~2

2mκ
∇2
r +

mκΩ2

2
r2 − i

2
~Γκ

(
1− ∂n

n0∂T

∑

ν∈N
aµνµTν

)}
Eκ

+
∑

ν∈N

(
gthermo
κνκ Tν + gKerr

κννκ|Eν |2
)
Eκ. (2.68)

Now the question is left, which modes are the relevant ones in the experimental situation. We
know from [35,44] that the emission and absorption spectrum of the dye fits between the spacing
of two subsequent longitudinal modes, recall Figure 1.2. Therefore, only one electrical field mode
is relevant. The pertinent experimental cases are κ = 7 [35] and κ = 8 [49].
The appropriate temperature mode is found by weighting the gain that is given by the heating
coefficient Bµµσ against the losses τσ. Since τ1 > τσ, ∀σ > 1, the T1 mode is the longest surviving
one. Moreover, we find from (2.44)

aµµσ =
4

π2σ

1

σ2/(4µ2)− 1
, (2.69)

that tends to 0 as σ → ∞. Together with Figure 2.2(a) we conclude that the σ = 1 mode is
the one that is pumped strongest for both electrical field modes E7,8. Thus, we can restrict
ourselves to this mode, as it is also suggested by Figure 2.2(b).
Thus we are from now on dealing with exactly one longitudinal electrical field mode. Moreover,
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FIG. 2.2: Temperature mode coupling. In (a) the coupling constant aµµσ is evaluated for the
relevant modes. Observe, that the coupling to the temperature ground mode is the largest.
In (b) we see the steady state solutions of the homogeneous counterpart to (2.67), i.e. ∆Tσ =
τσB̃µµσ|Eµ|2. The σ = 1 mode is by far the strongest excited mode.

in order to have a scalar wave function, we restrict ourselves to one degree of polarisation,
meaning that the vectorial charactor of the electrical field plays no role anymore. Thus, we are
also able to define a wave function ψ that is normalized to the mode occupation number N ,
because there is just one effective photon mass (2.31a) left. We will map from the remaining
mode Eκ to the wave function by comparing the energy U stored in the electrical field once
expressed by the field Eκ itself and once expressed by the number of photons N . Thus, we find
(compare to [70])

U =
L

4
ε0n

2
0

∫
d2x |Eκ|2 =

mκc
2

n2
0

∫
d2x |ψ|2 (2.70)

yielding

ψ =

√
Lε0n4

0

4mκc2
Eκ. (2.71)

Consequently, our final equations read by using (2.71) and leaving out the mode indices to
simplify the notation

∂t∆T =

(
D∇2

r −
1

τ
− mTΩT

2
r2

)
∆T +B|ψ|2, (2.72a)

i~∂tψ =

[
− ~2

2m
∇2
r +

mΩ2

2
r2 − i

2
~Γ

(
1− ∂n

n0∂T
a∆T

)
+ gT∆T + gK |ψ|2

]
ψ. (2.72b)

By replacing the electric field E with the wave function ψ, the heating rate is modified to

B =
4B̃mc2

Lε0n4
0

=
2amc2

Ln0cpρ
(2.73)
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2.6. Pumping

and the Kerr-interaction constant to

gK =
4gKerrmc2

Lε0n4
0

= −2Re
(
χ(3)

)
mc4

ε0n8
0

. (2.74)

The photon-temperature coupling is not affected by the exchange E ↔ ψ, but the notation is
adapted to (2.74):

gT = −mµc
2

n2
0

∂n

∂T
a. (2.75)

2.6. Pumping

Up to now, we have not considered a pump term, since it is not possible to get such a term out
of Maxwell’s equations, but due to experimental reasons we need to include even such a term.
To find the appropriate pump term, consider the energy rate equation

ĖPh = (PPump − Pabs)N. (2.76)

Here, PPump is the energy that is pumped into the system during a time step. Note, that we
only take stimulated emission into account. Since the photon energy is given by

EPh =
mc2

n2
N, (2.77)

we can write down (2.76) as an equation for the photon number

Ṅ =
n2

0

mc2

(
1 + 2

∂n

n0∂T
∆T

)
(PPump − Pabs)N, (2.78)

where we already take the temperature dependency into account. This equation describes now
loss and gain of the intracavity photons at an abstract level and the question arises how to
quantify the pump and loss powers. To this purpose we have in mind to treat the pump power
as the control parameter, that we denote with p, and is therefore not further processed. The
only modification arises due to the change of the refractive index.
In order to find the absorption rate, we take into account the continuity equation following from
(2.72b), integrate it over the whole space and find

Ṅ = −ΓN, (2.79)

that only describes the absorption losses as also Pabs does. Therefore, we can identify

Γ =
n2

0

mc2
Pabs. (2.80)
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2. Theoretical Foundations

Bringing things together, we can modify (2.72b) by writing down a photon equation that now
includes also a pump term

i~∂tψ =

(
− ~2

2m
∇2
r +

mΩ2

2
r2 + gT∆T + gK |ψ|2

)
ψ

+
i

2
~
[
ℵp
(

1 + 2a
∂n

n0∂T
∆T

)
− Γ

(
1− 2a

∂n

n0∂T
∆T

)]
ψ. (2.81)

Here we have introduced the unit conversion factor ℵ = n2
0/(mc

2).
Since the pump p also effects the temperature difference we include a corresponding term that
is also provided by (2.76) in (2.72a) and find

∂t∆T =

(
D∇2

r −
1

τ

)
∆T +B|ψ|2 + αp, (2.82)

where α = (1− η)/(V ρcp) is a factor that converts the pump power to a heating rate. Here V
describes the mode volume that is considered to be the relevant volume of the cavity. The final
system of mean-field equations is now provided by (2.81) and (2.82).

2.7. Comparison to Polariton-Exciton BEC

Note, that the developed mean-field model for the photon BEC turns out to be formally anal-
ogous to similar models of incoherently pumped polariton-exciton condensates, see Figure 2
and [34]. There, a reservoir of particles is coupled to a condensate. The reservoir inhibits a
diffusive behaviour and is directly interacting with the condensate. Thus, we can compare this
reservoir to the temperature in our system. Moreover, also the polariton condensate obeys an
open-dissipative Gross-Pitaevskii equation as the photons do in our case. The equations used in
reference [34] are the following. The reservoir equation is given by

∂nR
∂t

= P − γRnR −R (nR) |φ|2 +D∇2nR, (2.83)

here nR denotes the density of the reservoir, D its diffusion coefficient and γR the relaxation
constant. Furthermore, P denotes the external pump and φ the condensate wave function. This
equation can be compared to the temperature equation (2.82) in our case. Note, that the major
difference lies in the sign of the term proportional to the condensate density. In the exciton-
polariton case this is negative, as the reservoir polaritons are scattered on the condensate density.
Therefore, the reservoir density gets smaller, where the condensate density is finite. In our case
of a photon BEC the sign is positive, as the temperature can only be produced, where photons
are present.
The exciton-polariton condensate wave function is described by

i~
∂φ

∂t
=

{
− ~2∇2

2mLP
+
i~
2

[
R(nR)− γ

]
+ g |φ|2 + 2g̃R nR

}
φ, (2.84)

where mLP denotes the mass of the lower branch polaritons and γ stands for the damping
of the polariton condensate. The intra condensate interaction is described by the factor g,
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Table 2.1.: Table of correspondences between incoherently pumped exciton-polariton and pho-
ton BEC. The most important difference is the different sign of the reservoir scattering on the
condensate.

Exciton-Polariton BEC Photon BEC

reservoir nR temperature T

pump of reservoir P temperature pump αp

reservoir loss γR temperature relaxation 1/τ

scattering on condensate −R(nR) heating due to condensate B

reservoir scattering 2g̃R thermo-optic nonlinearity gT

intracondensate scattering g Kerr nonlinearity gK

condensate loss γ absorption loss Γ

pump due to reservoir scattering R(nR) pump saturation 2a ∂n
n0∂T

∆T (ℵp+ Γ)

whereas the interaction with the reservoir is described by g̃R. We can compare this equation to
the corresponding one for the photon BEC in (2.81). Here we can identify that the shift of the
refractive index is the analogon to the interaction with the reservoir in the exciton-polariton case.
Moreover, also the loss terms can be identified. The cavity loss of the polariton condensate γ
corresponds to the absorption loss Γ in the photon BEC. Moreover, the pump nonlinearity, that is
kept general in the exciton-polariton condensate case and denoted by R(nR) also occurs in (2.81)
by identifying R(nR) by 2a ∂n

n0∂T
∆T (ℵp+ Γ). Note, that the nonlinearity in this expression is

small as it is proportional to the thermo-optic coefficient ∂n
∂T and, therefore, does not occur in

(2.82). Our findings are summarised in Table 2.1.
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Part II.

Analysis of the two Equations
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3. Homogeneous Model

Gallia est omnis divisa in partes tres [. . . ]

G. Iulius Caesar, De Bello Gallico

All Gaul is divided into three parts [. . . ]

We start the analysis of the mean-field model (2.81) and (2.82) with the homogeneous case,
i.e. we neglect the harmonic trap in the photon equation and deal instead with the coupled set
of equations of motion

i~∂tψ =

{
− ~2

2m
∇2 + gTT + gK |ψ|2 +

i

2
~
[
ℵp
(

1 + 2
∂n

n0∂T
T

)
− Γ

(
1− 2

∂n

n0∂T
T

)]}
ψ,

(3.1a)

∂tT =

(
D∇2 − 1

τ

)
T +B|ψ|2 + αp. (3.1b)

Here, we simplify the notation by setting T = ∆T , which will also be used throughout the
remainder of this thesis. Furthermore, note, that we aim to analyse a free BEC in two dimensions
which is usually not possible due to the Mermin-Wagner-Hohenberg theorem [71–73] stating that
a continuous symmetry cannot be broken spontaneously in two dimensions. This means that
a free BEC, which relies on the breaking of the continuous U(1) symmetry, is not possible at
finite temperature in two dimensions. However, this only holds for closed systems and does not
apply to our case of an open-dissipative condensation, as the condensation occurs here due to
an interplay of thermalisation as well as pump and loss processes.
In Section 3.1 we start by linearising the system (3.1). The resulting linear equations are analysed
in the rest of the Chapter. To this end, we examine in Section 3.2 the possible steady states. In
fact we will encounter that two steady states exist. The stability of those two is then analysed
in detail in Section 3.3. Finally, we specify to the experimental relevant case and discuss the
appearing excitations together with their spectrum in Section 3.4.

3.1. Linearisation

In this Section we linearise the system (3.1). For this purpose we perform the ansatz [34]

ψ(r, t) = e−iµt/~ [
√
n0 + δψ(r, t)] , (3.2a)

T (r, t) = T0 + δT (r, t) (3.2b)
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3. Homogeneous Model

Here µ denotes the photon chemical potential and δψ as well as δT represent small perturbations
around the steady states n0 and T0, respectively.
After inserting (3.2) into (3.1) and keeping only terms up to first order in the perturbations we
find the linear system

i~∂tδψ =− µ(
√
n0 + δψ)− ~2

2m
∇2δψ + gT (T0

√
n0 + T0δψ +

√
n0 δT ) + gK [n0

√
n0 + n0 (2δψ + δψ∗)]

+ i
~
2

[(ℵp− Γ)(
√
n0 + δψ) + 2P (T0

√
n0 + T0δψ +

√
n0 δT )] , (3.3a)

∂tδT =

(
D∇2 − 1

τ

)
δT − T0

τ
+B [n0 +

√
n0 (δψ + δψ∗)] + αp. (3.3b)

In the photon equation we defined the abbreviation

P = 2
∂n

n0∂T
(ℵp+ Γ). (3.4)

To get further insight, we are going to discuss in the next Section the possible steady states.

3.2. Steady State

The steady state is described by the zeroth order in the perturbations of (3.3). Thus, it is
described by the coupled algebraic equations

µ
√
n0 =

[
gTT0 + gKn0 +

i~
2

(ℵp− Γ + 2PT0)

]√
n0 , (3.5a)

T0 = τBn0 + αpτ. (3.5b)

From (3.5) we deduce that two steady states exist. The trivial steady state is defined by

n0triv = 0 (3.6)

and according to (3.5b)

Ttriv = ατp. (3.7)

In order to determine the second steady state, that has a finite photon number, we separate (3.5)
into imaginary and real part. This yields two equations determining the chemical potential as
well as the temperature, respectively. From the imaginary part we find how the temperature

T0 =
Γ− ℵp

2P
(3.8)

depends of the pump parameter p and the absorption loss rate Γ. Inserting (3.8) into (3.5b)
fixes the photon number

n0 =
Γ− ℵp
2τBP

− αp

B
. (3.9)
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3.2. Steady State

As the photon density is nonnegativ, (3.9) yields the criticality condition

2Pαpcrit = Γ− ℵpcrit. (3.10)

Inserting the definition (3.4) leads to the critical pump value

p±crit = − Γ

2ℵ −
1

4α ∂n
n0∂T

±

√√√√
(

Γ

2ℵ +
1

4α ∂n
n0∂T

)2

+
Γ

2α ∂n
n0∂T
ℵ
. (3.11)

In order to select the physical branch in (3.11), we consider the limit α→ 0. Then (3.11) reads

p±crit ≈ −
Γ

2ℵ −
1

4α ∂n
n0∂T

±
(

1

4α ∂n
n0∂T

+
2 ∂n
n0∂T

αΓ2

ℵ2
+

3Γ

2ℵ

)
. (3.12)

As this needs to be finite even in the case α = 0, we conclude, that the +-branch is the relevant
branch and finally find

pcrit(α = 0) =
Γ

ℵ . (3.13)

The real part of (3.5) on the other hand yields the equation of state

µ = gTT0 + gKn0 (3.14)

which consists of two components. The first part stems from the thermo-optic effect and pump-
ing, whereas the second part is due to the Kerr interaction. Using (3.5b) we can write the
chemical potential even in three parts

µ = µp + µT + µK (3.15)

with the chemical potential that arises through the pump

µp = gT ταp, (3.16)

and the ones being due to the termo-optic effect

µT = gT τBn0 (3.17)

and due to the Kerr effect

µK = gKn0. (3.18)

Since µK and µT depend both on the photon density n0, like it is the case in [57], we can deduce
from the equation of state (3.15) that the total dimensionless interaction strength g̃ consists of
two parts reflecting the competition between the spatio-temporally retarded thermo-optic and
the spatially local, instantaneous Kerr interaction

g̃ = g̃T + g̃K . (3.19)
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FIG. 3.1: Steady state of system (3.1) as described by (3.5b) and (3.9) for the experimental
parameters that are listed in D. In (a) the photon number N0 depends on the pump parameter
p according to (3.6), (3.9) as well as (3.22). In (b) the temperature T depends on the photon
number N0. In both cases the plotted quantities show a linear behaviour.

The strength of the thermo-optic interaction is defined by

g̃T =
m

~2
gT τB (3.20)

and the interaction strength of the Kerr effect by

g̃K =
m

~2
gK . (3.21)

In both cases the factor m/~2 has been inserted in order to obtain a dimensionless interaction
strength [54, 74]. From (3.20) we see that the strength of the thermo-optic interaction g̃T itself
depends upon three parameters. It is directly proportional to the photon-temperature coupling
gT from (2.75), the temperature relaxation time τ , cf. (2.35), and the heating rate B, according
to (2.73).

Figure 3.1 shows this steady state. At the transition p = pcrit a rapid increase of the photon num-
ber happens. This is related to the smallness of the thermo-optic coefficient ∂n

∂T = −4.86× 10−4

that enters the photon steady state (3.9) in the denominator via P in T0, see (3.4). For the
plot we assume that the trapped BEC is nearly homogeneous in the trap centre. Then we can
estimate the number N0 of photons in the condensate by multiplying the photon density n0 with
the mode volume πl2osc, where losc =

√
~/(mΩ) is the harmonic oscillator length and we find

N0 = πl2oscn0. (3.22)

As one can read off from Figure 3.1, the photon number and, thus, the photon density depend
in the experimental regime linearly on the pump parameter.

Now the question arises how the trivial steady state (3.6) and (3.7) is connected with the
nontrivial steady state (3.8) and (3.9). For this purpose consider the limit p → pcrit. In this
case per definition it holds

n0 = 0 = n0triv (3.23)
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and thus we obtain

T0 = ατpcrit = Ttriv(p = pcrit). (3.24)

Therefore, we can conclude that the phase transition is continuous and that the chemical po-
tential in the trivial steady state is fixed according to

µtriv = gT ταp. (3.25)

3.3. Dynamical Stability

In order to examine the stability of the homogeneous condensate, we come now to the terms of
first order in the perturbation in (3.3). By using (3.5) the linear perturbations (3.3) reduce to

i~∂tδψ + µδψ = − ~2

2m
∇2δψ + gT (T0δψ +

√
n0 δT ) + gKn0(2δψ + δψ∗)

+
i~
2

(ℵp− Γ + 2PT0) δψ + i~P
√
n0 δT, (3.26a)

∂tδT = D∇2δT − δT

τ
+B
√
n0 (δψ + δψ∗) . (3.26b)

To proceed further we perform a Fourier ansatz, similar to [34], for the perturbation δψ and δT

δψ(r, t) =
∑

k

[
uke

i(k·r−ωkt) + v∗ke
−i(k·r−ω∗kt)

]
, (3.27a)

δT (r, t) =
∑

k

[
tke

i(k·r−ωkt) + t∗ke
−i(k·r−ω∗kt)

]
. (3.27b)

In this ansatz we consider the frequency ω to be a complex quantity, as we have a system that
also involves damping. This damping leads to a stable steady state, iff Im (ωk) < 0. Moreover,
(3.27b) ensures a real temperature perturbation. Note, that in reference [34] there is a typo
where the conjugation of the frequency in Equations (3) and (4) is not denoted.
Inserting now the ansatzes (3.27) into (3.26a) yields for the BEC wave function

(~ωk + µ)uke
i(k·r−ωkt) − (~ω∗k + µ)v∗ke

−i(k·r−ω∗kt)

=εk

[
uke

i(k·r−ωkt) + v∗ke
−i(k·r−ω∗kt)

]
+ (gT + iP )

√
n0

[
tke

i(k·r−ωkt) + t∗ke
−i(k·r−ω∗kt)

]

+ gKn0

[
(2uk + vk) ei(k·r−ωkt) + (u∗k + 2v∗k) e−i(k·r−ω

∗
kt)
]

+
i~
2

(ℵp− Γ + 2PT0)
(
uke

i(k·r−ωkt) + v∗ke
−i(k·r−ω∗kt)

)
. (3.28)

Here, we introduced the free particle dispersion

εk =
~2k2

2m
. (3.29)
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In order to find the equations for uk and vk we compare the coefficients of corresponding expo-
nentials

~ωkuk + µuk = εkuk + (gT + iP )
√
n0 tk + gKn0(2uk + vk) +

i~
2

(ℵp− Γ + 2PT0)uk, (3.30a)

~ωkvk − µvk = −εkuk + (−gT + iP )
√
n0 tk − gKn0(uk + 2vk) +

i~
2

(ℵp− Γ + 2PT0) vk,

(3.30b)

where we additionally complex conjugate the second equation. Inserting the ansatz (3.27) into
the remaining temperature equation (3.26b) yields

− iωktke
i(k·r−ωkt) + iω∗kt

∗
ke
−i(k·r−ω∗kt)

=−Dk2
[
tke

i(k·r−ωkt) + t∗ke
−i(k·r−ω∗kt)

]
− 1

τ

[
tke

i(k·r−ωkt) + t∗ke
−i(k·r−ω∗kt)

]

+B
√
n0

[
(uk + vk) ei(k·r−ωkt) + (u∗k + v∗k) e−i(k·r−ω

∗
kt)
]
. (3.31)

As above the equation for tk and t∗k is deduced by collecting the prefactors of corresponding
exponentials

ωktk = −iDk2tk −
i

τ
tk +B

√
n0 (uk + vk) . (3.32)

We proceed now by investigating the stability of both the trivial steady state and the finite
photon number steady state.

3.3.1. Trivial Steady State

First we insert the trivial steady state (3.6) and (3.7) into the equations (3.30) and (3.32). From
(3.30) we obtain the equations

[
~ωk − εk +

i~
2

(ℵp− Γ + 2Pαp)

]
uk = 0, (3.33a)

[
~ωk − εk +

i~
2

(ℵp− Γ + 2Pαp)

]
vk = 0. (3.33b)

The corresponding spectrum is yielded by the zeros of the brackets. Note, that the vanishing of
their imaginary part matches exactly to the criticality condition (3.10). Therefore, this state is
stable for p < pcrit and unstable for p > pcrit. The temperature perturbation is described by the
equation

(
ωk − iDk2 − i

τ

)
tk = 0. (3.34)

Thus, the temperature perturbations are purely imaginary with a negative sign. This means,
that the temperature fluctuations always decay. To sum up, the stability of the trivial steady
state is described by the stability of the photon dispersion, which becomes unstable as soon as
the nontrivial steady state starts to exist.
We turn now our attention to the stability of the nontrivial steady state.
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3.3. Dynamical Stability

3.3.2. Nontrivial Steady State

In order to keep the notation as simple and meaningful as possible, we redefine the perturbation
coefficients uk, vk and tk to dimensionless quantities, by pulling the amplitudes of the non-trivial
steady state (3.30) and (3.32) out of those perturbations. This means that for the remainder of
this Section the new quantities ũk = uk/

√
n0 , ṽk = vk/

√
n0 as well as t̃k = tk/T0 are considered.

By doing so, the stability of the steady state will then be fully described by only considering the
chemical potentials (3.16), (3.17) and (3.18). In the following we will drop the tildes again. In
this case (3.30) yields together with (3.32) a linear system of equations determining the stability
of the nontrivial steady state that we write for further investigations in vector-matrix form as

~ωk




uk

vk

tk




=




εk + µK µK µp + µT + i~P

−µK −εk − µK −µp − µT + i~P

iκ iκ −i (Dk + σ)







uk

vk

tk



. (3.35)

By writing down the line corresponding to the temperature equation, we introduce also here
an energy notation as it is done for the photon equations that are stated in terms of the one-
particle energy εk and the chemical potentials. Thus, for the temperature we introduce the
heating energy

κ =
~
τ
− ~ατp

T0
, (3.36)

the diffusion energy Dk = ~Dk2 as well as the relaxation energy σ = ~/τ .
In the following, we will refer to the system matrix in (3.35) with S. The characteristic polyno-
mial pS of S is given by

pS(ωk) =− (~ωk)3 − i(~ωk)2 (Dk + σ) + ~ωk

(
ε2k + 2εkµK − 2κP

)

+ i(ε2k + 2εkµk) (Dk + σ)− 2iκεk(µp + µT ). (3.37)

In case of a vanishing thermo-optic coefficient, i.e. ∂n∂T = 0 and, thus, according to (3.17) µT = 0,
as well as in case of vanishing pump, we recover as eigenvalues of S the usual Bogoliubov
dispersion relation [21]

(
~ωBog

k

)2
= ε2k + 2εkµK (3.38)

and the previous k-dependent damping from (3.34) of the temperature

ωk = −i
(
Dk2 +

1

τ

)
(3.39)

showing again that the diffusion acts as a damping of the temperature.
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3. Homogeneous Model

In the long wavelength limit, the characteristic polynomial (3.37) simplifies to

pS(ω0) = −(~ω0)3 − i(~ω0)2σ − 2~ω0Pκ. (3.40)

As one can see, in that limit the eigenvalues do not depend upon the photon-photon interaction.
Moreover, we have always the eigenvalue ~ω1

0 = 0 present. This is nothing but the signature
of the Goldstone theorem [75], which states that breaking a continuous U(1)-symmetry yields
a vanishing energy gap at k = 0. Interestingly, the Goldstone theorem is not only valid for
a closed quantum system, but also for an open-dissipative one like the photon BEC or the
exciton-polariton condensate [34]. By evaluating the remaining second-order equation we find
from (3.40) for the next two eigenvalues

~ω±0 = − iσ
2
± i
√
σ2

4
+ 2Pκ . (3.41)

Bear in mind that according to definition (3.4) we have P < 0. Thus, the real part of the
eigenvalues ω±0 vanishes iff σ2 > 8Pκ. Furtheron, P < 0 yields

√
σ2/4 + 2Pκ < σ/2 which

means that the imaginary part of ω0 is always negative and, therefore, the condensate turns out
to be stable in this limit.

In the short wavelength limit |k| → ∞ the characteristic polynomial (3.37) acquires the form

pS(ωk) = −(~ωk)3 − i(~ωk)2Dk + ~ωkε
2
k + iε2kDk, (3.42)

where the lower powers of k have been neglected. Two solutions are provided by the free particle
dispersion

~ωk±± = εk, (3.43)

whereas the third solution is given by the free diffusion dispersion

~ωk = −iDk. (3.44)

Thus, neither the interactions nor the pump influence these three solutions and the condensate
is always stable in the short wavelength limit.

The remaining question of concern is after the stability of the condensate in between the extremal
cases |k| = 0 and |k| → ∞. Here, this is discussed in the full generality, whereas in the next
Section it will be specified to the experimental case. In order to examine this stability, we
investigate the zeros of

−ipS(iωk) =(~ωk)3 + (~ωk)2 (Dk + σ) + ~ωk

[(
~ωBog

k

)2
− 2κP

]

+
(
~ωBog

k

)2
(Dk + σ)− 2κεk(µp + µT ) (3.45)

as this is now a polynomial with real-valued coefficients. Because of real valuedness, the Routh-
Hurwitz criterion [76] is now applicable. This states, that a third order polynomial p(x) =
x3 + a2x

2 + a1x + a0, is stable, i.e. the roots have negative real parts, iff the following three
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3.3. Dynamical Stability

conditions hold

a2 > 0, (3.46a)
a0 > 0, (3.46b)

a2a1 > a0. (3.46c)

In our case, the first condition amounts to the inequality

~
(
Dk2 +

1

τ

)
> 0, (3.47)

that is trivially fulfilled. The second inequality (3.46b) is in our case given by
(
~ωBog

k

)2
(Dk + σ) > 2κεk(µp + µT ), (3.48)

which simplifies by using (3.38) to

|k| > kcrit (3.49)

with the associated critical k value

kcrit =

√√√√−1

2

(
σ

D~ +
4mµK
~2

)
+

√
1

4

(
σ

D~ −
4mµK
~2

)2

+
4mκ(µP + µT )

D~3
. (3.50)

As kcrit must be a real-valued quantity, this stability criterion only plays a role, if

σ

D~ +
4mµK
~2

<

√(
σ

D~ −
4mµK
~2

)2

+
4mκ(µP + µT )

D~3
, (3.51)

which can be simplified to

σµK < κ(µP + µT ). (3.52)

Thus, if (3.52) is valid, the stability criterion (3.49) restricts the allowed wave vectors k. Con-
versely, if the Kerr interaction outweighs the thermo-optic and pump interaction, the condensate
is stable for any k, as kcrit is formally imaginary.
The third inequality (3.46c) reads after simplification with (3.29)

k2 >
Pσ

~2(µp+µT )
2m − ~DP

. (3.53)

To sum up, the nontrivial steady state is stable, iff (3.49) is fulfilled. As due to (3.4) we have
P < 0 in the nontrivial steady state, this condition is always valid.
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FIG. 3.2: Plot of the different parts of the chemical potential (3.15), together with (3.16)-(3.18).
The chemical potential that arises due to the thermo-optic interaction is the most influential
among the different chemical potentials. The plot parameters can be found in Appendix D.

3.4. Experimental Case

We specify now our findings to the experimental case. We start our investigation by comparing
the different parts of the chemical potential (3.15), together with (3.16)-(3.18), in order to find
out whether one of the ingredients dominates. Those different parts are plotted in Figure 3.2.
There one can clearly see, that the thermo-optic chemical potential µT dominates the chemical
potential by far. From this we can deduce for the numerical value of the dimensionless thermo-
optic interaction constant (3.20)

g̃T = 2.56× 10−4. (3.54)

This is close to the experimental value of (7± 3)× 10−4 reported in [35].

Thus, in the experimental case the photons only interact via the thermo-optic mechanism and
we can assume the Kerr interaction to vanish, i.e. µK ≈ 0. Since we are working slightly above
the critical pump power pcrit, only small pump powers are involved. Thus, we can also neglect
the pump chemical potential µp and the pump influence on κ, i.e. we have µp ≈ 0 and κ ≈ σ,
see (3.36). Therefore, the experimental case is the antipode to the case that is described directly
beneath (3.37), where the thermo-optic and pump influences were neglected in comparison to
the Kerr interaction.
As a consequence, we can simplify the characteristic polynomial pS (3.37) of the system matrix
S to

pS(ωk) ≈− (~ωk)3 − i(~ωk)2 (Dk + σ) + ~ωk

(
ε2k − 2σP

)
+ iε2k (Dk + σ)− 2iσεkµT . (3.55)

Also the stability criterion (3.50) simplifies to

kcrit ≈
√
− σ

2D~ +

√( σ

2D~
)2

+
σ

ξ2D~ (3.56)

with the coherence length ξ =
√
~2/(2mµT ) [21, (6.62)]. As we see in (3.56), for increasing

diffusion D we have that kcrit decreases, whereas it rises with growing photon number and
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FIG. 3.3: Plot of critical wave number kcrit from (3.56). The diffusion constant D is given in
units of m2/s. The current experiment possesses D = 9.65× 10−8 m2/s.

thus growing pump. This means that on the one hand the thermo-optic interaction somehow
destabilises the condensate, but on the other hand the diffusion has a stabilising influence. For
small diffusion we can simplify (3.56) to

kcrit ≈
1

ξ
. (3.57)

In Figure 3.3 the critical wave number according to (3.56) is visualised. Therefore, for reasonable
photon numbers, the critical wave number is of the order of kcrit ∼ 1× 105 m. Hence, in
an experiment the homogeneous condensate would be stable, if the modes with wave number
smaller than kcrit are not allowed. This can be achieved, if the mirror diameter is smaller than
the length scale that is set by 1/kcrit.

The dispersion relation for a condensate with N0 = 10, 000 photons is shown in Figure 3.4. The
corresponding eigenvectors can be found in Figure 3.5. For small wave numbers the condensate is
unstable as can be followed by the large positive imaginary part of the eigenvalue shown in red in
Figure 3.4(b). On the other hand the remaining two modes are stable. Compared to Figure 3.4(a)
we see, that the unstable eigenmode corresponds to a vanishing eigenfrequency, meaning that the
condensate shows a diffusive behaviour. This holds true for k→ 0, as can be seen in the inlet,
so this eigenmode corresponds to the Goldstone mode. This means, that although the Mermin-
Wagner-Hohenberg theorem does not hold in the present case of an open-dissipative system, the
Goldstone theorem still applies. The corresponding eigenvector is ν2(k = 0) = (1,−1, 0)/

√
2 ,

i.e. a rotation of the condensate, analogue to the findings of Wouters and Carusotto in [34]. This
mode gets stable as the temperature amplitude tk becomes of the order of uk and vk.
Contrarily, the residual modes always have nonzero eigenfrequencies. This means that, in cor-
respondence to (3.43), they behave as free photons in the microcavity in the short wavelength
limit. Therefore, in the stable regime only one-particle excitations are possible. For k = 0
their frequencies are given according to (3.41) by Re (ω0±) = ±7.34× 105 Hz with the damping
Im (ω0±) = −2.12× 105 Hz. From the corresponding eigenvectors, whose elements are plotted
in panels (a) and (c) we can conclude that those two modes correspond to pure excitations of
uk and vk, respectively, in the limit |k| → ∞. In the limit k→ 0 these modes get also mixed.
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FIG. 3.4: Typical dispersion with (a) the oscillation frequency and (b) the damping rate as
described by the roots of (3.55). The used parameters can be found in Appendix D. The pump
is adjusted to N0 = 10, 000 photons. In both drawings the vertical line indicates the critical
wave number kcrit at which the homogeneous condensate gets stable as shown in the inlet in
(b).
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FIG. 3.5: Eigenvectors to the eigenvalues of (3.55) with uk (blue), vk (yellow) and tk (red)
corresponding to the eigenvalue in (a) yellow, (b) red and (c) blue in Figure 3.4. On the left
y axis are the squared absolute values of the coordinates |νi|2, whereas on the right y-axis the
corresponding phase φi is plotted.
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4. Photon BEC in a Harmonic Trap

PUCK: How now, spirit! whither wander you?
Fairy: Over hill, over dale,

Thorough bush, thorough brier,
Over park, over pale,

Thorough flood, thorough fire,
I do wander everywhere,

Swifter than the moon’s sphere;

William Shakespeare, A Midsummer Night’s Dream, Act II, Scene 1

In this Chapter we ought to describe the photon Bose-Einstein condensate in a harmonic trap,
as this is currently the most relevant experimental case. For this purpose the full equations
(2.81) and (2.82) are considered:

∂tT =∇2T − 1

τ
T +B|ψ|2, (4.1a)

i~∂tψ =

(
− ~2

2m
∇2 +

mΩ2

2
r2 + gTT + gK |ψ|2

)
ψ

+
i~
2

[
pℵ
(

1 + 2
∂n

∂T
T

)
− Γ

(
1− 2

∂n

∂T
T

)]
ψ, (4.1b)

where r =
√
x2 + y2 denotes the distance from the optical axis. To simplify our notation we

denote in the following the two involved coordinate directions x and y by x1 and x2, respec-
tively. Correspondingly, the position vector is from now on written as x = (x1, x2)T . Moreover,
according to the results from the preceding chapter, we neglect the pump of the temperature,
as this almost no contribution.
From the analysis of a usual Gross-Pitaevskii equation it is well known that the interaction
between condensate particles has an influence on the frequencies of the lowest-lying collective
modes [77–79], see also Appendix C. Dynamical measurements of those frequencies turn out to
be very precise [80]. Therefore, measuring these collective oscillations reveals reliable informa-
tion about the underlying nature of the interaction.
In this Chapter we derive the frequencies of the dipole, the quadrupole and the breathing
mode for the photon BEC. Usually one uses a variational approach to calculate these frequen-
cies [21,77], that relies on the action and the accompanying Hamilton’s principle. However, this
technique cannot be used in our setting of an open-dissipative system, as the energy is not a
conserved quantity. Instead we derive the cumulants equations of motion that carry the same
information, but no action is needed to calculate them. Details of this technique can be found
in [81] and in Appendix C. In order to apply this method, we show in Section 4.1 the ansatzes
that we use for the shapes of the condensate wave function and the temperature distribution. As
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4. Photon BEC in a Harmonic Trap

in our setting pump and loss processes are an explicit part of the dynamics, also the amplitude of
these two functions is determined by the pump and loss processes. The corresponding evolution
equations are derived in Section 4.2. After that we extract the cumulants equations of motion in
Section 4.3. These equations are then analysed by means of a linear stability analysis. For this
purpose in Section 4.4 the steady state is determined. In the following sections we investigate
the stability of this steady state. On the one hand we examine in Section 4.5 the stability under
perturbations where the centre-of-mass of the condensate oscillates, i.e. we analyse the dipole
mode. On the other hand we also look into a perturbation of the widths in the second last
Section 4.6. This leads us to the quadrupole and the breathing mode. Finally, in Section 4.7 we
discuss possible experimental realisations.

4.1. Ansatz

In this Section the ansatz for solving the system (4.1) is introduced and discussed. At first, the
pump spot p is assumed to be of Gaussian shape and to be radially symmetric with width s as
well as centred around the origin:

p(x) =
P0

πs2
exp

[
−x2

s2

]
. (4.2)

The unperturbed photon equation represents a Schrödinger equation with a harmonic potential.
Thus, we presume the ansatz of the BEC mean-field wave function to be a Gaussian, as it is
the ground state solution of the harmonic oscillator. This approach is also used in references
[77,79,82]. Thus, we write

ψ(x, t) =

√
N(t)

πq1(t)q2(t)
exp




∑

j=1,2

−
[

1

2qj(t)2
+ iAj(t)

]
[xj − x0j(t)]

2 + ixjCj(t)



 . (4.3)

Here N(t) describes the time dependent photon number, qj(t) stands for the widths in the x1, x2

directions, respectively, and Aj(t) denotes their corresponding phases. With these parameters
we are already able to describe two oscillatory eigenstates, namely the quadrupole and the
breathing mode, i.e. width oscillations in or out of phase, see panels (a), (b) in Figure 4.1. As
we also want to describe the centre-of-mass motion, that is called dipole mode, see panel (c)
in Figure 4.1, we allow for a time dependency of the centre-of-mass coordinates x0j and their
corresponding phases Cj .

We perform a similar ansatz for the temperature diffusion equation as a Gaussian function by
its own is a solution of the unperturbed diffusion equation and it is pumped by a Gaussian
function. Therefore, we assume the temperature profile to be given by

T (x, t) =
T0(t)

πr1(t)r2(t)
exp




∑

i=1,2

− [xi − y0i(t)]
2

ri(t)2



 . (4.4)

Here we also allow for a time-dependence of the amplitude T0(t) as well as the widths ri(t) and
the centre-of-mass coordinates y0i(t). As the temperature is a real function no phases as in the
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FIG. 4.1: Eigenmodes that are described by ansatz (4.3). In (a) the breathing mode is char-
acterised by the widths oscillating in phase making the condensate look as if it would breath.
Panel (b) displays the quadrupole mode that is described by the widths oscillation with 90◦ out
of phase. A sketch of the dipole mode can be seen in Panel (c), where the centre-of-mass of the
condensate moves classically in the harmonic trapping potential.

ansatz for the photon wave function (4.3) are included here.
In the following we will treat the amplitudes N(t) and T0(t), the widths qj(t) and rj(t) as well as
the centre-of-mass coordinates x0j and y0j as variational parameters. The aim is then to derive
the evolution equations for these variational parameters.

4.2. Normalisation

As we are dealing with an open system, the temperature amplitude T0 and the photon number
N0 are not constant in time, but they depend on the pump strength P0 and, as we consider
a spatial extension of the involved quantities, also on the widths and centres-of-masses of the
respective Gaussian shaped functions. For this purpose we calculate the continuity equations
belonging to both equations (4.1). The respective equation for (4.1a) is found by by inserting
the ansatzes (4.3) and (4.4) and by integrating over the whole cavity subsequently

∂tT0 = −T0

τ
+BN, (4.5)

where we assume no fluxes through the mirrors. For the photon equation (4.1b) we find by
multiplying this equation by the complex conjugated wave function ψ∗ and adding the conjugated
equation after integrating the result

∂tN =ℵP0NGPψ + 2ℵ ∂n
∂T

T0NP0GTPψ − ΓN + 2Γ
∂n

∂T
T0NGTψ, (4.6)
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4. Photon BEC in a Harmonic Trap

where we defined the three Gaussian integrals

GPψ =

∫
d2x p(x)|ψ(x, t)|2, (4.7a)

GTψ =

∫
d2x T (x, t)|ψ(x, t)|2, (4.7b)

GTPψ =

∫
d2x T (x, t)p(x)|ψ(x, t)|2. (4.7c)

By using the ansatzes (4.2)–(4.4) those integrals gather again a Gaussian form and can be solved
by using the method described in Appendix B

GPψ =
1

π
√

(q2
1 + s2)(q2

2 + s2)
exp


−

∑

j=1,2

x2
0j

s2 + q2
j


 , (4.8a)

GTψ =
1

π
√

(q2
1 + s2)(q2

2 + s2)
exp


−

∑

j=1,2

(x0j − y0j)
2

r2
j + q2

j


 , (4.8b)

GTPψ =
1

π2
∏
j=1,2

√
r2
j q

2
j + q2

j s
2 + r2

j s
2

exp


−

∑

j=1,2

(x0j − y0j)
2s2 + x2

0jr
2
j + y2

0jq
2
j

r2
j q

2
j + q2

j s
2 + r2

j s
2


 , (4.8c)

where we left out the explicit time dependencies as it will be done in the following. Thus the
photon number and the temperature amplitude depend not only on the pump strength, as it is
suspected, but also on the widths of all the involved functions in a nonlinear way.

4.3. Cumulants Equations

The usual variational approach to calculate the evolution of a Gaussian shaped mean-field BEC
wave function uses the action functional and Hamilton’s principle [78]. As we are dealing with
an open system such quantities do not longer exist since they rely on energy conservation.
Nevertheless, we still stay with the Gaussian ansatzes, but instead of considering an action
we directly determine the evolution equations for the respective first and second cumulants of
those Gaussian ansatzes and derive the corresponding evolution equations describing the full
dynamics. For an overview on this method consult Appendix C.

4.3.1. Temperature Equations

In order to obtain the equation governing the centre-of-mass dynamics of the temperature we
multiply (4.1a) by the spatial variable xk, k = 1, 2, and integrate subsequently over the whole
cavity

∂t

∫
d2x xkT = D

∫
d2x xk∇2T − 1

τ

∫
d2x xkT +B

∫
d2x xk|ψ|2. (4.9)
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Taking into account the ansatzes (4.2)–(4.4) and performing the integrals yields

∂ty0k =
BN

T0
(x0k − y0k). (4.10)

This equation shows that the temperature centre-of-mass y0k always follows the photon centre-
of-mass x0k in a diffusive, i.e. nonoscillatory, way.

The dynamics of the temperature width can be calculated analogously by considering the second
central moment

∂t

∫
d2x (xk − y0k)

2T =D
∫
d2x (xk − y0k)

2∇2T − 1

τ

∫
d2x (xk − y0k)

2T

+B

∫
d2x (xk − y0k)

2|ψ|2. (4.11)

Therefore, the temperature width is governed by the equation

∂tr
2
k = 4D +

BN

T0
(q2
k − r2

k) + 2
BN

T0
(y0k − x0k)

2. (4.12)

Also here we find that the temperature width follows the photon width in a diffusive manner.
On top of that we have the influence of the regular diffusion of the temperature represented by
the term 4D.

Without a coupling to the photons, i.e. B = 0, we conclude from (4.5), that the resulting
temperature Gaussian function is described by a decaying amplitude with decay time τ :

T0(t) = T0(t0) exp

(
− t− t0

τ

)
, (4.13)

whereas from (4.12) it follows that the width increases with the diffusion constant according to
the Einstein law

rk(t)
2 = 4D(t− t0), k = 1, 2. (4.14)

We compare the analytical results to the numerical solution of the plain diffusion equation. The
used numerical procedure is explained in Appendix C.3. Those numerical results are shown in
Figure 4.2. As one sees, the results match in a reasonable way showing that both methods, the
analytical method presented in this Section and the numerical method, are appropriate ways
to solve the diffusion equation. Even in the case that an external source of Gaussian shape is
present the numerical solution of the ODEs (4.5) and (4.12) agrees with the numerical solution
of the full diffusion equation, as it is shown in Figure 4.3.

4.3.2. Photon Wave Function Equations

In this Section we aim for the corresponding equations for the photon wave function. The
procedure relies again on calculating the evolution equation of the first and second cumulant
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FIG. 4.2: Numerical solution of simple diffusion equation. In (a) the projection of the numerical
solution to the x1 and x2 axis are shown, respectively. The corresponding integral T0 is presented
in Panel (b), whereas the width is plotted in Panel (c). Note, that due to the isotropy the
widths in both directions coincide. As one can see, the agreement between theory and numerics
is reasonable.
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FIG. 4.3: Numerical solution of diffusion equation with external source that is located at
(x01, x02) = (1, 0) with amplitude N = 2 and with q01 = q02 = 0.5. In (a) the projection of the
numerical solution to the x1 and x2 axis are shown, respectively. The corresponding integral T0

is presented in panel (b), whereas the square of the width r2
k and the centre-of-mass coordinate

x01 are plotted in Panel (c). As one can see, the agreement between theory and numerics is
reasonable. In Panels (b) and (c) the crosses mark the numerical solution of the system.

49



4. Photon BEC in a Harmonic Trap

by averaging the open-dissipative Gross-Pitaevskii equation (4.1b) with certain weights. How
this procedure works for a closed Gross-Pitaevskii equation is developed in Appendix C in
detail. There, it is also shown that our analytic approach, which is also applicable to open-
dissipative systems, is equivalent to the usual variational approach, that can only be used for
closed systems.

We start by calculating the centre-of-mass equation. For this purpose we multiply (4.1b) by
xk − x0k and integrate:

i~
∫
d2x (xk − x0k)ψ

∗∂tψ = − ~2

2m

∫
d2x (xk − x0k)ψ

∗∇ψ +
mΩ2

2

∫
d2x (xk − x0k)x

2|ψ|2

+ gT

∫
d2x (xk − x0k)T |ψ|2 + gk

∫
d2x (xk − x0k)|ψ|4 +

i~
2

[
ℵ
∫
d2x (xk − x0k)p|ψ|2

+2ℵ ∂n

n0∂T

∫
d2x (xk − x0k)pT |ψ|2 + 2

∂n

n0∂T
Γ

∫
d2x (xk − x0k)T |ψ|2

]
. (4.15)

Performing the integrals yields the following complex differential equation for x0k and C0k

i~
∂tx0k

2
+ ~Akq2

k∂tx0k −
~q2
k

2
∂tCk =

~2

2m

(
iCk + 2AkCkq

2
k

)
+
mΩ2

2
x0kq

2
k

+ gTT0GTψ
(x0k − y0k)q

2
k

q2
k + r2

k

+
i~
2
Rkq

2
k, (4.16)

where we defined

Rk =− ℵP0GPψ
x0k

q2
k + r2

k

+ 2ℵ ∂n

n0∂T
P0T0GTPψ

(y0k − x0k)s
2 − x0kr

2
k

r2
kq

2
k + q2

ks
2 + s2r2

k

+ 2
∂n

n0∂T
ΓT0GTψ

(y0k − x0k)

r2
k + q2

k

. (4.17)

The momentum Ck of the ansatz (4.3) is determined by the imaginary part of (4.16) to

Ck =
m

~
(
∂tx0k +Rkq

2
k

)
. (4.18)

Finally, by inserting (4.18) into (4.16) we arrive at a second order differential equation for the
centre-of-mass coordinate:

∂2
t x0k = ∂t(Rkq

2
k)−

2~
m
AkRk − Ω2x0k − 2

gT
m
T0GTψ

y0k − x0k

q2
k + r2

k

. (4.19)

In comparison to a particle-particle interaction that is local in space and time we find here
an interaction dependent contribution to the oscillation frequency violating the Kohn theorem,
compare to (C.11) in Appendix C.1.3. Moreover, compared to a closed system we observe the
pump terms, here collected under the notation Rk, occurring in the result for Ck yielding an
additional damping and also a frequency shift.

The equation governing the evolution of the width is calculated in the same manner. Equation
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4.3. Cumulants Equations

(4.1b) gets weighted by (xk − x0k)
2 − q2

k/2 and afterwards integrated:

i~
∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
ψ∗∂tψ = − ~2

2m

∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
ψ∗∇ψ

+
mΩ2

2

∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
x2|ψ|2 + gT

∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
T |ψ|2

+ gk

∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
|ψ|4

+
i~
2

{
ℵ
∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
p|ψ|2 + 2ℵ ∂n

∂T

∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
pT |ψ|2

+2
∂n

n0∂T
Γ

∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
T |ψ|2

}
. (4.20)

After performing the integrals (4.20) takes the form

i~
qk∂tqk

2
+ ~

q4
k∂tAk

2
=

~2

2m

(
−1

2
− 2iAkq

2
k + 2A2

kq
4
k

)
+
mΩ2

4
q4
k

+ gTT0GTψ

[
(y0k − x0k)

2q4
k

(p2
k + q2

k)
2
− q4

k

2(q2
k + p2

k)

]
− gK

Nq2
k

8πq1q2
+
i~
2
Ikq

4
k. (4.21)

Here, the pump influence is given by

Ik =ℵP0GPψ

[
x2

0k

(s2
k + q2

k)
2
− 1

2(s2
k + q2

k)

]
+ 2

∂n

n0∂T
ΓT0GTψ

[
(y0k − x0k)

2

(r2
k + q2

k)
2
− 1

2(r2
k + q2

k)

]

+ 2ℵ ∂n

n0∂T
P0T0GTPψ

[(
(x0k − y0k)s

2 + x0kr
2
k

q2
kr

2
k + r2

ks
2 + q2

ks
2

)2

− (r2
k + s2)

2(q2
kr

2
k + r2

ks
2
k + q2

ks
2)

]
. (4.22)

The imaginary part of (4.21) yields

Ak = −m
2~

(
∂tqk
qk
− Ikq2

k

)
. (4.23)

Inserting (4.23) into the real part of (4.21) leads to an equation of motion for the widths qk

∂2
t qk =qk∂t(Iq

2
k) +

~2

m2q3
k

− I2q5
k + 2q̇kq

2
kI − Ω2qk

− 4gT
m

T0GTψ

[
(y0k − x0k)

2qk
(r2
k + q2

k)
2
− qk

2(q2
k + r2

k)

]
+
gKN

2πm

1

q1q2qk
. (4.24)

We have now all the equations together that determine the dynamics of the two Gaussian
functions (4.3) and (4.4). In order to gain an overview we collect the equations that describe
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4. Photon BEC in a Harmonic Trap

the evolution of the variational parameters in the following

∂tT0 =− T0

τ
+BN, (4.25a)

∂ty0k =
BN

T0
(x0k − y0k), (4.25b)

∂tr
2
k =4D +

BN

T0
(q2
k − r2

k) + 2
BN

T0
(y0k − x0k)

2, (4.25c)

∂tN =ℵP0NGPψ + 2ℵ ∂n
∂T

T0NP0GTPψ − ΓN + 2Γ
∂n

∂T
T0NGTψ, (4.25d)

∂2
t x0k =∂t(Rkq

2
k)−

2~
m
AkRk − Ω2x0k − 2

gT
m
T0GTψ

y0k − x0k

q2
k + r2

k

, (4.25e)

∂2
t qk =qk∂t(Ikq

2
k) +

~2

m2q3
k

− I2
kq

5
k + 2q̇kq

2
kI − Ω2qk

− 4gT
m

T0GTψ

[
(y0k − x0k)

2qk
(r2
k + q2

k)
2
− qk

2(q2
k + r2

k)

]
+
gKN

2πm

1

q1q2qk
, (4.25f)

together with the pump influences (4.17) and (4.22). Note that, whereas the equations governing
the evolution of the temperature are differential equations of first order, the corresponding
equations for the photon wave function are of second order. This relates to the difference
between diffusive and quantum dynamics, i.e. the first one cannot oscillate, while the latter is
intrinsically oscillating. In the following we are interested in the stability of the steady state of
the condensate described by the set of equations (4.25).

4.4. Steady State

At first the steady state is studied in detail. According to (4.25b) the centre-of-mass coordinates
of the temperature and the photon wave function coincide in the steady state, i.e.

y0k = x0k, k = 1, 2. (4.26)

Inserting this in (4.25e) yields these equilibria to be centred around the origin

x0k = 0 = y0k, k = 1, 2. (4.27)

Subsequently, we obtain from (4.25d) the steady state temperature amplitude

T 0
0 =

Γ− ℵP0G
0
Pψ

2 ∂n
n0∂T

(ℵG0
TPψ + ΓG0

Tψ)
(4.28)

determining via (4.25a) the photon number

N0 =
T 0

0

τB
. (4.29)
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4.4. Steady State

Here we denoted the steady state values of the Gaussian weights with the upper index 0. From
(4.8) together with (4.27) those weights are calculated to be

G0
Pψ =

1

π(q2
0 + s2)

, (4.30)

G0
Tψ =

1

π(q2
0 + r2

0)
, (4.31)

G0
TPψ =

1

π2(r2
0q

2
0 + q2

0s
2 + s2r2

0)
. (4.32)

Combining (4.28) with (4.29) yields the equilibrium photon number

N0 =
Γ− ℵP0G

0
Pψ

2τB ∂n
n0∂T

(ℵG0
TPψ + ΓG0

Tψ)
. (4.33)

Thus, the critical pump power P crit
0 is given by

P crit
0 =

Γ

ℵG0
Pψ

. (4.34)

From (4.25c) we read off

r2
0 = 4Dτ + q2

0. (4.35)

Thus, the equilibrium temperature width is determined on the one hand by the photon width
q0 and on the other hand by the diffusion process that happens during the relaxation time τ .
The steady state equation for the photon width q0 is, thus, described by

0 =
~2

m2q4
0

− q4
0I

2
0 − Ω2 +

gT τBN0

πm

1

(2q2
0 + 4Dτ)2

+
gKN0

2πm

1

q4
0

, (4.36)

as can be seen from (4.25f). Here the pumping influence is described by the term −q4
0I

2
0 , where

I0 = − ℵP0

π(s2 + q2
0)2
−

∂n
n0∂T

ΓT 0
0

π(2q2
0 + 4Dτ)2

−
ℵ ∂n
n0∂T

P0T
0
0 (q2

0 + 4Dτ + s2)

π2[(q2
0 + s2)(q2

0 + 4Dτ) + q2
0s

2]2
(4.37)

following from (4.22). The length scale of this equation is set by the harmonic oscillator length
losc =

√
~/(mΩ) = 7.69µm, as can bee seen by dividing by the trap frequency. In the course

of this, we obtain

0 =
losc
q4

0

− q4
0I

2
0

Ω2
− 1 +

2g̃TN0l
4
osc

π(2q2
0 + 4Dτ)2

+
g̃KN0l

4
osc

2πq̃4
0

, (4.38)

with the dimensionless interaction constants according to (3.20) and (3.21).
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4. Photon BEC in a Harmonic Trap

4.4.1. Small Pumping

As the pump enters the steady state equation (4.36) and (4.38) quadratically, we will at first
neglect this influence on the BEC width. Therefore, we consider the photon number as an
externally fixed parameter. In this case (4.38) simplifies to

0 =
1

q4
0

− 1

l4osc
+

2g̃TN0

π(2q2
0 + 4Dτ)2

+
g̃KN0

2πq4
0

. (4.39)

In case of vanishing diffusion, i.e. D = 0, equation (4.36) is analytically solvable

q0 = losc

(
1 +

g̃N0

2π

)1/4

, (4.40)

where g̃ = g̃T + g̃K is the total photon-photon interaction strength.
Formula (4.40) is exactly what one suspects if only an instantaneous and local interaction acts
between the photons, as a temporal retardation can not have any influence on a steady state in
time.

For small diffusion constants we can expand the thermo-optic term up to first order in the
diffusion constant and obtain

g̃TN0

π(2q2
0 + 4Dτ)2

≈ g̃TN0

2πq4
0

(
1− 2Dτ

q2
0

)
. (4.41)

Thus, the thermo-optic interaction decreases as the diffusion constant increases. But this has
now an influence upon the measurement. According to [53] Equation (4.40) is used to obtain
the effective photon-photon interaction strength from the measurement of the condensate width
in dependence on the photon number. Therefore, (4.41) shows that a systematic error of the
order

Dτ
l2osc

= 3.9× 10−3 (4.42)

is involved in the analysis of the experimental data. However, in the current experiments done
with Ethylene Glycol as a solvent, this error is only of the order of a per mille.

This behaviour can also be seen in the limit D → ∞ that corresponds according to (4.35) to
the limit r0 → ∞. In this case the part of equation (4.36), that incorporates the thermo-optic
interaction vanishes and, thus, no such interaction is present any more. The physical origin
is that with increasing diffusion constant the temperature produced by the photons is directly
carried away and cannot contribute to a local change of the index of refraction. Conclusively,
the diffusion has a suppressing influence on the thermo-optic interaction. Thus, the case of
vanishing diffusion has the largest interaction, whereas the case of dominating diffusion has the
smallest interaction.

The numerical solution of (4.39) for arbitrary diffusion is shown in Figure 4.4. As the width
of the BEC is an indicator for the interaction influence, one can conclude that for increasing
diffusion constant the interaction gets, indeed, smaller as described above, since the BEC width
at given photon number decreases with increasing diffusion constant. On the other hand, the
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4.4. Steady State

temperature width r0 grows for increasing diffusion constant, meaning the absorbed photon
energy is carried away. In order to quantify this further, the data for the larger diffusion values
are fitted to the function

(
q0

losc

)fit

=

(
1 +

Ng̃

2π

)b
, (4.43)

where g̃ and b are treated as fit parameters. The resulting parameters are shown in Figure
4.5. In panel (a) of this Figure the deviation from the fit to the numerical data is plotted.
The agreement between data and fit is still reasonable, as the deviation is in the order 10−5.
The corresponding fit parameters are illustrated in panel (b). For growing diffusion the fitted
interaction constant g̃ tends to decrease, whereas the exponent b gets larger. Thus, those findings
support the explanation, that for rising diffusion constant the thermo-optic interaction reduces
as the spread of the interaction energy enlarges in this scenario.

4.4.2. Homogeneous Pumping

We specify now to the case of homogeneous pumping. To this end the pump width s is considered
to be of the order of the cavity radius, thus, it outweighs all the other length scales. In particular
s � qk as well as s � rk hold. The pump strength is in this case stated in terms of the
corresponding density

P =
P0

Acav
, (4.44)

where Acav = πs2 is the cavity surface. Within this limit the Gaussian weights (4.8) simplify to

GPψ ≈
1

πs2
, (4.45a)

GTψ =

exp

[
− ∑
j=1,2

(x0j−y0j)
2

r2
j+q2

j

]

π
√

(q2
1 + r2

1)(q2
2 + r2

2)
, (4.45b)

GTPψ ≈
1

πs2
GTψ. (4.45c)

Thus, the photon number (4.33) is in this limit given by

N0 ≈
Γ− ℵP

τB ∂n
n0∂T

(2ℵP + Γ)G0
Tψ

(4.46)

and by using (4.31) thus can be written as

N0 =
(Γ− ℵP)π(2q2

0 + 4Dτ)

τB ∂n
n0∂T

(2ℵP + Γ)
. (4.47)
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FIG. 4.4: Steady state width according to (4.39) and (4.25c). The parameters are taken from
Appendix D. The diffusion parameter Dτ/l2osc is varied and the value Dτ/l2osc = 3.86× 10−3

corresponds to the experimental case. The solid lines indicate the width of the BEC, whereas
the dashed lines indicate the temperature width.
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FIG. 4.5: Results of fits of the data shown in Figure 4.4 to the formula qfit0 = [1 + g̃N0/(2π)]b,
where g̃ and b are treated as fit parameters, for different diffusion constants. In (a) the deviation
from the numerically calculated data q0 to the fitted values qfit0 is plotted. Panel (b) shows the
corresponding fit parameters in dependence on the diffusion constant Dτ/l2osc.
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4.4. Steady State

Therefore, the critical pump power (4.34) is given by

Pcrit =
Γ

ℵ . (4.48)

Moreover, the photon number does explicitly depend on both the BEC width q0 and the tem-
perature width r0. Thus, in case of dominating diffusion, i.e. D → ∞ also the photon number
grows to infinite large values as in this case, as in the Subsection above, q0 → losc and r0 →∞.
Therefore, it follows already from here, that in the case of homogeneous pump the temperature
diffusion has a higher influence in comparison to the case of vanishing pump.
The influence of the pump upon the width Ik, see (4.22), simplifies to

Ik ≈ 2
∂n

n0∂T
T0GTψ

[
(y0k − x0k)

2

(r2
k + q2

k)
2
− 1

2(r2
k + q2

k)

]
(Γ + 2ℵP) (4.49)

amounting to the equilibrium value

I0 ≈ −
∂n

n0∂T
τBN0

G0
Tψ

2(q2
0 + 2Dτ)

(Γ + 2ℵP) , (4.50)

where (4.29) is used. As the term proportional to I2
0 contributes via a minus sign to the conden-

sate width, we see that the pump leads to a focusing of the condensate. Moreover, this influence
is small, since I0 is proportional to ∂n

∂T . Since this pump term contributes quadratically to the
condensate width, it can be neglected. Thus, (4.38) can be simplified to

0 =
1

q4
0

− 1

l4osc
+

2g̃TN0

π(2q2
0 +Dτ)2

+
g̃KN0

2πq4
0

. (4.51)

Therefore, the steady state is described by equations (4.47) and (4.51). In case of vanishing
diffusion, this system can be solved perturbatively. In this case the widths of the condensate
and the temperature coincide. Therefore, the condensate width is given by

q0 =

(
1 +

N0g̃

2π

)1/4

, (4.52)

where g̃ = g̃T + g̃K is the total interaction strength. As the interaction in the system is small,
this can be approximated by

q0 ≈ 1 +
N0g̃

8π
. (4.53)

Inserting this into (4.47) yields

N0 ≈ N0
0

(
1 +

N0
0 g̃

8π

)
, (4.54)

where the photon number in the noninteracting case is given by

N0
0 =

2πl2osc(Γ− ℵP)[
τB ∂n

n0∂T
(2ℵP + Γ)

] . (4.55)
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FIG. 4.6: Steady state of the homogeneously pumped system as described by (4.47) and (4.38)
for different diffusion strengths Dτ . The remaining parameters are taken from Appendix D. The
value Dτ/l2osc = 3.86× 10−3 corresponds to the experimental case.

Thus, the photon number increases with increasing interaction strength g̃.
The numerical solution of this system for arbitrary diffusion constants is shown in Figure 4.6.
It can be seen, that, indeed, with increasing diffusion the photon number increases, whereas the
effective interaction decreases, as it is discussed above.

4.4.3. Focused Pumping

In the following we consider the opposite extremal case. The pump spot width is now assumed
to be smaller than the remaining length scales. It holds now especially s � q0. Therefore, the
Gaussian weights (4.8) simplify to

G0
Pψ ≈

1

πq2
0

, (4.56)

G0
Tψ ≈

1

π(2q2
0 + 4Dτ)

, (4.57)

G0
TPψ ≈

1

π(q2
0 + 4Dτ)

G0
Pψ. (4.58)

Thus, as in the preceding Section the scale of the pump width determined the system parameters,
q0 determines them in the present case. Accordingly, the photon number is in this extremal case
given by

N0 ≈
Γ− ℵP0/(πq

2
0)

τB ∂n
n0∂T

(
2 ℵP0

π2q4
0
− Γ

2πq2
0

) , (4.59)

where the criticality condition takes now the form

P crit
0 ≈ Γπq2

0

ℵ . (4.60)
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The pump influence in the steady state is according to (4.22)

I0 ≈ −
ℵP0

πq4
0

− ∂n

∂T

[
Γ

2π(2q2
0 + 4Dτ)2

− ℵP0T0

2π2q4
0(q2

0 + 4Dτ)

]
. (4.61)

In contrast to the case of homogeneous pumping, in (4.61) is now a term that does not incorporate
the thermo-optic coefficient ∂n

n0∂T
. Thus, the square of (4.61) is approximately given by

I2
0 ≈

(ℵP0

πq4
0

)2

. (4.62)

That means that the pump has indeed a reducing influence upon the condensate width q0 in the
case of a very small pump spot, as can be seen from the special case of (4.38):

0 =
1

q4
0

−
(ℵP0

πΩ

)2 1

q4
0

− 1

l4osc
+

2g̃TN0

π(2q2
0 + 4Dτ)2

+
g̃KN0

2πq4
0

. (4.63)

In case of a vanishing diffusion constant this equation can again be solved for q0 leading to

q0 = losc

[
1 +

g̃N0

2π
−
(ℵP0

πΩ

)2
]1/4

. (4.64)

As the steady state is now studied in great detail, light shall be shed in the following on its
stability. For this purpose the modes announced in Figure 4.1 are in the following discussed. As
the focus only lies on the intracondensate interaction the experimental relevant case is the one
of homogeneous pumping [52]. Otherwise also the pump laser would induce an increase of the
condensate width.

4.5. Dipole Mode

At first, attention is paid towards the motion of the centre-of-mass of the condensate in the
harmonic trapping potential. As in the steady state the centres-of-mass of the temperature
and the photon-wave function are centred around the origin according to (4.26) and (4.27), we
consider now small deviations from this equilibrium and write

x0k(t) = δx0k(t) (4.65a)

as well as

y0k(t) = δy0k(t). (4.65b)

As first we find from (4.25b)

∂tδy0k =
δx0k − δy0k

τ
, (4.66)
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where we used (4.29). The linearised version of (4.25e) is directly given by

∂2
t δx0k + Ω2δx0k = q2

0∂t(δR)− I0q
2
0δR− 2

~2g̃T
m2

δy0k − δx0k

π(q2
0 + r2

0)2
, (4.67)

with the pump influence

δR ≈ KN0 (δy0k − δx0k) . (4.68)

The prefactor K is defined as

K = 2
∂n

n0∂T

τB

π(2q2
0 + 4Dτ)2

(ℵP + Γ) (4.69)

and the time derivative of δR is given by

∂tδR =K

[
δx0k − δy0k

τ
− ˙δx0k

]
(4.70)

where (4.67) is used.
By introducing the perturbation vector

v =




δy0k

δx0k

˙δx0k




(4.71)

the system of linear differential equations reads

∂tv = Sdipolv, (4.72)

with the system matrix

Sdipol =




−1/τ 1/τ 0

0 0 1

−q
2
0KN0

τ
+

(
KN0

2

)2

− LN0
q2

0KN0

τ
−
(
KN0

2

)2

+ LN0 − Ω2 −q2
0KN0



.

(4.73)

Here, the thermo-optic interaction is described by the parameter

L =
2g̃T~2

πm2(2q2
0 + 4Dτ)2

. (4.74)

With the ansatz

v(t) = v0e
−iωt (4.75)
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FIG. 4.7: Dipole mode frequencies as described by (4.76) together with (4.73). In (a) the
oscillation frequencies are shown, whereas in (b) the corresponding damping frequencies are
plotted. The inlet shows the damping frequencies for smaller photon numbers.

the oscillation frequency is determined by the equation

det (S + iω13×3) = 0. (4.76)

The numerically calculated solutions of (4.76) are shown in Figure 4.7. In panel (a) the oscillation
frequencies are plotted. Obviously, the Kohn theorem is broken due to the temporally retarded
interaction. Moreover, the Kohn theorem is not only broken, but the dipole mode frequency also
vanishes for a certain photon number N crit

0 , meaning this mode can only be excited for photon
numbers smaller than N crit

0 . On the other hand in panel (b) the damping frequencies are shown.
For photon numbers smaller than N stab

0 the dipole mode is stable and nearly undamped. If the
photon number gets larger, the dipole mode is slightly unstable. But the damping rate stays in
the order of 1× 10−6Ω ∼ 1× 10−4 Hz, on the other hand the BEC lifetime is in the order of
about 1× 10−7 s. Therefore, the instability occurs on a much slower time scale than the lifetime
of the condensate. As the photon number exceeds N crit

0 the dipole mode gets highly unstable.
One can interpret this behaviour as the condensate scatters with the potential that occurs due
to the thermo-optic effect and decays only slowly in time. At some point this potential might
be large enough to prevent the condensate from oscillating.

4.6. Breathing- and Quadrupole Mode

We focus now on the dynamics of the widths. As one can already see in (4.25c) and (4.25f), these
modes couple explicitly to the dynamics of the photon number N and the temperature T0, since
the steady state of the widths qi and ri does not vanish according to Section 4.4. Therefore,
also equations (4.25a) and (4.25d) need to be taken into account in the following linearisation.
Before proceeding it shall be noted, that also here we only consider the case of homogeneous
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4. Photon BEC in a Harmonic Trap

pumping. Due to this, (4.25d) simplifies to

∂tN ≈
[
ℵP − Γ + 2

∂n

n0∂T
GTψ (ℵP + Γ)

]
N. (4.77)

In the following small perturbations in the vicinity of the steady state are studied. For this
purpose we assume, viz.,

T0 = T 0
0 (1 + δT ), (4.78a)

N = N0(1 + δN), (4.78b)
rk = r0(1 + δrk), (4.78c)

y0k = δyk, (4.78d)
qk = q0(1 + δqk), (4.78e)

x0k = δxk, (4.78f)

where the quantities with δ denote small perturbations of the steady state values. At first it is
noted, that the temperature equation (4.25a) is already linear and it reads

∂tδT0 = −δT0

τ
+BδN. (4.79)

With K from (4.69) the linearisation of the photon number equation (4.25d) reads

∂tδN ≈ K
[
δT0 + δN0 −

q2
0(δq1 + δq2)− r2

0(δr1 + δr2)

q2
0 + r2

0

]
, (4.80)

where r0 is given by (4.35). The corresponding equation for the temperature width reads

∂tδrk = −2D
q2

0

(δN − δT0) +
1

τ

(
1

1 + 4Dτ/q2
0

δqk + δrk

)
. (4.81)

Finally the equation for the photon width reads

∂2
t δqk =q2

0 δ̇Ik + 4q2
0I0δ̇qk − I0q

4
0(2δIk + 5δqk)−

3~2

m2q4
0

δqk

− Ω2δqk + L

[
δT0 + δqk −

q2
0(δq1 + δq2 + 2δqk) + r2

0(δr1 + δr2 + 2δrk)

q2
0 + r2

0

]

− ~2g̃KN0

2πm2q4
0

(δq1 + δq2 + δqk). (4.82)

Here, δIK is given by

δIk = −δT0 +
q2

0(δq1 + δq2 + 2δqk) + r2
0(δr1 + δr2 + 2δrk)

q2
0 + r2

0

(4.83)

with corresponding time derivative

˙δIk = − ˙δT 0 +
q2

0(δ̇q1 + δ̇q2 + 2δ̇qk) + r2
0(δ̇r1 + δ̇r2 + 2δ̇rk)

q2
0 + r2

0

, (4.84)

62



4.6. Breathing- and Quadrupole Mode

where the time derivatives of the temperature quantities δT0 and δrj are given by (4.79) and
(4.81). With the notation δνi = (δri, δqi, δ̇qi)

T these equations are summarised in vector matrix
form:

d

dt






δT0

δN




δν1

δν2




=




C E E

F J M

F M J









δT0

δN




δν1

δν2




, (4.85)

where the following matrices are defined. At first there are the matrices that couple the temper-
ature and the photon number perturbations to the different degrees of freedom. Among those
there is

C =



−1/τ B

K K


 (4.86)

coupling those two quantities to themselves. The matrix

E =




0 0 0

−K r2
0

q2
0 + r2

0

−K q2
0

q2
0 + r2

0

0


 (4.87)

describes the coupling to the widths and finally

F =




2D/q2
0 −2D/q2

0

0 0

L+
q2

0KN0

2

(
1

τ
+

8Dr2
0

q2
0(q2

0 + r2
0)

)
+KN0 −q

2
0KN0

2

(
B +

8Dr2
0

q2
0(q2

0 + r2
0)

)




(4.88)
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4. Photon BEC in a Harmonic Trap

is responsible for the coupling of the widths to the temperature. The nonvanishing entries of
the 3× 3 matrix J connecting the entries of the vectors δνi to themselves are

Jr,r =
1

τ
, (4.89a)

Jr,q =
1/τ

1 + 4Dτ/q2
0

, (4.89b)

Jq,q̇ = 1, (4.89c)

Jq̇,r =
3q2

0r
2
0KN0

2τ(q2
0 + r2

0)
− 3r2

0q
4
0KN0

q2
0 + r2

0

− 3
r2

0L

q2
0 + r2

0

, (4.89d)

Jq̇,q =
r2

0q
4
0KN0

q2
0 + r2

0

3/τ

1 + 4Dτ/q2
0

+
KN0q

4
0

2

(
6q2

0

q2
0 + r2

0

+ 5

)
− 3

~2

m2q4
0

− Ω2 + L

(
1− 3q2

0

q2
0 + r2

0

)
− ~2g̃KN0

2πm2q4
0

, (4.89e)

Jq̇,q̇ = −2q2
0KN0 +

q4
0KN0

2(q2
0 + r2

0)
. (4.89f)

Finally, the matrix M coupling the vectors δνi among each other has only three finite entries:

Mq̇,r =
r2

0

r2
0 + q2

0

(
q2

0KN0

2τ
−KN0q

4
0 − L

)
, (4.90)

Mq̇,q =
q2

0r
2
0KN0

2τ(q2
0 + r2

0)

1

1 + 4Dτ/q2
0

− KN0q
6
0

q02 + r2
0

− ~2g̃KN0

πq4
0

, (4.91)

Mq̇,q̇ =
KN02q4

0

2(q2
0 + r2

0)
. (4.92)

The eigenvalues of the system matrix are shown in Figure 4.8. From panel (a) we can read off,
that due to the thermo-optic interaction the breathing and the quadrupole mode are shifted to
smaller frequencies. The dashed lines in the plot are the results from Appendix C.2, where the
case of a contact interaction is investigated. Comparing the thermo-optic to the local interaction
results reveals, that similar to the dipole mode, also the breathing mode, which is not influenced
by a contact interaction, is effected by the nonlocal thermo-optic interaction. panel (b) shows,
that all the dampings are positive, meaning, that this mode is unstable. But as in the case of
the dipole mode, these instabilities are in the order of 1× 10−4 s, which is much larger than the
lifetime of the condensate.

4.7. Experimental Realisation

In this Section we give a short overview on potential experimental realisations and measurements
of the lowest-lying collective frequencies, that have been calculated in this Chapter. In principle,
there are two ways for performing those measurements.

The first one goes back to a suggestion of Martin Weitz and is based on a direct observation
of the three modes described in the Sections 4.5 and 4.6. The dipole mode, for instance, could
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FIG. 4.8: Plot of the (Panel (a)) frequencies and (Panel (b)) damping rates of the breathing
(blue and grey) and the quadrupole (orange and magenta) mode. The other colours show the
damping of the diffusive quantities, viz., the photon number, the temperature amplitude and its
widths. The dashed curves in Panel (a) are the breathing and quadrupole mode frequencies in
case of a contact interaction with strength g̃T , according to (C.24).

be excited by using two lasers. The first one homogeneously pumps the whole cavity, whereas
the second one creates a Bose-Einstein condensate via an off-centre pulse. The excited mode
can then be observed by measuring spatially resolved the light leaking out the cavity and by
calculating the respective moments of the condensate density. But this necessitates also that the
oscillations are temporally resolved. As the frequencies are suspected to be of the order of the
trap frequency, cf. Figures 4.7 and 4.8, motions that happen at time scales of the order 100 ps
need to be analysed. For this purpose a so-called streak camera, which can measure processes
taking place on time scales of 100 fs [83], needs to be used.

The second way to measure collective frequencies was brought up by Robert Nymann and is
based on the measurement of the eigenenergies of the dye-filled microcavity. Therefore, it uses
the expansion of the condensate wave function into harmonic oscillator eigenstates, that are
given by

φα(x) =
Hα1(x1/losc)Hα2(x2/losc)√

2α1+α2α1!α2!πl2osc
exp

(
− x2

1

2l2osc
− x2

2

2l2osc

)
, (4.93)

where α = (α1, α2) ∈ N2 is a multiindex, losc stands for the harmonic oscillator length, and the
Hermite polynomial of degree n is denoted by Hn. Consider the Gaussian ansatz (4.3) for the
condensate wave function. If we neglect the diffusion, the pump and the interaction, then the
time dependent widths are given by

qj(t) ≈ losc [1 + δqj(t)] . (4.94)

If we further assume the displacement from the trap centre x0j(t) to be small, the expansion of
the wave function (4.3) into the Hermite-Gauss modes reads

ψ(x, t) ≈
√
N

[
φ00(x) +

x01(t)√
2
φ10(x) +

x02(t)√
2
φ01(x) +

δq1(t)√
2
φ20(x) +

δq2(t)√
2
φ02(x)

]
. (4.95)

Thus, for measuring the lowest-lying collective frequencies it is sufficient to take only the first
three eigenenergies of the cavity with its degenerated eigenmodes into account. The correspond-
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ing photon density reads then

|ψ(x, t)|2 = N
{
|φ00(x)|2 +

√
2 [x01(t)φ10(x) + x02(t)φ01(x) + δq1(t)φ20(x) + δq2(t)φ02(x)]φ00

}
.

(4.96)

In general, the expansion into the eigenmodes is given by

ψ(x, t) =
∑

α

aα(t)φα(x), (4.97)

with complex time-dependent expansion coefficients

aα(t) =

∫
d2x ψ(x, t)φα(x). (4.98)

Comparing (4.96) to (4.97) yields that a00 � aα for all α 6= (0, 0). Accordingly, the photon
density |ψ|2 is then given by

|ψ|2 ≈ N
[
|a00|2φ2

00 + 2
∑

α

|aαa00| cos(ω0αt)φαφ00

]
. (4.99)

Here, the sum only includes the first two excited states, cf. to (4.96), and ω0α = ω00 − ωα is the
difference between the eigenfrequencies

ωα = Ω (α1 + α2 + 1) (4.100)

of the ground state ω00 and the excited states ωα.
A comparison of the expansions (4.96) and (4.99) shows that the time dependency of the mo-
ments in the ansatz (4.3) is the same as the difference of the eigenfrequencies of the first cavity
modes.
Thus, from the knowledge of the eigenfrequencies we can conclude the frequencies of the lowest-
lying collective modes. Taking also the interaction into account, one can think of the eigenfunc-
tions φα as the perturbed eigenfunctions and consequently ωα represent the perturbed eigenfre-
quencies. Accordingly, the approach sketched above is also valid in the interacting case. Those
eigenfrequencies can be measured by a high-resolution spectroscopy of the light leaking out of
the cavity. However, one has to bear in mind that in the current experiments no equilibrium
has been reached so far, but the theory presented in this thesis is designed for perturbations of
the equilibrium.
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5. Green’s Function of Temperature

A desert heath. Thunder and lightning.
Enter three Witches.

1st: When shall we three meet again
In thunder, lightning, or in rain?

2nd: When the hurlyburly’s done,
When the battle’s lost and won.

3rd: That will be ere the set of sun.[. . . ]
ALL: Fair is foul, and foul is fair:

Hover through the fog and filthy air.

William Shakespeare, Macbeth, Act I, Scene 1

In the last two Chapters we have seen, that the temperature can lead to some instabilities of the
photon Bose-Einstein condensate in the case of the homogeneous system as well as in the case of
the dipole mode in the trapped system. Therefore, we conclude that it is worthwhile to eliminate
the temperature from our considerations, in order to work out whether these instabilities are due
to the previous Gaussian ansatz for the temperature or due to the model itself. As the equation,
that guides the temporal evolution of the temperature, is a linear diffusion equation, we can
describe the temperature also by means of a Green’s function that is driven by the electric field.
Therefore, this Chapter deals with the derivation of this Green’s function, where as the tool
we use the Laplace transformation. As a consequence the equation, that governs the photons,
turns out to be a nonlinear-partial integro differential equation, where the temporal nonlocality
stems from a convolution of the temperature propagator and the photon wave function at all
times of the system history. This means, that not only a nonlocality in space occurs due to the
temperature diffusion but also a nonlocality in time is present. In the forthcoming Chapters
we encounter again the Laplace transformation as a method to solve this equation. This is also
one of the main differences to the mean-field equations for the exciton-polariton condensates
proposed in [34]. There, the reservoir equation is kept as general as possible. Therefore, also
some reservoir nonlinearities can occur, which means, that a Green’s function formalism is not
possible in this case. But, in our case, the temperature equation is kept as simple as possible
allowing us to use this formalism.

As we have seen in the last Chapters, the evolution of the temperature field T produced by the
photons is determined by the linear diffusion equation

∂tT = D∇2T − 1

τ
T +Bn, (5.1)

where n = |ψ|2 denotes the condensate density.
In the following the aim is to find the corresponding propagator in order to eliminate the tem-
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5. Green’s Function of Temperature

perature degree of freedom from the mean-field description. For this purpose (5.1) is Fourier
transformed in space, but Laplace transformed in time. This very thought will always be the
leading principle in the remaining part of the thesis. In the following the Fourier transformed
functions are denoted by a tilde:

f̃(k) =

∫

R2

d2x f(x)e−ik·x, k ∈ R2. (5.2)

Correspondingly, the Laplace transformed functions are denoted by a breve sign:

ğ(s) =

∫ ∞

0
dt g(t)e−st, s ∈ C. (5.3)

Note that due to the definition of the Laplace transformation s is a complex frequency, whose
real part represents a damping rate and whose imaginary part corresponds to an oscillation
frequency. As we will see in the next two Chapters the advantage of the Laplace transformation
is that it can deal with the initial condition at t = 0 and with the convolutions that arise due
to the elimination of the temperature.
The Fourier-Laplace transformed diffusion equation (5.1) reads

s ˘̃T (k, s)− T̃ (k, 0) = −Dk2 ˘̃T (k, s) +B˘̃n(k, s). (5.4)

Here the initial condition of the temperature appears due to the properties of the Laplace trans-
formation, see e.g. [84, Table 1]. But, as this temperature describes the temperature difference
to the environment, that is produced by the photons during the experiment, the initial condition
is assumed to vanish, i.e. T̃ (k, 0) = 0. Thus, the transformed temperature is given by

˘̃T (k, s) = ˘̃G(k, s)B˘̃n(k, s), (5.5)

where the Fourier-Laplace transformed Green’s function of (5.1) reads

˘̃G(k, s) =
1

s+Dk2 + 1/τ
. (5.6)

Therefore, the temperature in real space and time is provided by the equation

T (x, t) = B(G ∗ n)(x, t), (5.7)

where ∗ denotes the convolution operator

(f ∗ g)(x, t) =

∫

R2

d2x′
∫ t

0
dt′ f(x− x′, t− t′)g(x′, t′). (5.8)

Now the propagator G(x, t) needs to be calculated explicitly. According to [84, Table 6.2] the
inverse Laplace transform of (5.6) is given by

G̃(k, t) = e−(Dk2+1/τ)t. (5.9)

Therefore, the inverse Fourier transform is given by a Gaussian integral that amounts finally
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G(x, t) =
exp

(
− x2

4Dt − t
τ

)

4πDt . (5.10)

Note that in the limit D → 0 the propagator gets local in space;

lim
D→0
G(x, t) = e−t/τδ(x). (5.11)

Due to the diffusion no such analogy exists for the time. Thus, the propagator is always nonlocal
with respect to time.
As the Fourier and the Laplace transformation are always performed upon the spatial and
temporal variable, respectively, the corresponding variables are left out in the following, as long
as it does not lead to any confusion.
Finally, inserting (5.7) into (2.81) yields a Gross-Pitaevskii equation that is nonlocal in both
space and time

i~∂tψ =

{
−~2∇2

2m
+
mΩ2

2
x2 + gTBG ∗ |ψ|2 +

i~
2

[
ℵp− Γ + 2B (ℵp+ Γ)G ∗ |ψ|2

]}
ψ. (5.12)

However, in this last part of the thesis we only consider the thermo-optic interaction, as the
Kerr interaction is to small in the current experiments and no new information can be obtained
regarding the above mentioned instabilities.

As a remark, we mention that spatial nonlocalities are well known from the field of dipolar
Bose-Einstein condensates, for an overview see [21].
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All the world’s a stage,
And all the men and women merely players;
They have their exits and their entrances,

And one man in his time plays many parts,[. . . ]

William Shakespeare, As You Like It, Act II, Scene 7

In this Chapter we revisit the homogeneous system that was already examined in Chapter 3.
The main difference is that we deal in the present Chapter with a partial-integro differential
equation for the condensate wave-function instead of a set of two partial-differential equations
for the temperature and the condensate wave function. On the one hand this has the advantage
that no assumption upon the temperature wave function is needed, but it has on the other
hand the disadvantage that we need to deal with the integro-differential equation. In particular
this means that some mathematical subtleties occur that are not known from a corresponding
analysis of usual differential equations. Those already appear during the linearisation procedure
performed in Section 6.1. First, we see that the steady state still has some influence on the
perturbations, which is most elegantly dealt with in the Fourier-Laplace transformed picture
according to Section 6.2. But as a consequence of these transformations, we find a nonlocality
in the frequency as the linearised wave function depends upon higher frequencies. This yields
a recursion relation for the perturbations of the homogeneous wave function with respect to
frequencies. But before solving this, we first calculate the two steady states in Section 6.3,
where it turns out that all the results from Chapter 3 will be reproduced. With those results at
hand we then turn towards the stability of the steady states, which is examined in Section 6.4.
There we will first work on the stability of the trivial steady state that gets unstable as soon
as the nontrivial fixed point starts to exist. In order to determine the stability of the latter we
finally solve the recursion relation from Section 6.1. Here it turns out that not only the solution
from Chapter 3 is reproduced, but in addition to that we obtain higher modes that come from
the recursion relation itself.

6.1. Linearisation

We start our analysis with the homogeneous system, that is described by the equation

i~∂tψ =

[
−~2∇2

2m
+ gTBG ∗ |ψ|2 +

i~
2

(
ℵp− Γ + PG ∗ |ψ|2

)]
ψ, (6.1)
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where the thermo-optic pump influence is given by

P = 2B
∂n

n0∂T
(ℵp+ Γ). (6.2)

We linearise (6.1) as in Chapter 3 with the ansatz

ψ(x, t) = [
√
n0 + δψ(x, t)] e−iµt/~, (6.3)

where n0 denotes the homogeneous steady state condensate density, δψ(x, t) stands for a per-
turbation and µ is the chemical potential. Inserting (6.3) into (6.1) and neglecting all terms of
the order O(δψ2) yields

µ(
√
n0 + δψ) + i~∂tδψ =− ~2∇2

2m
δψ +

(
gTB + i

~P
2

)
[(G ∗ 1)

√
n0 + (G ∗ 1)δψ

+G ∗ δψ∗ + G ∗ δψ] n0 +
i~
2

(ℵp− Γ) (
√
n0 + δψ). (6.4)

Before proceeding with the calculation one subtlety needs to be mentioned. We are dealing in
the present case with a nonlocality in time. This means that in the partial integro-differential
equation (6.1) also a convolution in time appears. The effect of this temporal convolution upon
the linearised equation (6.4) is now as follows. Usually, in the case of an ordinary differential
equation one sets the perturbation to zero, i.e. δψ = 0, in order to obtain an algebraic equation
for the steady state that is then reinserted into the linear equation. As a result of this procedure,
one ends up with a homogeneous equation in the perturbation δψ. But in the present case the
situation is more involved as a steady state is defined as the long time limit of (6.4) for vanishing
perturbations δψ. Since in our integral equation (6.1) the convolution ranges due to causality
from the initial time t0 = 0 up to the present time t, we find an inhomogeneity for the resulting
equation of δψ that is due to the leftover of the steady state. Dealing with this is most elegantly
done in the framework of the Laplace transformation.

6.2. Laplace Transformation

Therefore, we proceed now by Fourier-Laplace transforming the whole equation (6.4):

µ

[
δ(k)

s

√
n0 + δ

˘̃
ψ(k, s)

]
+ i~

[
sδ

˘̃
ψ(k, s)− δψ̃(k, 0)

]

=
~2k2

2m
δ

˘̃
ψ(k, s) +

(
gTB +

i~P
2

){
˘̃G(0, s)

√
n0

s
δ(k) + L [F [(G ∗ 1)δψ(x, t)]]

+ ˘̃G(k, s)
[
δ

˘̃
ψ(k, s) + δ

˘̃
ψ(k, s)∗

]}
n0 +

i~
2

(ℵp− Γ)

[
δ(k)

s

√
n0 + δ

˘̃
ψ(k, s)

]
. (6.5)

Here we have used that
∫
d2x′ G(x − x′, t − t′) = G̃(0, t − t′) and denoted the operators of the

Fourier and the Laplace transform by F and L, respectively. Moreover, the terms that contain
the homogeneous steady state are Fourier transformed to a Dirac-delta function δ(k), as they
can only affect modes with infinite wavelength. Exactly those terms turn out to lead to the
inhomogeneity described above.
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One Fourier-Laplace transformation is still left to perform. Due to the linearisation, there enters
the term (G ∗ 1)δψ(x, t) in the second line of (6.5) that almost looks like a convolution but is
none. This yields a second subtlety, which is not known from the case of usual partial-differential
equations, namely a coupling to higher frequencies, as can be seen by calculating its Fourier-
Laplace transformation

L [F [(G ∗ 1)δψ(x, t)]] = L
[∫ t

0
dt′ G̃(0, t− t′)δψ̃(k, t)

]
. (6.6)

According to (5.9) we have G̃(0, t − t′) = exp [−(t− t′)/τ ], so the integral inside the Laplace
transformation (6.6) can be evaluated resulting in

L [F [(G ∗ 1)δψ(x, t)]] = τL
[(

1− e−t/τ
)
δψ̃(k, t)

]
. (6.7)

Using [84, Table 5.1, (6)] yields finally

L [F [(G ∗ 1)δψ(x, t)]] = τ

[
δ

˘̃
ψ(k, s)− δ ˘̃

ψ

(
k, s+

1

τ

)]
. (6.8)

Thus, the Fourier-Laplace transformation leads to a coupling to higher (damping) frequencies
that are given by integer multiples of 1/τ . With this (6.5) reduces to the following linear equation
in the frequency domain:

δ(k)

s

√
n0

[
µ−

(
gTB +

i~P
2

)
˘̃G(0, s)n0 −

i~
2

(ℵp− Γ)

]
− i~δψ̃(k, 0)

− τ
(
gTB +

i~P
2

)
n0δ

˘̃
ψ(k, s+ 1/τ)

=

[
−µ− i~s+

~2k2

2m
+ τ

(
gTB +

i~P
2

)
n0 +

i~
2

(ℵp− Γ)

]
δ

˘̃
ψ(k, s)

+

(
gTB +

i~P
2

)
n0

˘̃G(k, s)
[
δ

˘̃
ψ(k, s) + δ

˘̃
ψ(k, s)∗

]
(6.9)

To sum up, we have the following differences in comparison to the usual differential equation
approach. The first term of the left-hand side, that, as we see in the next section, describes the
steady state, leads to an inhomogeneity in the equation for the perturbation δψ. The second
difference is the last term on the left-hand site, since this term couples to higher frequencies.
Let us now determine at first the steady states in the next section.

6.3. Steady States

We proceed now by examining the homogeneous steady states. These are already imprinted in
(6.9) by performing the limit |k| → 0 and s → 0. Whereas the first limit is necessary to find a
solution, which is homogeneous in space, the latter is required to achieve the steady state in the
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long-time limit. In these limits (6.9) takes the form

µ
√
n0 =

{
gTB

˘̃G(0, 0)n0 +
i~
2

[
(ℵp− Γ) + P ˘̃G(0, 0)n0

]}√
n0 . (6.10)

First, we note from (5.6) that ˘̃G(0, 0) = τ . Secondly, we see that (6.10) has two solutions. One
of them is the trivial steady state

n0
triv = 0. (6.11)

The second solution involves a finite photon density, which means that in this case we can
simplify (6.10) to

µ = τgTBn0 +
i~
2

[(ℵp− Γ) + Pτn0] . (6.12)

The imaginary part of (6.12) yields the order parameter n0 in terms of the control parameter
p:

n0 =
Γ− ℵp
τP

. (6.13)

Note, that according to (6.2) we have P < 0 as ∂n
∂T < 0. Therefore, we read off from (6.13) the

constraint

p ≥ pcrit, (6.14)

which is crucial for the existence of this steady state. The critical pump power is defined by

pcrit =
Γ

ℵ . (6.15)

The nontrivial state (6.13) gives rise to a finite chemical potential µT that is determined by the
real part of (6.12):

µT = τgTBn0. (6.16)

Therefore, the effective photon-photon interaction constant g is given by

g = τgTB. (6.17)

As we have n0|p=pcrit = n0
triv, the transition is continuous. As this should also hold for the

chemical potential, we can conclude from (6.16), that µtrivT = 0. In comparison to the results
of Section 3.2 we have reproduced exactly the same steady states, in case of vanishing Kerr
interaction and temperature pump, i.e. gK = 0 and α = 0.
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6.4. Dynamical Stability

As the possible steady states of (6.1) are now known, we aim to determine their stability.
Inserting (6.10) into (6.9) yields

√
n0 δ(k)

s+ 1/τ
(µT + iµ̃P )− i~δψ̃(k, 0) =

(
−i~s+

~2k2

2m
− µ

)
δ

˘̃
ψ(k, s)

+ (µT + iµ̃P )

{
δ

˘̃
ψ(k, s)− δ ˘̃

ψ(k, s+ 1/τ) +
˘̃G(k, s)

τ

[
δ

˘̃
ψ(k, s) + δ

˘̃
ψ(k, s)∗

]}

+
i~
2

(ℵp− Γ) δ
˘̃
ψ(k, s). (6.18)

To simplify the notation, we define the pump pseudo-chemical potential by

µ̃P =
~Pτ

2
n0 (6.19)

and use definition (6.16). Note, that we call it a pseudo-chemical potential, as it appears in the
imaginary part of (6.18) and, thus, works as a damping.

6.4.1. Trivial Steady State

We are now in the position to determine the stability of the trivial steady state (6.11). In this
case (6.18) simplifies by using (6.11) and (6.16)

δψ̃(k, 0) =

(
−i~s+

~2k2

2m

)
δ

˘̃
ψ(k, s) +

i~
2

(ℵp− Γ) δ
˘̃
ψ(k, s). (6.20)

Therefore, the Fourier-Laplace transformed solutions to the perturbations in the trivial steady
state read

δ
˘̃
ψ(k, s) =

δψ̃(k, 0)

−i~s+ ~2k2

2m + i~
2 (ℵp− Γ)

. (6.21)

The question is now what this solution in the frequency domain reveals about the behaviour of
the inverse Laplace transformed pendant. In order to answer this, consider the series

f(t) =
∑

l

αle
λlt (6.22)

with coefficients αl ∈ C and frequencies λl ∈ C. The Laplace transformation is given by

f̆(s) =
∑

l

αl
s− λl

. (6.23)

In this procedure the values λl are determined as the roots of the denominator of (6.21) and
are, thus, the singularities of the Laplace transformed solution. Therefore, our strategy is now
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to find exactly those singularities. In case of (6.21) there is only one singularity

λ = −i~k
2

2m
+

1

2
(ℵp− Γ) . (6.24)

We see, that Re (λ) ≥ 0 for p ≥ pcrit, indicating that the trivial steady state gets unstable, as
the nontrivial steady state starts to exist.

6.4.2. Nontrivial Steady State

We come now to the stability of the nontrivial steady state. Therefore, we insert (6.12) into
(6.18) and find

√
n0 δ(k)

s+ 1/τ
(µT + iµ̃P )− i~δψ̃(k, 0) =

(
−i~s+

~2k2

2m

)
δ

˘̃
ψ(k, s)

+ (µT + iµ̃P )

{
−δ ˘̃
ψ(k, s+ 1/τ) +

˘̃G(k, s)

τ

[
δ

˘̃
ψ(k, s) + δ

˘̃
ψ(k, s)∗

]}
. (6.25)

To proceed further, we split the perturbations into real and imaginary part:

δ
˘̃
ψ(k, s) = ˘̃u(k, s) + i˘̃v(k, s). (6.26)

Inserting this into (6.18) and collecting the real and imaginary parts leads to the following
recursion relation




~ṽ(k, 0)

−~ũ(k, 0)


+



µT

µ̃P



√
n0 δ(k)

s+ 1/τ
+M




˘̃u(k, s+ 1/τ)

˘̃v(k, s+ 1/τ)


 = L(k, s)




˘̃u(k, s)

˘̃v(k, s)


 , (6.27)

where the system matrix L(k, s) is defined by

L(k, s) =




εk + µT
τ

˘̃G(k, s) ~s

−~s+ µ̃P
τ

˘̃G(k, s) εk


 , (6.28)

with the one-particle energy εk defined according to (3.29). The matrix M is given by the
respective chemical potentials

M =



µT −µ̃P

µ̃P µT


 (6.29)

and, thus, carries the information off the thermo-optics.
Equation (6.18) can be solved iteratively, providing us with the Fourier-Laplace transformed
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solution of the linear part of the nonlocal Gross-Pitaevskii equation:



˘̃u(k, s)

˘̃v(k, s)


 =

∞∑

j=0

M j

(
j∏

l=0

L−1(k, s+ l/τ)

)






(−1)j~ũ(k, 0)

~ṽ(k, 0)


+



µT

µ̃P




√
n0 δ(k)

s+ (j + 1)/τ


 .

(6.30)

We can interpret the result (6.30) as a thermo-optic perturbation series as both the chemical
potential µT due to the interaction, see (6.16), and the pseudo-chemical potential µ̃P due to
the pump, see 6.19, are proportional to ∂n

∂T , see (2.75) and (6.2), respectively. In the following
discussion we ignore at first the steady state contribution. Moreover, we consider only the zeroth
term in the series, as the results for the higher summands can be found by replacing s by s+ l/τ .
Along the philosophy that we have already developed when we discussed the trivial steady state,
we look also here for the singularities of the solution (6.30). These are obviously determined by
the inverse system matrix

L−1(k, s) =
1

det(L(k, s))




εk −~s

~s− µ̃P
τ

˘̃G(k, s) εk + µT
τ

˘̃G(k, s)


 . (6.31)

Note, that we also have to deal with the singularities of the matrix entries. By using the
definition (5.6), we can write L−1 as

L−1(k, s) =
1

(τs+ τDk2 + 1) det(L(k, s))

×




(
τs+ τDk2 + 1

)
εk −

(
τs+ τDk2 + 1

)
~s

(
τs+ τDk2 + 1

)
~s− 2µ̃P

(
τs+ τDk2 + 1

)
εk + 2µT


 , (6.32)

where all possible singular terms appear in the prefactor. Before proceeding, we need to consider
the general definition of the inverse Laplace transformation of a function f(t). This is defined
via the Bromwich integral [84]

f(t) =
1

2πi

∫ c+i∞

c−i∞
ds f̆(s)est. (6.33)

According to reference [84, Ch. 9.2] the inverse Laplace transformation of a function f̆(s) that
has n singular points λi, can be calculated by the residuum theorem:

f(t) =

n∑

i=1

Res
s=λi

[
f̆(s)est

]
. (6.34)

We mention that inserting (6.23) in (6.34) directly yields (6.22). In our case, this has the
consequence, that we need to find all roots of the prefactor in (6.32), i.e. the equation

(
τs+ τDk2 + 1

)
det(L(k, s)) = 0 (6.35)
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needs to be solved. We can distinguish two cases. In the first case we find, that

s = −Dk2 − 1/τ, (6.36)

with a purely real frequency, i.e. only damping is present. Note, that this corresponds to a
resonance of the propagator (5.6). Therefore, this mode is a pure excitation of the temperature.
The corresponding piece in the sum (6.34) is given by



ũ(k, t)

ṽ(k, t)


 =




0 0

−2µ̃P 2µT






ũ(k, 0)

ṽk, 0)


 e−(1/τ+Dk2)t. (6.37)

Therefore, in this mode ũ(k, t) vanishes for all parameters, meaning that only the imaginary
part in the wave function survives. But up to first order the photon density n is due to (6.3)
given by

n = n0 +
√
n0 (δψ∗ + δψ) , (6.38)

so only the real part of the perturbations u can contribute. Thus, this mode describes pure
temperature perturbations.
The second case

0 = det(L(k, s)) (6.39)

provides us with excitations of the whole system. The determinant from (6.28)

0 = (~s)2 − ~s
µ̃P
τ

˘̃G(k, s) + ε2k + εk
µT
τ

˘̃G(k, s). (6.40)

Inserting the definition of the propagator (5.6) and multiplying by it yields a polynomial of third
order:

0 = s3 + s2

(
Dk2 +

1

τ

)
+ s

(
ε2k
~2
− µp

~τ

)
+
ε2k
~2

(
Dk2 +

1

τ

)
+

εk
~2τ

µT . (6.41)

By comparing with (3.55) we see by identifying s = iω, that this is exactly the same polynomial
as derived in the case of the two equations, meaning that all the results that have been derived
there are also valid here. In particular, we refer to Figure 3.4 and the subsequent discussion.
Let us discuss now the contribution of the steady state. According to (6.30) this can only
contribute in case of k → 0 due to the Dirac delta function and imprints then the frequency
s = −1/τ upon the solution. But as s = −1/τ is already a solution of (6.36) in this limit the
steady state has no influence.
Finally, the question on, how the coupling to higher frequencies changes the results, is left. This
question is numerically tackled by solving (6.41) with the replacement s→ s+j/τ . The result is
shown in Figure 6.1. At first we note in panel (a), that the frequency is not shifted noteworthy.
The same applies for the damping. This can be explained by the value of the relaxation time,
which is the longest time scale we have. Thus, l we be needed to be large enough in order
to introduce some effect. But as for increasing j also the order in the expansion (6.30) grows.
However, the mode for j = 0 is always present, since it is a common prefactor in (6.30). Thus,
the instability from this mode determines in every case the spectrum.
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FIG. 6.1: Numerical solution of (6.41) for s→ s+ j/τ . The solid lines represent the result for
l = 0, whereas the dashed lines represent the results for l = 10. Panel (a) shows the imaginary
part of s, which is the oscillation frequency, whereas panel (b) shows the real part of s which is
the damping.
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7. Condensate in Harmonic Trap

Und an dem Ufer steh ich lange Tage,
Das Land der Griechen mit der Seele suchend;

Und gegen meine Seufzer bringt die Welle
Nur dumpfe Töne brausend mir herüber.

Johann Wolfgang von Goethe Iphigenie auf Tauris, Act I, Scene 1

And day by day upon the shore I stand,
My soul still seeking for the land of Greece.
But to my sighs, the hollow-sounding waves

Bring, save their own hoarse murmurs, no reply.

In this Chapter we turn towards the calculation of the lowest-lying collective frequencies. As we
have discussed in the introduction to Chapter 4 their knowledge reveals deep information about
the nature of the interparticle interaction. The main purpose of this Chapter is to reformulate
Chapter 4 by means of the Green’s function approach that is worked out in Chapter 5 and to
investigate, whether the previous Gaussian ansatz for the temperature is valid or not.
In Section 7.1 it turns out, that the Gaussian ansatz for the temperature distribution performed
in Chapter 4 only works, if the temperature diffusion has small effects. The equation for the
photon number is calculated in Section 7.2. In Section 7.3 the cumulant equations of motion are
derived, which are linearised afterwards in Section 7.4. Also here the Laplace transformation
plays a basic role in order to dissolve the temporal convolutions. This yields a set of three
algebraic equations in the frequency domain. Their steady state is then analysed in Section
7.5. The dynamical stability of this steady state is investigated in Section 7.6 with respect to
perturbations of the centre-of-mass and in Section 7.7 with respect to variations of the widths.

7.1. Ansatz

We consider now again the case of a harmonically trapped photon BEC. According to (5.12) the
condensate equation is in this case given by

i~∂tψ =

[
− ~2

2m
∇2 +

mΩ2

2
x2 + gTBG ∗ |ψ|2

]
ψ +

i~
2

[
ℵp− Γ + PG ∗ |ψ|2

]
ψ. (7.1)
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As the perturbations that arise through the interaction and the pump are still considered to be
small, it is valid to consider a Gaussian ansatz for the photon wave function

ψ(x, t) =

√
N(t)

πq1(t)q2(t)
exp





2∑

j=1

[(
− 1

2qj(t)2
+ iAj(t)

)
(xj − x0j(t))

2 + ixjCj

]
 , (7.2)

whereas we specify the pump to the experimental relevant case of a homogeneous pump spot as
mentioned in the end of Section 4.4

p =
P0

Acavity
. (7.3)

The notations are the same as in Chapter 4.
This ansatz for the photon wave function is now the advantage of the approach using a prop-
agator, as no assumption upon the temperature function is needed any more. Instead, the
temperature T is determined by inserting the ansatz (7.2) into the convolution (5.7) and after
performing the spatial integrals, we obtain the remaining time integral

T (x, t) = B

∫ t

0
dt′

N ′ exp
(
− t−t′

τ

)

π
√

[4D(t− t′) + q′21 ][4D(t− t′) + q′22 ]
exp


−

2∑

j=1

(xj − x′0j)2

4D(t− t′) + q′2j


 . (7.4)

Here and throughout the rest of the chapter the prime denotes quantities that are taken at time
t′.
The question is now how large the temperature distribution deviates from the Gaussian ansatz
(4.4) performed in Chapter 4. For this purpose, we calculate the time-dependent moment
generating function M of the temperature. This is defined by

M(α1, α2; t) =

∫
d2x exp


∑

j=1,2

αjxj


T (x, t). (7.5)

After inserting the temperature function (7.4) and performing the spatial integrals we arrive
at

M(α1, α2; t) = B

∫ t

0
dt′ N ′e−(t−t′)/τ exp




∑

j=1,2

αjx
′
0j + α2

j

[
D(t− t′) +

q′2j
4

]
 . (7.6)

We assume now the quantities to vary slightly around the steady state. Therefore we take
qj(t) = q0 + δqj(t), N(t) = N0 + δN(t) as well as x0j(t) = δxj(t), where δ denotes small
perturbations around the steady state. Inserting these expansions into (7.6) and keeping only
terms up to first order in the perturbations, we find

M(α1, α2; t) ≈M0(α1, α2; t) + δM(α1, α2; t). (7.7)

The contribution M0(α1, α2; t) to the generating function is given by

M0(α1, α2; t) = T0 exp

[(
α2

1 + α2
2

)
q2

0

4

]
1− exp

{
−t
[

1
τ +

(
α2

1 + α2
2

)
D
]}

1 + τD(α2
1 + α2

2)
, (7.8)
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where we define T0 = τBN0 according to (4.29). In the long-time limit t → ∞ Equation (7.8)
approaches the equilibrium value

M0(α1, α2) = T0 exp

[(
α2

1 + α2
2

)
q2

0

4

]
1

1 + τD(α2
1 + α2

2)
. (7.9)

Thus, the generating function deviates from a Gaussian due to the presence of diffusion in the
system. In case of τD → 0 (7.9) reduces to the moment generating function of a Gaussian
distribution. Note, that the αi have the dimension of an inverse length. Therefore, we can
use τD/l2osc in order to quantify the deviation from the usual Gaussian distribution. Using the
experimental values, the deviation is given by

τD
l2osc

= 3.9× 10−3 (7.10)

and is, thus, small. Note that (7.10) coincides with the modification of the thermo-optic in-
teraction due to the temperature diffusion in Section 4.4.1. Therefore, the ansatz with the two
Gaussian functions from Chapter 4 is valid in the experimental case, but breaks down, if a strong
diffusion would be present in the system. In Figure 7.1 the temperature distribution (7.4) is
shown. In panel (a) we see the time evolution of the temperature distribution that reaches,
indeed, a steady state during the time scale of τ . This steady state is shown in panel (b). In
comparison to the normal distribution, that is here plotted for a standard deviation of 4, the
width is smaller, but the tails are larger. In order to quantify this, we calculate the excess γ [85],
that is defined as the kurtosis κ adjusted by the kurtosis of the normal distribution κn = 3.
Therefore, the steady state excess of (7.4) is given by

γT =
3

(
q2

4Dτ − 1
)2 . (7.11)

As γT > 0 the distribution is leptokurtic, meaning that the tails are fatter, as we have already
observed in Figure 7.1(b).
Now, we check, whether the part linear in the perturbations contributes to a deviation from a
Gaussian temperature distribution:

δM(α1, α2; t) = B

∫ t

0
dt′ e−(t−t′)/τ exp

{
(α2

1 + α2
2)

[
4D(t− t′) +

q2
0

4

]}
δN ′

+B

∫ t

0
dt′ e−(t−t′)/τ

[
α1δx

′
1 + α2δx

′
2 +

q0

2

(
α2

1δq
′
1 + α2

2δq
′
2

)]
e(α2

1+α2
2)q2

0/4. (7.12)

A Laplace transformation of the perturbations yields

L [δM ] (α1, α2; s) =
τBδN̆(s)e(α2

1+α2
2)q2

0/4

τs+ 4τD(α2
1 + α2

2) + 1

+
τBN0

τs+ 1

[
α1δx̆1 + α2δx̆2 +

q0

2

(
α2

1δq̆1 + α2
2δq̆2

)]
e(α2

1+α2
2)q2

0/4. (7.13)

In the first line we see the same effect as in the case of the steady state, namely a change of the
momentum generating function due to the diffusion. From the second line we can conclude that
in the dynamical case a Gaussian ansatz is still valid.
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FIG. 7.1: Plot of the temperature according to (7.4). Panel (a) shows the time evolution of
the temperature distribution until it reaches the steady state. This very steady state is shown
in Panel (b). For reasons of comparison also the normal distribution for standard deviation 4
is drawn.

We are now in the position to redo the steps of Chapter 4 from the point of view of an integro-
differential equation that is capable to describe the influences of the temperature diffusion more
accurate.

7.2. Normalisation

The first step is to calculate the normalisation of the photon wave function. This is done by
integrating the continuity equation of (7.1) and leads to an integro-differential equation for the
photon number:

∂tN = (ℵp− Γ)N + P

∫
d2x

(
G ∗ |ψ|2

)
|ψ(x, t)|2, (7.14)

where the number of photons is defined according to

N(t) =

∫
d2x |ψ(x, t)|2. (7.15)

Inserting the ansatz (7.2) and performing the remaining spatial integrals yields

∂tN =(ℵp− Γ)N + PN

∫ t

0
dt′

N ′ exp
(
− t−t′

τ

)
exp

[
−∑2

j=1

(x0j−x′0j)2

4D(t−t′)+q′2j +q2
j

]

π
√

[4D(t− t′) + q′21 + q2
1][4D(t− t′) + q′22 + q2

2]
. (7.16)
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7.3. Cumulants Equations

In the following we derive the equations governing the evolution of the first and the second
cumulant. For this purpose (7.1) is multiplied by the conjugated wave function ψ∗ as well as by
the weights that are also used in Chapter 4 and in Appendix C.
In order to find the equation for the first cumulant, we multiply (7.1) by xk −x0k and find after
integrating the resulting equation

i~
∫
d2x (xk − x0k)ψ

∗∂tψ =− ~2

2m

∫
d2x (xk − x0k)ψ

∗∇2ψ

+
mΩ2

2

∫
d2x (xk − x0k)x

2|ψ(x, t)|2

+

(
gTB +

i~
2
P

)∫
d2x (xk − x0k)

(
G ∗ |ψ|2

)
|ψ(x, t)|2. (7.17)

Inserting (7.2) and performing the spatial integrals yields

i~
(
ẋ0k

2
− iAkq2

kẋ0k + i
q2
k

2
Ċk

)
=

~2

2m
(iCk + 2AkCkq

2
k) +

mΩ2

2
x0kq

2
k

+

(
gTB +

i~
2
P

)
q2
k

∫ t

0
dt′ Gk(t, t

′)N ′(x′0k − x0k), (7.18)

with the memory kernel

Gk(t, t
′) =

exp

[
−∑2

j=1

(x0j−x′0j)2

4D(t−t′)+q′2j +q2
j
− t−t′

τ

]

π
√

[4D(t− t′) + q′21 + q2
1][4D(t− t′) + q′22 + q2

2]
[
(4D(t− t′) + q′2k + q2

k

] , (7.19)

that does not only depend on the time difference t− t′ but also on the centres-of-mass and the
widths at both times t and t′.
From the imaginary part of (7.18) we find

Ck =
mẋ0k

~
− mPq2

k

~

∫ t

0
dt′ Gk(t, t

′)N ′(x′0k − x0k). (7.20)

Reinserting this into the real part of (7.18) yields a second order integro-differential equation of
second kind for the centre-of-mass evolution:

ẍ0k + Ω2x0k = 2PIk −
2~2g̃

m2τ

∫ t

0
dt′ N ′Gk(t, t

′)(x′0k − x0k), (7.21)

where we inserted the dimensionless interaction strength (3.20). The remaining pump influence
is determined by the quantities

Ik = − 1

~q2
k

d

dt
q2
k

∫ t

0
dt′ Gk(t, t

′)N ′(x′0k − x0k) +
~Akq2

k

m

∫ t

0
dt′ Gk(t, t

′)N ′(x′0k − x0k). (7.22)

Thus, the centre-of-mass coordinates obey an equation of motion for a harmonic oscillator that
is perturbed by the pump on the one hand and by the temporally retarded interaction on the
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other hand.

Now we turn our attention towards the second cumulant. Multiplying (7.1) by the conjugated
wave function and by (x− x0k)

2 − q2
k/2 yields after integration

i~
∫
d2x

[
(xk − x0k)−

q2
k

2

]
ψ∗∂tψ = − ~2

2m

∫
d2x

[
(xk − x0k)−

q2
k

2

]
ψ∗∇2ψ

+
mΩ2

2

∫
d2x

[
(xk − x0k)−

q2
k

2

]
x2|ψ(x, t)|2 (7.23)

+ (gTB +
i~
2
P )

∫
d2x

[
(xk − x0k)−

q2
k

2

] (
G ∗ |ψ|2

)
|ψ(x, t)|2.

Inserting also here the ansatz (7.2) and performing the integrals yields

i~

(
qkq̇k

2
+ i

q4
kȦk
2

)
=− ~2

2m

(
1

2
+ 2iAkq

2
k − 2A2

kq
4
k

)
+
mΩ2

4
q4
k (7.24)

+

(
gTB +

i~
2
P

)
q4
k

∫ t

0
dt′ N ′Gk(t, t

′)

[
(x′0k − x0k)

2

4D(t− t′) + q′2k + q2
k

− 1

2

]
.

Also here we separate real and imaginary part. The latter results in an equation for Ak in terms
of the widths:

Ak = −mq̇k
2~qk

+
mPq2

k

2~

∫ t

0
dt′ N ′Gk(t, t

′)

[
(x′0k − x0k)

2

4D(t− t′) + q′2k + q2
k

− 1

2

]
. (7.25)

Inserting this into the real part yields after several steps of simplification

q̈k + Ω2qk =
~2

m2q3
k

− 4~2g̃qk
m2τ

∫ t

0
dt′ N ′Gk(t, t

′)

[
(x′0k − x0k)

2

4D(t− t′) + q′2k + q2
k

− 1

2

]
− q3

kJk. (7.26)

To shorten the equation we denote the pump influence upon the width dynamics by

Jk =P 2qk

{∫ t

0
dt′ N ′Gk(t, t

′)

[
(x′0k − x0k)

2

4D(t− t′) + q′2k + q2
k

− 1

2

]}2

+ P
d

dt

∫ t

0
dt′ N ′Gk(t, t

′)

[
(x′0k − x0k)

2

4D(t− t′) + q′2k + q2
k

− 1

2

]
. (7.27)

Finally, (7.16), (7.21) and (7.26) represent the system of equations that is analysed in the re-
mainder of this section in order to find the frequencies of the lowest-lying collective excitations.

7.4. Linearisation and Laplace Transformation

In the following we proceed by linearising the system (7.16), (7.21) and (7.26) in the neighbour-
hood of the fixed points. Afterwards, the equations are Laplace transformed in order to get rid
of the remaining time integrals. In this way, algebraic equations for the collective frequencies
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are obtained.
In order to linearise the equations we write the photon number as N(t) = N0 + δN(t), where N0

denotes the steady state and δN(t) small perturbations around this steady state. The same is
done for the centre-of-mass coordinates x0k(t) = x

(0)
0 +δx0k(t) and for the widths qk = q0 +δq0k,

where already an isotropic trap is assumed, as the steady state values for both coordinate direc-
tions are the same.

The linearised version of (7.16) is given by

∂tδN ≈ (ℵp− Γ) (N0 + δN) + PN0

[
(G0 ∗ 1)N0 + (G ∗ δN ′) + (G0 ∗ 1)δN

]

− PN2
0 q0

[
(G1 ∗ 1) (δq1 + δq2) +G1 ∗

(
δq′1 + δq′2

)]
, (7.28)

where the convolution, see (5.8), is understood with respect to t′ and the propagators Gi(t) are
given by

Gi(t) =
e−t/τ

π
(
4Dt+ 2q2

0

)i+1
. (7.29)

In order to deal with the convolutions appearing in (7.28), this linear equation is Laplace trans-
formed. Thus, the convolutions appearing in the equation are replaced by products of the
Laplace transformed functions. With this, we obtain

sδN̆(s)− δN(0) = (ℵp− Γ)

(
N0

s
+ δN̆(s)

)
+ PN0

{
Ğ0(s)

(
N0

s
+ δN̆(s)

)

+L [(G0 ∗ 1)δN(t)] (s)−N0q0Ğ1(s) (δq̆1(s) + δq̆2(s))

−N0q0L [(G1 ∗ 1) (δq1(t) + δq2(t))] (s)} , (7.30)

where L[f ](s) denotes the operator of the Laplace transformation acting on the function f at
frequency s. Moreover, it is used that the Laplace transform of a constant C is given by C/s.
The Laplace transformation of the propagators (7.29) is calculated as follows. First, we note
that due to the Taylor expansion the identity

(1 + x)−l =
∞∑

n=0

(−l
n

)
xn (7.31)

holds. Here, the definition of the binomial coefficient is extended to negative upper numbers [86],
such that the relation

(−l
n

)
= (−1)n

(
l + n− 1

n

)
, for n ∈ N, l ∈ N (7.32)

holds. By using (7.31) the Laplace transformation

Ği(s) =
1

π
L
[
e−t/τ

(
4Dt+ 2q2

0

)−i−1
]

(7.33)
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can be written as

Ği(s) =
1

π(2q2
0)i+1

∞∑

n=0

(−(i+ 1)

n

)(
2D
q2

0

)n
L
[
e−t/τ tn

]
. (7.34)

Therefore the Laplace transformation is finally given by

Ği(s) =
τ

π(2q2
0)i+1

∞∑

n=0

(−(i+ 1)

n

)(
2Dτ
q2

0

)n n!

(τs+ 1)n+1
. (7.35)

Thus, we find that the propagator is given by a Taylor series in the parameter Dτ/q2
0, that

has already appeared in Section 7.1 as a smallness parameter for determining when a Gaussian
ansatz for the temperature fails. Up to first order in Dτ/q2

0 the propagator reads:

Ği(s) ≈
τ

π(2q2
0)i+1

[
1

τs+ 1
− 2Dτ

q2
0

i+ 1

(τs+ 1)2

]
. (7.36)

Moreover, in (7.30) terms of the form L [(Gi ∗ 1)f(t)], which are not a convolution, occur, as
already in Chapter 6. There they led to couplings to higher frequencies. As in the present case
the definition of the propagator is more complicated, also the coupling to higher frequencies
turns out to be more involved. First we need to calculate the integral

∫ t

0
dt′ Gi(t− t′) =

∫ t

0
dt′

e−(t−t′)/τ

π
[
4D(t− t′) + 2q2

0

]i+1
. (7.37)

After applying the substitution θ = t− t′ we can do the same steps as in the calculation above
and find

∫ t

0
dt′ Gi(t− t′) =

1

π(2q2
0)i+1

∞∑

n=0

(−(i+ 1)

n

)(
2D
q2

0

)n ∫ t

0
dθ e−θ/τθn. (7.38)

Hence, the convolution of the propagator with unity is given by

(Gi ∗ 1)(t) =
τ

π(2q2
0)i+1

∞∑

n=0

(−(i+ 1)

n

)(
2Dτ
q2

0

)n
n!

[
1− e−t/τ

n∑

l=0

(t/τ)l

l!

]
. (7.39)

Therefore, the Laplace transformation L [(Gi ∗ 1)f(t)] yields

L [(Gi ∗ 1)f(t)] =
τ

π(2q2
0)i+1

∞∑

n=0

(−(i+ 1)

n

)(
2Dτ
q2

0

)n
n!

[
f̆(s)−

n∑

l=0

1

l!τ l
dl

dsl
f̆(s+ 1/τ)

]
,

(7.40)

which is also a series in the parameter Dτ/q2
0. Moreover, we also find that derivatives of f̆ occur,

which is due to the finite sum in the curly brackets. Up to first order in the diffusion (7.40)
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simplifies to

L [(Gi ∗ 1)f(t)] ≈ τ

π(2q2
0)i+1

{
f̆(s)− f̆(s+ 1/τ)

−2(i+ 1)Dτ
q2

0

[
f̆(s)− f̆(s+ 1/τ)− 1

τ

d

ds
f̆(s+ 1/τ)

]}
. (7.41)

We assume further that τ represents a long time scale, as was already figured out in Chapter 2.
Then 1/τ amounts to a small frequency and we can absorb the derivative d

ds f̆(s+ 1/τ) in (7.41)
by the first two terms of the expansion of the translation operator exp

(
1
τ
d
ds

)
:

L [(Gi ∗ 1)f(t)] ≈ τ

π(2q2
0)i+1

{
f̆(s)− f̆(s+ 1/τ)− 2(i+ 1)Dτ

q2
0

[
f̆(s)− f̆(s+ 2/τ)

]}
. (7.42)

This can be rewritten by using the Laplace transformed propagator Ği from (7.35) as

L [(Gi ∗ 1)f(t)] ≈ Ği(0)f̆(s)− τ

π(2q2
0)i+1

[
f̆(s+ 1/τ)− 2(i+ 1)Dτ

q2
0

f̆(s+ 2/τ)

]
. (7.43)

Linearising the centre-of-mass equation (7.21) thus yields

δẍ0k + Ω2(x
(0)
0k + δx0k) = 2PδIk −

~2g̃N0

m2τ

[
G1 ∗ δx′0k − (G1 ∗ 1) δx0k

]
, (7.44)

where the linear pump influence is given by

δIk = −N0

~
∂t
[
G1 ∗ δx′0k − (G1 ∗ 1)δx0k

]
+

~Akq2
kN0

m

[
G1 ∗ δx′0k − (G1 ∗ 1)δx0k

]
. (7.45)

From this equation we see, that the photon wave function is centred around the origin, i.e. x(0)
0k =

0. As done above for the normalisation, we perform also here a Laplace transformation and find

s2δx̆0k − δẋ0k(0)− sδx0k(0) + Ω2δx̆0k =2PL[δIk]

− 2~2g̃N0

m2τ

(
Ğ1δx̆0k − L [(G1 ∗ 1)δx0k]

)
, (7.46)

where the transformation of the pump term is given by

L[δI] =− N0

~q4
0

{
sĞ1(s)δx̆0k(s)−G1(0)δx0k(0)− L

[
d

dt
(G1 ∗ 1)δx0k

]}

+
~N0A0q

2
0

m

{
Ğ1δx̆0k − L [(G1 ∗ 1)δx0k]

}
. (7.47)

Note, that we write down the explicit form of these equations in the next Sections, when we go
for the collective frequencies.
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Finally, the width equation (7.26) is left to be linearised. Here, we find

δq̈k + Ω2(q0 + δqk) =
~2

m2q3
0

− 3~2δqk
m2q4

0

+
2~2g̃

m2τ
{(G1 ∗ 1)N0q0

+G2 ∗
[
2q2

0δN
′ − q2

0N0

(
δq′1 + δq′2 + 2δq′k

)]
− (G2 ∗ 1)q2

0N0 (δq1 + δq2)

4D ((G2t) ∗ 1) (q0δN +N0δqk)}+ q3
0J0 + q3

0δJk + 3q2
0J0δqk. (7.48)

The pump influence is given by

J0 =
P 2q0N

2
0

4
(G3 ∗ 1)− PN0

2

d

dt
(G2 ∗ 1) (7.49)

and the part linear in the perturbations reads

δJk =− P 2N0

{
G4 ∗

[
−q3

0δN
′ +

N

2

(
2δq′k + δq′1 + δq′2

)]
+
N

2
(G4 ∗ 1)(δq1 + δq2)

−D ((G4t) ∗ 1) q0δN +N0δqk

}
− P

2

d

dt

{
G2 ∗

[
2q2

0δN
′ −N0

(
2δq′k + δq′1 + δq′2

)]

−(G2 ∗ 1)N0(2δqk + δq1 + δq2) + 4D ((G2t) ∗ 1) δN} . (7.50)

Performing a Laplace transformation yields

s2δq̆k − δq̇k(0) + sδqk(0) + Ω2(
q0

s
+ δq̆k) =

~2

sm2q3
0

− 3~δq̆k
m2q4

0

+
2~2g̃

m2τ

{
Ğ1(s)

s
N0q0 + Ğ2

[
2q2

0δN̆ − q2
0N0 (δq̆2 + δq̆1 + 2δq̆k)

]}

+ L
[
G2(t− t′)

[
4D(t− t′) (q0δN(t) +N0δqk(t))− q2

0N0 (δq2(t) + δq1(t))
]]

+ q3
0L[J0] + q3

0L [δJk] + 3q2
0L [J0δqk] . (7.51)

The Laplace transformed pump terms are given by

L[J0] =
P 2q0N

2

4

Ğ3

s
− PN0

2
Ğ2 (7.52)

and

L[δJk] =− P 2N0

{
Ğ4

[
−q3

0δN̆ +
N

2
(2δq̆k + δq̆1 + δq̆2)

]
+
N

2
L [G4 ∗ (δq1 + δq2)]

−Dq0[G4t]δN̆ +N0DL [(G4t) ∗ δqk]
}
− P

2

{
4DL [(G4t) ∗ δN ]

sG2

[
2q2

0δN̆ −N0 (2δq̆k + δq̆1 + δq̆2)
]
−N0L [G2 ∗ (2δqk + δq1 + δq2)]

}

(7.53)

Note, that the terms quadratic in P can be neglected in practical calculations, as they are
proportional to

(
∂n
∂T

)2 and we consider only a theory that is of first order in ∂n
∂T , cf. Chapter 4.
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FIG. 7.2: Functional dependencies of the propagators (7.56) on the diffusion. In the current
experimental case we have D τ/q2

0 ∼ 1× 10−3.

7.5. Steady State

We start by evaluating the equations in case of the steady state, i.e. in the limit s → 0. From
(7.30) we find in the limit s→ 0 for the steady state of the photon number

N0 =
(Γ− ℵp)
PĞ0(0)

(7.54)

and of the condensate width

0 = − 1

l4osc
+

1

q4
0

+
2g̃N0

τ
Ğ1(0), (7.55)

where we introduced the harmonic oscillator length losc =
√

~/(mΩ) . Comparing (7.54) to
the corresponding equation of the two Gaussian approach (4.46), we can identify that τG0

Tψ

corresponds to Ğ0(0) in the above equation. In order to compare these two quantities, we write
down the respective formulas next to each other

G0
Tψ =

1

2πq2
0

1

1 + 2Dτ/q2
0

, (7.56a)

Ğ0(0) =
1

2πq2
0

∫ ∞

0
dt

e−t

1 + 2Dτt/q2
0

, (7.56b)

where we changed the integration constant in the latter equation from t to t/τ . It can be seen
in (7.56) that the diffusion is taken into account quite differently. Whereas in the approach with
two Gaussians the diffusion only influences via the steady state, in the propagator approach the
whole history of the diffusion plays a role in the photon steady state. The functional dependences
of these two approaches on the diffusion is plotted in Figure 7.2. The two-Gaussian approach
overestimates the influence of the diffusion especially in the case of a strong, but finite diffusion,
as we have Ğ0(0) ≥ G0

Tψ according to Figure 7.2. Although, in the current experiments, where
Dτ/q2

0 ∼ 1× 10−3, see (7.29), the difference between these approaches is negligible, in future
experiments the difference between the two approaches may become important. For a detailed
discussions we refer to Section 4.4.
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Next we investigate the stability of this steady state. For this purpose we proceed as in Chapter
4 by first analysing the dipole mode and, afterwards, examining the quadrupole together with
the breathing mode.

7.6. Dipole Mode

As we have already seen in (7.44), the centre-of-mass equation does not couple to the other
dynamical degrees of freedom. Therefore, we will analyse in this subsection the oscillation
frequency of the dipole mode. It is again given by the singularities of the Laplace transformation
of δx0k(t). The equation for the dipole mode is given by

δx̆0k(s)

{
s2 + Ω2 +

2~2g̃N0

m2τ

[
Ğ1(s)− Ğ1(0)

]
− 2P

(
−N0s

~q4
0

+
~N0A0q

2
0

m

)(
Ğ1(s)− Ğ1(0)

)}

=δẋ0k(0) + sδx0k(0)− τδx0k(s+ 1/τ)

π(2q2
0)2

{
2~2g̃N0

m2τ
+ 2PN0

[
s+ 1/τ

~q4
0

+
~A0q

2
0

m

]}

+
τδx̆0k(s+ 2/τ)

π(2q2
0)2

{
2~2g̃N0

m2τ

4Dτ
q2

0

+ 2PN0
4Dτ
q2

0

[
s+ 2/τ

~q4
0

+
~A0q

2
0

m

]}
. (7.57)

From the analysis of the homogeneous case in the previous Section we know that the most
relevant frequencies of the inverse Laplace transformation, i.e. the lowest order in the thermo-
optic perturbation series, are already calculated by only considering the initial conditions of the
perturbation on the right-hand side of (7.57). Therefore, we find from (7.57) the lowest order
solution

δx̆0k(s) =
δẋ0k(0) + sδx0k(0)

s2 + Ω2 + 2~2g̃N0

m2τ

[
Ğ1(s)− Ğ1(0)

]
− 2P

(
−N0s

~q4
0

+
~N0A0q2

0
m

) [
Ğ1(s)− Ğ1(0)

] . (7.58)

The singularities of (7.58) are provided by the roots of the denominator:

0 = s2 + Ω2 +
2~2g̃N0

m2τ

[
Ğ1(s)− Ğ1(0)

]
− 2P

(
−N0s

~q4
0

+
~N0A0q

2
0

m

)[
Ğ1(s)− Ğ1(0)

]
. (7.59)

Again, only in case of a strong diffusion, this equation differs from the one in Section 4.5, as this
difference is due to the propagators. To compare this in more detail with the results of Section
4.5 it is convenient to integrate (4.66), as this is the quantity, which is in the current approach
hidden in the propagator. We find

δy0k =

∫ t

0

dt′

τ
e−(t−t′)/τδx0k(t

′). (7.60)

Note, that in this equation no diffusion is present. This means that the diffusion only enters
through the steady state, as can also be seen by inserting (7.60) into (4.67). Therefore, we
conclude that the main difference between the approach presented in this part and the previous
approach using two equations is that, due to using a propagator, the effects brought in by the
diffusion are taken into account dynamically, whereas in the other method only static diffusion
effects are considered. Both approaches coincide if only a small diffusion is present, as it is,
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indeed, the case in the current experiments, but in future experiments, the diffusion might be
much larger.

7.7. Breathing and Quadrupole Modes

As the width dynamics couples linearly to the dynamics of the photon number, we have to take
into account the coupled system of the equations for the photon number and for both widths.
Due to (7.30) the photon number obeys the equation

δN̆(s)
{
s−

[
ℵp− Γ + P0N0

(
Ğ0(s) + Ğ0(0)

)]}
+ (δq̆1(s) + δq̆2(s))P0N

2
0 q0

[
Ğ1(s) + Ğ1(0)

]

=δN(0) +
(
ℵp− Γ + PN0Ğ0(s)

) N0

s
+
τPN0

2πq2
0

[
−δN̆(s+

1

τ
) +

4Dτ
q2

0

δN̆(s+
2

τ
)

]

− N0q0τPN0

π(2q2
0)2

[
−δq̆1(s+

1

τ
)− δq̆2(s+

1

τ
) +

4Dτ
q2

0

(
−δq̆1(s+

2

τ
)− δq̆2(s+

2

τ
)

)]
. (7.61)

From (7.48) we find for the width in the 1-direction the equation

δq̆1(s)

{
s2 + Ω2 +

3~2

m2q4
0

+

[
2q2

0N0~2g̃

m2τ
− q3

0Ps

2

] [
3Ğ2(s) + Ğ2(0)

]}

+ δq̆2(s)

{[
2q2

0N0~2g̃

m2τ
− q3

0Ps

2

] [
Ğ2(s) + Ğ2(0)

]}
+ δN̆(s)Ğ2(s)q2

0

[
−4~2g̃

τm2
+ Ps

]

=δq̇1(0) + sδq1(0) +
1

s

[
−Ω2q0 +

~2

m2q3
0

+
2~2g̃

m2τ
Ğ1(s)

]

+
2~2g̃

m2τ

{
4D d

ds

[
Ğ2(0)

(
q0δN̆(s) +N0δq̆1(s)

)
− τ

π(2q2
0)3

(
q0δN̆(s+

1

τ
) +N0δq̆1(s+

1

τ
)

−4Dτ
q2

0

{
q0δN̆(s+

2

τ
) +N0δq̆1(s+

2

τ
)

})]}
− q3

0

PN0s

2
Ğ2(s)

+ q3
0

PN0s

2

τ

π(2q2
0)3

{
3δq̆1(s+

1

τ
) + δq̆2(s+

1

τ
)− 4Dτ

q2
0

[
3δq̆1(s+

2

τ
) + δq̆2(s+

2

τ
)

]}

+ 4D d

ds

[
Ğ4(s)δN̆(s)− τ

π(2q2
0)5

(
δN̆(s+

1

τ
) +

4Dτ
q2

0

δN̆(s+
2

τ

)]
. (7.62)

From (7.62) we conclude that a similar equation for the width in the 2-direction can be found by
interchanging the indices 1 ↔ 2. The widths do not only couple to higher frequencies but, due
to terms that are proportional to the time variable, also derivatives in the frequency variable
occur on the right-hand side. But from the previous Sections we learned that the terms involving
the initial conditions yield already the dominant frequencies of the oscillations. Therefore, we
consider only those terms in the following analysis. The resulting system can be written in
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vector-matrix form as

L(s)




δN̆(s)

δq̆1(s)

δq̆2(s)




=




δN(0)

δq̇1(0) + sδq1(0)

δq̇2(0) + sδq2(0)



. (7.63)

Note, that the variable s on the right-hand side, yields simply the phase between the velocity of
the width and the width itself. The entries of the system matrix are given by

LN,N = s−
[
ℵp− Γ + P0N0

(
Ğ0(s) + Ğ0(0)

)]
, (7.64a)

LN,q1 = P0N
2
0 q0

[
Ğ1(s) + Ğ1(0)

]
= LN,q2 , (7.64b)

Lq1,N = Ğ2(s)q2
0

[
−4~2g̃

τm2
+ Ps

]
= Lq2,N , (7.64c)

Lq1,q1 = s2 + Ω2 +
3~2

m2q4
0

+

[
2q2

0N0~2g̃

m2τ
− q3

0Ps

2

] [
3Ğ2(s) + Ğ2(0)

]
= Lq1,q1 , (7.64d)

Lq1,q2 =

[
2q2

0N0~2g̃

m2τ
− q3

0Ps

2

] [
Ğ2(s) + Ğ2(0)

]
= Lq2,q1 . (7.64e)

Here again we are looking for the roots of the determinant of the system matrix L(s). The
numerical results are shown in Figure 7.3. We encounter that also the breathing mode is shifted
to lower frequencies in contrast to the case of a contact interaction, cf. Appendix C, which is the
same behaviour as in 7.3. Moreover, we see that the quadrupole mode is basically undamped,
whereas the breathing mode is slightly damped. In contrast to these two modes, the perturbation
of the photon number, that can only undergo a diffusive motion, is damped strongest and cannot
oscillate at all. Contrarily to all results we got before, the modes of the widths turn out to be
stable for all photon numbers.
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FIG. 7.3: Breathing and quadrupole modes. In (a) the frequency is plotted, whereas in (b)
the corresponding damping is shown. The inlet shows also the damping of the photon number.
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8. Conclusion

The web of our life is of a mingled yarn, good and ill together:
our virtues would be proud, if our faults whipped them not;

and our crimes would despair, if they were not cherished by our virtues.

William Shakespeare, All’s Well that Ends Well, Act IV, Scene 3

Inspired by the simple mean-field theory for exciton-polariton condensates in reference [34],
the aim of this thesis is to find a description of a photon Bose-Einstein condensate that is of
similar ease and able to describe the effective photon-photon interaction which arises due to the
thermo-optic effect. With this we then investigate the influence of the thermo-optic nonlinearity
on collective excitation frequencies, which have not yet been found experimentally.

For this purpose we start in Chapter 2 with Maxwell’s equations and take also a temperature
dependence of the refractive index of the dye solution into account. We then obtain a system of
two coupled partial differential equation in three spatial dimensions. However, as the longitudinal
modes for both the temperature and the electric field are fixed, a corresponding system of
evolution equations (2.81) and (2.82) in the remaining two transversal degrees of freedom is
derived. This system also incorporates the pump and loss processes. It turns out, that these
two equations are similar to the corresponding mean-field equations for the exciton-polariton
condensate, see Table 2.1.
As a first step in the analysis we investigate the homogeneous condensate. For this purpose
we perform in Chapter 3 a linear stability analysis of the system (2.81) and (2.82), where the
trap is neglected. We find that the condensate is possibly unstable in the long wavelength limit,
cf. (3.40) and the subsequent discussion. Moreover, an eigenvalue zero is always present in this
limit, such that the Goldstone theorem is valid, see also Figure 3.4. However, for slightly smaller
wavelengths the condensate tends to get unstable due to the thermo-optic interaction, but it gets
stable again in the small wavelength limit, as described by the formulas (3.49) and (3.56). In
Chapter 6 we point out, that the same results can also be derived by using an approach, where
the temperature equation (2.82) is eliminated by means of a Green’s function, see Chapter 5.
The case of a harmonically trapped condensate is addressed in Chapter 4. Here, we aim for
the imprint of the thermo-optic interaction upon the lowest-lying collective frequencies, that are
usually calculated via a variational approach relying on the action principle [77]. Nonetheless,
this approach cannot be used here, as no action principle for open-dissipative systems exists.
Instead we use a method that is based on calculating the cumulants equations of motion [81].
In Appendix C we show that this method coincides with the variational approach in case of an
ordinary Gross-Pitaevskii equation. With this method and the assumption that the temperature
is also Gaussian shaped (4.4) as the condensate wave function, we can then calculate the steady
state of the trapped condensate as well as its stability. However, in Chapter 7 we show that
the ansatz for the temperature is only valid, if the diffusion has a small influence, as (7.9) and
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Figure 7.1 demonstrate. It turns out that the steady state is the one of a closed Gross-Pitaevskii
equation with a contact interaction modified by the temperature diffusion, as a comparison of
(C.22) and (4.41) and Figure 7.2 shows. Therefore, we conclude, that the usual experimental
procedure for measuring the interaction strength [35,53], which relies on (C.22), has a systematic
error of ignoring the temperature diffusion.
The analysis of the perturbations of the trapped steady state, which is done in Sections 4.5 and
4.6 as well as in Sections 7.6 and 7.7, reveals that the thermo-optic interaction affects modes that
are not influenced by a usual contact interaction. In this manner Figure 4.7 shows that the dipole
mode breaks the Kohn theorem, so that the frequency of the dipole mode becomes smaller then
the trapping frequency. Moreover, also the breathing mode, that is according to (C.24a) always
twice the trapping frequency, experiences a shift to lower frequencies, as Figure 4.8 indicates.
Finally, also the quadrupole mode undergoes a frequency shift to smaller values, see Figure 4.8.
In Section 4.7 two possible experiments on how to detect those modes are discussed.

To sum up, in this thesis a mean-field description for photon Bose-Einstein condensates under the
influence of a thermo-optic photon-photon interaction is derived. With this theory at hand, the
lowest-lying collective frequencies of a harmonically trapped condensate are calculated, inter alia.
Those frequencies can be measured via a streak camera or by investigating the eigenfrequencies
of the dye-filled cavity.
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9. Outlook

If we shadows have offended,
Think but this, and all is mended,
That you have but slumber’d here

While these visions did appear.
And this weak and idle theme,
No more yielding but a dream,

Gentles, do not reprehend:
if you pardon, we will mend:

William Shakespeare, A Midsummer Night’s Dream, ll. 2275-2282

As the mean-field equations, which are derived in Chapter 2, have been extensively investigated,
we briefly discuss points that still offer prospects for future works.

9.1. Matter Degrees of Freedom

At first we share thoughts on how the matter degrees of freedom can be included in order
to complete the analysis of the system. For this purpose, it is more convenient to describe
the condensate wave function ψ(x, t) by its projections on the unperturbed cavity eigenmodes,
i.e. the eigenmodes of the two-dimensional harmonic oscillator, see (4.93). The corresponding
expansion of the condensate wave function is already given in (4.98). As the harmonic oscil-
lator eigenfunctions (4.93) are real, we can also expand the temperature distribution in those
eigenfunctions

T (x, t) =
∑

β

bβ(t)φβ(x), (9.1)

where bβ are real-valued expansion coefficients defined by

bβ(t) =

∫
d2x T (x, t)φβ(x, t). (9.2)

The aim is now to propose a minimal model, that is able to describe the thermo-optic effect
and the spectral dynamics of the molecules. For this purpose we take the coherent part from
equations (2.81) and (2.82) and project those reduced equations on the eigenstates (4.93) in
order to find the equations of motion for the expansion coefficients (4.98) and (9.2), respectively.
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For the condensate wave function we find:

i~ȧα = ~ωαaα + gT
∑

µν

cαµνtµaν , (9.3)

where the eigenfrequency ωα is defined in (4.100), furthermore

cλµν =

∫
d2x φλ(x)φµ(x)φν(x) (9.4)

are the coupling constants that arise due to the nonlinear coupling of the temperature to the
photon equation of motion. Similarly, we find for the temperature

ṫβ = −1

τ
tβ +B

∑

µν

cβµνa
∗
µaν . (9.5)

We model now the occupation numbers of the ground and the excited state of the molecules by
a two-level system, where the emission and absorption rate obey the Kennard-Stepanov relation
(A.17). Thus, the rate equation for the occupation number N2 of the upper state is given by

Ṅ2 =
∑

α

[
−B21(ωα)N2|aα|2 +B12(ωα)N1|aα|2

]
+ PN1 − γN2. (9.6)

Here, B21(ω) and B12(ω) denotes the stimulated emission and absorption coefficient at the
frequency ω, whereas P and γ are the rate coefficients for the pump and the nonradiative decay
of the molecules, respectively. The corresponding rate equation for the lower molecular energy
state reads

Ṅ1 = −Ṅ2. (9.7)

Note, that these equations are a generalisation of the usual laser rate equations, compare to [87].
The material degrees of freedom are coupled to the coefficients of the photon wave function by
adding the corresponding photon number rate equation in the imaginary part of (9.3):

i~ȧα = ~ωαaα + gT
∑

µν

cαµνtµaν +
i~
2

[B21(ωα)N2 −B12(ωα)N1 − κ] aα, (9.8)

where κ denotes the cavity decay. As the total number of molecules N = N1 + N2 is constant
in time due to (9.7), the matter degrees of freedom are fully described by one equation for
the population inversion D = N2 − N1. Finally, with the definition of the vacuum population
inversion

D0 = N
P − γ
P + γ

(9.9)

and the relaxation time of the population inversion

θ =
1

P + γ
, (9.10)
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we end up with the following system of equations

Ḋ =
D0 −D

θ
+
∑

α

[(
NBα

− −DBα
+

)
|aα|2

]
, (9.11a)

i~ȧα = ~ωαaα + gT
∑

µν

cµναtµaν +
i~
4

[
−Bα
−N +Bα

+D − 2κ
]
aα, (9.11b)

ṫβ = −1

τ
tβ +B

∑

µν

cµνβa
∗
µaν . (9.11c)

Here, we introcued the rates

Bα
± = B12(ωα)±B21(ωα). (9.12)

By using the Kennard-Stepanov (A.17) relation, (9.12) can be brought to the form

B±α = B12(ωα)
(

1± e−ξα
)
, (9.13)

with the Kennard-Stepanov exponent ξα = −~(ωα − ωZPL)/(kBT ). From (9.12) we see, that in
the case of a laser, where we have ξα = 0, the coefficient Bα

− vanishes. As we are looking for the
lowest-lying frequencies, we proceed as in Section 3.4 by only considering the modes with the
three lowest energies. Preliminary results of a simulation of (9.11) are shown in Figure 9.1. Here
we use the initial state that the main contribution of photons is in the ground state φ00 and only
a very small amplitude of the first excited state φ01 is present. The parameters are adjusted in
a way, that the main features of the model can still be found, but the computation time stays
short. In panels (a) and (b), where the corresponding projection of the photon distribution is
plotted, one can see that in the x1 direction only the width of the condensate changes, whereas
in the x2 direction also the centre-of-mass oscillates. The latter stems from the initial condition
that also a little contribution of the φ01 mode is in the total state. The first stems from the
thermo-optic interaction, since the dominating part of the initial state is the ground state φ00.
But due to the interaction, the condensate broadens up and the widths start to oscillate. Due
to the initial conditions these oscillations can be identified with the breathing mode. The
corresponding temperature distribution can be found in panels (c) and (d), respectively. Panel
(e) shows to centre-of-mass motion, which corresponds to the dipole mode once the temperature
reaches its equilibrium. As it appears, the centre-of-mass oscillation gets damped as the time
evolves. Finally, in panel (f) the temporal evolution of the widths is shown. Thus, the width
grows with time which is attributed to the thermo-optic interaction building up. Moreover, this
growth comes together with some oscillations that experience a damping during time, as we
already mentioned.
In total, we have shown that including the matter degrees of freedom yields a stabilisation of
the condensate, as the absorption rate of the higher modes are larger, but the emission rates are
smaller due to the Kennard-Stepanov relation. Therefore, photons are removed from the higher
modes and inserted into the ground mode.

However, this model is neither able to describe the thermalisation of the uncondensed photon gas
nor can it describe the effects of polarisation, because the spontaneous emission is not included.
For the first one needs the spontaneous emission in order to introduce a Bose-Einstein distri-
bution, see Section 1.1. For the latter one needs to include spontaneous emission to have also
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FIG. 9.1: Solutions to system (9.11). Panels (a) and (b) show the projection of the condensate
distribution to the x and y axis, respectively. The same is plotted in Panels (c) and (d) for the
temperature distribution. The evolution of the centre-of-mass coordinate is drawn in Panel (e),
whereas the dynamics of the widths can be found in Panel (f). In the last both pictures, blue
(green) corresponds to the 1 (2) direction.
The numerical parameters are chosen as: τΩ = 0.2, B = l2osckB/~, gT = 0.9 kB. For the
material we have the parameters γ = 0.5 Ω, κ = 0.2 Ω. The absorption rates are chosen to be
B(ω00) = Ω, B(ω10) = B(ω01) = 1.01 Ω and B(ω20) = B(ω02) = 1.02 Ω, with the corresponding
Kennard-Stepanov exponents ξ00 = −3, ξ01 = ξ10 = −2.95 as well as ξ02 = ξ20 = −2.9.
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processes that change the polarisation of a photon [88]. A possible way to include spontaneous
emission into a mean-field model is to include an additive Gaussian white noise as it is shown
in [89].
Moreover, also the coherent light-atom coupling is missing, meaning that the model (9.11) only
yields the envelope of the full time evolution as coherent absorption-emission processes happen
continuously. In order to incorporate that, the semiclassical laser equations [87] need to be
considered. Generalising this theory to molecular absorption and emission spectra, i.e. taking
into account the Kennard-Stepanov equation this should lead to the model that is used in [57].
Nevertheless, one can also ask the question, whether a temporal nonlocal interaction is, indeed,
due to the thermo-optics and does not stem from the Kerr effect. In the end, this is a question
of competing time scales, as the condensate life time is about 5× 10−7 s, whereas the time scale
of the thermo-optic interaction on the other hand is in the order of 1× 10−6 s. This means that
the condensate does not live long enough in order to reach the steady state that is provided by
the thermo-optic interaction. On the other hand, the fluorescence lifetime of Rhodamine 6G is
of the order of 1× 10−9 s [90], which yields the time scale of the thermo-optic effect. Therefore,
it is possible that due to this fast time scale of the Kerr effect a nonlocality in time is due to
this effect and not due to the thermo-optic interaction. This argumentation holds at least for
one single photon BEC. If many experiments are conducted after each other in a row, then
it may come to an accumulation of heat and, thus, the condensate may reach a thermo-optic
equilibrium. However, in [90] it is also shown that the life time drops with increasing dye con-
centration. Possibly, a first attempt to a mean-field theory describing a nonlocal Kerr effect
may have the same form as our model (2.81) with (2.82), where the temperature may be in-
terpreted as the density of electronic population inversion. Therefore, the interaction strength
would be determined by the life time of the electronic excitations. As this lifetime gets smaller
with increasing dye concentration, one could possibly explain the behaviour of the interaction
constant from [53], where the interaction decreases at larger concentrations. But here one also
needs to take the solvatochromatic shift of the fluorescence maximum [91] into account, i.e. a
shift due to the interactions between the dye and its solvent, as this changes the rates and also
the interaction.

9.2. Polarisation

The experiments presented in Section 1.3 show that the condensate is polarised according to the
pump beam, whereas the thermal cloud is not polarised at all. The same results are theoretically
obtained in [88]. However, what is missing is a thorough analysis of the underlying Stokes
parameters as these parameters are also used experimentally to determine the polarisation [51].
Moreover, so far no dynamical analysis of a two-component photon BEC has been done, neither
corresponding equations have been set up so far. A possible approach is again found in the
literature of exciton-polariton condensates [92]. There the authors used the mean-field model
from [34] and extended the model by a second species of polaritons. Moreover, they also allow
the species to merge into each other.
In the case of a photon BEC it is, in principle, also possible to extend the model presented in
this thesis, but this model may not be able to describe the experimental findings of a condensate
polarisation being the same as the pump laser polarisation. For this one needs to take the matter
degrees of freedom into account. However, in order to describe also dynamical processes between
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FIG. 9.2: Double well potential. Both the wave function and the temperature distribution
decompose into a part that is settled in the left well and one that is centred in the right well.

the two species, such as interaction or a change of polarisation, spontaneous emission needs to
be taken into account, as this is independent from the polarisation.

9.3. Double Well Potential

As already mentioned in Section 1.4 it is experimentally possible to generate double well poten-
tials for photon BECs [52]. In such potentials the wave function falls into two pieces, namely one
per well, if the wells are separated far enough from each other, see Figure 9.2. In case of atomic
BECs this system is well studied and known to undergo Josephson oscillations, see [21, 93, 94].
What happens in the case of a photon BEC? The main difference is that a photon BEC is an
open-dissipative system, meaning that the condensate not only oscillates back and forth between
the sites in the double well, but also the coherent and incoherent interaction with the bath plays
a crucial role for the dynamics. In addition there still is the thermo-optic interaction present,
whose strength could oscillate in time as it depends on the heating due to imperfect absorp-
tion processes of photons by the dye. Mathematically, the envelope of the oscillations can be
described by the nonlocal Gross-Pitaevskii equation from Part III:

i~∂tψ =

{
−~2∇2

2m
+ V (x) + gTBG ∗ |ψ|2 +

i~
2

[
ℵp− Γ + 2(ℵp+ Γ)G ∗ |ψ|2

]}
, (9.14)

where V (x) denotes the double well potential. The condensate wave function ψ can be expressed
in basis of the functions ψi centred in each well:

ψ(x, t) = a1(t)ψ1(x) + a2(t)ψ2(x), (9.15)

where the basis functions ψi are given by the steady state calculated in Chapter 7.5. Inserting
(9.15) in (9.14) then yields a system of two coupled integro-differential equations, that can be
analysed by performing a Laplace transformation of the linearised equations as it was done in
Chapter 4. From [93] it is known that in case of a usual Gross-Pitaevskii equation the resulting
equations can be described by means of the Hamilton function of a pendulum. Here the two
possible eigenmodes describe either a condensate oscillating back and forth between the single
sites or a condensate that is trapped in one of the sites, respectively. However, this description
is not possible anymore in our case, as we have a system that also contains pump and loss
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processes.
The matter degrees of freedom can be brought in by using the ideas from Section 9.1. One can
then also think of duplicating the matter degrees of freedom, such that each well has its own
bath.

9.4. Vortices

Vortex physics is well known from three-dimensional atomic Bose-Einstein condensates both
theoretically and experimentally [21]. In our case the situation is quite different, not only that
the photon BEC exists in two dimensions but in addition loss and pump processes and a nonlocal
interaction are present. Also in exciton-polariton condensates vortices are examined experimen-
tally, cf. [95, 96] as well as theoretically. The most recent theoretical work [97] investigates the
interaction of vortices and is based on the mean-field equations from [34]. The main difference to
vortices in closed systems is that in exciton-polariton condensates vortices function as a source
of polaritons. This stems from the fact that the losses are due to polariton-polariton scattering,
meaning that a loss can only happen at coordinates with nonzero polariton density, i.e. losses
cannot occur inside a vortex. On the other hand the pump inside a vortex is less suppressed
than the loss. The produced polaritons leave the vortex radially. This mechanism has a high
influence on the dynamics of vortex pairs, as is shown in Figure 9.3. The panels (a) and (b)
show the case of a vortex-vortex pair. The equilibrium, that is marked by the white points
and represents also the initial condition, is perturbed by the polariton flows out of the vortices.
Due to that a new orbit evolves that is stabilised by the interplay between these flows and the
influence of the von-Neumann boundary conditions, which are assumed by the authors. The
pictures in the second row show the corresponding motion of a vortex-antivortex pair. Instead
of moving parallel to each other, the distance between the vortex and the antivortex increases,
showing that they repel each other.
Similar results can be suspected in the mean-field description of the photon BEC as the equa-
tions are nearly the same. However, the spontaneous emission may change some of the results
as it does not depend on the local condensate density.

107



9. Outlook

FIG. 9.3: Some of the results from [97]. The pictures (a) and (b) show the motion of a vortex-
vortex pair, whereas in (c) and (d) the trajectories for a vortex-antivortex pair is plotted. In all
pictures a red coloured trajectory means that the vortex passed this point in recent time.
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A. Lorentz Model for Dye and
Kennard–Stepanov Relation

The purpose of this appendix is to give an overview on how the dye susceptibility could possibly
be calculated on the basis of the Lorentz oscillator model and by taking into account the relation
between absorption and emission spectrum which is provided by the so-called Kennard-Stepanov
relation.

A.1. Lorentz Model

Within the Lorentz model one usually approximates an electronic transition between energy
levels of a two-level system under the influence of an incident driving field E by a driven and
damped harmonic oscillator with its frequency being the transition frequency Ω [60, 61]. Thus,
for the position vector of the electron x we have the equation

ẍ + βẋ + Ω2x = − e

m
E, (A.1)

where β denotes the damping constant. By performing a half-sided Fourier transformation,
which is a special case of the Laplace transformation (5.3) with s = iω, we find an algebraic
equation for the Laplace transformed position x̆

x̆ = − e

m
Γ(ω)Ĕ, (A.2)

where we assumed, that the electron is at rest at initial time t = 0. Moreover, the Green’s
function for a harmonic oscillator is defined by

Γ(ω) =
1

Ω2 − ω2 − iβω . (A.3)

Since in case of a linear susceptibility the relation between polarisation P of single molecule and
incident electrical field is according to (2.3) given by

P = ε0χ
(1)E, (A.4)

we find for the linear susceptibility within the Lorentz model

˘χ(1)(ω) = − e

ε0m
Γ(ω) (A.5)
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FIG. A.1: Optical properties of a two-level system. Panel (a) shows the level scheme of the
two-level system. The energy levels differ by an energy of ~Ω, whereas light at energy ~ω is
shined in. The resulting refractive index n and extinction coefficient γ according to (A.7) is
shown in Panel (b). The parameters are chosen as e/(ε0m) = 1 = β.

and so for the dielectric function

ε̆(ω) = 1 + ˘χ(1) = 1− e

ε0m
Γ(ω). (A.6)

Following (2.6) refractive index and extinction coefficient are given by

n̆(ω) = Re
(√

1− e

ε0m
Γ(ω)

)
and γ̆(ω) = Im

(√
1− e

ε0m
Γ(ω)

)
. (A.7)

How the resulting refractive index and extinction coefficient look, can be seen in panel (b) of
Figure A.1. Note here, that the suspected exact absorption line is blurred out due to the damp-
ing. Therefore, we can conclude that refractive index n and extinction coefficient γ only play
a role near the resonance frequency and far from the resonance the refractive index approaches
1, whereas the extinction coefficient vanishes. It should be mentioned that in more complex
material the refractive index usually tends towards some certain background value nbag.
In the case of a solution consisting of two components, the refractive index is a sum over both
dielectric functions ε1(2) of the species 1(2), where the weights are proportional to the respective
concentration c1(2) provided that the interaction between the two species is small enough, as
their the emission/absorption rates are not affected:

ε(ω) ∝ c1ε1(ω) + c2ε2(ω). (A.8)

In the experimental situation of the photon BEC, the concentration of the solvent ethylene glycol
is much larger than the one of the Rhodamine 6G. Moreover, the experiment is in a frequency
region that is far away from any resonances of the solvent, such that only the background value
εbag matters. Note, that this background value is real, as no absorption processes happen. On
the other hand, we are right at the resonances of the dye. Since the concentration of the dye is
small compared to the concentration of the solvent, the real part of the total dielectric function
ε(ω) is given entirely by the background value of ethylene glycol and the imaginary part of
the total dielectric function is completely determined by the absorption emission spectrum of
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Rhodamine 6G. Therefore, the total dielectric function is given by

ε(ω) ∝ c1εbag + ic2Im (εR6G(ω)) . (A.9)

In real time, the polarisation P is provided by a convolution of the response, i.e. the dielectric
function, with the incident field E:

P = ε0ε ∗E. (A.10)

For the definition of the convolution see (5.8), but note, that we here only consider the temporal
convolution. As the real part of the dielectric function is a constant, the inverse Laplace trans-
formation is a simple Dirac delta function. For the imaginary part of the convolution we assume,
that the incident field E is dominated by one frequency and has only minor contributions of near
lying frequencies, such that the dielectric function is nearly constant in this frequency range.
Thus, also in the imaginary part the convolution is resolved by a Dirac delta function and we
find for the linear polarisation

P(t) ≈ ε0εE(t). (A.11)

Therefore, the question arises what one knows about the spectrum of the dye molecules. This
is the topic of the next section.

A.2. Kennard-Stepanov Relation

In this section we derive the Kennard-Stepanov relation [39–42], as this plays a crucial role
in the thermalisation of photon Bose-Einstein condensates. The starting point is Figure A.2,
where the Jablonski diagram of a molecule with two electronic levels is shown. The transition
frequency is assumed to be ωZPL, where ZPL stands for zero-phonon-line, as this indicates a
pure electronic transition. Due to the possible vibrations of the molecule, the levels themselves
obtain many sublevels. Since the molecule can interact with its surrounding, the vibrational
levels are occupied according to the Boltzmann distribution

p(∆ω1) = e−~∆ω1/(kBT ) (A.12)

Ω

ω

∆ω1

∆ω2

FIG. A.2: Jablonski diagram of a molecule with two electronic levels. The thick lines show the
bare transition, whereas the thin lines correspond to the phononic excitations of the dye.
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for the lower manifold and

p(∆ω2) = e−~∆ω2/(kBT ) (A.13)

for the upper manifold. Due to the conservation of energy ωZPL + ∆ω2 = Ω + ∆ω1, we can
express the latter by the distribution for the lower manifold:

p(∆ω2) = p(∆ω1)e−~(Ω−ωZPL)/(kBT ). (A.14)

The aim is now to generalise the Einstein coefficients for the transitions between total upper
and total lower manifold. For this purpose consider the Einstein coefficients B12(Ω,∆ω1) for
the transition from some certain state of the lower manifold at energy ~Ω + ~∆ω1 to the upper
manifold. As we assume that the states in the lower manifold are thermally occupied, the total
absorption coefficient B12(Ω) can be found by averaging over all microscopic coefficients:

B12(Ω) =

∫
d∆ω1 g(∆ω1)B12(Ω,∆ω1)p(∆ω1), (A.15)

where g(∆ωq) is the density of states in the lower manifold. By the same reasoning for the upper
manifold we find by using (A.14) for the induced emission Einstein coefficient

B21(Ω) = e−~(Ω−ωZPL)/(kBT )

∫
d∆ω2 g(∆ω2)B21(Ω,∆ω2)p(∆ω1). (A.16)

From the analysis of a simple two-level system the detailed balancing condition g(∆ω1)B12(Ω,∆ω1) =
g(∆ω2)B21(Ω,∆ω2) is known. Using this, we find from (A.16) the Kennard-Stepanov relation

B21(Ω) = e−~(Ω−ωZPL)/(kBT )B12(Ω). (A.17)

The temperature that emerges in the exponent is called spectral temperature. For the photon
BEC it is crucial, that this temperature is constant in the experimental frequency range, as the
photon gas thermalises to this temperature.
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In this appendix we shortly comment on how to solve integrals of products of Gaussian functions,
which possess different centres-of-masses. For this purpose we make use of a technique that is
called integration by differentiation and goes back to [98,99]. As this technique is not commonly
known, a short overview is given in Section B.1. Afterwards we will use this particular method
and solve the general form of Gaussian integrals that appear in 4 and 7 in Section B.2.

B.1. Integration by Differentiation

Consider an analytic function f : R → R and the definite integral I =
∫ b
a dx f(x). In order

to introduce the method, we create now an exponential term by inserting the unity in form of
limε→0 e

αεx:

I = lim
ε→0

∫ b

a
dx f(x)eαεx. (B.1)

After replacing the integration variable by the corresponding derivative with respect to ε yields

I = lim
ε→0

f

(
1

α
∂ε

)∫ b

a
dx eαεx, (B.2)

which can be integrated to

I = lim
ε→0

f

(
1

α
∂ε

)
eαεb − eαεa

αε
. (B.3)

These three steps describe the fundamental steps of the integration by differentiation method.

B.2. Gaussian Integrals

As in the this thesis Gaussian integrals play a crucial role, we turn now on how to calculate them
within the framework of integration by differentiation. As in the text we deal with products of
Gaussian functions with different centres-of-mass, we deal with the general form of those.
In order to ease our work we will make use of the following identity

ea∂
2
ε δ(ε) =

1√
4πa

e−ε
2/(4a). (B.4)
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This can be proofed by using the integral representation of the delta function

ea∂
2
ε δ(ε) =

1

2π

∫ ∞

−∞
dx ea∂

2
ε eiεx (B.5)

Replacing ∂ε by ix and performing the remaining integrals yields

ea∂
2
ε δ(ε) =

1√
4πa

e−ε
2/(4a). (B.6)

Consider now an integral I of E Gaussian functions in D dimensions

I =

∫
dDx exp


−

D∑

j=1

E∑

k=1

(xj − ξjk)2

q2
jk


 . (B.7)

After introducing for each coordinate xj an auxiliary variable εj and multiplying out the square
in the exponential the integral takes the form

I =

D∏

j=1

2π lim
εj→0

exp

[
−

E∑

k=1

ξ2
jk − 2iξjk∂εj − ∂2

εj

q2
jk

]
δ(εj). (B.8)

We can now apply the differential operators and arrive at

I =
D∏

j=1

2π√
4π
∑E

k=1 1/q2
jk

exp

[
−

E∑

k=1

ξ2
jk

q2
jk

]
lim
εj→0

exp


− 1

4
∑E

k=1 1/q2
k

(
εj − 2i

E∑

k=1

ξjk
q2
jk

)2

 (B.9)

yielding finally, after performing the limit

I =

√
πD

∏D
j=1

∑E
k=1 1/q2

jk

exp





D∑

j=1

E∑

k=1

[
1

∑D
k=1 1/q2

jk

E∑

l=1

ξjkξjl
q2
jkq

2
jl

−
ξ2
jk

q2
jk

]
 . (B.10)

This also provides us with the solution for some smooth function in front of the Gaussians,
namely

∫
dDx f(x) exp


−

D∑

j=1

E∑

k=1

(xj − ξjk)2

q2
jk


 (B.11)

=

√
πD

∏D
j=1

∑E
k=1 1/q2

jk

lim
ε→0

f (−i∂ε) exp



−

D∑

j=1


 1

4
∑E

k=1 1/q2
k

(
εj − 2i

E∑

k=1

ξjk
q2
jk

)2

+
E∑

k=1

ξ2
jk

q2
jk
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For further calculations let us write this in a slightly shorter way

∫
dDx f(x) exp



−

D∑

j=1

[
E∑

k=1

(xj − xjk)2

q2
jk

]


=N lim
ε→0

f(−i∂ε) exp



−

D∑

j=1

[
A

(E)
j

(
εj − 2iB

(E)
j

)2
+ C

(E)
j

]
 , (B.12)

with the abbreviations

A
(E)
j =

1

4
∑E

k=1 1/q2
jk

, (B.13a)

B
(E)
j =

E∑

k=1

ξjk
q2
jk

, (B.13b)

C
(E)
j =

E∑

k=1

ξ2
jk

q2
jk

, (B.13c)

N =

√
πD

∏D
j=1

∑E
k=1 1/q2

jk

= πD/2
D∏

j=1

∏E
l=1 qjl√∑E

k=1

∏E
l 6=k q

2
jk

. (B.13d)

In the concrete calculation, f will be a polynomial with at most fourth order terms. Thus, we
consider the following calculation, where we do not denote the superscripts and shift the variable
according to xj = εj − 2iB

(E)
j ,

∂4

∂x1∂x2∂x3∂x4
e−

∑
(Ajx

2
j+Cj) (B.14a)

=
∂3

∂x1∂x2∂x3
[−2A4x4] e−

∑
(Ajx

2
j+Cj) (B.14b)

=
∂2

∂x1∂x2
[−2Aδ34 + 4A4A3x4x3] e−

∑
(Ajx

2
j+Cj) (B.14c)

=
∂

∂x1
[4A4A3 (x3δ42 + x4δ32)− 8A4A3A2x4x3x2] e−

∑
(Ajx

2
j+Cj) (B.14d)

= [4A4A3 (δ31δ42 + δ41δ32)− 8A4A3A2 (x4x3δ21 + x4x2δ31 + x3x2δ41)

+16A4A3A2A1x4x3x2x1] e−
∑

(Ajx
2
j+Cj). (B.14e)

In this notation the limit εj → 0 corresponds to the substitution xj → −2iBj . But this means,
we can replace in the integral (B.12) the monomial powers according to Table B.1.
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Table B.1.: Monomial replacement in Gaussian integrals. The lines are determined by the
corresponding lines in (B.14).

Monomial Replacement

x4 4A4B4

x3x4 2A4δ34 + 16A4A3B4B3

x2
4 2A4 + 16A2

4B
2
4

x2x3x4 2A4A3(B3δ42 +B4δ32) + 64A4A3A2B4B3B2

x2x
2
3 4A2

3B3δ23 + 64A2A
2
3B2B

2
3

x1x2x3x4 4A4A3(δ31δ42 + δ41δ32) + 32A4A3A2(B4B2δ21 +B4B2δ31B3B2δ41) + 256A4A3A2A1B4B3B2B1

x2
2x

2
4 8A2

4δ42 + 32A2
4A2(B2

4 +B4B2 +B4B2δ42) + 256A2
4A

2
2B

2
4B

2
2

Table B.2.: Calculation of the A,B,C coefficients according to the definitions (B.13).

E A
(E)
j B

(E)
j C

(E)
j

1
q2
j1

4

xj1
q2
j1

x2
j1

q2
j1

2
q2
j1q

2
j2

4(q2
j1 + q2

j2)

xj1q
2
j2 + xj2q

2
j1

q2
j1q

2
j2

x2
j1q

2
j2 + x2

j2q
2
j1

q2
j1q

2
j2

3
q2
j1q

2
j2q

2
j3

4(q2
j2q

2
j3 + q2

j1q
2
j3 + q2

j1q
2
j2)

xj1q
2
j2q

2
j3 + xj2q

2
j1q

2
j3 + xj3q

2
j1q

2
j2

q2
j1q

2
j2q

2
j3

x2
j1q

2
j2q

2
j3 + x2

j2q
2
j1q

2
j3 + x2

j3q
2
j1q

2
j2

q2
j1q

2
j2q

2
j3
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C. Cumulants Method

In this appendix we answer the questions after the shape and after the lowest-lying collective
excitations of a harmonically trapped D-dimensional Bose-Einstein condensate whose particles
underlie a weak contact interaction. The usual way to tackle those issues is, that the condensate
wave function is assumed to be Gaussian shaped as this is the solution to the noninteracting
case. In the present ansatz the widths are allowed to be affected due to the presence of a
weak interaction. One usually proceeds by inserting this ansatz into the condensate action
functional. As now the action functional depends on the widths of the condensate, Hamilton’s
principle can be used to find the corresponding evolution equations for the widths. As the
spatial degrees of freedom have been eliminated due to the ansatz, the quest after solving a
D-dimensional nonlinear partial differential equation is reduced to solving D coupled nonlinear
ordinary differential equations for the widths, see e.g. [77,79,82].
In this appendix a different approach that yields the same results as the standard variational
method is presented. The procedure is based on the statistical properties of the Gauss function,
namely that a Gauss function is described by the first two cumulants, i.e. the width and the
centre-of-mass. The equations governing their temporal evolution are derived by calculating
the average of Gross-Pitaevskii equation weighted with certain factors. Along this path the
same equations for the widths as in the standard procedure can be derived. This method has
the advantage that no action is needed to derive the width equations which means that it can
also be used to calculate such variational equations for open-dissipative systems as it is the
case with the photon BEC. In Chapter 4 as well as in Chapter 7, this method will be used to
calculate the collective frequencies of the photon condensate. A similar method has first been
used in [100] to describe a system of two interacting BECs that may undergo losses and that are
harmonically trapped. Therefore, they also use Gaussian ansatzes for the BECs, but here only
the width dynamics is considerd. In [81] this method is extended to also be able to describe the
nonequilibrium dynamics of the centre-of-mass of a condensate, which is part of hybrid atom-
optomechanical system.
The purpose of this chapter is to introduce the reader to the cumulants method and to show that
it yields the same results as the variational approach. To this end this appendix is structured
as follows. In Section C.1 the cumulants equations for a D-dimensional condensate are derived.
As the photon condensate is a two-dimensional object, in Section C.2 the findings of Section C.1
are specified to two spatial dimensions and discussed further. Those results are compared to to
results obtained by solving the Gross-Pitaevskii equation numerically in Section C.3. Finally,
as numerous integrals appear, especially in Chapters 4 and 7 during the averaging of the Gross-
Pitaevskii equation, we provide an overview of those integrals in Section C.4.
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C. Cumulants Method

C.1. Collective Frequencies of Atomic Bose-Einstein Condensate

In this section, we analyse the lowest-lying collective frequencies of a BEC, that is described by
a closed Gross-Pitaevskii equation in D spatial dimensions

i~∂tψ = − ~2

2m
∇2ψ +

m

2

D∑

i=1

Ω2
ix

2
iψ + g|ψ|2ψ. (C.1)

As the purpose of this appendix is only to introduce the reader to the cumulants method, we
transform this equation to dimensionless quantities by rescaling the lengths with the harmonic
oscillator length losc =

√
~/(mΩ) and the time by the inverse frequency scale 1/Ω that deter-

mines the frequencies in the various dimensions by Ωi = λiΩ, with λ ∈ R+. Thus we can restate
(C.1) as

i∂tψ = −1

2
∇2ψ +

1

2

D∑

i=1

λ2
ix

2
iψ + g̃|ψ|2ψ. (C.2)

Here, we define the dimensionless interaction strength by

g̃ =
g

~Ω

(
mΩ

~

)D
. (C.3)

In the following we first determine the ansatz for the wave function and discuss the resulting
cumulants equations as well as the arising consequences for the lowest-lying collective frequen-
cies.

C.1.1. Ansatz

Since small interaction strengths are considered, a Gaussian ansatz for the condensate wave
function is considered, as this solves the non-interacting case. In detail this reads

ψ =

√
N0

πD/2
∏D
i=1 qi(t)

exp





D∑

j=1

[
−
(

1

2qj(t)2
+ iAj(t)

)
(xj − x0j(t))

2 + ixjCj(t)

]
 . (C.4)

This ansatz allows us to examine 2D eigenmodes, namely D modes where only the widths qj
oscillate and D modes where only the centres-of-mass x0j oscillate, see Figure 4.1 for the special
case D = 2.
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C.1.2. Cumulants Equations

In order to calculate the cumulants equation of motion we average over the Gross-Pitaevskii
equation (C.1) with the weight fik:

i

∫
dDx fikψ

∗∂tψ =
1

2

∫
dDx ψ∗∇fik · ∇ψ +

1

2

∫
dDx fik|∇ψ|2 (C.5)

+
1

2

D∑

i=1

λ2
i

∫
dDx x2

i fik|ψ|2 + g̃

∫
dDx fik|ψ|4,

where the kinetic term has been partially integrated.
As the ansatz (C.4) is a Gaussian function, it is enough to calculate the first two central moments,
meaning we consider on the one hand, see [81]

f1k = xk − x0k (C.6)

to find the equations governing the centre-of-mass motion. On the other hand

f2k = (xk − x0k)
2 − q2

k

2
(C.7)

is considered, in order to find the system governing the widths motion.

C.1.3. Dipole Mode and Kohn Theorem

First, we inspect the case of f1k that encodes the centre-of-mass motion. Performing the integrals
yields the complex differential equation

i

2
ẋ0k +Akq

2
kẋ0k − Ċk

q2
k

2
=
i

2
Ck +AkCkq

2
k +

1

2
λ2
kx0kq

2
k. (C.8)

As all the coefficients are real, (C.8) is decomposed into real and imaginary part. The imaginary
part results in the relation between x0k and Ck:

Ck = ẋ0k. (C.9)

The real part on the other hand leads to

Akq
2
kẋ0k − Ċk

q2
k

2
= AkCkq

2
k +

1

2
λ2
kx0kq

2
k. (C.10)

By inserting (C.9) into (C.10) these two equations yield one harmonic oscillator equation for the
centre-of-mass x0k:

ẍ0k + λ2
kx0k = 0. (C.11)
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The dipole-mode frequency of the kth direction ω
(k)
dip is directly read off from this equation to

be

ω
(k)
dip = λk. (C.12)

Remarkably enough, this frequency does only depend on the trap frequency in the kth direction
and is completely unconnected to the interaction of the BEC particles. This result is referred
to as Kohn theorem [78, 79] that has been first stated by Walter Kohn in the realm of an
interacting electron gas in a magnetic field [101]. In this setting Kohn showed, that the cyclotron
frequency of the gas is independent of the electron-electron interaction.

C.1.4. Breathing- and Quadrupole Mode

As next the case of f2k is considered. Executing the corresponding integrals in (C.5) yields also
here a complex differential equation

i
q̇kqk

2
+
Ȧkq

4
k

2
= −1

2

(
1 + 2iAkq

2
k

)
+

1

4
+A2

kq
4
k +

1

4
λ2
kq

4
k −

Ng̃q2
k

2D/2+2πD/2
∏D
j=1 qj

. (C.13)

The imaginary part of this equation reveals the relation between Ak and qk

Ak = − q̇k
2qk

. (C.14)

The real part of (C.13) results in a differential equation for Ȧk

Ȧkq
4
k

2
=

1

2
+A2

kq
4
k +

1

4
λ2
kq

4
k −

Ng̃q2
k

2D/2+2πD/2
∏D
j=1 qj

. (C.15)

By using (C.14), (C.15) can be turned into a differential equation of second order for qk

q̈k + λ2
kqk =

1

q3
k

+
N0g̃

(2π)D/2qk
∏D
i=1 qi

. (C.16)

This equation is completely decoupled from the centre-of-mass motion, but in contrast to the
dipole mode, this equation still inherits information on the interaction and the widths in the
different directions are coupled.
The equations of motion can also be summarised by writing down a potential

V (D) =
1

2

D∑

k=1

(
λ2
kq

2
k +

1

q2
k

)
+

N0g̃

(2π)D/2
∏D
i=1 qi

, (C.17)

which can be directly compared to [77, (13)]. The potential in the reference agrees with the here
calculated potential V (3) by identifying qi = ui and P = N0g̃/(2π)3/2.
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C.2. Two-Dimensional Atomic Bose-Einstein Condensate

As the focus of the present thesis lies upon two-dimensional condensates in an isotropic harmonic
trap, the results of the preceding section are specialised in this section to two spatial dimensions.
The trap isotropy finds its expression in choosing λ1 = λ2 ≡ 1.

The first observation is, that the result for the dipole mode (C.12) is not changed. Also here the
condensate oscillates with the trap frequency. The system of equations for the widths (C.16)
takes now the form

q̈1 + q1 =
1

q3
1

+
N0g

2πq2
1q2

, (C.18a)

q̈2 + q2 =
1

q3
2

+
N0g

2πq1q2
2

. (C.18b)

In order to find also in this case an oscillation frequency, (C.18a) will be linearised by the
ansatz

qk(t) = q0 + δqke
−iωt, k = 1, 2, (C.19)

where q0 describes the steady state and is the same in both directions due to the isotropy. Small
perturbations of this steady state are described by δqk, k = 1, 2.
Inserting (C.19) into (C.18a) and keeping only terms up to first order in the perturbations leads
to

−ω2δq1 + q0 =
1

q3
0

+
N0g̃

2πq3
0

−
(

1 +
3

q4
0

+
N0g̃

πq4
0

)
δq1 −

N0g̃

2πq4
0

δq2, (C.20)

−ω2δq2 + q0 =
1

q3
0

+
N0g̃

2πq3
0

−
(

1 +
3

q4
0

+
N0g̃

πq4
0

)
δq2 −

N0g̃

2πq4
0

δq1. (C.21)

Thus, the steady state is described by

q4
0 = 1 +

Ng̃

2π
(C.22)

depending on the interaction. According to this result, the condensate width grows, if the
particle number or the interaction strength is increased. This result is plotted in panel (a) of
Figure C.1.
In order to get the squares of the corresponding eigenmode frequencies, the coefficient matrix

S =




1 + 3
q4
0

+ N0g̃
πq4

0
+ N0g̃

2πq4
0

+ N0g̃
2πq4

0
1 + 3

q4
0

+ N0g̃
πq4

0


 (C.23)
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FIG. C.1: Results for linear stability analysis of (C.18a). Panel (a) shows the steady state
solution as calculated in (C.22). In panel (b) the frequencies of oscillatory solutions as calculated
in (C.24) are drawn.

is diagonalised. Therefore, we find

ω+ = 2, (C.24a)

ω− =

√
1 +

6π +N0g̃

2π +N0g̃
. (C.24b)

Surprisingly, only one of those modes, namely the "-"-mode, depends on the interaction. In
case of vanishing interaction, i.e. N0g̃ → 0, both modes share the same frequency, but in the
limit N0g̃ → ∞, the "-"-mode tends to

√
2 . This behaviour can also be seen in panel (b) of

Figure C.1.
The corresponding eigenvectors are given by

χ+ =
1√
2




1

1


 , (C.25)

meaning that the width perturbation oscillate in phase. As this makes the condensate look like
as it is breathing, this mode is referred to as breathing mode. The second eigenvector is provided
by

χ− =
1√
2




1

−1


 . (C.26)

In this case, the widths oscillate with a phase of π, therefore, this mode is called quadrupole
mode.
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C.3. Numerical Results

The Gross-Pitaevskii equation (C.2) can also be solved numerically. With this numerical so-
lution at hand we can then check, how well the approach that is presented in the preceding
Section works. For the numerical implementation we chose a Split-Step Fourier method, see
e.g. Reference [102]. Within this method one propagates the kinetic term in the Fourier space,
where the application of the Laplacian is only a multiplication by a real number, whereas the
rest is propagated in real space. In order to explain what is meant by that in more detail, we
derive now heuristically the iteration equation.
The formal solution of the Gross-Pitaevskii (C.2) is provided by

ψ(t,x) = exp

[∫ t

0
dt′

(
−∇

2

2
+ V (ψ(t′,x))

)]
ψ(t = 0,x), (C.27)

where we defined V (ψ) = 1
2

∑D
i=1 λ

2
ix

2
iψ

2+g̃|ψ|2ψ. For an infinitesimal time step ∆t, the integral
can be approximated such that the formal solution reads

ψ(t+ ∆t) ≈ exp

[(
−∇

2

2
+ V (ψ(t))

)
∆t

]
ψ(t), (C.28)

where we left off the spatial index. Application of Baker-Campbell-Hausdorff formula in the
lowest order yields

ψ(t+ ∆t) ≈ exp

[
−∇

2

2
∆t

]
exp [V∆t]ψ(t). (C.29)

We apply now the spatial Fourier transformation F [·] to get rid of the Laplacian operator

ψ(t+ ∆t) = F−1
[
e−k

2∆t/2F
[
eV∆tψ(t)

]]
. (C.30)

This is already the basic form of the Split-Step Fourier method and one can see how the name
of the method is chosen as the propagation step is split into propagation in real space and
propagation in Fourier space.

With this numerical solution at hand the centre-of-mass and the widths can be calculated from
the numerical data by performing the integrals

x0k(t) =

∫
d2x x2

k |ψ(x, t)|2 (C.31)

and

q2
k

2
=

∫
d2x (xk − x0k)

2 |ψ(x, t)|2 (C.32)

numerically. The resulting curves are then fitted by f(x) = a+ b cos(cx+ d), where a, b, c and
d are the respective fitting parameters. For the widths the parameter a yields the equilibrium
width q0 and c the oscillation frequency. The mode is selected by choosing appropriate initial
conditions.
For the concrete simulation we take a rectangular grid with regularly ordered grid points. We
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FIG. C.2: Comparison of numerical and analytical results. In Panel (a) the results for the
equilibrium width is plotted. The blue curve is the analytical solution provided by (C.22). The
red dots mark the numerical results. Panel (b) deals with the oscillation frequencies, whereas
the curves show the analytical results as calculated in (C.12) and in (C.24). The crosses mark
the numerical results.

work with 10242 grid points which amounts to a distance of 0.0196 between two neighboured
points. We evolute one full period that is set by the centre-of-mass oscillation where one time
step is 2−8.
The resulting frequencies are shown in Figure C.2. As one can see the agreement between the
numerical data from this Section agree with the analytical results from the last Section. However,
a small devitiation can be seen for larger interaction strengths Ng̃. In this region the ansatz
(C.4) gets worse, as the Gaussian ansatz is still based on small interaction strengths. For larger
interaction strength the Gaussian ansatz is supposed to bend over into the parabolic form of the
Thomas-Fermi limit, where the kinetic energy can be neglected in comparison to the interaction
energy.
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C.4. Table of Appearing Integrals

This Sectionprovides a table of the integrals appearing by performing the moments approach.
They are solved with the methods provided in Appendix B, especially by using Table B.1.

C.4.1. Photon Equation

First Moments

1.
∫
d2x (xk − x0k)ψ

∗∂tψ = N0

(
∂tx0k

2
− iAkq2

k∂tx0k + i
q2
k

2
∂tCk

)
(C.33)

2.
∫
d2x (xk − x0k)ψ

∗∇2ψ = −N0

(
iCk + 2AkCkq

2
k

)
(C.34)

3. ∫
d2x (xk − x0k)x

2|ψ|2 = N0x0kq
2
k (C.35)

4. ∫
d2x (xk − x0k)T |ψ|2 = N0T0GTψ

q2
k(y0k − x0k)

q2
k + r2

k

(C.36)

5. ∫
d2x (xk − x0k)|ψ|4 = 0 (C.37)

6. ∫
d2x (xk − x0k)p|ψ|2 = −N0P0GPψ

q2
kx0k

q2
k + s2

(C.38)

7. ∫
d2x (xk − x0k)pT |ψ|2 = N0P0T0GTPψ

(y0k − x0k)q
2
ks

2 − x0kq
2
kr

2
k

(s2 + r2
k)q

2
k + r2

ks
2

(C.39)

8. ∫
d2x (xk − x0k)|ψ|2 = 0 (C.40)

Second Moments
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C. Cumulants Method

1. ∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
ψ∗∂tψ = N0

qk∂tqk
2

+N0i
q4
k∂tAk

2
(C.41)

2. ∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
ψ∇2ψ = −N0

(
−1

2
− 2iAkq

2
k + 2A2

kq
4
k

)
(C.42)

3. ∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
x2|ψ|2 = N0

q4
k

2
(C.43)

4.
∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
T |ψ|2 = N0T0GTψ

[(
(y0k − x0k)q

2
k

r2
k + q2

k

)2

− q4
k

2(q2
k + r2

k)

]
(C.44)

5. ∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
|ψ|4 = − N2

0 q
2
k

8πq1q2
(C.45)

6. ∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
p|ψ|2 = N0P0GPψ

[(
x0kq

2
k

s2 + q2
k

)2

− q4
k

2(q2
k + s2)

]
(C.46)

7.
∫
d2x

[
(xk − x0k)

2 − q2
k

2

]
pT |ψ|2 = T0N0I0GTPψ

{[
(x0k − y0k)q

2
ks

2 + x0kq
2
kp

2
k

s2r2
k + q2

k(r
2
k + s2)

]2

− q4
k(s

2 + r2
k)

2[q2
k(s

2 + r2
k) + r2

ks
2]

}
(C.47)

C.4.2. Temperature Equation

First Moments

1. ∫
d2x xk∂tT = ∂t(T0y0k) (C.48)

2. ∫
d2x xk∇2T = 0 (C.49)
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3. ∫
d2x xkT = T0y0k (C.50)

4. ∫
d2x xk|ψ|2 = N0x0k (C.51)

Second Moments

1. ∫
d2x (xk − y0k)

2∂tT = ∂t

(
T0
r2
k

2

)
(C.52)

2. ∫
d2x 2(xk − y0k)

2∇2T = 2T0 (C.53)

3. ∫
d2x (xk − x0k)

2T =
T0r

2
k

2
(C.54)

4. ∫
d2x (xk − y0k)

2|ψ|2 = N0
q2
k

2
+N0(x0k − y0k)

2 (C.55)
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D. Overview of Used Notations and
Experimental Values

In this appendix we will list all the necessary quantities, their corresponding symbol and –insofar
known– their experimental and theoretical value.

D.1. Natural Constants

Quantity Symbol Value

Light velocity c 299 792 458 m/s

Planck’s constant ~ 1.054 571 8× 10−34 J s

Boltzmann’s constant kb 1.380 648 52× 10−23 J/K

Vacuum permittivity ε0 8.854 187 817× 10−12 C2/(N m2)

D.2. Dye Solution and Temperature Field

D.2.1. Fundamental Constants (R6G in Ethylene Glycol)

Quantity Symbol Experimental Value

Refractive index n 1.46 [103]

Exctinction coefficient γ -

Thermal conductivity κ 0.258 W/(m K) [103]

Molar weight - 62.07 g/mol

Specific heat cp 149.5 J/(mol K) = 2408 J/(kg K) [103]
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Density ρ 1110 kg/m3 [103]

Thermo-optic coefficient ∂n
∂T −4.68× 10−4/K [44]

Absorption rate Γabs 1× 109 Hz to 1× 1010 Hz [104]

Quantum yield η 0.95 [44]

D.2.2. Derived Quantities

Quantity Symbol Formula Theoretical Value

Thermal diffusion coefficient D λw/(cpρ) 9.16× 10−8 m2/s

Effective temperature mass mT ~/(2D) 5.75× 10−28 kg

Effective temp. trap frequency ΩνT 2Dνπ/L0

√
2/(L0R) 313.43 Hz

Decay time τ1 1/(Dk2
01) 2.49× 10−6 s

Effective absorbtion rate Γ (1− η)Γabs

D.3. Cavity and Electrical Field

D.3.1. Fundamental Constants

Quantity Symbol Experimental Value

Unperturbed length L0 1.5× 10−6 m [44]

Mirror curvature R 1 m [44]

D.3.2. Derived Quantities

Quantity Symbol Formula Theoretical Value

Photon mass m7 7π~n0/(L0c) 7.53× 10−36 kg
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D.3. Cavity and Electrical Field

Photon trap Ω c/n0

√
2/(L0R) 2.37× 1011 Hz

D.3.3. Coupling Constants

Quantity Symbol Formula Theoretical Value

Temperature-photon coupling gT −m7c
2a ∂n∂T /n

2
0 −1.13× 10−22 J/K

Heating rate B 2am7c
2/(Ln0cpρ) 2.73× 10−10 K m2/s

Dimensionless thermo-optic interaction g̃T τgTB 2.56× 10−4
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